1
|
Cetin B, Erendor F, Eksi YE, Sanlioglu AD, Sanlioglu S. Gene and cell therapy of human genetic diseases: Recent advances and future directions. J Cell Mol Med 2024; 28:e70056. [PMID: 39245805 PMCID: PMC11381193 DOI: 10.1111/jcmm.70056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/20/2024] [Indexed: 09/10/2024] Open
Abstract
Disruptions in normal development and the emergence of health conditions often result from the malfunction of vital genes in the human body. Decades of scientific research have focused on techniques to modify or substitute defective genes with healthy alternatives, marking a new era in disease treatment, prevention and cure. Recent strides in science and technology have reshaped our understanding of disorders, medication development and treatment recommendations, with human gene and cell therapy at the forefront of this transformative shift. Its primary objective is the modification of genes or adjustment of cell behaviour for therapeutic purposes. In this review, we focus on the latest advances in gene and cell therapy for treating human genetic diseases, with a particular emphasis on FDA and EMA-approved therapies and the evolving landscape of genome editing. We examine the current state of innovative gene editing technologies, particularly the CRISPR-Cas systems. As we explore the progress, ethical considerations and prospects of these innovations, we gain insight into their potential to revolutionize the treatment of genetic diseases, along with a discussion of the challenges associated with their regulatory pathways. This review traces the origins and evolution of these therapies, from conceptual ideas to practical clinical applications, marking a significant milestone in the field of medical science.
Collapse
Affiliation(s)
- Busra Cetin
- Department of Gene and Cell Therapy, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Fulya Erendor
- Department of Gene and Cell Therapy, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Yunus E Eksi
- Department of Gene and Cell Therapy, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Ahter D Sanlioglu
- Department of Gene and Cell Therapy, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Salih Sanlioglu
- Department of Gene and Cell Therapy, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| |
Collapse
|
2
|
Bisgin A, Sanlioglu AD, Eksi YE, Griffith TS, Sanlioglu S. Current Update on Severe Acute Respiratory Syndrome Coronavirus 2 Vaccine Development with a Special Emphasis on Gene Therapy Viral Vector Design and Construction for Vaccination. Hum Gene Ther 2021; 32:541-562. [PMID: 33858231 DOI: 10.1089/hum.2021.052] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Severe acute respiratory syndrome (SARS) is a newly emerging infectious disease (COVID-19) caused by the novel coronavirus SARS-coronavirus 2 (CoV-2). To combat the devastating spread of SARS-CoV-2, extraordinary efforts from numerous laboratories have focused on the development of effective and safe vaccines. Traditional live-attenuated or inactivated viral vaccines are not recommended for immunocompromised patients as the attenuated virus can still cause disease via phenotypic or genotypic reversion. Subunit vaccines require repeated dosing and adjuvant use to be effective, and DNA vaccines exhibit lower immune responses. mRNA vaccines can be highly unstable under physiological conditions. On the contrary, naturally antigenic viral vectors with well-characterized structure and safety profile serve as among the most effective gene carriers to provoke immune response via heterologous gene transfer. Viral vector-based vaccines induce both an effective cellular immune response and a humoral immune response owing to their natural adjuvant properties via transduction of immune cells. Consequently, viral vectored vaccines carrying the SARS-CoV-2 spike protein have recently been generated and successfully used to activate cytotoxic T cells and develop a neutralizing antibody response. Recent progress in SARS-CoV-2 vaccines, with an emphasis on gene therapy viral vector-based vaccine development, is discussed in this review.
Collapse
Affiliation(s)
- Atil Bisgin
- The Department of Gene and Cell Therapy, Faculty of Medicine, Akdeniz University, Antalya, Turkey
- Department of Medical Genetics, Faculty of Medicine, Cukurova University, Adana, Turkey
| | - Ahter D Sanlioglu
- The Department of Gene and Cell Therapy, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Yunus Emre Eksi
- The Department of Gene and Cell Therapy, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Thomas S Griffith
- The Department of Urology, School of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Salih Sanlioglu
- The Department of Gene and Cell Therapy, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| |
Collapse
|
3
|
Puar YR, Shanmugam MK, Fan L, Arfuso F, Sethi G, Tergaonkar V. Evidence for the Involvement of the Master Transcription Factor NF-κB in Cancer Initiation and Progression. Biomedicines 2018; 6:biomedicines6030082. [PMID: 30060453 PMCID: PMC6163404 DOI: 10.3390/biomedicines6030082] [Citation(s) in RCA: 154] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 07/23/2018] [Accepted: 07/24/2018] [Indexed: 12/14/2022] Open
Abstract
Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) is responsible for the regulation of a large number of genes that are involved in important physiological processes, including survival, inflammation, and immune responses. At the same time, this transcription factor can control the expression of a plethora of genes that promote tumor cell proliferation, survival, metastasis, inflammation, invasion, and angiogenesis. The aberrant activation of this transcription factor has been observed in several types of cancer and is known to contribute to aggressive tumor growth and resistance to therapeutic treatment. Although NF-κB has been identified to be a major contributor to cancer initiation and development, there is evidence revealing its role in tumor suppression. This review briefly highlights the major mechanisms of NF-κB activation, the role of NF-κB in tumor promotion and suppression, as well as a few important pharmacological strategies that have been developed to modulate NF-κB function.
Collapse
Affiliation(s)
- Yu Rou Puar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| | - Muthu K Shanmugam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| | - Lu Fan
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| | - Frank Arfuso
- Stem Cell and Cancer Biology Laboratory, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6009, Australia.
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| | - Vinay Tergaonkar
- Institute of Molecular and Cellular Biology (A*STAR), 61 Biopolis Drive, Singapore 138673, Singapore.
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore.
- Centre for Cancer Biology (University of South Australia and SA Pathology), Adelaide, SA 5000, Australia.
| |
Collapse
|
4
|
Mert U, Sanlioglu AD. Intracellular localization of DR5 and related regulatory pathways as a mechanism of resistance to TRAIL in cancer. Cell Mol Life Sci 2017; 74:245-255. [PMID: 27510421 PMCID: PMC11107773 DOI: 10.1007/s00018-016-2321-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 07/19/2016] [Accepted: 08/02/2016] [Indexed: 10/21/2022]
Abstract
TNF-related apoptosis-inducing ligand (TRAIL) is a prominent cytokine capable of inducing apoptosis. It can bind to five different cognate receptors, through which diverse intracellular pathways can be activated. TRAIL's ability to preferentially kill transformed cells makes it a promising potential weapon for targeted tumor therapy. However, recognition of several resistance mechanisms to TRAIL-induced apoptosis has indicated that a thorough understanding of the details of TRAIL biology is still essential before this weapon can be confidently unleashed. Critical to this aim is revealing the functions and regulation mechanisms of TRAIL's potent death receptor DR5. Although expression and signaling mechanisms of DR5 have been extensively studied, other aspects, such as its subcellular localization, non-signaling functions, and regulation of its membrane transport, have only recently attracted attention. Here, we discuss different aspects of TRAIL/DR5 biology, with a particular emphasis on the factors that seem to influence the cell surface expression pattern of DR5, along with factors that lead to its nuclear localization. Disturbance of this balance apparently affects the sensitivity of cancer cells to TRAIL-mediated apoptosis, thus constituting an eligible target for potential new therapeutic agents.
Collapse
Affiliation(s)
- Ufuk Mert
- Department of Medical Biology and Genetics, Faculty of Medicine, Akdeniz University, 07058, Antalya, Turkey
| | - Ahter Dilsad Sanlioglu
- Department of Medical Biology and Genetics, Faculty of Medicine, Akdeniz University, 07058, Antalya, Turkey.
