1
|
Neuhaus M, Stenkula KG. Sex- and depot-specific differences in cellular insulin responsiveness during adipose expansion. Life Sci 2025; 375:123743. [PMID: 40404120 DOI: 10.1016/j.lfs.2025.123743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/03/2025] [Accepted: 05/19/2025] [Indexed: 05/24/2025]
Abstract
BACKGROUND Adipose tissue distribution, metabolism, and expansion capacity exhibit notable sex- and depot-specific differences. Herein, we monitored adipocyte traits related to insulin responsiveness and glucose transport during adipose expansion in visceral and subcutaneous fat from male and female mice. MATERIALS AND METHODS Adipocytes were isolated from perigonadal and inguinal adipose tissue of chow-fed female and male C57Bl6/J mice and assessed for adipocyte size distribution using a coulter counter; glucose uptake and cytosolic volume were measured using glucose tracer assays. GLUT1, GLUT4, and IRS-1 protein levels were assessed by western blot. Pharmacological inhibition (BAY876) of GLUT1 and GLUT4 was used to resolve their respective contribution to cellular glucose transport. KEY FINDINGS Independent of adiposity or sex, visceral adipocytes were larger and displayed higher glucose transport, cytosolic volume, and GLUT4 levelsthan subcutaneous adipocytes. GLUT1 content was higher in subcutaneous than visceral adipocytes in both sexes. Pharmacological inhibition confirmed that GLUT1 contributes to <10 % of adipocyte glucose uptake, while GLUT4 facilitates most of both basal and insulin-stimulated glucose uptake. Females showed significantly higher basal and insulin-stimulated glucose transport, higher cytosolic volume, and greater GLUT4 and IRS-1 protein levels than males in both adipose depots. Interestingly, insulin responsiveness was preserved in female subcutaneous adipocytes but deteriorated in subcutaneous male adipocytes during adipose expansion. SIGNIFICANCE The improved insulin responsiveness, increased glucose transport, and higher levels of GLUT4 and IRS-1 in adipocytes might protect females from the adverse systemic effects linked to obesity. Insulin responsiveness was preserved in female subcutaneous adipocytes during adipose tissue expansion, which could contribute to the reduced risk of females to develop systemic insulin resistance.
Collapse
Affiliation(s)
- Mathis Neuhaus
- Department of Experimental Medical Science, Lund University, Sweden.
| | - Karin G Stenkula
- Department of Experimental Medical Science, Lund University, Sweden
| |
Collapse
|
2
|
Baskaran R, Chen YJ, Chang CF, Kuo HN, Liang CH, Abomughaid MM, Kumar KJS, Lin WT. Potato protein hydrolysate (PPH902) exerts anti-lipogenesis and lipolysis-promoting effect by inhibiting adipogenesis in 3T3-L1 adipocytes. 3 Biotech 2025; 15:83. [PMID: 40078570 PMCID: PMC11893942 DOI: 10.1007/s13205-025-04238-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 02/11/2025] [Indexed: 03/14/2025] Open
Abstract
Obesity is linked to cardiovascular disease, cerebrovascular disease, diabetes, and dyslipidemia, lowering quality of life, work productivity, and healthcare expenditures. The aim of this present study is to investigate the mechanism of potato protein (PP) post-treatment in regulating lipogenesis and lipolysis in 3T3-L1 adipocytes. 9% PP hydrolysed for 2 h (PPH902) shows high yield and better activity; thus, PPH902 was used in all other experiments. 3T3-L1 preadipocyte cells were used, the cell culture medium were changed every 2 days, IDH was added on Day 0. PPH902 was added on the 8th day, it was left for 72 h and then cells are collected. The relative triglyceride residual (RTR) content was quantified, and the expression of key lipid metabolism-related proteins was analyzed using Western blotting. PPH902 at concentrations of 400 ppm, 800 ppm, and 1600 ppm markedly decreases the RTR content. PPH902, at higher doses, modulates the expression of lipid production-associated transcription factors PPARγ, SREBP-1c, and FAS by activating AMPK, which inhibits lipogenesis and activates phosphorylated HSL to enhance lipolysis, so augmenting lipid metabolism. These findings suggest that PPH902 is an effective anti-lipogenic and lipolysis-promoting agent with potential applications in anti-obesity interventions.
Collapse
Affiliation(s)
- Rathinasamy Baskaran
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung, 413305 Taiwan
| | - Yi-Ju Chen
- Department of Surgery, Taichung Veterans General Hospital, Taichung, 40704 Taiwan
| | - Ching-Fang Chang
- Department of Food Science, College of Agriculture and Health, Tunghai University, Taichung, 40704 Taiwan
| | - Hsin-Ning Kuo
- Department of Hospitality Management, College of Agriculture and Health, Tunghai University, Taichung, 407224 Taiwan
| | - Chih-Hung Liang
- Department of Food Science, College of Agriculture and Health, Tunghai University, Taichung, 40704 Taiwan
| | - Mosleh Mohammad Abomughaid
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, 61922 Bisha, Saudi Arabia
| | - K. J. Senthil Kumar
- Bachelor Program of Biotechnology, National Chung Hsing University, Taichung, Taiwan
- Center for General Education, National Chung Hsing University, Taichung, Taiwan
| | - Wan-Teng Lin
- Department of Hospitality Management, College of Agriculture and Health, Tunghai University, Taichung, 407224 Taiwan
| |
Collapse
|
3
|
Zou R, Zhang M, Lv W, Ren J, Fan X. Role of epicardial adipose tissue in cardiac remodeling. Diabetes Res Clin Pract 2024; 217:111878. [PMID: 39366641 DOI: 10.1016/j.diabres.2024.111878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/14/2024] [Accepted: 09/30/2024] [Indexed: 10/06/2024]
Abstract
Epicardial adipose tissue, or epicardial fat, is a type of visceral fat located between the heart and the pericardium. Due to its anatomical proximity to the heart, EAT plays a significant role in both cardiac physiology and pathologies, including cardiac remodeling and cardiovascular diseases (CVD). However, our understanding of how EAT pathology is influenced by risk factors such as obesity and type 2 diabetes mellitus and how altered EAT can drive cardiac remodeling and CVD, remains limited. Herein, we aimed to summarize and discuss the latest findings on EAT and its role in cardiac remodeling, highlighting the outcomes of clinical and observational studies, provide mechanistic insights, and finally introduce emerging therapeutic agents and nutritional guidelines aimed at preventing these conditions.
Collapse
Affiliation(s)
- Rongjun Zou
- Department of Cardiovascular Surgery, Guangdong Provincial Hospital of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong, China; Guangdong Provincial Key Laboratory of TCM Emergency Research, Guangzhou 510120, Guangdong, China; State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong, China
| | - Miao Zhang
- Department of Cardiovascular Surgery, Guangdong Provincial Hospital of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong, China; Guangdong Provincial Key Laboratory of TCM Emergency Research, Guangzhou 510120, Guangdong, China
| | - Weihui Lv
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong, China.
| | - Jun Ren
- Department of Cardiology, Zhongshan Hospital Fudan University, Shanghai 200032, China; National Clinical Research Center for Interventional Medicine, Shanghai 200032, China.
| | - Xiaoping Fan
- Department of Cardiovascular Surgery, Guangdong Provincial Hospital of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong, China; Guangdong Provincial Key Laboratory of TCM Emergency Research, Guangzhou 510120, Guangdong, China.
| |
Collapse
|
4
|
Rivera-Gonzalez O, Mills MF, Konadu BD, Wilson NA, Murphy HA, Newberry MK, Hyndman KA, Garrett MR, Webb DJ, Speed JS. Adipocyte endothelin B receptor activation inhibits adiponectin production and causes insulin resistance in obese mice. Acta Physiol (Oxf) 2024; 240:e14214. [PMID: 39096077 PMCID: PMC11421981 DOI: 10.1111/apha.14214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 08/04/2024]
Abstract
AIMS Endothelin-1 (ET-1) is elevated in patients with obesity and adipose tissue of obese mice fed high-fat diet (HFD); however, its contribution to the pathophysiology of obesity is not fully understood. Genetic loss of endothelin type B receptors (ETB) improves insulin sensitivity in rats and leads to increased circulating adiponectin, suggesting that ETB activation on adipocytes may contribute to obesity pathophysiology. We hypothesized that elevated ET-1 in obesity promotes insulin resistance by reducing the secretion of insulin sensitizing adipokines, via ETB receptor. METHODS Male adipocyte-specific ETB receptor knockout (adETBKO), overexpression (adETBOX), or control littermates were fed either normal diet (NMD) or high-fat diet (HFD) for 8 weeks. RESULTS RNA-sequencing of epididymal adipose (eWAT) indicated differential expression of over 5500 genes (p < 0.05) in HFD compared to NMD controls, and changes in 1077 of these genes were attenuated in HFD adETBKO mice. KEGG analysis indicated significant increase in metabolic signaling pathway. HFD adETBKO mice had significantly improved glucose and insulin tolerance compared to HFD control. In addition, adETBKO attenuated changes in plasma adiponectin, insulin, and leptin that is observed in HFD versus NMD control mice. Treatment of primary adipocytes with ET-1 caused a reduction in adiponectin production that was attenuated in cells pretreated with an ETB antagonist. CONCLUSION These data indicate elevated ET-1 in adipose tissue of mice fed HFD inhibits adiponectin production and causes insulin resistance through activation of the ETB receptor on adipocytes.
Collapse
Affiliation(s)
- Osvaldo Rivera-Gonzalez
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216
| | - Megumi F. Mills
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216
| | - Bridget D. Konadu
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216
| | - Natalie A. Wilson
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216
| | - Hayley A. Murphy
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216
| | - Madison K. Newberry
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216
| | - Kelly A. Hyndman
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham
| | - Michael R. Garrett
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216
| | - David J. Webb
- University/British Heart Foundation Centre for Cardiovascular Science|Queen’s Medical Research Institute, University of Edinburgh, UK
| | - Joshua S. Speed
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216
| |
Collapse
|
5
|
Sergi D, Melloni M, Passaro A, Neri LM. Influence of Type 2 Diabetes and Adipose Tissue Dysfunction on Breast Cancer and Potential Benefits from Nutraceuticals Inducible in Microalgae. Nutrients 2024; 16:3243. [PMID: 39408212 PMCID: PMC11478231 DOI: 10.3390/nu16193243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Breast cancer (BC) represents the most prevalent cancer in women at any age after puberty. From a pathogenetic prospective, despite a wide array of risk factors being identified thus far, poor metabolic health is emerging as a putative risk factor for BC. In particular, type 2 diabetes mellitus (T2DM) provides a perfect example bridging the gap between poor metabolic health and BC risk. Indeed, T2DM is preceded by a status of hyperinsulinemia and is characterised by hyperglycaemia, with both factors representing potential contributors to BC onset and progression. Additionally, the aberrant secretome of the dysfunctional, hypertrophic adipocytes, typical of obesity, characterised by pro-inflammatory mediators, is a shared pathogenetic factor between T2DM and BC. In this review, we provide an overview on the effects of hyperglycaemia and hyperinsulinemia, hallmarks of type 2 diabetes mellitus, on breast cancer risk, progression, treatment and prognosis. Furthermore, we dissect the role of the adipose-tissue-secreted adipokines as additional players in the pathogenesis of BC. Finally, we focus on microalgae as a novel superfood and a source of nutraceuticals able to mitigate BC risk by improving metabolic health and targeting cellular pathways, which are disrupted in the context of T2DM and obesity.
Collapse
Affiliation(s)
- Domenico Sergi
- Department of Translational Medicine, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy; (D.S.); (M.M.)
| | - Mattia Melloni
- Department of Translational Medicine, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy; (D.S.); (M.M.)
| | - Angelina Passaro
- Department of Translational Medicine, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy; (D.S.); (M.M.)
| | - Luca Maria Neri
- Department of Translational Medicine, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy; (D.S.); (M.M.)
- Laboratory for Technologies of Advanced Therapies (LTTA)—Electron Microscopy Center, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy
| |
Collapse
|
6
|
Miranda CS, Silva-Veiga FM, Santana-Oliveira DA, Vasques-Monteiro IML, Daleprane JB, Souza-Mello V. PPARα/γ synergism activates UCP1-dependent and -independent thermogenesis and improves mitochondrial dynamics in the beige adipocytes of high-fat fed mice. Nutrition 2024; 117:112253. [PMID: 37944411 DOI: 10.1016/j.nut.2023.112253] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/11/2023] [Accepted: 09/29/2023] [Indexed: 11/12/2023]
Abstract
OBJECTIVE The aim of this study was to investigate the role of peroxisome proliferator-activated receptor (PPAR) activation (single PPARα or PPARγ, and dual PPARα/γ) on UCP1-dependent and -independent thermogenic pathways and mitochondrial metabolism in the subcutaneous white adipose tissue of mice fed a high-fat diet. METHODS Male C57BL/6 mice received either a control diet (10% lipids) or a high-fat diet (HF; 50% lipids) for 12 wk. The HF group was divided to receive the treatments for 4 wk: HFγ (pioglitazone, 10 mg/kg), HFα (WY-14643, 3.5 mg/kg), and HFα/γ (tesaglitazar, 4 mg/kg). RESULTS The HF group was overweight, insulin resistant, and had subcutaneous white adipocyte dysfunction. Treatment with PPARα and PPARα/γ reduced body mass, mitigated insulin resistance, and induced browning with increased UCP1-dependent and -independent thermogenesis activation and improved mitochondrial metabolism to support the beige adipocyte phenotype. CONCLUSION PPARα and dual PPARα/γ activation recruited UCP1+ beige adipocytes and favored UCP1-independent thermogenesis, yielding body mass and insulin sensitivity normalization. Preserved mitochondrial metabolism emerges as a potential target for obesity treatment using PPAR agonists, with possible clinical applications.
Collapse
Affiliation(s)
- Carolline Santos Miranda
- Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Biomedical Center, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Flávia Maria Silva-Veiga
- Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Biomedical Center, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Daiana Araujo Santana-Oliveira
- Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Biomedical Center, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Isabela Macedo Lopes Vasques-Monteiro
- Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Biomedical Center, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Julio Beltrame Daleprane
- Laboratory for Studies of Interactions Between Nutrition and Genetics (LEING), Institute of Nutrition, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Vanessa Souza-Mello
- Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Biomedical Center, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil.
| |
Collapse
|
7
|
Ma M, Cao R, Tian Y, Fu X. Ubiquitination and Metabolic Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1466:47-79. [PMID: 39546135 DOI: 10.1007/978-981-97-7288-9_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
The increasing incidence of metabolic diseases, including obesity, type 2 diabetes mellitus (T2DM), and non-alcoholic fatty liver disease (NAFLD), in the past decade is a serious concern worldwide. Disruption of cellular protein homeostasis has been considered as a crucial contributor to the pathogenesis of metabolic diseases. To maintain protein homeostasis, cells have evolved multiple dynamic and self-regulating quality control processes to adapt new environmental conditions and prevent prolonged damage. Among them, the ubiquitin proteasome system (UPS), the primary proteolytic pathway for degradation of aberrant proteins via ubiquitination, has an essential role in maintaining cellular homeostasis in response to intracellular stress. Correspondingly, accumulating evidences have shown that dysregulation of ubiquitination can aggravate various metabolic derangements in many tissues, including the liver, skeletal muscle, pancreas, and adipose tissue, and is involved in the initiation and progression of diverse metabolic diseases. In this part, we will summarize the role of ubiquitination in the pathogenesis of metabolic diseases, including obesity, T2DM and NAFLD, and discuss its potential as a therapeutic target.
