1
|
Tremmel R, Hübschmann D, Schaeffeler E, Pirmann S, Fröhling S, Schwab M. Innovation in cancer pharmacotherapy through integrative consideration of germline and tumor genomes. Pharmacol Rev 2025; 77:100014. [PMID: 39952686 DOI: 10.1124/pharmrev.124.001049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 01/22/2025] Open
Abstract
Precision cancer medicine is widely established, and numerous molecularly targeted drugs for various tumor entities are approved or are in development. Personalized pharmacotherapy in oncology has so far been based primarily on tumor characteristics, for example, somatic mutations. However, the response to drug treatment also depends on pharmacological processes summarized under the term ADME (absorption, distribution, metabolism, and excretion). Variations in ADME genes have been the subject of intensive research for >5 decades, considering individual patients' genetic makeup, referred to as pharmacogenomics (PGx). The combined impact of a patient's tumor and germline genome is only partially understood and often not adequately considered in cancer therapy. This may be attributed, in part, to the lack of methods for combined analysis of both data layers. Optimized personalized cancer therapies should, therefore, aim to integrate molecular information, which derives from both the tumor and the germline genome, and taking into account existing PGx guidelines for drug therapy. Moreover, such strategies should provide the opportunity to consider genetic variants of previously unknown functional significance. Bioinformatic analysis methods and corresponding algorithms for data interpretation need to be developed to integrate PGx data in cancer therapy with a special meaning for interdisciplinary molecular tumor boards, in which cancer patients are discussed to provide evidence-based recommendations for clinical management based on individual tumor profiles. SIGNIFICANCE STATEMENT: The era of personalized oncology has seen the emergence of drugs tailored to genetic variants associated with cancer biology. However, the full potential of targeted therapy remains untapped owing to the predominant focus on acquired tumor-specific alterations. Optimized cancer care must integrate tumor and patient genomes, guided by pharmacogenomic principles. An essential prerequisite for realizing truly personalized drug treatment of cancer patients is the development of bioinformatic tools for comprehensive analysis of all data layers generated in modern precision oncology programs.
Collapse
Affiliation(s)
- Roman Tremmel
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany; University of Tuebingen, Tuebingen, Germany
| | - Daniel Hübschmann
- Computational Oncology Group, Molecular Precision Oncology Program, National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between the German Cancer Research Center (DKFZ) and Heidelberg University Hospital, Heidelberg, Germany; German Cancer Consortium (DKTK), DKFZ, Core Center Heidelberg, Heidelberg, Germany; Innovation and Service Unit for Bioinformatics and Precision Medicine, DKFZ, Heidelberg, Germany; Pattern Recognition and Digital Medicine Group, Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM), Heidelberg, Germany
| | - Elke Schaeffeler
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany; University of Tuebingen, Tuebingen, Germany; Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies," University of Tuebingen, Tuebingen, Germany
| | - Sebastian Pirmann
- Computational Oncology Group, Molecular Precision Oncology Program, National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between the German Cancer Research Center (DKFZ) and Heidelberg University Hospital, Heidelberg, Germany
| | - Stefan Fröhling
- German Cancer Consortium (DKTK), DKFZ, Core Center Heidelberg, Heidelberg, Germany; Division of Translational Medical Oncology, DKFZ, Heidelberg, Germany; NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany; Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Matthias Schwab
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany; University of Tuebingen, Tuebingen, Germany; Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies," University of Tuebingen, Tuebingen, Germany; Departments of Clinical Pharmacology, and Pharmacy and Biochemistry, University of Tuebingen, Tuebingen, Germany; DKTK, DKFZ, Partner Site Tuebingen, Tuebingen, Germany; NCT SouthWest, a partnership between DKFZ and University Hospital Tuebingen, Tuebingen, Germany.
| |
Collapse
|
2
|
Xiu Y, Xiong M, Yang H, Wang Q, Zhao X, Long J, Liang F, Liu N, Chen F, Gao M, Sun Y, Fan R, Zeng Y. Proteomic characterization of murine hematopoietic stem progenitor cells reveals dynamic fetal-to-adult changes in metabolic-related pathways. Biochem Biophys Res Commun 2024; 734:150661. [PMID: 39243675 DOI: 10.1016/j.bbrc.2024.150661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/24/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
Hematopoietic stem progenitor cells (HSPCs) give rise to the hematopoietic system, maintain hematopoiesis throughout the lifespan, and undergo molecular and functional changes during their development and aging. The importance of hematopoietic stem cell (HSC) biology has led to their extensive characterization at genomic and transcriptomic levels. However, the proteomics of HSPCs throughout the murine lifetime still needs to be fully completed. Here, using mass spectrometry (MS)-based quantitative proteomics, we report on the dynamic changes in the proteome of HSPCs from four developmental stages in the fetal liver (FL) and the bone marrow (BM), including E14.5, young (2 months), middle-aged (8 months), and aging (18 months) stages. Proteomics unveils highly dynamic protein kinetics during the development and aging of HSPCs. Our data identify stage-specific developmental features of HSPCs, which can be linked to their functional maturation and senescence. Our proteomic data demonstrated that FL HSPCs depend on aerobic respiration to meet their proliferation and oxygen supply demand, while adult HSPCs prefer glycolysis to preserve the HSC pool. By functional assays, we validated the decreased mitochondrial metabolism, glucose uptake, reactive oxygen species (ROS) production, protein synthesis rate, and increased glutathione S-transferase (GST) activity during HSPC development from fetal to adult. Distinct metabolism pathways and immune-related pathways enriched in different HSPC developmental stages were revealed at the protein level. Our study will have broader implications for understanding the mechanism of stem cell maintenance and fate determination and reversing the HSC aging process.
Collapse
Affiliation(s)
- Yanyu Xiu
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China; Senior Department of Hematology, the Fifth Medical Center of PLA General Hospital, Beijing, 100071, China
| | - Mingfang Xiong
- Senior Department of Hematology, the Fifth Medical Center of PLA General Hospital, Beijing, 100071, China; Medical School of the Chinese PLA General Hospital, Beijing, 100039, China
| | - Haoyu Yang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China; Senior Department of Hematology, the Fifth Medical Center of PLA General Hospital, Beijing, 100071, China
| | - Qianqian Wang
- Senior Department of Hematology, the Fifth Medical Center of PLA General Hospital, Beijing, 100071, China; School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, 311399, China
| | - Xiao Zhao
- Senior Department of Hematology, the Fifth Medical Center of PLA General Hospital, Beijing, 100071, China
| | - Juan Long
- Senior Department of Hematology, the Fifth Medical Center of PLA General Hospital, Beijing, 100071, China
| | - Fei Liang
- Senior Department of Hematology, the Fifth Medical Center of PLA General Hospital, Beijing, 100071, China
| | - Nan Liu
- Senior Department of Hematology, the Fifth Medical Center of PLA General Hospital, Beijing, 100071, China
| | - Fudong Chen
- Medical School of the Chinese PLA General Hospital, Beijing, 100039, China
| | - Meng Gao
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, 311399, China
| | - Yuying Sun
- Senior Department of Hematology, the Fifth Medical Center of PLA General Hospital, Beijing, 100071, China
| | - Ruiwen Fan
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China.
| | - Yang Zeng
- Senior Department of Hematology, the Fifth Medical Center of PLA General Hospital, Beijing, 100071, China; Medical School of the Chinese PLA General Hospital, Beijing, 100039, China; School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, 311399, China.
| |
Collapse
|
3
|
Frolov A, Atwood SG, Guzman MA, Martin JR. A Rare Case of Polymicrogyria in an Elderly Individual With Unique Polygenic Underlining. Cureus 2024; 16:e74300. [PMID: 39717325 PMCID: PMC11665267 DOI: 10.7759/cureus.74300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2024] [Indexed: 12/25/2024] Open
Abstract
Polymicrogyria (PMG) is the most common malformation of cortical development (MCD) and presents as an irregularly patterned cortical surface with numerous small gyri and shallow sulci leading to various neurological deficits including developmental delays, intellectual disability, epilepsy, and language and motor issues. The presentation of PMG varies and is often found in conjunction with other congenital anomalies. Histologically, PMG features an abnormal cortical structure and dyslamination, resulting in its classification as a defect of neuronal migration and organization. Due in part to a variety of etiologies, little is known about the molecular mechanism(s) underlining PMG. To address this gap in knowledge, a case study is presented where an elderly individual with a medical history of unspecified PMG was examined postmortem by using a combination of anatomical, magnetic resonance imaging (MRI), histopathological, and genetic techniques. The results of the study allowed the classification of this case as bifrontal PMG. The genetic screening by whole exome sequencing (WES) on the Illumina Next Generation Sequencing (NGS) platform yielded 83 rare (minor allele frequency, MAF ≤ 0.01) pathological/deleterious variants where none of the respective genes has been previously linked to PMG. However, a subsequent analysis of those variants revealed that a significant number of affected genes were associated with most of the biological processes known to be impaired in PMG thereby pointing toward a polygenic nature in the present case. One of the notable features of the WES dataset was the presence of rare pathological/deleterious variants of genes (ADGRA2, PCDHA1, PCDHA12, PTK7, TPGS1, and USP4) involved in the regulation of Wnt signaling potentially highlighting the latter as an important PMG contributor in the present case. Notably, ADGRA2 warrants a closer look as a candidate gene for PMG because it not only regulates cortical patterning but has also been recently linked to two cases of bifrontal PMG with multiple congenital anomalies through its compound heterozygous mutations.
Collapse
Affiliation(s)
- Andrey Frolov
- Department of Surgery - Center for Anatomical Science and Education, Saint Louis University School of Medicine, St. Louis, USA
| | - Stuart G Atwood
- Department of Surgery - Center for Anatomical Science and Education, Saint Louis University School of Medicine, St. Louis, USA
| | - Miguel A Guzman
- Department of Pathology, Saint Louis University School of Medicine, St. Louis, USA
| | - John R Martin
- Department of Surgery - Center for Anatomical Science and Education, Saint Louis University School of Medicine, St. Louis, USA
| |
Collapse
|
4
|
Mori H, Goji A, Hara M. Upregulation of Intracellular Zinc Ion Level after Differentiation of the Neural Stem/Progenitor Cells In Vitro with the Changes in Gene Expression of Zinc Transporters. Biol Trace Elem Res 2024; 202:4699-4714. [PMID: 38180597 DOI: 10.1007/s12011-023-04033-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 12/18/2023] [Indexed: 01/06/2024]
Abstract
We measured the intracellular zinc ion concentration of murine fetal neural stem/progenitor cells (NSPCs) and that in the differentiated cells. The NSPCs cultured with 1.5 μM Zn2+ proliferated slightly faster than that in the zinc-deficient medium and the intracellular zinc concentration of the NSPCs and that of their differentiated cells (DCs) cultured with 1.5 μM Zn2+ was 1.34-fold and 2.00-fold higher than those in the zinc-deficient medium, respectively. The zinc transporter genes upregulated over the 3.5-fold change were Zip1, Zip4, Zip12, Zip13, ZnT1, ZnT8, and ZnT10 whereas the only downregulated one was Zip8 during the differentiation of NSPCs to DCs. The cell morphologies of both NSPCs and DCs in the low oxygen culture condition consisting of 2%O2 and 5%CO2, the high carbon dioxide condition consisting of 21%O2 and 10%CO2, and the normal condition consisting of 21%O2 and 5%CO2 were essentially the same each other. The expression of Zip4, Zip8, Zip12, and Zip14 was not drastically changed depending on the O2 and CO2 concentrations.
