1
|
Behl T, Kaur D, Sehgal A, Singla RK, Makeen HA, Albratty M, Alhazmi HA, Meraya AM, Bungau S. Therapeutic insights elaborating the potential of retinoids in Alzheimer’s disease. Front Pharmacol 2022; 13:976799. [PMID: 36091826 PMCID: PMC9453874 DOI: 10.3389/fphar.2022.976799] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 07/18/2022] [Indexed: 11/24/2022] Open
Abstract
Alzheimer’s disease (AD) is perceived with various pathophysiological characteristics such oxidative stress, senile plaques, neuroinflammation, altered neurotransmission immunological changes, neurodegenerative pathways, and age-linked alterations. A great deal of studies even now are carried out for comprehensive understanding of pathological processes of AD, though many agents are in clinical trials for the treatment of AD. Retinoids and retinoic acid receptors (RARs) are pertinent to such attributes of the disease. Retinoids support the proper functioning of the immunological pathways, and are very potent immunomodulators. The nervous system relies heavily on retinoic acid signaling. The disruption of retinoid signaling relates to several pathogenic mechanisms in the normal brain. Retinoids play critical functions in the neuronal organization, differentiation, and axonal growth in the normal functioning of the brain. Disturbed retinoic acid signaling causes inflammatory responses, mitochondrial impairment, oxidative stress, and neurodegeneration, leading to Alzheimer’s disease (AD) progression. Retinoids interfere with the production and release of neuroinflammatory chemokines and cytokines which are located to be activated in the pathogenesis of AD. Also, stimulating nuclear retinoid receptors reduces amyloid aggregation, lowers neurodegeneration, and thus restricts Alzheimer’s disease progression in preclinical studies. We outlined the physiology of retinoids in this review, focusing on their possible neuroprotective actions, which will aid in elucidating the critical function of such receptors in AD pathogenesis.
Collapse
Affiliation(s)
- Tapan Behl
- School of Health Sciences, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
- *Correspondence: Tapan Behl, ; Simona Bungau,
| | - Dapinder Kaur
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Rajeev K. Singla
- Institutes for Sytems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- iGlobal Research and Publishing Foundation, New Delhi, India
| | - Hafiz A. Makeen
- Pharmacy Practice Research Unit, Clinical Pharmacy Department, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Mohammed Albratty
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Hassan A. Alhazmi
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
- Substance Abuse and Toxicology Research Center, Jazan University, Jazan, Saudi Arabia
| | - Abdulkarim M. Meraya
- Pharmacy Practice Research Unit, Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
- Doctoral School of Biomedical Sciences, University of Oradea, Oradea, Romania
- *Correspondence: Tapan Behl, ; Simona Bungau,
| |
Collapse
|
2
|
Pan H, Xue C, Auerbach BJ, Fan J, Bashore AC, Cui J, Yang DY, Trignano SB, Liu W, Shi J, Ihuegbu CO, Bush EC, Worley J, Vlahos L, Laise P, Solomon RA, Connolly ES, Califano A, Sims PA, Zhang H, Li M, Reilly MP. Single-Cell Genomics Reveals a Novel Cell State During Smooth Muscle Cell Phenotypic Switching and Potential Therapeutic Targets for Atherosclerosis in Mouse and Human. Circulation 2020; 142:2060-2075. [PMID: 32962412 DOI: 10.1161/circulationaha.120.048378] [Citation(s) in RCA: 379] [Impact Index Per Article: 75.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Smooth muscle cells (SMCs) play significant roles in atherosclerosis via phenotypic switching, a pathological process in which SMC dedifferentiation, migration, and transdifferentiation into other cell types. Yet how SMCs contribute to the pathophysiology of atherosclerosis remains elusive. METHODS To reveal the trajectories of SMC transdifferentiation during atherosclerosis and to identify molecular targets for disease therapy, we combined SMC fate mapping and single-cell RNA sequencing of both mouse and human atherosclerotic plaques. We also performed cell biology experiments on isolated SMC-derived cells, conducted integrative human genomics, and used pharmacological studies targeting SMC-derived cells both in vivo and in vitro. RESULTS We found that SMCs transitioned to an intermediate cell state during atherosclerosis, which was also found in human atherosclerotic plaques of carotid and coronary arteries. SMC-derived intermediate cells, termed "SEM" cells (stem cell, endothelial cell, monocyte), were multipotent and could differentiate into macrophage-like and fibrochondrocyte-like cells, as well as return toward the SMC phenotype. Retinoic acid (RA) signaling was identified as a regulator of SMC to SEM cell transition, and RA signaling was dysregulated in symptomatic human atherosclerosis. Human genomics revealed enrichment of genome-wide association study signals for coronary artery disease in RA signaling target gene loci and correlation between coronary artery disease risk alleles and repressed expression of these genes. Activation of RA signaling by all-trans RA, an anticancer drug for acute promyelocytic leukemia, blocked SMC transition to SEM cells, reduced atherosclerotic burden, and promoted fibrous cap stability. CONCLUSIONS Integration of cell-specific fate mapping, single-cell genomics, and human genetics adds novel insights into the complexity of SMC biology and reveals regulatory pathways for therapeutic targeting of SMC transitions in atherosclerotic cardiovascular disease.
