1
|
Sayedahmed EE, Elshafie NO, Zhang G, Mohammed SI, Sambhara S, Mittal SK. Enhancement of mucosal innate and adaptive immunity following intranasal immunization of mice with a bovine adenoviral vector. Front Immunol 2023; 14:1305937. [PMID: 38077380 PMCID: PMC10702558 DOI: 10.3389/fimmu.2023.1305937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/01/2023] [Indexed: 12/18/2023] Open
Abstract
Introduction Nonhuman adenoviral (AdV) gene delivery platforms have significant value due to their ability to elude preexisting AdV vector immunity in most individuals. Previously, we have demonstrated that intranasal (IN) immunization of mice with BAd-H5HA, a bovine AdV type 3 (BAdV3) vector expressing H5N1 influenza virus hemagglutinin (HA), resulted in enhanced humoral and cell-mediated immune responses. The BAd-H5HA IN immunization resulted in complete protection following the challenge with an antigenically distinct H5N1 virus compared to the mouse group similarly immunized with HAd-H5HA, a human AdV type 5 (HAdV5) vector expressing HA. Methods Here, we attempted to determine the activation of innate immune responses in the lungs of mice inoculated intranasally with BAd-H5HA compared to the HAd-H5HA-inoculated group. Results RNA-Seq analyses of the lung tissues revealed differential expression (DE) of genes involved in innate and adaptive immunity in animals immunized with BAd-H5HA. The top ten enhanced genes were verified by RT-PCR. Consistently, there were transient increases in the levels of cytokines (IL-1α, IL-1β, IL-5, TNF- α, LIF, IL-17, G-CSF, MIP-1β, MCP-1, MIP-2, and GM-CSF) and toll-like receptors in the lungs of the group inoculated with BAdV vectors compared to that of the HAdV vector group. Conclusion These results demonstrate that the BAdV vectors induce enhanced innate and adaptive immunity-related factors compared to HAdV vectors in mice. Thus, the BAdV vector platform could be an excellent gene delivery system for recombinant vaccines and cancer immunotherapy.
Collapse
Affiliation(s)
- Ekramy E. Sayedahmed
- Department of Comparative Pathobiology, Purdue Institute for Immunology, Inflammation and Infectious Diseases, and Purdue University Center for Cancer Research, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States
| | - Nelly O. Elshafie
- Department of Comparative Pathobiology, Purdue Institute for Immunology, Inflammation and Infectious Diseases, and Purdue University Center for Cancer Research, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States
| | - GuangJun Zhang
- Department of Comparative Pathobiology, Purdue Institute for Immunology, Inflammation and Infectious Diseases, and Purdue University Center for Cancer Research, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States
| | - Sulma I. Mohammed
- Department of Comparative Pathobiology, Purdue Institute for Immunology, Inflammation and Infectious Diseases, and Purdue University Center for Cancer Research, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States
| | - Suryaprakash Sambhara
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Suresh K. Mittal
- Department of Comparative Pathobiology, Purdue Institute for Immunology, Inflammation and Infectious Diseases, and Purdue University Center for Cancer Research, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
2
|
Elkashif A, Alhashimi M, Sayedahmed EE, Sambhara S, Mittal SK. Adenoviral vector-based platforms for developing effective vaccines to combat respiratory viral infections. Clin Transl Immunology 2021; 10:e1345. [PMID: 34667600 PMCID: PMC8510854 DOI: 10.1002/cti2.1345] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 09/10/2021] [Accepted: 09/15/2021] [Indexed: 02/06/2023] Open
Abstract
Since the development of the first vaccine against smallpox over two centuries ago, vaccination strategies have been at the forefront of significantly impacting the incidences of infectious diseases globally. However, the increase in the human population, deforestation and climate change, and the rise in worldwide travel have favored the emergence of new viruses with the potential to cause pandemics. The ongoing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic is a cruel reminder of the impact of novel pathogens and the suboptimal capabilities of conventional vaccines. Therefore, there is an urgent need to develop new vaccine strategies that allow the production of billions of doses in a short duration and are broadly protective against emerging and re-emerging infectious diseases. Extensive knowledge of the molecular biology and immunology of adenoviruses (Ad) has favored Ad vectors as platforms for vaccine design. The Ad-based vaccine platform represents an attractive strategy as it induces robust humoral and cell-mediated immune responses and can meet the global demand in a pandemic situation. This review describes the status of Ad vector-based vaccines in preclinical and clinical studies for current and emerging respiratory viruses, particularly coronaviruses, influenza viruses and respiratory syncytial viruses.
Collapse
Affiliation(s)
- Ahmed Elkashif
- Department of Comparative PathobiologyPurdue Institute for Inflammation, Immunology and Infectious Disease, and Purdue University Center for Cancer ResearchCollege of Veterinary MedicinePurdue UniversityWest LafayetteINUSA
| | - Marwa Alhashimi
- Department of Comparative PathobiologyPurdue Institute for Inflammation, Immunology and Infectious Disease, and Purdue University Center for Cancer ResearchCollege of Veterinary MedicinePurdue UniversityWest LafayetteINUSA
| | - Ekramy E Sayedahmed
- Department of Comparative PathobiologyPurdue Institute for Inflammation, Immunology and Infectious Disease, and Purdue University Center for Cancer ResearchCollege of Veterinary MedicinePurdue UniversityWest LafayetteINUSA
| | | | - Suresh K Mittal
- Department of Comparative PathobiologyPurdue Institute for Inflammation, Immunology and Infectious Disease, and Purdue University Center for Cancer ResearchCollege of Veterinary MedicinePurdue UniversityWest LafayetteINUSA
| |
Collapse
|
3
|
Khan A, Sayedahmed EE, Singh VK, Mishra A, Dorta-Estremera S, Nookala S, Canaday DH, Chen M, Wang J, Sastry KJ, Mittal SK, Jagannath C. A recombinant bovine adenoviral mucosal vaccine expressing mycobacterial antigen-85B generates robust protection against tuberculosis in mice. Cell Rep Med 2021; 2:100372. [PMID: 34467249 PMCID: PMC8385328 DOI: 10.1016/j.xcrm.2021.100372] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 02/16/2021] [Accepted: 07/19/2021] [Indexed: 02/07/2023]
Abstract
Although the BCG vaccine offers partial protection, tuberculosis remains a leading cause of infectious disease death, killing ∼1.5 million people annually. We developed mucosal vaccines expressing the autophagy-inducing peptide C5 and mycobacterial Ag85B-p25 epitope using replication-defective human adenovirus (HAdv85C5) and bovine adenovirus (BAdv85C5) vectors. BAdv85C5-infected dendritic cells (DCs) expressed a robust transcriptome of genes regulating antigen processing compared to HAdv85C5-infected DCs. BAdv85C5-infected DCs showed enhanced galectin-3/8 and autophagy-dependent in vitro Ag85B-p25 epitope presentation to CD4 T cells. BCG-vaccinated mice were intranasally boosted using HAdv85C5 or BAdv85C5 followed by infection using aerosolized Mycobacterium tuberculosis (Mtb). BAdv85C5 protected mice against tuberculosis both as a booster after BCG vaccine (>1.4-log10 reduction in Mtb lung burden) and as a single intranasal dose (>0.5-log10 reduction). Protection was associated with robust CD4 and CD8 effector (TEM), central memory (TCM), and CD103+/CD69+ lung-resident memory (TRM) T cell expansion, revealing BAdv85C5 as a promising mucosal vaccine for tuberculosis.