- Center for Gene and Cell Therapy, Akdeniz University, 07058, Antalya, Turkey.
| |
Collapse
|
5
|
Kanatli I, Akkaya B, Uysal H, Kahraman S, Sanlioglu AD. Analysis of TNF-related apoptosis-inducing ligand and receptors and implications in thymus biology and myasthenia gravis. Neuromuscul Disord 2016; 27:128-135. [PMID: 28012741 DOI: 10.1016/j.nmd.2016.10.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 09/20/2016] [Accepted: 10/31/2016] [Indexed: 11/26/2022]
Abstract
Myasthenia Gravis is an autoantibody-mediated, neuromuscular junction disease, and is usually associated with thymic abnormalities presented as thymic tumors (~10%) or hyperplastic thymus (~65%). The exact role of thymus in Myasthenia Gravis development is not clear, yet many patients benefit from thymectomy. The apoptotic ligand TNF-Related Apoptosis-Inducing Ligand is thought to be involved in the regulation of thymocyte counts, although conflicting results are reported. We investigated differential expression profiles of TNF-Related Apoptosis-Inducing Ligand and its transmembrane receptors, Nuclear Factor-kB activation status, and apoptotic cell counts in healthy thymic tissue and pathological thymus from Myasthenia Gravis patients. All tissues expressed TNF-Related Apoptosis-Inducing Ligand and its receptors, with hyperplastic tissue having the highest expression levels of death receptors DR4 and DR5. No detectable Nuclear Factor-kB activation, at least via the canonical Protein Kinase A-mediated p65 Ser276 phosphorylation, was evident in any of the tissues studied. Apoptotic cell counts were higher in MG-associated tissue compared to the normal thymus. Possible use of the TNF-Related Apoptosis-Inducing Ligand within the concept of an apoptotic ligand-mediated medical thymectomy in thymoma- or thymic hyperplasia-associated Myasthenia Gravis is also discussed.
Collapse
Affiliation(s)
- Irem Kanatli
- Department of Medical Biology and Genetics, Faculty of Medicine, Akdeniz University, 07058, Antalya, Turkey; Center for Gene and Cell Therapy, Akdeniz University, 07058 Antalya, Turkey
| | - Bahar Akkaya
- Department of Pathology, Faculty of Medicine, Akdeniz University, 07058 Antalya, Turkey
| | - Hilmi Uysal
- Department of Neurology, Faculty of Medicine, Akdeniz University, 07058 Antalya, Turkey
| | - Sevim Kahraman
- Department of Medical Biology and Genetics, Faculty of Medicine, Akdeniz University, 07058, Antalya, Turkey; Center for Gene and Cell Therapy, Akdeniz University, 07058 Antalya, Turkey
| | - Ahter Dilsad Sanlioglu
- Department of Medical Biology and Genetics, Faculty of Medicine, Akdeniz University, 07058, Antalya, Turkey; Center for Gene and Cell Therapy, Akdeniz University, 07058 Antalya, Turkey.
| |
Collapse
|
6
|
Fernández-Martínez AB, Carmena MJ, Bajo AM, Vacas E, Sánchez-Chapado M, Prieto JC. VIP induces NF-κB1-nuclear localisation through different signalling pathways in human tumour and non-tumour prostate cells. Cell Signal 2014; 27:236-44. [PMID: 25446255 DOI: 10.1016/j.cellsig.2014.11.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 10/16/2014] [Accepted: 11/08/2014] [Indexed: 01/19/2023]
Abstract
The nuclear factor κB (NF-κB) is a powerful activator of angiogenesis, invasion and metastasis. Transactivation and nuclear localisation of NF-κB is an index of recurrence in prostate cancer. Vasoactive intestinal peptide (VIP) exerts similar effects in prostate cancer models involving increased expression of vascular endothelial growth factor (VEGF) and cyclooxygenase-2 (COX-2) which are related to NF-κB transactivation. Here we studied differential mechanisms of VIP-induced NF-κB transactivation in non-tumour RWPE-1 and tumour LNCaP and PC3 human prostate epithelial cells. Immunofluorescence studies showed that VIP increases translocation of the p50 subunit of NF-κB1 to the nucleus, an effect that was inhibited by curcumin. The signalling transduction pathways involved are different depending on cell transformation degree. In control cells (RWPE1), the effect is mediated by protein kinase A (PKA) activation and does not implicate extracellular signal-regulated kinase (ERK) or phosphoinositide 3-kinase (PI3-K) pathways whereas the opposite is true in tumour LNCaP and PC3 cells. Exchange protein directly activated by cAMP (EPAC) pathway is involved in transformed cells but not in control cells. Curcumin blocks the activating effect of VIP on COX-2 promoter/prostaglandin E2 (PGE2) production and VEGF expression and secretion. The study incorporates direct observation on COX-2 promoter and suggests that VIP effect on VEGF may be indirectly mediated by PGE2 after being synthesised by COX-2, thus amplifying the initial signal. We show that the signalling involved in VIP effects on VEGF is cAMP/PKA in non-tumour cells and cAMP/EPAC/ERK/PI3K in tumour cells which coincides with pathways mediating p50 nuclear translocation. Thus, VIP appears to use different pathways for NF-κB1 (p50) transactivation in prostate epithelial cells depending on whether they are transformed or not. Transformed cells depend on pro-survival and pro-proliferative signalling pathways involving ERK, PI3-K and cAMP/EPAC which supports the potential therapeutic value of these targets in prostate cancer.
Collapse
Affiliation(s)
- Ana B Fernández-Martínez
- Department of Systems Biology, Unit of Biochemistry and Molecular Biology, University of Alcalá, 28871 Alcalá de Henares, Spain
| | - María J Carmena
- Department of Systems Biology, Unit of Biochemistry and Molecular Biology, University of Alcalá, 28871 Alcalá de Henares, Spain
| | - Ana M Bajo
- Department of Systems Biology, Unit of Biochemistry and Molecular Biology, University of Alcalá, 28871 Alcalá de Henares, Spain
| | - Eva Vacas
- Department of Systems Biology, Unit of Biochemistry and Molecular Biology, University of Alcalá, 28871 Alcalá de Henares, Spain
| | - Manuel Sánchez-Chapado
- Department of Surgery and Medical and Social Sciences, University of Alcalá, 28871 Alcalá de Henares, Spain; Department of Urology, Príncipe de Asturias Hospital, 28871 Alcalá de Henares, Spain
| | - Juan C Prieto
- Department of Systems Biology, Unit of Biochemistry and Molecular Biology, University of Alcalá, 28871 Alcalá de Henares, Spain.
| |
Collapse
|
7
|
Rezania S, Amirmozaffari N, Rashidi N, Mirzadegan E, Zarei S, Ghasemi J, Zarei O, Katouzian L, Zarnani AH. The same and not the same: heterogeneous functional activation of prostate tumor cells by TLR ligation. Cancer Cell Int 2014; 14:54. [PMID: 24966802 PMCID: PMC4069277 DOI: 10.1186/1475-2867-14-54] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 05/29/2014] [Indexed: 01/12/2023] Open
Abstract
Background Many types of tumors are organized in a hierarchy of heterogeneous cell populations with different molecular signature. Such heterogeneity may be associated with different responsiveness to microenvironment stimuli. In the present study, the effects of lipopolysaccharide (LPS) and lipoteichoic acid (LTA), as well-known mediators of inflammation, on cancerous behavior of three prostate tumor cells, LNCaP, PC3 and DU145, were investigated. Methods Expression of TLR1-10, CD14 and MyD88 transcripts was investigated by RT-PCR. Protein expression of TLR2 and 4 was scrutinized by flow cytometry, immunofluorescent staining and Western blotting. Experiments were set up to assess the effects of LPS and LTA at different concentrations and times on cell proliferation, extracellular matrix invasion, adhesion and cytokine production. Results We showed that prostate cancer cell lines differentially express TLR1-10, MyD88 and CD14 transcripts. DU145 failed to express TLR4 gene. Positively-identified TLR2 protein in all prostate cancer cells and TLR4 protein in PC3 and LNCaP by Western blotting was not accompanied by cell surface expression, as judged by flow cytometry. Immunofluorescent staining clearly demonstrated predominantly perinuclear localization of TLR2 and TLR4. LTA activation of all prostate cancer cells significantly increased cell proliferation. Regardless of lacking TLR4, DU145 cells proliferated in response to LPS treatment. While LPS caused increased invasiveness of LNCaP, invasive capacity of PC3 was significantly reduced after LPS or LTA stimulation. Stimulation of all prostate tumor cells with LTA was associated with increased cell adhesion and IL-8 production. IL-6 production, however, was differentially regulated by LPS stimulation in prostate tumor cells. Conclusion The data shows that cancer cells originated from the same histologically origin exhibit heterogeneous response to the same TLR ligand. Therefore, a thorough and comprehensive judgment on how and to what extent a particular cancer is affected by TLR agonist could not be inferred by studying an individual cell line.