Collapse
Affiliation(s)
- Hideki Mori
- Department of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, 1-1 Gakuencho, Nakaku, Sakai, Osaka, 599-8531, Japan
| | - Akari Goji
- Department of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, 1-1 Gakuencho, Nakaku, Sakai, Osaka, 599-8531, Japan
| | - Masayuki Hara
- Department of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, 1-1 Gakuencho, Nakaku, Sakai, Osaka, 599-8531, Japan.
| |
Collapse
|
5
|
Lee GB, Mazli WNAB, Hao L. Multiomics Evaluation of Human iPSCs and iPSC-Derived Neurons. J Proteome Res 2024; 23:3149-3160. [PMID: 38415376 PMCID: PMC11799864 DOI: 10.1021/acs.jproteome.3c00790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Human induced pluripotent stem cells (iPSCs) can be differentiated into neurons, providing living human neurons to model brain diseases. However, it is unclear how different types of molecules work together to regulate stem cell and neuron biology in healthy and disease states. In this study, we conducted integrated proteomics, lipidomics, and metabolomics analyses with confident identification, accurate quantification, and reproducible measurements to compare the molecular profiles of human iPSCs and iPSC-derived neurons. Proteins, lipids, and metabolites related to mitosis, DNA replication, pluripotency, glycosphingolipids, and energy metabolism were highly enriched in iPSCs, whereas synaptic proteins, neurotransmitters, polyunsaturated fatty acids, cardiolipins, and axon guidance pathways were highly enriched in neurons. Mutations in the GRN gene lead to the deficiency of the progranulin (PGRN) protein, which has been associated with various neurodegenerative diseases. Using this multiomics platform, we evaluated the impact of PGRN deficiency on iPSCs and neurons at the whole-cell level. Proteomics, lipidomics, and metabolomics analyses implicated PGRN's roles in neuroinflammation, purine metabolism, and neurite outgrowth, revealing commonly altered pathways related to neuron projection, synaptic dysfunction, and brain metabolism. Multiomics data sets also pointed toward the same hypothesis that neurons seem to be more susceptible to PGRN loss compared to iPSCs, consistent with the neurological symptoms and cognitive impairment from patients carrying inherited GRN mutations.
Collapse
Affiliation(s)
- Gwang Bin Lee
- Department of Chemistry, The George Washington University, 800 22nd St. NW, Washington, D.C. 20052, United States
| | - Wan Nur Atiqah Binti Mazli
- Department of Chemistry, The George Washington University, 800 22nd St. NW, Washington, D.C. 20052, United States
| | - Ling Hao
- Department of Chemistry, The George Washington University, 800 22nd St. NW, Washington, D.C. 20052, United States
| |
Collapse
|
6
|
Luo Q, Tian Z, Hu Y, Wang C. Effects of Aerobic Exercise on Executive and Memory Functions in Patients With Alzheimer's Disease: A Systematic Review. J Aging Phys Act 2024; 32:541-553. [PMID: 38521051 DOI: 10.1123/japa.2023-0292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/05/2023] [Accepted: 01/20/2024] [Indexed: 03/25/2024]
Abstract
BACKGROUND Alzheimer's disease threatens the health of older adults, particularly by disrupting executive and memory functions, and many studies have shown that aerobic exercise prevents and improves the symptoms associated with the disease. OBJECTIVE The objective was to systematically review the effects of aerobic exercise on executive and memory functions in patients with Alzheimer's disease and to determine the effect factors and mechanisms of the design of aerobic exercise intervention programs. METHOD Relevant literature was searched in three databases (PubMed, Web of Science, and EBSCO) from January 1, 2014 to March 1, 2023, using a subject-word search method. Data on 10 items, including author and country, were extracted from the literature after screening. The quality of the literature was evaluated using the Physiotherapy Evidence Database scale, and a systematic review was performed. RESULTS Twelve papers from seven countries were ultimately included, embodying 11 randomized controlled trials and one study with a repeated-measures design. The overall quality of the studies was good as 657 study participants, aged 45 years and older who had varying degrees of Alzheimer's disease and significant symptoms, were included. Aerobic exercise was found to have a significant positive impact on executive and memory functions in people with Alzheimer's disease. CONCLUSION The effects of aerobic exercise on aspects of executive function were mainly characterized by improvements in inhibitory control, working memory, and cognitive flexibility, whereas the effects on aspects of memory function were mainly characterized by improvements in logical memory, situational memory, and short-term memory.
Collapse
Affiliation(s)
- Qiaoyou Luo
- College of Physical Education, Hunan University, Changsha, HUN, China
| | - Zuguo Tian
- College of Physical Education, Hunan University, Changsha, HUN, China
| | - Yuting Hu
- College of Physical Education, Hunan University, Changsha, HUN, China
| | - Chaochao Wang
- College of Physical Education, Hunan University, Changsha, HUN, China
| |
Collapse
|
7
|
Xinyi X, Gong Y. The role of ATP-binding cassette subfamily G member 1 in tumor progression. Cancer Med 2024; 13:e7285. [PMID: 38896016 PMCID: PMC11187935 DOI: 10.1002/cam4.7285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 04/13/2024] [Accepted: 04/30/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND ATP-binding cassette subfamily G member 1 is mostly known as a transporter for intracellular cholesterol efflux, and a number of studies indicate that ABCG1 also functions actively in tumor initiation and progression. This review aimed to provide an overall review of how ABCG1 acts in tumor progression. METHOD A comprehensive searching about ABCG1 and tumor was conducted up to November 2023 using proper keywords through databases including PubMed and Web of Science. RESULT Overall, ABCG1 plays a crucial role in the development of multiple tumorigenesis. ABCG1 enhances tumor-promoting ability through conferring stem-like properties to cancer cells and mediates chemoresistance in multiple cancers. Additionally, ABCG1 may act as a kinase to phosphorylate downstream molecules and induces tumor growth. In tumor microenvironment, ABCG1 plays a substantial role in immunity response through macrophages to create a tumor-favoring circumstance. CONCLUSION High expression of ABCG1 is usually associated with poor prognosis, which means ABCG1 may be a potential biomarker for early diagnosis and prognosis of various cancers. ABCG1-targeted therapy may provide a novel treatment for cancer patients.
Collapse
Affiliation(s)
- Xu Xinyi
- Central Laboratory, The Fifth People's Hospital of ShanghaiFudan UniversityShanghaiChina
| | - Yang Gong
- Central Laboratory, The Fifth People's Hospital of ShanghaiFudan UniversityShanghaiChina
- Cancer InstituteFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyFudan University Shanghai Medical SchoolShanghaiChina
| |
Collapse
|
8
|
Liu Y, Jiang L, Song W, Wang C, Yu S, Qiao J, Wang X, Jin C, Zhao D, Bai X, Zhang P, Wang S, Liu M. Ginsenosides on stem cells fate specification-a novel perspective. Front Cell Dev Biol 2023; 11:1190266. [PMID: 37476154 PMCID: PMC10354371 DOI: 10.3389/fcell.2023.1190266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/22/2023] [Indexed: 07/22/2023] Open
Abstract
Recent studies have demonstrated that stem cells have attracted much attention due to their special abilities of proliferation, differentiation and self-renewal, and are of great significance in regenerative medicine and anti-aging research. Hence, finding natural medicines that intervene the fate specification of stem cells has become a priority. Ginsenosides, the key components of natural botanical ginseng, have been extensively studied for versatile effects, such as regulating stem cells function and resisting aging. This review aims to summarize recent progression regarding the impact of ginsenosides on the behavior of adult stem cells, particularly from the perspective of proliferation, differentiation and self-renewal.
Collapse
Affiliation(s)
- Ying Liu
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Leilei Jiang
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Wenbo Song
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Chenxi Wang
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Shiting Yu
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Juhui Qiao
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Xinran Wang
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Chenrong Jin
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Daqing Zhao
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Xueyuan Bai
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Peiguang Zhang
- Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences Changchun, Changchun, Jilin, China
| | - Siming Wang
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Meichen Liu
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
9
|
Tu X, Li C, Sun W, Tian X, Li Q, Wang S, Ding X, Huang Z. Suppression of Cancer Cell Stemness and Drug Resistance via MYC Destabilization by Deubiquitinase USP45 Inhibition with a Natural Small Molecule. Cancers (Basel) 2023; 15:cancers15030930. [PMID: 36765885 PMCID: PMC9913288 DOI: 10.3390/cancers15030930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/23/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
Cancer stem cells (CSCs) play significant roles in cancer development, drug resistance and cancer recurrence. In cancer treatments based on the CSC characteristics and inducing factors, MYC is a promising target for therapeutic molecules. Although it has been regarded as an undrugable target, its stability tightly regulated by the ubiquitin-proteasome system offers a new direction for molecule targeting and cancer treatment. Herein we report our discoveries in this research area, and we have found that deubiquitinase USP45 can directly bind with MYC, resulting in its deubiquitination and stabilization. Further, USP45 overexpressing can upregulate MYC, and this overexpressing can significantly enhance cancer development, cancer cell stemness and drug resistance. Interestingly, without enhancing cancer development, MYC silencing with shRNA can only suppress USP45-induced stemness and drug resistance. Moreover, we have identified that USP45 can be specifically bound and inhibited by a natural small molecule (α-mangostin), in turn significantly suppressing USP45-induced stemness and drug resistance. Since USP45 is significantly expressed in cervical tumors, we have discovered that the combination of α-mangostin and doxorubicin can significantly inhibit USP45-induced cervical tumorigenesis in an animal model. In general, on the basis of our USP45 discoveries on its MYC deubiquitination and α-mangostin inhibition, suppressing USP45 has opened a new window for suppressing cancer development, stemness and drug resistance.
Collapse
Affiliation(s)
- Xiao Tu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu 610000, China
| | - Chuncheng Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu 610000, China
| | - Wen Sun
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu 610000, China
| | - Xi Tian
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu 610000, China
| | - Qiufu Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu 610000, China
| | - Shaoxin Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu 610000, China
| | - Xiaoling Ding
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu 610000, China
| | - Zhen Huang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu 610000, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 610000, China
- SeNA Research Institute and Szostak-CDHT Large Nucleic Acids Institute, Chengdu 610000, China
- Correspondence: ; Fax: +86-028-8550-2629
| |
Collapse
|
10
|
Joshi P, Patel R, Kang SY, Serbinowski E, Lee MY. Establishment of ion channel and ABC transporter assays in 3D-cultured ReNcell VM on a 384-pillar plate for neurotoxicity potential. Toxicol In Vitro 2022; 82:105375. [PMID: 35550413 DOI: 10.1016/j.tiv.2022.105375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 04/05/2022] [Accepted: 05/03/2022] [Indexed: 10/18/2022]
Abstract
Neurotoxicity potential of compounds by inhibition of ion channels and efflux transporters has been studied traditionally using two-dimensionally (2D) cultured cell lines such as CHO and HEK-293 overexpressing the protein of interest. However, these approaches are time consuming and do not recapitulate the activity of ion channels and efflux transporters indigenously expressed in neural stem cells (NSCs) in vivo. To overcome these issues, we established ion channel and transporter assays on a 384-pillar plate with three-dimensionally (3D) cultured ReNcell VM and demonstrated high-throughput measurement of ion channel and transporter activity. RNA sequencing analysis identified major ion channels and efflux transporters expressed in ReNcell VM, followed by validating 3D ReNcell-based ion channel and transporter assays with model compounds. Major ion channel activities were measured by specifically inhibiting potassium channels Kv 7.2 with XE-991 and Kv 4.3 with fluoxetine, and a calcium channel with 2-APB. Activities of major efflux transporters, MDR1, MRP1, and BCRP, were assessed using their respective blockers, verapamil, probenecid, and novobiocin. From this study, we demonstrated that 3D-cultured ReNcell VM on the 384-pillar plate could be a good alternative to rapidly identify environmental chemicals and therapeutic compounds for their role in modulating the activity of ion channels and efflux transporters, potentially leading to neurotoxicity.
Collapse
Affiliation(s)
- Pranav Joshi
- Department of Chemical and Biomedical Engineering, Cleveland State University, Cleveland, OH, USA; Bioprinting Laboratories Inc, Denton, TX, USA
| | - Rushabh Patel
- Department of Chemical and Biomedical Engineering, Cleveland State University, Cleveland, OH, USA; College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Soo-Yeon Kang
- Department of Chemical and Biomedical Engineering, Cleveland State University, Cleveland, OH, USA; Department of Biomedical Engineering, University of North Texas, Denton, TX, USA
| | - Emily Serbinowski
- Department of Chemical and Biomedical Engineering, Cleveland State University, Cleveland, OH, USA; College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Moo-Yeal Lee
- Department of Chemical and Biomedical Engineering, Cleveland State University, Cleveland, OH, USA; Department of Biomedical Engineering, University of North Texas, Denton, TX, USA.
| |
Collapse
|
11
|
Extracellular matrix protein-1 secretory isoform promotes ovarian cancer through increasing alternative mRNA splicing and stemness. Nat Commun 2021; 12:4230. [PMID: 34244494 PMCID: PMC8270969 DOI: 10.1038/s41467-021-24315-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 06/10/2021] [Indexed: 12/27/2022] Open
Abstract
Extracellular matrix protein-1 (ECM1) promotes tumorigenesis in multiple organs but the mechanisms associated to ECM1 isoform subtypes have yet to be clarified. We report in this study that the secretory ECM1a isoform induces tumorigenesis through the GPR motif binding to integrin αXβ2 and the activation of AKT/FAK/Rho/cytoskeleton signaling. The ATP binding cassette subfamily G member 1 (ABCG1) transduces the ECM1a-integrin αXβ2 interactive signaling to facilitate the phosphorylation of AKT/FAK/Rho/cytoskeletal molecules and to confer cancer cell cisplatin resistance through up-regulation of the CD326-mediated cell stemness. On the contrary, the non-secretory ECM1b isoform binds myosin and blocks its phosphorylation, impairing cytoskeleton-mediated signaling and tumorigenesis. Moreover, ECM1a induces the expression of the heterogeneous nuclear ribonucleoprotein L like (hnRNPLL) protein to favor the alternative mRNA splicing generating ECM1a. ECM1a, αXβ2, ABCG1 and hnRNPLL higher expression associates with poor survival, while ECM1b higher expression associates with good survival. These results highlight ECM1a, integrin αXβ2, hnRNPLL and ABCG1 as potential targets for treating cancers associated with ECM1-activated signaling. Extracellular matrix protein 1 (ECM1) has been associated with cancer but the underlying molecular mechanisms are not clear. Here, the authors show that while ECM1b isoform is a tumour suppressor, the secreted isoform ECM1a promotes tumourigenesis and chemoresistance through increasing stemness and alternative mRNA splicing in ovarian cancer.