Collapse
Affiliation(s)
- Arshad Khan
- Department of Pathology and Genomic Medicine, Houston Methodist Academic Institute, Houston Methodist Research Institute & Weill Cornell Medical College, Houston, TX, USA
| | - Ekramy E. Sayedahmed
- Department of Comparative Pathobiology and Purdue Institute of Inflammation, Immunology, and Infectious Disease, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA
| | - Vipul K. Singh
- Department of Pathology and Genomic Medicine, Houston Methodist Academic Institute, Houston Methodist Research Institute & Weill Cornell Medical College, Houston, TX, USA
| | - Abhishek Mishra
- Department of Pathology and Genomic Medicine, Houston Methodist Academic Institute, Houston Methodist Research Institute & Weill Cornell Medical College, Houston, TX, USA
| | | | - Sita Nookala
- Department of Thoracic Head and Neck Medical Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - David H. Canaday
- Department of Medicine, Case Western Reserve University and Cleveland Veterans Affairs, Cleveland, OH, USA
| | - Min Chen
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
| | - Jin Wang
- Immunobiology and Transplant Science Center, Houston Methodist Research Institute, and Department of Surgery, Weill Cornell Medical College, Houston, TX, USA
| | - K. Jagannadha Sastry
- Department of Thoracic Head and Neck Medical Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - Suresh K. Mittal
- Department of Comparative Pathobiology and Purdue Institute of Inflammation, Immunology, and Infectious Disease, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA
| | - Chinnaswamy Jagannath
- Department of Pathology and Genomic Medicine, Houston Methodist Academic Institute, Houston Methodist Research Institute & Weill Cornell Medical College, Houston, TX, USA
| |
Collapse
|
4
|
Sayedahmed EE, Elkashif A, Alhashimi M, Sambhara S, Mittal SK. Adenoviral Vector-Based Vaccine Platforms for Developing the Next Generation of Influenza Vaccines. Vaccines (Basel) 2020; 8:vaccines8040574. [PMID: 33019589 PMCID: PMC7712206 DOI: 10.3390/vaccines8040574] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 09/06/2020] [Accepted: 09/17/2020] [Indexed: 12/20/2022] Open
Abstract
Ever since the discovery of vaccines, many deadly diseases have been contained worldwide, ultimately culminating in the eradication of smallpox and polio, which represented significant medical achievements in human health. However, this does not account for the threat influenza poses on public health. The currently licensed seasonal influenza vaccines primarily confer excellent strain-specific protection. In addition to the seasonal influenza viruses, the emergence and spread of avian influenza pandemic viruses such as H5N1, H7N9, H7N7, and H9N2 to humans have highlighted the urgent need to adopt a new global preparedness for an influenza pandemic. It is vital to explore new strategies for the development of effective vaccines for pandemic and seasonal influenza viruses. The new vaccine approaches should provide durable and broad protection with the capability of large-scale vaccine production within a short time. The adenoviral (Ad) vector-based vaccine platform offers a robust egg-independent production system for manufacturing large numbers of influenza vaccines inexpensively in a short timeframe. In this review, we discuss the progress in the development of Ad vector-based influenza vaccines and their potential in designing a universal influenza vaccine.
Collapse
Affiliation(s)
- Ekramy E. Sayedahmed
- Department of Comparative Pathobiology, Purdue Institute for Immunology, Inflammation and Infectious Disease, Purdue University Center for Cancer Research, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA; (E.E.S.); (A.E.); (M.A.)
| | - Ahmed Elkashif
- Department of Comparative Pathobiology, Purdue Institute for Immunology, Inflammation and Infectious Disease, Purdue University Center for Cancer Research, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA; (E.E.S.); (A.E.); (M.A.)
| | - Marwa Alhashimi
- Department of Comparative Pathobiology, Purdue Institute for Immunology, Inflammation and Infectious Disease, Purdue University Center for Cancer Research, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA; (E.E.S.); (A.E.); (M.A.)
| | - Suryaprakash Sambhara
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
- Correspondence: (S.S.); (S.K.M.)
| | - Suresh K. Mittal
- Department of Comparative Pathobiology, Purdue Institute for Immunology, Inflammation and Infectious Disease, Purdue University Center for Cancer Research, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA; (E.E.S.); (A.E.); (M.A.)
- Correspondence: (S.S.); (S.K.M.)
| |
Collapse
|
5
|
Longevity of adenovirus vector immunity in mice and its implications for vaccine efficacy. Vaccine 2018; 36:6744-6751. [PMID: 30266488 DOI: 10.1016/j.vaccine.2018.09.031] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 09/13/2018] [Accepted: 09/16/2018] [Indexed: 12/18/2022]
Abstract
There is a high incidence of adenovirus (AdV) infection in humans due to the presence of more than 60 types of human adenoviruses (HAdVs). The majority of individuals are exposed to one or more HAdV types early in their lives, leading to the development of AdV type-specific neutralizing antibodies. Similarly, immunization or gene therapy with AdV vectors leads to immune responses to the AdV vector. This 'vector immunity' is a concern for AdV vector-based applications for vaccines or gene therapy, especially when the repeated administration of a vector is required. The objective of this investigation was to establish whether AdV neutralizing antibody titers decline sufficiently in a year to permit annual vaccination with the same AdV vector. Naïve or human adenoviral vector group C, type 5 (HAdV-C5)-primed mice were mock-inoculated (with PBS) or inoculated i.m. with 108 PFU of either HAd-GFP [HAdV-C5 vector expressing the green fluorescent protein (GFP)] to mimic the conditions for the first inoculation with an AdV vector-based vaccine. At 1, 3, 6, and 10 months post-HAd-GFP inoculation, naïve- or HAdV-primed animals were vaccinated i.m. with 108 PFU of HAd-H5HA [HAdV-C5 vector expressing hemagglutinin (HA) of H5N1 influenza virus]. There was a significant continual decrease in vector immunity titers with time, thereby leading to significant continual increases in the levels of HA-specific humoral and cell-mediated immune responses. In addition, significant improvement in protection efficacy against challenge with an antigenically heterologous H5N1 virus was observed in HAdV-primed animals at 6 months and onwards. These results indicate that the annual immunization with the same AdV vector may be effective due to a significant decline in vector immunity.
Collapse
|
6
|
A Bovine Adenoviral Vector-Based H5N1 Influenza -Vaccine Provides Enhanced Immunogenicity and Protection at a Significantly Low Dose. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2018; 10:210-222. [PMID: 30101154 PMCID: PMC6082999 DOI: 10.1016/j.omtm.2018.07.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 07/11/2018] [Indexed: 11/26/2022]
Abstract
Several human and nonhuman adenovirus (AdV) vectors including bovine AdV type 3 (BAdV-3) were developed as gene delivery vectors to supplement and/or elude human AdV (HAdV)-specific neutralizing antibodies (vector immunity). Here we evaluated the vaccine immunogenicity and efficacy of BAdV-3 vector (BAd-H5HA) expressing hemagglutinin (HA) of a H5N1 influenza virus in a dose escalation study in mice with the intranasal (IN) or intramuscular (IM) route of inoculation in comparison with the HAdV type C5 (HAdV-C5) vector (HAd-H5HA) expressing HA of a H5N1 influenza virus. Dose-related increases in the immune responses were clearly noticeable. A single IM inoculation with BAd-H5HA resulted in enhanced cellular immune responses compared with that of HAd-H5HA and conferred complete protection following challenge with a heterologous H5N1 virus at the dose of 3 × 107 plaque-forming units (PFUs), whereas a significant amount of influenza virus was detected in the lungs of mice immunized with 1 × 108 PFUs of HAd-H5HA. Similarly, compared with that of HAd-H5HA, a single IN inoculation with BAd-H5HA produced significantly enhanced humoral (HA-specific immunoglobulin [IgG] and its subclasses, as well as HA-specific IgA) and cellular immune responses, and conferred complete protection following challenge with a heterologous H5N1 virus. Complete protection with BAd-H5HA was observed with the lowest vaccine dose (1 × 106 PFUs), but similar protection with HAd-H5HA was observed at the highest vaccine dose (1 × 108 PFUs). These results suggest that at least 30-fold dose sparing can be achieved with BAd-H5HA vector compared with HAd-H5HA vaccine vector.