Collapse
Affiliation(s)
- Simin Rezania
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran ; Biophysics Institute, Medical University of Graz, Graz, Austria
| | - Noor Amirmozaffari
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Nesa Rashidi
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Ebrahim Mirzadegan
- Reproductive Immunology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Saeed Zarei
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Jamileh Ghasemi
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Omid Zarei
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Katouzian
- Reproductive Immunology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Amir-Hassan Zarnani
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran ; Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
|
9
|
Abstract
Despite the significant advances in clinical research, surgical resection, radiotherapy and chemotherapy are still used as the primary method for cancer treatment. As compared to conventional therapies that often induce systemic toxicity and eventually contribute to tumor resistance, the TNF-related apoptosis-inducing ligand (TRAIL) is a promising anticancer agent that selectively triggers apoptosis in various cancer cells by interacting with its proapoptotic receptors DR4 and KILLER/DR5, while sparing the normal surrounding tissue. The intensive studies of TRAIL signaling pathways over the past decade have provided clues for understanding the molecular mechanisms of TRAIL-induced apoptosis in carcinogenesis and identified an array of therapeutic responses elicited by TRAIL and its receptor agonists. Analysis of its activity at the molecular level has shown that TRAIL improves survival either as monotherapies or combinatorial therapies with other mediators of apoptosis or anticancer chemotherapy. Combinatorial treatments amplify the activities of anticancer agents and widen the therapeutic window by overcoming tumor resistance to apoptosis and driving cancer cells to self-destruction. Although TRAIL sensitivity varies widely depending on the cell type, nontransformed cells are largely resistant to death mediated by TRAIL Death Receptors (DRs). Genetic alterations in cancer can contribute in tumor progression and often play an important role in evasion of apoptosis by tumor cells. Remarkably, RAS, MYC and HER2 oncogenes have been shown to sensitise tumor cells to TRAIL induced cell death. Here, we summarise the cross-talk of oncogenic and apoptotic pathways and how they can be exploited toward efficient combinatorial therapeutic protocols.
Collapse
Affiliation(s)
- Eftychia Oikonomou
- Laboratory of Signal Mediated Gene Expression, Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 48, Vasileos Konstantinou Ave., 11635, Athens, Greece
| | | |
Collapse
|
10
|
Kargi A, Bisgin A, Yalcin AD, Kargi AB, Sahin E, Gumuslu S. Increased serum S-TRAIL level in newly diagnosed stage-IV lung adenocarcinoma but not squamous cell carcinoma is correlated with age and smoking. Asian Pac J Cancer Prev 2013; 14:4819-4822. [PMID: 24083751 DOI: 10.7314/apjcp.2013.14.8.4819] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Lung cancer is the leading cause of cancer mortality in the world. Many factors can protect against or facilitate its development. A TNF family member TRAIL, has a complex physiological role beyond that of merely activating the apoptotic pathway in cancer cells. Vitamin D is converted to its active form locally in the lung, and is also thought to play an important role in lung health. Our goal was to investigate the possible clinical significance of serum sTRAIL and 1,25-dihydroxyvitamin D(3) levels in patients with non-small cell lung cancer (NSCLC). MATERIALS AND METHODS Totals of 18 consecutive adenocarcinoma and 22 squamous cell carcinoma patients with stage-IV non-small cell lung cancer referred to our institute were included in this study. There were 12 men and 6 women, with ages ranging from 38 to 97 (mean 60.5) years with adenocarcinoma, and 20 men and 2 women, with ages ranging from 46 to 80 (mean 65) years with squamous cell carcinoma. Serum levels of sTRAIL and 1,25-dihydroxyvitamin D(3) were measured in all samples at the time of diagnosis. RESULTS sTRAIL levels in NSCLC patients were higher than in the control group. Although there was no correlation between patient survival and sTRAIL levels, the highest sTRAIL levels were correlated with age and cigarette smoking in the adenocarcinoma patients. sTRAIL level in healthy individuals were correlated with serum 1,25-dihydroxyvitamin D(3). CONCLUSIONS Serum sTRAIL concentrations were increased in NSCLC patients, and correlated with age and smoking history, but not with overall survival.
Collapse
Affiliation(s)
- Aysegul Kargi
- Division of Medical Oncology, Department of Internal Medicine, Antalya Training and Research Hospital, Antalya, Turkey E-mail :
| | | | | | | | | | | |
Collapse
|
11
|
Celik O, Kutlu O, Tekcan M, Celik-Ozenci C, Koksal IT. Role of TNF-related apoptosis-inducing ligand (TRAIL) in the pathogenesis of varicocele-induced testicular dysfunction. Asian J Androl 2012; 15:269-74. [PMID: 23274391 DOI: 10.1038/aja.2012.112] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The higher frequency of varicocele in men with infertility has drawn attention and resulted in increased research at the molecular level towards treatments. The aim of this study was to investigate the role of tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) and its receptors in varicocele-induced testicular dysfunction in an experimental rat model. The rats were divided into three groups: control, sham and varicocele. Varicoceles in rats were induced by partial ligation of the left renal vein and left testes. The rats were analyzed 13 weeks after surgery. The degree of DNA fragmentation within cells in the testis was determined using terminal deoxynucleotidyl transferase deoxyuridine triphosphate nick end labeling (TUNEL) assay. Tubule degeneration was evaluated using the Johnsen score. The expression of TRAIL and its receptors was detected by immunohistochemical and Western blotting techniques. The apoptotic index, Johnsen score and the expression of TRAIL and TRAIL receptors were examined. The data are presented as the mean±s.d. and were analyzed using computer software. The Kruskal-Wallis and Dunn's multiple comparison tests were used in the statistical analyses. The germ cell apoptotic index was increased in rats with varicoceles when compared with the sham and control groups (P=0.0031). The Johnsen score was significantly decreased in the varicocele group when compared with the sham and control groups (P<0.0001). Immunohistochemical and Western blotting analyses showed that after varicocele induction, the expression of TRAIL-R1 and TRAIL-R4 in germ cells was increased and the expression of TRAIL-R2 was decreased. There are no significant differences among the groups in terms of TRAIL and TRAIL-R3 receptor expression. The results of this study indicate that TRAIL and its receptors may have a potential role in the pathogenesis of varicocele-induced testicular dysfunction.
Collapse
Affiliation(s)
- Orcun Celik
- Department of Urology, Akdeniz University, Antalya, Turkey
| | | | | | | | | |
Collapse
|
12
|
Mineharu Y, Muhammad AKMG, Yagiz K, Candolfi M, Kroeger KM, Xiong W, Puntel M, Liu C, Levy E, Lugo C, Kocharian A, Allison JP, Curran MA, Lowenstein PR, Castro MG. Gene therapy-mediated reprogramming tumor infiltrating T cells using IL-2 and inhibiting NF-κB signaling improves the efficacy of immunotherapy in a brain cancer model. Neurotherapeutics 2012; 9:827-43. [PMID: 22996231 PMCID: PMC3480576 DOI: 10.1007/s13311-012-0144-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Immune-mediated gene therapy using adenovirus expressing Flt3 ligand and thymidine kinase followed by ganciclovir administration (Flt3/TK) effectively elicits tumor regression in preclinical glioma models. Herein, we assessed new strategies to optimize Flt3L/TK therapeutic efficacy in a refractory RG2 orthotopic glioblastoma model. Specifically, we aimed to optimize the therapeutic efficacy of Flt3L/TK treatment in the RG2 model by overexpressing the following genes within the brain tumor microenvironment: 1) a TK mutant with enhanced cytotoxicity (SR39 mutant TK), 2) Flt3L-IgG fusion protein that has a longer half-life, 3) CD40L to stimulate DC maturation, 4) T helper cell type 1 polarizing dendritic cell cytokines interleukin-12 or C-X-C motif ligand 10 chemokine (CXCL)-10, 5) C-C motif ligand 2 chemokine (CCL2) or C-C motif ligand 3 chemokine (CCL3) to enhance dendritic cell recruitment into the tumor microenvironment, 6) T helper cell type 1 cytokines interferon-γ or interleukin-2 to enhance effector T-cell functions, and 7) IκBα or p65RHD (nuclear factor kappa-B [NF-κB] inhibitors) to suppress the function of Foxp3+ Tregs and enhanced effector T-cell functions. Anti-tumor immunity and tumor specific effector T-cell functions were assessed by cytotoxic T lymphocyte assay and intracellular IFN-γ staining. Our data showed that overexpression of interferon-γ or interleukin-2, or inhibition of the nuclear factor kappa-B within the tumor microenvironment, enhanced cytotoxic T lymphocyte-mediated immune responses and successfully extended the median survival of rats bearing intracranial RG2 when combined with Flt3L/TK. These findings indicate that enhancement of T-cell functions constitutes a critical therapeutic target to overcome immune evasion and enhance therapeutic efficacy for brain cancer. In addition, our study provides novel targets to be used in combination with immune-therapeutic strategies for glioblastoma, which are currently being tested in the clinic.