Collapse
Affiliation(s)
- Meilin Ma
- Division of Endocrinology and Metabolism, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, China
| | - Rong Cao
- Division of Endocrinology and Metabolism, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, China
| | - Yan Tian
- Division of Endocrinology and Metabolism, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, China
| | - Xianghui Fu
- State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
8
|
Lu Z, Mao T, Chen K, Chai L, Dai Y, Liu K. Ginsenoside Rc: A potential intervention agent for metabolic syndrome. J Pharm Anal 2023; 13:1375-1387. [PMID: 38223453 PMCID: PMC10785250 DOI: 10.1016/j.jpha.2023.08.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/26/2023] [Accepted: 08/16/2023] [Indexed: 01/16/2024] Open
Abstract
Ginsenoside Rc, a dammarane-type tetracyclic triterpenoid saponin primarily derived from Panax ginseng, has garnered significant attention due to its diverse pharmacological properties. This review outlined the sources, putative biosynthetic pathways, extraction, and quantification techniques, as well as the pharmacokinetic properties of ginsenoside Rc. Furthermore, this study explored the pharmacological effects of ginsenoside Rc against metabolic syndrome (MetS) across various phenotypes including obesity, diabetes, atherosclerosis, non-alcoholic fatty liver disease, and osteoarthritis. It also highlighted the impact of ginsenoside Rc on multiple associated signaling molecules. In conclusion, the anti-MetS effect of ginsenoside Rc is characterized by its influence on multiple organs, multiple targets, and multiple ways. Although clinical investigations regarding the effects of ginsenoside Rc on MetS are limited, its proven safety and tolerability suggest its potential as an effective treatment option.
Collapse
Affiliation(s)
- Zhengjie Lu
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan, 430072, China
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430072, China
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Tongyun Mao
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Kaiqi Chen
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Longxin Chai
- School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Yongguo Dai
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Kexin Liu
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan, 430072, China
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| |
Collapse
|
9
|
Palacios-Marin I, Serra D, Jimenez-Chillarón J, Herrero L, Todorčević M. Adipose Tissue Dynamics: Cellular and Lipid Turnover in Health and Disease. Nutrients 2023; 15:3968. [PMID: 37764752 PMCID: PMC10535304 DOI: 10.3390/nu15183968] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 08/30/2023] [Accepted: 09/10/2023] [Indexed: 09/29/2023] Open
Abstract
The alarming increase in obesity and its related metabolic health complications, such as type 2 diabetes, has evolved into a global pandemic. Obesity is mainly characterized by excessive accumulation of adipose tissue, primarily due to an imbalance between energy intake and expenditure. Prolonged positive energy balance leads to the expansion of existing adipocytes (hypertrophy) and/or an increase in preadipocyte and adipocyte number (hyperplasia) to accommodate excess energy intake. However, obesity is not solely defined by increases in adipocyte size and number. The turnover of adipose tissue cells also plays a crucial role in the development and progression of obesity. Cell turnover encompasses the processes of cell proliferation, differentiation, and apoptosis, which collectively regulate the overall cell population within adipose tissue. Lipid turnover represents another critical factor that influences how adipose tissue stores and releases energy. Our understanding of adipose tissue lipid turnover in humans remains limited due to the slow rate of turnover and methodological constraints. Nonetheless, disturbances in lipid metabolism are strongly associated with altered adipose tissue lipid turnover. In obesity, there is a decreased rate of triglyceride removal (lipolysis followed by oxidation), leading to the accumulation of triglycerides over time. This review provides a comprehensive summary of findings from both in vitro and in vivo methods used to study the turnover of adipose cells and lipids in metabolic health and disease. Understanding the mechanisms underlying cellular and lipid turnover in obesity is essential for developing strategies to mitigate the adverse effects of excess adiposity.
Collapse
Affiliation(s)
- Ivonne Palacios-Marin
- Endocrinology Department, Institut de Recerca Sant Joan de Déu, Esplugues, E-08950 Barcelona, Spain
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, E-08028 Barcelona, Spain
| | - Dolors Serra
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, E-08028 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - Josep Jimenez-Chillarón
- Endocrinology Department, Institut de Recerca Sant Joan de Déu, Esplugues, E-08950 Barcelona, Spain
- Department of Physiological Sciences, School of Medicine, University of Barcelona, E-08907 L’Hospitalet, Spain
| | - Laura Herrero
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, E-08028 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - Marijana Todorčević
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, E-08028 Barcelona, Spain
| |
Collapse
|
10
|
Minato-Inokawa S, Hayashida Y, Honda M, Tsuboi-Kaji A, Takeuchi M, Kitaoka K, Kurata M, Wu B, Kazumi T, Fukuo K. Association between serum leptin concentrations and homeostasis model assessment-insulin resistance of 2.5 and higher in normal weight Japanese women. Sci Rep 2023; 13:8217. [PMID: 37217782 DOI: 10.1038/s41598-023-35490-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 05/18/2023] [Indexed: 05/24/2023] Open
Abstract
Normal weight insulin resistant phenotype was characterized in 251 Japanese female university students using homeostasis model assessment-insulin resistance. Birth weight, body composition at age 20, cardiometabolic traits and dietary intake were compared cross-sectionally between insulin sensitive (< 1.6, n = 194) and insulin resistant (2.5 and higher, n = 16) women. BMI averaged < 21 kg/m2 and waist < 72 cm and did not differ between two groups. The percentage of macrosomia and serum absolute and fat-mass corrected leptin concentrations were higher in insulin resistant women although there was no difference in birth weight, fat mass index, trunk/leg fat ratio and serum adiponectin. In addition, resting pulse rate, serum concentrations of free fatty acids, triglycerides and remnant-like particle cholesterol were higher in insulin resistant women although HDL cholesterol and blood pressure did not differ. In multivariate logistic regression analyses, serum leptin (odds ratio:1.68, 95% confidential interval:1.08-2.63, p = 0.02) was associated with normal weight insulin resistance independently of macrosomia, free fatty acids, triglycerides, remnant-like particle cholesterol and resting pulse rate. In conclusion, normal weight IR phenotype may be associated with increased plasma leptin concentrations and leptin to fat mass ratio in young Japanese women, suggesting higher leptin production by body fat unit.
Collapse
Affiliation(s)
- Satomi Minato-Inokawa
- Research Institute for Nutrition Sciences, Mukogawa Women's University, 6-46, Ikebiraki-cho, Nishinomiya, Hyogo, 663-8558, Japan
- Laboratory of Community Health and Nutrition, Department of Bioscience, Graduate School of Agriculture, Ehime University, Matsuyama, Ehime, Japan
- Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto, Japan
| | - Yuuna Hayashida
- Department of Food Sciences and Nutrition, Mukogawa Women's University, Nishinomiya, Hyogo, Japan
| | - Mari Honda
- Open Research Center for Studying of Lifestyle-Related Diseases, Mukogawa Women's University, Nishinomiya, Hyogo, Japan
- Department of Health, Sports, and Nutrition, Faculty of Health and Welfare, Kobe Women's University, Kobe, Hyogo, Japan
| | - Ayaka Tsuboi-Kaji
- Research Institute for Nutrition Sciences, Mukogawa Women's University, 6-46, Ikebiraki-cho, Nishinomiya, Hyogo, 663-8558, Japan
- Department of Nutrition, Osaka City Juso Hospital, Osaka, Japan
| | - Mika Takeuchi
- Research Institute for Nutrition Sciences, Mukogawa Women's University, 6-46, Ikebiraki-cho, Nishinomiya, Hyogo, 663-8558, Japan
| | - Kaori Kitaoka
- Research Institute for Nutrition Sciences, Mukogawa Women's University, 6-46, Ikebiraki-cho, Nishinomiya, Hyogo, 663-8558, Japan
- Department of Advanced Epidemiology, Noncommunicable Disease (NCD) Epidemiology Research Center, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Miki Kurata
- Research Institute for Nutrition Sciences, Mukogawa Women's University, 6-46, Ikebiraki-cho, Nishinomiya, Hyogo, 663-8558, Japan
- Department of Food Sciences and Nutrition, Mukogawa Women's University, Nishinomiya, Hyogo, Japan
| | - Bin Wu
- Open Research Center for Studying of Lifestyle-Related Diseases, Mukogawa Women's University, Nishinomiya, Hyogo, Japan
- Department of Endocrinology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Tsutomu Kazumi
- Research Institute for Nutrition Sciences, Mukogawa Women's University, 6-46, Ikebiraki-cho, Nishinomiya, Hyogo, 663-8558, Japan.
- Open Research Center for Studying of Lifestyle-Related Diseases, Mukogawa Women's University, Nishinomiya, Hyogo, Japan.
- Department of Medicine, Kohan Kakogawa Hospital, Kakogawa, Hyogo, Japan.
| | - Keisuke Fukuo
- Research Institute for Nutrition Sciences, Mukogawa Women's University, 6-46, Ikebiraki-cho, Nishinomiya, Hyogo, 663-8558, Japan
- Department of Food Sciences and Nutrition, Mukogawa Women's University, Nishinomiya, Hyogo, Japan
- Open Research Center for Studying of Lifestyle-Related Diseases, Mukogawa Women's University, Nishinomiya, Hyogo, Japan
| |
Collapse
|
11
|
Fernández-Felipe J, Plaza A, Domínguez G, Pérez-Castells J, Cano V, Cioni F, Del Olmo N, Ruiz-Gayo M, Merino B. Effect of Lauric vs. Oleic Acid-Enriched Diets on Leptin Autoparacrine Signalling in Male Mice. Biomedicines 2022; 10:biomedicines10081864. [PMID: 36009410 PMCID: PMC9405789 DOI: 10.3390/biomedicines10081864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 11/16/2022] Open
Abstract
High-fat diets enriched with lauric acid (SOLF) do not enhance leptin production despite expanding white adipose tissue (WAT). Our study aimed at identifying the influence of SOLF vs. oleic acid-enriched diets (UOLF) on the autoparacrine effect of leptin and was carried out on eight-week-old mice consuming control chow, UOLF or SOLF. Phosphorylation of kinases integral to leptin receptor (LepR) signalling pathways (705Tyr-STAT3, 473Ser-Akt, 172Thr-AMPK), adipocyte-size distribution, fatty acid content, and gene expression were analyzed in WAT. SOLF enhanced basal levels of phosphorylated proteins but reduced the ability of leptin to enhance kinase phosphorylation. In contrast, UOLF failed to increase basal levels of phosphorylated proteins and did not modify the effect of leptin. Both SOLF and UOLF similarly affected adipocyte-size distribution, and the expression of genes related with adipogenesis and inflammation. WAT composition was different between groups, with SOLF samples mostly containing palmitic, myristic and lauric acids (>48% w/w) and UOLF WAT containing more than 80% (w/w) of oleic acid. In conclusion, SOLF appears to be more detrimental than UOLF to the autoparacrine leptin actions, which may have an impact on WAT inflammation. The effect of SOLF and UOLF on WAT composition may affect WAT biophysical properties, which are able to condition LepR signaling.
Collapse
Affiliation(s)
- Jesús Fernández-Felipe
- Department of Health and Pharmaceutical Sciences, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, 28660 Madrid, Spain; (J.F.-F.); (A.P.); (V.C.); (F.C.)
| | - Adrián Plaza
- Department of Health and Pharmaceutical Sciences, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, 28660 Madrid, Spain; (J.F.-F.); (A.P.); (V.C.); (F.C.)
- Laboratory of Bioactive Products and Metabolic Syndrome (BIOPROMET), IMDEA Food Institute, 28049 Madrid, Spain
| | - Gema Domínguez
- Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad CEU-San Pablo, CEU Universities, 28660 Madrid, Spain; (G.D.); (J.P.-C.)
| | - Javier Pérez-Castells
- Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad CEU-San Pablo, CEU Universities, 28660 Madrid, Spain; (G.D.); (J.P.-C.)
| | - Victoria Cano
- Department of Health and Pharmaceutical Sciences, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, 28660 Madrid, Spain; (J.F.-F.); (A.P.); (V.C.); (F.C.)
| | - Francesco Cioni
- Department of Health and Pharmaceutical Sciences, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, 28660 Madrid, Spain; (J.F.-F.); (A.P.); (V.C.); (F.C.)
| | - Nuria Del Olmo
- Departament of Psychobiology, Facultad de Psicología, Universidad Nacional de Educación a Distancia, 28040 Madrid, Spain;
| | - Mariano Ruiz-Gayo
- Department of Health and Pharmaceutical Sciences, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, 28660 Madrid, Spain; (J.F.-F.); (A.P.); (V.C.); (F.C.)
- Correspondence: (M.R.-G.); (B.M.)
| | - Beatriz Merino
- Department of Health and Pharmaceutical Sciences, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, 28660 Madrid, Spain; (J.F.-F.); (A.P.); (V.C.); (F.C.)