Collapse
|
7
|
Hassan AO, Amen O, Sayedahmed EE, Vemula SV, Amoah S, York I, Gangappa S, Sambhara S, Mittal SK. Adenovirus vector-based multi-epitope vaccine provides partial protection against H5, H7, and H9 avian influenza viruses. PLoS One 2017; 12:e0186244. [PMID: 29023601 PMCID: PMC5638338 DOI: 10.1371/journal.pone.0186244] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 09/27/2017] [Indexed: 11/18/2022] Open
Abstract
The emergence of H5, H7, and H9 avian influenza virus subtypes in humans reveals their pandemic potential. Although human-to-human transmission has been limited, the genetic reassortment of the avian and human/porcine influenza viruses or mutations in some of the genes resulting in virus replication in the upper respiratory tract of humans could generate novel pandemic influenza viruses. Current vaccines do not provide cross protection against antigenically distinct strains of the H5, H7, and H9 influenza viruses. Therefore, newer vaccine approaches are needed to overcome these potential threats. We developed an egg-independent, adenovirus vector-based, multi-epitope (ME) vaccine approach using the relatively conserved immunogenic domains of the H5N1 influenza virus [M2 ectodomain (M2e), hemagglutinin (HA) fusion domain (HFD), T-cell epitope of nucleoprotein (TNP). and HA α-helix domain (HαD)]. Our ME vaccine induced humoral and cell-mediated immune responses and caused a significant reduction in the viral loads in the lungs of vaccinated mice that were challenged with antigenically distinct H5, H7, or H9 avian influenza viruses. These results suggest that our ME vaccine approach provided broad protection against the avian influenza viruses. Further improvement of this vaccine will lead to a pre-pandemic vaccine that may lower morbidity, hinder transmission, and prevent mortality in a pandemic situation before a strain-matched vaccine becomes available.
Collapse
Affiliation(s)
- Ahmed O. Hassan
- Department of Comparative Pathobiology and Purdue Institute for Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, IN, United States of America
| | - Omar Amen
- Department of Comparative Pathobiology and Purdue Institute for Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, IN, United States of America
- Poultry Diseases Department, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Ekramy E. Sayedahmed
- Department of Comparative Pathobiology and Purdue Institute for Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, IN, United States of America
| | - Sai V. Vemula
- Department of Comparative Pathobiology and Purdue Institute for Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, IN, United States of America
| | - Samuel Amoah
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| | - Ian York
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| | - Shivaprakash Gangappa
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| | - Suryaprakash Sambhara
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
- * E-mail: (SKM); (SS)
| | - Suresh K. Mittal
- Department of Comparative Pathobiology and Purdue Institute for Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, IN, United States of America
- * E-mail: (SKM); (SS)
| |
Collapse
|
8
|
Cheng T, Wang X, Song Y, Tang X, Zhang C, Zhang H, Jin X, Zhou D. Chimpanzee adenovirus vector-based avian influenza vaccine completely protects mice against lethal challenge of H5N1. Vaccine 2016; 34:4875-4883. [DOI: 10.1016/j.vaccine.2016.08.066] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 08/03/2016] [Accepted: 08/23/2016] [Indexed: 01/27/2023]
|
9
|
Xiang K, Ying G, Yan Z, Shanshan Y, Lei Z, Hongjun L, Maosheng S. Progress on adenovirus-vectored universal influenza vaccines. Hum Vaccin Immunother 2016; 11:1209-22. [PMID: 25876176 DOI: 10.1080/21645515.2015.1016674] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Influenza virus (IFV) infection causes serious health problems and heavy financial burdens each year worldwide. The classical inactivated influenza virus vaccine (IIVV) and live attenuated influenza vaccine (LAIV) must be updated regularly to match the new strains that evolve due to antigenic drift and antigenic shift. However, with the discovery of broadly neutralizing antibodies that recognize conserved antigens, and the CD8(+) T cell responses targeting viral internal proteins nucleoprotein (NP), matrix protein 1 (M1) and polymerase basic 1 (PB1), it is possible to develop a universal influenza vaccine based on the conserved hemagglutinin (HA) stem, NP, and matrix proteins. Recombinant adenovirus (rAd) is an ideal influenza vaccine vector because it has an ideal stability and safety profile, induces balanced humoral and cell-mediated immune responses due to activation of innate immunity, provides 'self-adjuvanting' activity, can mimic natural IFV infection, and confers seamless protection against mucosal pathogens. Moreover, this vector can be developed as a low-cost, rapid-response vaccine that can be quickly manufactured. Therefore, an adenovirus vector encoding conserved influenza antigens holds promise in the development of a universal influenza vaccine. This review will summarize the progress in adenovirus-vectored universal flu vaccines and discuss future novel approaches.
Collapse
Key Words
- ADCC, antibody-dependent cell-mediated cytotoxicity
- APC, antigen-presenting cell
- Ad: adenovirus
- CAR, Coxsackie-Adenovirus Receptor
- CTLs, cytotoxic T lymphocytes
- DC, lung dendritic cells
- DVD, drug–vaccine duo
- FcγRs, Fc receptors for IgG
- HA, hemagglutinin
- HDAd, helper-dependent adenoviral
- HEK293, human embryonic kidney 293 cell
- HI, hemagglutination inhibition
- HLA, human leukocyte antigen
- IF-γ, interferon-γ
- IFV, Influenza virus
- IIVV, inactivated influenza virus vaccine
- IL-2, interleukin-2
- ITRs, inverted terminal repeats
- LAIV, live attenuated influenza vaccine
- M1, matrix protein 1
- M2, matrix protein 2
- MHC-I, major histocompatibility complex class I
- NA, neuraminidase
- NP, nucleoprotein
- RCA, replication competent adenovirus
- VAERD, vaccine-associated enhanced respiratory disease
- adenovirus vector
- broadly neutralizing antibodies
- cellular immunity
- flu, influenza
- hemagglutinin
- humoral immunity
- influenza
- mAbs, monoclonal antibodies
- mucosal immunity
- rAd, recombinant adenovirus
- universal vaccine
Collapse
Affiliation(s)
- Kui Xiang
- a Department of Molecular Biology; Institute of Medical Biology; Chinese Academy of Medical Sciences; Peking Union Medical College ; Kunming , Yunnan , PR China
| | | | | | | | | | | | | |
Collapse
|
10
|
Uddback IEM, Pedersen LMI, Pedersen SR, Steffensen MA, Holst PJ, Thomsen AR, Christensen JP. Combined local and systemic immunization is essential for durable T-cell mediated heterosubtypic immunity against influenza A virus. Sci Rep 2016; 6:20137. [PMID: 26831578 PMCID: PMC4735591 DOI: 10.1038/srep20137] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 12/30/2015] [Indexed: 12/22/2022] Open
Abstract
The threat from unpredictable influenza virus pandemics necessitates the development of a new type of influenza vaccine. Since the internal proteins are highly conserved, induction of T cells targeting these antigens may provide the solution. Indeed, adenoviral (Ad) vectors expressing flu nucleoprotein have previously been found to induce short-term protection in mice. In this study we confirm that systemic (subcutaneous (s.c.) immunization rapidly induced heterosubtypic protection predominantly mediated by CD8 T cells, but within three months clinical protection completely disappeared. Local (intranasal (i.n.)) immunization elicited delayed, but more lasting protection despite relatively inefficient immunization. However, by far, the most robust protection was induced by simultaneous, combined (i.n. + s.c.) vaccination, and, notably, in this case clinical protection lasted at least 8 months without showing any evidence of fading. Interestingly, the superior ability of the latter group to resist reinfection correlated with a higher number of antigen-specific CD8 T cells in the spleen. Thus, detailed analysis of the underlying CD8 T cell responses highlights the importance of T cells already positioned in the lungs prior to challenge, but at the same time underscores an important back-up role for circulating antigen-specific cells with the capacity to expand and infiltrate the infected lungs.
