1
|
Wu LL, Shi WD, Peng WF, Li GY. Unraveling the interplay between meningitis and mitochondria: Etiology, pathogenesis, and therapeutic insights. Int Immunopharmacol 2025; 147:113985. [PMID: 39765004 DOI: 10.1016/j.intimp.2024.113985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 12/11/2024] [Accepted: 12/28/2024] [Indexed: 01/29/2025]
Abstract
Meningitis, characterized by an inflammatory response affecting the membranes surrounding the brain and spinal cord, poses a formidable challenge to global public health. Its etiology spans a spectrum of infectious agents, ranging from bacteria, to viruses, fungi, and parasites. Concurrently, mitochondria-traditionally known as 'cellular powerhouses'-have emerged as critical players in various essential biological functions, including but not limited to, energy production, metabolic regulation, and cell fate determination. Emerging evidence suggests that mitochondria may play vital roles in the pathogenesis of meningitis. In this review, we delineated the definition, classification, etiology, pathogenesis, and clinical manifestations of meningitis, and elucidated the structure, dynamics and functions of mitochondria. We subsequently delved into the intricate interplay between meningitis and mitochondria, identifying potential therapeutic interventions targeting mitochondria for the first time. With clinical trials on the horizon, our review lays the foundation for a transformative era in meningitis therapeutics, where unraveling the intricate interplay between meningitis and mitochondria offers promise for mitigating neuroinflammation and improving patient outcomes.
Collapse
Affiliation(s)
- Li-Li Wu
- Department of Encephalopathy, Zhoukou Hospital of Traditional Chinese Medicine, Zhoukou 466099, China.
| | - Wei-Dong Shi
- Department of Orthopedics, Zhoukou Hospital of Traditional Chinese Medicine, Zhoukou 466099, China.
| | - Wei-Feng Peng
- Department of Encephalopathy, Zhoukou Hospital of Traditional Chinese Medicine, Zhoukou 466099, China; College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466000, China.
| | - Guo-Yin Li
- Department of Encephalopathy, Zhoukou Hospital of Traditional Chinese Medicine, Zhoukou 466099, China; College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466000, China; Key Laboratory of Modern Teaching Technology, Ministry of Education, Shaanxi Normal University, Xi'an 710062, China; Academy of Medical Science, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
2
|
Peng P, Chavel C, Liu W, Carlson LM, Cao S, Utley A, Olejniczak SH, Lee KP. Pro-survival signaling regulates lipophagy essential for multiple myeloma resistance to stress-induced death. Cell Rep 2024; 43:114445. [PMID: 38968073 PMCID: PMC11318075 DOI: 10.1016/j.celrep.2024.114445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 05/27/2024] [Accepted: 06/20/2024] [Indexed: 07/07/2024] Open
Abstract
Pro-survival metabolic adaptations to stress in tumorigenesis remain less well defined. We find that multiple myeloma (MM) is unexpectedly dependent on beta-oxidation of long-chain fatty acids (FAs) for survival under both basal and stress conditions. However, under stress conditions, a second pro-survival signal is required to sustain FA oxidation (FAO). We previously found that CD28 is expressed on MM cells and transduces a significant pro-survival/chemotherapy resistance signal. We now find that CD28 signaling regulates autophagy/lipophagy that involves activation of the Ca2+→AMPK→ULK1 axis and regulates the translation of ATG5 through HuR, resulting in sustained lipophagy, increased FAO, and enhanced MM survival. Conversely, blocking autophagy/lipophagy sensitizes MM to chemotherapy in vivo. Our findings link a pro-survival signal to FA availability needed to sustain the FAO required for cancer cell survival under stress conditions and identify lipophagy as a therapeutic target to overcome treatment resistance in MM.
Collapse
Affiliation(s)
- Peng Peng
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Colin Chavel
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Wensheng Liu
- Department of Pediatrics, State University of New York at Buffalo, Buffalo, NY, USA
| | - Louise M Carlson
- Indiana University Simon Comprehensive Cancer Center, and the Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sha Cao
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Adam Utley
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Scott H Olejniczak
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Kelvin P Lee
- Indiana University Simon Comprehensive Cancer Center, and the Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
3
|
Korell F, Olson M, Salas-Benito D, Leick MB, Larson RC, Bouffard A, Silva H, Gasparetto A, Berger TR, Kann MC, Mergen M, Kienka T, Wehrli M, Haradhvala NJ, Bailey SR, Letai A, Maus MV. Comparative analysis of Bcl-2 family protein overexpression in CAR T cells alone and in combination with BH3 mimetics. Sci Transl Med 2024; 16:eadk7640. [PMID: 38838132 PMCID: PMC11737343 DOI: 10.1126/scitranslmed.adk7640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 05/07/2024] [Indexed: 06/07/2024]
Abstract
Approximately 50% of patients with hematologic malignancies relapse after chimeric antigen receptor (CAR) T cell treatment; mechanisms of failure include loss of CAR T persistence and tumor resistance to apoptosis. We hypothesized that both of these challenges could potentially be overcome by overexpressing one or more of the Bcl-2 family proteins in CAR T cells to reduce their susceptibility to apoptosis, both alone and in the presence of BH3 mimetics, which can be used to activate apoptotic machinery in malignant cells. We comprehensively investigated overexpression of different Bcl-2 family proteins in CAR T cells with different signaling domains as well as in different tumor types. We found that Bcl-xL and Bcl-2 overexpression in CAR T cells bearing a 4-1BB costimulatory domain resulted in increased expansion and antitumor activity, reduced exhaustion, and decreased apoptotic priming. In addition, CAR T cells expressing either Bcl-xL or a venetoclax-resistant Bcl-2 variant led to enhanced antitumor efficacy and survival in murine xenograft models of lymphoma and leukemia in the presence or absence of the BH3 mimetic venetoclax, a clinically approved BH3 mimetic. In this setting, Bcl-xL overexpression had stronger effects than overexpression of Bcl-2 or the Bcl-2(G101V) variant. These findings suggest that CAR T cells could be optimally engineered by overexpressing Bcl-xL to enhance their persistence while opening a therapeutic window for combination with BH3 mimetics to prime tumors for apoptosis.
Collapse
Affiliation(s)
- Felix Korell
- Cellular Immunotherapy Program, Massachusetts General Hospital Cancer Center, Charlestown, USA
- Harvard Medical School, Boston, USA
- Broad Institute of Harvard University and Massachusetts Institute of Technology, Cambridge, USA
| | - Michael Olson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, USA
| | - Diego Salas-Benito
- Cellular Immunotherapy Program, Massachusetts General Hospital Cancer Center, Charlestown, USA
- Harvard Medical School, Boston, USA
| | - Mark B. Leick
- Cellular Immunotherapy Program, Massachusetts General Hospital Cancer Center, Charlestown, USA
- Harvard Medical School, Boston, USA
| | - Rebecca C. Larson
- Cellular Immunotherapy Program, Massachusetts General Hospital Cancer Center, Charlestown, USA
- Harvard Medical School, Boston, USA
- Broad Institute of Harvard University and Massachusetts Institute of Technology, Cambridge, USA
| | - Amanda Bouffard
- Cellular Immunotherapy Program, Massachusetts General Hospital Cancer Center, Charlestown, USA
| | - Harrison Silva
- Cellular Immunotherapy Program, Massachusetts General Hospital Cancer Center, Charlestown, USA
| | - Alessandro Gasparetto
- Cellular Immunotherapy Program, Massachusetts General Hospital Cancer Center, Charlestown, USA
| | - Trisha R. Berger
- Cellular Immunotherapy Program, Massachusetts General Hospital Cancer Center, Charlestown, USA
| | - Michael C. Kann
- Cellular Immunotherapy Program, Massachusetts General Hospital Cancer Center, Charlestown, USA
| | - Markus Mergen
- Cellular Immunotherapy Program, Massachusetts General Hospital Cancer Center, Charlestown, USA
| | - Tamina Kienka
- Cellular Immunotherapy Program, Massachusetts General Hospital Cancer Center, Charlestown, USA
- Harvard Medical School, Boston, USA
- Broad Institute of Harvard University and Massachusetts Institute of Technology, Cambridge, USA
| | - Marc Wehrli
- Cellular Immunotherapy Program, Massachusetts General Hospital Cancer Center, Charlestown, USA
- Harvard Medical School, Boston, USA
| | - Nicholas J. Haradhvala
- Broad Institute of Harvard University and Massachusetts Institute of Technology, Cambridge, USA
| | - Stefanie R. Bailey
- Cellular Immunotherapy Program, Massachusetts General Hospital Cancer Center, Charlestown, USA
- Harvard Medical School, Boston, USA
| | - Anthony Letai
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, USA
| | - Marcela V. Maus
- Cellular Immunotherapy Program, Massachusetts General Hospital Cancer Center, Charlestown, USA
- Harvard Medical School, Boston, USA
- Broad Institute of Harvard University and Massachusetts Institute of Technology, Cambridge, USA
| |
Collapse
|
4
|
Galas-Filipowicz D, Chavda SJ, Gong JN, Huang DCS, Khwaja A, Yong K. Co-operation of MCL-1 and BCL-X L anti-apoptotic proteins in stromal protection of MM cells from carfilzomib mediated cytotoxicity. Front Oncol 2024; 14:1394393. [PMID: 38651147 PMCID: PMC11033393 DOI: 10.3389/fonc.2024.1394393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 03/25/2024] [Indexed: 04/25/2024] Open
Abstract
Introduction BCL-2 family proteins are important for tumour cell survival and drug resistance in multiple myeloma (MM). Although proteasome inhibitors are effective anti-myeloma drugs, some patients are resistant and almost all eventually relapse. We examined the function of BCL-2 family proteins in stromal-mediated resistance to carfilzomib-induced cytotoxicity in MM cells. Methods Co-cultures employing HS5 stromal cells were used to model the interaction with stroma. MM cells were exposed to CFZ in a 1-hour pulse method. The expression of BCL-2 family proteins was assessed by flow cytometry and WB. Pro-survival proteins: MCL-1, BCL-2 and BCL-XL were inhibited using S63845, ABT-199 and A-1331852 respectively. Changes in BIM binding partners were examined by immunoprecipitation and WB. Results CFZ induced dose-dependent cell death of MM cells, primarily mediated by apoptosis. Culture of MM cells on HS-5 stromal cells resulted in reduced cytotoxicity to CFZ in a cell contact-dependent manner, upregulated expression of MCL-1 and increased dependency on BCL-XL. Inhibiting BCL-XL or MCL-1 with BH-3 mimetics abrogated stromal-mediated protection only at high doses, which may not be achievable in vivo. However, combining BH-3 mimetics at sub-therapeutic doses, which alone were without effect, significantly enhanced CFZ-mediated cytotoxicity even in the presence of stroma. Furthermore, MCL-1 inhibition led to enhanced binding between BCL-XL and BIM, while blocking BCL-XL increased MCL-1/BIM complex formation, indicating the cooperative role of these proteins. Conclusion Stromal interactions alter the dependence on BCL-2 family members, providing a rationale for dual inhibition to abrogate the protective effect of stroma and restore sensitivity to CFZ.
Collapse
Affiliation(s)
| | - Selina J. Chavda
- Cancer Institute, University College London, London, United Kingdom
| | - Jia-Nan Gong
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - David C. S. Huang
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Asim Khwaja
- Cancer Institute, University College London, London, United Kingdom
| | - Kwee Yong
- Cancer Institute, University College London, London, United Kingdom
| |
Collapse
|
5
|
Tantawy SI, Timofeeva N, Sarkar A, Gandhi V. Targeting MCL-1 protein to treat cancer: opportunities and challenges. Front Oncol 2023; 13:1226289. [PMID: 37601693 PMCID: PMC10436212 DOI: 10.3389/fonc.2023.1226289] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/03/2023] [Indexed: 08/22/2023] Open
Abstract
Evading apoptosis has been linked to tumor development and chemoresistance. One mechanism for this evasion is the overexpression of prosurvival B-cell lymphoma-2 (BCL-2) family proteins, which gives cancer cells a survival advantage. Mcl-1, a member of the BCL-2 family, is among the most frequently amplified genes in cancer. Targeting myeloid cell leukemia-1 (MCL-1) protein is a successful strategy to induce apoptosis and overcome tumor resistance to chemotherapy and targeted therapy. Various strategies to inhibit the antiapoptotic activity of MCL-1 protein, including transcription, translation, and the degradation of MCL-1 protein, have been tested. Neutralizing MCL-1's function by targeting its interactions with other proteins via BCL-2 interacting mediator (BIM)S2A has been shown to be an equally effective approach. Encouraged by the design of venetoclax and its efficacy in chronic lymphocytic leukemia, scientists have developed other BCL-2 homology (BH3) mimetics-particularly MCL-1 inhibitors (MCL-1i)-that are currently in clinical trials for various cancers. While extensive reviews of MCL-1i are available, critical analyses focusing on the challenges of MCL-1i and their optimization are lacking. In this review, we discuss the current knowledge regarding clinically relevant MCL-1i and focus on predictive biomarkers of response, mechanisms of resistance, major issues associated with use of MCL-1i, and the future use of and maximization of the benefits from these agents.
