1
|
Tavakolidakhrabadi N, Ding WY, Saleem MA, Welsh GI, May C. Gene therapy and kidney diseases. Mol Ther Methods Clin Dev 2024; 32:101333. [PMID: 39434922 PMCID: PMC11492605 DOI: 10.1016/j.omtm.2024.101333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Chronic kidney disease (CKD) poses a significant global health challenge, projected to become one of the leading causes of death by 2040. Current treatments primarily manage complications and slow progression, highlighting the urgent need for personalized therapies targeting the disease-causing genes. Our increased understanding of the underlying genomic changes that lead to kidney diseases coupled with recent successful gene therapies targeting specific kidney cells have turned gene therapy and genome editing into a promising therapeutic approach for treating kidney disease. This review paper reflects on different delivery routes and systems that can be exploited to target specific kidney cells and the ways that gene therapy can be used to improve kidney health.
Collapse
Affiliation(s)
- Nadia Tavakolidakhrabadi
- Bristol Renal, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol BS1 3NY, UK
| | - Wen Y. Ding
- Bristol Renal, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol BS1 3NY, UK
| | - Moin A. Saleem
- Bristol Renal, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol BS1 3NY, UK
- Department of Paediatric Nephrology, Bristol Royal Hospital for Children, University Hospitals Bristol and Weston NHS Foundation Trust, Upper Maudlin Street, Bristol BS2 8BJ, UK
| | - Gavin I. Welsh
- Bristol Renal, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol BS1 3NY, UK
| | - Carl May
- Bristol Renal, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol BS1 3NY, UK
| |
Collapse
|
2
|
Danev N, Poggi JM, Dewever EA, Bartlett AP, Oliveira L, Huntimer L, Harman RM, Van de Walle GR. Immortalized mammosphere-derived epithelial cells retain a bioactive secretome with antimicrobial, regenerative, and immunomodulatory properties. Stem Cell Res Ther 2024; 15:429. [PMID: 39543714 PMCID: PMC11566417 DOI: 10.1186/s13287-024-04019-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/25/2024] [Indexed: 11/17/2024] Open
Abstract
BACKGROUND The secretome of primary bovine mammosphere-derived epithelial cells (MDECs) has been shown to exert antimicrobial, regenerative, and immunomodulatory properties in vitro, which warrants its study as a potential biologic treatment with the potential to be translated to human medicine. Currently, the use of the MDEC secretome as a therapy is constrained by the limited life span of primary cell cultures and the decrease of secretome potency over cell passages. METHODS To address these limitations, early-passage bovine MDECs were immortalized using hTERT, a human telomerase reverse transcriptase. The primary and immortal MDECs were compared morphologically, transcriptomically, and phenotypically. The functional properties and proteomic profiles of the secretome of both cell lines were evaluated and compared. All experiments were performed with both low and high passage cell cultures. RESULTS We confirmed through in vitro experiments that the secretome of immortalized MDECs, unlike that of primary cells, maintained antimicrobial and pro-migratory properties over passages, while pro-angiogenic effects of the secretome from both primary and immortalized MDECs were lost when the cells reached high passage. The secretome from primary and immortalized MDECs, at low and high passages exerted immunomodulatory effects on neutrophils in vitro. CONCLUSIONS High passage immortalized MDECs retain a bioactive secretome with antimicrobial, regenerative, and immunomodulatory properties, suggesting they may serve as a consistent cell source for therapeutic use.
Collapse
Affiliation(s)
- Nikola Danev
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, 235 Hungerford Hill Road, Ithaca, NY, 14853, USA
| | - Julia M Poggi
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, 235 Hungerford Hill Road, Ithaca, NY, 14853, USA
| | - Emilie A Dewever
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, 235 Hungerford Hill Road, Ithaca, NY, 14853, USA
| | - Arianna P Bartlett
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, 235 Hungerford Hill Road, Ithaca, NY, 14853, USA
| | - Leane Oliveira
- Elanco Animal Health, 2500 Innovation Way, Indianapolis, IN, 46241, USA
| | - Lucas Huntimer
- Elanco Animal Health, 2500 Innovation Way, Indianapolis, IN, 46241, USA
| | - Rebecca M Harman
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, 235 Hungerford Hill Road, Ithaca, NY, 14853, USA
| | - Gerlinde R Van de Walle
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, 235 Hungerford Hill Road, Ithaca, NY, 14853, USA.
- Department of Veterinary Pathobiology, Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Easter Bush, Roslin, Midlothian, UK.
| |
Collapse
|
3
|
Stirm M, Klymiuk N, Nagashima H, Kupatt C, Wolf E. Pig models for translational Duchenne muscular dystrophy research. Trends Mol Med 2024; 30:950-964. [PMID: 38749865 DOI: 10.1016/j.molmed.2024.04.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/13/2024] [Accepted: 04/16/2024] [Indexed: 10/12/2024]
Abstract
Duchenne muscular dystrophy (DMD) is caused by mutations in the X-linked DMD gene, resulting in the absence of dystrophin, progressive muscle degeneration, and heart failure. Genetically tailored pig models resembling human DMD mutations recapitulate the biochemical, clinical, and pathological hallmarks of DMD with an accelerated disease progression compared to human patients. DMD pigs have been used to evaluate therapeutic concepts such as gene editing to reframe a disrupted DMD reading frame or the delivery of artificial chromosome vectors carrying the complete DMD gene. Moreover, DMD pigs have been instrumental in validating new diagnostic modalities such as multispectral optoacoustic tomography (MSOT) for non-invasive monitoring of disease progression. DMD pigs may thus help to bridge the gap between proof-of-concept studies in cellular or rodent models and clinical studies in patients.
Collapse
Affiliation(s)
- Michael Stirm
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, Ludwig Maximilian University of Munich (LMU Munich), 81377 Munich, Germany; Center for Innovative Medical Models (CiMM), LMU, Munich, 85764, Oberschleißheim, Germany; Interfaculty Center for Endocrine and Cardiovascular Disease Network Modelling and Clinical Transfer (ICONLMU), LMU Munich, 81377 Munich, Germany
| | - Nikolai Klymiuk
- Center for Innovative Medical Models (CiMM), LMU, Munich, 85764, Oberschleißheim, Germany; Large Animal Models in Cardiovascular Research, Internal Medical Department I, Technical University of Munich (TU Munich), 81675 Munich, Germany
| | - Hiroshi Nagashima
- Meiji University International Institute for Bio-Resource Research, Kawasaki, Kanagawa 214-8571, Japan
| | - Christian Kupatt
- Klinik und Poliklinik für Innere Medizin I, Klinikum Rechts der Isar, TU Munich and German Center for Cardiovascular Research (DZHK), Munich Heart Alliance, 81675 Munich, Germany
| | - Eckhard Wolf
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, Ludwig Maximilian University of Munich (LMU Munich), 81377 Munich, Germany; Center for Innovative Medical Models (CiMM), LMU, Munich, 85764, Oberschleißheim, Germany; Interfaculty Center for Endocrine and Cardiovascular Disease Network Modelling and Clinical Transfer (ICONLMU), LMU Munich, 81377 Munich, Germany.
| |
Collapse
|
4
|
Antonacci R, Giannico F, Moschetti R, Pala A, Jambrenghi AC, Massari S. A Comprehensive Analysis of the Genomic and Expressed Repertoire of the T-Cell Receptor Beta Chain in Equus caballus. Animals (Basel) 2024; 14:2817. [PMID: 39409766 PMCID: PMC11475548 DOI: 10.3390/ani14192817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/04/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
In this paper, we report a comprehensive and consistent annotation of the locus encoding the β-chain of the equine T-cell receptor (TRB), as inferred from recent genome assembly using bioinformatics tools. The horse TRB locus spans approximately 1 Mb, making it the largest locus among the mammalian species studied to date, with a significantly higher number of genes related to extensive duplicative events. In the region, 136 TRBV (belonging to 29 subgroups), 2 TRBD, 13 TRBJ, and 2 TRBC genes, were identified. The general genomic organization resembles that of other mammals, with a V cluster of 135 TRBV genes located upstream of two in-tandem aligned TRBD-J-C clusters and an inverted TRBV gene at the 3' end of the last TRBC gene. However, the horse b-chain repertoire would be affected by a high number of non-functional TRBV genes. Thus, we queried a transcriptomic dataset derived from splenic tissue of a healthy adult horse, using each TRBJ gene as a probe to analyze clonotypes encompassing the V(D)J junction. This analysis provided insights into the usage of the TRBV, TRBD, and TRBJ genes and the variability of the non-germline-encoded CDR3. Our results clearly demonstrated that the horse β-chain constitutes a complex level of variability, broadly like that described in other mammalian species.
Collapse
Affiliation(s)
- Rachele Antonacci
- Department of Biosciences, Biotechnologies and Environment, University of Bari “Aldo Moro”, 70125 Bari, Italy; (R.M.); (A.P.)
| | - Francesco Giannico
- Department of Veterinary Medicine, University of Bari “Aldo Moro”, 70010 Bari, Italy;
| | - Roberta Moschetti
- Department of Biosciences, Biotechnologies and Environment, University of Bari “Aldo Moro”, 70125 Bari, Italy; (R.M.); (A.P.)
| | - Angela Pala
- Department of Biosciences, Biotechnologies and Environment, University of Bari “Aldo Moro”, 70125 Bari, Italy; (R.M.); (A.P.)
| | - Anna Caputi Jambrenghi
- Department of Soil, Plant and Food Science, University of Bari “Aldo Moro”, 70126 Bari, Italy;
| | - Serafina Massari
- Department of Biological and Environmental Science and Technologies, University of Salento, 73100 Lecce, Italy;
| |
Collapse
|
5
|
Burla GKR, Shrestha D, Bowen M, Horvath JD, Martin BA. Evaluating the effect of injection protocols on intrathecal solute dispersion in non-human primates: an in vitro study using a cynomolgus cerebrospinal fluid system. Fluids Barriers CNS 2024; 21:61. [PMID: 39061067 PMCID: PMC11282645 DOI: 10.1186/s12987-024-00556-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 06/16/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND Achieving effective drug delivery to the central nervous system (CNS) remains a challenge for treating neurological disorders. Intrathecal (IT) delivery, which involves direct injection into the cerebrospinal fluid (CSF), presents a promising strategy. Large animal studies are important to assess the safety and efficacy of most drugs and treatments and translate the data to humans. An understanding of the influence of IT injection parameters on solute distribution within the CNS is essential to optimize preclinical research, which would potentially help design human clinical studies. METHODS A three-dimensional (3D) in vitro model of a cynomolgus monkey, based on MRI data, was developed to evaluate the impact of lumbar injection parameters on intrathecal solute dispersion. The parameters evaluated were (a) injection location, (b) bolus volume, (c) flush volume, (d) bolus rate, and (e) flush rate. To simulate the CSF flow within the subarachnoid space (SAS), an idealized CSF flow waveform with both cardiac and respiratory-induced components was input into the model. A solution of fluorescein drug surrogate tracer was administered in the lumbar region of the 3D in vitro model filled with deionized water. After injection of the tracer, the CSF system wide-solute dispersion was imaged using high-resolution cameras every thirty seconds for a duration of three hours. To ensure repeatability each injection protocol was repeated three times. For each protocol, the average spatial-temporal distribution over three hours post-injection, the area under the curve (AUC), and the percent injected dose (%ID) to extra-axial CSF (eaCSF) at three hours were determined. RESULTS The changes to the lumbar injection parameters led to variations in solute distribution along the neuro-axis. Specifically, injection location showed the most impact, enhancing the delivery to the eaCSF up to + 10.5%ID (p = 0.0282) at three hours post-injection. Adding a post-injection flush of 1.5 ml at 1 ml/min increased the solute delivery to the eaCSF by + 6.5%ID (p = 0.0218), while the larger bolus volume resulted in a + 2.3%ID (p = 0.1910) increase. The bolus and flush rates analyzed had minimal, statistically non-significant effects. CONCLUSION These results predict the effects of lumbar injection parameters on solute distribution in the intrathecal space in NHPs. Specifically, the choice of injection location, flush, and bolus volume significantly improved solute delivery to eaCSF. The in vitro NHP CSF model and results offer a system to help predict and optimize IT delivery protocols for pre-clinical NHP studies.
Collapse
Affiliation(s)
- Goutham Kumar Reddy Burla
- Department of Chemical and Biological Engineering, University of Idaho, 875 Perimeter Dr. MC1122, Moscow, ID, 83844, USA
| | - Dev Shrestha
- Department of Chemical and Biological Engineering, University of Idaho, 875 Perimeter Dr. MC1122, Moscow, ID, 83844, USA
| | - Mayumi Bowen
- Genentech, Inc., a member of the Roche Group, South San Francisco, CA, USA
| | - Joshua D Horvath
- Genentech, Inc., a member of the Roche Group, South San Francisco, CA, USA
| | - Bryn A Martin
- Department of Chemical and Biological Engineering, University of Idaho, 875 Perimeter Dr. MC1122, Moscow, ID, 83844, USA.
- Alcyone Therapeutics Inc., Lowell, MA, USA.