- Correspondence: (M.R.-G.); (B.M.)
| |
Collapse
|
12
|
Koethe JR, Moser C, Brown TT, Stein JH, Kelesidis T, Dube M, Currier J, McComsey GA. Adipokines, Weight Gain and Metabolic and Inflammatory Markers After Antiretroviral Therapy Initiation: AIDS Clinical Trials Group (ACTG) A5260s. Clin Infect Dis 2022; 74:857-864. [PMID: 34117756 PMCID: PMC8906713 DOI: 10.1093/cid/ciab542] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND The adipokines leptin and adiponectin, produced primarily by adipose tissue, have diverse endocrine and immunologic effects, and circulating levels reflect adipocyte lipid content, local inflammation, and tissue composition. We assessed relationships between changes in regional fat depots, leptin and adiponectin levels, and metabolic and inflammatory markers over 96 weeks in the AIDS Clinical Trials Group (ACTG) A5260s metabolic substudy of the A5257 randomized trial of tenofovir disoproxil fumarate/emtricitabine plus atazanavir/ritonavir, darunavir/ritonavir, or raltegravir among treatment-naive persons with human immunodeficiency virus (PWH). METHODS Fat depots were measured using dual-energy absorptiometry and abdominal computed tomographic imaging at treatment initiation and 96 weeks later. Serum leptin and adiponectin, homeostatic model assessment of insulin resistance (HOMA-IR), and high-sensitivity C-reactive protein (hsCRP) were measured at the same timepoints. Multivariable regression models assessed relationships between fat depots, adipokines, HOMA-IR, and hsCRP at week 96. RESULTS Two hundred thirty-four participants maintained viral suppression through 96 weeks (90% male, 29% black, median age 36 years). Serum leptin increased over 96 weeks (mean change 22%) while adiponectin did not (mean change 1%), which did not differ by study arm. Greater trunk, limb, and abdominal subcutaneous and visceral fat were associated with higher HOMA-IR and hsCRP at 96 weeks, but serum leptin level was a stronger determinant of these endpoints using a mediation model approach. A similar mediating effect was not observed for adiponectin. CONCLUSIONS Higher circulating leptin is associated with greater HOMA-IR and hsCRP independent of fat depot size, suggesting that greater adipocyte lipid content may contribute to impaired glucose tolerance and systemic inflammation among PWH starting antiretroviral therapy.
Collapse
Affiliation(s)
- John R Koethe
- Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Carlee Moser
- Harvard School of Public Health, Boston, Massachusetts, USA
| | - Todd T Brown
- Johns Hopkins University, Baltimore, Maryland, USA
| | - James H Stein
- University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | | | - Michael Dube
- University of Southern California Keck School of Medicine, Los Angeles, California, USA
| | - Judith Currier
- University of California, Los Angeles, Los Angeles, California, USA
| | | |
Collapse
|
13
|
Delaney KZ, Santosa S. Sex differences in regional adipose tissue depots pose different threats for the development of Type 2 diabetes in males and females. Obes Rev 2022; 23:e13393. [PMID: 34985183 DOI: 10.1111/obr.13393] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 01/08/2023]
Abstract
Type 2 diabetes mellitus (T2DM) affects males and females disproportionately. In midlife, more males have T2DM than females. The sex difference in T2DM prevalence is, in part, explained by differences in regional adipose tissue characteristics. With obesity, changes to regional adipokine and cytokine release increases the risk of T2DM in both males and females with males having greater levels of TNFα and females having greater levels of leptin, CRP, and adiponectin. Regional immune cell infiltration appears to be pathogenic in both sexes via different routes as males with obesity have greater VAT ATM and a decrease in the protective Treg cells, whereas females have greater SAT ATM and T cells. Lastly, the ability of female adipose tissue to expand all regions through hyperplasia, rather than hypertrophy, protects them against the development of large insulin-resistant adipocytes that dominate male adipose tissue. The objective of this review is to discuss how sex may affect regional differences in adipose tissue characteristics and how these differences may distinguish the development of T2DM in males and females. In doing so, we will show that the origins of T2DM development differ between males and females.
Collapse
Affiliation(s)
- Kerri Z Delaney
- Department of Health, Kinesiology and Applied Physiology, Concordia University, Montréal, Québec, Canada.,Metabolism, Obesity and Nutrition Lab, PERFORM Centre, Concordia University, Montréal, Québec, Canada.,Centre de recherche - Axe maladies chroniques, Centre intégré universitaire de santé et de services sociaux du Nord-de-l'Ile-de-Montréal, Hôpital du Sacré-Coeur de Montréal, Montréal, Québec, Canada
| | - Sylvia Santosa
- Department of Health, Kinesiology and Applied Physiology, Concordia University, Montréal, Québec, Canada.,Metabolism, Obesity and Nutrition Lab, PERFORM Centre, Concordia University, Montréal, Québec, Canada.,Centre de recherche - Axe maladies chroniques, Centre intégré universitaire de santé et de services sociaux du Nord-de-l'Ile-de-Montréal, Hôpital du Sacré-Coeur de Montréal, Montréal, Québec, Canada
| |
Collapse
|
14
|
Ye RZ, Richard G, Gévry N, Tchernof A, Carpentier AC. Fat Cell Size: Measurement Methods, Pathophysiological Origins, and Relationships With Metabolic Dysregulations. Endocr Rev 2022; 43:35-60. [PMID: 34100954 PMCID: PMC8755996 DOI: 10.1210/endrev/bnab018] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Indexed: 11/19/2022]
Abstract
The obesity pandemic increasingly causes morbidity and mortality from type 2 diabetes, cardiovascular diseases and many other chronic diseases. Fat cell size (FCS) predicts numerous obesity-related complications such as lipid dysmetabolism, ectopic fat accumulation, insulin resistance, and cardiovascular disorders. Nevertheless, the scarcity of systematic literature reviews on this subject is compounded by the use of different methods by which FCS measurements are determined and reported. In this paper, we provide a systematic review of the current literature on the relationship between adipocyte hypertrophy and obesity-related glucose and lipid dysmetabolism, ectopic fat accumulation, and cardiovascular disorders. We also review the numerous mechanistic origins of adipocyte hypertrophy and its relationship with metabolic dysregulation, including changes in adipogenesis, cell senescence, collagen deposition, systemic inflammation, adipokine secretion, and energy balance. To quantify the effect of different FCS measurement methods, we performed statistical analyses across published data while controlling for body mass index, age, and sex.
Collapse
Affiliation(s)
- Run Zhou Ye
- Division of Endocrinology, Department of Medicine, Centre de recherche du Centre hospitalier universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Gabriel Richard
- Division of Endocrinology, Department of Medicine, Centre de recherche du Centre hospitalier universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Nicolas Gévry
- Department of Biology, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - André Tchernof
- Québec Heart and Lung Research Institute, Laval University, Québec, Québec, Canada
| | - André C Carpentier
- Division of Endocrinology, Department of Medicine, Centre de recherche du Centre hospitalier universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec, Canada
| |
Collapse
|
15
|
Srikanthan P, Horwich TB, Calfon Press M, Gornbein J, Watson KE. Sex Differences in the Association of Body Composition and Cardiovascular Mortality. J Am Heart Assoc 2021; 10:e017511. [PMID: 33619971 PMCID: PMC8174238 DOI: 10.1161/jaha.120.017511] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background To determine whether differences in body composition contribute to sex differences in cardiovascular disease (CVD) mortality, we investigated the relationship between components of body composition and CVD mortality in healthy men and women. Methods and Results Dual energy x-ray absorptiometry body composition data from the National Health and Nutrition Examination Survey 1999-2004 and CVD mortality data from the National Health and Nutrition Examination Survey 1999-2014 were evaluated in 11 463 individuals 20 years of age and older. Individuals were divided into 4 body composition groups (low muscle mass-low fat mass-the referent; low muscle-high fat; high muscle-low fat, and high muscle-high fat), and adjusted competing risks analyses were performed for CVD versus non-CVD mortality. In women, high muscle/high fat mass was associated with a significantly lower adjusted CVD mortality rate (hazard ratio [HR], 0.58; 95% CI, 0.39-0.86; P=0.01), but high muscle/low fat mass was not. In men, both high muscle-high fat (HR, 0.74; 95% CI, 0.53-1.04; P=0.08) and high muscle-low fat mass (HR, 0.40; 95% CI, 0.21-0.77; P=0.01) were associated with lower CVD. Further, in adjusted competing risks analyses stratified by sex, the CVD rate in women tends to significantly decrease as normalized total fat increase (total fat fourth quartile: HR, 0.56; 95% CI, 0.34-0.94; P<0.03), whereas this is not noted in men. Conclusions Higher muscle mass is associated with lower CVD and mortality in men and women. However, in women, high fat, regardless of muscle mass level, appears to be associated with lower CVD mortality risk. This finding highlights the importance of muscle mass in healthy men and women for CVD risk prevention, while suggesting sexual dimorphism with respect to the CVD risk associated with fat mass.
Collapse
Affiliation(s)
| | | | | | - Jeff Gornbein
- Division of Internal Medicine University of California Los Angeles CA.,Department of Medicine and Computational Medicine University of California Los Angeles CA
| | - Karol E Watson
- Division of Cardiology University of California Los Angeles CA
| |
Collapse
|
16
|
Agrawal K, Mathur R, Purwar N, Mathur SK, Mathur DK. Hyperandrogenism, Insulin Resistance, and Acanthosis Nigricans (HAIR-AN) Syndrome Reflects Adipose Tissue Dysfunction ("Adiposopathy" or "Sick Fat") in Asian Indian Girls. Dermatology 2021; 237:797-805. [PMID: 33445175 DOI: 10.1159/000512918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/10/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Whether HAIR-AN syndrome and polycystic ovarian syndrome (PCOS) are distinct entities or represent a phenotypic spectrum of the same syndrome is still unclear. HAIR-AN syndrome is characterized by high insulin resistance, obesity, and hyperinsulinemia as compared to PCOS and could represent adipose tissue dysfunction as the primary pathophysiologic trigger. This study was undertaken to study the role of adipose tissue dysfunction in HAIR-AN syndrome and PCOS using adipocytokines as surrogate markers of "adiposopathy." MATERIALS AND METHODS A cross-sectional observational study was conducted at a tertiary care hospital over a period of 1 year. Serum adiponectin, leptin, IL-6, and TNF-α levels were measured in 30 women with HAIR-AN syndrome and in 30 women with PCOS. Correlations between adipocytokines, inflammatory markers, serum testosterone, and serum insulin were determined. Data analysis was performed using the SPSS version 23.0 (IBM SPSS Statistics Inc., Chicago, IL, USA) software program. RESULTS Women with HAIR-AN syndrome had significantly higher hyperandrogenemia, hyperinsulinemia, and insulin resistance as compared to PCOS women. They also had high leptin levels and lower adiponectin levels (p < 0.001). However, the levels of inflammatory markers (TNF-α and IL-6) were similar in both the groups (p > 0.05). Serum adiponectin showed a negative correlation with HOMA-IR and testosterone levels, while leptin showed a positive correlation with both in HAIR-AN patients while no such correlation was found in the PCOS group. CONCLUSION The significantly raised adipocytokines in HAIR-AN syndrome patients as compared to PCOS patients indicates the primary role of adipose tissue dysfunction ("adiposopathy") in the pathogenesis of HAIR-AN syndrome while only a minor role, if any, in PCOS. Both these syndromes stand as distinct entities pathogenically with an overlapping phenotype.
Collapse
Affiliation(s)
- Kritika Agrawal
- Department of Skin and VD, SMS Medical College and Hospital, Jaipur, India
| | - Rachita Mathur
- Department of Skin and VD, SMS Medical College and Hospital, Jaipur, India
| | - Naincy Purwar
- Department of Endocrinology, SMS Medical College and Hospital, Jaipur, India
| | | | | |
Collapse
|
17
|
Kumar R, Mal K, Razaq MK, Magsi M, Memon MK, Memon S, Afroz MN, Siddiqui HF, Rizwan A. Association of Leptin With Obesity and Insulin Resistance. Cureus 2020; 12:e12178. [PMID: 33489589 PMCID: PMC7815269 DOI: 10.7759/cureus.12178] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Introduction Leptin, a hormone released by the body to regulate energy balance by inhibiting hunger, decreases fat storage in adipocytes. Leptin is thought to play some role in obesity and insulin resistance. In this study, our aim is to see the association of leptin with obesity and insulin resistance. Methods This case-control study was conducted in a tertiary care hospital in Pakistan from January 2020 to April 2020. Ninety-two participants with BMI greater than 25 kg/m2, with no known comorbidities were enrolled in the study after informed consent. Ninety-two participants, who came to the outpatient department without a history of chronic disease, with BMI less than 25 kg/m2 were enrolled as a control group. Data were collected via self-structured questionnaires. Their blood was drawn and sent to the laboratory for cholesterol levels, insulin resistance and leptin levels. Results Serum leptin levels (51.24 ± 18.12 vs. 9.10 ± 2.99: p-value, < 0.0001), serum cholesterol levels (198.2 ± 32.1 vs. 151.2 ± 21.2, p-value < 0.0001) and insulin resistance (7.9 ± 2.1 vs. 6.3 ± 1.9, p-value < 0.0001) were higher in obese patients. Conclusion As per the results of this study, obesity was associated with increase serum leptin levels and insulin resistance. Further multi-centric studies are required to prove the possible relationship, which might help devise plans to manage obesity.
Collapse
Affiliation(s)
- Ratan Kumar
- Cardiology, Khairpur Medical College, Khairpur, PAK
| | - Kheraj Mal
- Cardiology, National Institute of Cardiovascular Diseases, Karachi, PAK
| | | | - Mansoor Magsi
- Internal Medicine, Taluka Hospital Kandhkot, Kandhkot, PAK
| | | | - Sidra Memon
- Internal Medicine, Jinnah Sindh Medical University, Karachi, PAK
| | - Maham Noor Afroz
- Medicine and Surgery, Jinnah Sindh Medical University, Karachi, PAK
| | | | - Amber Rizwan
- Family Medicine, Jinnah Post Graduate Medical Center, Karachi, PAK
| |
Collapse
|
18
|
Hahn D, Shin SH, Bae JS. Natural Antioxidant and Anti-Inflammatory Compounds in Foodstuff or Medicinal Herbs Inducing Heme Oxygenase-1 Expression. Antioxidants (Basel) 2020; 9:E1191. [PMID: 33260980 PMCID: PMC7761319 DOI: 10.3390/antiox9121191] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/20/2020] [Accepted: 11/24/2020] [Indexed: 02/06/2023] Open
Abstract
Heme oxygenase-1 (HO-1) is an inducible antioxidant enzyme that catalyzes heme group degradation. Decreased level of HO-1 is correlated with disease progression, and HO-1 induction suppresses development of metabolic and neurological disorders. Natural compounds with antioxidant activities have emerged as a rich source of HO-1 inducers with marginal toxicity. Here we discuss the therapeutic role of HO-1 in obesity, hypertension, atherosclerosis, Parkinson's disease and hepatic fibrosis, and present important signaling pathway components that lead to HO-1 expression. We provide an updated, comprehensive list of natural HO-1 inducers in foodstuff and medicinal herbs categorized by their chemical structures. Based on the continued research in HO-1 signaling pathways and rapid development of their natural inducers, HO-1 may serve as a preventive and therapeutic target for metabolic and neurological disorders.