Collapse
Affiliation(s)
- Ida E M Uddback
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Line M I Pedersen
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Sara R Pedersen
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Maria A Steffensen
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Peter J Holst
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Allan R Thomsen
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Jan P Christensen
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
11
|
He B, Zheng BJ, Wang Q, Du L, Jiang S, Lu L. Adenovirus-based vaccines against avian-origin H5N1 influenza viruses. Microbes Infect 2015; 17:135-41. [PMID: 25479556 PMCID: PMC7110517 DOI: 10.1016/j.micinf.2014.11.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 11/18/2014] [Accepted: 11/18/2014] [Indexed: 02/03/2023]
Abstract
Since 1997, human infection with avian H5N1, having about 60% mortality, has posed a threat to public health. In this review, we describe the epidemiology of H5N1 transmission, advantages and disadvantages of different influenza vaccine types, and characteristics of adenovirus, finally summarizing advances in adenovirus-based H5N1 systemic and mucosal vaccines.
Collapse
Affiliation(s)
- Biao He
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Shanghai Medical College and Institute of Medical Microbiology, Fudan University, Shanghai 200032, China
| | - Bo-jian Zheng
- Department of Microbiology, University of Hong Kong, Pokfulam, Hong Kong 999077, China
| | - Qian Wang
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Shanghai Medical College and Institute of Medical Microbiology, Fudan University, Shanghai 200032, China
| | - Lanying Du
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY 10065, USA
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Shanghai Medical College and Institute of Medical Microbiology, Fudan University, Shanghai 200032, China; Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY 10065, USA.
| | - Lu Lu
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Shanghai Medical College and Institute of Medical Microbiology, Fudan University, Shanghai 200032, China.
| |
Collapse
|
12
|
Baz M, Luke CJ, Cheng X, Jin H, Subbarao K. H5N1 vaccines in humans. Virus Res 2013; 178:78-98. [PMID: 23726847 PMCID: PMC3795810 DOI: 10.1016/j.virusres.2013.05.006] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 04/04/2013] [Accepted: 05/20/2013] [Indexed: 11/28/2022]
Abstract
The spread of highly pathogenic avian H5N1 influenza viruses since 1997 and their virulence for poultry and humans has raised concerns about their potential to cause an influenza pandemic. Vaccines offer the most viable means to combat a pandemic threat. However, it will be a challenge to produce, distribute and implement a new vaccine if a pandemic spreads rapidly. Therefore, efforts are being undertaken to develop pandemic vaccines that use less antigen and induce cross-protective and long-lasting responses, that can be administered as soon as a pandemic is declared or possibly even before, in order to prime the population and allow for a rapid and protective antibody response. In the last few years, several vaccine manufacturers have developed candidate pandemic and pre-pandemic vaccines, based on reverse genetics and have improved the immunogenicity by formulating these vaccines with different adjuvants. Some of the important and consistent observations from clinical studies with H5N1 vaccines are as follows: two doses of inactivated vaccine are generally necessary to elicit the level of immunity required to meet licensure criteria, less antigen can be used if an oil-in-water adjuvant is included, in general antibody titers decline rapidly but can be boosted with additional doses of vaccine and if high titers of antibody are elicited, cross-reactivity against other clades is observed. Prime-boost strategies elicit a more robust immune response. In this review, we discuss data from clinical trials with a variety of H5N1 influenza vaccines. We also describe studies conducted in animal models to explore the possibility of reassortment between pandemic live attenuated vaccine candidates and seasonal influenza viruses, since this is an important consideration for the use of live vaccines in a pandemic setting.
Collapse
Affiliation(s)
- Mariana Baz
- Laboratory of Infectious Diseases, NIAID, NIH, Bethesda, Maryland, USA
| | - Catherine J Luke
- Laboratory of Infectious Diseases, NIAID, NIH, Bethesda, Maryland, USA
| | | | - Hong Jin
- MedImmune, Mountain View, California
| | - Kanta Subbarao
- Laboratory of Infectious Diseases, NIAID, NIH, Bethesda, Maryland, USA
| |
Collapse
|
13
|
Vemula SV, Amen O, Katz JM, Donis R, Sambhara S, Mittal SK. Beta-defensin 2 enhances immunogenicity and protection of an adenovirus-based H5N1 influenza vaccine at an early time. Virus Res 2013; 178:398-403. [PMID: 24051000 DOI: 10.1016/j.virusres.2013.09.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 08/30/2013] [Accepted: 09/06/2013] [Indexed: 11/16/2022]
Abstract
Reports of human infections with highly pathogenic H5N1 avian influenza viruses in many countries in Asia and Africa with varying case fatality rates highlight the pandemic potential of these viruses. In order to contain a rapidly spreading influenza virus in a pandemic scenario, a vaccine which can induce rapid and robust immune responses, preferably in a single dose, is necessary. Murine beta-defensin 2 (Mbd2), a small molecular weight protein expressed by epithelial cells, has been shown to enhance antigen-specific immune responses by recruiting and activating professional antigen presenting cells to the site of vaccination. This study assessed the potential of Mbd2 to enhance the immunogenicity and protective efficacy of a human adenovirus (HAd)-based vaccine expressing the hemagglutinin (HA) and nucleoprotein (NP) [HAd-HA-NP] of an H5N1 influenza virus. A single inoculation of mice with both HAd-HA-NP and a HAd vector expressing Murine β-defensin 2 (HAd-Mbd2) resulted in significantly higher levels of both humoral and cell-mediated immune responses compared to the groups vaccinated only with HAd-HA-NP. These responses were evident even at day 7 post-immunization. Furthermore, the HAd-HA-NP+HAd-Mbd2-immunized group receiving the lowest vector dose (2 × 10(7)+1 × 10(7)) was completely protected against an rgH5N1 virus challenge on day 7 post-vaccination. These results highlight the potential of Mbd2 as a genetic adjuvant in inducing rapid and robust immune responses to a HAd-based vaccine.