- Flux Neuroscience, LLC., Troy, ID, USA.
| |
Collapse
|
6
|
Fonseca-Alves CE, Leis-Filho AF, Lacerda ZA, de Faria Lainetti P, Amorim RL, Rogatto SR. Lapatinib antitumor effect is associated with PI3K and MAPK pathway: An analysis in human and canine prostate cancer cells. PLoS One 2024; 19:e0297043. [PMID: 38564578 PMCID: PMC10986952 DOI: 10.1371/journal.pone.0297043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 12/26/2023] [Indexed: 04/04/2024] Open
Abstract
The aberrant activation of HER2 has a pivotal role in bone metastasis implantation and progression in several tumor types, including prostate cancer (PC). Trastuzumab and other anti-HER2 therapies, such as lapatinib, have been used in human breast cancer HER2 positive. Although HER2 overexpression has been reported in PC, anti-HER2 therapy response has revealed conflicting results. We investigated the potential of lapatinib in inhibiting cell migration and inducing apoptosis in two human (LNCaP and PC3) and two canine PC cell lines (PC1 and PC2). Cell migration and apoptosis were evaluated by Annexin V/PI analysis after lapatinib treatment. The transcriptome analysis of all cell lines before and after treatment with lapatinib was also performed. We found increased apoptosis and migration inhibition in LNCaP cells (androgen-sensitive cell line), while PC1, PC2, and PC3 cells showed no alterations after the treatment. The transcriptome analysis of LNCaP and PC3 cell lines showed 158 dysregulated transcripts in common, while PC1 and PC2 cell lines presented 82. At the doses of lapatinib used, we observed transcriptional modifications in all cell lines. PI3K/AKT/mTOR pathway were enriched in human PC cells, while canine PC cells showed enrichment of tyrosine kinase antitumor response and HER2-related pathways. In canine PC cells, the apoptosis failed after lapatinib treatment, possibly due to the downregulation of MAPK genes. Prostate cancer cells insensitive to androgens may be resistant to lapatinib through PI3K gene dysregulation. The association of lapatinib with PI3K inhibitors may provide a more effective antitumor response and clinical benefits to PC patients.
Collapse
Affiliation(s)
- Carlos Eduardo Fonseca-Alves
- Department of Veterinary Surgery and Animal Reproduction, São Paulo State University–UNESP, Botucatu-SP, Brazil
- Institute of Health Sciences, Paulista University–UNIP, Bauru-SP, 17048–290, Brazil
| | - Antonio Fernando Leis-Filho
- Department of Veterinary Surgery and Animal Reproduction, São Paulo State University–UNESP, Botucatu-SP, Brazil
| | - Zara Alves Lacerda
- Department of Veterinary Surgery and Animal Reproduction, São Paulo State University–UNESP, Botucatu-SP, Brazil
| | - Patricia de Faria Lainetti
- Department of Veterinary Surgery and Animal Reproduction, São Paulo State University–UNESP, Botucatu-SP, Brazil
| | - Renee Laufer Amorim
- Department of Veterinary Clinic, São Paulo State University–UNESP, Botucatu-SP, 18618–681, Brazil
| | - Silvia Regina Rogatto
- Department of Clinical Genetics, University Hospital of Southern Denmark, Vejle, Denmark
- Institute of Regional Health Research, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
7
|
Ma J, Eglauf J, Grad S, Alini M, Serra T. Engineering Sensory Ganglion Multicellular System to Model Tissue Nerve Ingrowth. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308478. [PMID: 38113315 PMCID: PMC10953573 DOI: 10.1002/advs.202308478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/04/2023] [Indexed: 12/21/2023]
Abstract
Discogenic pain is associated with deep nerve ingrowth in annulus fibrosus tissue (AF) of intervertebral disc (IVD). To model AF nerve ingrowth, primary bovine dorsal root ganglion (DRG) micro-scale tissue units are spatially organised around an AF explant by mild hydrodynamic forces within a collagen matrix. This results in a densely packed multicellular system mimicking the native DRG tissue morphology and a controlled AF-neuron distance. Such a multicellular organisation is essential to evolve populational-level cellular functions and in vivo-like morphologies. Pro-inflammatory cytokine-primed AF demonstrates its neurotrophic and neurotropic effects on nociceptor axons. Both effects are dependent on the AF-neuron distance underpinning the role of recapitulating inter-tissue/organ anatomical proximity when investigating their crosstalk. This is the first in vitro model studying AF nerve ingrowth by engineering mature and large animal tissues in a morphologically and physiologically relevant environment. The new approach can be used to biofabricate multi-tissue/organ models for untangling pathophysiological conditions and develop novel therapies.
Collapse
Affiliation(s)
- Junxuan Ma
- AO Research InstituteClavadelerstrasse 8Davos7270Switzerland
| | - Janick Eglauf
- AO Research InstituteClavadelerstrasse 8Davos7270Switzerland
- ETH ZürichRämistrasse 101Zürich8092Switzerland
| | - Sibylle Grad
- AO Research InstituteClavadelerstrasse 8Davos7270Switzerland
| | - Mauro Alini
- AO Research InstituteClavadelerstrasse 8Davos7270Switzerland
| | - Tiziano Serra
- AO Research InstituteClavadelerstrasse 8Davos7270Switzerland
- Complex Tissue Regeneration DepartmentMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229ETNetherlands
| |
Collapse
|
8
|
Danchuk O, Levchenko A, da Silva Mesquita R, Danchuk V, Cengiz S, Cengiz M, Grafov A. Meeting Contemporary Challenges: Development of Nanomaterials for Veterinary Medicine. Pharmaceutics 2023; 15:2326. [PMID: 37765294 PMCID: PMC10536669 DOI: 10.3390/pharmaceutics15092326] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/30/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
In recent decades, nanotechnology has been rapidly advancing in various fields of human activity, including veterinary medicine. The review presents up-to-date information on recent advancements in nanotechnology in the field and an overview of the types of nanoparticles used in veterinary medicine and animal husbandry, their characteristics, and their areas of application. Currently, a wide range of nanomaterials has been implemented into veterinary practice, including pharmaceuticals, diagnostic devices, feed additives, and vaccines. The application of nanoformulations gave rise to innovative strategies in the treatment of animal diseases. For example, antibiotics delivered on nanoplatforms demonstrated higher efficacy and lower toxicity and dosage requirements when compared to conventional pharmaceuticals, providing a possibility to solve antibiotic resistance issues. Nanoparticle-based drugs showed promising results in the treatment of animal parasitoses and neoplastic diseases. However, the latter area is currently more developed in human medicine. Owing to the size compatibility, nanomaterials have been applied as gene delivery vectors in veterinary gene therapy. Veterinary medicine is at the forefront of the development of innovative nanovaccines inducing both humoral and cellular immune responses. The paper provides a brief overview of current topics in nanomaterial safety, potential risks associated with the use of nanomaterials, and relevant regulatory aspects.
Collapse
Affiliation(s)
- Oleksii Danchuk
- Institute of Climate-Smart Agriculture, National Academy of Agrarian Sciences, 24 Mayatska Road, Khlibodarske Village, 67667 Odesa, Ukraine;
| | - Anna Levchenko
- Department of Microbiology, Faculty of Veterinary Medicine, Ataturk University, Yakutiye, Erzurum 25240, Turkey;
| | | | - Vyacheslav Danchuk
- Ukrainian Laboratory of Quality and Safety of Agricultural Products, Mashynobudivna Str. 7, Chabany Village, 08162 Kyiv, Ukraine;
| | - Seyda Cengiz
- Milas Faculty of Veterinary Medicine, Mugla Sitki Kocman University, Mugla 48000, Turkey; (S.C.); (M.C.)
| | - Mehmet Cengiz
- Milas Faculty of Veterinary Medicine, Mugla Sitki Kocman University, Mugla 48000, Turkey; (S.C.); (M.C.)
| | - Andriy Grafov
- Department of Chemistry, University of Helsinki, A.I. Virtasen Aukio 1 (PL 55), 00560 Helsinki, Finland
| |
Collapse
|
9
|
Gewiess J, Eglauf J, Soubrier A, Grad S, Alini M, Peroglio M, Ma J. The influence of intervertebral disc overloading on nociceptor calcium flickering. JOR Spine 2023; 6:e1267. [PMID: 37780827 PMCID: PMC10540821 DOI: 10.1002/jsp2.1267] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 05/07/2023] [Accepted: 05/28/2023] [Indexed: 10/03/2023] Open
Abstract
Introduction Mechanical overloading can trigger a degenerative-like cascade in an organ culture of intervertebral disc (IVD). Whether the overloaded IVD can influence the activation of nociceptors (i.e., the damage sensing neurons) remains unknown. The study aims to investigate the influence of overloaded IVD conditioned medium (CM) on the activation of nociceptors. Methods In the static loading regime, force-controlled loading of 0.2 MPa for 20 h/day representing "long-term sitting and standing" was compared with a displacement-controlled loading maintaining original IVD height. In the dynamic loading regime, high-frequency-intensity loading representing degenerative "wear and tear" was compared with a lower-frequency-intensity loading. CM of differently loaded IVDs were collected to stimulate the primary bovine dorsal root ganglion (DRG) cultures. Calcium imaging (Fluo-4) and calcitonin gene-related peptide (CGRP) immunofluorescent labeling were jointly used to record the calcium flickering in CGRP(+) nociceptors. Results Force-controlled loading led to a higher IVD cell death compared to displacement-controlled loading. Both static and dynamic overloading (force-controlled and high-frequency-intensity loadings) elevated the frequency of calcium flickering in the subsurface space of CGRP(+) nociceptors compared to their mild loading counterparts. Conclusion In the organ culture system, IVD overloading mediated an altered IVD-nociceptor communication suggesting a biological mechanism associated with discogenic pain.
Collapse
Affiliation(s)
- Jan Gewiess
- AO Research Institute, AO FoundationDavosSwitzerland
- Department of Orthopaedic Surgery and TraumatologyInselspital, Bern University Hospital, University of BernBernSwitzerland
| | - Janick Eglauf
- AO Research Institute, AO FoundationDavosSwitzerland
| | | | - Sibylle Grad
- AO Research Institute, AO FoundationDavosSwitzerland
| | - Mauro Alini
- AO Research Institute, AO FoundationDavosSwitzerland
| | | | - Junxuan Ma
- AO Research Institute, AO FoundationDavosSwitzerland
| |
Collapse
|
10
|
Yang H, Brown RH, Wang D, Strauss KA, Gao G. Rescue of GM3 synthase deficiency by spatially controlled, rAAV-mediated ST3GAL5 delivery. JCI Insight 2023; 8:e168688. [PMID: 37014712 PMCID: PMC10243808 DOI: 10.1172/jci.insight.168688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/22/2023] [Indexed: 04/05/2023] Open
Abstract
GM3 synthase deficiency (GM3SD) is an infantile-onset epileptic encephalopathy syndrome caused by biallelic loss-of-function mutations in ST3GAL5. Loss of ST3GAL5 activity in humans results in systemic ganglioside deficiency and severe neurological impairment. No disease-modifying treatment is currently available. Certain recombinant adeno-associated viruses (rAAVs) can cross the blood-brain barrier to induce widespread, long-term gene expression in the CNS and represent a promising therapeutic strategy. Here, we show that a first-generation rAAV-ST3GAL5 replacement vector using a ubiquitous promoter restored tissue ST3GAL5 expression and normalized cerebral gangliosides in patient-derived induced pluripotent stem cell neurons and brain tissue from St3gal5-KO mice but caused fatal hepatotoxicity when administered systemically. In contrast, a second-generation vector optimized for CNS-restricted ST3GAL5 expression, administered by either the intracerebroventricular or i.v. route at P1, allowed for safe and effective rescue of lethality and behavior impairment in symptomatic GM3SD mice up to a year. These results support further clinical development of ST3GAL5 gene therapy.
Collapse
Affiliation(s)
- Huiya Yang
- Horae Gene Therapy Center
- Department of Neurology
- Li Weibo Institute for Rare Diseases Research, and
| | - Robert H. Brown
- Department of Neurology
- Li Weibo Institute for Rare Diseases Research, and
| | - Dan Wang
- Horae Gene Therapy Center
- Li Weibo Institute for Rare Diseases Research, and
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Kevin A. Strauss
- Horae Gene Therapy Center
- Clinic for Special Children, Strasburg, Pennsylvania, USA
- Department of Molecular, Cell and Cancer Biology, and
| | - Guangping Gao
- Horae Gene Therapy Center
- Li Weibo Institute for Rare Diseases Research, and
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
11
|
Comment on: Premature delivery in the domestic sow in response to in utero delivery of AAV9 to fetal piglets. Gene Ther 2023; 30:232-235. [PMID: 36918654 DOI: 10.1038/s41434-023-00395-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/09/2023] [Accepted: 02/28/2023] [Indexed: 03/16/2023]
|
12
|
Lifelong gene therapy in dogs with hemophilia A. Blood 2022; 140:2650-2652. [PMID: 36548015 DOI: 10.1182/blood.2022016359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
13
|
Cahalan SD, Boehm I, Jones RA, Piercy RJ. Recognising the potential of large animals for modelling neuromuscular junction physiology and disease. J Anat 2022; 241:1120-1132. [PMID: 36056593 PMCID: PMC9558152 DOI: 10.1111/joa.13749] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/05/2022] [Accepted: 08/08/2022] [Indexed: 12/28/2022] Open
Abstract
The aetiology and pathophysiology of many diseases of the motor unit remain poorly understood and the role of the neuromuscular junction (NMJ) in this group of disorders is particularly overlooked, especially in humans, when these diseases are comparatively rare. However, elucidating the development, function and degeneration of the NMJ is essential to uncover its contribution to neuromuscular disorders, and to explore potential therapeutic avenues to treat these devastating diseases. Until now, an understanding of the role of the NMJ in disease pathogenesis has been hindered by inherent differences between rodent and human NMJs: stark contrasts in body size and corresponding differences in associated axon length underpin some of the translational issues in animal models of neuromuscular disease. Comparative studies in large mammalian models, including examination of naturally occurring, highly prevalent animal diseases and evaluation of their treatment, might provide more relevant insights into the pathogenesis and therapy of equivalent human diseases. This review argues that large animal models offer great potential to enhance our understanding of the neuromuscular system in health and disease, and in particular, when dealing with diseases for which nerve length dependency might underly the pathogenesis.