Collapse
Affiliation(s)
- Dongyup Hahn
- School of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Korea;
- Department of Integrative Biology, Kyungpook National University, Daegu 41566, Korea
| | - Seung Ho Shin
- Department of Food and Nutrition, Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Korea;
| | - Jong-Sup Bae
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics based Creative Drug Research Team, Kyungpook National University, Daegu 41566, Korea
| |
Collapse
|
19
|
Shin SS, Yoon M. Regulation of Obesity by Antiangiogenic Herbal Medicines. Molecules 2020; 25:molecules25194549. [PMID: 33020443 PMCID: PMC7582783 DOI: 10.3390/molecules25194549] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 09/30/2020] [Accepted: 10/02/2020] [Indexed: 12/11/2022] Open
Abstract
Obesity is the result of an energy imbalance caused by an increased ratio of caloric intake to energy expenditure. In conjunction with obesity, related metabolic disorders, such as dyslipidemia, atherosclerosis, and type 2 diabetes, have become global health problems. Obesity progression is thought to be associated with angiogenesis and extracellular matrix (ECM) remodeling. Angiogenesis occurs in growing adult adipose tissues, which are similar to neoplastic tissues. Adipose tissue is highly vascularized, and each adipocyte is nourished by an extensive capillary network. Adipocytes produce proangiogenic factors, such as vascular endothelial growth factor A and fibroblast growth factor 2, which promote neovascularization within the adipose tissue. Furthermore, matrix metalloproteinases (MMPs), including MMP-2 and MMP-9, play important roles in adipose tissue development and microvessel maturation by modifying the ECM. Thus, modulation of angiogenesis and MMP activity provides a promising therapeutic approach for controlling human obesity and its related disorders. Over the past decade, there has been a great increase in the use of alternative treatments, such as herbal remedies, for these diseases. This review will focus on the role of angiogenesis in adipose tissue growth and the regulation of obesity by antiangiogenic herbal medicines.
Collapse
Affiliation(s)
- Soon Shik Shin
- Department of Formula Sciences, College of Oriental Medicine, Dongeui University, Busan 47340, Korea;
| | - Michung Yoon
- Department of Biomedical Engineering, Mokwon University, Daejeon 35349, Korea;
- Correspondence: ; Tel.: +8242-829-7581; Fax: 8242-829-7580
| |
Collapse
|
20
|
Lugol Increases Lipolysis through Upregulation of PPAR-Gamma and Downregulation of C/EBP-Alpha in Mature 3T3-L1 Adipocytes. J Nutr Metab 2020; 2020:2302795. [PMID: 33014457 PMCID: PMC7519197 DOI: 10.1155/2020/2302795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 08/03/2020] [Accepted: 09/04/2020] [Indexed: 11/20/2022] Open
Abstract
Overweight and obesity are defined as excessive and abnormal fat accumulation that is harmful to health. This study analyzes the effect of different concentrations of the lugol solution (molecular iodine dissolved in potassium iodide) on lipolysis in cultured 3T3-L1-differentiated adipocytes. The mature adipocytes were treated with doses from 1 to 100 µm of lugol for 0.5, 6, and 24 h. The results showed that mature adipocytes exposed to lugol decrease their viability and increase caspase-3 activity with a lethal dose (LD50) of 473 µm. In mature adipocytes, lugol decreased the total intracellular lipid content, being significant at doses of 10 and 100 µm after 6 and 24 h of treatment (P < 0.01), and the accumulation of intracellular triglycerides decreased after 24 h of exposure to lugol (P < 0.05). Lugol treatment significantly increases the release of glycerol to the culture medium (P < 0.05). The levels of adipocyte-specific transcription factors C/EBP-α were downregulated and PPAR-γ upregulated after 30 min with lugol. These results indicate a lipolytic effect of lugol dependent on PPAR-γ and C/EBP-α expression in mature 3T3-L1 adipocytes.
Collapse
|
21
|
Eriksson MA, Söderberg S, Nilsson TK, Eriksson M, Boman K, Jansson JH. Leptin levels are not affected by enalapril treatment after an uncomplicated myocardial infarction, but associate strongly with changes in fibrinolytic variables in men. Scandinavian Journal of Clinical and Laboratory Investigation 2020; 80:303-308. [PMID: 32125188 DOI: 10.1080/00365513.2020.1731848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Leptin, an adipocyte-derived hormone, is involved in the regulation of body weight and is associated with obesity-related complications, notably cardiovascular disease (CVD). A putative link between obesity and CVD could be induction of plasminogen activator inhibitor-1 (PAI-1) synthesis by leptin. In this study, we hypothesized that the beneficial effect of the angiotensin-converting enzyme inhibitor (ACEi) enalapril on PAI-1 levels is mediated by effects on leptin levels. The association between leptin and components of the fibrinolytic system was evaluated in a non-prespecified post hoc analysis of a placebo-controlled randomized, double-blind trial where the effect of the ACEi enalapril on fibrinolysis was tested. A total of 46 men and 37 women were randomized to treatment with enalapril or placebo after (median 12 months) an uncomplicated myocardial infarction. At baseline, the participants were stable and had no signs of congestive heart failure. Leptin and fibrinolytic variables (mass concentrations of PAI-1, tissue plasminogen activator (tPA) and tPA-PAI complex) were measured at baseline, and after 10 days, 6 months and 12 months. Enalapril treatment did not change leptin levels, which increased significantly during 1 year of follow-up (p = .007). Changes in leptin levels were strongly associated with changes of tPA mass (p = .001), tPA-PAI complex (p = .003) and of PAI-1 (p = .006) in men, but not in women. Leptin levels are not influenced by treatment with an ACEi. In contrast, leptin associates strongly with changes in fibrinolytic variables notably with a sex difference, which could be of importance for obesity-related CVD.
Collapse
Affiliation(s)
- Maria A Eriksson
- Department of Public Health and Clinical Medicine, Medicine, Umeå University, Umea, Sweden
| | - Stefan Söderberg
- Department of Public Health and Clinical Medicine, Medicine, Umeå University, Umea, Sweden
| | - Torbjörn K Nilsson
- Department of Medical Biosciences/Clinical Chemistry, Umeå University, Umea, Sweden
| | - Marie Eriksson
- Department of Statistics, USBE, Umeå University, Umea, Sweden
| | - Kurt Boman
- Research Unit Skellefteå, Department of Public Health and Clinical Medicine, Umeå University, Umea, Sweden
| | - Jan-Håkan Jansson
- Research Unit Skellefteå, Department of Public Health and Clinical Medicine, Umeå University, Umea, Sweden
| |
Collapse
|
22
|
Moseti D, Regassa A, Chen C, O K, Kim WK. 25-Hydroxycholesterol Inhibits Adipogenic Differentiation of C3H10T1/2 Pluripotent Stromal Cells. Int J Mol Sci 2020; 21:ijms21020412. [PMID: 31936485 PMCID: PMC7013583 DOI: 10.3390/ijms21020412] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 12/30/2019] [Accepted: 01/02/2020] [Indexed: 01/07/2023] Open
Abstract
Understanding of adipogenesis is important to find remedies for obesity and related disorders. In addition, it is also critical in bone disorders because there is a reciprocal relationship between adipogenesis and osteogenesis in bone micro-environment. Oxysterols are pro-osteogenic and anti-adipogenic molecules via hedgehog activation in pluripotent bone marrow stomal cells. However, no study has evaluated the role of specific oxysterols in C3H10T1/2 cells, which are a good cell model for studying osteogenesis and adipogenesis in bone-marrows. Thus, we investigated the effects of specific oxysterols on adipogenesis and expression of adipogenic transcripts in C3H10T1/2 cells. Treatment of cells with DMITro significantly induced mRNA expression of Pparγ. This induction was significantly inhibited by 25-HC. The expression of C/cepα, Fabp4 and Lpl was also inhibited by 25-HC. To determine the mechanism by which 25-HC inhibits adipogenesis, the effects of the hedgehog signalling pathway inhibitor, cyclopamine and CUR61414, were evaluated. Treatment of C3H10T1/2 cells with DMITro + cyclopamine or DMITro + CUR61414 for 96h did not modulate adipocyte differentiation; cyclopamine and CUR61414 did not reverse the inhibitory effects of 25-HC, suggesting that the canonical hedgehog signalling may not play a role in the anti-adipogenic effects of 25-HC in C3H10T1/2 cells. In addition, LXR agonist did not inhibit adipogenesis, but 25-HC strongly inhibits adipogenesis of C3H10T1/2 cells. Our observations showed that 25-HC was the most potent oxysterol in inhibiting adipogenesis and the expression of key adipogenic transcripts in C3H10T1/2 cells among the tested oxysterols, suggesting its potential application in providing an intervention in osteoporosis and obesity. We also report that the inhibitory effects of 25-HC on adipogenic differentiation in C3H10T1/2 cells are not mediated by hedgehog signaling and LXR.
Collapse
Affiliation(s)
- Dorothy Moseti
- Department of Animal Science, University of Manitoba, 201 Animal Science building, Winnipeg, MB R3T 2N2, Canada (A.R.)
| | - Alemu Regassa
- Department of Animal Science, University of Manitoba, 201 Animal Science building, Winnipeg, MB R3T 2N2, Canada (A.R.)
| | - Chongxiao Chen
- Department of Poultry Science, University of Georgia, 303 Poultry Science building, Athens, GA 30602-2772, USA;
| | - Karmin O
- Department of Animal Science, University of Manitoba, 201 Animal Science building, Winnipeg, MB R3T 2N2, Canada (A.R.)
| | - Woo Kyun Kim
- Department of Poultry Science, University of Georgia, 303 Poultry Science building, Athens, GA 30602-2772, USA;
- Correspondence: ; Tel./Fax: +1-706-248-9584
| |
Collapse
|
23
|
Leem YE, Bae JH, Jeong HJ, Kang JS. PRMT7 deficiency enhances adipogenesis through modulation of C/EBP-β. Biochem Biophys Res Commun 2019; 517:484-490. [PMID: 31371025 DOI: 10.1016/j.bbrc.2019.07.096] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 07/24/2019] [Indexed: 12/14/2022]
Abstract
Obesity that is critically correlated with the initiation and development of metabolic syndrome and cardiovascular diseases has increased worldwide. Adipogenesis is coordinated through multi-steps involving adipogenic commitment, mitotic clonal expansion (MCE) and differentiation. Recently, protein arginine methyltransferase 4 (PRMT4) and PRMT5 have been implicated in modulation of adipogenesis via regulation of C/EBP-β activity or PPAR-γ2 expression. In the current study, we demonstrate a suppressive role of PRMT7 in adipogenesis. PRMT7-depleted preadipocytes or PRMT7-/- mouse embryonic fibroblasts (MEFs) displayed increased adipogenesis while PRMT7 overexpression attenuated it. PRMT7 depletion in preadipocytes promoted MCE, an initial step of adipogenesis. Furthermore, we found that PRMT7 interacted with and methylated a key adipogenic factor C/EBP-β upon adipogenic induction and modulated the accumulation of C/EBP-β at its target sites in the PPAR-γ2 promoter. Taken together, our data suggest that PRMT7 suppresses adipogenesis through modulation of C/EBP-β activity.
Collapse
Affiliation(s)
- Young-Eun Leem
- Department of Molecular Cell Biology, Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea.
| | - Ju-Hyeon Bae
- Department of Molecular Cell Biology, Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Hyeon-Ju Jeong
- Department of Molecular Cell Biology, Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Jong-Sun Kang
- Department of Molecular Cell Biology, Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea.
| |
Collapse
|
24
|
Langkilde A, Tavenier J, Danielsen AV, Eugen-Olsen J, Therkildsen C, Jensen FK, Henriksen JH, Langberg H, Steiniche T, Petersen J, Holck S, Andersen O. Histological and Molecular Adipose Tissue Changes Are Related to Metabolic Syndrome Rather Than Lipodystrophy in Human Immunodeficiency Virus-Infected Patients: A Cross-Sectional Study. J Infect Dis 2019; 218:1090-1098. [PMID: 29788076 DOI: 10.1093/infdis/jiy284] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 05/13/2018] [Indexed: 01/23/2023] Open
Abstract
Background In human immunodeficiency virus (HIV)-infected patients on combination antiretroviral therapy (cART), lipodystrophy shares many similarities with metabolic syndrome, but only metabolic syndrome has objective classification criteria. We examined adipose tissue changes related to lipodystrophy and metabolic syndrome to clarify whether it may be acceptable to focus diagnosis on metabolic syndrome rather than lipodystrophy. Methods This is a cross-sectional study of 60 HIV-infected men on cART and 15 healthy men. We evaluated lipodystrophy (clinical assessment) and metabolic syndrome (JIS-2009). We compared adipocyte size, leukocyte infiltration, and gene expression in abdominal subcutaneous adipose tissue biopsies of patients with and without lipodystrophy and with and without metabolic syndrome. Results Lipodystrophy was only associated with increased macrophage infiltration (P = .04) and adiponectin messenger ribonucleic acid ([mRNA] P = .008), whereas metabolic syndrome was associated with larger adipocytes (P < .0001), decreased expression of genes related to adipogenesis and adipocyte function (P values between <.0001 and .08), increased leptin mRNA (P = .04), and a trend towards increased expression of inflammatory genes (P values between .08 and .6). Conclusions Metabolic syndrome rather than lipodystrophy was associated with major unfavorable abdominal subcutaneous adipose tissue changes. In a clinical setting, it may be more relevant to focus on metabolic syndrome diagnosis in HIV-infected patients on cART with regards to adipose tissue dysfunction and risk of cardiometabolic complications.
Collapse
Affiliation(s)
- Anne Langkilde
- Optimed, Clinical Research Centre, Copenhagen University Hospital, Hvidovre, Denmark
| | - Juliette Tavenier
- Optimed, Clinical Research Centre, Copenhagen University Hospital, Hvidovre, Denmark
| | | | - Jesper Eugen-Olsen
- Optimed, Clinical Research Centre, Copenhagen University Hospital, Hvidovre, Denmark
| | | | | | - Jens Henrik Henriksen
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital, Hvidovre, Denmark
| | - Henning Langberg
- CopenRehab, Department of Public Health, Section of Social Medicine, University of Copenhagen, Denmark
| | | | - Janne Petersen
- Optimed, Clinical Research Centre, Copenhagen University Hospital, Hvidovre, Denmark.,Department of Biostatistics, University of Copenhagen, Denmark
| | - Susanne Holck
- Department of Pathology, Copenhagen University Hospital, Hvidovre, Denmark
| | - Ove Andersen
- Optimed, Clinical Research Centre, Copenhagen University Hospital, Hvidovre, Denmark.,Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
| |
Collapse
|
25
|
Svärd J, Røst TH, Sommervoll CEN, Haugen C, Gudbrandsen OA, Mellgren AE, Rødahl E, Fernø J, Dankel SN, Sagen JV, Mellgren G. Absence of the proteoglycan decorin reduces glucose tolerance in overfed male mice. Sci Rep 2019; 9:4614. [PMID: 30874564 PMCID: PMC6420637 DOI: 10.1038/s41598-018-37501-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 12/07/2018] [Indexed: 01/07/2023] Open
Abstract
Studies have implicated the extracellular matrix (ECM) of adipose tissue in insulin resistance. The proteoglycan decorin, a component of ECM, has been associated with glucose tolerance, but possible causal effects on metabolism remain to be explored. We here sought to determine metabolic consequences of loss of decorin in mice (DcnKO). DcnKO mice were fed a low-fat (LF) or high-fat (HF) diet for 10 weeks and body weight and food intake was recorded. An intraperitoneal glucose tolerance test was performed after eight weeks. Blood samples and adipose, liver and muscle tissues were collected at sacrifice. Global gene expression was measured in adipose tissue, and expression of decorin was also analyzed in human adipose samples. DcnKO mice showed increased feed efficiency during overfeeding and impaired glucose tolerance. Adipose leptin mRNA and circulating leptin levels were elevated in DcnKO mice, along with a downregulation of genes involved in ECM organization and triglyceride biosynthesis, and an upregulation of adipose genes involved in complement and coagulation cascades. Consistent with a protective metabolic role for decorin, in obese patients we found increased adipose decorin expression after profound fat loss, particularly in the stromal vascular fraction. Loss of decorin in mice caused impaired glucose tolerance in association with increased feed efficiency and altered gene expression in adipose tissue. Our data provide evidence that decorin is an important factor for maintaining glucose tolerance.