Collapse
Affiliation(s)
- Shady I. Tantawy
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Natalia Timofeeva
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Aloke Sarkar
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Varsha Gandhi
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
6
|
Tantawy SI, Sarkar A, Hubner S, Tan Z, Wierda WG, Eldeib A, Zhang S, Kornblau S, Gandhi V. Mechanisms of MCL-1 Protein Stability Induced by MCL-1 Antagonists in B-Cell Malignancies. Clin Cancer Res 2023; 29:446-457. [PMID: 36346691 PMCID: PMC9852224 DOI: 10.1158/1078-0432.ccr-22-2088] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 09/19/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022]
Abstract
PURPOSE Several MCL-1 inhibitors (MCL-1i), including AMG-176 and AZD5991, have shown promise in preclinical studies and are being tested for the treatment of hematologic malignancies. A unique feature of these agents is induction and stability of Mcl-1 protein; however, the precise mechanism is unknown. We aim to study the mechanism of MCL-1i-induced Mcl-1 protein stability. EXPERIMENTAL DESIGN Using several B-cell leukemia and lymphoma cell lines and primary chronic lymphocytic leukemia (CLL) lymphocytes, we evaluated molecular events associated with Mcl-1 protein stability including protein half-life, reverse-phase protein array, protein-protein interaction, phosphorylation, ubiquitination, and de-ubiquitination, followed by molecular simulation and modeling. RESULTS Using both in vivo and in vitro analysis, we demonstrate that MCL-1i-induced Mcl-1 protein stability is predominantly associated with defective Mcl-1 ubiquitination and concurrent apoptosis induction in both cell lines and primary CLL subjects. These MCL1i also induced ERK-mediated Mcl-1Thr163 phosphorylation, which partially contributed to Mcl-1 stability. Disruption of Mcl-1:Noxa interaction followed by Noxa degradation, enhanced Mcl-1 de-ubiquitination by USP9x, and Mule destabilization are the major effects of these inhibitors. However, unlike other BH3 proteins, Mule:Mcl-1 interaction was unaffected by MCL-1i. WP1130, a global deubiquitinase (DUB) inhibitor, abrogated Mcl-1 induction reaffirming a critical role of DUBs in the observed Mcl-1 protein stability. Further, in vitro ubiquitination studies of Mcl-1 showed distinct difference among these inhibitors. CONCLUSIONS We conclude that MCL-1i blocked Mcl-1 ubiquitination via enhanced de-ubiquitination and dissociation of Mcl-1 from Noxa, Bak and Bax, and Mule de-stabilization. These are critical events associated with increased Mcl-1 protein stability with AMG-176 and AZD5991.
Collapse
Affiliation(s)
- Shady I. Tantawy
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas,Department of Internal Medicine, College of Medicine, Suez Canal University, Ismailia, Egypt
| | - Aloke Sarkar
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Stefan Hubner
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Zhi Tan
- Center for Drug Discovery, Department of Pathology and Immunology, Department of Pharmacology and Chemical Biology, Baylor College of Medicine
| | - William G. Wierda
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Abdelraouf Eldeib
- Center for Drug Discovery, Department of Pathology and Immunology, Department of Pharmacology and Chemical Biology, Baylor College of Medicine
| | - Shuxing Zhang
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Steven Kornblau
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Varsha Gandhi
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas,Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
7
|
Aksoy O, Lind J, Sunder-Plaßmann V, Vallet S, Podar K. Bone marrow microenvironment- induced regulation of Bcl-2 family members in multiple myeloma (MM): Therapeutic implications. Cytokine 2023; 161:156062. [PMID: 36332463 DOI: 10.1016/j.cyto.2022.156062] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/19/2022] [Accepted: 09/30/2022] [Indexed: 11/23/2022]
Abstract
In Multiple Myeloma (MM) the finely tuned homeostasis of the bone marrow (BM) microenvironment is disrupted. Evasion of programmed cell death (apoptosis) represents a hallmark of cancer. Besides genetic aberrations, the supportive and protective MM BM milieu, which is constituted by cytokines and growth factors, intercellular and cell: extracellular matrix (ECM) interactions and exosomes, in particular, plays a key role in the abundance of pro-survival members of the Bcl-2 family (i.e., Mcl-1, Bcl-2, and Bcl-xL) in tumor cells. Moreover, microenvironmental cues have also an impact on stability- regulating post-translational modifications of anti-apoptotic proteins including de/phosphorylation, polyubiquitination; on their intracellular binding affinities, and localization. Advances of our molecular knowledge on the escape of cancer cells from apoptosis have informed the development of a new class of small molecules that mimic the action of BH3-only proteins. Indeed, approaches to directly target anti-apoptotic Bcl-2 family members are among today's most promising therapeutic strategies and BH3-mimetics (i.e., venetoclax) are currently revolutionizing not only the treatment of CLL and AML, but also hold great therapeutic promise in MM. Furthermore, approaches that activate apoptotic pathways indirectly via modification of the tumor microenvironment have already entered clinical practice. The present review article will summarize our up-to-date knowledge on molecular mechanisms by which the MM BM microenvironment, cytokines, and growth factors in particular, mediates tumor cell evasion from apoptosis. Moreover, it will discuss some of the most promising science- derived therapeutic strategies to overcome Bcl-2- mediated tumor cell survival in order to further improve MM patient outcome.
Collapse
Affiliation(s)
- Osman Aksoy
- Molecular Oncology and Hematology Unit, Karl Landsteiner University of Health Sciences, Dr. Karl-Dorrek-Straße 30, 3500 Krems an der Donau, Austria
| | - Judith Lind
- Molecular Oncology and Hematology Unit, Karl Landsteiner University of Health Sciences, Dr. Karl-Dorrek-Straße 30, 3500 Krems an der Donau, Austria
| | - Vincent Sunder-Plaßmann
- Molecular Oncology and Hematology Unit, Karl Landsteiner University of Health Sciences, Dr. Karl-Dorrek-Straße 30, 3500 Krems an der Donau, Austria
| | - Sonia Vallet
- Molecular Oncology and Hematology Unit, Karl Landsteiner University of Health Sciences, Dr. Karl-Dorrek-Straße 30, 3500 Krems an der Donau, Austria; Department of Internal Medicine 2, University Hospital Krems, Mitterweg 10, 3500 Krems an der Donau, Austria
| | - Klaus Podar
- Molecular Oncology and Hematology Unit, Karl Landsteiner University of Health Sciences, Dr. Karl-Dorrek-Straße 30, 3500 Krems an der Donau, Austria; Department of Internal Medicine 2, University Hospital Krems, Mitterweg 10, 3500 Krems an der Donau, Austria.
| |
Collapse
|
8
|
Kaloni D, Diepstraten ST, Strasser A, Kelly GL. BCL-2 protein family: attractive targets for cancer therapy. Apoptosis 2023; 28:20-38. [PMID: 36342579 PMCID: PMC9950219 DOI: 10.1007/s10495-022-01780-7] [Citation(s) in RCA: 194] [Impact Index Per Article: 97.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2022] [Indexed: 11/09/2022]
Abstract
Acquired resistance to cell death is a hallmark of cancer. The BCL-2 protein family members play important roles in controlling apoptotic cell death. Abnormal over-expression of pro-survival BCL-2 family members or abnormal reduction of pro-apoptotic BCL-2 family proteins, both resulting in the inhibition of apoptosis, are frequently detected in diverse malignancies. The critical role of the pro-survival and pro-apoptotic BCL-2 family proteins in the regulation of apoptosis makes them attractive targets for the development of agents for the treatment of cancer. This review describes the roles of the various pro-survival and pro-apoptotic members of the BCL-2 protein family in normal development and organismal function and how defects in the control of apoptosis promote the development and therapy resistance of cancer. Finally, we discuss the development of inhibitors of pro-survival BCL-2 proteins, termed BH3-mimetic drugs, as novel agents for cancer therapy.
Collapse
Affiliation(s)
- Deeksha Kaloni
- Blood Cells and Blood Cancer Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC Australia ,Department of Medical Biology, University of Melbourne, Melbourne, VIC Australia
| | - Sarah T Diepstraten
- Blood Cells and Blood Cancer Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC Australia
| | - Andreas Strasser
- Blood Cells and Blood Cancer Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC Australia ,Department of Medical Biology, University of Melbourne, Melbourne, VIC Australia
| | - Gemma L Kelly
- Blood Cells and Blood Cancer Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia. .,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
9
|
Winder ML, Campbell KJ. MCL-1 is a clinically targetable vulnerability in breast cancer. Cell Cycle 2022; 21:1439-1455. [PMID: 35349392 PMCID: PMC9278428 DOI: 10.1080/15384101.2022.2054096] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 03/03/2022] [Accepted: 03/11/2022] [Indexed: 11/03/2022] Open
Abstract
Pro-survival members of the BCL-2 family, including MCL-1, are emerging as important proteins during the development and therapeutic response of solid tumors. Notably, high levels of MCL-1 occur in breast cancer, where functional dependency has been demonstrated using cell lines and mouse models. The utility of restoring apoptosis in cancer cells through inhibition of pro-survival BCL-2 proteins has been realized in the clinic, where the first specific inhibitor of BCL-2 is approved for use in leukemia. A variety of MCL-1 inhibitors are now undergoing clinical trials for blood cancer treatment and application of this new class of drugs is also being tested in solid cancers. On-target compounds specific to MCL-1 have demonstrated promising efficacy in preclinical models of breast cancer and show potential to enhance the anti-tumor effect of conventional therapies. Taken together, this makes MCL-1 an extremely attractive target for clinical evaluation in the context of breast cancer.Abbreviations: ADC (antibody-drug conjugate); AML (Acute myeloid leukemia); APAF1 (apoptotic protease activating factor 1); bCAFs (breast cancer associated fibroblasts); BCL-2 (B-cell lymphoma 2); BH (BCL-2 homology); CLL (chronic lymphocytic leukemia); EGF (epidermal growth factor); EMT (epithelial to mesenchymal transition); ER (estrogen receptor); FDA (food and drug administration); GEMM (genetically engineered mouse model); HER2 (human epidermal growth factor 2); IL6 (interleukin 6); IMM (inner mitochondrial membrane); IMS (intermembrane space); MCL-1 (myeloid cell leukemia-1); MOMP (mitochondrial outer membrane permeabilisation); MM (multiple myeloma); PDX (patient-derived xenograft); OMM (outer mitochondrial membrane); PROTAC (proteolysis-targeting chimeras) TNBC (triple negative breast cancer); UPS (ubiquitin mediated proteolysis system).
Collapse
Affiliation(s)
- Matthew L Winder
- CRUK Beatson Institute, Garscube Estate,Switchback Road, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow, G61 1QH, UK
| | - Kirsteen J Campbell
- CRUK Beatson Institute, Garscube Estate,Switchback Road, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow, G61 1QH, UK
| |
Collapse
|
10
|
Krüger C, Jörns A, Kaynert J, Waldeck-Weiermair M, Michel T, Elsner M, Lenzen S. The importance of aquaporin-8 for cytokine-mediated toxicity in rat insulin-producing cells. Free Radic Biol Med 2021; 174:135-143. [PMID: 34363947 DOI: 10.1016/j.freeradbiomed.2021.08.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/20/2021] [Accepted: 08/03/2021] [Indexed: 12/29/2022]
Abstract
Aquaporin-8 (AQP8) is a peroxiporin, a transmembrane water and hydrogen peroxide (H2O2) transport protein expressed in the mitochondrial and plasma membranes of pancreatic β-cells. AQP8 protein expression is low under physiological conditions, but it increases after cytokine exposure both, in vitro and in vivo, possibly related to a NF-κB consensus sequence in the promoter. AQP8 knockdown (KD) insulin-producing RINm5F cells are particularly susceptible to cytokine-mediated oxidative stress. Cytokine (a mixture of IL-1β, TNF-α, and IFN-γ) treated AQP8 KD cells exhibited pronounced sensitivity to reactive oxygen and nitrogen species (ROS and RNS), resulting in a significant loss of β-cell viability due to enhanced toxicity of the increased concentrations of H2O2 and hydroxyl radicals (●OH) in mitochondria of AQP8 KD cells. This viability loss went along with increased caspase activities, reduced nitrite concentration (representative of nitric oxide (NO●) accumulation) and increased lipid peroxidation. The explanation for the increased toxicity of the proinflammatory cytokines in AQP8 KD cells resides in the fact that efflux of the H2O2 generated during oxidative stress in the β-cell mitochondria is hampered through the loss of the peroxiporin channels in the mitochondrial membranes of the AQP8 KD cells. The increased proinflammatory cytokine toxicity due to loss of AQP8 expression in the KD β-cell mitochondria is thus the result of increased rates of apoptosis. This decreased cell viability is caused by increased levels of oxidative stress along with a ferroptosis-mediated cell death component due to decreased NO● generation.
Collapse
Affiliation(s)
- Christina Krüger
- Institute of Clinical Biochemistry, Hannover Medical School, 30623, Hannover, Germany
| | - Anne Jörns
- Institute of Clinical Biochemistry, Hannover Medical School, 30623, Hannover, Germany
| | - Jonas Kaynert
- Institute of Clinical Biochemistry, Hannover Medical School, 30623, Hannover, Germany
| | - Markus Waldeck-Weiermair
- Cardiovascular Division, Brigham and Women's Hospital, And Harvard Medical School, Boston, MA, 02115, USA
| | - Thomas Michel
- Cardiovascular Division, Brigham and Women's Hospital, And Harvard Medical School, Boston, MA, 02115, USA
| | - Matthias Elsner
- Institute of Clinical Biochemistry, Hannover Medical School, 30623, Hannover, Germany
| | - Sigurd Lenzen
- Institute of Clinical Biochemistry, Hannover Medical School, 30623, Hannover, Germany; Institute of Experimental Diabetes Research, Hannover Medical School, 30623, Hannover, Germany.
| |
Collapse
|
11
|
Signal transducer and activator of transcription-3 mediated neuroprotective effect of interleukin-6 on cobalt chloride mimetic hypoxic cell death in R28 cells. Mol Biol Rep 2021; 48:6197-6203. [PMID: 34318437 DOI: 10.1007/s11033-021-06586-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/20/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Hypoxic injury to retinal ganglionic cells and adjoining glia is implicated in glaucomatous optic neuropathy. The present study evaluates the effect of IL-6 on R28 retinal precursor cell line exposed to hypoxic injury. METHODS AND RESULTS Apoptotic cell death induced by hypoxia mimetic CoCl2 in R28 cells with or without IL-6 treatment was measured using cell viability assays and apoptotic markers. Oxidative stress was also measured. Hypoxia induced by mimetic CoCl2 led to a time and concentration dependent apoptosis of cells mediated by disruption of mitochondrial membrane potential and activation of caspase 3. Cells pre-treated with IL-6 demonstrated significantly higher viability and mitochondrial integrity under hypoxic conditions. A critical role of STAT3 was observed in mediating the cytoprotective effects of IL-6. Treatment of cells with IL-6 led to STAT3-mediated expression of the Bcl-2 family proteins and MnSOD. CONCLUSIONS The data from the present study indicate cytoprotective role of IL-6 and suggest a previously unreported mechanism of neuroprotection via STAT3 mediated signaling.