Collapse
Affiliation(s)
- Huize Pan
- Division of Cardiology, Department of Medicine (H.P., C.X., A.C.B., J.C., D.Y.Y., S.B.T., W.L., J.S., C.O.I., H.Z., M.P.R.), Columbia University Irving Medical Center, New York
| | - Chenyi Xue
- Division of Cardiology, Department of Medicine (H.P., C.X., A.C.B., J.C., D.Y.Y., S.B.T., W.L., J.S., C.O.I., H.Z., M.P.R.), Columbia University Irving Medical Center, New York
| | - Benjamin J Auerbach
- Graduate Group in Genomics and Computational Biology (B.J.A.), University of Pennsylvania, Philadelphia
| | - Jiaxin Fan
- Department of Biostatistics, Epidemiology, and Informatics (J.F., M.L.), University of Pennsylvania, Philadelphia
| | - Alexander C Bashore
- Division of Cardiology, Department of Medicine (H.P., C.X., A.C.B., J.C., D.Y.Y., S.B.T., W.L., J.S., C.O.I., H.Z., M.P.R.), Columbia University Irving Medical Center, New York
| | - Jian Cui
- Division of Cardiology, Department of Medicine (H.P., C.X., A.C.B., J.C., D.Y.Y., S.B.T., W.L., J.S., C.O.I., H.Z., M.P.R.), Columbia University Irving Medical Center, New York
| | - Dina Y Yang
- Division of Cardiology, Department of Medicine (H.P., C.X., A.C.B., J.C., D.Y.Y., S.B.T., W.L., J.S., C.O.I., H.Z., M.P.R.), Columbia University Irving Medical Center, New York
| | - Sarah B Trignano
- Division of Cardiology, Department of Medicine (H.P., C.X., A.C.B., J.C., D.Y.Y., S.B.T., W.L., J.S., C.O.I., H.Z., M.P.R.), Columbia University Irving Medical Center, New York
| | - Wen Liu
- Division of Cardiology, Department of Medicine (H.P., C.X., A.C.B., J.C., D.Y.Y., S.B.T., W.L., J.S., C.O.I., H.Z., M.P.R.), Columbia University Irving Medical Center, New York
| | - Jianting Shi
- Division of Cardiology, Department of Medicine (H.P., C.X., A.C.B., J.C., D.Y.Y., S.B.T., W.L., J.S., C.O.I., H.Z., M.P.R.), Columbia University Irving Medical Center, New York
| | - Chinyere O Ihuegbu
- Division of Cardiology, Department of Medicine (H.P., C.X., A.C.B., J.C., D.Y.Y., S.B.T., W.L., J.S., C.O.I., H.Z., M.P.R.), Columbia University Irving Medical Center, New York
| | - Erin C Bush
- Department of Systems Biology (E.C.B., J.W., L.V., P.L. A.C., P.A.S.), Columbia University Irving Medical Center, New York
| | - Jeremy Worley
- Department of Systems Biology (E.C.B., J.W., L.V., P.L. A.C., P.A.S.), Columbia University Irving Medical Center, New York
| | - Lukas Vlahos
- Department of Systems Biology (E.C.B., J.W., L.V., P.L. A.C., P.A.S.), Columbia University Irving Medical Center, New York
| | - Pasquale Laise
- Department of Systems Biology (E.C.B., J.W., L.V., P.L. A.C., P.A.S.), Columbia University Irving Medical Center, New York
| | - Robert A Solomon
- Department of Neurologic Surgery, New York-Presbyterian Hospital/Columbia University Irving Medical Center (R.A.S., E.S.C.)