Collapse
Affiliation(s)
- Jessica Svärd
- KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, N-5020, Bergen, Norway.,Hormone Laboratory, Haukeland University Hospital, N-5021, Bergen, Norway
| | - Therese H Røst
- KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, N-5020, Bergen, Norway.,Hormone Laboratory, Haukeland University Hospital, N-5021, Bergen, Norway
| | - Camilla E N Sommervoll
- KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, N-5020, Bergen, Norway.,Hormone Laboratory, Haukeland University Hospital, N-5021, Bergen, Norway
| | - Christine Haugen
- KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, N-5020, Bergen, Norway.,Hormone Laboratory, Haukeland University Hospital, N-5021, Bergen, Norway
| | | | - Anne E Mellgren
- Department of Clinical Medicine, University of Bergen, N-5020 Bergen, Norway.,Department of Ophthalmology, Haukeland University Hospital, N-5021 Bergen, Norway
| | - Eyvind Rødahl
- Department of Clinical Medicine, University of Bergen, N-5020 Bergen, Norway.,Department of Ophthalmology, Haukeland University Hospital, N-5021 Bergen, Norway
| | - Johan Fernø
- KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, N-5020, Bergen, Norway.,Hormone Laboratory, Haukeland University Hospital, N-5021, Bergen, Norway
| | - Simon N Dankel
- KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, N-5020, Bergen, Norway.,Hormone Laboratory, Haukeland University Hospital, N-5021, Bergen, Norway
| | - Jørn V Sagen
- KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, N-5020, Bergen, Norway.,Hormone Laboratory, Haukeland University Hospital, N-5021, Bergen, Norway
| | - Gunnar Mellgren
- KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, N-5020, Bergen, Norway. .,Hormone Laboratory, Haukeland University Hospital, N-5021, Bergen, Norway.
| |
Collapse
|
26
|
Park JH, Ahn EK, Kim JK, Oh JS. Antihyperlipidemic Activity of Ligularia fischeri Extract in Mice Fed a High-Carbohydrate Diet. J Med Food 2019; 22:374-383. [PMID: 30801226 DOI: 10.1089/jmf.2018.4248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Ligularia fischeri, indigenous to eastern Asia, has been used as a traditional herbal medicine. Ligularia fischeri reportedly possesses a number of biological activities such as antimutagenic, antioxidant, antigenotoxic, and anti-inflammation. This study demonstrated the effects of ethanol extracts of Ligularia fischeri (ELF) on a high-carbohydrate diet (HCD)-induced hyperlipidemia in C57BL/6 mice. The mice were divided into six groups (n = 7/group) as follows: normal diet, HCD, or HCD+ELF (100, 200, 400, and 800 mg/kg/day), which were orally administered daily for 12 weeks. Various lipid parameters and histological changes in liver and fat tissue were compared among the treatment and control groups. ELF remarkably reduced body weight gain and attenuated hyperlipidemia by improving the plasma levels of total cholesterol, triglycerides, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, atherogenic index, and cardiac risk factor. Moreover, ELF decreased the HCD-induced hepatic accumulation of lipid droplets and adipocyte hypertrophy. These regulatory effects of ELF appeared to be mediated through the phosphorylation of AMP-activated protein kinase, acetyl-CoA carboxylase, sterol regulatory element-binding protein-1c, and expression of fatty acid synthase. Taken together, these findings indicate a functional role for ELF in the regulation of HCD-induced obesity and hyperlipidemia.
Collapse
Affiliation(s)
- Ju-Hyoung Park
- 1 Department of Pharmacy, Dankook University, Cheonan, Chungnam, Korea
| | - Eun-Kyung Ahn
- 2 Department of Bio-Center, Gyeonggido Business and Science Accelerator, Suwon, Gyeonggi, Korea
| | - Jin-Kyu Kim
- 2 Department of Bio-Center, Gyeonggido Business and Science Accelerator, Suwon, Gyeonggi, Korea
| | - Joa Sub Oh
- 1 Department of Pharmacy, Dankook University, Cheonan, Chungnam, Korea
| |
Collapse
|
27
|
CRISPR/Cas9-mediated generation of a Plac8 knockout mouse model. Lab Anim Res 2018; 34:279-287. [PMID: 30671116 PMCID: PMC6333607 DOI: 10.5625/lar.2018.34.4.279] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/07/2018] [Accepted: 12/08/2018] [Indexed: 12/11/2022] Open
Abstract
Placenta specific 8 (PLAC8, also known as ONZIN) is a multi-functional protein that is highly expressed in the intestine, lung, spleen, and innate immune cells, and is involved in various diseases, including cancers, obesity, and innate immune deficiency. Here, we generated a Plac8 knockout mouse using the CRISPR/Cas9 system. The Cas9 mRNA and two single guide RNAs targeting a region near the translation start codon at Plac8 exon 2 were microinjected into mouse zygotes. This successfully eliminated the conventional translation start site, as confirmed by Sanger sequencing and PCR genotyping analysis. Unlike the previous Plac8 deficient models displaying increased adipose tissue and body weights, our male Plac8 knockout mice showed rather lower body weight than sex-matched littermate controls, though the only difference between these two mouse models is genetic context. Differently from the previously constructed embryonic stem cell-derived Plac8 knockout mouse that contains a neomycin resistance cassette, this knockout mouse model is free from a negative selection marker or other external insertions, which will be useful in future studies aimed at elucidating the multi-functional and physiological roles of PLAC8 in various diseases, without interference from exogenous foreign DNA.
Collapse
|
28
|
Choi RY, Lee HI, Ham JR, Yee ST, Kang KY, Lee MK. Heshouwu (Polygonum multiflorum Thunb.) ethanol extract suppresses pre-adipocytes differentiation in 3T3-L1 cells and adiposity in obese mice. Biomed Pharmacother 2018; 106:355-362. [PMID: 29966981 DOI: 10.1016/j.biopha.2018.06.140] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 06/05/2018] [Accepted: 06/25/2018] [Indexed: 02/07/2023] Open
Abstract
This study investigated whether Heshouwu (Polygonum multiflorum Thunb.) root ethanol extract (PME) has anti-obesity activity using 3T3-L1 cells and high-fat diet (HFD)-induced obese mice. Treatment with PME (5 and 10 μg/mL) dose-dependently suppressed 3T3-L1 pre-adipocyte differentiation to adipocytes and cellular triglyceride contents. In addition, PME inhibited mRNA and protein expression of adipogenic transcription factors such as CCAAT/enhancer-binding protein α (C/EBPα) and peroxisome proliferator-activated receptor γ (PPARγ), which led to down-regulation of fatty acid synthase gene expression. After feeding mice PME (0.05%) with HFD for 12 weeks, their visceral fat mass, size and body weight were significantly reduced compared with the HFD group. Furthermore, PME supplementation significantly up-regulated the PPARα, CPT1, CPT2, UCP1 and HSL mRNA levels compared with the HFD group, whereas it down-regulated expression of the PPARγ and DGAT2 genes. Finally, HFD increased serum leptin, insulin, glucose and insulin and glucose levels; however, PME reversed these changes. These results demonstrated that PME might relieve obesity that occurs via inhibition of adipogenesis and lipogenesis as well as through lipolysis and fatty acid oxidation in 3T3-L1 cells and HFD-induced obese mice.
Collapse
Affiliation(s)
- Ra-Yeong Choi
- Department of Food and Nutrition, Sunchon National University, Suncheon, 57922, Republic of Korea
| | - Hae-In Lee
- Mokpo Marin Food-Industry Research Center, Mokpo, 58621, Republic of Korea
| | - Ju Ri Ham
- Department of Food and Nutrition, Sunchon National University, Suncheon, 57922, Republic of Korea
| | - Sung-Tae Yee
- College of Pharmacy, Sunchon National University, Suncheon, 57922, Republic of Korea; Suncheon Research Center for Natural Medicines, Suncheon, 57922, Republic of Korea
| | - Kyung-Yun Kang
- Suncheon Research Center for Natural Medicines, Suncheon, 57922, Republic of Korea
| | - Mi-Kyung Lee
- Department of Food and Nutrition, Sunchon National University, Suncheon, 57922, Republic of Korea; Suncheon Research Center for Natural Medicines, Suncheon, 57922, Republic of Korea.
| |
Collapse
|
29
|
Glehnia littoralis Root Extract Inhibits Fat Accumulation in 3T3-L1 Cells and High-Fat Diet-Induced Obese Mice by Downregulating Adipogenic Gene Expression. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:1243049. [PMID: 29849691 PMCID: PMC5932452 DOI: 10.1155/2018/1243049] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 03/04/2018] [Indexed: 11/17/2022]
Abstract
Glehnia littoralis has been reported to have several pharmacological properties but no reports describing the antiadipogenic effect of this plant have been published. This study was conducted to investigate the effects of Glehnia littoralis root hot water extract (GLE) and its underlying mechanism on 3T3-L1 cell adipogenesis and in high-fat diet- (HFD-) induced obese mice. We measured intracellular lipid accumulation using oil red O staining in vitro. For in vivo study, twenty-eight C57BL/6J male mice were randomly divided into four groups, Control, HFD, HFD + 1% GLE, and HFD + 5% GLE, which was performed for eight weeks. We determined the expression levels of the adipogenesis-related proteins by RT-PCR and western blotting in HFD-induced obese mice. The GLE dose-dependently inhibited 3T3-L1 adipocyte differentiation and intracellular lipid accumulation in differentiated adipocytes. Further, body weight gain and fat accumulation were significantly lower in the GLE-treated HFD mice than in the untreated HFD mice. GLE treatment suppressed the expression of adipogenic genes such as peroxisome proliferator-activated receptor (PPAR) γ, CCAAT/enhancer-binding protein (C/EBP) α, fatty acid synthase (aP2), and fatty acid synthase (FAS). These results suggest that the GLE inhibits adipocyte differentiation and intracellular lipid accumulation by downregulating the adipogenic gene expression both in vitro and in vivo.
Collapse
|
30
|
|
31
|
Priyanka A, Shyni G, Anupama N, Raj PS, Anusree S, Raghu K. Development of insulin resistance through sprouting of inflammatory markers during hypoxia in 3T3-L1 adipocytes and amelioration with curcumin. Eur J Pharmacol 2017; 812:73-81. [DOI: 10.1016/j.ejphar.2017.07.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Revised: 06/23/2017] [Accepted: 07/03/2017] [Indexed: 10/19/2022]
|
32
|
Losko M, Lichawska-Cieslar A, Kulecka M, Paziewska A, Rumienczyk I, Mikula M, Jura J. Ectopic overexpression of MCPIP1 impairs adipogenesis by modulating microRNAs. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1865:186-195. [PMID: 28939056 DOI: 10.1016/j.bbamcr.2017.09.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 09/15/2017] [Accepted: 09/18/2017] [Indexed: 01/12/2023]
Abstract
Adipogenesis is a process of preadipocyte differentiation that requires action of numerous factors. Monocyte chemoattractant protein-1-induced protein 1 (MCPIP1) possesses the N-terminus of the PilT protein (PilT N-terminus or PIN domain) that has RNase properties. This protein degrades transcripts coding for inflammation and differentiation - related proteins. Moreover, MCPIP1 is a broad suppressor of the miRNA biogenesis. We previously found that MCPIP1 degrades transcript encoding CCAAT/Enhancer Binding Protein Beta (C/EBPβ) and influences adipogenesis. Subsequently, we aimed to determine adipocyte miRNA expression profile in differentiating mouse preadipocytes, 3T3-L1, by overexpressing MCPIP1. Using Next-Generation Sequencing (NSG) we showed that MCPIP1 overexpression results in modulated levels of 58 miRNAs in adipocytes on day 2 of differentiation. Among them, 30 miRNAs showed significantly reduced levels and 28 showed increased levels in comparison to control. Approximately one third of the modulated miRNAs were not previously reported to be involved in adipocytes differentiation. Our analysis revealed that 24 down-regulated and 23 up-regulated miRNAs (at least 1.5-fold) influence 19 signaling pathways that are important for adipogenesis. Furthermore, reduced miRNA levels result in the up-regulation of their targets. By using luciferase reporter assay, we demonstrated that miR-32-5p and miR-9-3p directly target the 3'UTR region of Mapk8 and Tiam1, respectively. In addition, activation of MAP kinases pathway (JNK and p38), proposed as being regulated by down-regulated miRNAs, was higher in WTMCPIP1 than in D141NMCPIP1 or control 3T3-L1 adipocytes. Our results indicate a considerable impact of MCPIP1 on miRNAs levels and its significance in adipogenesis.
Collapse
Affiliation(s)
- Magdalena Losko
- Department of General Biochemistry, Jagiellonian University, Krakow, Poland
| | | | - Maria Kulecka
- Department of Gastroenterology, Hepatology and Clinical Oncology, Medical Center for Postgraduate Education, Warsaw, Poland
| | - Agnieszka Paziewska
- Department of Gastroenterology, Hepatology and Clinical Oncology, Medical Center for Postgraduate Education, Warsaw, Poland
| | - Izabela Rumienczyk
- Department of Genetics, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland
| | - Michal Mikula
- Department of Genetics, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland
| | - Jolanta Jura
- Department of General Biochemistry, Jagiellonian University, Krakow, Poland.
| |
Collapse
|
33
|
Chao HC, Tsai PF, Lee SC, Lin YS, Wu MC. Effects of Myricetin-Containing Ethanol Solution on High-Fat Diet Induced Obese Rats. J Food Sci 2017; 82:1947-1952. [PMID: 28675777 DOI: 10.1111/1750-3841.13755] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 04/21/2017] [Accepted: 04/24/2017] [Indexed: 11/28/2022]
Abstract
Myricetin is a natural flavonol widely occurring in wines. Many beneficial effects of myricetin in alcoholic beverages have been reported before, but never including anti-obesity. In the present study, we fed obese male Sprague-Dawley rats with ethanol solutions containing various concentrations of myricetin and found that myricetin may maintain the food intake while reduce the weight-gain, feed efficiency, level of blood lipids, adipocyte size, and weight and size of the perirenal and epididymal adipose tissues (P < 0.01). Our experiment data also show that the anti-obesity effect may be associated with the upregulation of adropin and β-endorphin levels. Based on the above-described findings, we propose the potential for myricetin-containing alcoholic beverages to be developed into anti-obesity health food.