Collapse
Affiliation(s)
- Sai V Vemula
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA; Bindley Bioscience Center, Purdue University, West Lafayette, IN, USA
| | | | | | | | | | | |
Collapse
|
14
|
Vemula SV, Pandey A, Singh N, Katz JM, Donis R, Sambhara S, Mittal SK. Adenoviral vector expressing murine β-defensin 2 enhances immunogenicity of an adenoviral vector based H5N1 influenza vaccine in aged mice. Virus Res 2013; 177:55-61. [PMID: 23892144 DOI: 10.1016/j.virusres.2013.07.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 06/18/2013] [Accepted: 07/11/2013] [Indexed: 11/27/2022]
Abstract
The ability to resist infections and respond to vaccinations is greatly reduced in the older adult population owing to a general decline in innate and adaptive immune functions with aging. Over the years several strategies such as increasing the vaccine dose, number of immunizations and using adjuvants have been evaluated to improve the immunogenicity and efficacy of vaccines in the older adult population. Murine β-defensin 2 (Mbd2) has been shown to function as a molecular adjuvant by recruiting and activating immature dendritic cells (DCs), professional antigen-presenting cells (APC), to the site of the immunization. In this study, we evaluated the potential utility of Mbd2 to enhance the efficacy of an adenoviral vector-based H5N1 influenza vaccine expressing hemagglutinin (HA) and nucleoprotein (NP) (HAd-HA-NP) in an aged mouse model. Our results indicated that immunostimulation with an adenoviral vector expressing Mbd2 (HAd-Mbd2) activated DCs and significantly enhanced the humoral and cellular immune responses induced by HAd-HA-NP. Furthermore, immunostimulation with HAd-Mbd2 followed by immunization with HAd-HA-NP resulted in significantly lower virus titers in the lungs following challenge with a H5N1 influenza virus compared to the group immunized with HAd-HA-NP without immunostimulation. Overall, our results highlight the potential utility of Mbd2 as a molecular adjuvant to enhance the immunogenicity and protective efficacy of vaccines for the elderly.
Collapse
Affiliation(s)
- Sai V Vemula
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, USA; Bindley Bioscience Center, Purdue University, West Lafayette, IN, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Vemula SV, Ahi YS, Swaim AM, Katz JM, Donis R, Sambhara S, Mittal SK. Broadly protective adenovirus-based multivalent vaccines against highly pathogenic avian influenza viruses for pandemic preparedness. PLoS One 2013; 8:e62496. [PMID: 23638099 PMCID: PMC3640067 DOI: 10.1371/journal.pone.0062496] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 03/22/2013] [Indexed: 11/19/2022] Open
Abstract
Recurrent outbreaks of H5, H7 and H9 avian influenza viruses in domestic poultry accompanied by their occasional transmission to humans have highlighted the public health threat posed by these viruses. Newer vaccine approaches for pandemic preparedness against these viruses are needed, given the limitations of vaccines currently approved for H5N1 viruses in terms of their production timelines and the ability to induce protective immune responses in the absence of adjuvants. In this study, we evaluated the feasibility of an adenovirus (AdV)-based multivalent vaccine approach for pandemic preparedness against H5, H7 and H9 avian influenza viruses in a mouse model. Replication-defective AdV vectors expressing hemagglutinin (HA) from different subtypes and nucleoprotein (NP) from one subtype induced high levels of humoral and cellular immune responses and conferred protection against virus replication following challenge with H5, H7 and H9 avian influenza virus subtypes. Inclusion of HA from the 2009 H1N1 pandemic virus in the vaccine formulation further broadened the vaccine coverage. Significantly high levels of HA stalk-specific antibodies were observed following immunization with the multivalent vaccine. Inclusion of NP into the multivalent HA vaccine formulation resulted in the induction of CD8 T cell responses. These results suggest that a multivalent vaccine strategy may provide reasonable protection in the event of a pandemic caused by H5, H7, or H9 avian influenza virus before a strain-matched vaccine can be produced.
Collapse
Affiliation(s)
- Sai V. Vemula
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, United States of America
- Bindley Bioscience Center, Purdue University, West Lafayette, Indiana, United States of America
| | - Yadvinder S. Ahi
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, United States of America
- Bindley Bioscience Center, Purdue University, West Lafayette, Indiana, United States of America
| | - Anne-Marie Swaim
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, United States of America
- Bindley Bioscience Center, Purdue University, West Lafayette, Indiana, United States of America
| | - Jacqueline M. Katz
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Ruben Donis
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Suryaprakash Sambhara
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
- * E-mail: (SM); (SS)
| | - Suresh K. Mittal
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, United States of America
- Bindley Bioscience Center, Purdue University, West Lafayette, Indiana, United States of America
- * E-mail: (SM); (SS)
| |
Collapse
|
16
|
Mooney AJ, Tompkins SM. Experimental vaccines against potentially pandemic and highly pathogenic avian influenza viruses. Future Virol 2013; 8:25-41. [PMID: 23440999 PMCID: PMC3579652 DOI: 10.2217/fvl.12.122] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Influenza A viruses continue to emerge and re-emerge, causing outbreaks, epidemics and occasionally pandemics. While the influenza vaccines licensed for public use are generally effective against seasonal influenza, issues arise with production, immunogenicity, and efficacy in the case of vaccines against pandemic and emerging influenza viruses, and highly pathogenic avian influenza virus in particular. Thus, there is need of improved influenza vaccines and vaccination strategies. This review discusses advances in alternative influenza vaccines, touching briefly on licensed vaccines and vaccine antigens; then reviewing recombinant subunit vaccines, virus-like particle vaccines and DNA vaccines, with the main focus on virus-vectored vaccine approaches.
Collapse
Affiliation(s)
- Alaina J Mooney
- Department of Infectious Diseases, University of Georgia, 111 Carlton St, Athens, GA 30602, USA
| | - S Mark Tompkins
- Department of Infectious Diseases, University of Georgia, 111 Carlton St, Athens, GA 30602, USA
| |
Collapse
|
17
|
Abstract
The emergence of a highly pathogenic avian influenza virus H5N1 has increased the potential for a new pandemic to occur. This event highlights the necessity for developing a new generation of influenza vaccines to counteract influenza disease. These vaccines must be manufactured for mass immunization of humans in a timely manner. Poultry should be included in this policy, since persistent infected flocks are the major source of avian influenza for human infections. Recombinant adenoviral vectored H5N1 vaccines are an attractive alternative to the currently licensed influenza vaccines. This class of vaccines induces a broadly protective immunity against antigenically distinct H5N1, can be manufactured rapidly, and may allow mass immunization of human and poultry. Recombinant adenoviral vectors derived from both human and non-human adenoviruses are currently being investigated and appear promising both in nonclinical and clinical studies. This review will highlight the current status of various adenoviral vectored H5N1 vaccines and will outline novel approaches for the future.
Collapse
|
18
|
Lambe T. Novel viral vectored vaccines for the prevention of influenza. Mol Med 2012; 18:1153-60. [PMID: 22735755 PMCID: PMC3510293 DOI: 10.2119/molmed.2012.00147] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 06/19/2012] [Indexed: 01/29/2023] Open
Abstract
Influenza represents a substantial global healthcare burden, with annual epidemics resulting in 3-5 million cases of severe illness with a significant associated mortality. In addition, the risk of a virulent and lethal influenza pandemic has generated widespread and warranted concern. Currently licensed influenza vaccines are limited in their ability to induce efficacious and long-lasting herd immunity. In addition, and as evidenced by the H1N1 pandemic in 2009, there can be a significant delay between the emergence of a pandemic influenza and an effective, antibody-inducing vaccine. There is, therefore, a continued need for new, efficacious vaccines conferring cross-clade protection-obviating the need for biannual reformulation of seasonal influenza vaccines. Development of such a vaccine would yield enormous health benefits to society and also greatly reduce the associated global healthcare burden. There are a number of alternative influenza vaccine technologies being assessed both preclinically and clinically. In this review we discuss viral vectored vaccines, either recombinant live-attenuated or replication-deficient viruses, which are current lead candidates for inducing efficacious and long-lasting immunity toward influenza viruses. These alternate influenza vaccines offer real promise to deliver viable alternatives to currently deployed vaccines and more importantly may confer long-lasting and universal protection against influenza viral infection.