Collapse
|
12
|
Al-Odat O, von Suskil M, Chitren R, Elbezanti W, Srivastava S, Budak-Alpddogan T, Jonnalagadda S, Aggarwal B, Pandey M. Mcl-1 Inhibition: Managing Malignancy in Multiple Myeloma. Front Pharmacol 2021; 12:699629. [PMID: 34349655 PMCID: PMC8327170 DOI: 10.3389/fphar.2021.699629] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/24/2021] [Indexed: 01/29/2023] Open
Abstract
Multiple myeloma (MM) is a plasma cells neoplasm. The overexpression of Bcl-2 family proteins, particularly myeloid cell leukemia 1 (Mcl-1), plays a critical role in the pathogenesis of MM. The overexpression of Mcl-1 is associated with drug resistance and overall poor prognosis of MM. Thus, inhibition of the Mcl-1 protein considered as a therapeutic strategy to kill the myeloma cells. Over the last decade, the development of selective Mcl-1 inhibitors has seen remarkable advancement. This review presents the critical role of Mcl-1 in the progression of MM, the most prominent BH3 mimetic and semi-BH3 mimetic that selectively inhibit Mcl-1, and could be used as single agent or combined with existing therapies.
Collapse
Affiliation(s)
- Omar Al-Odat
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, United States.,Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ, United States
| | - Max von Suskil
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, United States.,Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ, United States
| | - Robert Chitren
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, United States.,Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ, United States
| | - Weam Elbezanti
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, United States.,Department of Hematology, Cooper Health University, Camden, NJ, United States
| | | | | | - Subash Jonnalagadda
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ, United States
| | | | - Manoj Pandey
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, United States
| |
Collapse
|
13
|
Role of 1q21 in Multiple Myeloma: From Pathogenesis to Possible Therapeutic Targets. Cells 2021; 10:cells10061360. [PMID: 34205916 PMCID: PMC8227721 DOI: 10.3390/cells10061360] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 05/23/2021] [Accepted: 05/28/2021] [Indexed: 12/26/2022] Open
Abstract
Multiple myeloma (MM) is characterized by an accumulation of malignant plasma cells (PCs) in the bone marrow (BM). The amplification of 1q21 is one of the most common cytogenetic abnormalities occurring in around 40% of de novo patients and 70% of relapsed/refractory MM. Patients with this unfavorable cytogenetic abnormality are considered to be high risk with a poor response to standard therapies. The gene(s) driving amplification of the 1q21 amplicon has not been fully studied. A number of clear candidates are under investigation, and some of them (IL6R, ILF2, MCL-1, CKS1B and BCL9) have been recently proposed to be potential drivers of this region. However, much remains to be learned about the biology of the genes driving the disease progression in MM patients with 1q21 amp. Understanding the mechanisms of these genes is important for the development of effective targeted therapeutic approaches to treat these patients for whom effective therapies are currently lacking. In this paper, we review the current knowledge about the pathological features, the mechanism of 1q21 amplification, and the signal pathway of the most relevant candidate genes that have been suggested as possible therapeutic targets for the 1q21 amplicon.
Collapse
|
14
|
Gupta VA, Ackley J, Kaufman JL, Boise LH. BCL2 Family Inhibitors in the Biology and Treatment of Multiple Myeloma. BLOOD AND LYMPHATIC CANCER-TARGETS AND THERAPY 2021; 11:11-24. [PMID: 33737856 PMCID: PMC7965688 DOI: 10.2147/blctt.s245191] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 02/26/2021] [Indexed: 12/12/2022]
Abstract
Although much progress has been made in the treatment of multiple myeloma, the majority of patients fail to be cured and require numerous lines of therapy. Inhibitors of the BCL2 family represent an exciting new class of drugs with a novel mechanism of action that are likely to have activity as single agents and in combination with existing myeloma therapies. The BCL2 proteins are oncogenes that promote cell survival and are frequently upregulated in multiple myeloma, making them attractive targets. Venetoclax, a BCL2 specific inhibitor, is furthest along in development and has shown promising results in a subset of myeloma characterized by the t(11;14) translocation. Combining venetoclax with proteasome inhibitors and monoclonal antibodies has improved responses in a broader group of patients, but has come at the expense of a toxicity safety signal that requires additional follow-up. MCL1 inhibitors are likely to be effective in a broader range of patients and are currently in early clinical trials. This review will cover much of what is known about the biology of these drugs, biomarkers that predict response, mechanisms of resistance, and unanswered questions as they pertain to multiple myeloma.
Collapse
Affiliation(s)
- Vikas A Gupta
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Emory University School of Medicine, Atlanta, GA, USA
| | - James Ackley
- Cancer Biology Graduate Program, Winship Cancer Institute of Emory University, Emory University School of Medicine, Atlanta, GA, USA
| | - Jonathan L Kaufman
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Emory University School of Medicine, Atlanta, GA, USA
| | - Lawrence H Boise
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
15
|
Algarín EM, Quwaider D, Campos-Laborie FJ, Díaz-Tejedor A, Mogollón P, Vuelta E, Martín-Sánchez M, San-Segundo L, González-Méndez L, Gutiérrez NC, García-Sanz R, Paíno T, De Las Rivas J, Ocio EM, Garayoa M. Stroma-Mediated Resistance to S63845 and Venetoclax through MCL-1 and BCL-2 Expression Changes Induced by miR-193b-3p and miR-21-5p Dysregulation in Multiple Myeloma. Cells 2021; 10:cells10030559. [PMID: 33806619 PMCID: PMC8001939 DOI: 10.3390/cells10030559] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/20/2021] [Accepted: 02/27/2021] [Indexed: 12/18/2022] Open
Abstract
BH3-mimetics targeting anti-apoptotic proteins such as MCL-1 (S63845) or BCL-2 (venetoclax) are currently being evaluated as effective therapies for the treatment of multiple myeloma (MM). Interleukin 6, produced by mesenchymal stromal cells (MSCs), has been shown to modify the expression of anti-apoptotic proteins and their interaction with the pro-apoptotic BIM protein in MM cells. In this study, we assess the efficacy of S63845 and venetoclax in MM cells in direct co-culture with MSCs derived from MM patients (pMSCs) to identify additional mechanisms involved in the stroma-induced resistance to these agents. MicroRNAs miR-193b-3p and miR-21-5p emerged among the top deregulated miRNAs in myeloma cells when directly co-cultured with pMSCs, and we show their contribution to changes in MCL-1 and BCL-2 protein expression and in the activity of S63845 and venetoclax. Additionally, direct contact with pMSCs under S63845 and/or venetoclax treatment modifies myeloma cell dependence on different BCL-2 family anti-apoptotic proteins in relation to BIM, making myeloma cells more dependent on the non-targeted anti-apoptotic protein or BCL-XL. Finally, we show a potent effect of the combination of S63845 and venetoclax even in the presence of pMSCs, which supports this combinatorial approach for the treatment of MM.
Collapse
Affiliation(s)
- Esperanza M. Algarín
- Cancer Research Center (IBMCC-CSIC-USAL), University Hospital of Salamanca (IBSAL), 37007 Salamanca, Spain; (E.M.A.); (D.Q.); (A.D.-T.); (P.M.); (E.V.); (M.M.-S.); (L.S.-S.); (L.G.-M.); (N.C.G.); (R.G.-S.); (T.P.)
| | - Dalia Quwaider
- Cancer Research Center (IBMCC-CSIC-USAL), University Hospital of Salamanca (IBSAL), 37007 Salamanca, Spain; (E.M.A.); (D.Q.); (A.D.-T.); (P.M.); (E.V.); (M.M.-S.); (L.S.-S.); (L.G.-M.); (N.C.G.); (R.G.-S.); (T.P.)
| | - Francisco J. Campos-Laborie
- Bioinformatics and Functional Genomics Group, Cancer Research Center (CIC-IBMCC, CSIC/USAL/IBSAL), Consejo Superior de Investigaciones Científicas (CSIC), University of Salamanca (USAL) and Institute for Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain; (F.J.C.-L.); (J.D.L.R.)
- The Gurdon Institute (Wellcome Trust/Cancer Research UK), University of Cambridge, Cambridge CB2 1QN, UK
| | - Andrea Díaz-Tejedor
- Cancer Research Center (IBMCC-CSIC-USAL), University Hospital of Salamanca (IBSAL), 37007 Salamanca, Spain; (E.M.A.); (D.Q.); (A.D.-T.); (P.M.); (E.V.); (M.M.-S.); (L.S.-S.); (L.G.-M.); (N.C.G.); (R.G.-S.); (T.P.)
| | - Pedro Mogollón
- Cancer Research Center (IBMCC-CSIC-USAL), University Hospital of Salamanca (IBSAL), 37007 Salamanca, Spain; (E.M.A.); (D.Q.); (A.D.-T.); (P.M.); (E.V.); (M.M.-S.); (L.S.-S.); (L.G.-M.); (N.C.G.); (R.G.-S.); (T.P.)
| | - Elena Vuelta
- Cancer Research Center (IBMCC-CSIC-USAL), University Hospital of Salamanca (IBSAL), 37007 Salamanca, Spain; (E.M.A.); (D.Q.); (A.D.-T.); (P.M.); (E.V.); (M.M.-S.); (L.S.-S.); (L.G.-M.); (N.C.G.); (R.G.-S.); (T.P.)
| | - Montserrat Martín-Sánchez
- Cancer Research Center (IBMCC-CSIC-USAL), University Hospital of Salamanca (IBSAL), 37007 Salamanca, Spain; (E.M.A.); (D.Q.); (A.D.-T.); (P.M.); (E.V.); (M.M.-S.); (L.S.-S.); (L.G.-M.); (N.C.G.); (R.G.-S.); (T.P.)
| | - Laura San-Segundo
- Cancer Research Center (IBMCC-CSIC-USAL), University Hospital of Salamanca (IBSAL), 37007 Salamanca, Spain; (E.M.A.); (D.Q.); (A.D.-T.); (P.M.); (E.V.); (M.M.-S.); (L.S.-S.); (L.G.-M.); (N.C.G.); (R.G.-S.); (T.P.)
| | - Lorena González-Méndez
- Cancer Research Center (IBMCC-CSIC-USAL), University Hospital of Salamanca (IBSAL), 37007 Salamanca, Spain; (E.M.A.); (D.Q.); (A.D.-T.); (P.M.); (E.V.); (M.M.-S.); (L.S.-S.); (L.G.-M.); (N.C.G.); (R.G.-S.); (T.P.)
| | - Norma C. Gutiérrez
- Cancer Research Center (IBMCC-CSIC-USAL), University Hospital of Salamanca (IBSAL), 37007 Salamanca, Spain; (E.M.A.); (D.Q.); (A.D.-T.); (P.M.); (E.V.); (M.M.-S.); (L.S.-S.); (L.G.-M.); (N.C.G.); (R.G.-S.); (T.P.)
- Center for Biomedical Research in Network of Cancer (CIBERONC), 28029 Madrid, Spain
| | - Ramón García-Sanz
- Cancer Research Center (IBMCC-CSIC-USAL), University Hospital of Salamanca (IBSAL), 37007 Salamanca, Spain; (E.M.A.); (D.Q.); (A.D.-T.); (P.M.); (E.V.); (M.M.-S.); (L.S.-S.); (L.G.-M.); (N.C.G.); (R.G.-S.); (T.P.)
- Center for Biomedical Research in Network of Cancer (CIBERONC), 28029 Madrid, Spain
| | - Teresa Paíno
- Cancer Research Center (IBMCC-CSIC-USAL), University Hospital of Salamanca (IBSAL), 37007 Salamanca, Spain; (E.M.A.); (D.Q.); (A.D.-T.); (P.M.); (E.V.); (M.M.-S.); (L.S.-S.); (L.G.-M.); (N.C.G.); (R.G.-S.); (T.P.)
- Center for Biomedical Research in Network of Cancer (CIBERONC), 28029 Madrid, Spain
| | - Javier De Las Rivas
- Bioinformatics and Functional Genomics Group, Cancer Research Center (CIC-IBMCC, CSIC/USAL/IBSAL), Consejo Superior de Investigaciones Científicas (CSIC), University of Salamanca (USAL) and Institute for Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain; (F.J.C.-L.); (J.D.L.R.)
| | - Enrique M. Ocio
- University Hospital Marqués de Valdecilla (IDIVAL), University of Cantabria, 39011 Santander, Spain;
| | - Mercedes Garayoa
- Cancer Research Center (IBMCC-CSIC-USAL), University Hospital of Salamanca (IBSAL), 37007 Salamanca, Spain; (E.M.A.); (D.Q.); (A.D.-T.); (P.M.); (E.V.); (M.M.-S.); (L.S.-S.); (L.G.-M.); (N.C.G.); (R.G.-S.); (T.P.)
- Correspondence: ; Tel.: +34-923-295812
| |
Collapse
|
16
|
Li S, Guo W, Wu H. The role of post-translational modifications in the regulation of MCL1. Cell Signal 2021; 81:109933. [PMID: 33508399 DOI: 10.1016/j.cellsig.2021.109933] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 01/22/2021] [Accepted: 01/22/2021] [Indexed: 12/25/2022]
Abstract
Apoptosis is an evolutionarily conserved form of programed cell death (PCD) that has a vital effect on early embryonic development, tissue homeostasis and clearance of damaged cells. Dysregulation of apoptosis can lead to many diseases, such as Alzheimer's disease, cancer, AIDS and heart disease. The anti-apoptotic protein MCL1, a member of the BCL2 family, plays important roles in these physiological and pathological processes. Its high expression is closely related to drug resistances in the treatment of tumor. This review summarizes the structure and function of MCL1, the types of post-translational modifications of MCL1 and their effects on the functions of MCL1, as well as the treatment strategies targeting MCL1 in cancer therapy. The research on the fine regulation of MCL1 will be favorable to the provision of a promising future for the design and screening of MCL1 inhibitors.