Collapse
Affiliation(s)
- Hsueh-Chin Chao
- Dept. of Food Science, National Pingtung Univ. of Science and Technology, No. 1 Shuefu Rd., Neipu, Pingtung, 91201, Taiwan
| | - Pei-Feng Tsai
- Graduate Inst. of Food Science and Technology, National Taiwan Univ., P.O. Box 23-14, Taipei City, 10672, Taiwan
| | - Sheng-Chi Lee
- Orthopedic Dept., Kaohsiung Veterans Hospital Pingtung Branch, NO. 1. Anping Lane 1. Jausheng Rd., Neipu Shiang, Pingtung, 91245, Taiwan
| | - Yeong-Shenn Lin
- Dept. of Agribusiness Management, National Pingtung Univ. of Science and Technology, No. 1 Shuefu Rd., Neipu, Pingtung, 91201, Taiwan
| | - Ming-Chang Wu
- Dept. of Food Science, National Pingtung Univ. of Science and Technology, No. 1 Shuefu Rd., Neipu, Pingtung, 91201, Taiwan
| |
Collapse
|
34
|
Lecoutre S, Oger F, Pourpe C, Butruille L, Marousez L, Dickes-Coopman A, Laborie C, Guinez C, Lesage J, Vieau D, Junien C, Eberlé D, Gabory A, Eeckhoute J, Breton C. Maternal obesity programs increased leptin gene expression in rat male offspring via epigenetic modifications in a depot-specific manner. Mol Metab 2017; 6:922-930. [PMID: 28752055 PMCID: PMC5518658 DOI: 10.1016/j.molmet.2017.05.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 05/15/2017] [Accepted: 05/22/2017] [Indexed: 12/13/2022] Open
Abstract
Objective According to the Developmental Origin of Health and Disease (DOHaD) concept, maternal obesity and accelerated growth in neonates predispose offspring to white adipose tissue (WAT) accumulation. In rodents, adipogenesis mainly develops during lactation. The mechanisms underlying the phenomenon known as developmental programming remain elusive. We previously reported that adult rat offspring from high-fat diet-fed dams (called HF) exhibited hypertrophic adipocyte, hyperleptinemia and increased leptin mRNA levels in a depot-specific manner. We hypothesized that leptin upregulation occurs via epigenetic malprogramming, which takes place early during development of WAT. Methods As a first step, we identified in silico two potential enhancers located upstream and downstream of the leptin transcription start site that exhibit strong dynamic epigenomic remodeling during adipocyte differentiation. We then focused on epigenetic modifications (methylation, hydroxymethylation, and histone modifications) of the promoter and the two potential enhancers regulating leptin gene expression in perirenal (pWAT) and inguinal (iWAT) fat pads of HF offspring during lactation (postnatal days 12 (PND12) and 21 (PND21)) and in adulthood. Results PND12 is an active period for epigenomic remodeling in both deposits especially in the upstream enhancer, consistent with leptin gene induction during adipogenesis. Unlike iWAT, some of these epigenetic marks were still observable in pWAT of weaned HF offspring. Retained marks were only visible in pWAT of 9-month-old HF rats that showed a persistent “expandable” phenotype. Conclusions Consistent with the DOHaD hypothesis, persistent epigenetic remodeling occurs at regulatory regions especially within intergenic sequences, linked to higher leptin gene expression in adult HF offspring in a depot-specific manner. The white adipose tissue is an important target of developmental programming. Higher leptin gene expression occurs in offspring from obese dams in a depot-specific manner. Leptin upregulation occurs via epigenetic malprogramming during development of adipose tissue. Persistent genomic epigenetic remodeling occurs in adipose tissue of offspring from obese dams. Intergenic regions were more affected than the leptin promoter region in offspring of obese dams.
Collapse
Affiliation(s)
- Simon Lecoutre
- Univ. Lille, EA4489, Équipe Malnutrition Maternelle et Programmation des Maladies Métaboliques, F-59000 Lille, France
| | - Frederik Oger
- Univ. Lille, EA4489, Équipe Malnutrition Maternelle et Programmation des Maladies Métaboliques, F-59000 Lille, France
| | - Charlène Pourpe
- Univ. Lille, EA4489, Équipe Malnutrition Maternelle et Programmation des Maladies Métaboliques, F-59000 Lille, France
| | - Laura Butruille
- Univ. Lille, EA4489, Équipe Malnutrition Maternelle et Programmation des Maladies Métaboliques, F-59000 Lille, France
| | - Lucie Marousez
- Univ. Lille, EA4489, Équipe Malnutrition Maternelle et Programmation des Maladies Métaboliques, F-59000 Lille, France
| | - Anne Dickes-Coopman
- Univ. Lille, EA4489, Équipe Malnutrition Maternelle et Programmation des Maladies Métaboliques, F-59000 Lille, France
| | - Christine Laborie
- Univ. Lille, EA4489, Équipe Malnutrition Maternelle et Programmation des Maladies Métaboliques, F-59000 Lille, France
| | - Céline Guinez
- Univ. Lille, EA4489, Équipe Malnutrition Maternelle et Programmation des Maladies Métaboliques, F-59000 Lille, France
| | - Jean Lesage
- Univ. Lille, EA4489, Équipe Malnutrition Maternelle et Programmation des Maladies Métaboliques, F-59000 Lille, France
| | - Didier Vieau
- Univ. Lille, EA4489, Équipe Malnutrition Maternelle et Programmation des Maladies Métaboliques, F-59000 Lille, France
| | - Claudine Junien
- UMR BDR, INRA, ENVA, Université Paris Saclay, 78350, Jouy-en-Josas, France; UVSQ, Université Versailles-Saint-Quentin-en-Yvelines, France
| | - Delphine Eberlé
- Univ. Lille, EA4489, Équipe Malnutrition Maternelle et Programmation des Maladies Métaboliques, F-59000 Lille, France
| | - Anne Gabory
- UMR BDR, INRA, ENVA, Université Paris Saclay, 78350, Jouy-en-Josas, France
| | - Jérôme Eeckhoute
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59000 Lille, France
| | - Christophe Breton
- Univ. Lille, EA4489, Équipe Malnutrition Maternelle et Programmation des Maladies Métaboliques, F-59000 Lille, France.
| |
Collapse
|
35
|
Overexpressing the novel autocrine/endocrine adipokine WISP2 induces hyperplasia of the heart, white and brown adipose tissues and prevents insulin resistance. Sci Rep 2017; 7:43515. [PMID: 28240264 PMCID: PMC5327486 DOI: 10.1038/srep43515] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 01/27/2017] [Indexed: 12/31/2022] Open
Abstract
WISP2 is a novel adipokine, most highly expressed in the adipose tissue and primarily in undifferentiated mesenchymal cells. As a secreted protein, it is an autocrine/paracrine activator of canonical WNT signaling and, as an intracellular protein, it helps to maintain precursor cells undifferentiated. To examine effects of increased WISP2 in vivo, we generated an aP2-WISP2 transgenic (Tg) mouse. These mice had increased serum levels of WISP2, increased lean body mass and whole body energy expenditure, hyperplastic brown/white adipose tissues and larger hyperplastic hearts. Obese Tg mice remained insulin sensitive, had increased glucose uptake by adipose cells and skeletal muscle in vivo and ex vivo, increased GLUT4, increased ChREBP and markers of adipose tissue lipogenesis. Serum levels of the novel fatty acid esters of hydroxy fatty acids (FAHFAs) were increased and transplantation of Tg adipose tissue improved glucose tolerance in recipient mice supporting a role of secreted FAHFAs. The growth-promoting effect of WISP2 was shown by increased BrdU incorporation in vivo and Tg serum increased mesenchymal precursor cell proliferation in vitro. In contrast to conventional canonical WNT ligands, WISP2 expression was inhibited by BMP4 thereby allowing normal induction of adipogenesis. WISP2 is a novel secreted regulator of mesenchymal tissue cellularity.
Collapse
|
36
|
IL-17 axis accelerates the inflammatory progression of obese in mice via TBK1 and IKBKE pathway. Immunol Lett 2017; 184:67-75. [PMID: 28237848 DOI: 10.1016/j.imlet.2017.02.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 02/04/2017] [Accepted: 02/09/2017] [Indexed: 02/06/2023]
Abstract
Obesity mediates immune inflammatory response and induces IL-17 expression. Adipgenesis can be regulated by IL-17 and it causes TBK1 activation. The inhibition of TBK1 and the inhibition of I IKBKE reduces inflammatory response and improves obesity. It is hypothesized that IL-17 deficiency inhibits obesity progression and inflammation. 3T3-L1 preadipocytes were differentiated in vitro and treated with IL-17. RAW264.7 cells and differentiated 3T3-L1 were pretreated with TBK1 inhibitor and then stimulated with IL-17. Wild-type and IL-17 knock out mice were fed with high-fat diet. IL-17 inhibits adipocyte differentiation from mouse-derived 3T3-L1 preadipocytes and reduces mRNA expression of proadipogenic transcription factors and adipokines in adipocyte cells. IL-17 also showed up-regulation of mRNA levels of inflammatory cytokines in RAW cells. The inhibitor of TBK1 and IKBKE attenuates the effect of IL-17. Loss of IL-17 deficiency improves diet-induced obesity, fatty liver, glucose and lipid metabolism in mice. The expression of TBK1 and IKBKE decreased in the spleen and liver of IL-17 deficiency mice. Moreover, the inflammatory response within the visceral adipose tissue and Th1 cells were inhibited, however, M2 macrophage and Th2 cells increased in IL-17 deficiency mice. IL-17 inhibits adipogenesis where a lack of IL-17 ameliorates glucose metabolism. As well, the inhibition of TBK1 reduces inflammation induced by IL-17. Therefore, IL-17 may be involved in the development of obesity and metabolic dysfunction in a TBK1-dependent manner.
Collapse
|
37
|
Priyanka A, Sindhu G, Shyni GL, Preetha Rani MR, Nisha VM, Raghu KG. Bilobalide abates inflammation, insulin resistance and secretion of angiogenic factors induced by hypoxia in 3T3-L1 adipocytes by controlling NF-κB and JNK activation. Int Immunopharmacol 2017; 42:209-217. [DOI: 10.1016/j.intimp.2016.11.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Revised: 11/12/2016] [Accepted: 11/18/2016] [Indexed: 12/30/2022]
|
38
|
4-Hydroxyisoleucine from Fenugreek (Trigonella foenum-graecum): Effects on Insulin Resistance Associated with Obesity. Molecules 2016; 21:molecules21111596. [PMID: 27879673 PMCID: PMC6273931 DOI: 10.3390/molecules21111596] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 10/31/2016] [Accepted: 11/10/2016] [Indexed: 01/22/2023] Open
Abstract
Obesity and insulin resistance (IR) are interdependent multifactorial processes that cannot be understood separately. Obesity leads to systemic inflammation and increased levels of free fatty acids that provoke IR and lipotoxicity. At the same time, IR exacerbates adipose cell dysfunction, resulting in chronic inflammation and major lipotoxic effects on nonadipose tissues. 4-Hydroxyisoleucine (4-OHIle), a peculiar nonprotein amino acid isolated from fenugreek (Trigonella foenum-graecum) seeds, exhibits interesting effects on IR related to obesity. 4-OHIle increases glucose-induced insulin release, and the insulin response mediated by 4-OHIle depends on glucose concentration. The beneficial effects observed are related to the regulation of blood glucose, plasma triglycerides, total cholesterol, free fatty acid levels, and the improvement of liver function. The mechanism of action is related to increased Akt phosphorylation and reduced activation of Jun N-terminal kinase (JNK)1/2, extracellular signal-regulated kinase (ERK)1/2, p38 mitogen-activated protein kinase (MAPK), and nuclear factor (NF)-κB. Here, we present a review of the research regarding the insulinotropic and insulin-sensitising activity of 4-OHIle in in vitro and in vivo models.
Collapse
|
39
|
Ilavenil S, Kim DH, Srigopalram S, Arasu MV, Lee KD, Lee JC, Lee JS, Renganathan S, Choi KC. Potential Application of p-Coumaric Acid on Differentiation of C2C12 Skeletal Muscle and 3T3-L1 Preadipocytes-An in Vitro and in Silico Approach. Molecules 2016; 21:molecules21080997. [PMID: 27490527 PMCID: PMC6274435 DOI: 10.3390/molecules21080997] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 07/26/2016] [Accepted: 07/27/2016] [Indexed: 01/10/2023] Open
Abstract
Coumaric acid (CA) is a phenolic acid of the hydroxycinnamic acid family, and it has many biological functions such as anti-oxidant, anti-inflammatory, antidiabetic, anti-ulcer, anti-platelet, anti-cancer activities, etc. In the present study, we planned to analyse the potential molecular function of CA on skeletal muscle and preadipocytes differentiation using PCR and Western blot techniques. First, we analysed the impact of CA on C2C12 skeletal muscle differentiation. It revealed that CA treatment inhibited horse serum-induced skeletal muscle differentiation as evidenced by the decreased expression of early myogenic differentiation markers such as Myogenin and myoD via the AMP activated protein kinase- alpha AMPK-α mediated pathway. Furthermore, the level of lipid accumulation and changes in genes and protein expressions that are associated with lipogenesis and lipolysis were analyzed in 3T3-L1 cells. The Oil Red O staining evidenced that CA treatment inhibited lipid accumulation at the concentration of 0.1 and 0.2 mM. Furthermore, coumaric acid treatment decreased the expression of main transcriptional factors such as CCAAT/enhancer binding protein-alpha (C/EBP-α) and peroxisome proliferator-activated receptor gamma-2 (PPAR-γ2). Subsequently, CA treatment decreased the expression of sterol regulatory element binding protein-1 (SREBP-1), fatty acid synthase (FAS), acetyl CoA carboxylase (ACC) and adiponectin. Finally, we identified conformational changes induced by CA in PPAR-γ2 using computational biology tools. It revealed that CA might downregulate the PPAR-γ2 expression by directly binding with amino acids of PPAR-γ2 by hydrogen at 3.26 distance and hydrophobic interactions at 3.90 contact distances. These data indicated that CA suppressed skeletal muscle and preadipocytes differentiation through downregulation of the main transcriptional factors and their downstream targets.