Collapse
Affiliation(s)
- Teresa Lambe
- Jenner Institute, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
19
|
Pandey A, Singh N, Vemula SV, Couëtil L, Katz JM, Donis R, Sambhara S, Mittal SK. Impact of preexisting adenovirus vector immunity on immunogenicity and protection conferred with an adenovirus-based H5N1 influenza vaccine. PLoS One 2012; 7:e33428. [PMID: 22432020 PMCID: PMC3303828 DOI: 10.1371/journal.pone.0033428] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 02/10/2012] [Indexed: 12/20/2022] Open
Abstract
The prevalence of preexisting immunity to adenoviruses in the majority of the human population might adversely impact the development of adaptive immune responses against adenovirus vector-based vaccines. To address this issue, we primed BALB/c mice either intranasally (i.n.) or intramuscularly (i.m.) with varying doses of wild type (WT) human adenovirus subtype 5 (HAd5). Following the development of immunity against HAd5, we immunized animals via the i.n. or i.m. route of inoculation with a HAd vector (HAd-HA-NP) expressing the hemagglutinin (HA) and nucleoprotein (NP) of A/Vietnam/1203/04 (H5N1) influenza virus. The immunogenicity and protection results suggest that low levels of vector immunity (<520 virus-neutralization titer) induced by priming mice with up to 10(7) plaque forming units (p.f.u.) of HAd-WT did not adversely impact the protective efficacy of the vaccine. Furthermore, high levels of vector immunity (approximately 1500 virus-neutralization titer) induced by priming mice with 10(8) p.f.u. of HAd-WT were overcome by either increasing the vaccine dose or using alternate routes of vaccination. A further increase in the priming dose to 10(9) p.f.u. allowed only partial protection. These results suggest possible strategies to overcome the variable levels of human immunity against adenoviruses, leading to better utilization of HAd vector-based vaccines.
Collapse
Affiliation(s)
- Aseem Pandey
- Department of Comparative Pathobiology, Purdue University, West Lafayette, Indiana, United States of America
- Bindley Bioscience Center, Purdue University, West Lafayette, Indiana, United States of America
| | - Neetu Singh
- Department of Comparative Pathobiology, Purdue University, West Lafayette, Indiana, United States of America
- Bindley Bioscience Center, Purdue University, West Lafayette, Indiana, United States of America
| | - Sai V. Vemula
- Department of Comparative Pathobiology, Purdue University, West Lafayette, Indiana, United States of America
- Bindley Bioscience Center, Purdue University, West Lafayette, Indiana, United States of America
| | - Laurent Couëtil
- Department of Clinical Veterinary Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, United States of America
| | - Jacqueline M. Katz
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Ruben Donis
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Suryaprakash Sambhara
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
- * E-mail: (SS); (SKM)
| | - Suresh K. Mittal
- Department of Comparative Pathobiology, Purdue University, West Lafayette, Indiana, United States of America
- Bindley Bioscience Center, Purdue University, West Lafayette, Indiana, United States of America
- * E-mail: (SS); (SKM)
| |
Collapse
|
20
|
Induction of virus-specific cytotoxic T lymphocytes as a basis for the development of broadly protective influenza vaccines. J Biomed Biotechnol 2011; 2011:939860. [PMID: 22007149 PMCID: PMC3189652 DOI: 10.1155/2011/939860] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Revised: 07/01/2011] [Accepted: 08/02/2011] [Indexed: 11/18/2022] Open
Abstract
There is considerable interest in the development of broadly protective influenza vaccines because of the continuous emergence of antigenic drift variants of seasonal influenza viruses and the threat posed by the emergence of antigenically distinct pandemic influenza viruses. It has been recognized more than three decades ago that influenza A virus-specific cytotoxic T lymphocytes recognize epitopes located in the relatively conserved proteins like the nucleoprotein and that they cross-react with various subtypes of influenza A viruses. This implies that these CD8+ T lymphocytes may contribute to protective heterosubtypic immunity induced by antecedent influenza A virus infections. In the present paper, we review the evidence for the role of virus-specific CD8+ T lymphocytes in protective immunity against influenza virus infections and discuss vaccination strategies that aim at the induction of cross-reactive virus-specific T-cell responses.
Collapse
|
21
|
Moraes TJ, Lin GH, Wen T, Watts TH. Incorporation of 4-1BB ligand into an adenovirus vaccine vector increases the number of functional antigen-specific CD8 T cells and enhances the duration of protection against influenza-induced respiratory disease. Vaccine 2011; 29:6301-12. [DOI: 10.1016/j.vaccine.2011.06.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Revised: 04/07/2011] [Accepted: 06/04/2011] [Indexed: 11/30/2022]
|
22
|
Zuccotti GV, Fabiano V. Strategies for preventing influenza: future perspectives in influenza vaccine technology. Expert Opin Biol Ther 2011; 11:1-4. [PMID: 21133814 DOI: 10.1517/14712598.2010.539047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Prevention of influenza transmission and containment of epidemics and pandemics require effective strategies that can be efficiently and easily addressed to the whole population. Annual vaccination is undoubtedly the most effective way to provide protection against influenza infection. Numbers of vaccines are actually available for yearly immunisation. However, the continuous increasing demand for rapidly available vaccine doses for immunisation of a larger proportion of population represents the stimulus for study and development of more efficient vaccine production technologies, which can guarantee reduction of vaccine manufacture times and better compliance by availability of easier routes of administration. New perspectives in influenza vaccination technology are making their way in the future panorama of influenza prevention strategies.
Collapse
Affiliation(s)
- Gian Vincenzo Zuccotti
- Department of Pediatrics, Luigi Sacco Hospital, Università degli Studi di Milano, Milan Italy.
| | | |
Collapse
|
23
|
Tutykhina IL, Logunov DY, Shcherbinin DN, Shmarov MM, Tukhvatulin AI, Naroditsky BS, Gintsburg AL. Development of adenoviral vector-based mucosal vaccine against influenza. J Mol Med (Berl) 2011; 89:331-41. [PMID: 21104066 DOI: 10.1007/s00109-010-0696-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Revised: 09/24/2010] [Accepted: 10/13/2010] [Indexed: 12/25/2022]
Abstract
The recent pandemic threat of the influenza virus makes the increased safety and efficiency of vaccination against the pathogen a most important issue. It has been well established that for maximum protective effect, the vaccination should mimic natural infection. Therefore, recent efforts to develop a new influenza vaccine have focused on intranasal immunization strategies. Intranasal immunization is capable of inducing secretory IgA and serum IgG responses to provide a double defense against mucosal pathogens. On the other hand, it is desirable that a live pathogen is not present in the vaccine. In addition, for optimal induction of the immune responses via the nasal route, efficient and safe mucosal adjuvants are also required. This is possible to attain using an adenoviral vector for vaccine development. Adenoviral vectors are capable of delivering and protecting the antigen encoding sequence. They also possess a natural mechanism for penetrating into the nasal mucous membrane and are capable of activating the innate immune response. This review describes the basic prerequisites for the involvement of recombinant adenoviruses for mucosal (nasal) vaccine development against the influenza virus.