Collapse
|
12
|
Lopes I, Altab G, Raina P, de Magalhães JP. Gene Size Matters: An Analysis of Gene Length in the Human Genome. Front Genet 2021; 12:559998. [PMID: 33643374 PMCID: PMC7905317 DOI: 10.3389/fgene.2021.559998] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 01/06/2021] [Indexed: 12/23/2022] Open
Abstract
While it is expected for gene length to be associated with factors such as intron number and evolutionary conservation, we are yet to understand the connections between gene length and function in the human genome. In this study, we show that, as expected, there is a strong positive correlation between gene length, transcript length, and protein size as well as a correlation with the number of genetic variants and introns. Among tissue-specific genes, we find that the longest transcripts tend to be expressed in the blood vessels, nerves, thyroid, cervix uteri, and the brain, while the smallest transcripts tend to be expressed in the pancreas, skin, stomach, vagina, and testis. We report, as shown previously, that natural selection suppresses changes for genes with longer transcripts and promotes changes for genes with smaller transcripts. We also observe that genes with longer transcripts tend to have a higher number of co-expressed genes and protein-protein interactions, as well as more associated publications. In the functional analysis, we show that bigger transcripts are often associated with neuronal development, while smaller transcripts tend to play roles in skin development and in the immune system. Furthermore, pathways related to cancer, neurons, and heart diseases tend to have genes with longer transcripts, with smaller transcripts being present in pathways related to immune responses and neurodegenerative diseases. Based on our results, we hypothesize that longer genes tend to be associated with functions that are important in the early development stages, while smaller genes tend to play a role in functions that are important throughout the whole life, like the immune system, which requires fast responses.
Collapse
Affiliation(s)
| | | | | | - João Pedro de Magalhães
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
13
|
van Vliet EA, Iyer AM, Mesarosova L, Çolakoglu H, Anink JJ, van Tellingen O, Maragakis NJ, Shefner J, Bunt T, Aronica E. Expression and Cellular Distribution of P-Glycoprotein and Breast Cancer Resistance Protein in Amyotrophic Lateral Sclerosis Patients. J Neuropathol Exp Neurol 2020; 79:266-276. [PMID: 31999342 PMCID: PMC7036662 DOI: 10.1093/jnen/nlz142] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 11/23/2019] [Accepted: 12/20/2019] [Indexed: 12/11/2022] Open
Abstract
For amyotrophic lateral sclerosis (ALS), achieving and maintaining effective drug levels in the brain is challenging due to the activity of ATP-binding cassette (ABC) transporters which efflux drugs that affect drug exposure and response in the brain. We investigated the expression and cellular distribution of the ABC transporters P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP) using immunohistochemistry in spinal cord (SC), motor cortex, and cerebellum from a large cohort of genetically well characterized ALS patients (n = 25) and controls (n = 14). The ALS group included 17 sporadic (sALS) and 8 familial (fALS) patients. Strong P-gp expression was observed in endothelial cells in both control and ALS specimens. Immunohistochemical analysis showed higher P-gp expression in reactive astroglial cells in both gray (ventral horn) and white matter of the SC, as well as in the motor cortex of all ALS patients, as compared with controls. BCRP expression was higher in glia in the SC and in blood vessels and glia in the motor cortex of ALS patients, as compared with controls. P-gp and BCRP immunoreactivity did not differ between sALS and fALS cases. The upregulation of both ABC transporters in the brain may explain multidrug resistance in ALS patients and has implications for the use of both approved and experimental therapeutics.
Collapse
Affiliation(s)
- Erwin A van Vliet
- From the Amsterdam UMC, University of Amsterdam, Department of (Neuro)Pathology, Amsterdam Neuroscience.,Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam
| | - Anand M Iyer
- From the Amsterdam UMC, University of Amsterdam, Department of (Neuro)Pathology, Amsterdam Neuroscience
| | - Lucia Mesarosova
- From the Amsterdam UMC, University of Amsterdam, Department of (Neuro)Pathology, Amsterdam Neuroscience
| | - Hilal Çolakoglu
- Division of Pharmacology, The Netherlands Cancer Institute (HÇ, OvT), Amsterdam, The Netherlands
| | - Jasper J Anink
- From the Amsterdam UMC, University of Amsterdam, Department of (Neuro)Pathology, Amsterdam Neuroscience
| | - Olaf van Tellingen
- Division of Pharmacology, The Netherlands Cancer Institute (HÇ, OvT), Amsterdam, The Netherlands
| | - Nicholas J Maragakis
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jeremy Shefner
- Department of Neurology, Barrow Neurological Institute, Phoenix, Arizona
| | - Ton Bunt
- Izumi Biosciences, Inc., Lexington, Massachusetts
| | - Eleonora Aronica
- From the Amsterdam UMC, University of Amsterdam, Department of (Neuro)Pathology, Amsterdam Neuroscience
| |
Collapse
|
14
|
Fang Q, Zhang Y, Chen X, Li H, Cheng L, Zhu W, Zhang Z, Tang M, Liu W, Wang H, Wang T, Shen T, Chai R. Three-Dimensional Graphene Enhances Neural Stem Cell Proliferation Through Metabolic Regulation. Front Bioeng Biotechnol 2020; 7:436. [PMID: 31998703 PMCID: PMC6961593 DOI: 10.3389/fbioe.2019.00436] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 12/06/2019] [Indexed: 12/13/2022] Open
Abstract
Graphene consists of two-dimensional sp2-bonded carbon sheets, a single or a few layers thick, which has attracted considerable interest in recent years due to its good conductivity and biocompatibility. Three-dimensional graphene foam (3DG) has been demonstrated to be a robust scaffold for culturing neural stem cells (NSCs) in vitro that not only supports NSCs growth, but also maintains cells in a more active proliferative state than 2D graphene films and ordinary glass. In addition, 3DG can enhance NSCs differentiation into astrocytes and especially neurons. However, the underlying mechanisms behind 3DG's effects are still poorly understood. Metabolism is the fundamental characteristic of life and provides substances for building and powering the cell. Metabolic activity is tightly tied with the proliferation, differentiation, and self-renewal of stem cells. This study focused on the metabolic reconfiguration of stem cells induced by culturing on 3DG. This study established the correlation between metabolic reconfiguration metabolomics with NSCs cell proliferation rate on different scaffold. Several metabolic processes have been uncovered in association with the proliferation change of NSCs. Especially, culturing on 3DG triggered pathways that increased amino acid incorporation and enhanced glucose metabolism. These data suggested a potential association between graphene and pathways involved in Parkinson's disease. Our work provides a very useful starting point for further studies of NSC fate determination on 3DG.
Collapse
Affiliation(s)
- Qiaojun Fang
- MOE Key Laboratory for Developmental Genes and Human Disease, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Institute of Life Sciences, Southeast University, Nanjing, China
| | - Yuhua Zhang
- MOE Key Laboratory for Developmental Genes and Human Disease, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Institute of Life Sciences, Southeast University, Nanjing, China
| | - Xiangbo Chen
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, China
- Hangzhou Rongze Biotechnology Co., Ltd. Hangzhou, China
| | - He Li
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Liya Cheng
- Institute of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Wenjuan Zhu
- Zhangjiagang City First People's Hospital, The Affiliated Zhangjiagang Hospital of Suzhou University, Zhangjiagang, China
| | - Zhong Zhang
- MOE Key Laboratory for Developmental Genes and Human Disease, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Institute of Life Sciences, Southeast University, Nanjing, China
| | - Mingliang Tang
- MOE Key Laboratory for Developmental Genes and Human Disease, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Institute of Life Sciences, Southeast University, Nanjing, China
| | - Wei Liu
- Department of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Hui Wang
- Department of Otolaryngology Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Tian Wang
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Tie Shen
- Key Laboratory of Information and Computing Science Guizhou Province, Guizhou Normal University, Guiyang, China
| | - Renjie Chai
- MOE Key Laboratory for Developmental Genes and Human Disease, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Institute of Life Sciences, Southeast University, Nanjing, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Science, Beijing, China
- Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, China
| |
Collapse
|
15
|
Cancer Stem Cells in Head and Neck Carcinomas: Identification and Possible Therapeutic Implications. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1083:89-102. [PMID: 29139089 DOI: 10.1007/5584_2017_116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The recurrence and/or lack of response of certain tumors to radio- and chemotherapy has been attributed to a small subpopulation of cells termed cancer stem cells (CSCs). CSCs have been identified in many tumors (including solid and hematological tumors). CSCs are characterized by their capacity for self-renewal, their ability to introduce heterogeneity within a tumor mass and its metastases, genomic instability, and their insensitivity to both radiation and chemotherapy. The latter highlights the clinical importance of studying this subpopulation since their resistance to traditional treatments may lead to metastatic disease and/or tumor relapse. Head and neck squamous cell carcinomas (HNSCCs) are the sixth most common malignancy worldwide with the highest incidence occurring in East Asia and eastern and southern Africa. Several cellular subpopulations believed to have CSC properties have been isolated from HNSCCs, but at present, identification and characterization of CSCs remains an experimental challenge with no established or standardized protocols in place to confirm their identity. In this review we discuss current approaches to the study of CSCs with a focus on HNSCCs, particularly in the context of what this might mean from a therapeutic perspective.
Collapse
|
16
|
Kim TW, Che JH, Yun JW. Use of stem cells as alternative methods to animal experimentation in predictive toxicology. Regul Toxicol Pharmacol 2019; 105:15-29. [DOI: 10.1016/j.yrtph.2019.03.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 03/23/2019] [Accepted: 03/25/2019] [Indexed: 12/16/2022]
|
17
|
Ho NTT, Kutzner A, Heese K. A Novel Divergent Gene Transcription Paradigm-the Decisive, Brain-Specific, Neural |-Srgap2-Fam72a-| Master Gene Paradigm. Mol Neurobiol 2019; 56:5891-5899. [PMID: 30685845 DOI: 10.1007/s12035-019-1486-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 01/10/2019] [Indexed: 01/22/2023]
Abstract
Brain development and repair largely depend on neural stem cells (NSCs). Here, we suggest that two genes, i.e., Srgap2 (SLIT-ROBO Rho GTPase-activating protein 2) and Fam72a (family with sequence similarity to 72, member A), constitute a single, NSC-specific, |-Srgap2-Fam72a-| master gene pair co-existing in reciprocal functional dependency. This gene pair has a dual, commonly used, intergenic region (IGR) promotor, which is a prerequisite in controlling human brain plasticity. We applied fluorescence cellular microscopy and fluorescence-activated cell sorting (FACS) to assess rat |-Srgap2-Fam72a-| master gene IGR promotor activity upon stimulation with two contrary growth factors: nerve growth factor (Ngf, a differentiation growth factor) and epidermal growth factor (Egf, a mitotic growth factor). We found that Ngf and Egf acted on the same IGR gene promotor element of the |-Srgap2-Fam72a-| master gene to mediate cell differentiation and proliferation, respectively. Ngf mediated Srgap2 expression and neuronal survival and differentiation while Egf activated Fam72a transcription and cell proliferation. Our data provide new insights into the specific regulation of the |-Srgap2-Fam72a-| master gene with its dual IGR promotor that controls two reverse-oriented functional-dependent genes located on opposite DNA strands. This structure represents a novel paradigm for controlling transcription of divergent genes in regulating NSC gene expression. This paradigm may allow for novel therapeutic approaches to restore or improve higher cognitive functions and cure cancers.