Collapse
Affiliation(s)
- Yohei Mineharu
- Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90095 USA
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095 USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095 USA
| | - AKM Ghulam Muhammad
- Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90095 USA
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095 USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095 USA
| | - Kader Yagiz
- Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90095 USA
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095 USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095 USA
| | - Marianela Candolfi
- Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90095 USA
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095 USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095 USA
| | - Kurt M. Kroeger
- Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90095 USA
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095 USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095 USA
| | - Weidong Xiong
- Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90095 USA
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095 USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095 USA
| | - Mariana Puntel
- Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90095 USA
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095 USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095 USA
| | - Chunyan Liu
- Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90095 USA
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095 USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095 USA
| | - Eva Levy
- Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90095 USA
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095 USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095 USA
| | - Claudia Lugo
- Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90095 USA
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095 USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095 USA
| | - Adrina Kocharian
- Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90095 USA
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095 USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095 USA
| | - James P. Allison
- Howard Hughes Medical Institute, Department of Immunology, Memorial Sloan-Kettering Cancer Center, New York, NY 10065 USA
| | - Michael A. Curran
- Howard Hughes Medical Institute, Department of Immunology, Memorial Sloan-Kettering Cancer Center, New York, NY 10065 USA
| | - Pedro R. Lowenstein
- Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90095 USA
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095 USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095 USA
- Department of Neurosurgery, University of Michigan School of Medicine, Ann Arbor, MI 48109-0650 USA
- Department of Cell and Developmental Biology, University of Michigan School of Medicine, Ann Arbor, MI 48109-0650 USA
| | - Maria G. Castro
- Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90095 USA
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095 USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095 USA
- Department of Neurosurgery, University of Michigan School of Medicine, Ann Arbor, MI 48109-0650 USA
- Department of Cell and Developmental Biology, University of Michigan School of Medicine, Ann Arbor, MI 48109-0650 USA
| |
Collapse
|
13
|
Bisgin A, Yalcin AD, Gorczynski RM. Circulating soluble tumor necrosis factor related apoptosis inducing-ligand (TRAIL) is decreased in type-2 newly diagnosed, non-drug using diabetic patients. Diabetes Res Clin Pract 2012; 96:e84-e86. [PMID: 22446096 DOI: 10.1016/j.diabres.2012.02.028] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2012] [Revised: 02/27/2012] [Accepted: 02/28/2012] [Indexed: 02/08/2023]
Abstract
We examined the association between serum sTRAIL measured by ELISA and HbA1C levels, pre/post-prandial blood glucose levels and body mass index in 22 newly diagnosed type-2 diabetic patients. A significant difference in sTRAIL levels was found between study group and controls.
Collapse
Affiliation(s)
- A Bisgin
- Department of Medical Genetics, Human Gene and Cell Therapy Center of Akdeniz University Hospital and Clinics, Antalya, Turkey.
| | | | | |
Collapse
|
14
|
Tumor cell-selective apoptosis induction through targeting of K(V)10.1 via bifunctional TRAIL antibody. Mol Cancer 2011; 10:109. [PMID: 21899742 PMCID: PMC3179451 DOI: 10.1186/1476-4598-10-109] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Accepted: 09/07/2011] [Indexed: 11/26/2022] Open
Abstract
Background The search for strategies to target ion channels for therapeutic applications has become of increasing interest. Especially, the potassium channel KV10.1 (Ether-á-go-go) is attractive as target since this surface protein is virtually not detected in normal tissue outside the central nervous system, but is expressed in approximately 70% of tumors from different origins. Methods We designed a single-chain antibody against an extracellular region of KV10.1 (scFv62) and fused it to the human soluble TRAIL. The KV10.1-specific scFv62 antibody -TRAIL fusion protein was expressed in CHO-K1 cells, purified by chromatography and tested for biological activity. Results Prostate cancer cells, either positive or negative for KV10.1 were treated with the purified construct. After sensitization with cytotoxic drugs, scFv62-TRAIL induced apoptosis only in KV10.1-positive cancer cells, but not in non-tumor cells, nor in tumor cells lacking KV10.1 expression. In co-cultures with KV10.1-positive cancer cells the fusion protein also induced apoptosis in bystander KV10.1-negative cancer cells, while normal prostate epithelial cells were not affected when present as bystander. Conclusions KV10.1 represents a novel therapeutic target for cancer. We could design a strategy that selectively kills tumor cells based on a KV10.1-specific antibody.
Collapse
|
15
|
Kahraman S, Dirice E, Hapil FZ, Ertosun MG, Ozturk S, Griffith TS, Sanlioglu S, Sanlioglu AD. Tracing of islet graft survival by way of in vivo fluorescence imaging. Diabetes Metab Res Rev 2011; 27:575-83. [PMID: 21584921 DOI: 10.1002/dmrr.1216] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND To increase the success rate in xenogeneic islet transplantation, proper assessment of graft mass is required following transplantation. For this reason, we aimed to develop a suitable fluorescence imaging system to monitor islet xenograft survival in diabetic mice. METHODS Adenovirus vector encoding enhanced green fluorescent protein-transduced rat pancreatic islets were transplanted under the renal capsule of streptozotocin-induced diabetic mice and the fluorescence signal was quantified over time using a cooled charge-coupled device. Non-fasting blood glucose levels were recorded during the same period. Insulin release from transduced and control islets was detected via enzyme-linked immunosorbent assay. RESULTS Adenovirus vector encoding enhanced green fluorescent protein infection did not alter the function or survival of pancreatic islets post transduction. A direct correlation was found between the number of islets (250-750) transplanted under the kidney capsule and the blood glucose recovery. CONCLUSIONS Fluorescence imaging appears to be a useful tool for quantitative assessment of islet cell viability post transplantation and could permit earlier detection of graft rejection.
Collapse
Affiliation(s)
- Sevim Kahraman
- Department of Medical Biology and Genetics, Human Gene and Cell Therapy Center of Akdeniz University Hospitals and Clinics, Antalya 07058, Turkey
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Yoldas B, Ozer C, Ozen O, Canpolat T, Dogan I, Griffith TS, Sanlioglu S, Ozluoglu LN. Clinical significance of TRAIL and TRAIL receptors in patients with head and neck cancer. Head Neck 2010; 33:1278-84. [PMID: 21837697 DOI: 10.1002/hed.21598] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Revised: 07/14/2010] [Accepted: 07/29/2010] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is a death ligand currently under clinical trials for cancer. The molecular profile of TRAIL and TRAIL receptors has not yet been mapped for patients with laryngeal squamous cell carcinoma (SCC) or patients with oral cavity squamous cell carcinoma (OCSCC). METHODS Paraffin-embedded tissues from 60 patients with laryngeal SCC and 14 patients with OCSCC were retrospectively analyzed using immunohistochemistry. RESULTS An increase in decoy-R1 (DcR1) but a decrease in decoy-R2 (DcR2) expression were observed in patients with laryngeal SCC and in patients with OCSCC compared with control individuals with benign lesions. Clinical and pathologic grading revealed distinctive TRAIL and TRAIL receptor profiles in patients with squamous cell carcinoma of the head and neck (SCCHN). CONCLUSIONS TRAIL and a TRAIL receptor expression profile might be useful to follow-up disease progression by virtue of its connection with clinical staging and pathologic grading in patients with laryngeal SCC.