| | - Edward S Connolly
- Department of Neurologic Surgery, New York-Presbyterian Hospital/Columbia University Irving Medical Center (R.A.S., E.S.C.)
| | - Andrea Califano
- Department of Systems Biology (E.C.B., J.W., L.V., P.L. A.C., P.A.S.), Columbia University Irving Medical Center, New York.,Herbert Irving Comprehensive Cancer Center (A.C.), Columbia University Irving Medical Center, New York.,JP Sulzberger Columbia Genome Center (A.C.), Columbia University Irving Medical Center, New York.,Department of Biomedical Informatics (A.C.), Columbia University Irving Medical Center, New York.,Department of Biochemistry and Molecular Biophysics (A.C., P.A.S.), Columbia University Irving Medical Center, New York
| | - Peter A Sims
- Department of Systems Biology (E.C.B., J.W., L.V., P.L. A.C., P.A.S.), Columbia University Irving Medical Center, New York.,Department of Biochemistry and Molecular Biophysics (A.C., P.A.S.), Columbia University Irving Medical Center, New York
| | - Hanrui Zhang
- Division of Cardiology, Department of Medicine (H.P., C.X., A.C.B., J.C., D.Y.Y., S.B.T., W.L., J.S., C.O.I., H.Z., M.P.R.), Columbia University Irving Medical Center, New York
| | - Mingyao Li
- Department of Biostatistics, Epidemiology, and Informatics (J.F., M.L.), University of Pennsylvania, Philadelphia
| | - Muredach P Reilly
- Division of Cardiology, Department of Medicine (H.P., C.X., A.C.B., J.C., D.Y.Y., S.B.T., W.L., J.S., C.O.I., H.Z., M.P.R.), Columbia University Irving Medical Center, New York.,Irving Institute for Clinical and Translational Research, Columbia University, New York (M.P.R.)
| |
Collapse
|
3
|
Rochette-Egly C. Retinoic Acid-Regulated Target Genes During Development: Integrative Genomics Analysis. Subcell Biochem 2020; 95:57-85. [PMID: 32297296 DOI: 10.1007/978-3-030-42282-0_3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Retinoic acid (RA), a major natural active metabolite of vitamin A (VA) is well known to play critical roles in embryonic development. The effects of RA are mediated by nuclear receptors (RARs), which regulate the expression of gene batteries involved in cell growth and differentiation. Since the early 1990s several laboratories have focused on understanding how RA-regulated genes and RAR binding sites operate by studying the differentiation of embryonal carcinoma cells and embryonic stem cells. The development of hybridization-based microarray technology and high performance software analysis programs has allowed the characterization of thousands of RA-regulated genes. During the two last decades, publication of the genome sequence of various organisms has allowed advances in massive parallel sequencing and bioinformatics analysis of genome-wide data sets. These new generation sequencing (NGS) technologies have revolutionized the field by providing a global integrated picture of RA-regulated gene networks and the regulatory programs involved in cell fate decisions during embryonal carcinoma and embryonic stem cells differentiation. Now the challenge is to reconstruct the RA-regulated gene networks at the single cell level during the development of specialized embryonic tissues.
Collapse
Affiliation(s)
- Cecile Rochette-Egly
- Université de Strasbourg, IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), INSERM, U964, CNRS, UMR7104, 1 rue Laurent Fries, BP 10142, 67404, Illkirch Cedex, France.
| |
Collapse
|
4
|
Schulte D, Geerts D. MEIS transcription factors in development and disease. Development 2019; 146:146/16/dev174706. [PMID: 31416930 DOI: 10.1242/dev.174706] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 06/28/2019] [Indexed: 12/12/2022]
Abstract
MEIS transcription factors are key regulators of embryonic development and cancer. Research on MEIS genes in the embryo and in stem cell systems has revealed novel and surprising mechanisms by which these proteins control gene expression. This Primer summarizes recent findings about MEIS protein activity and regulation in development, and discusses new insights into the role of MEIS genes in disease, focusing on the pathogenesis of solid cancers.