Collapse
Affiliation(s)
- Soundharrajan Ilavenil
- Grassland and Forage Division, National Institute of Animal Science, Rural Development Administration, Cheonan 330-801, Korea.
| | - Da Hye Kim
- Laboratory of Animal Physiology, Graduate School of Agricultural Science, Tohoku University, Aoba, Sendai 980-8577, Japan.
| | - Srisesharam Srigopalram
- Grassland and Forage Division, National Institute of Animal Science, Rural Development Administration, Cheonan 330-801, Korea.
| | - Mariadhas Valan Arasu
- Department of Botany and Microbiology, Addiriyah Chair for Environmental Studies, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Kyung Dong Lee
- Department of Oriental Medicine Materials, Dongsin University, Naju 520-714, Korea.
| | - Jeong Chae Lee
- Research Center of Bioactive Materials, Institute of Molecular Biology and Genetics, Chonbuk National University, Jeonju 561-756, Korea.
| | - Jong Suk Lee
- Biocenter, Gyeonggi Institute of Science and Technology, Suwon 443-270, Korea.
| | - Senthil Renganathan
- Department of Bioinformatics, Marudupandiyar College, Tamilnadu 613-403, India.
| | - Ki Choon Choi
- Grassland and Forage Division, National Institute of Animal Science, Rural Development Administration, Cheonan 330-801, Korea.
| |
Collapse
|
40
|
Osegbe I, Okpara H, Azinge E. Relationship between serum leptin and insulin resistance among obese Nigerian women. Ann Afr Med 2016; 15:14-9. [PMID: 26857932 PMCID: PMC5452686 DOI: 10.4103/1596-3519.158524] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background: Leptin is a hormone produced directly from adipocytes and has been associated with type 2 diabetes mellitus (T2DM) which is characterized by insulin resistance (IR). Due to the increasing prevalence of obesity in sub-Saharan Africa, serum leptin can be explored as a predictive risk factor for T2DM. Therefore, the aim of this study was to determine the relationship between serum leptin and IR among obese women. Methods: This was a cross-sectional study of obese, adult Nigerian females. Participants with body mass index (BMI) ≥30 kg/m2 and nondiabetic were recruited as subjects. Fasting serum leptin, insulin, and plasma glucose were determined. IR was calculated using the formula: Homeostatic model assessment-IR (HOMA-IR) = (glucose × insulin)/22.5. Statistical analyses were performed using SPSS and P < 0.05 was considered to be significant. Results: Eighty obese females with mean ± standard deviation BMI 39.1 ± 7.2 kg/m2 and serum leptin level 48.4 ± 24.4 ng/ml participated in study. Prevalence of hyperleptinemia was 92.5% (confidence interval: 87.3–97.7%). The relationship between leptin and HOMA-IR among the subjects was: BMI 30–34.9 kg/m2: n = 27, r = 0.18, P = 0.42; BMI 35–39.9 kg/m2: n = 24, r = 0.36, P = 0.11; BMI ≥ 40 kg/m2: n = 29, r = 0.52, P = 0.004*; and after controlling for BMI (n = 29, r = 0.46, P = 0.014*). Multiple linear regression showed that leptin did not predict for IR (P = 0.837). Conclusion: Serum leptin levels were positively correlated with IR, which was significant among the Class III (morbid) obesity class. However, leptin was not a predictive factor for IR in obese Nigerian women.
Collapse
Affiliation(s)
- Ifeyinwa Osegbe
- Department of Chemical Pathology, University of Nigeria Teaching Hospital, Enugu, Nigeria
| | | | | |
Collapse
|
41
|
Li J, Zhang J, Wang M. Extraction of Flavonoids from the Flowers of Abelmoschus manihot (L.) Medic by Modified Supercritical CO₂ Extraction and Determination of Antioxidant and Anti-Adipogenic Activity. Molecules 2016; 21:molecules21070810. [PMID: 27347916 PMCID: PMC6273967 DOI: 10.3390/molecules21070810] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 06/18/2016] [Accepted: 06/18/2016] [Indexed: 12/11/2022] Open
Abstract
Abelmoschus manihot (L.) Medic has been used for many years in Chinese traditional medicine. In this study, supercritical CO2 plus a modifier was utilized to extract flavonoids from the flowers of Abelmoschus manihot (L.) Medic. The effects of temperature (40 °C–60 °C), pressure (10–30 MPa) and different concentrations of ethanol as modifier (60%–90%, ethanol:water, v/v) on major flavonol content and the antioxidant activity of the extracts were studied by response surface methodology (RSM) using a Box-Behnken design. The flavonol content was calculated as the sum of the concentrations of seven major flavonoids, namely rutin, hyperin, isoquercetin, hibifolin, myricetin, quercetin-3′-O-glucoside and quercetin, which were simultaneously determined by a HPLC method. The antioxidant activity was evaluated by a 2,2-diphenyl-1-picrylhydarzyl (DPPH) free radical-scavenging assay. The results showed that three factors and their interactions could be well fitted to second-order polynomial models (p < 0.05). At the optimal extraction conditions for flavonol content (20 MPa, 52 °C, and 85% ethanol content), the yield of flavonoids was 41.96 mg/g and the IC50 value was 0.288 mg/mL, respectively, suggesting the extract has high antioxidant activity. Furthermore, the anti-adipogenic activity of the extract on the 3T3-L1 cell line was investigated. The results indicated that it can downregulate PPARγ and C/EBPα expression at mRNA. In summary, in this study, we have established a cost-effective method for the extraction of flavonoids from the flowers of Abelmoschus manihot (L.) Medic using supercritical fluid extraction and the extracts exhibited potent antioxidant and anti-adipogenic effects, suggesting a possible therapeutic approach for the prevention and treatment of obesity.
Collapse
Affiliation(s)
- Jingjing Li
- School of Life Science and Technology, China Pharmaceutical University, #24 Tong Jia Xiang, Nanjing 210009, China.
- Department of Pharmaceutical Engineering, Zhejiang Pharmaceutical College, #888 Yin Xian Avenue Eastern Section, Ningbo 315000, China.
| | - Juan Zhang
- School of Life Science and Technology, China Pharmaceutical University, #24 Tong Jia Xiang, Nanjing 210009, China.
| | - Min Wang
- School of Life Science and Technology, China Pharmaceutical University, #24 Tong Jia Xiang, Nanjing 210009, China.
| |
Collapse
|
42
|
A Fomitopsis pinicola Jeseng Formulation Has an Antiobesity Effect and Protects against Hepatic Steatosis in Mice with High-Fat Diet-Induced Obesity. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:7312472. [PMID: 27200103 PMCID: PMC4855004 DOI: 10.1155/2016/7312472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Revised: 03/23/2016] [Accepted: 03/31/2016] [Indexed: 11/17/2022]
Abstract
This study investigated the antiobesity effect of an extract of the Fomitopsis pinicola Jeseng-containing formulation (FAVA), which is a combination of four natural components: Fomitopsis pinicola Jeseng; Acanthopanax senticosus; Viscum album coloratum; and Allium tuberosum. High-fat diet- (HFD-) fed male C57BL/6J mice were treated with FAVA (200 mg/kg/day) for 12 weeks to monitor the antiobesity effect and amelioration of nonalcoholic fatty liver diseases (NAFLD). Body and white adipose tissue (WAT) weights were reduced in FAVA-treated mice, and a histological examination showed an amelioration of fatty liver in FAVA-treated mice without decreasing food consumption. Additionally, FAVA reduced serum lipid profiles, leptin, and insulin levels compared with the HFD control group. The FAVA extract suppressed lipogenic mRNA expression levels from WAT concomitantly with the cholesterol biosynthesis level in the liver. These results demonstrate the inhibitory effects of FAVA on obesity and NAFLD in the diet-induced obese (DIO) mouse model. Therefore, FAVA may be an effective therapeutic candidate for treating obesity and fatty liver caused by a high-fat diet.
Collapse
|
43
|
Jornayvaz FR, Vollenweider P, Bochud M, Mooser V, Waeber G, Marques-Vidal P. Low birth weight leads to obesity, diabetes and increased leptin levels in adults: the CoLaus study. Cardiovasc Diabetol 2016; 15:73. [PMID: 27141948 PMCID: PMC4855501 DOI: 10.1186/s12933-016-0389-2] [Citation(s) in RCA: 185] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 04/20/2016] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Low birth weight is associated with increased rates of obesity, insulin resistance and type 2 diabetes, but the precise mechanisms for this association remain unclear. We aimed to assess the relationships between birth weight and markers of glucose homeostasis or obesity in adults. METHODS Cross-sectional population-based study on 1458 women and 1088 men aged 35-75 years living in Lausanne, Switzerland. Birth weight was self-reported and categorized into ≤ 2.5, 2.6-3.5, 3.6-4.0 and >4.0 kg. Body composition was assessed by bioimpedance. Leptin and adiponectin levels were measured by ELISA. RESULTS Women with low birth weight (≤ 2.5 kg) had higher levels of fasting plasma glucose, insulin, HOMA, diabetes and metabolic syndrome; a non significant similar trend was seen in men. In both genders, height increased with birth weight, whereas a U-shaped association was found between birth weight and body mass index, waist circumference and body fat percentage. After adjusting for age, smoking status, physical activity and fat mass, an inverse association was found between leptin and birth weight categories: adjusted mean ± standard error 17.3 ± 0.7, 16.2 ± 0.3, 15.6 ± 0.5 and 14.0 ± 0.8 ng/dL for birth weight categories ≤ 2.5, 2.6-3.5, 3.6-4.0 and >4.0 kg, respectively, in women (p < 0.05) and 9.8 ± 0.8, 9.1 ± 03, 7.8 ± 0.4 and 7.7 ± 0.5 ng/dL in men (p < 0.05). An inverse association was also found between reported birth weight and leptin to fat mass ratio: mean ± standard error 0.77 ± 0.04, 0.73 ± 0.02, 0.69 ± 0.03 and 0.62 ± 0.04 in women (p < 0.05); 0.46 ± 0.05, 0.45 ± 0.02, 0.39 ± 0.02 and 0.38 ± 0.03 in men (p < 0.05). No differences in adiponectin levels were found between birth weight groups. CONCLUSIONS Middle-aged adults born with a low weight present a higher prevalence of diabetes and obesity and also higher leptin levels and leptin to fat mass ratio than adults born with a normal weight. The higher leptin levels and leptin to fat mass ratio among adults born with a low weight might be related to nutritional factors during childhood or to the development of leptin resistance and/or higher leptin production by body fat unit. Subjects born with a low weight should be counselled regarding the risks of developing diabetes and/or cardiovascular disease.
Collapse
Affiliation(s)
- François R. Jornayvaz
- />Service of Endocrinology, Diabetes, and Metabolism, Lausanne University Hospital, Lausanne, Switzerland
| | - Peter Vollenweider
- />Department of Medicine, Department of Internal Medicine, Lausanne University Hospital, Lausanne, Switzerland
| | - Murielle Bochud
- />Institute of Social and Preventive Medicine (IUMSP), Lausanne, Switzerland
| | - Vincent Mooser
- />Department of Medical Biology, Lausanne University Hospital, Lausanne, Switzerland
| | - Gérard Waeber
- />Department of Medicine, Department of Internal Medicine, Lausanne University Hospital, Lausanne, Switzerland
| | - Pedro Marques-Vidal
- />Department of Medicine, Department of Internal Medicine, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
44
|
Gaspar RS, Benevides ROA, Fontelles JLDL, Vale CC, França LM, Barros PDTS, Paes AMDA. Reproductive alterations in hyperinsulinemic but normoandrogenic MSG obese female rats. J Endocrinol 2016; 229:61-72. [PMID: 26952035 DOI: 10.1530/joe-15-0453] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 03/07/2016] [Indexed: 01/17/2023]
Abstract
Obesity and metabolic syndrome are the common causes of reproductive and fertility disorders in women. In particular, polycystic ovary syndrome, which is clinically characterized by hyperandrogenism, oligo/anovulation, and polycystic ovarian morphology, has been increasingly associated with metabolic disorders. However, given the broad interplay between metabolic and reproductive functions, this remains a field of intense research. In this study, we investigated the effect of monosodium l-glutamate (MSG)-induced obesity on reproductive biology of female rats. Newborn female rats were subcutaneously injected with MSG (4g/kg/day) or equiosmolar saline (CTR) each 2 days up to postnatal day (pnd) 10. On pnd 60, estrous cycle was evaluated using vaginal smears twice a day for 15 days, which showed MSG rats to be oligocyclic. Thereafter, animals were killed on estrous phase for blood and tissue collection. MSG rats had increased body mass, accumulation of retroperitoneal and visceral fat pads, and visceral adipocyte hypertrophy compared with CTR rats. MSG rats were also dyslipidemic and hyperinsulinemic but were normoglycemic and normoandrogenic. Ovarian morphology analysis showed that MSG rats had a two-fold decrease in oocyte count but a six-fold increase on ovarian follicular cysts, along with a higher number of total primordial and atretic follicles. Moreover, MSG rats had a four-fold increase in anti-Müllerian hormone immunohistochemical staining on antral follicles. Taken together, data presented here characterize MSG obesity as a unique model to study the metabolic pathways underlying reproductive disorders in the absence of overactivated hypothalamic-pituitary-gonadal axis.