Collapse
Affiliation(s)
- Shujing Li
- School of Bioengineering & Province Key Laboratory of Protein Modification and Disease, Liaoning Province, Dalian University of Technology, China
| | - Wanping Guo
- School of Bioengineering & Province Key Laboratory of Protein Modification and Disease, Liaoning Province, Dalian University of Technology, China
| | - Huijian Wu
- School of Bioengineering & Province Key Laboratory of Protein Modification and Disease, Liaoning Province, Dalian University of Technology, China.
| |
Collapse
|
17
|
Fan Y, Hou X, Fang H. Recent Advances in the Development of Selective Mcl-1 Inhibitors for the Treatment of Cancer (2017-Present). Recent Pat Anticancer Drug Discov 2020; 15:306-320. [DOI: 10.2174/1574892815666200916124641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/24/2020] [Accepted: 07/29/2020] [Indexed: 12/18/2022]
Abstract
Background:
Myeloid cell leukemia-1 (Mcl-1) protein, as a critical pro-survival member
of the B-cell lymphoma 2 (Bcl-2) protein family, plays an important role in apoptosis, carcinogenesis
and resistance to chemotherapies. Hence, potently and selectively inhibiting Mcl-1 to induce
apoptosis has become a widely accepted anticancer strategy.
Objective:
This review intends to provide a comprehensive overview of patents and primary literature,
published from 2017 to present, on small molecule Mcl-1 inhibitors with various scaffolds.
By analyzing the modes of compound-protein interactions, the similarities and differences of those
structures are discussed, which could provide guidance for future drug design.
Methods:
The primary accesses for patent searching are SciFinder and Espacenet®. Besides the data
disclosed in patents, some results published in the follow-up research papers will be included in
this review.
Results:
The review covers dozens of patents on Mcl-1 inhibitors in the past three years, and the
scaffolds of compounds are mainly divided into indole scaffolds and non-indole scaffolds. The
compounds described here are compared with the relevant inhibitors disclosed in previous patents,
and representative compounds, especially those launched in clinical trials, are emphasized in this review.
Conclusion:
For most of the compounds in these patents, analyses of the binding affinity to Mcl-1
and studies in multiple cell lines were conducted, wherein some compounds were tested in preclinical
cancer models or were included in other biological studies. Some compounds showed promising
results and potential for further study.
Collapse
Affiliation(s)
- Ying Fan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, 250012, Jinan, Shandong, China
| | - Xuben Hou
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, 250012, Jinan, Shandong, China
| | - Hao Fang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, 250012, Jinan, Shandong, China
| |
Collapse
|
18
|
Bolomsky A, Vogler M, Köse MC, Heckman CA, Ehx G, Ludwig H, Caers J. MCL-1 inhibitors, fast-lane development of a new class of anti-cancer agents. J Hematol Oncol 2020; 13:173. [PMID: 33308268 PMCID: PMC7731749 DOI: 10.1186/s13045-020-01007-9] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 11/22/2020] [Indexed: 12/24/2022] Open
Abstract
Cell death escape is one of the most prominent features of tumor cells and closely linked to the dysregulation of members of the Bcl-2 family of proteins. Among those, the anti-apoptotic family member myeloid cell leukemia-1 (MCL-1) acts as a master regulator of apoptosis in various human malignancies. Irrespective of its unfavorable structure profile, independent research efforts recently led to the generation of highly potent MCL-1 inhibitors that are currently evaluated in clinical trials. This offers new perspectives to target a so far undruggable cancer cell dependency. However, a detailed understanding about the tumor and tissue type specific implications of MCL-1 are a prerequisite for the optimal (i.e., precision medicine guided) use of this novel drug class. In this review, we summarize the major functions of MCL-1 with a special focus on cancer, provide insights into its different roles in solid vs. hematological tumors and give an update about the (pre)clinical development program of state-of-the-art MCL-1 targeting compounds. We aim to raise the awareness about the heterogeneous role of MCL-1 as drug target between, but also within tumor entities and to highlight the importance of rationale treatment decisions on a case by case basis.
Collapse
Affiliation(s)
- Arnold Bolomsky
- Wilhelminen Cancer Research Institute, Wilhelminenspital, Vienna, Austria
| | - Meike Vogler
- Department of Clinical Hematology, GIGA-I3, University of Liège, CHU De Liège, 35, Dom Univ Sart Tilman B, 4000, Liège, Belgium
| | - Murat Cem Köse
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University, Frankfurt, Germany
| | - Caroline A Heckman
- Institute for Molecular Medicine Finland-FIMM, HiLIFE-Helsinki Institute of Life Science, iCAN Digital Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland
| | - Grégory Ehx
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University, Frankfurt, Germany
| | - Heinz Ludwig
- Wilhelminen Cancer Research Institute, Wilhelminenspital, Vienna, Austria
| | - Jo Caers
- Department of Clinical Hematology, GIGA-I3, University of Liège, CHU De Liège, 35, Dom Univ Sart Tilman B, 4000, Liège, Belgium.
| |
Collapse
|
19
|
Saga of Mcl-1: regulation from transcription to degradation. Cell Death Differ 2020; 27:405-419. [PMID: 31907390 DOI: 10.1038/s41418-019-0486-3] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/05/2019] [Accepted: 12/13/2019] [Indexed: 01/01/2023] Open
Abstract
The members of the Bcl-2 family are the central regulators of various cell death modalities. Some of these proteins contribute to apoptosis, while others counteract this type of programmed cell death, thus balancing cell demise and survival. A disruption of this balance leads to the development of various diseases, including cancer. Therefore, understanding the mechanisms that underlie the regulation of proteins of the Bcl-2 family is of great importance for biomedical research. Among the members of the Bcl-2 family, antiapoptotic protein Mcl-1 is characterized by a short half-life, which renders this protein highly sensitive to changes in its synthesis or degradation. Hence, the regulation of Mcl-1 is of particular scientific interest, and the study of Mcl-1 modulators could aid in the understanding of the mechanisms of disease development and the ways of their treatment. Here, we summarize the present knowledge regarding the regulation of Mcl-1, from transcription to degradation, focusing on aspects that have not yet been described in detail.
Collapse
|
20
|
Abdi J, Rastgoo N, Chen Y, Chen GA, Chang H. Ectopic expression of BIRC5-targeting miR-101-3p overcomes bone marrow stroma-mediated drug resistance in multiple myeloma cells. BMC Cancer 2019; 19:975. [PMID: 31638931 PMCID: PMC6805455 DOI: 10.1186/s12885-019-6151-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 09/11/2019] [Indexed: 12/27/2022] Open
Abstract
Background Multiple myeloma (MM) cells gain protection against drugs through interaction with bone marrow stromal cells (BMSCs). This form of resistance largely accounts for resistance to therapy in MM patients which warrants further exploration to identify more potential therapeutic targets. Methods We performed miRNA/mRNA qPCR arrays and western blotting to analyze transcriptional and translational changes in MM cells co-cultured with BMSCs. Drug cytotoxicity and apoptosis in MMGFP-BMSC co-cultures were measured using fluorescence plate reader and flowcytometry, respectively. miRNA was overexpressed in MM cell lines using Lentiviral transduction, miRNA-3’UTR binding was examined using luciferase assay. Results We found that BMSCs downregulated miR-101-3p and upregulated survivin (BIRC5) in MM cells. Survivin was downregulated by miR-101-3p overexpression and found to be a direct target of miR-101-3p using 3’UTR luciferase assay. Overexpression of survivin increased viability of MM cells in the presence of anti-myeloma drugs, and miR-101-3p inhibition by anti-miR against miR-101-3p upregulated survivin. Furthermore, overexpression of miR-101-3p or silencing of survivin triggered apoptosis in MM cells and sensitized them to anti-myeloma drugs in the presence of BMSCs overcoming the stroma-induced drug resistance. Conclusions Our study demonstrates that BMSC-induced resistance to drugs is associated with survivin upregulation which is a direct target of miR-101-3p. This study also identifies miR-101-3p-survivin interaction as a druggable target involved in stroma-mediated drug resistance in MM and suggests it for developing more efficient therapeutic strategies.
Collapse
Affiliation(s)
- Jahangir Abdi
- Dept. of Laboratory Hematology, Laboratory Medicine Program, Toronto General Hospital, University Health Network, 200 Elizabeth Street, 11E-413, Toronto, Ontario, M5G 2C4, Canada
| | - Nasrin Rastgoo
- Dept. of Laboratory Hematology, Laboratory Medicine Program, Toronto General Hospital, University Health Network, 200 Elizabeth Street, 11E-413, Toronto, Ontario, M5G 2C4, Canada
| | - Yan Chen
- Dept. of Laboratory Hematology, Laboratory Medicine Program, Toronto General Hospital, University Health Network, 200 Elizabeth Street, 11E-413, Toronto, Ontario, M5G 2C4, Canada
| | - Guo An Chen
- Department of Hematology/Oncology, First Affiliated Hospital, Nanchang University, Nanchang, China
| | - Hong Chang
- Dept. of Laboratory Hematology, Laboratory Medicine Program, Toronto General Hospital, University Health Network, 200 Elizabeth Street, 11E-413, Toronto, Ontario, M5G 2C4, Canada. .,Dept. of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Canada.
| |
Collapse
|
21
|
He Y, Gu Z, Zhu Q, Chen M, He C, Huang Y, Li Q, Di W. CA125 over‐release behavior following a 75‐g oral glucose test as a predictive biomarker of multidrug resistance in patients with ovarian cancer. Int J Cancer 2019; 145:1690-1700. [PMID: 30807642 DOI: 10.1002/ijc.32237] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 02/11/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Yifeng He
- Department of Obstetrics and GynecologyRen Ji Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai China
- Shanghai Key Laboratory of Gynecologic OncologyRen Ji Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai China
- Tumor Microenvironment and Metastasis ProgramThe Wistar Institute, University of Pennsylvania Philadelphia PA
| | - Zhuowei Gu
- Department of Obstetrics and GynecologyRen Ji Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai China
- Shanghai Key Laboratory of Gynecologic OncologyRen Ji Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai China
| | - Qiujing Zhu
- Department of Obstetrics and GynecologyRen Ji Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai China
- Shanghai Key Laboratory of Gynecologic OncologyRen Ji Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai China
| | - Mo Chen
- Department of GynecologyObstetrics and Gynecology Hospital, Fudan University Shanghai China
| | - Chenghui He
- Department of Obstetrics and GynecologyRen Ji Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai China
- Shanghai Key Laboratory of Gynecologic OncologyRen Ji Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai China
| | - Yuting Huang
- Children's Research Institute, Children's National Medical Center Washington WA
| | - Qing Li
- Department of Obstetrics and GynecologyRen Ji Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai China
- Shanghai Key Laboratory of Gynecologic OncologyRen Ji Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai China
- State Key Laboratory of Oncogene and Related GenesShanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai China
| | - Wen Di
- Department of Obstetrics and GynecologyRen Ji Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai China
- Shanghai Key Laboratory of Gynecologic OncologyRen Ji Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai China
- State Key Laboratory of Oncogene and Related GenesShanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai China
| |
Collapse
|
22
|
BCL2 blockade overcomes MCL1 resistance in multiple myeloma. Leukemia 2019; 33:2098-2102. [PMID: 30816329 DOI: 10.1038/s41375-019-0421-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 02/03/2019] [Accepted: 02/07/2019] [Indexed: 11/08/2022]
|
23
|
Hird AW, Tron AE. Recent advances in the development of Mcl-1 inhibitors for cancer therapy. Pharmacol Ther 2019; 198:59-67. [PMID: 30790641 DOI: 10.1016/j.pharmthera.2019.02.007] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 02/11/2019] [Indexed: 01/08/2023]
Abstract
Dysregulation of the mitochondrial apoptotic pathway controlled by members of the Bcl-2 protein family plays a central role in cancer development and resistance to conventional cytotoxic as well as targeted therapies. Hence, selective inhibition of pro-survival Bcl-2 family of proteins to activate apoptosis in malignant cells represents an exciting anti-cancer strategy. The remarkable clinical performance of the selective Bcl-2 antagonist venetoclax has highlighted the potential for selective inhibitors of the other pro-survival members of the Bcl-2 family, particularly Mcl-1. Here we review the latest progress on the discovery and development of selective inhibitors of Mcl-1 that are undergoing clinical evaluation for cancer therapy.
Collapse
|
24
|
LncRNA PMS2L2 protects ATDC5 chondrocytes against lipopolysaccharide-induced inflammatory injury by sponging miR-203. Life Sci 2018; 217:283-292. [PMID: 30550887 DOI: 10.1016/j.lfs.2018.12.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 12/11/2018] [Accepted: 12/11/2018] [Indexed: 02/06/2023]
Abstract
AIMS PMS1 Homolog 2, Mismatch Repair System Component Pseudogene 2 (PMS2L2) has been reported as an up-regulated long non-coding RNA (lncRNA) in osteoarthritis (OA) tissues. The purpose of the present work is to explore whether the differently expressed PMS2L2 is associated with the pathogenesis of OA. MAIN METHODS Chondrogenic ATDC5 cells were exposed to various doses of lipopolysaccharide (LPS). The expression of PMS2L2, miR-203, and MCL-1 in cell was altered by transfection. Thereafter, cell viability, apoptosis, the expression changes of apoptosis-related factors and the release of pro-inflammatory factors were respectively assessed. Moreover, the regulatory relationship between PMS2L2 and miR-203, as well as between miR-203 and MCL-1 were studied. KEY FINDINGS PMS2L2 expression was down-regulated following LPS stimulation. PMS2L2 protected ATDC5 cells against LPS-induced injury by increasing cell viability, decreasing apoptosis, and repressing the release of pro-inflammatory factors. Meanwhile, PMS2L2 increased the expression levels of COL2A1 and ACAN, while down-regulated the expression levels of MMP13 and ADAMTS-5. PMS2L2 worked as a molecular sponge for miR-203. Besides, miR-203 overexpression partially abolished the chondroprotective effects of PMS2L2. MCL-1 was a direct target of miR-203, and it exerted the similarly chondroprotective effects as PMS2L2. Furthermore, PMS2L2 and MCL-1 blocked Wnt/β-Catenin and JAK/STAT signaling pathways also via a miR-203-dependent manner. SIGNIFICANCE Our study reveals a protective role of PMS2L2 in LPS-induced inflammatory injury in chondrocytes. PMS2L2/miR-203/MCL-1 axis may serve as a new gene therapy strategy for the treatment of OA.