Collapse
Affiliation(s)
- Nguyen Thi Thanh Ho
- Graduate School of Biomedical Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 133-791, Republic of Korea
| | - Arne Kutzner
- Department of Information Systems, College of Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 133-791, Republic of Korea
| | - Klaus Heese
- Graduate School of Biomedical Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 133-791, Republic of Korea.
| |
Collapse
|
18
|
Side Population: Its Use in the Study of Cellular Heterogeneity and as a Potential Enrichment Tool for Rare Cell Populations. Stem Cells Int 2018; 2018:2472137. [PMID: 30627171 PMCID: PMC6304857 DOI: 10.1155/2018/2472137] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 11/07/2018] [Accepted: 11/14/2018] [Indexed: 12/16/2022] Open
Abstract
There is still much to learn about the cells used for cell- and gene-based therapies in the clinical setting. Stem cells are found in virtually all tissues in the human body. As a result, cells isolated from these tissues are a heterogeneous population consisting of various subpopulations including stem cells. Several strategies have been used to isolate and define the subpopulations that constitute these heterogeneous populations, one of which is the side population (SP) assay. SP cells are identified by their ability to efflux a fluorescent dye at a rate that is greater than the main cell population. This elevated rate of dye efflux has been attributed to the expression of members of the ATP-binding cassette (ABC) transporter protein family. SP cells have been identified in various tissues. In this review, we discuss the research to date on SP cells, focussing on SP cells identified in haematopoietic stem cells, adipose-derived stromal cells, and dental pulp.
Collapse
|
19
|
Abstract
Although we have come a long way in our understanding of the signals that drive cancer growth, and how these signals can be targeted, effective control of this disease remains a key scientific and medical challenge. The therapy resistance and relapse that are commonly seen are driven in large part by the inherent heterogeneity within cancers that allows drugs to effectively eliminate some, but not all, malignant cells. Here, we focus on the fundamental drivers of this heterogeneity by examining emerging evidence that shows that these traits are often controlled by the disruption of normal cell fate and aberrant adoption of stem cell signals. We discuss how undifferentiated cells are preferentially primed for transformation and often serve as the cell of origin for cancers. We also consider evidence showing that activation of stem cell programmes in cancers can lead to progression, therapy resistance and metastatic growth and that targeting these attributes may enable better control over a difficult disease.
Collapse
Affiliation(s)
- Nikki K Lytle
- Departments of Pharmacology and Medicine, San Diego School of Medicine, University of California, La Jolla, CA, USA
- Sanford Consortium for Regenerative Medicine, San Diego School of Medicine, University of California, La Jolla, CA, USA
- Moores Cancer Center, San Diego School of Medicine, University of California, La Jolla, CA, USA
| | - Alison G Barber
- Departments of Pharmacology and Medicine, San Diego School of Medicine, University of California, La Jolla, CA, USA
- Sanford Consortium for Regenerative Medicine, San Diego School of Medicine, University of California, La Jolla, CA, USA
- Moores Cancer Center, San Diego School of Medicine, University of California, La Jolla, CA, USA
| | - Tannishtha Reya
- Departments of Pharmacology and Medicine, San Diego School of Medicine, University of California, La Jolla, CA, USA.
- Sanford Consortium for Regenerative Medicine, San Diego School of Medicine, University of California, La Jolla, CA, USA.
- Moores Cancer Center, San Diego School of Medicine, University of California, La Jolla, CA, USA.
| |
Collapse
|
20
|
ABCG2 confers promotion in gastric cancer through modulating downstream CRKL in vitro combining with biostatistics mining. Oncotarget 2018; 8:5256-5267. [PMID: 28029654 PMCID: PMC5354906 DOI: 10.18632/oncotarget.14128] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 11/23/2016] [Indexed: 12/24/2022] Open
Abstract
ABCG2, member of ATP-binding cassette (ABC) transporter family, is known as crucial regulator related to multi-drug resistance in human tumors and has recently been putatively studied as human carcinoma cell biomarker. While, effects of ABCG2 on human gastric cancer (GC) has not been illustrated thoroughly. In this study, by applying biostatistics mining methods, we observed that ABCG2 is frequently aberrantly expressed in GC patients through exploring dataset of GSE19826 in NCBI GEO database. Contemporary, extreme up-regulation of ABCG2 was discovered in both GC specimens and cell lines of our center, from which we observed high level of ABCG2 associated with GC clinicopathologic features and poor outcomes. Depletion of ABCG2 in MKN-45 GC cells, the cell proliferation was significantly impacted along with cell cycle arrest, and cell apoptosis was induced. Interestingly, combined with data mining of NCBI database, CRKL, a pivotal GC promoter, presents a significant positive correlation with ABCG2. And the expression of CRKL in GC cells was obviously affected through ABCG2 depletion. Simultaneously, over-expression of CRKL in MKN-45 cells significantly rescued most of the phenotypes induced by ABCG2 depletion. Thus, we suggest that ABCG2 is a potential biomarker and target upstream CRKL, which could be further studied for GC diagnosis and therapeutic treatment.
Collapse
|
21
|
Abstract
Cell metabolism is a key determinant factor for the pluripotency and fate commitment of Stem Cells (SCs) during development, ageing, pathological onset and progression. We derived and cultured selected subpopulations of rodent fetal, postnatal, adult Neural SCs (NSCs) and postnatal glial progenitors, Olfactory Ensheathing Cells (OECs), respectively from the subventricular zone (SVZ) and the olfactory bulb (OB). Cell lysates were analyzed by proton Nuclear Magnetic Resonance (1H-NMR) spectroscopy leading to metabolites identification and quantitation. Subsequent multivariate analysis of NMR data by Principal Component Analysis (PCA), and Partial Least Square Discriminant Analysis (PLS-DA) allowed data reduction and cluster analysis. This strategy ensures the definition of specific features in the metabolic content of phenotypically similar SCs sharing a common developmental origin. The metabolic fingerprints for selective metabolites or for the whole spectra demonstrated enhanced peculiarities among cell types. The key result of our work is a neat divergence between OECs and the remaining NSC cells. We also show that statistically significant differences for selective metabolites characterizes NSCs of different ages. Finally, the retrived metabolome in cell cultures correlates to the physiological SC features, thus allowing an integrated bioengineering approach for biologic fingerprints able to dissect the (neural) SC molecular specificities.
Collapse
|
22
|
Cao Y. Tumorigenesis as a process of gradual loss of original cell identity and gain of properties of neural precursor/progenitor cells. Cell Biosci 2017; 7:61. [PMID: 29177029 PMCID: PMC5693707 DOI: 10.1186/s13578-017-0188-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 10/27/2017] [Indexed: 02/07/2023] Open
Abstract
Cancer is a complex disease without a unified explanation for its cause so far. Our recent work demonstrates that cancer cells share similar regulatory networks and characteristics with embryonic neural cells. Based on the study, I will address the relationship between tumor and neural cells in more details. I collected the evidence from various aspects of cancer development in many other studies, and integrated the information from studies on cancer cell properties, cell fate specification during embryonic development and evolution. Synthesis of the information strongly supports that cancer cells share much more similarities with neural progenitor/stem cells than with mesenchymal-type cells and that tumorigenesis represents a process of gradual loss of cell or lineage identity and gain of characteristics of neural cells. I also discuss cancer EMT, a concept having been under intense debate, and possibly the true meaning of EMT in cancer initiation and development. This synthesis provides fresh insights into a unified explanation for and a previously unrecognized nature of tumorigenesis, which might not be revealed by studies on individual molecular events. The review will also present some brief suggestions for cancer research based on the proposed model of tumorigenesis.
Collapse
Affiliation(s)
- Ying Cao
- Model Animal Research Center and MOE Key Laboratory of Model Animals for Disease Study, Nanjing University, 12 Xuefu Road, Pukou High-Tech Zone, Nanjing, 210061 China
| |
Collapse
|
23
|
Zhang Z, Lei A, Xu L, Chen L, Chen Y, Zhang X, Gao Y, Yang X, Zhang M, Cao Y. Similarity in gene-regulatory networks suggests that cancer cells share characteristics of embryonic neural cells. J Biol Chem 2017. [PMID: 28634230 DOI: 10.1074/jbc.m117.785865] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Cancer cells are immature cells resulting from cellular reprogramming by gene misregulation, and redifferentiation is expected to reduce malignancy. It is unclear, however, whether cancer cells can undergo terminal differentiation. Here, we show that inhibition of the epigenetic modification enzyme enhancer of zeste homolog 2 (EZH2), histone deacetylases 1 and 3 (HDAC1 and -3), lysine demethylase 1A (LSD1), or DNA methyltransferase 1 (DNMT1), which all promote cancer development and progression, leads to postmitotic neuron-like differentiation with loss of malignant features in distinct solid cancer cell lines. The regulatory effect of these enzymes in neuronal differentiation resided in their intrinsic activity in embryonic neural precursor/progenitor cells. We further found that a major part of pan-cancer-promoting genes and the signal transducers of the pan-cancer-promoting signaling pathways, including the epithelial-to-mesenchymal transition (EMT) mesenchymal marker genes, display neural specific expression during embryonic neurulation. In contrast, many tumor suppressor genes, including the EMT epithelial marker gene that encodes cadherin 1 (CDH1), exhibited non-neural or no expression. This correlation indicated that cancer cells and embryonic neural cells share a regulatory network, mediating both tumorigenesis and neural development. This observed similarity in regulatory mechanisms suggests that cancer cells might share characteristics of embryonic neural cells.
Collapse
Affiliation(s)
- Zan Zhang
- Model Animal Research Center of Nanjing University and MOE Key Laboratory of Model Animals for Disease Study, 12 Xuefu Road, Pukou High-Tech Zone, Nanjing 210061, China
| | - Anhua Lei
- Model Animal Research Center of Nanjing University and MOE Key Laboratory of Model Animals for Disease Study, 12 Xuefu Road, Pukou High-Tech Zone, Nanjing 210061, China
| | - Liyang Xu
- Model Animal Research Center of Nanjing University and MOE Key Laboratory of Model Animals for Disease Study, 12 Xuefu Road, Pukou High-Tech Zone, Nanjing 210061, China
| | - Lu Chen
- Model Animal Research Center of Nanjing University and MOE Key Laboratory of Model Animals for Disease Study, 12 Xuefu Road, Pukou High-Tech Zone, Nanjing 210061, China
| | - Yonglong Chen
- Shenzhen Key Laboratory of Cell Microenvironment, Department of Biology, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Xuena Zhang
- Model Animal Research Center of Nanjing University and MOE Key Laboratory of Model Animals for Disease Study, 12 Xuefu Road, Pukou High-Tech Zone, Nanjing 210061, China
| | - Yan Gao
- Model Animal Research Center of Nanjing University and MOE Key Laboratory of Model Animals for Disease Study, 12 Xuefu Road, Pukou High-Tech Zone, Nanjing 210061, China
| | - Xiaoli Yang
- Model Animal Research Center of Nanjing University and MOE Key Laboratory of Model Animals for Disease Study, 12 Xuefu Road, Pukou High-Tech Zone, Nanjing 210061, China
| | - Min Zhang
- Model Animal Research Center of Nanjing University and MOE Key Laboratory of Model Animals for Disease Study, 12 Xuefu Road, Pukou High-Tech Zone, Nanjing 210061, China
| | - Ying Cao
- Model Animal Research Center of Nanjing University and MOE Key Laboratory of Model Animals for Disease Study, 12 Xuefu Road, Pukou High-Tech Zone, Nanjing 210061, China.
| |
Collapse
|
24
|
Schumacher T, Benndorf RA. ABC Transport Proteins in Cardiovascular Disease-A Brief Summary. Molecules 2017; 22:molecules22040589. [PMID: 28383515 PMCID: PMC6154303 DOI: 10.3390/molecules22040589] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/29/2017] [Accepted: 04/03/2017] [Indexed: 12/17/2022] Open
Abstract
Adenosine triphosphate (ATP)-binding cassette (ABC) transporters may play an important role in the pathogenesis of atherosclerotic vascular diseases due to their involvement in cholesterol homeostasis, blood pressure regulation, endothelial function, vascular inflammation, as well as platelet production and aggregation. In this regard, ABC transporters, such as ABCA1, ABCG5 and ABCG8, were initially found to be responsible for genetically-inherited syndromes like Tangier diseases and sitosterolemia. These findings led to the understanding of those transporter’s function in cellular cholesterol efflux and thereby also linked them to atherosclerosis and cardiovascular diseases (CVD). Subsequently, further ABC transporters, i.e., ABCG1, ABCG4, ABCB6, ABCC1, ABCC6 or ABCC9, have been shown to directly or indirectly affect cellular cholesterol efflux, the inflammatory response in macrophages, megakaryocyte proliferation and thrombus formation, as well as vascular function and blood pressure, and may thereby contribute to the pathogenesis of CVD and its complications. Furthermore, ABC transporters, such as ABCB1, ABCC2 or ABCG2, may affect the safety and efficacy of several drug classes currently in use for CVD treatment. This review will give a brief overview of ABC transporters involved in the process of atherogenesis and CVD pathology. It also aims to briefly summarize the role of ABC transporters in the pharmacokinetics and disposition of drugs frequently used to treat CVD and CVD-related complications.