Collapse
Affiliation(s)
- Stephen D Cahalan
- Comparative Neuromuscular Diseases Laboratory, Department of Clinical Science and Services, Royal Veterinary College, University of London, London, UK
| | - Ines Boehm
- Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK.,Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK.,Biozentrum University of Basel, Basel, Switzerland
| | - Ross A Jones
- Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK.,Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK
| | - Richard J Piercy
- Comparative Neuromuscular Diseases Laboratory, Department of Clinical Science and Services, Royal Veterinary College, University of London, London, UK
| |
Collapse
|
14
|
The Sheep as a Large Animal Model for the Investigation and Treatment of Human Disorders. BIOLOGY 2022; 11:biology11091251. [PMID: 36138730 PMCID: PMC9495394 DOI: 10.3390/biology11091251] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/08/2022] [Accepted: 08/16/2022] [Indexed: 12/19/2022]
Abstract
Simple Summary We review the value of large animal models for improving the translation of biomedical research for human application, focusing primarily on sheep. Abstract An essential aim of biomedical research is to translate basic science information obtained from preclinical research using small and large animal models into clinical practice for the benefit of humans. Research on rodent models has enhanced our understanding of complex pathophysiology, thus providing potential translational pathways. However, the success of translating drugs from pre-clinical to clinical therapy has been poor, partly due to the choice of experimental model. The sheep model, in particular, is being increasingly applied to the field of biomedical research and is arguably one of the most influential models of human organ systems. It has provided essential tools and insights into cardiovascular disorder, orthopaedic examination, reproduction, gene therapy, and new insights into neurodegenerative research. Unlike the widely adopted rodent model, the use of the sheep model has an advantage over improving neuroscientific translation, in particular due to its large body size, gyrencephalic brain, long lifespan, more extended gestation period, and similarities in neuroanatomical structures to humans. This review aims to summarise the current status of sheep to model various human diseases and enable researchers to make informed decisions when considering sheep as a human biomedical model.
Collapse
|
15
|
Mice in translational neuroscience: What R we doing? Prog Neurobiol 2022; 217:102330. [PMID: 35872220 DOI: 10.1016/j.pneurobio.2022.102330] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 07/13/2022] [Accepted: 07/19/2022] [Indexed: 12/28/2022]
Abstract
Animal models play a pivotal role in translational neuroscience but recurrent problems in data collection, analyses, and interpretation, lack of biomarkers, and a tendency to over-reliance on mice have marred neuroscience progress, leading to one of the highest attrition rates in drug translation. Global initiatives to improve reproducibility and model selection are being implemented. Notwithstanding, mice are still the preferred animal species to model human brain disorders even when the translation has been shown to be limited. Non-human primates are better positioned to provide relevant translational information because of their higher brain complexity and homology to humans. Among others, lack of resources and formal training, strict legislation, and ethical issues may impede broad access to large animals. We propose that instead of increasingly restrictive legislation, more resources for training, education, husbandry, and data sharing are urgently needed. The creation of multidisciplinary teams, in which veterinarians need to play a key role, would be critical to improve translational efficiency. Furthermore, it is not usually acknowledged by researchers and regulators the value of comparative studies in lower species, that are instrumental in toxicology, target identification, and mechanistic studies. Overall, we highlight here the need for a conceptual shift in neuroscience research and policies to reach the patients.
Collapse
|
16
|
Lee EJ, Park SJ, Seol A, Lim H, Park S, Ahn JY, Lim JM, Kim HS. Establishment of a piglet model for peritoneal metastasis of ovarian cancer. J Transl Med 2022; 20:329. [PMID: 35864492 PMCID: PMC9306172 DOI: 10.1186/s12967-022-03533-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 07/13/2022] [Indexed: 11/18/2022] Open
Abstract
Background A piglet model for peritoneal metastasis (PM) of ovarian cancer was developed. It will contribute to establishing innovative chemotherapeutical and surgical strategies without any limitation on rodent models. Methods A total of 12 four- to five-week-old piglets of 7 to 8 kg were used. Two phases of ovarian cancer cell injections were performed with laparoscopic surgery. In phase I trial, 5.0 × 106 SK-OV-3 cells in 0.1 ml suspension were inoculated into the omentum, peritoneum, and uterine horns of two piglets twice with a one-week interval. In the phase II trial, 5.0 × 106 SNU-008 cells in 0.1 ml suspension were injected only into uterine horns within the same time frame because tumor implantation after inoculation of SK-OV-3 cells was not observed at the omentum or peritoneum in the phase I trial. Modified peritoneal cancer index (PCI) score was used to monitor tumorigenesis up to 4 weeks after inoculation. Tumor tissues disseminated in the peritoneum 4 weeks after injection were used for histological examination with hematoxylin and eosin (H&E) and paired-box gene 8 (PAX-8) staining. Results In the phase I trial, two piglets showed PM with modified PCI scores of 5 and 4 at 3 weeks after the first inoculation, which increased to 14 and 15 after 4 weeks, respectively. In the phase II trial, PM was detected in eight of ten piglets, which showed modified PCI scores of 6 to 12 at 4 weeks after the first inoculation. The overall incidence of PM from the total of 12 piglets after inoculation was 75%. Immunohistochemical H&E and PAX-8 staining confirmed metastatic tumors. Conclusions This study provides strong evidence that piglets can be employed as a model for PM by inoculating ovarian cancer cell lines from humans. Using two cell lines, the PM rate is 75%. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03533-1.
Collapse
Affiliation(s)
- Eun Ji Lee
- Department of Obstetrics and Gynecology, Chung-Ang University Hospital, Seoul, 06973, Republic of Korea
| | - Soo Jin Park
- Department of Obstetrics and Gynecology, Seoul National University Hospital, 101 Daehak-Ro, Jongno-Gu, Seoul, 03080, Republic of Korea
| | - Aeran Seol
- Department of Obstetrics and Gynecology, Korea University Anam Hospital, Seoul, 02841, Korea
| | - Hyunji Lim
- Department of Obstetrics and Gynecology, Seoul National University Hospital, 101 Daehak-Ro, Jongno-Gu, Seoul, 03080, Republic of Korea
| | - Sumin Park
- College of Agriculture and Life Sciences, Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ji Yeon Ahn
- College of Agriculture and Life Sciences, Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jeong Mook Lim
- College of Agriculture and Life Sciences, Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Hee Seung Kim
- Department of Obstetrics and Gynecology, Seoul National University Hospital, 101 Daehak-Ro, Jongno-Gu, Seoul, 03080, Republic of Korea. .,Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
| | | |
Collapse
|
17
|
Protein Binding in Translational Antimicrobial Development-Focus on Interspecies Differences. Antibiotics (Basel) 2022; 11:antibiotics11070923. [PMID: 35884177 PMCID: PMC9311574 DOI: 10.3390/antibiotics11070923] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 12/07/2022] Open
Abstract
Background/Introduction: Plasma protein binding (PPB) continues to be a key aspect of antibiotic development and clinical use. PPB is essential to understand several properties of drug candidates, including antimicrobial activity, drug-drug interaction, drug clearance, volume of distribution, and therapeutic index. Focus areas of the review: In this review, we discuss the basics of PPB, including the main drug binding proteins i.e., Albumin and α-1-acid glycoprotein (AAG). Furthermore, we present the effects of PPB on the antimicrobial activity of antibiotics and the current role of PPB in in vitro pharmacodynamic (PD) models of antibiotics. Moreover, the effect of PPB on the PK/PD of antibiotics has been discussed in this review. A key aspect of this paper is a concise evaluation of PPB between animal species (dog, rat, mouse, rabbit and monkey) and humans. Our statistical analysis of the data available in the literature suggests a significant difference between antibiotic binding in humans and that of dogs or mice, with the majority of measurements from the pre-clinical species falling within five-fold of the human plasma value. Conversely, no significant difference in binding was found between humans and rats, rabbits, or monkeys. This information may be helpful for drug researchers to select the most relevant animal species in which the metabolism of a compound can be studied for extrapolating the results to humans. Furthermore, state-of-the-art methods for determining PPB such as equilibrium dialysis, ultracentrifugation, microdialysis, gel filtration, chromatographic methods and fluorescence spectroscopy are highlighted with their advantages and disadvantages.
Collapse
|
18
|
Lederer CW, Koniali L, Buerki-Thurnherr T, Papasavva PL, La Grutta S, Licari A, Staud F, Bonifazi D, Kleanthous M. Catching Them Early: Framework Parameters and Progress for Prenatal and Childhood Application of Advanced Therapies. Pharmaceutics 2022; 14:pharmaceutics14040793. [PMID: 35456627 PMCID: PMC9031205 DOI: 10.3390/pharmaceutics14040793] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/29/2022] [Accepted: 04/01/2022] [Indexed: 01/19/2023] Open
Abstract
Advanced therapy medicinal products (ATMPs) are medicines for human use based on genes, cells or tissue engineering. After clear successes in adults, the nascent technology now sees increasing pediatric application. For many still untreatable disorders with pre- or perinatal onset, timely intervention is simply indispensable; thus, prenatal and pediatric applications of ATMPs hold great promise for curative treatments. Moreover, for most inherited disorders, early ATMP application may substantially improve efficiency, economy and accessibility compared with application in adults. Vindicating this notion, initial data for cell-based ATMPs show better cell yields, success rates and corrections of disease parameters for younger patients, in addition to reduced overall cell and vector requirements, illustrating that early application may resolve key obstacles to the widespread application of ATMPs for inherited disorders. Here, we provide a selective review of the latest ATMP developments for prenatal, perinatal and pediatric use, with special emphasis on its comparison with ATMPs for adults. Taken together, we provide a perspective on the enormous potential and key framework parameters of clinical prenatal and pediatric ATMP application.
Collapse
Affiliation(s)
- Carsten W. Lederer
- The Molecular Genetics Thalassemia Department, The Cyprus Institute of Neurology & Genetics, Nicosia 2371, Cyprus; (L.K.); (P.L.P.); (M.K.)
- Correspondence: ; Tel.: +357-22-392764
| | - Lola Koniali
- The Molecular Genetics Thalassemia Department, The Cyprus Institute of Neurology & Genetics, Nicosia 2371, Cyprus; (L.K.); (P.L.P.); (M.K.)
| | - Tina Buerki-Thurnherr
- Empa, Swiss Federal Laboratories for Materials Science and Technology, 9014 St. Gallen, Switzerland;
| | - Panayiota L. Papasavva
- The Molecular Genetics Thalassemia Department, The Cyprus Institute of Neurology & Genetics, Nicosia 2371, Cyprus; (L.K.); (P.L.P.); (M.K.)
| | - Stefania La Grutta
- Institute of Translational Pharmacology, IFT National Research Council, 90146 Palermo, Italy;
| | - Amelia Licari
- Pediatric Clinic, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, Fondazione IRCCS Policlinico San Matteo, University of Pavia, 27100 Pavia, Italy;
| | - Frantisek Staud
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, 50005 Hradec Králové, Czech Republic;
| | - Donato Bonifazi
- Consorzio per Valutazioni Biologiche e Farmacologiche (CVBF) and European Paediatric Translational Research Infrastructure (EPTRI), 70122 Bari, Italy;
| | - Marina Kleanthous
- The Molecular Genetics Thalassemia Department, The Cyprus Institute of Neurology & Genetics, Nicosia 2371, Cyprus; (L.K.); (P.L.P.); (M.K.)
| |
Collapse
|
19
|
de Morais-Pinto L, da Veiga ML, Almeida da Anunciação AR. Central nervous system development of cats (Felis catus L. 1758). Res Vet Sci 2021; 141:81-94. [PMID: 34700148 DOI: 10.1016/j.rvsc.2021.10.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/07/2021] [Accepted: 10/18/2021] [Indexed: 11/29/2022]
Abstract
The morphological similarities of vertebrates' embryonic development are used as a criterion for choosing animal models that can be used in biomedical research. This study describes the embryonic and fetal development of the domestic cat's central nervous system from 15 days after conception until birth. In total, fifty-seven samples of embryos and fetuses were carefully dissected and analyzed microscopically. The closure of the neural tube was observed between 14-15th days of gestation. The differentiation of the primordial cerebral vesicles was observed from the 17th day of gestation. On the 19th day of gestation, the formation of the choroid plexus began, and on the 20th day of gestation, the brain and brainstem were well-identified macroscopically. On the 24th day of gestation, four layers of cells from the cerebral cortex were described, and on the 60th day, six layers of cells were present. The cerebellar cortex had the three classic cortical layers at this stage. The morphological aspects of embryonic and fetal development in cats were very similar to the stages of development of the human nervous system. As such, this study provided relevant information that highlights the domestic cat as an animal model option for preclinical research on infectious and non-infectious neurological diseases in humans.
Collapse
Affiliation(s)
- Luciano de Morais-Pinto
- Laboratório de Design Anatômico/LabDA, Departamento de Morfologia, Universidade Federal de Santa Maria, Rio Grande do Sul, Brazil.
| | - Marcelo Leite da Veiga
- Laboratório de Morfofisiologia Experimental e Comparada/LABITEX, Departamento de Morfologia, Universidade Federal de Santa Maria, Rio Grande do Sul, Brazil
| | | |
Collapse
|
20
|
Su Y, Wang L, Fan Z, Liu Y, Zhu J, Kaback D, Oudiz J, Patrick T, Yee SP, Tian X(C, Polejaeva I, Tang Y. Establishment of Bovine-Induced Pluripotent Stem Cells. Int J Mol Sci 2021; 22:ijms221910489. [PMID: 34638830 PMCID: PMC8508593 DOI: 10.3390/ijms221910489] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/04/2021] [Accepted: 09/24/2021] [Indexed: 11/22/2022] Open
Abstract
Pluripotent stem cells (PSCs) have been successfully developed in many species. However, the establishment of bovine-induced pluripotent stem cells (biPSCs) has been challenging. Here we report the generation of biPSCs from bovine mesenchymal stem cells (bMSCs) by overexpression of lysine-specific demethylase 4A (KDM4A) and the other reprogramming factors OCT4, SOX2, KLF4, cMYC, LIN28, and NANOG (KdOSKMLN). These biPSCs exhibited silenced transgene expression at passage 10, and had prolonged self-renewal capacity for over 70 passages. The biPSCs have flat, primed-like PSC colony morphology in combined media of knockout serum replacement (KSR) and mTeSR, but switched to dome-shaped, naïve-like PSC colony morphology in mTeSR medium and 2i/LIF with single cell colonization capacity. These cells have comparable proliferation rate to the reported primed- or naïve-state human PSCs, with three-germ layer differentiation capacity and normal karyotype. Transcriptome analysis revealed a high similarity of biPSCs to reported bovine embryonic stem cells (ESCs) and embryos. The naïve-like biPSCs can be incorporated into mouse embryos, with the extended capacity of integration into extra-embryonic tissues. Finally, at least 24.5% cloning efficiency could be obtained in nuclear transfer (NT) experiment using late passage biPSCs as nuclear donors. Our report represents a significant advance in the establishment of bovine PSCs.