Collapse
|
25
|
Slomp A, Peperzak V. Role and Regulation of Pro-survival BCL-2 Proteins in Multiple Myeloma. Front Oncol 2018; 8:533. [PMID: 30524962 PMCID: PMC6256118 DOI: 10.3389/fonc.2018.00533] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 10/30/2018] [Indexed: 12/12/2022] Open
Abstract
Apoptosis plays a key role in protection against genomic instability and maintaining tissue homeostasis, and also shapes humoral immune responses. During generation of an antibody response, multiple rounds of B-cell expansion and selection take place in germinal centers (GC) before high antigen affinity memory B-cells and long-lived plasma cells (PC) are produced. These processes are tightly regulated by the intrinsic apoptosis pathway, and malignant transformation throughout and following the GC reaction is often characterized by apoptosis resistance. Expression of pro-survival BCL-2 family protein MCL-1 is essential for survival of malignant PC in multiple myeloma (MM). In addition, BCL-2 and BCL-XL contribute to apoptosis resistance. MCL-1, BCL-2, and BCL-XL expression is induced and maintained by signals from the bone marrow microenvironment, but overexpression can also result from genetic lesions. Since MM PC depend on these proteins for survival, inhibiting pro-survival BCL-2 proteins using novel and highly specific BH3-mimetic inhibitors is a promising strategy for treatment. This review addresses the role and regulation of pro-survival BCL-2 family proteins during healthy PC differentiation and in MM, as well as their potential as therapeutic targets.
Collapse
Affiliation(s)
- Anne Slomp
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Victor Peperzak
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
26
|
Activation of the IL-6/JAK2/STAT3 pathway induces plasma cell mastitis in mice. Cytokine 2018; 110:150-158. [DOI: 10.1016/j.cyto.2018.05.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 04/30/2018] [Accepted: 05/04/2018] [Indexed: 01/02/2023]
|
27
|
Abstract
Multiple myeloma (MM) is an incurable hematopoietic cancer that is characterized by malignant plasma cell infiltration of the bone marrow and/or extramedullary sites. Multi-modality approaches including "novel agents," traditional chemotherapy, and/or stem cell transplantation are used in MM therapy. Drug resistance, however, ultimately develops and the disease remains incurable for the vast majority of patients. In this chapter, we review both tumor cell-autonomous and non-autonomous (microenvironment-dependent) mechanisms of drug resistance. MM provides an attractive paradigm highlighting a number of current concepts and challenges in oncology. Firstly, identification of MM cancer stem cells and their unique drug resistance attributes may provide rational avenues towards MM eradication and cure. Secondly, the oligoclonal evolution of MM and alternation of "clonal tides" upon therapy challenge our current understanding of treatment responses. Thirdly, the success of MM "novel agents" provides exemplary evidence for the impact of therapies that target the immune and non-immune microenvironment. Fourthly, the rapid pace of drug approvals for MM creates an impetus for development of precision medicine strategies and biomarkers that promote efficacy and mitigate toxicity and cost. While routine cure of the disease remains the ultimate and yet unattainable prize, MM advances in the last 10-15 years have provided an astounding paradigm for the treatment of blood cancers in the modern era and have radically transformed patient outcomes.
Collapse
Affiliation(s)
- Athanasios Papadas
- Division of Hematology and Oncology, Department of Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA.
- UW Carbone Cancer Center, Madison, WI, 53705, USA.
| | - Fotis Asimakopoulos
- Division of Hematology and Oncology, Department of Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
- UW Carbone Cancer Center, Madison, WI, 53705, USA
| |
Collapse
|
28
|
Bone marrow microenvironment-derived signals induce Mcl-1 dependence in multiple myeloma. Blood 2017; 129:1969-1979. [PMID: 28151428 DOI: 10.1182/blood-2016-10-745059] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 01/30/2017] [Indexed: 01/25/2023] Open
Abstract
Multiple myeloma is highly dependent on the bone marrow microenvironment until progressing to very advanced extramedullary stages of the disease such as plasma cell leukemia. Stromal cells in the bone marrow secrete a variety of cytokines that promote plasma cell survival by regulating antiapoptotic members of the Bcl-2 family including Mcl-1, Bcl-xL, and Bcl-2. Although the antiapoptotic protein on which a cell depends is typically consistent among normal cells of a particular phenotype, Bcl-2 family dependence is highly heterogeneous in multiple myeloma. Although normal plasma cells and most multiple myeloma cells require Mcl-1 for survival, a subset of myeloma is codependent on Bcl-2 and/or Bcl-xL We investigated the role of the bone marrow microenvironment in determining Bcl-2 family dependence in multiple myeloma. We used the Bcl-2/Bcl-xL inhibitor ABT-737 to study the factors regulating whether myeloma is Mcl-1 dependent, and thus resistant to ABT-737-induced apoptosis, or Bcl-2/Bcl-xL codependent, and thus sensitive to ABT-737. We demonstrate that bone marrow stroma is capable of inducing Mcl-1 dependence through the production of the plasma cell survival cytokine interleukin-6 (IL-6). IL-6 upregulates Mcl-1 transcription in a STAT3-dependent manner, although this occurred in a minority of the cells tested. In all cells, IL-6 treatment results in posttranslational modification of the proapoptotic protein Bim. Phosphorylation of Bim shifts its binding from Bcl-2 and Bcl-xL to Mcl-1, an effect reversed by MEK inhibition. Blocking IL-6 or downstream signaling restored Bcl-2/Bcl-xL dependence and may therefore represent a clinically useful strategy to enhance the activity of Bcl-2 inhibitors.
Collapse
|
29
|
Tiper IV, East JE, Subrahmanyam PB, Webb TJ. Sphingosine 1-phosphate signaling impacts lymphocyte migration, inflammation and infection. Pathog Dis 2016; 74:ftw063. [PMID: 27354294 DOI: 10.1093/femspd/ftw063] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2016] [Indexed: 01/01/2023] Open
Abstract
Sphingosine 1-phosphate (S1P) is a sphingosine containing lipid intermediate obtained from ceramide. S1P is known to be an important signaling molecule and plays multiple roles in the context of immunity. This lysophospholipid binds and activates G-protein-coupled receptors (GPCRs) known as S1P receptors 1-5 (S1P1-5). Once activated, these GPCRs mediate signaling that can lead to alterations in cell proliferation, survival or migration, and can also have other effects such as promoting angiogenesis. In this review, we will present evidence demonstrating a role for S1P in lymphocyte migration, inflammation and infection, as well as in cancer. The therapeutic potential of targeting S1P receptors, kinases and lyase will also be discussed.
Collapse
Affiliation(s)
- Irina V Tiper
- Department of Microbiology and Immunology, University of Maryland School of Medicine and the Marlene and Stewart Greenebaum Cancer Center, 685 W Baltimore St., Baltimore, MD 21201, USA
| | - James E East
- Department of Microbiology and Immunology, University of Maryland School of Medicine and the Marlene and Stewart Greenebaum Cancer Center, 685 W Baltimore St., Baltimore, MD 21201, USA
| | - Priyanka B Subrahmanyam
- Department of Microbiology and Immunology, University of Maryland School of Medicine and the Marlene and Stewart Greenebaum Cancer Center, 685 W Baltimore St., Baltimore, MD 21201, USA
| | - Tonya J Webb
- Department of Microbiology and Immunology, University of Maryland School of Medicine and the Marlene and Stewart Greenebaum Cancer Center, 685 W Baltimore St., Baltimore, MD 21201, USA
| |
Collapse
|
30
|
Afifi S, Michael A, Azimi M, Rodriguez M, Lendvai N, Landgren O. Role of Histone Deacetylase Inhibitors in Relapsed Refractory Multiple Myeloma: A Focus on Vorinostat and Panobinostat. Pharmacotherapy 2015; 35:1173-88. [PMID: 26684557 PMCID: PMC4995883 DOI: 10.1002/phar.1671] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Multiple myeloma is a neoplastic plasma cell disorder that is characterized by clonal proliferation of plasma cells in the bone marrow, monoclonal protein in the blood and/or urine, and associated organ dysfunction and biomarkers. There have been multiple recent advances in the relapsed and refractory setting. Major steps forward include the introduction of proteasome inhibitors (bortezomib and carfilzomib) and immunomodulatory drugs (thalidomide, lenalidomide, and pomalidomide) in various combinations. These drugs have changed the management of multiple myeloma and have extended overall survival in the past decade. Established curative therapy is not yet available for patients diagnosed with multiple myeloma, supporting the development of new treatment targets. Histone deacetylase inhibitors have multiple proposed mechanisms of action in the treatment of multiple myeloma. Both vorinostat and panobinostat have demonstrated some activity against multiple myeloma, and due to the benefits reported with panobinostat, the U.S. Food and Drug Administration has recently approved the drug for the treatment of relapsed and refractory multiple myeloma. In this article, we describe the pharmacology, efficacy, and toxicity profile of vorinostat and panobinostat and their possible place in therapy.
Collapse
Affiliation(s)
- Salma Afifi
- Department of Pharmacy, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Myeloma Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Angela Michael
- Department of Pharmacy, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Mahshid Azimi
- Department of Pharmacy, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Mabel Rodriguez
- Department of Pharmacy, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Nikoletta Lendvai
- Department of Medicine, Myeloma Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ola Landgren
- Department of Medicine, Myeloma Service, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
31
|
Nalluri S, Peirce SK, Tanos R, Abdella HA, Karmali D, Hogarty MD, Goldsmith KC. EGFR signaling defines Mcl⁻1 survival dependency in neuroblastoma. Cancer Biol Ther 2015; 16:276-86. [PMID: 25756510 DOI: 10.1080/15384047.2014.1002333] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The pediatric solid tumor neuroblastoma (NB) often depends on the anti-apoptotic protein, Mcl(-)1, for survival through Mcl(-)1 sequestration of pro-apoptotic Bim. High affinity Mcl(-)1 inhibitors currently do not exist such that novel methods to inhibit Mcl(-)1 clinically are in high demand. Receptor tyrosine kinases (RTK) regulate Mcl(-)1 in many cancers and play a role in NB survival, yet how they regulate Bcl(-)2 family interactions in NB is unknown. We found that NB cell lines derived to resist the Bcl(-)2/-xl/-w antagonist, ABT-737, acquire a dependence on Mcl(-)1 and show increased expression and activation of the RTK, EGFR. Mcl(-)1 dependent NB cell lines derived at diagnosis and from the same tumor following relapse also have increased EGFR expression compared to those dependent on Bcl(-)2. Inhibition of EGFR by shRNA or erlotinib in Mcl(-)1 dependent NBs disrupts Bim binding to Mcl(-)1 and enhances its affinity for Bcl(-)2, restoring sensitivity to ABT-737 as well as cytotoxics in vitro. Mechanistically treatment of NBs with small molecule inhibitors of EGFR (erlotinib, cetuximab) and ERK (U0126) increases Noxa expression and dephosphorylates Bim to promote Bim binding to Bcl(-)2. Thus, EGFR regulates Mcl(-)1 dependence in high-risk NB via ERK-mediated phosphorylation of Bim such that EGFR/ERK inhibition renders Mcl(-)1 dependent tumors now reliant on Bcl(-)2. Clinically, EGFR inhibitors are ineffective as single agent compounds in patients with recurrent NB, likely due to this transferred survival dependence to Bcl(-)2. Likewise, EGFR or ERK inhibitors warrant further testing in combination with Bcl(-)2 antagonists in vivo as a novel future combination to overcome therapy resistance in the clinic.
Collapse
Key Words
- ABT-737
- AKT, protein kinase B
- BH3, Bcl-2 homology domain 3
- Bcl-2 antagonist
- Bcl-2 homology proteins
- Bcl-2, B-cell lymphoma-2
- EGFR
- EGFR, epidermal growth factor receptor
- ERK, extracellular signal related kinase
- HR NB, high-risk neuroblastoma
- LPP, lambda protein phosphatase
- Mcl-1
- Mcl-1, Myeloid cell leukemia-1
- NB, neuroblastoma
- RTK, receptor tyrosine kinase
- TK, tyrosine kinase
- WCL, whole cell lysate
- apoptosis
- bim regulation
- co-IP, co-immunoprecipitation
Collapse
Affiliation(s)
- Srilatha Nalluri
- a Division of Hematology/Oncology; Aflac Children's Cancer and Blood Disorders Center ; Children's Healthcare of Atlanta ; Atlanta , GA USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Liu Y, Zhang J, Zhou YH, Jiang YN, Zhang W, Tang XJ, Ren Y, Han SP, Liu PJ, Xu J, He JJ. IL-6/STAT3 signaling pathway is activated in plasma cell mastitis. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:12541-12548. [PMID: 26722442 PMCID: PMC4680387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 09/25/2015] [Indexed: 06/05/2023]
Abstract
Plasma cell mastitis (PCM), a particular type of mastitis, mainly occurs in females at nonpregnant and nonlactating stages. The infiltration of abundant plasma cells and lymphocytes is the hallmark of the disease. The incidence rate of PCM increased gradually and its pathogenesis remained unclear. In this study, we investigated the expression of IL-6/STAT3 signaling pathway, which is vital not only for the differentiation of plasma cells but also for survival of plasma cells and T lymphocytes, in 30 PCM cases, 10 acute mastitis cases and 10 normal breast tissues by immunohistochemical analysis. IL-6 level was significantly higher in PCM patients than in acute mastitis patients or normal group. The positive rate of IL-6 and p-STAT3 staining in PCM samples was 93.3% (28/30) and 70% (21/30), respectively, and there was a significant positive association between IL-6 and p-STAT3 staining (r=0.408, P=0.025). In PCM group, the rate of nipple retraction was 40% (12/30). Significantly higher IL-6 expression was found in PCM patients with nipple retraction than in other PCM patients. However, no significant difference in IL-6 or p-STAT3 staining was detected between PCM patients experiencing recurrence and other PCM patients. In addition, Bcl-2 level was higher in PCM patients than in acute mastitis patients or normal group, but there was no difference in Bcl-2 immunostaining between PCM patients experiencing recurrence and other PCM patients. These indicate that IL-6/STAT3 signaling is activated in PCM and may play an important role in the pathogenesis of PCM.