Collapse
Affiliation(s)
- Toni Schumacher
- Institute of Pharmacy, Department of Clinical Pharmacy and Pharmacotherapy, Martin-Luther-University Halle-Wittenberg, Wolfgang-Langenbeck-Strasse 4, D-06120 Halle (Saale), Germany.
| | - Ralf A Benndorf
- Institute of Pharmacy, Department of Clinical Pharmacy and Pharmacotherapy, Martin-Luther-University Halle-Wittenberg, Wolfgang-Langenbeck-Strasse 4, D-06120 Halle (Saale), Germany.
| |
Collapse
|
25
|
Beerman I. Accumulation of DNA damage in the aged hematopoietic stem cell compartment. Semin Hematol 2016; 54:12-18. [PMID: 28088982 DOI: 10.1053/j.seminhematol.2016.11.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 11/10/2016] [Indexed: 02/07/2023]
Abstract
Aging is associated with loss of functional potential of multiple tissue systems, and there has been significant interest in understanding how tissue-specific cells contribute to this decline. DNA damage accumulation has been widely associated with aging in differentiated cell types. However, tissue-specific stem cells were once thought to be a geno-protected population, as damage accrued in a stem cell population has the potential to be inherited by differentiated progeny, as well as propagated within the stem cell compartment through self-renewal divisions. This review will discuss the evidence for DNA damage accumulation in the aged HSC compartment, potential drivers, and finally the consequences of the acquired damage.
Collapse
Affiliation(s)
- Isabel Beerman
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD.
| |
Collapse
|
26
|
Khan MI, Czarnecka AM, Lewicki S, Helbrecht I, Brodaczewska K, Koch I, Zdanowski R, Król M, Szczylik C. Comparative Gene Expression Profiling of Primary and Metastatic Renal Cell Carcinoma Stem Cell-Like Cancer Cells. PLoS One 2016; 11:e0165718. [PMID: 27812180 PMCID: PMC5094751 DOI: 10.1371/journal.pone.0165718] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 10/17/2016] [Indexed: 11/22/2022] Open
Abstract
Background Recent advancement in cancer research has shown that tumors are highly heterogeneous, and multiple phenotypically different cell populations are found in a single tumor. Cancer development and tumor growth are driven by specific types of cells—stem cell-like cancer cells (SCLCCs)—which are also responsible for metastatic spread and drug resistance. This research was designed to verify the presence of SCLCCs in renal cell cancer cell lines. Subsequently, we aimed to characterize phenotype and cell biology of CD105+ cells, defined previously as renal cell carcinoma tumor-initiating cells. The main goal of the project was to describe the gene-expression profile of stem cell-like cancer cells of primary tumor and metastatic origin. Materials and Methods Real-time PCR analysis of stemness genes (Oct-4, Nanog and Ncam) and soft agar colony formation assay were conducted to check the stemness properties of renal cell carcinoma (RCC) cell lines. FACS analysis of CD105+ and CD133+ cells was performed on RCC cells. Isolated CD105+ cells were verified for expression of mesenchymal markers—CD24, CD146, CD90, CD73, CD44, CD11b, CD19, CD34, CD45, HLA-DR and alkaline phosphatase. Hanging drop assay was used to investigate CD105+ cell-cell cohesion. Analysis of free-floating 3D spheres formed by isolated CD105+ was verified, as spheres have been hypothesized to contain undifferentiated multipotent progenitor cells. Finally, CD105+ cells were sorted from primary (Caki-2) and metastatic (ACHN) renal cell cancer cell lines. Gene-expression profiling of sorted CD105+ cells was performed with Agilent’s human GE 4x44K v2 microarrays. Differentially expressed genes were further categorized into canonical pathways. Network analysis and downstream analysis were performed with Ingenuity Pathway Analysis. Results Metastatic RCC cell lines (ACHN and Caki-1) demonstrated higher colony-forming ability in comparison to primary RCC cell lines. Metastatic RCC cell lines harbor numerous CD105+ cell subpopulations and have higher expression of stemness genes (Oct-4 and Nanog). CD105+ cells adopt 3D grape-like floating structures under handing drop conditions. Sorted CD105+ cells are positive for human mesenchymal stem cell (MSC) markers CD90, CD73, CD44, CD146, and alkaline phosphatase activity, but not for CD24 and hematopoietic lineage markers CD34, CD11b, CD19, CD45, and HLA-DR. 1411 genes are commonly differentially expressed in CD105+ cells (both from primary [Caki-2] and metastatic RCC [ACHN] cells) in comparison to a healthy kidney epithelial cell line (ASE-5063). TGF-β, Wnt/β-catenine, epithelial-mesenchymal transition (EMT), Rap1 signaling, PI3K-Akt signaling, and Hippo signaling pathway are deregulated in CD105+ cells. TGFB1, ERBB2, and TNF are the most significant transcriptional regulators activated in these cells. Conclusions All together, RCC-CD105+ cells present stemlike properties. These stem cell-like cancer cells may represent a novel target for therapy. A unique gene-expression profile of CD105+ cells could be used as initial data for subsequent functional studies and drug design.
Collapse
Affiliation(s)
- Mohammed I. Khan
- Molecular Oncology Laboratory, Department of Oncology, Military Institute of Medicine, Warsaw, Poland
- * E-mail: (MIK); (AMC)
| | - Anna M. Czarnecka
- Molecular Oncology Laboratory, Department of Oncology, Military Institute of Medicine, Warsaw, Poland
- * E-mail: (MIK); (AMC)
| | - Sławomir Lewicki
- Department of Regenerative Medicine, Military Institute of Hygiene and Epidemiology, Warsaw, Poland
| | - Igor Helbrecht
- Molecular Oncology Laboratory, Department of Oncology, Military Institute of Medicine, Warsaw, Poland
- Institute of Genetics and Biotechnology, Faculty of Biology, Warsaw University, Warsaw, Poland
| | - Klaudia Brodaczewska
- Molecular Oncology Laboratory, Department of Oncology, Military Institute of Medicine, Warsaw, Poland
| | - Irena Koch
- Department of Pathomorphology, Institute of Mother and Child, Warsaw, Poland
| | - Robert Zdanowski
- Department of Regenerative Medicine, Military Institute of Hygiene and Epidemiology, Warsaw, Poland
| | - Magdalena Król
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences—WULS, Warsaw, Poland
| | - Cezary Szczylik
- Molecular Oncology Laboratory, Department of Oncology, Military Institute of Medicine, Warsaw, Poland
| |
Collapse
|
27
|
Wu J, Liu Y, Tang Y, Wang S, Wang C, Li Y, Su X, Tian J, Tian Y, Pan J, Su Y, Zhu H, Teng Z, Lu G. Synergistic Chemo-Photothermal Therapy of Breast Cancer by Mesenchymal Stem Cell-Encapsulated Yolk-Shell GNR@HPMO-PTX Nanospheres. ACS APPLIED MATERIALS & INTERFACES 2016; 8:17927-17935. [PMID: 27356586 DOI: 10.1021/acsami.6b05677] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Mesenchymal stem cells (MSCs) have attracted increasing attention as vehicles for cancer treatment. Herein, MSC-based synergistic oncotherapy strategy is presented for the first time. To achieve this goal, yolk-shell structured gold nanorod embedded hollow periodic mesoporous organosilica nanospheres (GNR@HPMOs) with high paclitaxel (PTX) loading capability and excellent photothermal transfer ability upon near-infrared (NIR) light irradiation are first prepared. Cytotoxicity and migration assays show that the viability and tumor-homing capability of MSCs are well-retained after internalization of high content of PTX loaded GNR@HPMOs (denoted as GNR@HPMOs-PTX). In vitro experiments show the GNR@HPMOs-PTX loaded MSCs (GNR@HPMOs-PTX@MSCs) possess synergistic chemo-photothermal killing effects for breast cancer cells. Also, photoacoustic imaging shows that the MSCs can improve dispersion and distribution in tumor tissue for GNR@HPMOs-PTX after intratumoral injection. In vivo experiments in breast cancer model of nude mice further demonstrate that the GNR@HPMOs-PTX@MSCs significantly inhibit tumor growth, suggesting their great potential for synergistic therapy of cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiaodan Su
- Key Laboratory for Organic Electronics & Information Displays and Institute of Advanced Materials, Nanjing University of Posts and Telecommunications , Nanjing 210046, P. R. China
| | - Jihong Tian
- Department of Radiotherapy, the Second Affiliated Hospital of Nanjing Medical University , Nanjing 210011, P. R. China
| | | | | | | | | | - Zhaogang Teng
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing 210093, P. R. China
| | - Guangming Lu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing 210093, P. R. China
| |
Collapse
|
28
|
Mittapalli RK, Chung AH, Parrish KE, Crabtree D, Halvorson KG, Hu G, Elmquist WF, Becher OJ. ABCG2 and ABCB1 Limit the Efficacy of Dasatinib in a PDGF-B-Driven Brainstem Glioma Model. Mol Cancer Ther 2016; 15:819-29. [PMID: 26883271 DOI: 10.1158/1535-7163.mct-15-0093] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 02/10/2016] [Indexed: 12/22/2022]
Abstract
Dasatinib is a multikinase inhibitor in clinical trials for glioma, and thus far has failed to demonstrate significant efficacy. We investigated whether the ABC efflux transporters ABCG2 and ABCB1 expressed in the blood-brain barrier (BBB), are limiting the efficacy of dasatinib in the treatment of glioma using genetic and pharmacologic approaches. We utilized a genetic brainstem glioma mouse model driven by platelet-derived growth factor-B and p53 loss using abcg2/abcb1 wild-type (ABC WT) or abcg2/abcb1 knockout mice (ABC KO). First, we observed that brainstem glioma tumor latency is significantly prolonged in ABC KO versus ABC WT mice (median survival of 47 vs. 34 days). Dasatinib treatment nearly doubles the survival of brainstem glioma-bearing ABC KO mice (44 vs. 80 days). Elacridar, an ABCG2 and ABCB1 inhibitor, significantly increases the efficacy of dasatinib in brainstem glioma-bearing ABC WT mice (42 vs. 59 days). Pharmacokinetic analysis demonstrates that dasatinib delivery into the normal brain, but not into the tumor core, is significantly increased in ABC KO mice compared with ABC WT mice. Surprisingly, elacridar did not significantly increase dasatinib delivery into the normal brain or the tumor core of ABC WT mice. Next, we demonstrate that the tight junctions of the BBB of this model are compromised as assessed by tissue permeability to Texas Red dextran. Finally, elacridar increases the cytotoxicity of dasatinib independent of ABCG2 and ABCB1 expression in vitro In conclusion, elacridar improves the efficacy of dasatinib in a brainstem glioma model without significantly increasing its delivery to the tumor core. Mol Cancer Ther; 15(5); 819-29. ©2016 AACR.