Collapse
Affiliation(s)
- Burcak Yoldas
- Human Gene Therapy Division of the Department of Medical Genetics, Akdeniz University Faculty of Medicine, Antalya, Turkey
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Aydin C, Sanlioglu AD, Bisgin A, Yoldas B, Dertsiz L, Karacay B, Griffith TS, Sanlioglu S. NF-κB targeting by way of IKK inhibition sensitizes lung cancer cells to adenovirus delivery of TRAIL. BMC Cancer 2010; 10:584. [PMID: 20977779 PMCID: PMC2988028 DOI: 10.1186/1471-2407-10-584] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2010] [Accepted: 10/27/2010] [Indexed: 11/18/2022] Open
Abstract
Background Lung cancer causes the highest rate of cancer-related deaths both in men and women. As many current treatment modalities are inadequate in increasing patient survival, new therapeutic strategies are required. TNF-related apoptosis-inducing ligand (TRAIL) selectively induces apoptosis in tumor cells but not in normal cells, prompting its current evaluation in a number of clinical trials. The successful therapeutic employment of TRAIL is restricted by the fact that many tumor cells are resistant to TRAIL. The goal of the present study was to test a novel combinatorial gene therapy modality involving adenoviral delivery of TRAIL (Ad5hTRAIL) and IKK inhibition (AdIKKβKA) to overcome TRAIL resistance in lung cancer cells. Methods Fluorescent microscopy and flow cytometry were used to detect optimum doses of adenovirus vectors to transduce lung cancer cells. Cell viability was assessed via a live/dead cell viability assay. Luciferase assays were employed to monitor cellular NF-κB activity. Apoptosis was confirmed using Annexin V binding. Results Neither Ad5hTRAIL nor AdIKKβKA infection alone induced apoptosis in A549 lung cancer cells, but the combined use of Ad5hTRAIL and AdIKKβKA significantly increased the amount of A549 apoptosis. Luciferase assays demonstrated that both endogenous and TRAIL-induced NF-κB activity was down-regulated by AdIKKβKA expression. Conclusions Combination treatment with Ad5hTRAIL and AdIKKβKA induced significant apoptosis of TRAIL-resistant A549 cells, suggesting that dual gene therapy strategy involving exogenous TRAIL gene expression with concurrent IKK inhibition may be a promising novel gene therapy modality to treat lung cancer.
Collapse
Affiliation(s)
- Cigdem Aydin
- Department of Medical Biology and Genetics, Human Gene and Cell Therapy Center of Akdeniz University Hospitals and Clinics, Antalya 07058, Turkiye
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Bisgin A, Terzioglu E, Aydin C, Yoldas B, Yazisiz V, Balci N, Bagci H, Gorczynski RM, Akdis CA, Sanlioglu S. TRAIL death receptor-4, decoy receptor-1 and decoy receptor-2 expression on CD8+ T cells correlate with the disease severity in patients with rheumatoid arthritis. BMC Musculoskelet Disord 2010; 11:192. [PMID: 20799941 PMCID: PMC2936350 DOI: 10.1186/1471-2474-11-192] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Accepted: 08/27/2010] [Indexed: 01/16/2023] Open
Abstract
Background Rheumatoid Arthritis (RA) is a chronic autoimmune inflammatory disorder. Although the pathogenesis of disease is unclear, it is well known that T cells play a major role in both development and perpetuation of RA through activating macrophages and B cells. Since the lack of TNF-Related Apoptosis Inducing Ligand (TRAIL) expression resulted in defective thymocyte apoptosis leading to an autoimmune disease, we explored evidence for alterations in TRAIL/TRAIL receptor expression on peripheral T lymphocytes in the molecular mechanism of RA development. Methods The expression of TRAIL/TRAIL receptors on T cells in 20 RA patients and 12 control individuals were analyzed using flow cytometry. The correlation of TRAIL and its receptor expression profile was compared with clinical RA parameters (RA activity scored as per DAS28) using Spearman Rho Analysis. Results While no change was detected in the ratio of CD4+ to CD8+ T cells between controls and RA patient groups, upregulation of TRAIL and its receptors (both death and decoy) was detected on both CD4+ and CD8+ T cells in RA patients compared to control individuals. Death Receptor-4 (DR4) and the decoy receptors DcR1 and DcR2 on CD8+ T cells, but not on CD4+ T cells, were positively correlated with patients' DAS scores. Conclusions Our data suggest that TRAIL/TRAIL receptor expression profiles on T cells might be important in revelation of RA pathogenesis.
Collapse
Affiliation(s)
- Atil Bisgin
- Department of Medical Genetics, Human Gene and Cell Therapy Center of Akdeniz University Hospitals and Clinics, Antalya, Turkey
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
|
20
|
Tas SW, Vervoordeldonk MJBM, Tak PP. Gene therapy targeting nuclear factor-kappaB: towards clinical application in inflammatory diseases and cancer. Curr Gene Ther 2009; 9:160-70. [PMID: 19519361 PMCID: PMC2864453 DOI: 10.2174/156652309788488569] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Nuclear factor (NF)-κB is regarded as one of the most important transcription factors and plays an essential role in the transcriptional activation of pro-inflammatory cytokines, cell proliferation and survival. NF-κB can be activated via two distinct NF-κB signal transduction pathways, the so-called canonical and non-canonical pathways, and has been demonstrated to play a key role in a wide range of inflammatory diseases and various types of cancer. Much effort has been put in strategies to inhibit NF-κB activation, for example by the development of pharmacological compounds that selectively inhibit NF-κB activity and therefore would be beneficial for immunotherapy of transplantation, autoimmune and allergic diseases, as well as an adjuvant approach in patients treated with chemotherapy for cancer. Gene therapy targeting NF-κB is a promising new strategy with the potential of long-term effects and has been explored in a wide variety of diseases, ranging from cancer to transplantation medicine and autoimmune diseases. In this review we discuss recent progress made in the development of NF-κB targeted gene therapy and the evolution towards clinical application.
Collapse
Affiliation(s)
- Sander W Tas
- Division of Clinical Immunology and Rheumatology, Academic Medical Center/University of Amsterdam, Amsterdam, The Netherlands.