Collapse
Affiliation(s)
- Yang Liu
- Department of Breast Surgery, The First Affiliated Hospital of Xi’an Jiaotong UniversityXi’an, Shaanxi, China
| | - Jian Zhang
- Department of Breast Surgery, The First Affiliated Hospital of Xi’an Jiaotong UniversityXi’an, Shaanxi, China
| | - Yu-Hui Zhou
- Department of Breast Surgery, The First Affiliated Hospital of Xi’an Jiaotong UniversityXi’an, Shaanxi, China
| | - Yi-Na Jiang
- Department of Pathology, The First Affiliated Hospital of Xi’an Jiaotong UniversityXi’an, Shaanxi, China
| | - Wei Zhang
- Department of Breast Surgery, The First Affiliated Hospital of Xi’an Jiaotong UniversityXi’an, Shaanxi, China
| | - Xiao-Jiang Tang
- Department of Breast Surgery, The First Affiliated Hospital of Xi’an Jiaotong UniversityXi’an, Shaanxi, China
| | - Yu Ren
- Department of Breast Surgery, The First Affiliated Hospital of Xi’an Jiaotong UniversityXi’an, Shaanxi, China
| | - Shui-Ping Han
- Department of Pathology, School of Medicine, Xi’an Jiaotong UniversityXi’an, Shaanxi, China
| | - Pei-Jun Liu
- Translational Medical Center, The First Affiliated Hospital of Xi’an Jiaotong UniversityXi’an, Shaanxi, China
| | - Jing Xu
- Department of Geriatrics, The First Affiliated Hospital of Xi’an Jiaotong UniversityXi’an, Shaanxi, China
| | - Jian-Jun He
- Department of Breast Surgery, The First Affiliated Hospital of Xi’an Jiaotong UniversityXi’an, Shaanxi, China
| |
Collapse
|
33
|
Zaman S, Wang R, Gandhi V. Targeting executioner procaspase-3 with the procaspase-activating compound B-PAC-1 induces apoptosis in multiple myeloma cells. Exp Hematol 2015; 43:951-962.e3. [PMID: 26257207 DOI: 10.1016/j.exphem.2015.07.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 07/27/2015] [Accepted: 07/29/2015] [Indexed: 12/27/2022]
Abstract
Multiple myeloma (MM) is a plasma cell neoplasm that has a low apoptotic index. We investigated a new class of small molecules that target the terminal apoptosis pathway, called procaspase activating compounds (PACs), in myeloma cells. PAC agents (PAC-1 and B-PAC-1) convert executioner procaspases (procaspase 3, 6, and 7) to active caspases 3, 6, and 7, which cleave target substrates to induce cellular apoptosis cascade. We hypothesized that targeting this terminal step could overcome survival and drug-resistance signals in myeloma cells and induce programmed cell death. Myeloma cells expressed executioner caspases. Additionally, our studies demonstrated that B-PAC-1 is cytotoxic to chemotherapy-resistant or sensitive myeloma cell lines (n = 7) and primary patient cells (n = 11). Exogenous zinc abrogated B-PAC-1-induced cell demise. Apoptosis induced by B-PAC-1 treatment was similar in the presence or absence of growth-promoting cytokines such as interleukin 6 and hepatocyte growth factor. Presence or absence of antiapoptotic proteins such as BCL-2, BCL-XL, or MCL-1 did not impact B-PAC-1-mediated programmed cell death. Collectively, our data demonstrate the proapoptotic effect of B-PAC-1 in MM and suggest that activating terminal executioner procaspases 3, 6, and 7 bypasses survival and drug-resistance signals in myeloma cells. This novel strategy has the potential to become an effective antimyeloma therapy.
Collapse
Affiliation(s)
- Shadia Zaman
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rui Wang
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Varsha Gandhi
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
34
|
Wagner V, Hose D, Seckinger A, Weiz L, Meißner T, Rème T, Breitkreutz I, Podar K, Ho AD, Goldschmidt H, Krämer A, Klein B, Raab MS. Preclinical efficacy of sepantronium bromide (YM155) in multiple myeloma is conferred by down regulation of Mcl-1. Oncotarget 2015; 5:10237-50. [PMID: 25296978 PMCID: PMC4279369 DOI: 10.18632/oncotarget.2529] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 09/25/2014] [Indexed: 12/11/2022] Open
Abstract
The inhibitor-of-apoptosis family member survivin has been reported to inhibit apoptosis and regulate mitosis and cytokinesis. In multiple myeloma, survivin has been described to be involved in downstream sequelae of various therapeutic agents. We assessed 1093 samples from previously untreated patients, including two independent cohorts of 392 and 701 patients, respectively. Survivin expression was associated with cell proliferation, adverse prognostic markers, and inferior event-free and overall survival, supporting the evaluation of survivin as a therapeutic target in myeloma. The small molecule suppressant of survivin - YM155 - is in clinical development for the treatment of solid tumors. YM155 potently inhibited proliferation and induced apoptosis in primary myeloma cells and cell lines. Gene expression and protein profiling revealed the critical roles of IL6/STAT3-signaling and the unfolded protein response in the efficacy of YM155. Both pathways converged to down regulate anti-apoptotic Mcl-1 in myeloma cells. Conversely, growth inhibition and apoptotic cell death by YM155 was rescued by ectopic expression of Mcl-1 but not survivin, identifying Mcl-1 as the pivotal downstream target of YM155 in multiple myeloma. Mcl-1 expression was likewise associated with adverse prognostic markers, and inferior survival. Our results strongly support the clinical evaluation of YM155 in patients with multiple myeloma.
Collapse
Affiliation(s)
- Verena Wagner
- Max-Eder Group Experimental Therapies for Hematologic Malignancies, German Cancer Research Center (DKFZ) and Dept. of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
| | - Dirk Hose
- Dept. of Internal Medicine V, University of Heidelberg, Heidelberg, Germany. National Center of Tumor Diseases, University of Heidelberg, Heidelberg, Germany
| | - Anja Seckinger
- Dept. of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
| | - Ludmila Weiz
- Max-Eder Group Experimental Therapies for Hematologic Malignancies, German Cancer Research Center (DKFZ) and Dept. of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
| | - Tobias Meißner
- Dept. of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
| | | | - Iris Breitkreutz
- Max-Eder Group Experimental Therapies for Hematologic Malignancies, German Cancer Research Center (DKFZ) and Dept. of Internal Medicine V, University of Heidelberg, Heidelberg, Germany. National Center of Tumor Diseases, University of Heidelberg, Heidelberg, Germany
| | - Klaus Podar
- National Center of Tumor Diseases, University of Heidelberg, Heidelberg, Germany
| | - Anthony D Ho
- Dept. of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
| | - Hartmut Goldschmidt
- Dept. of Internal Medicine V, University of Heidelberg, Heidelberg, Germany. National Center of Tumor Diseases, University of Heidelberg, Heidelberg, Germany
| | - Alwin Krämer
- Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center (DKFZ) and Dept. of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
| | - Bernard Klein
- INSERM U1040, Montpellier, France. CHU Montpellier, Institute of Research in Biotherapy, Montpellier, France
| | - Marc S Raab
- Max-Eder Group Experimental Therapies for Hematologic Malignancies, German Cancer Research Center (DKFZ) and Dept. of Internal Medicine V, University of Heidelberg, Heidelberg, Germany. Dept. of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
35
|
Abdul Rahim SN, Ho GY, Coward JIG. The role of interleukin-6 in malignant mesothelioma. Transl Lung Cancer Res 2015; 4:55-66. [PMID: 25806346 DOI: 10.3978/j.issn.2218-6751.2014.07.01] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 06/12/2014] [Indexed: 12/29/2022]
Abstract
Malignant mesothelioma (MM) still remains a dismal disease with a median overall survival between 9-12 months. During the past decade since the introduction of the multi-folate antagonist, pemetrexed, there have been no significant advances in its systemic treatment, particularly with novel therapeutics that have exhibited varying degrees of success in other solid tumours. In recent years, the pleiotropic proinflammatory cytokine, interleukin-6 (IL-6) has emerged as a mediator of pivotal processes such as cell proliferation and chemoresistance within the mesothelioma tumour microenvironment in addition to clinical symptoms commonly witnessed in this disease. This manuscript provides a brief summary on the pathophysiology and clinical management of MM, followed by the role of IL-6 in its tumourigenesis and the rationale for utilising anti-IL-6 therapeutics alongside standard chemotherapy and targeted agents in an attempt to prolong survival.
Collapse
Affiliation(s)
- Siti N Abdul Rahim
- 1 Inflammation & Cancer Therapeutics Group, Mater Research, University of Queensland, Translational Research Institute, 37 Kent Street, Woolloongabba, Brisbane, QLD, 4102, Australia ; 2 School of Chemistry & Molecular Bioscience, 3 School of Medicine, University of Queensland, Brisbane, QLD 4072, Australia ; 4 Mater Health Services, Raymond Terrace, South Brisbane, QLD 4101, Australia
| | - Gwo Y Ho
- 1 Inflammation & Cancer Therapeutics Group, Mater Research, University of Queensland, Translational Research Institute, 37 Kent Street, Woolloongabba, Brisbane, QLD, 4102, Australia ; 2 School of Chemistry & Molecular Bioscience, 3 School of Medicine, University of Queensland, Brisbane, QLD 4072, Australia ; 4 Mater Health Services, Raymond Terrace, South Brisbane, QLD 4101, Australia
| | - Jermaine I G Coward
- 1 Inflammation & Cancer Therapeutics Group, Mater Research, University of Queensland, Translational Research Institute, 37 Kent Street, Woolloongabba, Brisbane, QLD, 4102, Australia ; 2 School of Chemistry & Molecular Bioscience, 3 School of Medicine, University of Queensland, Brisbane, QLD 4072, Australia ; 4 Mater Health Services, Raymond Terrace, South Brisbane, QLD 4101, Australia
| |
Collapse
|
36
|
Abstract
Human IL6 is a cytokine produced by many cell types that has pleiotropic effects. In agreement, anti-IL6 therapy reduces inflammation, hepatic acute phase proteins, and anemia and has antiangiogenic effects. Blocking IL6 has demonstrated therapeutic efficacy with drug registration in Castleman disease and inflammatory diseases (rheumatoid arthritis) without major toxicity. Interestingly, the inhibition of C-reactive protein (CRP) production is a trustworthy surrogate marker of anti-IL6 therapy efficacy. Clinically registered IL6 inhibitors include siltuximab, an anti-IL6 mAb, and tocilizumab, an anti-IL6R mAb. In various cancers, in particular plasma cell cancers, large randomized trials showed no efficacy of IL6 inhibitors, despite a full inhibition of CRP production in treated patients in vivo, the numerous data showing an involvement of IL6 in these diseases, and initial short-term treatments demonstrating a dramatic inhibition of cancer cell proliferation in vivo. A likely explanation is the plasticity of cancer cells, with the presence of various subclones, making the outgrowth of cancer subclones possible using growth factors other than IL6. In addition, current therapeutic strategies used in these cancers already target IL6 activity. Thus, anti-IL6 therapeutics are able to neutralize IL6 production in vivo and are safe and useful in inflammatory diseases and Castleman disease.
Collapse
Affiliation(s)
- Jean-François Rossi
- Department of Hematology, CHU de Montpellier, Montpellier, France. INSERM U1040, Montpellier, France. Université Montpellier I, Montpellier, France.
| | - Zhao-Yang Lu
- Unité de Thérapie Cellulaire, CHU de Montpellier, Montpellier, France
| | | | - Bernard Klein
- INSERM U1040, Montpellier, France. Université Montpellier I, Montpellier, France
| |
Collapse
|
37
|
Bieghs L, Lub S, Fostier K, Maes K, Van Valckenborgh E, Menu E, Johnsen HE, Overgaard MT, Larsson O, Axelson M, Nyegaard M, Schots R, Jernberg-Wiklund H, Vanderkerken K, De Bruyne E. The IGF-1 receptor inhibitor picropodophyllin potentiates the anti-myeloma activity of a BH3-mimetic. Oncotarget 2014; 5:11193-208. [PMID: 25008202 PMCID: PMC4294345 DOI: 10.18632/oncotarget.1933] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 04/30/2014] [Indexed: 12/22/2022] Open
Abstract
The ABT-analogous 737, 263 and 199 are BH3 mimetics showing potent anti-myeloma (MM) activity, but only on defined molecular subgroups of MM patients presenting a Bcl-2high/Mcl-1low profile. IGF-1 is a major survival factor in MM regulating the expression of Bcl-2 proteins and might therefore be a resistance factor to these ABT-analogous. We first show that IGF-1 protected human MM cell lines (HMCLs) against ABT-737. Concurrently, the IGF-1 receptor inhibitor picropodophyllin (PPP) synergistically sensitized HMCL, primary human MM and murine 5T33MM cells to ABT-737 and ABT-199 by further decreasing cell viability and enhancing apoptosis. Knockdown of Bcl-2 by shRNA protected MM cells to ABT-737, while Mcl-1 shRNA sensitized the cells. PPP overcame the Bcl-2 dependency of ABT-737, but failed to completely overcome the protective effect of Mcl-1. In vivo, co-treatment of 5T33MM bearing mice significantly decreased tumor burden and prolonged overall survival both in a prophylactic and therapeutic setting. Interestingly, proteasome inhibitor resistant CD138- 5T33MM cells were more sensitive to ABT-737, whereas PPP alone targeted the CD138+ cells more effectively. After co-treatment, both subpopulations were targeted equally. Together, the combination of an IGF-1R inhibitor and an ABT-analogue displays synergistic anti-myeloma activity providing the rational for further (pre)clinical testing.