Collapse
Affiliation(s)
- Yue Su
- Department of Animal Science, Institute of Systems Genetics, University of Connecticut, Storrs, CT 06268, USA; (Y.S.); (L.W.); (J.Z.); (J.O.); (X.T.)
| | - Ling Wang
- Department of Animal Science, Institute of Systems Genetics, University of Connecticut, Storrs, CT 06268, USA; (Y.S.); (L.W.); (J.Z.); (J.O.); (X.T.)
| | - Zhiqiang Fan
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT 84322, USA; (Z.F.); (Y.L.); (T.P.)
| | - Ying Liu
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT 84322, USA; (Z.F.); (Y.L.); (T.P.)
| | - Jiaqi Zhu
- Department of Animal Science, Institute of Systems Genetics, University of Connecticut, Storrs, CT 06268, USA; (Y.S.); (L.W.); (J.Z.); (J.O.); (X.T.)
| | - Deborah Kaback
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06030, USA; (D.K.); (S.P.Y.)
| | - Julia Oudiz
- Department of Animal Science, Institute of Systems Genetics, University of Connecticut, Storrs, CT 06268, USA; (Y.S.); (L.W.); (J.Z.); (J.O.); (X.T.)
| | - Tayler Patrick
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT 84322, USA; (Z.F.); (Y.L.); (T.P.)
| | - Siu Pok Yee
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06030, USA; (D.K.); (S.P.Y.)
| | - Xiuchun (Cindy) Tian
- Department of Animal Science, Institute of Systems Genetics, University of Connecticut, Storrs, CT 06268, USA; (Y.S.); (L.W.); (J.Z.); (J.O.); (X.T.)
| | - Irina Polejaeva
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT 84322, USA; (Z.F.); (Y.L.); (T.P.)
- Correspondence: (I.P.); (Y.T.)
| | - Young Tang
- Department of Animal Science, Institute of Systems Genetics, University of Connecticut, Storrs, CT 06268, USA; (Y.S.); (L.W.); (J.Z.); (J.O.); (X.T.)
- Correspondence: (I.P.); (Y.T.)
| |
Collapse
|
21
|
Gross AL, Gray-Edwards HL, Bebout CN, Ta NL, Nielsen K, Brunson BL, Mercado KRL, Osterhoudt DE, Batista AR, Maitland S, Seyfried TN, Sena-Esteves M, Martin DR. Intravenous delivery of adeno-associated viral gene therapy in feline GM1 gangliosidosis. Brain 2021; 145:655-669. [PMID: 34410345 DOI: 10.1093/brain/awab309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/12/2021] [Accepted: 07/28/2021] [Indexed: 11/14/2022] Open
Abstract
GM1 gangliosidosis is a fatal neurodegenerative disease caused by a deficiency of lysosomal β-galactosidase. In its most severe form, GM1 gangliosidosis causes death by 4 years of age, and no effective treatments exist. Previous work has shown that injection of the brain parenchyma with an adeno-associated viral vector provides pronounced therapeutic benefit in a feline GM1 model. To develop a less invasive treatment for the brain and increase systemic biodistribution, intravenous injection of AAV9 was evaluated. AAV9 expressing feline β-galactosidase was intravenously administered at 1.5x1013 vector genomes/kilogram body weight to six GM1 cats at approximately 1 month of age. The animals were divided into two cohorts: 1) a long-term group, which was followed to humane endpoint, and 2) a short-term group, which was analyzed 16-weeks post treatment. Clinical assessments included neurological exams, cerebrospinal fluid and urine biomarkers, and 7-Telsa magnetic resonance imaging and spectroscopy. Postmortem analysis included β-galactosidase and virus distribution, histological analysis, and ganglioside content. Untreated GM1 animals survived 8.0 ± 0.6 months while intravenous treatment increased survival to an average of 3.5 years (n = 2) with substantial improvements in quality of life and neurologic function. Neurological abnormalities, which in untreated animals progress to the inability to stand and debilitating neurological disease by 8 months of age, were mild in all treated animals. Cerebrospinal fluid biomarkers were normalized, indicating decreased central nervous system cell damage in the treated animals. Urinary glycosaminoglycans decreased to normal levels in the long-term cohort. Magnetic resonance imaging and spectroscopy showed partial preservation of the brain in treated animals, which was supported by postmortem histological evaluation. β-galactosidase activity was increased throughout the central nervous system, reaching carrier levels in much of the cerebrum and normal levels in the cerebellum, spinal cord and cerebrospinal fluid. Ganglioside accumulation was significantly reduced by treatment. Peripheral tissues such as heart, skeletal muscle, and sciatic nerve also had normal β-galactosidase activity in treated GM1 cats. GM1 histopathology was largely corrected with treatment. There was no evidence of tumorigenesis or toxicity. Restoration of β-galactosidase activity in the central nervous system and peripheral organs by intravenous gene therapy led to profound increases in lifespan and quality of life in GM1 cats. This data supports the promise of intravenous gene therapy as a safe, effective treatment for GM1 gangliosidosis.
Collapse
Affiliation(s)
- Amanda L Gross
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL 36849 USA.,Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University, AL 36849 USA
| | - Heather L Gray-Edwards
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL 36849 USA
| | - Cassie N Bebout
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL 36849 USA
| | - Nathan L Ta
- Biology Department, Boston College, Chestnut Hill, MA 02467 USA
| | - Kayly Nielsen
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL 36849 USA
| | - Brandon L Brunson
- Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University, AL 36849 USA
| | - Kalajan R Lopez Mercado
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL 36849 USA
| | - Devin E Osterhoudt
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL 36849 USA
| | - Ana Rita Batista
- Department of Neurology, University of Massachusetts Medical School, Worcester MA 01605 USA.,Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester MA 01605 USA
| | - Stacy Maitland
- Department of Neurology, University of Massachusetts Medical School, Worcester MA 01605 USA.,Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester MA 01605 USA
| | | | - Miguel Sena-Esteves
- Department of Neurology, University of Massachusetts Medical School, Worcester MA 01605 USA.,Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester MA 01605 USA
| | - Douglas R Martin
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL 36849 USA.,Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University, AL 36849 USA
| |
Collapse
|
22
|
Teunissen AJ, van Leent MM, Prevot G, Brechbühl EE, Pérez-Medina C, Duivenvoorden R, Fayad ZA, Mulder WJ. Targeting Trained Innate Immunity With Nanobiologics to Treat Cardiovascular Disease. Arterioscler Thromb Vasc Biol 2021; 41:1839-1850. [PMID: 33882685 PMCID: PMC8159873 DOI: 10.1161/atvbaha.120.315448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 04/01/2021] [Indexed: 12/26/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Abraham J.P. Teunissen
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Mandy M.T. van Leent
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
- Department of Medical Biochemistry, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Geoffrey Prevot
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Eliane E.S. Brechbühl
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
- Institute of Materials, School of Engineering (STI), École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Carlos Pérez-Medina
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Raphaël Duivenvoorden
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
- Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands
| | - Zahi A. Fayad
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Willem J.M. Mulder
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Laboratory of Chemical Biology, Department of Biochemical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
23
|
Bankoti K, Generotti C, Hwa T, Wang L, O'Malley BW, Li D. Advances and challenges in adeno-associated viral inner-ear gene therapy for sensorineural hearing loss. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2021; 21:209-236. [PMID: 33850952 PMCID: PMC8010215 DOI: 10.1016/j.omtm.2021.03.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
There is growing attention and effort focused on treating the root cause of sensorineural hearing loss rather than managing associated secondary characteristic features. With recent substantial advances in understanding sensorineural hearing-loss mechanisms, gene delivery has emerged as a promising strategy for the biological treatment of hearing loss associated with genetic dysfunction. There are several successful and promising proof-of-principle examples of transgene deliveries in animal models; however, there remains substantial further progress to be made in these avenues before realizing their clinical application in humans. Herein, we review different aspects of development, ongoing preclinical studies, and challenges to the clinical transition of transgene delivery of the inner ear toward the restoration of lost auditory and vestibular function.
Collapse
Affiliation(s)
- Kamakshi Bankoti
- Department of Otorhinolaryngology, Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Charles Generotti
- Department of Otorhinolaryngology, Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tiffany Hwa
- Department of Otorhinolaryngology, Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lili Wang
- Department of Medicine, Gene Therapy Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Bert W O'Malley
- Department of Otorhinolaryngology, Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Daqing Li
- Department of Otorhinolaryngology, Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
24
|
Osum SH, Watson AL, Largaespada DA. Spontaneous and Engineered Large Animal Models of Neurofibromatosis Type 1. Int J Mol Sci 2021; 22:1954. [PMID: 33669386 PMCID: PMC7920315 DOI: 10.3390/ijms22041954] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/02/2021] [Accepted: 02/04/2021] [Indexed: 12/13/2022] Open
Abstract
Animal models are crucial to understanding human disease biology and developing new therapies. By far the most common animal used to investigate prevailing questions about human disease is the mouse. Mouse models are powerful tools for research as their small size, limited lifespan, and defined genetic background allow researchers to easily manipulate their genome and maintain large numbers of animals in general laboratory spaces. However, it is precisely these attributes that make them so different from humans and explains, in part, why these models do not accurately predict drug responses in human patients. This is particularly true of the neurofibromatoses (NFs), a group of genetic diseases that predispose individuals to tumors of the nervous system, the most common of which is Neurofibromatosis type 1 (NF1). Despite years of research, there are still many unanswered questions and few effective treatments for NF1. Genetically engineered mice have drastically improved our understanding of many aspects of NF1, but they do not exemplify the overall complexity of the disease and some findings do not translate well to humans due to differences in body size and physiology. Moreover, NF1 mouse models are heavily reliant on the Cre-Lox system, which does not accurately reflect the molecular mechanism of spontaneous loss of heterozygosity that accompanies human tumor development. Spontaneous and genetically engineered large animal models may provide a valuable supplement to rodent studies for NF1. Naturally occurring comparative models of disease are an attractive prospect because they occur on heterogeneous genetic backgrounds and are due to spontaneous rather than engineered mutations. The use of animals with naturally occurring disease has been effective for studying osteosarcoma, lymphoma, and diabetes. Spontaneous NF-like symptoms including neurofibromas and malignant peripheral nerve sheath tumors (MPNST) have been documented in several large animal species and share biological and clinical similarities with human NF1. These animals could provide additional insight into the complex biology of NF1 and potentially provide a platform for pre-clinical trials. Additionally, genetically engineered porcine models of NF1 have recently been developed and display a variety of clinical features similar to those seen in NF1 patients. Their large size and relatively long lifespan allow for longitudinal imaging studies and evaluation of innovative surgical techniques using human equipment. Greater genetic, anatomic, and physiologic similarities to humans enable the engineering of precise disease alleles found in human patients and make them ideal for preclinical pharmacokinetic and pharmacodynamic studies of small molecule, cellular, and gene therapies prior to clinical trials in patients. Comparative genomic studies between humans and animals with naturally occurring disease, as well as preclinical studies in large animal disease models, may help identify new targets for therapeutic intervention and expedite the translation of new therapies. In this review, we discuss new genetically engineered large animal models of NF1 and cases of spontaneous NF-like manifestations in large animals, with a special emphasis on how these comparative models could act as a crucial translational intermediary between specialized murine models and NF1 patients.
Collapse
Affiliation(s)
- Sara H. Osum
- Masonic Cancer Center, Department of Pediatrics, Division of Hematology and Oncology, University of Minnesota, Minneapolis, MN 55455, USA;
| | | | - David A. Largaespada
- Masonic Cancer Center, Department of Pediatrics, Division of Hematology and Oncology, University of Minnesota, Minneapolis, MN 55455, USA;
| |
Collapse
|
25
|
Su Y, Zhu J, Salman S, Tang Y. Induced pluripotent stem cells from farm animals. J Anim Sci 2021; 98:5937369. [PMID: 33098420 DOI: 10.1093/jas/skaa343] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/15/2020] [Indexed: 02/06/2023] Open
Abstract
The development of the induced pluripotent stem cells (iPSCs) technology has revolutionized the world on the establishment of pluripotent stem cells (PSCs) across a great variety of animal species. Generation of iPSCs from domesticated animals would provide unrestricted cell resources for the study of embryonic development and cell differentiation of these species, for screening and establishing desired traits for sustainable agricultural production, and as veterinary and preclinical therapeutic tools for animal and human diseases. Induced PSCs from domesticated animals thus harbor enormous scientific, economical, and societal values. Although much progress has been made toward the generation of PSCs from these species, major obstacles remain precluding the exclamation of the establishment of bona fide iPSCs. The most prominent of them remain the inability of these cells to silence exogenous reprogramming factors, the obvious reliance on exogenous factors for their self-renewal, and the restricted development potential in vivo. In this review, we summarize the history and current progress in domestic farm animal iPSC generation, with a focus on swine, ruminants (cattle, ovine, and caprine), horses, and avian species (quails and chickens). We also discuss the problems associated with the farm animal iPSCs and potential future directions toward the complete reprogramming of somatic cells from farm animals.