Collapse
Affiliation(s)
- Dorothea Schulte
- Institute of Neurology (Edinger Institute), University Hospital Frankfurt, Goethe University, 60528 Frankfurt, Germany
| | - Dirk Geerts
- Department of Medical Biology L2-109, Amsterdam University Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
5
|
Taylor MA, Kan HL, Gollapudi BB, Marty MS. An in vitro developmental neurotoxicity screening assay for retinoic acid-induced neuronal differentiation using the human NT2/D1 cell line. Neurotoxicology 2019; 73:258-264. [PMID: 30980846 DOI: 10.1016/j.neuro.2019.04.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 03/04/2019] [Accepted: 04/08/2019] [Indexed: 10/27/2022]
Abstract
Traditional approaches (e.g., neurobehavior, neuropathology) can detect alterations in apical endpoints indicative of developmental neurotoxicity (DNT). However, there is an increasing desire to understand mode-of-action (MOA) for DNT effects; thus, this short communication describes initial work on a neuronal differentiation assay. Basically, our laboratory used the human NT2/D1 cell line to develop an assay to evaluate toxicants for effects on all-trans retinoic acid (RA)-induced neuronal differentiation. Based on literature reports, we selected a neuronal protein, neuronal class III β-tubulin (β3-tubulin), as a marker of differentiation. For this assay, cultured RA-treated NT2 cells were trypsinized to individual cells, methanol fixed, and labeled with a β3-tubulin specific monoclonal antibody (TUJ1). Characterization studies using 100,000 cells/sample showed that NT2 cells had appreciable expression of β3-tubulin starting around day 7 of the differentiation process with a peak expression noted around day 12. Methylmercury, 22(R)-hydroxycholesterol, N-(4-hydroxyphenol)retinamide (4HPR), and 9-cis retinoic acid were selected as initial test compounds. Of these, only 9-cis RA, which is known to affect the RA pathway, was positive for specific impacts on differentiation. These results demonstrate the feasibility of using a flow cytometry method targeting specific cellular biomarkers for evaluating effects on neuronal differentiation. Additional assays are needed to detect compounds targeting other (non-RA) neuronal differentiation pathways. Ultimately, a battery of in vitro assays would be needed to evaluate the potential MOAs involved in altered neuronal differentiation.
Collapse
Affiliation(s)
| | - H Lynn Kan
- The Dow Chemical Company, Midland, MI, USA
| | | | | |
Collapse
|
6
|
Levina E, Ji H, Chen M, Baig M, Oliver D, Ohouo P, Lim CU, Schools G, Carmack S, Ding Y, Broude EV, Roninson IB, Buttyan R, Shtutman M. Identification of novel genes that regulate androgen receptor signaling and growth of androgen-deprived prostate cancer cells. Oncotarget 2016; 6:13088-104. [PMID: 26036626 PMCID: PMC4537001 DOI: 10.18632/oncotarget.3743] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 04/10/2015] [Indexed: 12/15/2022] Open
Abstract
Prostate cancer progression to castration refractory disease is associated with anomalous transcriptional activity of the androgen receptor (AR) in an androgen-depleted milieu. To identify novel gene products whose downregulation transactivates AR in prostate cancer cells, we performed a screen of enzymatically-generated shRNA lenti-libraries selecting for transduced LNCaP cells with elevated expression of a fluorescent reporter gene under the control of an AR-responsive promoter. The shRNAs present in selected populations were analyzed using high-throughput sequencing to identify target genes. Highly enriched gene targets were then validated with siRNAs against selected genes, testing first for increased expression of luciferase from an AR-responsive promoter and then for altered expression of endogenous androgen-regulated genes in LNCaP cells. We identified 20 human genes whose silencing affected the expression of exogenous and endogenous androgen-responsive genes in prostate cancer cells grown in androgen-depleted medium. Knockdown of four of these genes upregulated the expression of endogenous AR targets and siRNAs targeting two of these genes (IGSF8 and RTN1) enabled androgen-independent proliferation of androgen-dependent cells. The effects of IGSF8 appear to be mediated through its interaction with a tetraspanin protein, CD9, previously implicated in prostate cancer progression. Remarkably, homozygous deletions of IGSF8 are found almost exclusively in prostate cancers but not in other cancer types. Our study shows that androgen independence can be achieved through the inhibition of specific genes and reveals a novel set of genes that regulate AR signaling in prostate cancers.