Collapse
Affiliation(s)
- Rajendar K Mittapalli
- Department of Pharmaceutics, Brain Barriers Research Center, University of Minnesota, Minneapolis, Minnesota
| | - Alexander H Chung
- Department of Pediatrics, Duke University, Durham, North Carolina. Department of Pathology, Duke University, Durham, North Carolina. Preston Robert Tisch Brain Tumor Center, Durham, North Carolina
| | - Karen E Parrish
- Department of Pharmaceutics, Brain Barriers Research Center, University of Minnesota, Minneapolis, Minnesota
| | - Donna Crabtree
- Department of Pediatrics, Duke University, Durham, North Carolina. Department of Pathology, Duke University, Durham, North Carolina. Preston Robert Tisch Brain Tumor Center, Durham, North Carolina
| | - Kyle G Halvorson
- Department of Pediatrics, Duke University, Durham, North Carolina. Department of Pathology, Duke University, Durham, North Carolina. Preston Robert Tisch Brain Tumor Center, Durham, North Carolina. Department of Surgery, Division of Neurological Surgery, Duke University, Durham, North Carolina
| | - Guo Hu
- Department of Pediatrics, Duke University, Durham, North Carolina. Department of Pathology, Duke University, Durham, North Carolina. Preston Robert Tisch Brain Tumor Center, Durham, North Carolina
| | - William F Elmquist
- Department of Pharmaceutics, Brain Barriers Research Center, University of Minnesota, Minneapolis, Minnesota
| | - Oren J Becher
- Department of Pediatrics, Duke University, Durham, North Carolina. Department of Pathology, Duke University, Durham, North Carolina. Preston Robert Tisch Brain Tumor Center, Durham, North Carolina.
| |
Collapse
|
29
|
Abca7 deletion does not affect adult neurogenesis in the mouse. Biosci Rep 2016; 36:BSR20150308. [PMID: 26792809 PMCID: PMC4793298 DOI: 10.1042/bsr20150308] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 01/15/2016] [Indexed: 01/28/2023] Open
Abstract
ATP-binding cassette transporter A7 (ABCA7) is expressed in the brain and linked with Alzheimer's disease. Since other ABC transporters regulate adult neurogenesis, we assessed neurogenesis in wild-type (WT) and Abca7 deficient mice. Abca7 deletion did not affect adult neurogenesis in the mouse. ATP-binding cassette transporter A7 (ABCA7) is highly expressed in the brain. Recent genome-wide association studies (GWAS) have identified ABCA7 single nucleotide polymorphisms (SNPs) that increase Alzheimer's disease (AD) risk, however, the mechanisms by which ABCA7 may control AD risk remain to be fully elucidated. Based on previous research suggesting that certain ABC transporters may play a role in the regulation of neurogenesis, we conducted a study of cell proliferation and neurogenic potential using cellular bromodeoxyuridine (BrdU) incorporation and doublecortin (DCX) immunostaining in adult Abca7 deficient mice and wild-type-like (WT) littermates. In the present study counting of BrdU-positive and DCX-positive cells in an established adult neurogenesis site in the dentate gyrus (DG) indicated there were no significant differences when WT and Abca7 deficient mice were compared. We also measured the area occupied by immunohistochemical staining for BrdU and DCX in the DG and the subventricular zone (SVZ) of the same mice and this confirmed that ABCA7 does not play a significant role in the regulation of cell proliferation or neurogenesis in the adult mouse.
Collapse
|
30
|
Apáti Á, Szebényi K, Erdei Z, Várady G, Orbán TI, Sarkadi B. The importance of drug transporters in human pluripotent stem cells and in early tissue differentiation. Expert Opin Drug Metab Toxicol 2015; 12:77-92. [DOI: 10.1517/17425255.2016.1121382] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
31
|
Morfouace M, Cheepala S, Jackson S, Fukuda Y, Patel YT, Fatima S, Kawauchi D, Shelat AA, Stewart CF, Sorrentino BP, Schuetz JD, Roussel MF. ABCG2 Transporter Expression Impacts Group 3 Medulloblastoma Response to Chemotherapy. Cancer Res 2015. [PMID: 26199091 DOI: 10.1158/0008-5472.can-15-0030] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
While a small number of plasma membrane ABC transporters can export chemotherapeutic drugs and confer drug resistance, it is unknown whether these transporters are expressed or functional in less therapeutically tractable cancers such as Group 3 (G3) medulloblastoma. Herein we show that among this class of drug transporters, only ABCG2 was expressed at highly increased levels in human G3 medulloblastoma and a mouse model of this disease. In the mouse model, Abcg2 protein was expressed at the plasma membrane where it functioned as expected on the basis of export of prototypical substrates. By screening ABC substrates against mouse G3 medulloblastoma tumorspheres in vitro, we found that Abcg2 inhibition could potentiate responses to the clinically used drug topotecan, producing a more than 9-fold suppression of cell proliferation. Extended studies in vivo in this model confirmed that Abcg2 inhibition was sufficient to enhance antiproliferative responses to topotecan, producing a significant survival advantage compared with subjects treated with topotecan alone. Our findings offer a preclinical proof of concept for blockade of ABCG2 transporter activity as a strategy to empower chemotherapeutic responses in G3 medulloblastoma.
Collapse
Affiliation(s)
- Marie Morfouace
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Satish Cheepala
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Sadhana Jackson
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Yu Fukuda
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Yogesh T Patel
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Soghra Fatima
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Daisuke Kawauchi
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Anang A Shelat
- Department of Chemical Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Clinton F Stewart
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Brian P Sorrentino
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - John D Schuetz
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee.
| | - Martine F Roussel
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, Tennessee.
| |
Collapse
|
32
|
Jabbari E. Nanoparticles for Stem‐Cell Engineering. STEM‐CELL NANOENGINEERING 2015:143-169. [DOI: 10.1002/9781118540640.ch9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
33
|
Haslam IS, El-Chami C, Faruqi H, Shahmalak A, O'Neill CA, Paus R. Differential expression and functionality of ATP-binding cassette transporters in the human hair follicle. Br J Dermatol 2015; 172:1562-1572. [PMID: 25418064 DOI: 10.1111/bjd.13549] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2014] [Indexed: 12/13/2022]
Abstract
BACKGROUND ATP-binding cassette (ABC) transporters are involved in the active transport of an extremely diverse range of substrates across biological membranes. These transporters are commonly implicated in the development of multidrug resistance and are also involved in numerous physiological and homeostatic processes, including lipid transport, cell migration and differentiation. OBJECTIVES To close the knowledge gap in the expression of ABC transporters in the human hair follicle (HF). METHODS Quantitative polymerase chain reaction (qPCR) of ABC genes and immunofluorescence microscopy analysis of cryosections of human HFs. RESULTS By qPCR analysis, numerous members of the ABC transporter superfamily, such as ABCB1, ABCG2 and ABCA12, were found to be transcribed in full-length human scalp HFs. Immunofluorescence microscopy demonstrated that the intrafollicular protein expression of different xenobiotic ABC transporters (ABCB1, ABCC1, ABCC4, ABCG2) varies greatly, with ABCG2 expression restricted primarily to the epithelial stem cell region of the outer root sheath (bulge), whereas expression of ABCB1, ABCC1 and ABCC4 was more widespread. Lipid transporters ABCA1, ABCA12 and ABCA4 were almost uniformly expressed throughout the HF epithelium. Functional ABCB1/G2 activity was demonstrated by exclusion of the substrate dye, Hoechst 33342. In the bulge, this was reversed by ABCB1 and ABCG2 inhibition. CONCLUSIONS These data encourage further investigation of ABC transporters as potentially important regulators of HF epithelial biology. Clinically, pharmacological modulation of the activity of selected intrafollicular ABC transporters may permit novel therapeutic interventions, such as protecting HF stem cells from chemotherapy-induced damage, counteracting cholesterol-associated hypertrichosis, and manipulating the intrafollicular prostaglandin balance in androgenetic alopecia.
Collapse
Affiliation(s)
- I S Haslam
- The Centre for Dermatology Research, Institute of Inflammation and Repair, University of Manchester, Oxford Road, Stopford Building, Manchester, M13 9PT, U.K
| | - C El-Chami
- The Centre for Dermatology Research, Institute of Inflammation and Repair, University of Manchester, Oxford Road, Stopford Building, Manchester, M13 9PT, U.K
| | - H Faruqi
- The Centre for Dermatology Research, Institute of Inflammation and Repair, University of Manchester, Oxford Road, Stopford Building, Manchester, M13 9PT, U.K
| | - A Shahmalak
- Crown Cosma Clinic, Thorley House, Bailey Lane, Manchester, U.K
| | - C A O'Neill
- The Centre for Dermatology Research, Institute of Inflammation and Repair, University of Manchester, Oxford Road, Stopford Building, Manchester, M13 9PT, U.K
| | - R Paus
- The Centre for Dermatology Research, Institute of Inflammation and Repair, University of Manchester, Oxford Road, Stopford Building, Manchester, M13 9PT, U.K.,Department of Dermatology, University of Münster, Münster, Germany
| |
Collapse
|
34
|
Skvortsov S, Debbage P, Lukas P, Skvortsova I. Crosstalk between DNA repair and cancer stem cell (CSC) associated intracellular pathways. Semin Cancer Biol 2014; 31:36-42. [PMID: 24954010 DOI: 10.1016/j.semcancer.2014.06.002] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 06/09/2014] [Indexed: 01/08/2023]
Abstract
DNA damaging agents (ionizing radiation and chemotherapeutics) are considered as most effective in cancer treatment. However, there is a subpopulation of carcinoma cells within the tumour demonstrating resistance to DNA damaging treatment approaches. It is suggested that limited tumour response to this kind of therapy can be associated with specific molecular properties of carcinoma stem cells (CSCs) representing the most refractory cell subpopulation. This review article presents novel data about molecular features of CSCs underlying DNA damage response and related intracellular signalling.
Collapse
Affiliation(s)
- Sergej Skvortsov
- Department of Therapeutic Radiology and Oncology, Innsbruck Medical University, Innsbruck, Austria.
| | - Paul Debbage
- Department of Anatomy, Histology and Embryology, Innsbruck Medical University, Innsbruck, Austria
| | - Peter Lukas
- Department of Therapeutic Radiology and Oncology, Innsbruck Medical University, Innsbruck, Austria
| | - Ira Skvortsova
- Department of Therapeutic Radiology and Oncology, Innsbruck Medical University, Innsbruck, Austria
| |
Collapse
|
35
|
The role of Src family kinases in growth and migration of glioma stem cells. Int J Oncol 2014; 45:302-10. [PMID: 24819299 PMCID: PMC4079155 DOI: 10.3892/ijo.2014.2432] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 04/02/2014] [Indexed: 12/21/2022] Open
Abstract
Src family kinases (SFKs) are highly expressed and active in clinical glioblastoma multiforme (GBM) specimens. SFKs inhibitors have been demonstrated to inhibit proliferation and migration of glioma cells. However, the role of SFKs in glioma stem cells (GSCs), which are important for treatment resistance and recurrence, has not been reported. Here, we examined the expression pattern of individual members of SFKs and their functional role in CD133+ GSCs in comparison to primary glioma cells. We found that Fyn, c-Src and Yes were robustly expressed in GSCs while Lck was absent. Knockdown of c-Src, Yes or treatment with the SFK inhibitor dasatinib inhibited the migration of GSCs, but had no impact on their growth or self-renewal. These results suggest that SFKs represent an effective target for GSC migration but not for their growth.
Collapse
|
36
|
Ingram WJ, Crowther LM, Little EB, Freeman R, Harliwong I, Veleva D, Hassall TE, Remke M, Taylor MD, Hallahan AR. ABC transporter activity linked to radiation resistance and molecular subtype in pediatric medulloblastoma. Exp Hematol Oncol 2013; 2:26. [PMID: 24219920 PMCID: PMC3851566 DOI: 10.1186/2162-3619-2-26] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 09/30/2013] [Indexed: 01/09/2023] Open
Abstract
Background Resistance to radiation treatment remains a major clinical problem for patients with brain cancer. Medulloblastoma is the most common malignant brain tumor of childhood, and occurs in the cerebellum. Though radiation treatment has been critical in increasing survival rates in recent decades, the presence of resistant cells in a substantial number of medulloblastoma patients leads to relapse and death. Methods Using the established medulloblastoma cell lines UW228 and Daoy, we developed a novel model system to enrich for and study radiation tolerant cells early after radiation exposure. Using fluorescence-activated cell sorting, dead cells and cells that had initiated apoptosis were removed, allowing surviving cells to be investigated before extensive proliferation took place. Results Isolated surviving cells were tumorigenic in vivo and displayed elevated levels of ABCG2, an ABC transporter linked to stem cell behavior and drug resistance. Further investigation showed another family member, ABCA1, was also elevated in surviving cells in these lines, as well as in early passage cultures from pediatric medulloblastoma patients. We discovered that the multi-ABC transporter inhibitors verapamil and reserpine sensitized cells from particular patients to radiation, suggesting that ABC transporters have a functional role in cellular radiation protection. Additionally, verapamil had an intrinsic anti-proliferative effect, with transient exposure in vitro slowing subsequent in vivo tumor formation. When expression of key ABC transporter genes was assessed in medulloblastoma tissue from 34 patients, levels were frequently elevated compared with normal cerebellum. Analysis of microarray data from independent cohorts (n = 428 patients) showed expression of a number of ABC transporters to be strongly correlated with certain medulloblastoma subtypes, which in turn are associated with clinical outcome. Conclusions ABC transporter inhibitors are already being trialed clinically, with the aim of decreasing chemotherapy resistance. Our findings suggest that the inhibition of ABC transporters could also increase the efficacy of radiation treatment for medulloblastoma patients. Additionally, the finding that certain family members are associated with particular molecular subtypes (most notably high ABCA8 and ABCB4 expression in Sonic Hedgehog pathway driven tumors), along with cell membrane location, suggests ABC transporters are worthy of consideration for the diagnostic classification of medulloblastoma.