Collapse
Affiliation(s)
- Renato Simões Gaspar
- Department of Physiological SciencesFederal University of Maranhão, São Luís, Maranhão, Brazil
| | | | | | - Caroline Castro Vale
- Department of Physiological SciencesFederal University of Maranhão, São Luís, Maranhão, Brazil
| | - Lucas Martins França
- Department of Physiological SciencesFederal University of Maranhão, São Luís, Maranhão, Brazil
| | - Paulo de Tarso Silva Barros
- Department of Physiological SciencesFederal University of Maranhão, São Luís, Maranhão, Brazil Department of PhysiologySchool of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | |
Collapse
|
45
|
Casiraghi LP, Alzamendi A, Giovambattista A, Chiesa JJ, Golombek DA. Effects of chronic forced circadian desynchronization on body weight and metabolism in male mice. Physiol Rep 2016; 4:4/8/e12743. [PMID: 27125665 PMCID: PMC4848717 DOI: 10.14814/phy2.12743] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 02/29/2016] [Indexed: 02/05/2023] Open
Abstract
Metabolic functions are synchronized by the circadian clock setting daily patterns of food intake, nutrient delivery, and behavioral activity. Here, we study the impact of chronic jet‐lag (CJL) on metabolism, and test manipulations aimed to overcome potential alterations. We recorded weight gain in C57Bl/6 mice under chronic 6 h advances or delays of the light–dark cycle every 2 days (ChrA and ChrD, respectively). We have previously reported ChrA, but not ChrD, to induce forced desynchronization of locomotor activity rhythms in mice (Casiraghi et al. 2012). Body weight was rapidly increased under ChrA, with animals tripling the mean weight gain observed in controls by day 10, and doubling it by day 30 (6% vs. 2%, and 15% vs. 7%, respectively). Significant increases in retroperitoneal and epidydimal adipose tissue masses (172% and 61%, respectively), adipocytes size (28%), and circulating triglycerides (39%) were also detected. Daily patterns of food and water intake were abolished under ChrA. In contrast, ChrD had no effect on body weight. Wheel‐running, housing of animals in groups, and restriction of food availability to hours of darkness prevented abnormal increase in body weight under ChrA. Our findings suggest that the observed alterations under ChrA may arise either from a direct effect of circadian disruption on metabolism, from desynchronization between feeding and metabolic rhythms, or both. Direction of shifts, timing of feeding episodes, and other reinforcing signals deeply affect the outcome of metabolic function under CJL. Such features should be taken into account in further studies of shift working schedules in humans.
Collapse
Affiliation(s)
- Leandro P Casiraghi
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes - CONICET. Bernal, Buenos Aires, Argentina
| | - Ana Alzamendi
- Unidad de Neuroendocrinología, IMBICE (CONICET-CICPBA), La Plata, Argentina
| | | | - Juan J Chiesa
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes - CONICET. Bernal, Buenos Aires, Argentina
| | - Diego A Golombek
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes - CONICET. Bernal, Buenos Aires, Argentina
| |
Collapse
|
46
|
Yeganeh A, Taylor CG, Tworek L, Poole J, Zahradka P. Trans-10,cis-12 conjugated linoleic acid (CLA) interferes with lipid droplet accumulation during 3T3-L1 preadipocyte differentiation. Int J Biochem Cell Biol 2016; 76:39-50. [PMID: 27131602 DOI: 10.1016/j.biocel.2016.04.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 04/14/2016] [Accepted: 04/25/2016] [Indexed: 12/22/2022]
Abstract
In this study, we hypothesize that the biologically active isomers of conjugated linoleic acid (CLA), cis-9,trans-11 (c9,t11) and trans-10,cis-12 (t10,c12) CLA, have different effects on early and late stages 3T3-L1 preadipocyte differentiation. Both c9-t11 and t10-c12CLA stimulated early stage pre-adipocyte differentiation (day 2), while t10-c12CLA inhibited late differentiation (day 8) as determined by lipid droplet numbers and both perilipin-1 levels and phosphorylation state. At day 8, the adipokines adiponectin, chemerin and adipsin were all reduced in t10-c12CLA treated cells versus control cells. Immunofluorescence microscopy showed perilipin-1 was present solely on lipid droplets on day 8 in t10-c12 treated 3T3-L1 cells, whereas preilipin-1 was also located in the perinuclear region in control and c9-t11 treated cells. The t10-c12CLA isomer also decreased levels of hormone-sensitive lipase and inhibited lipolysis. These findings indicate that the decrease in lipid droplets caused by t10-c12CLA is the result of an inhibition of lipid droplet production during adipogenesis rather than a stimulation of lipolysis. Additionally, treatment with Gö6976 blocked the effect of t10-c12CLA on perilipin-1 phosphorylation, implicating PKCα in perilipin-1 phosphorylation, and thus a regulator of triglyceride catabolism. These data are supported by evidence that t10-c12CLA activated PKCα. These are the first data to show that CLA isomers can affect lipid droplet dynamics in adipocytes through PKCα.
Collapse
Affiliation(s)
- Azadeh Yeganeh
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Canada; Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Research Centre, Winnipeg, Canada
| | - Carla G Taylor
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Canada; Department of Human Nutritional Sciences, University of Manitoba, Winnipeg, Canada; Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Research Centre, Winnipeg, Canada
| | - Leslee Tworek
- Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Research Centre, Winnipeg, Canada
| | - Jenna Poole
- Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Research Centre, Winnipeg, Canada
| | - Peter Zahradka
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Canada; Department of Human Nutritional Sciences, University of Manitoba, Winnipeg, Canada; Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Research Centre, Winnipeg, Canada.
| |
Collapse
|
47
|
Trans10, cis12 conjugated linoleic acid inhibits 3T3-L1 adipocyte adipogenesis by elevating β-catenin levels. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:363-70. [DOI: 10.1016/j.bbalip.2016.01.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 12/22/2015] [Accepted: 01/08/2016] [Indexed: 12/30/2022]
|
48
|
Lee JJ, Pedley A, Hoffmann U, Massaro JM, Keaney JF, Vasan RS, Fox CS. Cross-Sectional Associations of Computed Tomography (CT)-Derived Adipose Tissue Density and Adipokines: The Framingham Heart Study. J Am Heart Assoc 2016; 5:e002545. [PMID: 26927600 PMCID: PMC4943240 DOI: 10.1161/jaha.115.002545] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background Excess accumulation of abdominal subcutaneous (SAT) and visceral adipose tissue (VAT) is associated with adverse levels of adipokines and cardiovascular disease risk. Whether fat quality is associated with adipokines has not been firmly established. This study examined the association between abdominal SAT and VAT density, an indirect measure of fat quality, with a panel of metabolic regulatory biomarkers secreted by adipose tissue or the liver independently of absolute fat volumes. Methods and Results We evaluated 1829 Framingham Heart Study participants (44.9% women). Abdominal SAT and VAT density was estimated indirectly by adipose tissue attenuation using computed tomography. Adipokines included adiponectin, leptin receptor, leptin, fatty acid‐binding protein 4 (FABP‐4), retinol‐binding protein 4 (RBP‐4), and fetuin‐A. Fat density was associated with all the biomarkers evaluated, except fetuin‐A. Lower fat density (ie, more‐negative fat attenuation) was associated with lower adiponectin and leptin receptor, but higher leptin and FABP‐4 levels (all P<0.0001). SAT density was inversely associated with RPB‐4 in both sexes, whereas the association between VAT density and RPB‐4 was only observed in men (P<0.0001). In women, after additional adjustment for respective fat volume, SAT density retained the significant associations with adiponectin, leptin, FABP‐4, and RBP‐4; and VAT density with adiponectin only (all P<0.0001). In men, significant associations were maintained upon additional adjustment for respective fat volume (P<0.005). Conclusions Lower abdominal fat density was associated with a profile of biomarkers suggestive of greater cardiometabolic risk. These observations support that fat density may be a valid biomarker of cardiometabolic risk.
Collapse
Affiliation(s)
- Jane J Lee
- National Heart, Lung, and Blood Institute's Division of Intramural Research, The Framingham Heart Study, and the Population Studies Branch, Framingham, MA
| | - Alison Pedley
- National Heart, Lung, and Blood Institute's Division of Intramural Research, The Framingham Heart Study, and the Population Studies Branch, Framingham, MA
| | - Udo Hoffmann
- Department of Radiology, Massachusetts General Hospital, Boston, MA
| | | | - John F Keaney
- Division of Cardiovascular Medicine, University of Massachusetts Medical School, Worcester, MA
| | - Ramachandran S Vasan
- National Heart, Lung, and Blood Institute's Division of Intramural Research, The Framingham Heart Study, and the Population Studies Branch, Framingham, MA Evans Department of Medicine, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA Sections of Cardiology and Preventive Medicine, Boston University School of Medicine, Boston, MA Department of Epidemiology, Boston University School of Public Health, Boston, MA
| | - Caroline S Fox
- National Heart, Lung, and Blood Institute's Division of Intramural Research, The Framingham Heart Study, and the Population Studies Branch, Framingham, MA Division of Endocrinology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| |
Collapse
|
49
|
Laurent V, Guérard A, Mazerolles C, Le Gonidec S, Toulet A, Nieto L, Zaidi F, Majed B, Garandeau D, Socrier Y, Golzio M, Cadoudal T, Chaoui K, Dray C, Monsarrat B, Schiltz O, Wang YY, Couderc B, Valet P, Malavaud B, Muller C. Periprostatic adipocytes act as a driving force for prostate cancer progression in obesity. Nat Commun 2016; 7:10230. [PMID: 26756352 PMCID: PMC4729927 DOI: 10.1038/ncomms10230] [Citation(s) in RCA: 210] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 11/18/2015] [Indexed: 02/06/2023] Open
Abstract
Obesity favours the occurrence of locally disseminated prostate cancer in the periprostatic adipose tissue (PPAT) surrounding the prostate gland. Here we show that adipocytes from PPAT support the directed migration of prostate cancer cells and that this event is strongly promoted by obesity. This process is dependent on the secretion of the chemokine CCL7 by adipocytes, which diffuses from PPAT to the peripheral zone of the prostate, stimulating the migration of CCR3 expressing tumour cells. In obesity, higher secretion of CCL7 by adipocytes facilitates extraprostatic extension. The observed increase in migration associated with obesity is totally abrogated when the CCR3/CCL7 axis is inhibited. In human prostate cancer tumours, expression of the CCR3 receptor is associated with the occurrence of aggressive disease with extended local dissemination and a higher risk of biochemical recurrence, highlighting the potential benefit of CCR3 antagonists in the treatment of prostate cancer.
Collapse
Affiliation(s)
- Victor Laurent
- Université de Toulouse, UPS, Toulouse F-31077, France
- Département “Biologie du Cancer” et “Biologie Structurale et Biophysique”, CNRS; Institut de Pharmacologie et de Biologie Structurale, Toulouse F-31077, France
| | - Adrien Guérard
- Université de Toulouse, UPS, Toulouse F-31077, France
- Département “Biologie du Cancer” et “Biologie Structurale et Biophysique”, CNRS; Institut de Pharmacologie et de Biologie Structurale, Toulouse F-31077, France
| | - Catherine Mazerolles
- Département d'Anatomo-Pathologie, Institut Universitaire du Cancer, Toulouse cedex 9 31059, France
| | - Sophie Le Gonidec
- Université de Toulouse, UPS, Toulouse F-31077, France
- Département “Tissu Adipeux, Obésité et Diabète”, Institut National de la Santé et de la Recherche Médicale, INSERM U1048, Toulouse F-31432, France
| | - Aurélie Toulet
- Université de Toulouse, UPS, Toulouse F-31077, France
- Département “Biologie du Cancer” et “Biologie Structurale et Biophysique”, CNRS; Institut de Pharmacologie et de Biologie Structurale, Toulouse F-31077, France
| | - Laurence Nieto
- Université de Toulouse, UPS, Toulouse F-31077, France
- Département “Biologie du Cancer” et “Biologie Structurale et Biophysique”, CNRS; Institut de Pharmacologie et de Biologie Structurale, Toulouse F-31077, France
| | - Falek Zaidi
- Département d'Anatomo-Pathologie, Institut Universitaire du Cancer, Toulouse cedex 9 31059, France
| | - Bilal Majed
- Centre Hospitalier de la Région de Saint-Omer (CHRSO), Route de Blendecques, BP 60357, Saint-Omer Cedex 62505, France
| | - David Garandeau
- Université de Toulouse, UPS, Toulouse F-31077, France
- Département “Biologie du Cancer” et “Biologie Structurale et Biophysique”, CNRS; Institut de Pharmacologie et de Biologie Structurale, Toulouse F-31077, France
| | - Youri Socrier
- Département d'Anatomo-Pathologie, Institut Universitaire du Cancer, Toulouse cedex 9 31059, France
| | - Muriel Golzio
- Université de Toulouse, UPS, Toulouse F-31077, France
- Département “Biologie du Cancer” et “Biologie Structurale et Biophysique”, CNRS; Institut de Pharmacologie et de Biologie Structurale, Toulouse F-31077, France
| | - Thomas Cadoudal
- Université de Toulouse, UPS, Toulouse F-31077, France
- Département “Tissu Adipeux, Obésité et Diabète”, Institut National de la Santé et de la Recherche Médicale, INSERM U1048, Toulouse F-31432, France
| | - Karima Chaoui
- Université de Toulouse, UPS, Toulouse F-31077, France
- Département “Biologie du Cancer” et “Biologie Structurale et Biophysique”, CNRS; Institut de Pharmacologie et de Biologie Structurale, Toulouse F-31077, France
| | - Cedric Dray
- Université de Toulouse, UPS, Toulouse F-31077, France
- Département “Tissu Adipeux, Obésité et Diabète”, Institut National de la Santé et de la Recherche Médicale, INSERM U1048, Toulouse F-31432, France
| | - Bernard Monsarrat
- Université de Toulouse, UPS, Toulouse F-31077, France
- Département “Biologie du Cancer” et “Biologie Structurale et Biophysique”, CNRS; Institut de Pharmacologie et de Biologie Structurale, Toulouse F-31077, France
| | - Odile Schiltz
- Université de Toulouse, UPS, Toulouse F-31077, France
- Département “Biologie du Cancer” et “Biologie Structurale et Biophysique”, CNRS; Institut de Pharmacologie et de Biologie Structurale, Toulouse F-31077, France
| | - Yuan Yuan Wang
- Université de Toulouse, UPS, Toulouse F-31077, France
- Département “Biologie du Cancer” et “Biologie Structurale et Biophysique”, CNRS; Institut de Pharmacologie et de Biologie Structurale, Toulouse F-31077, France
| | - Bettina Couderc
- Université de Toulouse, UPS, Toulouse F-31077, France
- Département “Tumeur et Environnement”, Centre de Recherche en Cancérologie de Toulouse (CRCT), Toulouse Cedex 1 F-31037, France
| | - Philippe Valet
- Université de Toulouse, UPS, Toulouse F-31077, France
- Département “Tissu Adipeux, Obésité et Diabète”, Institut National de la Santé et de la Recherche Médicale, INSERM U1048, Toulouse F-31432, France
| | - Bernard Malavaud
- Université de Toulouse, UPS, Toulouse F-31077, France
- Département d'Urologie, Institut Universitaire du Cancer, Toulouse cedex 9 31059, France
| | - Catherine Muller
- Université de Toulouse, UPS, Toulouse F-31077, France
- Département “Biologie du Cancer” et “Biologie Structurale et Biophysique”, CNRS; Institut de Pharmacologie et de Biologie Structurale, Toulouse F-31077, France
| |
Collapse
|
50
|
Balogun KA, Cheema SK. Dietary Omega-3 Fatty Acids Prevented Adipocyte Hypertrophy by Downregulating DGAT-2 and FABP-4 in a Sex-Dependent Fashion. Lipids 2015; 51:25-38. [DOI: 10.1007/s11745-015-4105-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 11/18/2015] [Indexed: 01/03/2023]
|