| | | | | |
Collapse
|
21
|
Dirice E, Sanlioglu AD, Kahraman S, Ozturk S, Balci MK, Omer A, Griffith TS, Sanlioglu S. Adenovirus-Mediated TRAIL Gene (Ad5hTRAIL) Delivery into Pancreatic Islets Prolongs Normoglycemia in Streptozotocin-Induced Diabetic Rats. Hum Gene Ther 2009; 20:1177-89. [DOI: 10.1089/hum.2009.039] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Ercument Dirice
- Human Gene Therapy Division, Department of Medical Genetics, Faculty of Medicine, Akdeniz University, Antalya 07070, Turkey
- Department of Medical Biology and Genetics, Faculty of Medicine, Akdeniz University, Antalya 07070, Turkey
| | - Ahter Dilsad Sanlioglu
- Human Gene Therapy Division, Department of Medical Genetics, Faculty of Medicine, Akdeniz University, Antalya 07070, Turkey
- Department of Medical Biology and Genetics, Faculty of Medicine, Akdeniz University, Antalya 07070, Turkey
| | - Sevim Kahraman
- Human Gene Therapy Division, Department of Medical Genetics, Faculty of Medicine, Akdeniz University, Antalya 07070, Turkey
- Department of Medical Biology and Genetics, Faculty of Medicine, Akdeniz University, Antalya 07070, Turkey
| | - Saffet Ozturk
- Department of Histology and Embryology, Faculty of Medicine, Akdeniz University, Antalya 07070, Turkey
| | - Mustafa Kemal Balci
- Division of Endocrinology and Metabolic Diseases, Department of Medicine, Faculty of Medicine, Akdeniz University, Antalya 07070, Turkey
| | - Abdulkadir Omer
- Section on Islet Transplantation and Cell Biology, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, U.S.A
| | | | - Salih Sanlioglu
- Human Gene Therapy Division, Department of Medical Genetics, Faculty of Medicine, Akdeniz University, Antalya 07070, Turkey
- Department of Medical Genetics, Faculty of Medicine, Akdeniz University, Antalya 07070, Turkey
| |
Collapse
|
22
|
Kahraman S, Dirice E, Sanlioglu AD, Yoldas B, Bagci H, Erkilic M, Griffith TS, Sanlioglu S. In Vivo Fluorescence Imaging is Well-Suited for the Monitoring of Adenovirus Directed Transgene Expression in Living Organisms. Mol Imaging Biol 2009; 12:278-85. [DOI: 10.1007/s11307-009-0260-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Revised: 05/15/2009] [Accepted: 05/29/2009] [Indexed: 11/30/2022]
|
23
|
Kutlu O, Akkaya E, Koksal IT, Bassorgun IC, Ciftcioglu MA, Sanlioglu S, Kukul E. Importance of TNF-related apoptosis-inducing ligand in pathogenesis of interstitial cystitis. Int Urol Nephrol 2009; 42:393-9. [DOI: 10.1007/s11255-009-9632-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Accepted: 08/10/2009] [Indexed: 10/20/2022]
|
24
|
Sanlioglu AD, Dirice E, Elpek O, Korcum AF, Ozdogan M, Suleymanlar I, Balci MK, Griffith TS, Sanlioglu S. High TRAIL death receptor 4 and decoy receptor 2 expression correlates with significant cell death in pancreatic ductal adenocarcinoma patients. Pancreas 2009; 38:154-160. [PMID: 18981952 DOI: 10.1097/mpa.0b013e31818db9e3] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVES The importance of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and TRAIL receptor expression in pancreatic carcinoma development is not known. To reveal the putative connection of TRAIL and TRAIL receptor expression profile to this process, we analyzed and compared the expression profile of TRAIL and its receptors in pancreatic tissues of both noncancer patients and patients with pancreatic ductal adenocarcinoma (PDAC). METHODS Thirty-one noncancer patients and 34 PDAC patients were included in the study. TRAIL and TRAIL receptor expression profiles were determined by immunohistochemistry. Annexin V binding revealed the apoptotic index in pancreas. Lastly, the tumor grade, tumor stage, tumor diameter, perineural invasion, and number of lymph node metastasis were used for comparison purposes. RESULTS TRAIL decoy receptor 2 (DcR2) and death receptor 4 expression were up-regulated in PDAC patients compared with noncancer patients, and the ductal cells of PDAC patients displayed significant levels of apoptosis. In addition, acinar cells from PDAC patients had higher DcR2 expression but lower death receptor 4 expression. Increased DcR2 expression was also observed in Langerhans islets of PDAC patients. CONCLUSIONS Differential alteration of TRAIL and TRAIL receptor expression profiles in PDAC patients suggest that the TRAIL/TRAIL receptor system may play a pivotal role during pancreatic carcinoma development.
Collapse
Affiliation(s)
- Ahter Dilsad Sanlioglu
- Department of Medical Biology and Genetics, Faculty of Medicine, Human Gene Therapy Unit, Akdeniz University, Antalya, Turkey.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Sanlioglu AD, Griffith TS, Omer A, Dirice E, Sari R, Altunbas HA, Balci MK, Sanlioglu S. Molecular mechanisms of death ligand-mediated immune modulation: a gene therapy model to prolong islet survival in type 1 diabetes. J Cell Biochem 2008; 104:710-20. [PMID: 18247339 DOI: 10.1002/jcb.21677] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Type 1 diabetes results from the T cell-mediated destruction of pancreatic beta cells. Islet transplantation has recently become a potential therapeutic approach for patients with type 1 diabetes. However, islet-graft failure appears to be a challenging issue to overcome. Thus, complementary gene therapy strategies are needed to improve the islet-graft survival following transplantation. Immune modulation through gene therapy represents a novel way of attacking cytotoxic T cells targeting pancreatic islets. Various death ligands of the TNF family such as FasL, TNF, and TNF-Related Apoptosis-Inducing Ligand (TRAIL) have been studied for this purpose. The over-expression of TNF or FasL in pancreatic islets exacerbates the onset of type 1 diabetes generating lymphocyte infiltrates responsible for the inflammation. Conversely, the lack of TRAIL expression results in higher degree of islet inflammation in the pancreas. In addition, blocking of TRAIL function using soluble TRAIL receptors facilitates the onset of diabetes. These results suggested that contrary to what was observed with TNF or FasL, adenovirus mediated TRAIL gene delivery into pancreatic islets is expected to be therapeutically beneficial in the setting of experimental models of type 1 diabetes. In conclusion; this study mainly reveals the fundamental principles of death ligand-mediated immune evasion in diabetes mellitus.
Collapse
Affiliation(s)
- Ahter Dilsad Sanlioglu
- Human Gene Therapy Unit and the Department of Medical Biology and Genetics, Akdeniz University, Faculty of Medicine, 07070 Antalya, Turkey
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Sanlioglu AD, Dirice E, Elpek O, Korcum AF, Balci MK, Omer A, Griffith TS, Sanlioglu S. High levels of endogenous tumor necrosis factor-related apoptosis-inducing ligand expression correlate with increased cell death in human pancreas. Pancreas 2008; 36:385-393. [PMID: 18437085 DOI: 10.1097/mpa.0b013e318158a4e5] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVES Type 1 diabetes (T1D) has been characterized by the T cell-mediated destruction of pancreatic beta cells. Although various members of the tumor necrosis factor (TNF) family, such as Fas ligand or TNF, have recently been implicated in the development of T1D, the lack of TNF-related apoptosis-inducing ligand (TRAIL) expression or function facilitates the onset of T1D. Thus, the goal of the present study was to investigate the expression profiles of TRAIL and its receptors in human pancreas. METHODS Pancreata of 31 patients were analyzed by immunohistochemistry using antibodies developed against TRAIL and its receptors. Apoptosis was confirmed by Annexin V-fluorescein isothiocyanate binding and terminal deoxynucleotidyl transferase-mediated 2'-deoxyuridine 5'-triphosphate nick end labeling assays. RESULTS Acinar cells displayed high levels of TRAIL and death receptor 4, but only low levels of death receptor 5. In contrast, only TRAIL and TRAIL decoy receptors (DcR1, DcR2) were detected in ductal cells. Similarly, Langerhans islets expressed only TRAIL and TRAIL decoy receptor. High levels of TRAIL expression in pancreas correlated with increased number of apoptotic cells. CONCLUSIONS Although the expression of TRAIL decoy receptors might be necessary for defense from TRAIL-induced apoptosis, high levels of TRAIL may provide protection for Langerhans islets from the immunological attack of cytotoxic T cells.
Collapse
Affiliation(s)
- Ahter Dilsad Sanlioglu
- Human Gene Therapy Unit, Departments of Medical Biology and Genetics, Akdeniz University, Faculty of Medicine, Antalya, Turkey.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Cao L, Du P, Jiang SH, Jin GH, Huang QL, Hua ZC. Enhancement of antitumor properties of TRAIL by targeted delivery to the tumor neovasculature. Mol Cancer Ther 2008; 7:851-61. [DOI: 10.1158/1535-7163.mct-07-0533] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
28
|
Tumor necrosis factor-related apoptosis inducing ligand-R4 decoy receptor expression is correlated with high Gleason scores, prostate-specific antigen recurrence, and decreased survival in patients with prostate carcinoma. Urol Oncol 2007; 26:158-65. [PMID: 18312935 DOI: 10.1016/j.urolonc.2007.01.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2006] [Revised: 01/16/2007] [Accepted: 01/18/2007] [Indexed: 01/09/2023]
Abstract
OBJECTIVE Tumor necrosis factor-related apoptosis inducing ligand (TRAIL) has recently been investigated because of its ability to selectively kill cancer cells. Despite recent publications mainly focusing on TRAIL resistance in cancer cells, little is known about how TRAIL contributes to the carcinogenesis process. Because the expression patterns of TRAIL and its receptors in patients with prostate carcinoma have recently been reported, this study investigated the significance of TRAIL and TRAIL receptor expression in connection to serum prostate-specific antigen (PSA) and Gleason scoring. MATERIALS AND METHODS A total of 98 patients were included in the study. Gleason scores, PSA, TRAIL, and TRAIL receptor expressions were used for the comparison purposes. The Spearman rho correlation test was administered to reveal the correlations among the variants. The Kruskal Wallis-Mann Whitney U or Friedman-Wilcoxon signed ranks test determined the statistical significance between the pairs. Multinomial and/or multiple binary logistic regression analyses were deployed to test whether TRAIL markers were independent variables to predict the prognosis of prostate cancer. Kaplan-Meier and log-rank tests were used to determine the survival rates. RESULTS High-serum PSA levels were correlated with higher levels of TRAIL and TRAIL receptor expressions. Patients with high Gleason scores had higher levels of TRAIL-R4 decoy receptor expression but lower levels of TRAIL death ligand expression. CONCLUSIONS TRAIL-R4 decoy receptor expression is strongly correlated with PSA recurrence, which is suggestive of poor prognosis. High levels of TRAIL-R4 expression but low levels of TRAIL death ligand expression are connected to decreased survival.