Collapse
|
37
|
Pahnke J, Fröhlich C, Krohn M, Schumacher T, Paarmann K. Impaired mitochondrial energy production and ABC transporter function-A crucial interconnection in dementing proteopathies of the brain. Mech Ageing Dev 2013; 134:506-15. [PMID: 24012632 DOI: 10.1016/j.mad.2013.08.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 06/21/2013] [Accepted: 08/24/2013] [Indexed: 01/07/2023]
Abstract
Ageing is the main risk factor for the development of dementing neurodegenerative diseases (NDs) and it is accompanied by the accumulation of variations in mitochondrial DNA. The resulting tissue-specific alterations in ATP production and availability cause deteriorations of cerebral clearance mechanisms that are important for the removal of toxic peptides and its aggregates. ABC transporters were shown to be the most important exporter superfamily for toxic peptides, e.g. β-amyloid and α-synuclein. Their activity is highly dependent on the availability of ATP and forms a directed energy-exporter network, linking decreased mitochondrial function with highly impaired ABC transporter activity and disease progression. In this paper, we describe a network based on interactions between ageing, energy metabolism, regeneration, accumulation of toxic peptides and the development of proteopathies of the brain with a focus on Alzheimer's disease (AD). Additionally, we provide new experimental evidence for interactions within this network in regenerative processes in AD.
Collapse
Affiliation(s)
- Jens Pahnke
- Neurodegeneration Research Lab (NRL), Department of Neurology, University of Magdeburg, Leipziger Str. 44, H64, 39120 Magdeburg, Germany; German Center for Neurodegenerative Diseases (DZNE) Magdeburg, Leipziger Str. 44, H64, 39120 Magdeburg, Germany.
| | | | | | | | | |
Collapse
|
38
|
Abstract
Stress and glucocorticoid hormones regulate hippocampal neurogenesis, but the molecular mechanisms underlying their effects are unknown. We, therefore, investigated the molecular signaling pathways mediating the effects of cortisol on proliferation, neuronal differentiation, and astrogliogenesis, in an immortalized human hippocampal progenitor cell line. In addition, we examined the molecular signaling pathways activated in the hippocampus of prenatally stressed rats, characterized by persistently elevated glucocorticoid levels in adulthood. In human hippocampal progenitor cells, we found that low concentrations of cortisol (100 nM) increased proliferation (+16%), decreased neurogenesis into microtubule-associated protein 2 (MAP2)-positive neurons (-24%) and doublecortin (Dcx)-positive neuroblasts (-21%), and increased differentiation into S100β-positive astrocytes (+23%). These effects were dependent on the mineralocorticoid receptor (MR) as they were abolished by the MR antagonist, spironolactone, and mimicked by the MR-agonist, aldosterone. In contrast, high concentrations of cortisol (100 μM) decreased proliferation (-17%) and neuronal differentiation into MAP2-positive neurons (-22%) and into Dcx-positive neuroblasts (-27%), without regulating astrogliogenesis. These effects were dependent on the glucocorticoid receptor (GR), blocked by the GR antagonist RU486, and mimicked by the GR-agonist, dexamethasone. Gene expression microarray and pathway analysis showed that the low concentration of cortisol enhances Notch/Hes-signaling, the high concentration inhibits TGFβ-SMAD2/3-signaling, and both concentrations inhibit Hedgehog signaling. Mechanistically, we show that reduced Hedgehog signaling indeed critically contributes to the cortisol-induced reduction in neuronal differentiation. Accordingly, TGFβ-SMAD2/3 and Hedgehog signaling were also inhibited in the hippocampus of adult prenatally stressed rats with high glucocorticoid levels. In conclusion, our data demonstrate novel molecular signaling pathways that are regulated by glucocorticoids in vitro, in human hippocampal progenitor cells, and by stress in vivo, in the rat hippocampus.
Collapse
|
39
|
Multidrug Resistance in Cancer: A Tale of ABC Drug Transporters. RESISTANCE TO TARGETED ANTI-CANCER THERAPEUTICS 2013. [DOI: 10.1007/978-1-4614-7070-0_1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
40
|
Logge W, Cheng D, Chesworth R, Bhatia S, Garner B, Kim WS, Karl T. Role of Abca7 in mouse behaviours relevant to neurodegenerative diseases. PLoS One 2012; 7:e45959. [PMID: 23029339 PMCID: PMC3454356 DOI: 10.1371/journal.pone.0045959] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 08/28/2012] [Indexed: 12/28/2022] Open
Abstract
ATP-binding cassette transporters of the subfamily A (ABCA) are responsible for the translocation of lipids including cholesterol, which is crucial for neurological function. Recent studies suggest that the ABC transporter ABCA7 may play a role in the development of brain disorders such as schizophrenia and Alzheimer’s disease. However, Abca7’s role in cognition and other behaviours has not been investigated. Therefore, we characterised homozygous Abca7 knockout mice in a battery of tests for baseline behaviours (i.e. physical exam, baseline locomotion and anxiety) and behaviours relevant to schizophrenia (i.e. prepulse inhibition and locomotor response to psychotropic drugs) and Alzheimer’s disease (i.e. cognitive domains). Knockout mice had normal motor functions and sensory abilities and performed the same as wild type-like animals in anxiety tasks. Short-term spatial memory and fear-associated learning was also intact in Abca7 knockout mice. However, male knockout mice exhibited significantly impaired novel object recognition memory. Task acquisition was unaffected in the cheeseboard task. Female mice exhibited impaired spatial reference memory. This phenomenon was more pronounced in female Abca7 null mice. Acoustic startle response, sensorimotor gating and baseline locomotion was unaltered in Abca7 knockout mice. Female knockouts showed a moderately increased motor response to MK-801 than control mice. In conclusion, Abca7 appears to play only a minor role in behavioural domains with a subtle sex-specific impact on particular cognitive domains.
Collapse
Affiliation(s)
- Warren Logge
- Neuroscience Research Australia, Randwick, Australia
- Schizophrenia Research Institute, Darlinghurst, Australia
| | - David Cheng
- Neuroscience Research Australia, Randwick, Australia
- School of Medical Sciences, University of New South Wales, New South Wales, Australia
| | - Rose Chesworth
- Neuroscience Research Australia, Randwick, Australia
- Schizophrenia Research Institute, Darlinghurst, Australia
| | - Surabhi Bhatia
- Neuroscience Research Australia, Randwick, Australia
- School of Medical Sciences, University of New South Wales, New South Wales, Australia
| | - Brett Garner
- Neuroscience Research Australia, Randwick, Australia
- Illawarra Health and Medical Research Institute, University of Wollongong, New South Wales, Australia
- School of Biological Sciences, University of Wollongong, New South Wales, Australia
| | - Woojin Scott Kim
- Neuroscience Research Australia, Randwick, Australia
- School of Medical Sciences, University of New South Wales, New South Wales, Australia
| | - Tim Karl
- Neuroscience Research Australia, Randwick, Australia
- Schizophrenia Research Institute, Darlinghurst, Australia
- School of Medical Sciences, University of New South Wales, New South Wales, Australia
- School of Psychology, University of New South Wales, New South Wales, Australia
- * E-mail:
| |
Collapse
|
41
|
Bench to bedside of neural stem cell in traumatic brain injury. Stem Cells Int 2012; 2012:141624. [PMID: 23028389 PMCID: PMC3458287 DOI: 10.1155/2012/141624] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 08/10/2012] [Accepted: 08/21/2012] [Indexed: 11/18/2022] Open
Abstract
Traumatic brain injury (TBI) is one of the leading causes of major disability and death worldwide. Neural stem cells (NSCs) have recently been shown to contribute to the cellular remodelling that occurs following TBI and attention has been drawn to the area of neural stem cell as possible therapy for TBI. The NSCs may play an important role in the treatment of TBI by replacing the damaged cells and eventual remyelination. This paper summarized a critical assessment of recent data and developed a view comprising of six points to possible quality translation of NSCs in TBI.
Collapse
|
42
|
Xu ZY, Li XQ, Chen S, Cheng Y, Deng JM, Wang ZG. Glioma stem-like cells are less susceptible than glioma cells to sonodynamic therapy with photofrin. Technol Cancer Res Treat 2012; 11:615-23. [PMID: 22775340 DOI: 10.7785/tcrt.2012.500277] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Despite remarkable progress in diagnosis and treatment, malignant glioma, a highly lethal cancer of the central nervous system, remains incurable. Although glioma stem-like cells (GSCs) represent a relatively small fraction of the cells in malignant glioma, they can proliferate and self renew extensively, being crucial for tumor recurrence. Cancer treatment by sonodynamic therapy (SDT) chiefly depends on antitumor effects of reactive oxygen species (ROS) generated from a sonosensitizer activated by ultrasound. Although SDT effectively kills glioma cells, its efficiency against GSCs is not established. We attempted to compare the susceptibility of GSCs to SDT, using Photofrin, a porphyrin-derivative photosensitizer, with that of glioma cells. Cell viability and apoptosis assays showed that SDT damaged both GSCs and U251 glioma cells, but GSCs were significantly less susceptible to SDT (p < 0.01). To elucidate the mechanism of the antitumor effects of SDT, we evaluated intracellular ROS production and Photofrin uptake: ROS production and Photofrin content were significantly lower (p < 0.01) in GSCs than in U251 glioma cells. Thus, cellular differences in sonosensitizer uptake and ROS production influence the antitumor effects of SDT. Furthermore, the resistance of GSCs may be caused by decreased sonosensitizer uptake due to ABCG2 overexpression.
Collapse
Affiliation(s)
- Zhong-Ye Xu
- Institute of Ultrasound Imaging, Second Affiliated Hospital of Chongqing University of Medical Science, 74 Linjiang Road, Yuzhong, Chongqing, 400010, China
| | | | | | | | | | | |
Collapse
|
43
|
Schumacher T, Krohn M, Hofrichter J, Lange C, Stenzel J, Steffen J, Dunkelmann T, Paarmann K, Fröhlich C, Uecker A, Plath AS, Sommer A, Brüning T, Heinze HJ, Pahnke J. ABC transporters B1, C1 and G2 differentially regulate neuroregeneration in mice. PLoS One 2012; 7:e35613. [PMID: 22545122 PMCID: PMC3335815 DOI: 10.1371/journal.pone.0035613] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Accepted: 03/19/2012] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND ATP-binding cassette (ABC) transporters are essential regulators of organismic homeostasis, and are particularly important in protecting the body from potentially harmful exogenous substances. Recently, an increasing number of in vitro observations have indicated a functional role of ABC transporters in the differentiation and maintenance of stem cells. Therefore, we sought to determine brain-related phenotypic changes in animals lacking the expression of distinct ABC transporters (ABCB1, ABCG2 or ABCC1). METHODOLOGY AND PRINCIPAL FINDINGS Analyzing adult neurogenesis in ABC transporter-deficient animals in vivo and neuronal stem/progenitor cells in vitro resulted in complex findings. In vivo, the differentiation of neuronal progenitors was hindered in ABC transporter-deficient mice (ABCB1(0/0)) as evidenced by lowered numbers of doublecortin(+) (-36%) and calretinin(+) (-37%) cells. In vitro, we confirmed that this finding is not connected to the functional loss of single neural stem/progenitor cells (NSPCs). Furthermore, assessment of activity, exploratory behavior, and anxiety levels revealed behavioral alterations in ABCB1(0/0) and ABCC1(0/0) mice, whereas ABCG2(0/0) mice were mostly unaffected. CONCLUSION AND SIGNIFICANCE Our data show that single ABC transporter-deficiency does not necessarily impair neuronal progenitor homeostasis on the single NSPC level, as suggested by previous studies. However, loss of distinct ABC transporters impacts global brain homeostasis with far ranging consequences, leading to impaired neurogenic functions in vivo and even to distinct behavioral phenotypes. In addition to the known role of ABC transporters in proteopathies such as Parkinson's disease and Alzheimer's disease, our data highlight the importance of understanding the general function of ABC transporters for the brain's homeostasis and the regeneration potential.