Collapse
Affiliation(s)
- Irina L Tutykhina
- Laboratory of Molecular Biotechnology, Gamaleya Research Institute of Epidemiology and Microbiology, ul. Gamaleya 18, Moscow 123098, Russia
| | | | | | | | | | | | | |
Collapse
|
24
|
Vemula SV, Mittal SK. Production of adenovirus vectors and their use as a delivery system for influenza vaccines. Expert Opin Biol Ther 2011; 10:1469-87. [PMID: 20822477 DOI: 10.1517/14712598.2010.519332] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
IMPORTANCE OF THE FIELD With the emergence of highly pathogenic avian influenza H5N1 viruses that have crossed species barriers and are responsible for lethal infections in humans in many countries, there is an urgent need for the development of effective vaccines which can be produced in large quantities at a short notice and confer broad protection against these H5N1 variants. In order to meet the potential global vaccine demand in a pandemic scenario, new vaccine-production strategies must be explored in addition to the currently used egg-based technology for seasonal influenza. AREAS COVERED IN THIS REVIEW Adenovirus (Ad) based influenza vaccines represent an attractive alternative/supplement to the currently licensed egg-based influenza vaccines. Ad-based vaccines are relatively inexpensive to manufacture, and their production process does not require either chicken eggs or labor-intensive and time-consuming processes necessitating enhanced biosafety facilities. Most importantly, in a pandemic situation, this vaccine strategy could offer a stockpiling option to reduce the response time before a strain-matched vaccine could be developed. WHAT THE READER WILL GAIN This review discusses Ad-vector technology and the current progress in the development of Ad-based influenza vaccines. TAKE HOME MESSAGE Ad vector-based influenza vaccines for pandemic preparedness are under development to meet global vaccine demand.
Collapse
Affiliation(s)
- Sai V Vemula
- Purdue University, Bindley Bioscience Center, School of Veterinary Medicine, Department of Comparative Pathobiology, West Lafayette, IN 47907, USA
| | | |
Collapse
|
25
|
Krause A, Whu WZ, Xu Y, Joh J, Crystal RG, Worgall S. Protective anti-Pseudomonas aeruginosa humoral and cellular mucosal immunity by AdC7-mediated expression of the P. aeruginosa protein OprF. Vaccine 2011; 29:2131-9. [PMID: 21215829 DOI: 10.1016/j.vaccine.2010.12.087] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Revised: 12/09/2010] [Accepted: 12/20/2010] [Indexed: 10/18/2022]
Abstract
Replication-deficient adenoviral (Ad) vectors are an attractive platform for a vaccine against lung infections caused by Pseudomonas aeruginosa. Ad vectors based on non-human serotypes have been developed to circumvent the problem of pre-existing anti-Ad immunity in humans. The present study analyzes the anti-P. aeruginosa systemic and lung mucosal immunity elicited by a non-human primate-based AdC7 vector expressing the outer membrane protein F (AdC7OprF) of P. aeruginosa. Intramuscular immunization of mice with AdC7OprF induced similar levels of serum and mucosal anti-OprF IgG and increased levels of anti-OprF IgA in lung epithelial lining fluid (ELF) compared to immunization with a human serotype Ad5OprF vector (p>0.05). OprF-specific INF-γ in splenic T cells stimulated with OprF-pulsed syngeneic splenic dendritic cells (DC) was similar following immunization with AdC7OprF compared to Ad5OprF (p>0.05). In contrast, OprF-specific INF-γ responses in lung T cells stimulated with either spleen or lung DC were increased following immunization with AdC7OprF compared to Ad5OprF (p<0.05). Interestingly, direct administration of AdC7OprF to the respiratory tract resulted in an increase of OprF-specific IgG in serum, OprF-specific IgG and IgA in lung ELF, and OprF-specific INF-γ in lung T-cells compared to immunization with Ad5OprF, and survival following challenge with a lethal dose of P. aeruginosa. These data demonstrate that systemic or lung mucosal immunization with an AdC7-based vaccine vector induces superior pulmonary humoral and cellular anti-transgene immunity compared to immunization with an Ad5-based vector and favors AdC7-based vectors as vaccines to induce lung mucosal immunity.
Collapse
Affiliation(s)
- Anja Krause
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | | | | | | | | | | |
Collapse
|
26
|
Singh S, Toro H, Tang DC, Briles WE, Yates LM, Kopulos RT, Collisson EW. Non-replicating adenovirus vectors expressing avian influenza virus hemagglutinin and nucleocapsid proteins induce chicken specific effector, memory and effector memory CD8(+) T lymphocytes. Virology 2010; 405:62-9. [PMID: 20557918 DOI: 10.1016/j.virol.2010.05.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Revised: 04/04/2010] [Accepted: 05/02/2010] [Indexed: 10/19/2022]
Abstract
Avian influenza virus (AIV) specific CD8(+) T lymphocyte responses stimulated by intramuscular administration of an adenovirus (Ad) vector expressing either HA or NP were evaluated in chickens following ex vivo stimulation by non-professional antigen presenting cells. The CD8(+) T lymphocyte responses were AIV specific, MHC-I restricted, and cross-reacted with heterologous H7N2 AIV strain. Specific effector responses, at 10 days post-inoculation (p.i.), were undetectable at 2 weeks p.i., and memory responses were detected from 3 to 8 weeks p.i. Effector memory responses, detected 1 week following a booster inoculation, were significantly greater than the primary responses and, within 7 days, declined to undetectable levels. Inoculation of an Ad-vector expressing human NP resulted in significantly greater MHC restricted, activation of CD8(+) T cell responses specific for AIV. Decreases in all responses with time were most dramatic with maximum activation of T cells as observed following effector and effector memory responses.
Collapse
Affiliation(s)
- Shailbala Singh
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, TX 77843, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Avian influenza pandemic preparedness: developing prepandemic and pandemic vaccines against a moving target. Expert Rev Mol Med 2010; 12:e14. [PMID: 20426889 DOI: 10.1017/s1462399410001432] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The unprecedented global spread of highly pathogenic avian H5N1 influenza viruses within the past ten years and their extreme lethality to poultry and humans has underscored their potential to cause an influenza pandemic. Combating the threat of an impending H5N1 influenza pandemic will require a combination of pharmaceutical and nonpharmaceutical intervention strategies. The emergence of the H1N1 pandemic in 2009 emphasised the unpredictable nature of a pandemic influenza. Undoubtedly, vaccines offer the most viable means to combat a pandemic threat. Current egg-based influenza vaccine manufacturing strategies are unlikely to be able to cater to the huge, rapid global demand because of the anticipated scarcity of embryonated eggs in an avian influenza pandemic and other factors associated with the vaccine production process. Therefore, alternative, egg-independent vaccine manufacturing strategies should be evaluated to supplement the traditional egg-derived influenza vaccine manufacturing. Furthermore, evaluation of dose-sparing strategies that offer protection with a reduced antigen dose will be critical for pandemic influenza preparedness. Development of new antiviral therapeutics and other, nonpharmaceutical intervention strategies will further supplement pandemic preparedness. This review highlights the current status of egg-dependent and egg-independent strategies against an avian influenza pandemic.
Collapse
|
28
|
Pandey A, Singh N, Sambhara S, Mittal SK. Egg-independent vaccine strategies for highly pathogenic H5N1 influenza viruses. HUMAN VACCINES 2010; 6:178-88. [PMID: 19875936 PMCID: PMC2888842 DOI: 10.4161/hv.6.2.9899] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The emergence of a highly pathogenic H5N1 influenza virus in Hong Kong in 1997 and the subsequent appearance of other H5N1 strains and their spread to several countries in southeast Asia, Africa, the Middle East and Europe has evoked fear of a global influenza pandemic. Vaccines offer the best hope to combat the threat of an influenza pandemic. However, the global demand for a pandemic vaccine cannot be fulfilled by the current egg-based vaccine manufacturing strategies, thus creating a need to explore alternative technologies for vaccine production and delivery. Several egg-independent vaccine approaches such as cell culture-derived whole virus or subvirion vaccines, recombinant protein-based vaccines, virus-like particle (VLP) vaccines, DNA vaccines and viral vector-based vaccines are currently being investigated and appear promising both in preclinical and clinical studies. The present review will highlight the various egg-independent alternative vaccine approaches for pandemic influenza.