Collapse
Affiliation(s)
- Liesbeth Bieghs
- Department of Hematology and Immunology-Myeloma Center Brussel, Vrije Universiteit Brussel, Brussels, Belgium
- Department of Haematology, Aalborg Hospital, Aalborg University, Denmark
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Susanne Lub
- Department of Hematology and Immunology-Myeloma Center Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Karel Fostier
- Department of Hematology and Immunology-Myeloma Center Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Ken Maes
- Department of Hematology and Immunology-Myeloma Center Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Els Van Valckenborgh
- Department of Hematology and Immunology-Myeloma Center Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Eline Menu
- Department of Hematology and Immunology-Myeloma Center Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Hans E. Johnsen
- Department of Haematology, Aalborg Hospital, Aalborg University, Denmark
| | | | - Olle Larsson
- Department of Oncology and Pathology, Cancer Center Karolinska, Karolinska Institute, Stockholm, Sweden
| | - Magnus Axelson
- Department of Clinical Chemistry, Karolinska Hospital, Stockholm, Sweden
| | - Mette Nyegaard
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Rik Schots
- Department of Hematology and Immunology-Myeloma Center Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | | | - Karin Vanderkerken
- Department of Hematology and Immunology-Myeloma Center Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Elke De Bruyne
- Department of Hematology and Immunology-Myeloma Center Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
38
|
Jorda R, Navrátilová J, Hušková Z, Schütznerová E, Cankař P, Strnad M, Kryštof V. Arylazopyrazole AAP1742 Inhibits CDKs and Induces Apoptosis in Multiple Myeloma Cells via Mcl-1 Downregulation. Chem Biol Drug Des 2014; 84:402-8. [DOI: 10.1111/cbdd.12330] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 03/04/2014] [Accepted: 03/20/2014] [Indexed: 12/20/2022]
Affiliation(s)
- Radek Jorda
- Laboratory of Growth Regulators; Centre of the Region Haná for Biotechnological and Agricultural Research; Institute of Experimental Botany ASCR and Palacký University; Šlechtitelů 11 783 71 Olomouc Czech Republic
- Regional Centre for Applied Molecular Oncology; Masaryk Memorial Cancer Institute; Žlutý kopec 7 656 53 Brno Czech Republic
| | - Jana Navrátilová
- Laboratory of Growth Regulators; Centre of the Region Haná for Biotechnological and Agricultural Research; Institute of Experimental Botany ASCR and Palacký University; Šlechtitelů 11 783 71 Olomouc Czech Republic
| | - Zlata Hušková
- Laboratory of Growth Regulators; Centre of the Region Haná for Biotechnological and Agricultural Research; Institute of Experimental Botany ASCR and Palacký University; Šlechtitelů 11 783 71 Olomouc Czech Republic
| | - Eva Schütznerová
- Department of Organic Chemistry; Faculty of Science; Palacký University; 17. listopadu 1192/12 77146 Olomouc Czech Republic
| | - Petr Cankař
- Department of Organic Chemistry; Faculty of Science; Palacký University; 17. listopadu 1192/12 77146 Olomouc Czech Republic
| | - Miroslav Strnad
- Laboratory of Growth Regulators; Centre of the Region Haná for Biotechnological and Agricultural Research; Institute of Experimental Botany ASCR and Palacký University; Šlechtitelů 11 783 71 Olomouc Czech Republic
| | - Vladimír Kryštof
- Laboratory of Growth Regulators; Centre of the Region Haná for Biotechnological and Agricultural Research; Institute of Experimental Botany ASCR and Palacký University; Šlechtitelů 11 783 71 Olomouc Czech Republic
| |
Collapse
|
39
|
Elia A, Powley IR, MacFarlane M, Clemens MJ. Modulation of the sensitivity of Jurkat T-cells to inhibition of protein synthesis by tumor necrosis factor α-related apoptosis-inducing ligand. J Interferon Cytokine Res 2014; 34:769-77. [PMID: 24731196 DOI: 10.1089/jir.2013.0061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Tumor necrosis factor α-related apoptosis-inducing ligand (TRAIL) is a potent inducer of apoptosis in Jurkat T lymphoma cells. One of the characteristics of the phase preceding overt apoptosis is the marked downregulation of protein synthesis. We have investigated factors that can influence this response and have explored some of the signaling pathways involved. We show that interferon-α (IFNα) pretreatment desensitizes Jurkat cells to TRAIL-induced inhibition of protein synthesis, such that the concentration of TRAIL required for 50% inhibition is increased by 10-fold. The inhibition of translation is characterized by dephosphorylation of the eIF4E-binding protein 4E-BP1 and IFNα desensitizes Jurkat cells to this effect. IFNα also inhibits TRAIL-mediated dephosphorylation of the growth-promoting protein kinase B (Akt). Since Jurkat cells are defective for phosphatase and tensin homolog deleted on chromosome 10 (PTEN) and therefore have constitutive phosphoinositide 3-kinase (PI3K) activity, we investigated the consequences for protein synthesis of inhibiting PI3K using LY294002. Inhibition of PI3K partially inhibits translation, but also enhances the effect of a suboptimal concentration of TRAIL. However, LY294002 does not block the ability of IFNα to protect protein synthesis from TRAIL-induced inhibition. Data are presented suggesting that IFNα impairs the process of activation of caspase-8 within the TRAIL death-inducing signaling complex.
Collapse
Affiliation(s)
- Androulla Elia
- 1 Translational Control Group, Molecular Cell Sciences Research Centre, St George's, University of London , London, United Kingdom
| | | | | | | |
Collapse
|
40
|
Ionizing radiation-inducible microRNA miR-193a-3p induces apoptosis by directly targeting Mcl-1. Apoptosis 2013; 18:896-909. [PMID: 23546867 DOI: 10.1007/s10495-013-0841-7] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The functions of microRNAs (miRNAs) as either oncogenes or tumor suppressors in regulating cancer-related events have been established. We analyzed the alterations in the miRNA expression profile of the glioma cell line U-251 caused by ionizing radiation (IR) by using an miRNA array and identified several miRNAs whose expression was significantly affected by IR. Among the IR-responsive miRNAs, we further examined the function of miR-193a-3p, which exhibited the most significant growth-inhibiting effect. miR-193a-3p was observed to induce apoptosis in both U-251 and HeLa cells. We also demonstrated that miR-193a-3p induces the accumulation of intracellular reactive oxygen species (ROS) and DNA damage as determined by the level of γH2AX and by performing the comet assay. The induction of both apoptosis and DNA damage by miR-193a-3p was blocked by antioxidant treatment, indicating the crucial role of ROS in the action of miR-193a-3p. Among the putative target proteins, the expression of Mcl-1, an anti-apoptotic Bcl-2 family member, decreased because of miR-193a-3p transfection. A reporter assay using a luciferase construct containing the 3'-untranslated region of Mcl-1 confirmed that Mcl-1 is a direct target of miR-193a-3p. Down-regulation of Mcl-1 by siRNA transfection closely mimicked the outcome of miR-193a-3p transfection showing increased ROS, DNA damage, cytochrome c release, and apoptosis. Ectopic expression of Mcl-1 suppressed the pro-apoptotic action of miR-193a-3p, suggesting that Mcl-1 depletion is critical for miR-193a-3p induced apoptosis. Collectively, our results suggest a novel function for miR-193a-3p and its potential application in cancer therapy.
Collapse
|
41
|
Quotti Tubi L, Gurrieri C, Brancalion A, Bonaldi L, Bertorelle R, Manni S, Pavan L, Lessi F, Zambello R, Trentin L, Adami F, Ruzzene M, Pinna LA, Semenzato G, Piazza F. Inhibition of protein kinase CK2 with the clinical-grade small ATP-competitive compound CX-4945 or by RNA interference unveils its role in acute myeloid leukemia cell survival, p53-dependent apoptosis and daunorubicin-induced cytotoxicity. J Hematol Oncol 2013; 6:78. [PMID: 24283803 PMCID: PMC3852751 DOI: 10.1186/1756-8722-6-78] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 10/02/2013] [Indexed: 01/17/2023] Open
Abstract
Background The involvement of protein kinase CK2 in sustaining cancer cell survival could have implications also in the resistance to conventional and unconventional therapies. Moreover, CK2 role in blood tumors is rapidly emerging and this kinase has been recognized as a potential therapeutic target. Phase I clinical trials with the oral small ATP-competitive CK2 inhibitor CX-4945 are currently ongoing in solid tumors and multiple myeloma. Methods We have analyzed the expression of CK2 in acute myeloid leukemia and its function in cell growth and in the response to the chemotherapeutic agent daunorubicin We employed acute myeloid leukemia cell lines and primary blasts from patients grouped according to the European LeukemiaNet risk classification. Cell survival, apoptosis and sensitivity to daunorubicin were assessed by different means. p53-dependent CK2-inhibition-induced apoptosis was investigated in p53 wild-type and mutant cells. Results CK2α was found highly expressed in the majority of samples across the different acute myeloid leukemia prognostic subgroups as compared to normal CD34+ hematopoietic and bone marrow cells. Inhibition of CK2 with CX-4945, K27 or siRNAs caused a p53-dependent acute myeloid leukemia cell apoptosis. CK2 inhibition was associated with a synergistic increase of the cytotoxic effects of daunorubicin. Baseline and daunorubicin-induced STAT3 activation was hampered upon CK2 blockade. Conclusions These results suggest that CK2 is over expressed across the different acute myeloid leukemia subsets and acts as an important regulator of acute myeloid leukemia cell survival. CK2 negative regulation of the protein levels of tumor suppressor p53 and activation of the STAT3 anti-apoptotic pathway might antagonize apoptosis and could be involved in acute myeloid leukemia cell resistance to daunorubicin.
Collapse
|
42
|
Tagoug I, Jordheim LP, Herveau S, Matera EL, Huber AL, Chettab K, Manié S, Dumontet C. Therapeutic enhancement of ER stress by insulin-like growth factor I sensitizes myeloma cells to proteasomal inhibitors. Clin Cancer Res 2013; 19:3556-66. [PMID: 23674497 DOI: 10.1158/1078-0432.ccr-12-3134] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Multiple myeloma is a clonal plasma cell disorder in which growth and proliferation are linked to a variety of growth factors, including insulin-like growth factor type I (IGF-I). Bortezomib, the first-in-class proteasome inhibitor, has displayed significant antitumor activity in multiple myeloma. EXPERIMENTAL DESIGN We analyzed the impact of IGF-I combined with proteasome inhibitors on multiple myeloma cell lines in vivo and in vitro as well as on fresh human myeloma cells. RESULTS Our study shows that IGF-I enhances the cytotoxic effect of proteasome inhibitors against myeloma cells. The effect of bortezomib on the content of proapoptotic proteins such as Bax, Bad, Bak, and BimS and antiapoptotic proteins such as Bcl-2, Bcl-XL, XIAP, Bfl-1, and survivin was enhanced by IGF-I. The addition of IGF-I to bortezomib had a minor effect on NF-κB signaling in MM.1S cells while strongly enhancing reticulum stress. This resulted in an unfolded protein response (UPR), which was required for the potentiating effect of IGF-I on bortezomib cytotoxicity as shown by siRNA-mediated inhibition of GADD153 expression. CONCLUSIONS These results suggest that the high baseline level of protein synthesis in myeloma can be exploited therapeutically by combining proteasome inhibitors with IGF-I, which possesses a "priming" effect on myeloma cells for this family of compounds.
Collapse
|
43
|
Allegra A, Penna G, Alonci A, Russo S, Greve B, Innao V, Minardi V, Musolino C. Monoclonal antibodies: potential new therapeutic treatment against multiple myeloma. Eur J Haematol 2013; 90:441-68. [DOI: 10.1111/ejh.12107] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2013] [Indexed: 12/12/2022]
Affiliation(s)
| | - Giuseppa Penna
- Division of Haematology; University of Messina; Messina; Italy
| | - Andrea Alonci
- Division of Haematology; University of Messina; Messina; Italy
| | - Sabina Russo
- Division of Haematology; University of Messina; Messina; Italy
| | - Bruna Greve
- Division of Haematology; University of Messina; Messina; Italy
| | - Vanessa Innao
- Division of Haematology; University of Messina; Messina; Italy
| | - Viviana Minardi
- Division of Haematology; University of Messina; Messina; Italy
| | | |
Collapse
|
44
|
The role of Mcl-1 in S. aureus-induced cytoprotection of infected macrophages. Mediators Inflamm 2013; 2013:427021. [PMID: 23431241 PMCID: PMC3569898 DOI: 10.1155/2013/427021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 12/07/2012] [Accepted: 12/10/2012] [Indexed: 02/03/2023] Open
Abstract
As a facultative intracellular pathogen, Staphylococcus aureus invades macrophages and then promotes the cytoprotection of infected cells thus stabilizing safe niche for silent persistence. This process occurs through the upregulation of crucial antiapoptotic
genes, in particular, myeloid cell leukemia-1 (MCL-1). Here, we investigated the underlying mechanism and signal transduction pathways leading to increased MCL-1 expression in infected macrophages. Live S. aureus not only stimulated de novo synthesis of Mcl-1, but also prolonged the stability of this antiapoptotic protein. Consistent with this, we proved a crucial role of Mcl-1 in S. aureus-induced cytoprotection, since silencing of MCL1 by siRNA profoundly reversed the
cytoprotection of infected cells leading to apoptosis. Increased MCL1 expression in infected cells was associated with enhanced NFκB activation and subsequent IL-6 secretion, since the inhibition of both NFκB and IL-6 signalling pathways abrogated Mcl-1 induction and cytoprotection. Finally, we confirmed our observation in vivo in murine model of septic arthritis showing the association between the severity of arthritis and Mcl-1 expression. Therefore, we propose that S. aureus is hijacking the Mcl-1-dependent inhibition of apoptosis to prevent the elimination of infected host cells, thus allowing the intracellular persistence of the pathogen, its dissemination by infected macrophages, and the progression of staphylococci diseases.