Collapse
Affiliation(s)
- Toni Schumacher
- Neurodegeneration Research Laboratory (NRL), Department of Neurology, Universities of Rostock and Magdeburg, Magdeburg, Germany
| | - Markus Krohn
- Neurodegeneration Research Laboratory (NRL), Department of Neurology, Universities of Rostock and Magdeburg, Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Jacqueline Hofrichter
- Neurodegeneration Research Laboratory (NRL), Department of Neurology, Universities of Rostock and Magdeburg, Magdeburg, Germany
| | - Cathleen Lange
- Neurodegeneration Research Laboratory (NRL), Department of Neurology, Universities of Rostock and Magdeburg, Magdeburg, Germany
| | - Jan Stenzel
- Neurodegeneration Research Laboratory (NRL), Department of Neurology, Universities of Rostock and Magdeburg, Magdeburg, Germany
| | - Johannes Steffen
- Neurodegeneration Research Laboratory (NRL), Department of Neurology, Universities of Rostock and Magdeburg, Magdeburg, Germany
| | - Tina Dunkelmann
- Neurodegeneration Research Laboratory (NRL), Department of Neurology, Universities of Rostock and Magdeburg, Magdeburg, Germany
| | - Kristin Paarmann
- Neurodegeneration Research Laboratory (NRL), Department of Neurology, Universities of Rostock and Magdeburg, Magdeburg, Germany
| | - Christina Fröhlich
- Neurodegeneration Research Laboratory (NRL), Department of Neurology, Universities of Rostock and Magdeburg, Magdeburg, Germany
| | - Annekathrin Uecker
- Neurodegeneration Research Laboratory (NRL), Department of Neurology, Universities of Rostock and Magdeburg, Magdeburg, Germany
| | - Anne-Sophie Plath
- Neurodegeneration Research Laboratory (NRL), Department of Neurology, Universities of Rostock and Magdeburg, Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Alexandra Sommer
- Neurodegeneration Research Laboratory (NRL), Department of Neurology, Universities of Rostock and Magdeburg, Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Thomas Brüning
- Neurodegeneration Research Laboratory (NRL), Department of Neurology, Universities of Rostock and Magdeburg, Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Hans-Jochen Heinze
- Neurodegeneration Research Laboratory (NRL), Department of Neurology, Universities of Rostock and Magdeburg, Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Leibniz Institute for Neurobiology (LIN), Magdeburg, Germany
| | - Jens Pahnke
- Neurodegeneration Research Laboratory (NRL), Department of Neurology, Universities of Rostock and Magdeburg, Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Leibniz Institute for Neurobiology (LIN), Magdeburg, Germany
| |
Collapse
|
44
|
Barbet R, Peiffer I, Hutchins JRA, Hatzfeld A, Garrido E, Hatzfeld JA. Expression of the 49 human ATP binding cassette (ABC) genes in pluripotent embryonic stem cells and in early- and late-stage multipotent mesenchymal stem cells: possible role of ABC plasma membrane transporters in maintaining human stem cell pluripotency. Cell Cycle 2012; 11:1611-20. [PMID: 22456339 DOI: 10.4161/cc.20023] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The 49-member human ATP binding cassette (ABC) gene family encodes 44 membrane transporters for lipids, ions, peptides or xenobiotics, four translation factors without transport activity, as they lack transmembrane domains, and one pseudogene. To understand the roles of ABC genes in pluripotency and multipotency, we performed a sensitive qRT-PCR analysis of their expression in embryonic stem cells (hESCs), bone marrow-derived mesenchymal stem cells (hMSCs) and hESC-derived hMSCs (hES-MSCs). We confirm that hES-MSCs represent an intermediate developmental stage between hESCs and hMSCs. We observed that 44 ABCs were significantly expressed in hESCs, 37 in hES-MSCs and 35 in hMSCs. These variations are mainly due to plasma membrane transporters with low but significant gene expression: 18 are expressed in hESCs compared with 16 in hES-MSCs and 8 in hMSCs, suggesting important roles in pluripotency. Several of these ABCs shared similar substrates but differ regarding gene regulation. ABCA13 and ABCB4, similarly to ABCB1, could be new markers to select primitive hMSCs with specific plasma membrane transporter (low) phenotypes. ABC proteins performing basal intracellular functions, including translation factors and mitochondrial heme transporters, showed the highest constant gene expression among the three populations. Peptide transporters in the endoplasmic reticulum, Golgi and lysosome were well expressed in hESCs and slightly upregulated in hMSCs, which play important roles during the development of stem cell niches in bone marrow or meningeal tissue. These results will be useful to study specific cell cycle regulation of pluripotent stem cells or ABC dysregulation in complex pathologies, such as cancers or neurological disorders.
Collapse
Affiliation(s)
- Romain Barbet
- Human Stem Cell Laboratory, Institut André Lwoff (IAL), CNRS, Villejuif, France
| | | | | | | | | | | |
Collapse
|
45
|
|
46
|
Sipes NS, Padilla S, Knudsen TB. Zebrafish: as an integrative model for twenty-first century toxicity testing. ACTA ACUST UNITED AC 2012; 93:256-67. [PMID: 21932434 DOI: 10.1002/bdrc.20214] [Citation(s) in RCA: 214] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The zebrafish embryo is a useful small model for investigating vertebrate development because of its transparency, low cost, transgenic and morpholino capabilities, conservation of cell signaling, and concordance with mammalian developmental phenotypes. From these advantages, the zebrafish embryo has been considered as an alternative model for traditional in vivo developmental toxicity screening. The use of this organism in conjunction with traditional in vivo developmental toxicity testing has the potential to reduce cost and increase throughput of testing the chemical universe, prioritize chemicals for targeted toxicity testing, generate predictive models of developmental toxicants, and elucidate mechanisms and adverse outcome pathways for abnormal development. This review gives an overview of the zebrafish embryo for pre dictive toxicology and 21st century toxicity testing. Developmental eye defects were selected as an example to evaluate data from the U.S. Environmental Protection Agency's ToxCast program comparing responses in zebrafish embryos with those from pregnant rats and rabbits for a subset of 24 environmental chemicals across >600 in vitro assay targets. Cross-species comparisons implied a common basis for biological pathways associated with neuronal defects, extracellular matrix remodeling, and mitotic arrest.
Collapse
Affiliation(s)
- Nisha S Sipes
- National Center for Computational Toxicology, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA.
| | | | | |
Collapse
|
47
|
Li L, Guan Y, Liu H, Hao N, Liu T, Meng X, Fu C, Li Y, Qu Q, Zhang Y, Ji S, Chen L, Chen D, Tang F. Silica nanorattle-doxorubicin-anchored mesenchymal stem cells for tumor-tropic therapy. ACS NANO 2011; 5:7462-70. [PMID: 21854047 DOI: 10.1021/nn202399w] [Citation(s) in RCA: 234] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Low targeting efficiency is one of the biggest limitations for nanoparticulate drug delivery system-based cancer therapy. In this study, an efficient approach for tumor-targeted drug delivery was developed with mesenchymal stem cells as the targeting vehicle and a silica nanorattle as the drug carrier. A silica nanorattle-doxorubicin drug delivery system was efficiently anchored to mesenchymal stem cells (MSCs) by specific antibody-antigen recognitions at the cytomembrane interface without any cell preconditioning. Up to 1500 nanoparticles were uploaded to each MSC cell with high cell viability and tumor-tropic ability. The intracellular retention time of the silica nanorattle was no less than 48 h, which is sufficient for cell-directed tumor-tropic delivery. In vivo experiments proved that the burdened MSCs can track down the U251 glioma tumor cells more efficiently and deliver doxorubicin with wider distribution and longer retention lifetime in tumor tissues compared with free DOX and silica nanorattle-encapsulated DOX. The increased and prolonged DOX intratumoral distribution further contributed to significantly enhanced tumor-cell apoptosis. This strategy has potential to be developed as a robust and generalizable method for targeted tumor therapy with high efficiency and low systematic toxicity.
Collapse
Affiliation(s)
- Linlin Li
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
ElAli A, Hermann DM. ATP-binding cassette transporters and their roles in protecting the brain. Neuroscientist 2011; 17:423-36. [PMID: 21518814 DOI: 10.1177/1073858410391270] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The blood-brain barrier is a network of endothelial cells that are tightly attached with each other via specialized cell-cell contacts. This passive diffusion barrier is complemented by ATP-binding cassette (ABC) transporters, which are localized on the surface of the endothelial cells. ABC transporters play important roles in the maintenance of blood-brain barrier integrity, as they carry a wide range of organic molecules, cell metabolites, and nutrients both out of the brain and into the brain. Recent studies have unraveled important roles of ABC transporters in the preservation of tissue homeostasis, pointing out the fact that ABC transporters protect both brain parenchymal cells and microvascular cells from injury. As such, ABC transporters have been involved in the pathogenesis of age-related neurodegenerative diseases, such as Parkinson and Alzheimer diseases, recently. This has led to the idea that neurodegenerative processes might be targeted by restoration of transport processes across the blood-brain barrier.
Collapse
Affiliation(s)
- Ayman ElAli
- Department of Neurology, University Hospital Essen, Essen, Germany
| | | |
Collapse
|
49
|
Anacker C, Zunszain PA, Carvalho LA, Pariante CM. The glucocorticoid receptor: pivot of depression and of antidepressant treatment? Psychoneuroendocrinology 2011; 36:415-25. [PMID: 20399565 PMCID: PMC3513407 DOI: 10.1016/j.psyneuen.2010.03.007] [Citation(s) in RCA: 432] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Revised: 03/11/2010] [Accepted: 03/18/2010] [Indexed: 02/07/2023]
Abstract
Hyperactivity of the hypothalamus-pituitary-adrenal (HPA) axis and increased levels of glucocorticoid hormones in patients with depression have mostly been ascribed to impaired feedback regulation of the HPA axis, possibly caused by altered function of the receptor for glucocorticoid hormones, the glucocorticoid receptor (GR). Antidepressants, in turn, ameliorate many of the neurobiological disturbances in depression, including HPA axis hyperactivity, and thereby alleviate depressive symptoms. There is strong evidence for the notion that antidepressants exert these effects by modulating the GR. Such modulations, however, can be manifold and range from regulation of receptor expression to post-translational modifications, which may result in differences in GR nuclear translocation and GR-dependent gene transcription. The idea that the therapeutic action of antidepressants is mediated, at least in part, by restoring GR function, is consistent with studies showing that decreased GR function contributes to HPA axis hyperactivity and to the development of depressive symptoms. Conversely, excessive glucocorticoid signalling, which requires an active GR, is associated with functional impairments in the depressed brain, especially in the hippocampus, where it results in reduced neurogenesis and impaired neuroplasticity. In this review, we will focus on the GR as a key player in the precipitation, development and resolution of depression. We will discuss potential explanations for the apparent controversy between glucocorticoid resistance and the detrimental effects of excessive glucocorticoid signalling. We will review some of the evidence for modulation of the GR by antidepressants and we will provide further insight into how antidepressants may regulate the GR to overcome depressive symptoms.
Collapse
Affiliation(s)
- Christoph Anacker
- King's College London, Institute of Psychiatry, Centre for the Cellular Basis of Behaviour (CCBB), Department of Psychological Medicine, Section of Perinatal Psychiatry & Stress, Psychiatry and Immunology (SPI-lab), 125 Coldharbour Lane, London SE5 9NU, UK.
| | | | | | | |
Collapse
|
50
|
Mori H, Yoshida Y, Hara M. Neural stem/progenitor cells damaged by reactive oxygen species evolved in photosensitizing reaction. Neurosci Lett 2011; 493:24-8. [DOI: 10.1016/j.neulet.2011.02.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Revised: 01/08/2011] [Accepted: 02/03/2011] [Indexed: 12/14/2022]
|