Collapse
Affiliation(s)
| | | | | | - Suresh K. Mittal
- Correspondence: Suresh K. Mittal, Department of Comparative Pathobiology, School of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA, Tel: 765-496-2894, Fax: 765-494-9830, , Suryaprakash Sambhara, Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA, Tel: 404-639-3800, Fax: 404-639-5180,
| |
Collapse
|
29
|
Park KS, Lee J, Ahn SS, Byun YH, Seong BL, Baek YH, Song MS, Choi YK, Na YJ, Hwang I, Sung YC, Lee CG. Mucosal immunity induced by adenovirus-based H5N1 HPAI vaccine confers protection against a lethal H5N2 avian influenza virus challenge. Virology 2009; 395:182-9. [PMID: 19836045 DOI: 10.1016/j.virol.2009.09.018] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2009] [Revised: 05/29/2009] [Accepted: 09/15/2009] [Indexed: 11/29/2022]
Abstract
Development of effective vaccines against highly pathogenic avian influenza (HPAI) H5N1 viruses is a global public health priority. Considering the difficulty in predicting HPAI H5N1 pandemic strains, one strategy used in their design includes the development of formulations with the capacity of eliciting broad cross-protective immunity against multiple viral antigens. To this end we constructed a replication-defective recombinant adenovirus-based avian influenza virus vaccine (rAdv-AI) expressing the codon-optimized M2eX-HA-hCD40L and the M1-M2 fusion genes from HPAI H5N1 human isolate. Although there were no significant differences in the systemic immune responses observed between the intramuscular prime-intramuscular boost regimen (IM/IM) and the intranasal prime-intramuscular boost regimen (IN/IM), IN/IM induced more potent CD8(+) T cell and antibody responses at mucosal sites than the IM/IM vaccination, resulting in more effective protection against lethal H5N2 avian influenza (AI) virus challenge. These findings suggest that the strategies used to induce multi-antigen-targeted mucosal immunity, such as IN/IM delivery of rAdv-AI, may be a promising approach for developing broad protective vaccines that may be more effective against the new HPAI pandemic strains.
Collapse
Affiliation(s)
- Ki Seok Park
- Laboratory of Cellular Immunology, Division of Molecular and Life Sciences, POSTECH, Pohang 790-784, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
The antiquated system used to manufacture the currently licensed inactivated influenza virus vaccines would not be adequate during an influenza virus pandemic. There is currently a search for vaccines that can be developed faster and provide superior, long-lasting immunity to influenza virus as well as other highly pathogenic viruses and bacteria. Recombinant vectors provide a safe and effective method to elicit a strong immune response to a foreign protein or epitope. This review explores the advantages and limitations of several different vectors that are currently being tested, and highlights some of the newer viruses being used as recombinant vectors.
Collapse
|
31
|
Tang DCC, Zhang J, Toro H, Shi Z, Van Kampen KR. Adenovirus as a carrier for the development of influenza virus-free avian influenza vaccines. Expert Rev Vaccines 2009; 8:469-81. [PMID: 19348562 DOI: 10.1586/erv.09.1] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A long-sought goal during the battle against avian influenza is to develop a new generation of vaccines capable of mass immunizing humans as well as poultry (the major source of avian influenza for human infections) in a timely manner. Although administration of the currently licensed influenza vaccine is effective in eliciting protective immunity against seasonal influenza, this approach is associated with a number of insurmountable problems for preventing an avian influenza pandemic. Many of the hurdles may be eliminated by developing new avian influenza vaccines that do not require the propagation of an influenza virus during vaccine production. Replication-competent adenovirus-free adenovirus vectors hold promise as a carrier for influenza virus-free avian influenza vaccines owing to their safety profile and rapid manufacture using cultured suspension cells in a serum-free medium. Simple and efficient mass-immunization protocols, including nasal spray for people and automated in ovo vaccination for poultry, convey another advantage for this class of vaccines. In contrast to parenteral injection of adenovirus vector, the potency of adenovirus-vectored nasal vaccine is not appreciably interfered by pre-existing immunity to adenovirus.
Collapse
Affiliation(s)
- De-chu C Tang
- Vaxin Inc., 1500 First Avenue North, Birmingham, AL 35203, USA.
| | | | | | | | | |
Collapse
|
32
|
Nonreplicating vaccinia virus vectors expressing the H5 influenza virus hemagglutinin produced in modified Vero cells induce robust protection. J Virol 2009; 83:5192-203. [PMID: 19279103 DOI: 10.1128/jvi.02081-08] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The timely development of safe and effective vaccines against avian influenza virus of the H5N1 subtype will be of the utmost importance in the event of a pandemic. Our aim was first to develop a safe live vaccine which induces both humoral and cell-mediated immune responses against human H5N1 influenza viruses and second, since the supply of embryonated eggs for traditional influenza vaccine production may be endangered in a pandemic, an egg-independent production procedure based on a permanent cell line. In the present article, the generation of a complementing Vero cell line suitable for the production of safe poxviral vaccines is described. This cell line was used to produce a replication-deficient vaccinia virus vector H5N1 live vaccine, dVV-HA5, expressing the hemagglutinin of a virulent clade 1 H5N1 strain. This experimental vaccine was compared with a formalin-inactivated whole-virus vaccine based on the same clade and with different replicating poxvirus-vectored vaccines. Mice were immunized to assess protective immunity after high-dose challenge with the highly virulent A/Vietnam/1203/2004(H5N1) strain. A single dose of the defective live vaccine induced complete protection from lethal homologous virus challenge and also full cross-protection against clade 0 and 2 challenge viruses. Neutralizing antibody levels were comparable to those induced by the inactivated vaccine. Unlike the whole-virus vaccine, the dVV-HA5 vaccine induced substantial amounts of gamma interferon-secreting CD8 T cells. Thus, the nonreplicating recombinant vaccinia virus vectors are promising vaccine candidates that induce a broad immune response and can be produced in an egg-independent and adjuvant-independent manner in a proven vector system.
Collapse
|
33
|
Hoelscher M, Gangappa S, Zhong W, Jayashankar L, Sambhara S. Vaccines against epidemic and pandemic influenza. Expert Opin Drug Deliv 2008; 5:1139-57. [DOI: 10.1517/17425247.5.10.1139] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
34
|
Hoelscher MA, Singh N, Garg S, Jayashankar L, Veguilla V, Pandey A, Matsuoka Y, Katz JM, Donis R, Mittal SK, Sambhara S. A broadly protective vaccine against globally dispersed clade 1 and clade 2 H5N1 influenza viruses. J Infect Dis 2008; 197:1185-8. [PMID: 18462165 DOI: 10.1086/529522] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Development of effective and immunogenic vaccines against highly pathogenic avian influenza H5N1 viruses with the potential to cause a pandemic is a public health priority. The global demand for a vaccine cannot be met in the event of an influenza pandemic because of the limited capacity to manufacture egg-derived vaccines as well as potential problems with the availability of embryonated eggs. Thus, there is an urgent need to develop alternative, egg-independent vaccines. We developed an adenoviral vector-based vaccine that contains hemagglutinin protein from clade 1 and clade 2 viruses, as well as conserved nucleoprotein, to broaden the vaccine coverage against H5N1 viruses.
Collapse
Affiliation(s)
- Mary A Hoelscher
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia 30333, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
|