Collapse
|
29
|
Sanlioglu AD, Karacay B, Koksal IT, Griffith TS, Sanlioglu S. DcR2 (TRAIL-R4) siRNA and adenovirus delivery of TRAIL (Ad5hTRAIL) break down in vitro tumorigenic potential of prostate carcinoma cells. Cancer Gene Ther 2007; 14:976-84. [PMID: 17853923 DOI: 10.1038/sj.cgt.7701087] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
High levels of decoy receptor 2 (DcR2; TRAIL-R4) expression are correlated with TRAIL resistance in prostate cancer cells. In addition, upregulation of TRAIL death receptor (DR4 and DR5) expression, either by ionizing radiation or chemotherapy, can sensitize cancer cells to TRAIL. Considering more than half of human cancers are TRAIL resistant, modulation of surface TRAIL receptor expression appears to be an attractive treatment modality to counteract TRAIL resistance. In this study, three siRNA duplexes targeting DcR2 receptor were tested. Ad5hTRAIL infections were performed to overexpress human full-length TRAIL to induce cell death, and the in vitro tumorigenic potential of prostate cancer cells was assessed using colony-forming assays on soft agar. The DU145 and LNCaP prostate cancer cell lines, which express high levels of DcR2, were resistant to Ad5hTRAIL-induced death. Downregulation of surface DcR2 expression by siRNA sensitized these prostate cancer cell lines to Ad5hTRAIL. In addition, DcR2 siRNA-mediated knockdown of DcR2, followed by Ad5hTRAIL infection, dramatically reduced the in vitro tumorigenic potential of prostate cancer cells. Collectively, our results suggest the potential for combining receptor-specific siRNA with TRAIL in the treatment of certain cancers.
Collapse
Affiliation(s)
- A D Sanlioglu
- Human Gene Therapy Unit, Akdeniz University, Faculty of Medicine, Antalya, Turkey
| | | | | | | | | |
Collapse
|
30
|
Sanlioglu AD, Korcum AF, Pestereli E, Erdogan G, Karaveli S, Savas B, Griffith TS, Sanlioglu S. TRAIL death receptor-4 expression positively correlates with the tumor grade in breast cancer patients with invasive ductal carcinoma. Int J Radiat Oncol Biol Phys 2007; 69:716-23. [PMID: 17512128 DOI: 10.1016/j.ijrobp.2007.03.057] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2007] [Revised: 03/23/2007] [Accepted: 03/28/2007] [Indexed: 01/04/2023]
Abstract
PURPOSE Tumor necrosis factor-related apoptosis inducing ligand (TRAIL) selectively induces apoptosis in cancer cells but not in normal cells, and a number of clinical trials have recently been initiated to test the safety and antitumoral potential of TRAIL in cancer patients. Four different receptors have been identified to interact with TRAIL: two are death-inducing receptors (TRAIL-R1 [DR4] and TRAIL-R2 [DR5]), whereas the other two (TRAIL-R3 [DcR1] and TRAIL-R4 [DcR2]) do not induce death upon ligation and are believed to counteract TRAIL-induced cytotoxicity. Because high levels of DcR2 expression have recently been correlated with carcinogenesis in the prostate and lung, this study investigated the importance of TRAIL and TRAIL receptor expression in breast cancer patients with invasive ductal carcinoma, taking various prognostic markers into consideration. METHODS AND MATERIALS Immunohistochemical analyses were performed on 90 breast cancer patients with invasive ductal carcinoma using TRAIL and TRAIL receptor-specific antibodies. Age, menopausal status, tumor size, lymph node status, tumor grade, lymphovascular invasion, perineural invasion, extracapsular tumor extension, presence of an extensive intraductal component, multicentricity, estrogen and progesterone receptor status, and CerbB2 expression levels were analyzed with respect to TRAIL/TRAIL receptor expression patterns. RESULTS The highest TRAIL receptor expressed in patients with invasive ductal carcinoma was DR4. Although progesterone receptor-positive patients exhibited lower DR5 expression, CerbB2-positive tissues displayed higher levels of both DR5 and TRAIL expressions. CONCLUSIONS DR4 expression positively correlates with the tumor grade in breast cancer patients with invasive ductal carcinoma.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Breast Neoplasms/chemistry
- Breast Neoplasms/mortality
- Breast Neoplasms/pathology
- Breast Neoplasms/therapy
- Carcinoma, Ductal, Breast/chemistry
- Carcinoma, Ductal, Breast/mortality
- Carcinoma, Ductal, Breast/pathology
- Carcinoma, Ductal, Breast/therapy
- Chemotherapy, Adjuvant
- Female
- Humans
- Immunohistochemistry
- Middle Aged
- Neoplasm Proteins/analysis
- Neoplasm Staging
- Radiotherapy, Adjuvant
- Receptor, ErbB-2/analysis
- Receptors, Estrogen/analysis
- Receptors, Progesterone/analysis
- Receptors, TNF-Related Apoptosis-Inducing Ligand/analysis
- Receptors, Tumor Necrosis Factor, Member 10c/analysis
- TNF-Related Apoptosis-Inducing Ligand/analysis
Collapse
Affiliation(s)
- Ahter D Sanlioglu
- Human Gene Therapy Unit, Akdeniz University Faculty of Medicine, Antalya, Turkey
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Sanlioglu AD, Koksal IT, Ciftcioglu A, Baykara M, Luleci G, Sanlioglu S. Differential Expression of TRAIL and its Receptors in Benign and Malignant Prostate Tissues. J Urol 2007; 177:359-64. [PMID: 17162091 DOI: 10.1016/j.juro.2006.08.087] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2005] [Indexed: 11/23/2022]
Abstract
PURPOSE Because TRAIL (tumor necrosis factor related apoptosis inducing ligand) selectively kills cancer cells without damaging normal cells, a gene therapy approach using TRAIL is feasible for treating patients with cancer. However, recent publications suggest that significant portions of human tumors appear to be TRAIL resistant. Furthermore, there is some controversy about whether TRAIL receptor composition influences TRAIL sensitivity in cancer cells. Our recent studies suggest that TRAIL receptor composition is the major modulator of TRAIL sensitivity, as demonstrated using prostate, breast and lung cancer cells. We investigated TRAIL and TRAIL receptor expression profiles during prostate carcinogenesis to evaluate their potential as biomarkers and predict the feasibility of a related gene therapy approach. MATERIALS AND METHODS Paraffin embedded prostate tissues of 44 patients with benign prostatic hyperplasia, 28 with organ confined prostate carcinoma and 26 with advanced prostate carcinoma were analyzed using immunohistochemical staining procedures. RESULTS Significant levels of TRAIL-R4 decoy receptor expression were detected in patients with benign prostatic hyperplasia, and organ confined and advanced prostate carcinoma. All TRAIL markers tested appear to be valuable markers for separating patients with benign prostatic hyperplasia from patients with organ confined prostate carcinoma or advanced prostate carcinoma. CONCLUSIONS Due to high TRAIL-R4 expression in all patient groups complementary gene therapy modalities might be needed to bypass potential TRAIL-R4 induced resistance.