Collapse
Affiliation(s)
- Yue Su
- Department of Animal Science, Institute for Systems Genomics, University of Connecticut, Storrs, CT
| | - Jiaqi Zhu
- Department of Animal Science, Institute for Systems Genomics, University of Connecticut, Storrs, CT
| | - Saleh Salman
- Department of Animal Science, Institute for Systems Genomics, University of Connecticut, Storrs, CT
| | - Young Tang
- Department of Animal Science, Institute for Systems Genomics, University of Connecticut, Storrs, CT
| |
Collapse
|
26
|
Harm TA, Hostetter SJ, Nenninger AS, Valentine BN, Ellinwood NM, Smith JD. Temporospatial Development of Neuropathologic Findings in a Canine Model of Mucopolysaccharidosis IIIB. Vet Pathol 2020; 58:205-222. [PMID: 33205707 DOI: 10.1177/0300985820960128] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Mucopolysaccharidosis (MPS) IIIB is a neuropathic lysosomal storage disease characterized by the deficient activity of a lysosomal enzyme obligate for the degradation of the glycosaminoglycan (GAG) heparan sulfate (HS). The pathogenesis of neurodegeneration in MPS IIIB is incompletely understood. Large animal models are attractive for pathogenesis and therapeutic studies due to their larger size, outbred genetics, longer lifespan, and naturally occurring MPS IIIB disease. However, the temporospatial development of neuropathologic changes has not been reported for canine MPS IIIB. Here we describe lesions in 8 brain regions, cervical spinal cord, and dorsal root ganglion (DRG) in a canine model of MPS IIIB that includes dogs aged from 2 to 26 months of age. Pathological changes in the brain included early microscopic vacuolation of glial cells initially observed at 2 months, and vacuolation of neurons initially observed at 10 months. Inclusions within affected cells variably stained positively with PAS and LFB stains. Quantitative immunohistochemistry demonstrated increased glial expression of GFAP and Iba1 in dogs with MPS IIIB compared to age-matched controls at all time points, suggesting neuroinflammation occurs early in disease. Loss of Purkinje cells was initially observed at 10 months and was pronounced in 18- and 26-month-old dogs with MPS IIIB. Our results support the dog as a replicative model of MPS IIIB neurologic lesions and detail the pathologic and neuroinflammatory changes in the spinal cord and DRG of MPS IIIB-affected dogs.
Collapse
Affiliation(s)
| | - Shannon J Hostetter
- 70724Iowa State University, Ames, IA, USA.,Current address: Department of Veterinary Pathology, University of Georgia, Athens, GA, USA
| | | | | | | | | |
Collapse
|
27
|
Harman RM, Das SP, Bartlett AP, Rauner G, Donahue LR, Van de Walle GR. Beyond tradition and convention: benefits of non-traditional model organisms in cancer research. Cancer Metastasis Rev 2020; 40:47-69. [PMID: 33111160 DOI: 10.1007/s10555-020-09930-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/01/2020] [Indexed: 02/07/2023]
Abstract
Traditional laboratory model organisms are indispensable for cancer research and have provided insight into numerous mechanisms that contribute to cancer development and progression in humans. However, these models do have some limitations, most notably related to successful drug translation, because traditional model organisms are often short-lived, small-bodied, genetically homogeneous, often immunocompromised, are not exposed to natural environments shared with humans, and usually do not develop cancer spontaneously. We propose that assimilating information from a variety of long-lived, large, genetically diverse, and immunocompetent species that live in natural environments and do develop cancer spontaneously (or do not develop cancer at all) will lead to a more comprehensive understanding of human cancers. These non-traditional model organisms can also serve as sentinels for environmental risk factors that contribute to human cancers. Ultimately, expanding the range of animal models that can be used to study cancer will lead to improved insights into cancer development, progression and metastasis, tumor microenvironment, as well as improved therapies and diagnostics, and will consequently reduce the negative impacts of the wide variety of cancers afflicting humans overall.
Collapse
Affiliation(s)
- Rebecca M Harman
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Sanjna P Das
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Arianna P Bartlett
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Gat Rauner
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Leanne R Donahue
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Gerlinde R Van de Walle
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
28
|
Frost PA, Chen S, Rodriguez-Ayala E, Laviada-Molina HA, Vaquera Z, Gaytan-Saucedo JF, Li WH, Haack K, Grayburn PA, Sayers K, Cole SA, Bastarrachea RA. Research methodology for in vivo measurements of resting energy expenditure, daily body temperature, metabolic heat and non-viral tissue-specific gene therapy in baboons. Res Vet Sci 2020; 133:136-145. [PMID: 32979746 DOI: 10.1016/j.rvsc.2020.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/15/2020] [Accepted: 09/17/2020] [Indexed: 12/31/2022]
Abstract
A large number of studies have shown that the baboon is one of the most commonly used non-human primate (NHP) research model for the study of immunometabolic complex traits such as type 2 diabetes (T2D), insulin resistance (IR), adipose tissue dysfunction (ATD), dyslipidemia, obesity (OB) and cardiovascular disease (CVD). This paper reports on innovative technologies and advanced research strategies for energetics and translational medicine with this NHP model. This includes the following: measuring resting energy expenditure (REE) with the mobile indirect calorimeter Breezing®; monitoring daily body temperature using subcutaneously implanted data loggers; quantifying metabolic heat with veterinary infrared thermography (IRT) imaging, and non-viral non-invasive, tissue-specific ultrasound-targeted microbubble destruction (UTMD) gene-based therapy. These methods are of broad utility; for example, they may facilitate the engineering of ectopic overexpression of brown adipose tissue (BAT) mUCP-1 via UTMD-gene therapy into baboon SKM to achieve weight loss, hypophagia and immunometabolic improvement. These methods will be valuable to basic and translational research, and human clinical trials, in the areas of metabolism, cardiovascular health, and immunometabolic and infectious diseases.
Collapse
Affiliation(s)
- Patrice A Frost
- Population Health Program, Texas Biomedical Research Institute, Southwest National Primate Research Center (SNPRC), San Antonio, TX 78227-0549, USA
| | - Shuyuan Chen
- Departments of Cell Biology and of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75235, United States of America
| | - Ernesto Rodriguez-Ayala
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud, Universidad Anáhuac Norte, Naucalpan de Juárez 52786, Mexico
| | - Hugo A Laviada-Molina
- Escuela de Ciencias de la Salud, Universidad Marista de Mérida, Mérida 97300, Yucatán, Mexico
| | - Zoila Vaquera
- Population Health Program, Texas Biomedical Research Institute, Southwest National Primate Research Center (SNPRC), San Antonio, TX 78227-0549, USA
| | - Janeth F Gaytan-Saucedo
- Population Health Program, Texas Biomedical Research Institute, Southwest National Primate Research Center (SNPRC), San Antonio, TX 78227-0549, USA
| | - Wen-Hong Li
- Departments of Cell Biology and of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75235, United States of America
| | - Karin Haack
- Population Health Program, Texas Biomedical Research Institute, Southwest National Primate Research Center (SNPRC), San Antonio, TX 78227-0549, USA
| | - Paul A Grayburn
- Division of Cardiology, Department of Internal Medicine, Baylor University Medical Center and the Baylor Scott and White Heart and Vascular Hospital, Dallas, TX, United States of America
| | - Ken Sayers
- Population Health Program, Texas Biomedical Research Institute, Southwest National Primate Research Center (SNPRC), San Antonio, TX 78227-0549, USA
| | - Shelley A Cole
- Population Health Program, Texas Biomedical Research Institute, Southwest National Primate Research Center (SNPRC), San Antonio, TX 78227-0549, USA
| | - Raul A Bastarrachea
- Population Health Program, Texas Biomedical Research Institute, Southwest National Primate Research Center (SNPRC), San Antonio, TX 78227-0549, USA.
| |
Collapse
|
29
|
Qu B, Wu S, Jiao G, Zou X, Li Z, Guo L, Sun X, Huang C, Sun Z, Zhang Y, Li H, Zhou Q, Sui R, Li W. Treating Bietti crystalline dystrophy in a high-fat diet-exacerbated murine model using gene therapy. Gene Ther 2020; 27:370-382. [PMID: 32483213 DOI: 10.1038/s41434-020-0159-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/12/2020] [Accepted: 05/19/2020] [Indexed: 11/09/2022]
Abstract
Lipid metabolic deficiencies are associated with many genetic disorders. Bietti crystalline dystrophy (BCD), a blindness-causing inherited disorder with changed lipid profiles, is more common in Chinese and Japanese than other populations. Our results reveal that mouse models lacking Cyp4v3 have less physiological and functional changes than those of BCD patients with this gene defect. After the administration of a high-fat diet (HFD), the occurrence of retinal lesions were both accelerated and aggregated in the Cyp4v3-/- mouse models, implying that changed lipid levels were not only associated factors but also risk factors to BCD patients. Facilitated by the results, we found that the reduced electroretinography waveforms and retinal thickness observed in the HFD-induced mouse models were effectively recovered after subretinal delivery of a human CYP4V2 gene carried by an adeno-associated virus vector, which demonstrates the potential curability of BCD by gene therapy.
Collapse
Affiliation(s)
- Bin Qu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shijing Wu
- Department of Ophthalmology, Peking Union Medical College Hospital, Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China.,Key Laboratory of Ocular Fundus Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Guanyi Jiao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuan Zou
- Department of Ophthalmology, Peking Union Medical College Hospital, Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China.,Key Laboratory of Ocular Fundus Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Zhikun Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
| | - Lu Guo
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuehan Sun
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Cheng Huang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zixi Sun
- Department of Ophthalmology, Peking Union Medical College Hospital, Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China.,Key Laboratory of Ocular Fundus Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Ying Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hui Li
- Department of Ophthalmology, Peking Union Medical College Hospital, Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China.,Key Laboratory of Ocular Fundus Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Qi Zhou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ruifang Sui
- Department of Ophthalmology, Peking Union Medical College Hospital, Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China. .,Key Laboratory of Ocular Fundus Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China.
| | - Wei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China. .,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
30
|
From Mice to Monkeys? Beyond Orthodox Approaches to the Ethics of Animal Model Choice. Animals (Basel) 2020; 10:ani10010077. [PMID: 31906319 PMCID: PMC7022287 DOI: 10.3390/ani10010077] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/06/2019] [Accepted: 12/11/2019] [Indexed: 11/30/2022] Open
Abstract
Simple Summary New tools, allowing scientists to make precise changes to mammal genomes, have made possible future increased use of larger mammals in biomedical research, such as primates, pigs, and dogs. This paper addresses ethical issues that are raised by using larger mammals instead of smaller ones in this research. Because scientists who use animals in research follow strict guidelines, we first examine what those guidelines suggest for using larger mammals. We then consider what philosophers, who write about the ethics of animal use, consider as the important questions in evaluating which (if any) animals are acceptable to use in research. We find that philosophical perspectives have typically been interested in the question of when or if animal use is justified, while biomedical research guidance has assumed that animal use is justified but defined specific limits to that use. To address directly the ethical questions that arise in the practice of biomedical research in selecting which animals to use, we consider an approach to ethics that is focused on character and living well (or flourishing). This paper is valuable to society in drawing attention to the ethical questions, rather than merely the scientific issues, that are important in selecting which animals to use in biomedical research. Abstract Recent developments in genome editing tools, along with limits in the translational potential of rodent models of human disease, have spurred renewed biomedical research interest in large mammals like nonhuman primates, pigs, and dogs. Such scientific developments raise ethical issues about the use of these animals in comparison with smaller mammals, such as mice and rats. To examine these ethical questions, we first consider standard (or “orthodox”) approaches, including ethics oversight within biomedical research communities, and critical theoretical reflections on animal research, including rights-based and utilitarian approaches. We argue that oversight of biomedical research offers guidance on the profession’s permitted uses of animals within a research setting and orthodox approaches to animal ethics questions when and whether animals should be used in biomedicine; however, neither approach sufficiently investigates the nuances of ethical practices within the research setting. To fill this lacuna, we consider a virtue ethical approach to the use of specific animal models in biomedicine. From this perspective, we argued that limitations on flourishing for large mammals in a research setting, as well as potential human-animal bonds, are two sources of likely ethical tensions in animal care and use in the context of larger mammals.
Collapse
|
31
|
Siemsen DW, Kirpotina LN, Malachowa N, Schepetkin IA, Porter AR, Lei B, DeLeo FR, Quinn MT. Isolation of Neutrophils from Nonhuman Species. Methods Mol Biol 2020; 2087:43-59. [PMID: 31728982 DOI: 10.1007/978-1-0716-0154-9_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The development of new advances in understanding the role of neutrophils in inflammation requires effective procedures for isolating and purifying neutrophils. Methods for isolating human neutrophils are fairly standard, and some are covered in other chapters of this volume and previous editions. However, procedures for isolating neutrophils from nonhuman species used to model human diseases vary from those used in isolating human neutrophils and are not as well developed. Since neutrophils are highly reactive and sensitive to small perturbations, the methods of isolation are important to avoid isolation technique-induced alterations in cell function. We present methods here for reproducibly isolating highly purified neutrophils from large animal models (bovine, equine, ovine), small animal models (murine and rabbit), and nonhuman primates (cynomolgus macaques) and describe optimized details for obtaining the highest cell purity, yield, and viability.
Collapse
Affiliation(s)
- Daniel W Siemsen
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
| | - Liliya N Kirpotina
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
| | - Natalia Malachowa
- Laboratory of Bacteriology, Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Igor A Schepetkin
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
| | - Adeline R Porter
- Laboratory of Bacteriology, Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Benfang Lei
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
| | - Frank R DeLeo
- Laboratory of Bacteriology, Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Mark T Quinn
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA.
| |
Collapse
|
32
|
Ishigaki H, Shiina T, Ogasawara K. MHC-identical and transgenic cynomolgus macaques for preclinical studies. Inflamm Regen 2018; 38:30. [PMID: 30479676 PMCID: PMC6249769 DOI: 10.1186/s41232-018-0088-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 10/19/2018] [Indexed: 01/14/2023] Open
Abstract
Cynomolgus macaques are useful experimental animals that are physiologically and genetically close to humans. We have developed two kinds of experimental usage of cynomolgus macaque: transplantation and disease models. First, we identified certain major histocompatibility complex (MHC) haplotypes including homozygotes and heterozygotes in cynomolgus macaques native to the Philippines, because they have less polymorphism in the MHC than that in other origins such as Vietnam and Indonesia. As a preclinical model of the induced pluripotent stem cell (iPSC) stock project, we established iPSCs from various types of MHC homozygous macaques, which were transplanted into compatible MHC heterozygous macaques, the iPSC stock project was experimentally shown to be effective. Second, to obtain disease models of cynomolgus macaques for studies on regenerative medicine including cell therapies, we established two kinds of genetic technology to modify cynomolgus macaques: transgenic technology and gene editing technology using CRISPR-Cas9. We will establish disease models, such as Alzheimer's disease and progeria (Werner syndrome). In future, we will distribute the MHC-identical cynomolgus monkeys and genetically modified macaques to researchers, especially those engaging in regenerative medicine.