Collapse
|
45
|
P276-00, a cyclin-dependent kinase inhibitor, modulates cell cycle and induces apoptosis in vitro and in vivo in mantle cell lymphoma cell lines. Mol Cancer 2012; 11:77. [PMID: 23075291 PMCID: PMC3558400 DOI: 10.1186/1476-4598-11-77] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 10/16/2012] [Indexed: 11/29/2022] Open
Abstract
Background Mantle cell lymphoma (MCL) is a well-defined aggressive lymphoid neoplasm characterized by proliferation of mature B-lymphocytes that have a remarkable tendency to disseminate. This tumor is considered as one of the most aggressive lymphoid neoplasms with poor responses to conventional chemotherapy and relatively short survival. Since cyclin D1 and cell cycle control appears as a natural target, small-molecule inhibitors of cyclin-dependent kinases (Cdks) and cyclins may play important role in the therapy of this disorder. We explored P276-00, a novel selective potent Cdk4-D1, Cdk1-B and Cdk9-T1 inhibitor discovered by us against MCL and elucidated its potential mechanism of action. Methods The cytotoxic effect of P276-00 in three human MCL cell lines was evaluated in vitro. The effect of P276-00 on the regulation of cell cycle, apoptosis and transcription was assessed, which are implied in the pathogenesis of MCL. Flow cytometry, western blot, immunoflourescence and siRNA studies were performed. The in vivo efficacy and effect on survival of P276-00 was evaluated in a Jeko-1 xenograft model developed in SCID mice. PK/PD analysis of tumors were performed using LC-MS and western blot analysis. Results P276-00 showed a potent cytotoxic effect against MCL cell lines. Mechanistic studies confirmed down regulation of cell cycle regulatory proteins with apoptosis. P276-00 causes time and dose dependent increase in the sub G1 population as early as from 24 h. Reverse transcription PCR studies provide evidence that P276-00 treatment down regulated transcription of antiapoptotic protein Mcl-1 which is a potential pathogenic protein for MCL. Most importantly, in vivo studies have revealed significant efficacy as a single agent with increased survival period compared to vehicle treated. Further, preliminary combination studies of P276-00 with doxorubicin and bortezomib showed in vitro synergism. Conclusion Our studies thus provide evidence and rational that P276-00 alone or in combination is a potential therapeutic molecule to improve patients’ outcome in mantle cell lymphoma.
Collapse
|
46
|
Chen S, Dai Y, Pei XY, Myers J, Wang L, Kramer LB, Garnett M, Schwartz DM, Su F, Simmons GL, Richey JD, Larsen DG, Dent P, Orlowski RZ, Grant S. CDK inhibitors upregulate BH3-only proteins to sensitize human myeloma cells to BH3 mimetic therapies. Cancer Res 2012; 72:4225-4237. [PMID: 22693249 PMCID: PMC3421040 DOI: 10.1158/0008-5472.can-12-1118] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BH3 mimetic drugs induce cell death by antagonizing the activity of antiapoptotic Bcl-2 family proteins. Cyclin-dependent kinase (CDK) inhibitors that function as transcriptional repressors downregulate the Bcl-2 family member Mcl-1 and increase the activity of selective BH3 mimetics that fail to target this protein. In this study, we determined whether CDK inhibitors potentiate the activity of pan-BH3 mimetics directly neutralizing Mcl-1. Specifically, we evaluated interactions between the prototypical pan-CDK inhibitor flavopiridol and the pan-BH3 mimetic obatoclax in multiple myeloma (MM) cells in which Mcl-1 is critical for survival. Coadministration of flavopiridol and obatoclax synergistically triggered apoptosis in both drug-naïve and drug-resistant MM cells. Mechanistic investigations revealed that flavopiridol inhibited Mcl-1 transcription but increased transcription of Bim and its binding to Bcl-2/Bcl-xL. Obatoclax prevented Mcl-1 recovery and caused release of Bim from Bcl-2/Bcl-xL and Mcl-1, accompanied by activation of Bax/Bak. Whether administered singly or in combination with obatoclax, flavopiridol also induced upregulation of multiple BH3-only proteins, including BimEL, BimL, Noxa, and Bik/NBK. Notably, short hairpin RNA knockdown of Bim or Noxa abrogated lethality triggered by the flavopiridol/obatoclax combination in vitro and in vivo. Together, our findings show that CDK inhibition potentiates pan-BH3 mimetic activity through a cooperative mechanism involving upregulation of BH3-only proteins with coordinate downregulation of their antiapoptotic counterparts. These findings have immediate implications for the clinical trial design of BH3 mimetic-based therapies that are presently being studied intensively for the treatment of diverse hematopoietic malignancies, including lethal multiple myeloma.
Collapse
Affiliation(s)
- Shuang Chen
- Division of Hematology/Oncology, Department of Medicine, Virginia Commonwealth University and the Massey Cancer Center, Richmond, VA
| | - Yun Dai
- Division of Hematology/Oncology, Department of Medicine, Virginia Commonwealth University and the Massey Cancer Center, Richmond, VA
| | - Xin-Yan Pei
- Division of Hematology/Oncology, Department of Medicine, Virginia Commonwealth University and the Massey Cancer Center, Richmond, VA
| | - Jennifer Myers
- Division of Hematology/Oncology, Department of Medicine, Virginia Commonwealth University and the Massey Cancer Center, Richmond, VA
| | - Li Wang
- Division of Hematology/Oncology, Department of Medicine, Virginia Commonwealth University and the Massey Cancer Center, Richmond, VA
| | - Lora B. Kramer
- Division of Hematology/Oncology, Department of Medicine, Virginia Commonwealth University and the Massey Cancer Center, Richmond, VA
| | - Mandy Garnett
- Division of Hematology/Oncology, Department of Medicine, Virginia Commonwealth University and the Massey Cancer Center, Richmond, VA
| | - Daniella M. Schwartz
- Division of Hematology/Oncology, Department of Medicine, Virginia Commonwealth University and the Massey Cancer Center, Richmond, VA
| | - Florence Su
- Division of Hematology/Oncology, Department of Medicine, Virginia Commonwealth University and the Massey Cancer Center, Richmond, VA
| | - Gary L. Simmons
- Division of Hematology/Oncology, Department of Medicine, Virginia Commonwealth University and the Massey Cancer Center, Richmond, VA
| | - Justin D. Richey
- Division of Hematology/Oncology, Department of Medicine, Virginia Commonwealth University and the Massey Cancer Center, Richmond, VA
| | - Dustin G. Larsen
- Division of Hematology/Oncology, Department of Medicine, Virginia Commonwealth University and the Massey Cancer Center, Richmond, VA
| | - Paul Dent
- Department of Neurosurgery, Virginia Commonwealth University and the Massey Cancer Center, Richmond, VA
| | - Robert Z. Orlowski
- Lymphoma/Myeloma, the University of Texas MD Anderson Cancer Center, Houston, TX
| | - Steven Grant
- Division of Hematology/Oncology, Department of Medicine, Virginia Commonwealth University and the Massey Cancer Center, Richmond, VA
- Department of Biochemistry, Virginia Commonwealth University and the Massey Cancer Center and Institute of Molecular Medicine, Richmond, VA
| |
Collapse
|
47
|
Amantea D, Tassorelli C, Russo R, Petrelli F, Morrone LA, Bagetta G, Corasaniti MT. Neuroprotection by leptin in a rat model of permanent cerebral ischemia: effects on STAT3 phosphorylation in discrete cells of the brain. Cell Death Dis 2011; 2:e238. [PMID: 22158477 PMCID: PMC3252737 DOI: 10.1038/cddis.2011.125] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In addition to its effects in the hypothalamus to control body weight, leptin is involved in the regulation of neuronal function, development and survival. Recent findings have highlighted the neuroprotective effects of leptin against ischemic brain injury; however, to date, little is known about the role performed by the signal transducer and activator of transcription (STAT)-3, a major mediator of leptin receptor transduction pathway in the brain, in the beneficial effects of the hormone. Our data demonstrate that systemic acute administration of leptin produces neuroprotection in rats subjected to permanent middle cerebral artery occlusion (MCAo), as revealed by a significant reduction of the brain infarct volume and neurological deficit up to 7 days after the induction of ischemia. By combining a subcellular fractionation approach with immunohistofluorescence, we observe that neuroprotection is associated with a cell type-specific modulation of STAT3 phosphorylation in the ischemic cortex. The early enhancement of nuclear phospho-STAT3 induced by leptin in the astrocytes of the ischemic penumbra may contribute to a beneficial effect of these cells on the evolution of tissue damage. In addition, the elevation of phospho-STAT3 induced by leptin in the neurons after 24 h MCAo is associated with an increased expression of tissue inhibitor of matrix metalloproteinases-1 in the cortex, suggesting its possible involvement to the neuroprotection produced by the adipokine.
Collapse
Affiliation(s)
- D Amantea
- Department of Pharmacobiology and University Consortium for the Study of Adaptive Disorders and Head Pain, Section of Neuropharmacology of Normal and Pathological Neuronal Plasticity, University of Calabria, Rende (CS), Italy.
| | | | | | | | | | | | | |
Collapse
|
48
|
Tagoug I, Sauty De Chalon A, Dumontet C. Inhibition of IGF-1 signalling enhances the apoptotic effect of AS602868, an IKK2 inhibitor, in multiple myeloma cell lines. PLoS One 2011; 6:e22641. [PMID: 21799925 PMCID: PMC3143180 DOI: 10.1371/journal.pone.0022641] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Accepted: 07/01/2011] [Indexed: 11/18/2022] Open
Abstract
Multiple myeloma (MM) is a B cell neoplasm characterized by bone marrow infiltration with malignant plasma cells. IGF-1 signalling has been explored as a therapeutic target in this disease. We analyzed the effect of the IKK2 inhibitor AS602868, in combination with a monoclonal antibody targeting IGF-1 receptor (anti-IGF-1R) in human MM cell lines. We found that anti-IGF-1R potentiated the apoptotic effect of AS602868 in LP1 and RPMI8226 MM cell lines which express high levels of IGF-1R. Anti-IGF-1R enhanced the inhibitory effect of AS602868 on NF-κB pathway signalling and potentiated the disruption of mitochondrial membrane potential caused by AS602868. These results support the role of IGF-1 signalling in MM and suggest that inhibition of this pathway could sensitize MM cells to NF-κB inhibitors.
Collapse
Affiliation(s)
- Ines Tagoug
- Université de Lyon, Lyon, France
- INSERM U1052, Centre de Recherche de Cancérologie de Lyon, Lyon, France
- CNRS UMR 5286, Centre de Recherche de Cancérologie de Lyon, Lyon, France
- HCL, Lyon, France
| | - Amélie Sauty De Chalon
- Université de Lyon, Lyon, France
- INSERM U1052, Centre de Recherche de Cancérologie de Lyon, Lyon, France
- CNRS UMR 5286, Centre de Recherche de Cancérologie de Lyon, Lyon, France
- HCL, Lyon, France
| | - Charles Dumontet
- Université de Lyon, Lyon, France
- INSERM U1052, Centre de Recherche de Cancérologie de Lyon, Lyon, France
- CNRS UMR 5286, Centre de Recherche de Cancérologie de Lyon, Lyon, France
- HCL, Lyon, France
- * E-mail:
| |
Collapse
|
49
|
Hassman LM, Ellison TJ, Kedes DH. KSHV infects a subset of human tonsillar B cells, driving proliferation and plasmablast differentiation. J Clin Invest 2011; 121:752-68. [PMID: 21245574 DOI: 10.1172/jci44185] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Accepted: 11/10/2010] [Indexed: 11/17/2022] Open
Abstract
Kaposi sarcoma-associated herpesvirus (KSHV; also known as HHV8) is the causative agent of two B cell tumors, multicentric Castleman disease (MCD) and primary effusion lymphoma (PEL). However, little is known about the nature of the specific B cell subtype(s) most susceptible to infection. Identifying these cells would provide direct insight into KSHV transmission and virus-induced transformation. To identify this subset and to determine whether infection alters its cellular phenotype, we exposed human tonsillar cells to KSHV and characterized infected cells using high-throughput multispectral imaging flow cytometry (MIFC). Stable expression of the virally encoded latency-associated nuclear antigen (LANA), a marker of latent KSHV infection, was observed predominantly in cells expressing the l light chain of the B cell receptor. These LANA+ B cells proliferated and exhibited similarities to the cells characteristic of MCD (IgMl-expressing plasmablasts), including blasting morphology with elevated expression of Ki67, variable expression of CD27, and high levels of IgM and IL-6 receptor. Furthermore, the proportion of infected cells showing a blasting phenotype increased upon addition of exogenous IL-6. Our data lead us to propose that oral transmission of KSHV involves the latent infection of a subset of tonsillar IgMl-expressing B cells, which then proliferate as they acquire the plasmablast phenotype characteristic of MCD.
Collapse
Affiliation(s)
- Lynn M Hassman
- Myles H. Thaler Center for AIDS and Human Retrovirus Research, University of Virginia Health Systems, Charlottesville, Virginia, USA
| | | | | |
Collapse
|
50
|
Szyszko EA, Brokstad KA, Oijordsbakken G, Jonsson MV, Jonsson R, Skarstein K. Salivary glands of primary Sjögren's syndrome patients express factors vital for plasma cell survival. Arthritis Res Ther 2011; 13:R2. [PMID: 21214903 PMCID: PMC3241347 DOI: 10.1186/ar3220] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Revised: 11/19/2010] [Accepted: 01/07/2011] [Indexed: 01/15/2023] Open
Abstract
INTRODUCTION The presence of circulating Ro/SSA and La/SSB autoantibodies has become an important marker in the classification criteria for primary Sjögren's syndrome (pSS). Plasma cells producing these autoantibodies are mainly high affinity plasma cells originating from germinal centre reactions. When exposed to the right microenvironment these autoimmune plasma cells become long-lived and resistant to immunosuppressive treatment. Since autoimmune plasma cells have been detected in the salivary glands of SS patients, we wanted to investigate if the glandular microenvironment is suitable for plasma cell survival and if glandular residing plasma cells are the long-lived plasma cell subset. METHODS Single, double and triple immunohistochemistry as well as immunofluorescence staining was performed on minor salivary gland tissue retrieved from pSS, chronically inflamed and normal subjects. RESULTS We detected significant numbers of CD138+, non-proliferating, Bcl-2 expressing plasma cells in the salivary glands of pSS patients with high focus score (FS). Furthermore, we demonstrated that CXCL12 and interleukin (IL)-6 survival factors were highly expressed in pSS salivary gland epithelium and by focal mononuclear infiltrating cells. Notably, adipocytes when present in the salivary gland tissue were an important source of CXCL12. We clearly demonstrate that plasma cells are localised in close proximity to CXCL12 and IL-6 expressing cells and thus that the environment of salivary glands with high FS provide factors vital for plasma cell survival. CONCLUSIONS Plasma cells residing in the salivary glands of pSS patients with high FS showed phenotypic characteristics of the long-lived plasma cell subtype. Furthermore, the pSS salivary gland microenvironment provided niches rich in factors vital for plasma cell survival.
Collapse
Affiliation(s)
- Ewa A Szyszko
- Broegelmann Research Laboratory, The Gade Institute, University of Bergen, The Laboratory Building, Bergen N-5021, Norway.
| | | | | | | | | | | |
Collapse
|