Collapse
|
32
|
Aydin C, Sanlioglu AD, Karacay B, Ozbilim G, Dertsiz L, Ozbudak O, Akdis CA, Sanlioglu S. Decoy Receptor-2 Small Interfering RNA (siRNA) Strategy Employing Three Different siRNA Constructs in Combination Defeats Adenovirus-Transferred Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand Resistance in Lung Cancer Cells. Hum Gene Ther 2007; 18:39-50. [PMID: 17187448 DOI: 10.1089/hum.2006.111] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) selectively induces apoptosis in cancer cells but not in normal cells. However, studies have indicated that more than half of human tumors exhibit TRAIL resistance. Although the mechanism of TRAIL resistance is not understood, it represents a barrier to any TRAIL-mediated gene therapy approach. In addition, no correlation between TRAIL receptor (TRAIL-R) expression profile and TRAIL resistance has been demonstrated in cancer cells. In this study, three different lung cancer cell lines and three different primary cell cultures established from patients with lung cancer (two patients with squamous cell lung carcinoma and one with adenocarcinoma) were screened for sensitivity to adenoviral delivery of TRAIL. Whereas TRAIL-resistant primary lung cell cultures and the A549 lung cancer cell line exhibited high levels of surface decoy receptor-2 (DcR2/TRAIL-R4) expression, TRAIL-sensitive lung cancer cell lines (HBE and H411) failed to express it. A DcR2 short interfering RNA (siRNA) approach involving three different siRNA constructs in combination downregulated DcR2/TRAIL-R4 expression and sensitized lung cancer cells to TRAIL-induced apoptosis. Immunohistochemical staining of samples from 10 patients with lung carcinoma suggested that high-level DcR2/TRAIL-R4 expression is a common phenotype observed in patients with non-small cell lung carcinoma.
Collapse
Affiliation(s)
- Cigdem Aydin
- Human Gene Therapy Unit, Faculty of Medicine, Akdeniz University, 07070 Antalya, Turkey
| | | | | | | | | | | | | | | |
Collapse
|
33
|
VanOosten RL, Earel JK, Griffith TS. Histone deacetylase inhibitors enhance Ad5-TRAIL killing of TRAIL-resistant prostate tumor cells through increased caspase-2 activity. Apoptosis 2006; 12:561-71. [PMID: 17195089 DOI: 10.1007/s10495-006-0009-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2006] [Accepted: 10/11/2006] [Indexed: 11/29/2022]
Abstract
Interest in TNF-related apoptosis-inducing ligand (TRAIL) as a cancer therapeutic has been high since its first description. Recently, the use of histone deacetylase inhibitors (HDACi) to treat cancer has progressed from the laboratory to the clinic, and the combination of HDACi and TRAIL is very powerful in killing human tumors. Using a panel of prostate tumor cell lines (ALVA-31, DU-145, and LNCaP) with varying TRAIL sensitivity, we examined their sensitization to a recombinant adenovirus encoding TRAIL (Ad5-TRAIL) by sodium butyrate and trichostatin A. HDACi treatment increased coxsackie-adenovirus receptor (CAR) expression, resulting in increased adenoviral infection, and increased TRAIL-mediated killing. In TRAIL-resistant DU-145 cells, HDAC inhibition also decreased protein kinase casein kinase (PKCK) 2 activity, leading to caspase-2 activation. The importance of PKCK2 and caspase-2 in DU-145 sensitization was demonstrated with the PKCK-2-specific inhibitor, which enhanced Ad5-TRAIL-induced death, or the caspase-2-specific inhibitor, zVDVAD, which blocked Ad5-TRAIL-induced death. Thus, our data highlight the connection between HDAC inhibition of PKCK2 activity and tumor cell sensitivity to TRAIL-induced apoptosis. Specifically, HDAC inhibition leads to decreased PCKC2 activity, which is followed by caspase-2 activation and partial cleavage of caspase-8 that sensitizes the tumor cell to TRAIL.
Collapse
Affiliation(s)
- Rebecca L VanOosten
- Department of Urology, 3204 MERF, University of Iowa, 375 Newton Road, Iowa City, IA 52242-1089, USA
| | | | | |
Collapse
|
34
|
Aydin C, Sanlioglu AD, Karacay B, Ozbilim G, Dertsiz L, Ozbudak O, Akdis CA, Sanlioglu S. Decoy Receptor-2 Small Interfering RNA (siRNA) Strategy Employing Three Different siRNA Constructs in Combination Defeats Adenovirus-Transferred Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand Resistance in Lung Cancer Cells. Hum Gene Ther 2006. [DOI: 10.1089/hum.2007.18.ft-277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
35
|
Babbar N, Hacker A, Huang Y, Casero RA. Tumor Necrosis Factor α Induces Spermidine/Spermine N1-Acetyltransferase through Nuclear Factor κBin Non-small Cell Lung Cancer Cells. J Biol Chem 2006; 281:24182-92. [PMID: 16757480 DOI: 10.1074/jbc.m601871200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tumor necrosis factor alpha (TNFalpha) is a potent pleiotropic cytokine produced by many cells in response to inflammatory stress. The molecular mechanisms responsible for the multiple biological activities of TNFalpha are due to its ability to activate multiple signal transduction pathways, including nuclear factor kappaB (NFkappaB), which plays critical roles in cell proliferation and survival. TNFalpha displays both apoptotic and antiapoptotic properties, depending on the nature of the stimulus and the activation status of certain signaling pathways. Here we show that TNFalpha can lead to the induction of NFkappaB signaling with a concomitant increase in spermidine/spermine N(1)-acetyltransferase (SSAT) expression in A549 and H157 non-small cell lung cancer cells. Induction of SSAT, a stress-inducible gene that encodes a rate-limiting polyamine catabolic enzyme, leads to lower intracellular polyamine contents and has been associated with decreased cell growth and increased apoptosis. Stable overexpression of a mutant, dominant negative IkappaBalpha protein led to the suppression of SSAT induction by TNFalpha in these cells, thereby substantiating a role of NFkappaB in the induction of SSAT by TNFalpha. SSAT promoter deletion constructs led to the identification of three potential NFkappaB response elements in the SSAT gene. Electromobility shift assays, chromatin immunoprecipitation experiments and mutational studies confirmed that two of the three NFkappaB response elements play an important role in the regulation of SSAT in response to TNFalpha. The results of these studies indicate that a common mediator of inflammation can lead to the induction of SSAT expression by activating the NFkappaB signaling pathway in non-small cell lung cancer cells.
Collapse
Affiliation(s)
- Naveen Babbar
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, USA
| | | | | | | |
Collapse
|
36
|
Chapel-Fernandes S, Jordier F, Lauro F, Maitland N, Chiaroni J, de Micco P, Mannoni P, Bagnis C. Use of the PSA enhancer core element to modulate the expression of prostate- and non-prostate-specific basal promoters in a lentiviral vector context. Cancer Gene Ther 2006; 13:919-29. [PMID: 16741521 DOI: 10.1038/sj.cgt.7700966] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Composite promoters combining the prostate-specific antigen (PSA) enhancer core element with promoter elements derived from gene coding for human prostate-specific transglutaminase gene, prostate-specific membrane antigen gene, prostate-specific antigen, rat probasin or phosphoglycerate kinase were characterized for their ability to specifically express the enhanced green fluorescent protein (EGFP) gene in prostate versus non-prostate cancer cell lines when transferred with a human immunodeficiency virus-1-based lentiviral vector. By themselves minimal proximal promoter elements were found to inefficiently promote relevant tissue-specific expression; in all the vectors tested, addition of the PSA enhancer core element markedly improved EGFP expression in LnCaP, a cancer prostate cell line used as a model for prostate cancer. The composite promoter was inactive in HuH7, a hepatocarcinoma cell line used as a model of neighboring non-prostate cancer cells. Among the promoters tested, the combination of the PSA enhancer and the rat probasin promoter showed both high specificity and a strong EGFP expression. Neither a high viral input nor the presence of the cPPT/CTS sequence affected composite promoter behavior. Our data suggest that composite prostate-specific promoters constructed by combining key elements from various promoters can improve and/or confer tissue specific expression in a lentiviral vector context.
Collapse
|