Collapse
Affiliation(s)
- Hirohito Ishigaki
- 1Division of Pathology and Disease Regulation, Department of Pathology, Shiga University of Medical Science, Setatsukinowa, Otsu, Shiga 520-2192 Japan
| | - Takashi Shiina
- 2Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, 143 Shiomokasuya, Isehara, Kanagawa 259-1193 Japan
| | - Kazumasa Ogasawara
- 1Division of Pathology and Disease Regulation, Department of Pathology, Shiga University of Medical Science, Setatsukinowa, Otsu, Shiga 520-2192 Japan.,3Research Center for Animal Life Science, Shiga University of Medical Science, Setatsukinowa, Otsu, Shiga 520-2192 Japan
| |
Collapse
|
33
|
Quadalti C, Brunetti D, Lagutina I, Duchi R, Perota A, Lazzari G, Cerutti R, Di Meo I, Johnson M, Bottani E, Crociara P, Corona C, Grifoni S, Tiranti V, Fernandez-Vizarra E, Robinson AJ, Viscomi C, Casalone C, Zeviani M, Galli C. SURF1 knockout cloned pigs: Early onset of a severe lethal phenotype. Biochim Biophys Acta Mol Basis Dis 2018; 1864:2131-2142. [PMID: 29601977 PMCID: PMC6018622 DOI: 10.1016/j.bbadis.2018.03.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 02/28/2018] [Accepted: 03/22/2018] [Indexed: 12/15/2022]
Abstract
Leigh syndrome (LS) associated with cytochrome c oxidase (COX) deficiency is an early onset, fatal mitochondrial encephalopathy, leading to multiple neurological failure and eventually death, usually in the first decade of life. Mutations in SURF1, a nuclear gene encoding a mitochondrial protein involved in COX assembly, are among the most common causes of LS. LSSURF1 patients display severe, isolated COX deficiency in all tissues, including cultured fibroblasts and skeletal muscle. Recombinant, constitutive SURF1-/- mice show diffuse COX deficiency, but fail to recapitulate the severity of the human clinical phenotype. Pigs are an attractive alternative model for human diseases, because of their size, as well as metabolic, physiological and genetic similarity to humans. Here, we determined the complete sequence of the swine SURF1 gene, disrupted it in pig primary fibroblast cell lines using both TALENs and CRISPR/Cas9 genome editing systems, before finally generating SURF1-/- and SURF1-/+ pigs by Somatic Cell Nuclear Transfer (SCNT). SURF1-/- pigs were characterized by failure to thrive, muscle weakness and highly reduced life span with elevated perinatal mortality, compared to heterozygous SURF1-/+ and wild type littermates. Surprisingly, no obvious COX deficiency was detected in SURF1-/- tissues, although histochemical analysis revealed the presence of COX deficiency in jejunum villi and total mRNA sequencing (RNAseq) showed that several COX subunit-encoding genes were significantly down-regulated in SURF1-/- skeletal muscles. In addition, neuropathological findings, indicated a delay in central nervous system development of newborn SURF1-/- piglets. Our results suggest a broader role of sSURF1 in mitochondrial bioenergetics.
Collapse
Affiliation(s)
- C Quadalti
- Avantea, Laboratory of Reproductive Technologies, Via Porcellasco 7/f, Cremona 26100, Italy; Dept. of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano dell'Emilia, BO, Italy
| | - D Brunetti
- University of Cambridge/MRC Mitochondrial Biology Unit, Wellcome Trust/MRC Building, Hills Rd, Cambridge CB20XY, UK
| | - I Lagutina
- Avantea, Laboratory of Reproductive Technologies, Via Porcellasco 7/f, Cremona 26100, Italy
| | - R Duchi
- Avantea, Laboratory of Reproductive Technologies, Via Porcellasco 7/f, Cremona 26100, Italy
| | - A Perota
- Avantea, Laboratory of Reproductive Technologies, Via Porcellasco 7/f, Cremona 26100, Italy
| | - G Lazzari
- Avantea, Laboratory of Reproductive Technologies, Via Porcellasco 7/f, Cremona 26100, Italy; Fondazione Avantea, Cremona, Italy
| | - R Cerutti
- University of Cambridge/MRC Mitochondrial Biology Unit, Wellcome Trust/MRC Building, Hills Rd, Cambridge CB20XY, UK
| | - I Di Meo
- Neurologic Institute Carlo Besta, Via G. Celoria 11, 20133 Milan, Italy
| | - M Johnson
- University of Cambridge/MRC Mitochondrial Biology Unit, Wellcome Trust/MRC Building, Hills Rd, Cambridge CB20XY, UK
| | - E Bottani
- University of Cambridge/MRC Mitochondrial Biology Unit, Wellcome Trust/MRC Building, Hills Rd, Cambridge CB20XY, UK
| | - P Crociara
- Istituto Zooprofilattico Sperimentale del Piemonte Liguria e Valle d'Aosta, Via Bologna 148, Torino 10154, Italy
| | - C Corona
- Istituto Zooprofilattico Sperimentale del Piemonte Liguria e Valle d'Aosta, Via Bologna 148, Torino 10154, Italy
| | - S Grifoni
- Istituto Zooprofilattico Sperimentale del Piemonte Liguria e Valle d'Aosta, Via Bologna 148, Torino 10154, Italy
| | - V Tiranti
- Neurologic Institute Carlo Besta, Via G. Celoria 11, 20133 Milan, Italy
| | - E Fernandez-Vizarra
- University of Cambridge/MRC Mitochondrial Biology Unit, Wellcome Trust/MRC Building, Hills Rd, Cambridge CB20XY, UK
| | - A J Robinson
- University of Cambridge/MRC Mitochondrial Biology Unit, Wellcome Trust/MRC Building, Hills Rd, Cambridge CB20XY, UK
| | - C Viscomi
- University of Cambridge/MRC Mitochondrial Biology Unit, Wellcome Trust/MRC Building, Hills Rd, Cambridge CB20XY, UK
| | - C Casalone
- Istituto Zooprofilattico Sperimentale del Piemonte Liguria e Valle d'Aosta, Via Bologna 148, Torino 10154, Italy
| | - M Zeviani
- University of Cambridge/MRC Mitochondrial Biology Unit, Wellcome Trust/MRC Building, Hills Rd, Cambridge CB20XY, UK.
| | - C Galli
- Avantea, Laboratory of Reproductive Technologies, Via Porcellasco 7/f, Cremona 26100, Italy; Dept. of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano dell'Emilia, BO, Italy.
| |
Collapse
|
34
|
A Novel Porcine Model for Future Studies of Cell-enriched Fat Grafting. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2018; 6:e1735. [PMID: 29876178 PMCID: PMC5977937 DOI: 10.1097/gox.0000000000001735] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 02/06/2018] [Indexed: 12/13/2022]
Abstract
Supplemental Digital Content is available in the text. Background: Cell-enriched fat grafting has shown promising results for improving graft survival, although many questions remain unanswered. A large animal model is crucial for bridging the gap between rodent studies and human trials. We present a step-by-step approach in using the Göttingen minipig as a model for future studies of cell-enriched large volume fat grafting. Methods: Fat grafting was performed as bolus injections and structural fat grafting. Graft retention was assessed by magnetic resonance imaging after 120 days. The stromal vascular fraction (SVF) was isolated from excised fat and liposuctioned fat from different anatomical sites and analyzed. Porcine adipose-derived stem/stromal cells (ASCs) were cultured in different growth supplements, and population doubling time, maximum cell yield, expression of surface markers, and differentiation potential were investigated. Results: Structural fat grafting in the breast and subcutaneous bolus grafting in the abdomen revealed average graft retention of 53.55% and 15.28%, respectively, which are similar to human reports. Liposuction yielded fewer SVF cells than fat excision, and abdominal fat had the most SVF cells/g fat with SVF yields similar to humans. Additionally, we demonstrated that porcine ASCs can be readily isolated and expanded in culture in allogeneic porcine platelet lysate and fetal bovine serum and that the use of 10% porcine platelet lysate or 20% fetal bovine serum resulted in population doubling time, maximum cell yield, surface marker profile, and trilineage differentiation that were comparable with humans. Conclusions: The Göttingen minipig is a feasible and cost-effective, large animal model for future translational studies of cell-enriched fat grafting.
Collapse
|
35
|
Khatri M, Richardson LA. Therapeutic potential of porcine bronchoalveolar fluid-derived mesenchymal stromal cells in a pig model of LPS-induced ALI. J Cell Physiol 2018; 233:5447-5457. [PMID: 29231967 DOI: 10.1002/jcp.26397] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 12/04/2017] [Indexed: 12/20/2022]
Abstract
In this study, we isolated mesenchymal stromal (stem) cells (MSCs) from broncho-alveolar lavage fluid (BAL) of 2-6-week-old commercial pigs. BAL-MSCs displayed fibroblastic morphology and possessed self-renewal properties. Similar to bone-marrow MSCs, BAL-MSCs expressed mesenchymal markers and both cell types lacked the expression of hematopoetic markers. BAL-MSCs, when cultured in differentiation induction media, differentiated into adipocytes, osteocytes, and chondrocytes. Next, we examined if BAL-MSCs have the ability to treat lipopolysaccharide (LPS)-induced acute lung injury (ALI) in a pig model. Five-week-old commercial pigs were inoculated intra-tracheally with E. coli LPS (1 mg/kg body weight [b.wt.]). Twelve hours after the LPS inoculation, groups of pigs were inoculated intra-tracheally with BM-MSCs or BAL-MSCs (2 × 106 cells/kg b.wt.). Forty eight hours after the cells administration pigs were euthanized and neutrophils in BAL, lung lesions, and cytokines in lung lysates, and engraftment of MSCs in lungs were examined. Engraftment of BAL-MSCs in injured lungs was significantly higher than the BM-MSCs, however, both cell types were equally effective in attenuating LPS-induced ALI as evidenced by decreased inflammation, lung lesions, and proinflammatory cytokines in the lungs of pigs treated with BAL- or BM-MSCs. These data in a preclinical large animal model suggest that BAL-MSCs may be used in clinical settings to treat ALI in humans.
Collapse
Affiliation(s)
- Mahesh Khatri
- Department of Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio
| | - Levi A Richardson
- Department of Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio
| |
Collapse
|
36
|
Stem cells and genome editing: approaches to tissue regeneration and regenerative medicine. J Hum Genet 2017; 63:165-178. [PMID: 29192237 DOI: 10.1038/s10038-017-0348-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 08/20/2017] [Accepted: 08/21/2017] [Indexed: 12/20/2022]
Abstract
Understanding the basis of regeneration of each tissue and organ, and incorporating this knowledge into clinical treatments for degenerative tissues and organs in patients, are major goals for researchers in regenerative biology. Here we provide an overview of current work, from high-regeneration animal models, to stem cell-based culture models, transplantation technologies, large-animal chimeric models, and programmable nuclease-based genome-editing technologies. Three-dimensional culture generating organoids, which represents intact tissue/organ identity including cell fate and morphology are getting more general approaches in the fields by taking advantage of embryonic stem cells, induced pluripotent stem cells and adult stem cells. The organoid culture system potentially has profound impact on the field of regenerative medicine. We also emphasize that the large animal model, in particular pig model would be a hope to manufacture humanized organs in in vivo empty (vacant) niche, which now potentially allows not only appropriate cell fate identity but nearly the same property as human organs in size. Therefore, integrative and collaborative researches across different fields might be critical to the aims needed in clinical trial.
Collapse
|
37
|
Ishigaki H, Maeda T, Inoue H, Akagi T, Sasamura T, Ishida H, Inubushi T, Okahara J, Shiina T, Nakayama M, Itoh Y, Ogasawara K. Transplantation of iPS-Derived Tumor Cells with a Homozygous MHC Haplotype Induces GRP94 Antibody Production in MHC-Matched Macaques. Cancer Res 2017; 77:6001-6010. [PMID: 28882998 DOI: 10.1158/0008-5472.can-17-0775] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 07/24/2017] [Accepted: 08/31/2017] [Indexed: 11/16/2022]
Abstract
Immune surveillance is a critical component of the antitumor response in vivo, yet the specific components of the immune system involved in this regulatory response remain unclear. In this study, we demonstrate that autoantibodies can mitigate tumor growth in vitro and in vivo We generated two cancer cell lines, embryonal carcinoma and glioblastoma cell lines, from monkey-induced pluripotent stem cells (iPSC) carrying a homozygous haplotype of major histocompatibility complex (MHC, Mafa in Macaca fascicularis). To establish a monkey cancer model, we transplanted these cells into monkeys carrying the matched Mafa haplotype in one of the chromosomes. Neither Mafa-homozygous cancer cell line grew in monkeys carrying the matched Mafa haplotype heterozygously. We detected in the plasma of these monkeys an IgG autoantibody against GRP94, a heat shock protein. Injection of the plasma prevented growth of the tumor cells in immunodeficient mice, whereas plasma IgG depleted of GRP94 IgG exhibited reduced killing activity against cancer cells in vitro These results indicate that humoral immunity, including autoantibodies against GRP94, plays a role in cancer immune surveillance. Cancer Res; 77(21); 6001-10. ©2017 AACR.
Collapse
Affiliation(s)
- Hirohito Ishigaki
- Division of Pathology and Disease Regulation, Department of Pathology, Shiga University of Medical Science, Otsu, Shiga, Japan.
| | - Toshinaga Maeda
- Central Research Laboratory, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Hirokazu Inoue
- Division of Microbiology and Infectious Diseases, Department of Pathology, Shiga University of Medical Science, Otsu, Shiga, Japan
| | | | - Takako Sasamura
- Division of Pathology and Disease Regulation, Department of Pathology, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Hideaki Ishida
- Division of Pathology and Disease Regulation, Department of Pathology, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Toshiro Inubushi
- Biomedical MR Science Center, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Junko Okahara
- Central Institute for Experimental Animals, Kawasaki, Kanagawa, Japan
| | - Takashi Shiina
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Misako Nakayama
- Division of Pathology and Disease Regulation, Department of Pathology, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Yasushi Itoh
- Division of Pathology and Disease Regulation, Department of Pathology, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Kazumasa Ogasawara
- Division of Pathology and Disease Regulation, Department of Pathology, Shiga University of Medical Science, Otsu, Shiga, Japan
| |
Collapse
|
38
|
Telugu BP, Park KE, Park CH. Genome editing and genetic engineering in livestock for advancing agricultural and biomedical applications. Mamm Genome 2017; 28:338-347. [PMID: 28712062 DOI: 10.1007/s00335-017-9709-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Accepted: 07/08/2017] [Indexed: 01/23/2023]
Abstract
Genetic modification of livestock has a longstanding and successful history, starting with domestication several thousand years ago. Modern animal breeding strategies predominantly based on marker-assisted and genomic selection, artificial insemination, and embryo transfer have led to significant improvement in the performance of domestic animals, and are the basis for regular supply of high quality animal derived food. However, the current strategy of breeding animals over multiple generations to introduce novel traits is not realistic in responding to the unprecedented challenges such as changing climate, pandemic diseases, and feeding an anticipated 3 billion increase in global population in the next three decades. Consequently, sophisticated genetic modifications that allow for seamless introgression of novel alleles or traits and introduction of precise modifications without affecting the overall genetic merit of the animal are required for addressing these pressing challenges. The requirement for precise modifications is especially important in the context of modeling human diseases for the development of therapeutic interventions. The animal science community envisions the genome editors as essential tools in addressing these critical priorities in agriculture and biomedicine, and for advancing livestock genetic engineering for agriculture, biomedical as well as "dual purpose" applications.
Collapse
Affiliation(s)
- Bhanu P Telugu
- Animal and Avian Science, University of Maryland, Bhanu Telugu, 2121 ANSC Building, College Park, MD, 20742, USA. .,Animal Bioscience and Biotechnology Laboratory, ARS, USDA, Beltsville, MD, USA. .,RenOVAte Biosciences Inc, Reisterstown, MD, USA.
| | - Ki-Eun Park
- Animal and Avian Science, University of Maryland, Bhanu Telugu, 2121 ANSC Building, College Park, MD, 20742, USA.,Animal Bioscience and Biotechnology Laboratory, ARS, USDA, Beltsville, MD, USA.,RenOVAte Biosciences Inc, Reisterstown, MD, USA
| | - Chi-Hun Park
- Animal and Avian Science, University of Maryland, Bhanu Telugu, 2121 ANSC Building, College Park, MD, 20742, USA.,Animal Bioscience and Biotechnology Laboratory, ARS, USDA, Beltsville, MD, USA
| |
Collapse
|
39
|
Chemonges S, Gupta R, Mills PC, Kopp SR, Sadowski P. Characterisation of the circulating acellular proteome of healthy sheep using LC-MS/MS-based proteomics analysis of serum. Proteome Sci 2017; 15:11. [PMID: 28615994 PMCID: PMC5466729 DOI: 10.1186/s12953-017-0119-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Accepted: 06/02/2017] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Unlike humans, there is currently no publicly available reference mass spectrometry-based circulating acellular proteome data for sheep, limiting the analysis and interpretation of a range of physiological changes and disease states. The objective of this study was to develop a robust and comprehensive method to characterise the circulating acellular proteome in ovine serum. METHODS Serum samples from healthy sheep were subjected to shotgun proteomic analysis using nano liquid chromatography nano electrospray ionisation tandem mass spectrometry (nanoLC-nanoESI-MS/MS) on a quadrupole time-of-flight instrument (TripleTOF® 5600+, SCIEX). Proteins were identified using ProteinPilot™ (SCIEX) and Mascot (Matrix Science) software based on a minimum of two unmodified highly scoring unique peptides per protein at a false discovery rate (FDR) of 1% software by searching a subset of the Universal Protein Resource Knowledgebase (UniProtKB) database (http://www.uniprot.org). PeptideShaker (CompOmics, VIB-UGent) searches were used to validate protein identifications from ProteinPilot™ and Mascot. RESULTS ProteinPilot™ and Mascot identified 245 and 379 protein groups (IDs), respectively, and PeptideShaker validated 133 protein IDs from the entire dataset. Since Mascot software is considered the industry standard and identified the most proteins, these were analysed using the Protein ANalysis THrough Evolutionary Relationships (PANTHER) classification tool revealing the association of 349 genes with 127 protein pathway hits. These data are available via ProteomeXchange with identifier PXD004989. CONCLUSIONS These results demonstrated for the first time the feasibility of characterising the ovine circulating acellular proteome using nanoLC-nanoESI-MS/MS. This peptide spectral data contributes to a protein library that can be used to identify a wide range of proteins in ovine serum.
Collapse
Affiliation(s)
- Saul Chemonges
- School of Veterinary Science, The University of Queensland, Gatton, Australia
| | - Rajesh Gupta
- Proteomics and Small Molecule Mass Spectrometry, Central Analytical Research Facility, Queensland University of Technology, Brisbane, Australia
| | - Paul C. Mills
- School of Veterinary Science, The University of Queensland, Gatton, Australia
| | - Steven R. Kopp
- School of Veterinary Science, The University of Queensland, Gatton, Australia
| | - Pawel Sadowski
- Proteomics and Small Molecule Mass Spectrometry, Central Analytical Research Facility, Queensland University of Technology, Brisbane, Australia
| |
Collapse
|
40
|
Wilkin T, Baoutina A, Hamilton N. Equine performance genes and the future of doping in horseracing. Drug Test Anal 2017; 9:1456-1471. [DOI: 10.1002/dta.2198] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 03/23/2017] [Accepted: 03/24/2017] [Indexed: 01/20/2023]
Affiliation(s)
- Tessa Wilkin
- Vet Faculty; University of Sydney; Gunn Building, Sydney University, Camperdown NSW Australia
- Bioanalysis; The National Measurement Institute; 36 Bradfield Rd, Lindfield Sydney New South Wales Australia
| | - Anna Baoutina
- School of Life and Environmental Sciences, Faculty of Science; The University of Sydney; Bradfield Rd West Lindfield New South Wales Australia
| | - Natasha Hamilton
- Faculty of Veterinary Science; University of Sydney; Sydney New South Wales Australia
| |
Collapse
|
41
|
Gray-Edwards HL, Regier DS, Shirley JL, Randle AN, Salibi N, Thomas SE, Latour YL, Johnston J, Golas G, Maguire AS, Taylor AR, Sorjonen DC, McCurdy VJ, Christopherson PW, Bradbury AM, Beyers RJ, Johnson AK, Brunson BL, Cox NR, Baker HJ, Denney TS, Sena-Esteves M, Tifft CJ, Martin DR. Novel Biomarkers of Human GM1 Gangliosidosis Reflect the Clinical Efficacy of Gene Therapy in a Feline Model. Mol Ther 2017; 25:892-903. [PMID: 28236574 PMCID: PMC5383552 DOI: 10.1016/j.ymthe.2017.01.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 01/06/2017] [Accepted: 01/14/2017] [Indexed: 11/26/2022] Open
Abstract
GM1 gangliosidosis is a fatal neurodegenerative disease that affects individuals of all ages. Favorable outcomes using adeno-associated viral (AAV) gene therapy in GM1 mice and cats have prompted consideration of human clinical trials, yet there remains a paucity of objective biomarkers to track disease status. We developed a panel of biomarkers using blood, urine, cerebrospinal fluid (CSF), electrodiagnostics, 7 T MRI, and magnetic resonance spectroscopy in GM1 cats-either untreated or AAV treated for more than 5 years-and compared them to markers in human GM1 patients where possible. Significant alterations were noted in CSF and blood of GM1 humans and cats, with partial or full normalization after gene therapy in cats. Gene therapy improved the rhythmic slowing of electroencephalograms (EEGs) in GM1 cats, a phenomenon present also in GM1 patients, but nonetheless the epileptiform activity persisted. After gene therapy, MR-based analyses revealed remarkable preservation of brain architecture and correction of brain metabolites associated with microgliosis, neuroaxonal loss, and demyelination. Therapeutic benefit of AAV gene therapy in GM1 cats, many of which maintain near-normal function >5 years post-treatment, supports the strong consideration of human clinical trials, for which the biomarkers described herein will be essential for outcome assessment.
Collapse
Affiliation(s)
- Heather L Gray-Edwards
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
| | - Debra S Regier
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jamie L Shirley
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
| | - Ashley N Randle
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
| | - Nouha Salibi
- MR R&D, Siemens Healthcare, Malvern, PA 19355, USA
| | - Sarah E Thomas
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yvonne L Latour
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jean Johnston
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gretchen Golas
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Annie S Maguire
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
| | - Amanda R Taylor
- Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
| | - Donald C Sorjonen
- Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
| | - Victoria J McCurdy
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA; Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
| | - Peter W Christopherson
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
| | - Allison M Bradbury
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA; Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
| | - Ronald J Beyers
- Department of Electrical and Computer Engineering, Auburn University, Auburn, AL 36849, USA
| | - Aime K Johnson
- Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
| | - Brandon L Brunson
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
| | - Nancy R Cox
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA; Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
| | - Henry J Baker
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
| | - Thomas S Denney
- Department of Electrical and Computer Engineering, Auburn University, Auburn, AL 36849, USA
| | - Miguel Sena-Esteves
- Department of Neurology and Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Cynthia J Tifft
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Douglas R Martin
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA; Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA.
| |
Collapse
|
42
|
Heller R, Teissie J, Rols MP, Gehl J, Sersa G, Mir LM, Neal RE, Bhonsle S, Davalos R, Beebe S, Hargrave B, Nuccitelli R, Jiang C, Cemazar M, Tamzali Y, Tozon N. Medical Applications. BIOELECTRICS 2017:275-388. [DOI: 10.1007/978-4-431-56095-1_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
43
|
Clark SD, Nabity MB, Cianciolo RE, Dufek B, Cosgrove D. X-Linked Alport Dogs Demonstrate Mesangial Filopodial Invasion of the Capillary Tuft as an Early Event in Glomerular Damage. PLoS One 2016; 11:e0168343. [PMID: 27959966 PMCID: PMC5154607 DOI: 10.1371/journal.pone.0168343] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 11/29/2016] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND X-linked Alport syndrome (XLAS), caused by mutations in the type IV collagen COL4A5 gene, accounts for approximately 80% of human Alport syndrome. Dogs with XLAS have a similar clinical progression. Prior studies in autosomal recessive Alport mice demonstrated early mesangial cell invasion as the source of laminin 211 in the glomerular basement membrane (GBM), leading to proinflammatory signaling. The objective of this study was to verify this process in XLAS dogs. METHODS XLAS dogs and WT littermates were monitored with serial clinicopathologic data and kidney biopsies. Biopsies were obtained at set milestones defined by the onset of microalbuminuria (MA), overt proteinuria, onset of azotemia, moderate azotemia, and euthanasia. Kidney biopsies were analyzed by histopathology, immunohistochemistry, and electron microscopy. RESULTS XLAS dogs showed progressive decrease in renal function and progressive increase in interstitial fibrosis and glomerulosclerosis (based on light microscopy and immunostaining for fibronectin). The only identifiable structural abnormality at the time of microalbuminuria was ultrastructural evidence of mild segmental GBM multilamination, which was more extensive when overt proteinuria developed. Co-localization studies showed that mesangial laminin 211 and integrin α8β1 accumulated in the GBM at the onset of overt proteinuria and coincided with ultrastructural evidence of mild cellular interpositioning, consistent with invasion of the capillary loops by mesangial cell processes. CONCLUSION In a large animal model, the induction of mesangial filopodial invasion of the glomerular capillary loop leading to the irregular deposition of laminin 211 is an early initiating event in Alport glomerular pathology.
Collapse
Affiliation(s)
- Sabrina D. Clark
- Department of Veterinary Pathobiology, Texas A&M University College of Veterinary Medicine & Biomedical Sciences, College Station, Texas, United States of America
- * E-mail:
| | - Mary B. Nabity
- Department of Veterinary Pathobiology, Texas A&M University College of Veterinary Medicine & Biomedical Sciences, College Station, Texas, United States of America
| | - Rachel E. Cianciolo
- Department of Veterinary Biosciences, The Ohio State University Columbus, Ohio, United States of America
| | - Brianna Dufek
- Center for Basic Research, Boys Town National Research Hospital, Omaha, Nebraska, United States of America
| | - Dominic Cosgrove
- Center for Basic Research, Boys Town National Research Hospital, Omaha, Nebraska, United States of America
| |
Collapse
|
44
|
Gopinath C, Nathar TJ, Ghosh A, Hickstein DD, Nelson EJR. Contemporary Animal Models For Human Gene Therapy Applications. Curr Gene Ther 2016; 15:531-40. [PMID: 26415576 DOI: 10.2174/1566523215666150929110424] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 09/02/2015] [Accepted: 09/08/2015] [Indexed: 01/18/2023]
Abstract
Over the past three decades, gene therapy has been making considerable progress as an alternative strategy in the treatment of many diseases. Since 2009, several studies have been reported in humans on the successful treatment of various diseases. Animal models mimicking human disease conditions are very essential at the preclinical stage before embarking on a clinical trial. In gene therapy, for instance, they are useful in the assessment of variables related to the use of viral vectors such as safety, efficacy, dosage and localization of transgene expression. However, choosing a suitable disease-specific model is of paramount importance for successful clinical translation. This review focuses on the animal models that are most commonly used in gene therapy studies, such as murine, canine, non-human primates, rabbits, porcine, and a more recently developed humanized mice. Though small and large animals both have their own pros and cons as disease-specific models, the choice is made largely based on the type and length of study performed. While small animals with a shorter life span could be well-suited for degenerative/aging studies, large animals with longer life span could suit longitudinal studies and also help with dosage adjustments to maximize therapeutic benefit. Recently, humanized mice or mouse-human chimaeras have gained interest in the study of human tissues or cells, thereby providing a more reliable understanding of therapeutic interventions. Thus, animal models are of great importance with regard to testing new vector technologies in vivo for assessing safety and efficacy prior to a gene therapy clinical trial.
Collapse
|
45
|
González R, Dobrinski I. Beyond the mouse monopoly: studying the male germ line in domestic animal models. ILAR J 2016; 56:83-98. [PMID: 25991701 DOI: 10.1093/ilar/ilv004] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Spermatogonial stem cells (SSCs) are the foundation of spermatogenesis and essential to maintain the continuous production of spermatozoa after the onset of puberty in the male. The study of the male germ line is important for understanding the process of spermatogenesis, unravelling mechanisms of stemness maintenance, cell differentiation, and cell-to-cell interactions. The transplantation of SSCs can contribute to the preservation of the genome of valuable individuals in assisted reproduction programs. In addition to the importance of SSCs for male fertility, their study has recently stimulated interest in the generation of genetically modified animals because manipulations of the male germ line at the SSC stage will be maintained in the long term and transmitted to the offspring. Studies performed mainly in the mouse model have laid the groundwork for facilitating advancements in the field of male germ line biology, but more progress is needed in nonrodent species in order to translate the technology to the agricultural and biomedical fields. The lack of reliable markers for isolating germ cells from testicular somatic cells and the lack of knowledge of the requirements for germ cell maintenance have precluded their long-term maintenance in domestic animals. Nevertheless, some progress has been made. In this review, we will focus on the state of the art in the isolation, characterization, culture, and manipulation of SSCs and the use of germ cell transplantation in domestic animals.
Collapse
Affiliation(s)
- Raquel González
- Raquel González, DVM, PhD, is a postdoctoral research fellow at the Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Canada. Ina Dobrinski, DVM, MVSc, PhD, Dipl ACT, is a professor and the head of the Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Canada
| | - Ina Dobrinski
- Raquel González, DVM, PhD, is a postdoctoral research fellow at the Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Canada. Ina Dobrinski, DVM, MVSc, PhD, Dipl ACT, is a professor and the head of the Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Canada
| |
Collapse
|
46
|
Norton EM, Wooldridge AA, Stewart AJ, Cusimano L, Schwartz DD, Johnson CM, Boudreaux MK, Christopherson PW. Abnormal coagulation factor VIII transcript in a Tennessee Walking Horse colt with hemophilia A. Vet Clin Pathol 2016; 45:96-102. [PMID: 26765501 DOI: 10.1111/vcp.12315] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Hemophilia A is an X-chromosome-linked disorder caused by a deficiency in factor VIII (FVIII). Although foals have been diagnosed with hemophilia A based on deficiency in FVIII activity, causative gene mutations have not been identified. The genomic DNA and cDNA encoding FVIII of a Tennesee Walking Horse colt affected with hemophilia A and the genomic DNA of his dam and a normal unrelated horse were analyzed with no splice site or coding sequence abnormalities identified in any of the horses. Polymerase chain reactions (PCR) were then performed on hepatic cDNA from the affected colt and an unrelated normal horse, and no product was obtained for the sequence between and including exon 1 and exon 2 in the affected colt. Based on these results, suspected mutations were identified in the noncoding region of FVIII (intron 1), and genomic sequencing of intron 1 in the dam and the affected colt suggested maternal inheritance.
Collapse
Affiliation(s)
- Elaine M Norton
- Department of Clinical Sciences, Auburn University College of Veterinary Medicine, Auburn, AL, USA
| | - Anne A Wooldridge
- Department of Clinical Sciences, Auburn University College of Veterinary Medicine, Auburn, AL, USA
| | - Allison J Stewart
- Department of Clinical Sciences, Auburn University College of Veterinary Medicine, Auburn, AL, USA
| | - Layla Cusimano
- Department of Pathobiology, Auburn University College of Veterinary Medicine, Auburn, AL, USA
| | - Dean D Schwartz
- Department of Anatomy, Physiology and Pharmacology, Auburn University College of Veterinary Medicine, Auburn, AL, USA
| | - Calvin M Johnson
- Department of Pathobiology, Auburn University College of Veterinary Medicine, Auburn, AL, USA
| | - Mary K Boudreaux
- Department of Pathobiology, Auburn University College of Veterinary Medicine, Auburn, AL, USA
| | - Pete W Christopherson
- Department of Pathobiology, Auburn University College of Veterinary Medicine, Auburn, AL, USA
| |
Collapse
|
47
|
Whitelaw CBA, Sheets TP, Lillico SG, Telugu BP. Engineering large animal models of human disease. J Pathol 2015; 238:247-56. [PMID: 26414877 PMCID: PMC4737318 DOI: 10.1002/path.4648] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 09/15/2015] [Accepted: 09/22/2015] [Indexed: 12/17/2022]
Abstract
The recent development of gene editing tools and methodology for use in livestock enables the production of new animal disease models. These tools facilitate site‐specific mutation of the genome, allowing animals carrying known human disease mutations to be produced. In this review, we describe the various gene editing tools and how they can be used for a range of large animal models of diseases. This genomic technology is in its infancy but the expectation is that through the use of gene editing tools we will see a dramatic increase in animal model resources available for both the study of human disease and the translation of this knowledge into the clinic. Comparative pathology will be central to the productive use of these animal models and the successful translation of new therapeutic strategies. © 2015 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- C Bruce A Whitelaw
- The Roslin Institute and Royal (Dick) School of Veterinary Science, Easter Bush Campus, University of Edinburgh, Edinburgh, EH25 9RG, UK
| | - Timothy P Sheets
- Animal Bioscience and Biotechnology Laboratory, ARS, Beltsville, MD, 20705, USA.,Department of Animal and Avian Sciences, Beltsville, MD, 20742, USA
| | - Simon G Lillico
- The Roslin Institute and Royal (Dick) School of Veterinary Science, Easter Bush Campus, University of Edinburgh, Edinburgh, EH25 9RG, UK
| | - Bhanu P Telugu
- Animal Bioscience and Biotechnology Laboratory, ARS, Beltsville, MD, 20705, USA.,Department of Animal and Avian Sciences, Beltsville, MD, 20742, USA
| |
Collapse
|
48
|
Lange-Consiglio A, Corradetti B, Bertani S, Notarstefano V, Perrini C, Marini MG, Arrighi S, Bosi G, Belloli A, Pravettoni D, Locatelli V, Cremonesi F, Bizzaro D. Peculiarity of Porcine Amniotic Membrane and Its Derived Cells: A Contribution to the Study of Cell Therapy from a Large Animal Model. Cell Reprogram 2015; 17:472-83. [PMID: 26540004 DOI: 10.1089/cell.2015.0029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The aim of this work was to provide, for the first time, a protocol for isolation and characterization of stem cells from porcine amniotic membrane in view of their potential uses in regenerative medicine. From three samples of allanto-amnion recovered at delivery, the amniotic membrane was stripped from overlying allantois and digested with trypsin and collagenase to isolate epithelial (amniotic epithelial cells [AECs]) and mesenchymal cells, respectively. Proliferation, differentiation, and characterization studies by molecular biology and flow cytometry were performed. Histological examination revealed very few mesenchymal cells in the stromal layer, and a cellular yield of AECs of 10 × 10(6)/gram of digested tissue was achieved. AECs readily attached to plastic culture dishes displaying typical cuboidal morphology and, although their proliferative capacity decreased to the fifth passage, AECs showed a mean doubling time of 24.77 ± 6 h and a mean frequency of one fibroblast colony-forming unit (CFU-F) for every 116.75 plated cells. AECs expressed mesenchymal stem cell (MSC) mRNA markers (CD29, CD166, CD90, CD73, CD117) and pluripotent markers (Nanog and Oct 4), whereas they were negative for CD34 and MHCII. Mesodermic, ectodermic, and endodermic differentiation was confirmed by staining and expression of specific markers. We conclude that porcine amniotic membrane can provide an attractive source of stem cells that may be a useful tool for biomedical research.
Collapse
Affiliation(s)
- Anna Lange-Consiglio
- 1 Large Animal Hospital, Reproduction Unit, Università degli Studi di Milano , Lodi, Italy
| | - Bruna Corradetti
- 2 Department of Life and Environmental Sciences, Università Politecnica delle Marche , Ancona, Italy
| | - Sabrina Bertani
- 1 Large Animal Hospital, Reproduction Unit, Università degli Studi di Milano , Lodi, Italy
| | - Valentina Notarstefano
- 2 Department of Life and Environmental Sciences, Università Politecnica delle Marche , Ancona, Italy
| | - Claudia Perrini
- 1 Large Animal Hospital, Reproduction Unit, Università degli Studi di Milano , Lodi, Italy
| | - Maria Giovanna Marini
- 2 Department of Life and Environmental Sciences, Università Politecnica delle Marche , Ancona, Italy
| | - Silvana Arrighi
- 3 Department of Health, Animal Science and Food Safety, Università degli Studi di Milano , Milan, Italy
| | - Giampaolo Bosi
- 3 Department of Health, Animal Science and Food Safety, Università degli Studi di Milano , Milan, Italy
| | - Angelo Belloli
- 4 Large Animal Hospital, Clinic for Ruminants and Pigs, Università degli Studi di Milano , Lodi, Italy
| | - Davide Pravettoni
- 4 Large Animal Hospital, Clinic for Ruminants and Pigs, Università degli Studi di Milano , Lodi, Italy
| | - Valentina Locatelli
- 4 Large Animal Hospital, Clinic for Ruminants and Pigs, Università degli Studi di Milano , Lodi, Italy
| | - Fausto Cremonesi
- 1 Large Animal Hospital, Reproduction Unit, Università degli Studi di Milano , Lodi, Italy .,3 Department of Health, Animal Science and Food Safety, Università degli Studi di Milano , Milan, Italy
| | - Davide Bizzaro
- 2 Department of Life and Environmental Sciences, Università Politecnica delle Marche , Ancona, Italy
| |
Collapse
|
49
|
Frost PA, Chen S, Mezzles MJ, Voruganti VS, Nava-Gonzalez EJ, Arriaga-Cazares HE, Freed KA, Comuzzie AG, DeFronzo RA, Kent JW, Grayburn PA, Bastarrachea RA. Successful pharmaceutical-grade streptozotocin (STZ)-induced hyperglycemia in a conscious tethered baboon (Papio hamadryas) model. J Med Primatol 2015; 44:202-17. [PMID: 26122701 DOI: 10.1111/jmp.12182] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2015] [Indexed: 12/14/2022]
Abstract
BACKGROUND Non-human primate (NHP) diabetic models using chemical ablation of β-cells with STZ have been achieved by several research groups. Chemotherapeutic STZ could lead to serious adverse events including nephrotoxicity, hepatotoxicity, and mortality. METHODS We implemented a comprehensive therapeutic strategy that included the tether system, permanent indwelling catheter implants, an aggressive hydration protocol, management for pain with IV nubain and anxiety with IV midazolam, moment-by-moment monitoring of glucose levels post-STZ administration, and continuous intravenous insulin therapy. RESULTS A triphasic response in blood glucose after STZ administration was fully characterized. A dangerous hypoglycemic phase was also detected in all baboons. Other significant findings were hyperglycemia associated with low levels of plasma leptin, insulin and C-peptide concentrations, hyperglucagonemia, and elevated non-esterified fatty acids (NEFA) concentrations. CONCLUSIONS We successfully induced frank diabetes by IV administering a single dose of pharmaceutical-grade STZ safely and without adverse events in conscious tethered baboons.
Collapse
Affiliation(s)
- Patrice A Frost
- Southwest National Primate Research Center, San Antonio, TX, USA
| | | | - Marguerite J Mezzles
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX, USA
| | | | - Edna J Nava-Gonzalez
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX, USA.,University of Nuevo Leon School of Nutrition and Public Health, Monterrey, Mexico
| | - Hector E Arriaga-Cazares
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX, USA.,Hospital Infantil de Tamaulipas, Ciudad Victoria, México
| | - Katy A Freed
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Anthony G Comuzzie
- Southwest National Primate Research Center, San Antonio, TX, USA.,Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Ralph A DeFronzo
- The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Jack W Kent
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Paul A Grayburn
- Baylor Research Institute, Dallas, TX, USA.,Baylor University Medical Center, Dallas, TX, USA
| | - Raul A Bastarrachea
- Southwest National Primate Research Center, San Antonio, TX, USA.,Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX, USA
| |
Collapse
|
50
|
Cyclic Helix B Peptide in Preservation Solution and Autologous Blood Perfusate Ameliorates Ischemia-Reperfusion Injury in Isolated Porcine Kidneys. Transplant Direct 2015; 1:e6. [PMID: 27500213 DOI: 10.1097/txd.0000000000000515] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Accepted: 02/04/2015] [Indexed: 01/20/2023] Open
Abstract
UNLABELLED There is a critical need to better preserve isolated organs before transplantation. We developed a novel nonerythropoiesis cyclic helix B peptide (CHBP) derived from erythropoietin, which has potent tissue protection and prolonged serum stability. The renoprotection and potential mechanism of CHBP were evaluated in a kidney preservation model. MATERIALS AND METHODS Porcine kidneys (n = 5) subjected to 20-minute warm ischemia were retrieved and flushed with hyperosmolar citrate to mimic deceased donation. The kidneys and autologous blood ± 10.56 nmol/L CHBP were placed in cold storage (CS) for 18 hours. These kidneys were then normothermically hemoreperfused for 3 hours using an isolated organ perfusion system. The renal function and structure, apoptosis, inflammation, and expression of caspase-3 and heat shock protein 70 (HSP70) were assessed. RESULTS Cyclic helix B peptide significantly increased the renal blood flow, oxygen consumption, and urine output during reperfusion, but decreased serum potassium and renal tissue damage. Apoptotic cells were significantly decreased in the tubular areas, but increased in the lumens and interstitial areas in the post-CS and postreperfused kidneys, whereas myeloperoxidase+ cells were reduced. In addition, the expression of both caspase-3 precursor and active subunits was downregulated by CHBP in reperfused kidneys. However, HSP70 was upregulated in the post-CS and postreperfused kidneys treated with CHBP. CONCLUSIONS Cyclic helix B peptide administered into preservation and reperfusion solutions ameliorated renal ischemia-reperfusion injury, which might be associated with decreased apoptosis, inflammation and caspase-3, but increased HSP70. This novel preservation approach using CHBP may be applied in a porcine kidney transplant model and potential human donor kidney preservation.
Collapse
|