Collapse
Affiliation(s)
- Elina Levina
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC, USA.,Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| | - Hao Ji
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC, USA
| | - Mengqiang Chen
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC, USA
| | - Mirza Baig
- Cancer Center, Ordway Research Institute, Albany, NY, USA
| | - David Oliver
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC, USA
| | - Patrice Ohouo
- Cancer Center, Ordway Research Institute, Albany, NY, USA
| | - Chang-uk Lim
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC, USA
| | - Garry Schools
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC, USA
| | - Steven Carmack
- Wadsworth Center, NY State Department of Health, Albany, NY, USA
| | - Ye Ding
- Wadsworth Center, NY State Department of Health, Albany, NY, USA
| | - Eugenia V Broude
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC, USA
| | - Igor B Roninson
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC, USA
| | - Ralph Buttyan
- The Vancouver Prostate Centre, Vancouver, BC, Canada
| | - Michael Shtutman
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC, USA
| |
Collapse
|
7
|
Bouilloux F, Thireau J, Ventéo S, Farah C, Karam S, Dauvilliers Y, Valmier J, Copeland NG, Jenkins NA, Richard S, Marmigère F. Loss of the transcription factor Meis1 prevents sympathetic neurons target-field innervation and increases susceptibility to sudden cardiac death. eLife 2016; 5. [PMID: 26857994 PMCID: PMC4760953 DOI: 10.7554/elife.11627] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 12/28/2015] [Indexed: 12/13/2022] Open
Abstract
Although cardio-vascular incidents and sudden cardiac death (SCD) are among the leading causes of premature death in the general population, the origins remain unidentified in many cases. Genome-wide association studies have identified Meis1 as a risk factor for SCD. We report that Meis1 inactivation in the mouse neural crest leads to an altered sympatho-vagal regulation of cardiac rhythmicity in adults characterized by a chronotropic incompetence and cardiac conduction defects, thus increasing the susceptibility to SCD. We demonstrated that Meis1 is a major regulator of sympathetic target-field innervation and that Meis1 deficient sympathetic neurons die by apoptosis from early embryonic stages to perinatal stages. In addition, we showed that Meis1 regulates the transcription of key molecules necessary for the endosomal machinery. Accordingly, the traffic of Rab5+ endosomes is severely altered in Meis1-inactivated sympathetic neurons. These results suggest that Meis1 interacts with various trophic factors signaling pathways during postmitotic neurons differentiation. DOI:http://dx.doi.org/10.7554/eLife.11627.001 Nerve cells called sympathetic neurons can control the activity of almost all of our organs without any conscious thought on our part. For example, these nerve cells are responsible for accelerating the heart rate during exercise. In a developing embryo, there are initially more of these neurons than are needed, and only those that develop correctly and form a connection with a target cell will survive. This is because the target cells provide the growing neurons with vital molecules called neurotrophins, which are trafficked back along the nerve fiber and into the main body of the nerve cell to ensure its survival. However, it is largely unknown which proteins or genes are also involved in this developmental process. Now, Bouilloux, Thireau et al. show that if a gene called Meis1 is inactivated in mice, the sympathetic neurons start to develop and grow nerve fibers, but then fail to establish connections with their target cells and finally die. The Meis1 gene encodes a transcription factor, which is a protein that regulates gene activity. Therefore, Bouilloux, Thireau et al. looked for the genes that are regulated by this transcription factor in sympathetic neurons. This search uncovered several genes that are involved in the packaging and trafficking of molecules within cells. Other experiments then revealed that the trafficking of molecules back along the nerve fiber was altered in mutant neurons in which the Meis1 gene had been inactivated. Furthermore, Meis1 mutant mice had problems with their heart rate, especially during exercise, and an increased risk of dying from a sudden cardiac arrest. These findings reveal a transcription factor that helps to establish a connection between a neuron and its target, and that activates a pattern of gene expression that works alongside the neurotrophin-based signals. Since all neurons undergo similar processes during development, future work could ask if comparable patterns of gene expression exist in other types of neurons, and if problems with such processes contribute to some neurodegenerative diseases. DOI:http://dx.doi.org/10.7554/eLife.11627.002
Collapse
Affiliation(s)
- Fabrice Bouilloux
- Institute for Neurosciences of Montpellier, Institut national de la santé et de la recherche médicale, Montpellier, France
| | - Jérôme Thireau
- Physiologie et Médecine Expérimentale du cœur et des Muscles, INSERM U1046, CNRS UMR 9214, University of Montpellier, Montpellier, France
| | - Stéphanie Ventéo
- Institute for Neurosciences of Montpellier, Institut national de la santé et de la recherche médicale, Montpellier, France
| | - Charlotte Farah
- Physiologie et Médecine Expérimentale du cœur et des Muscles, INSERM U1046, CNRS UMR 9214, University of Montpellier, Montpellier, France
| | - Sarah Karam
- Physiologie et Médecine Expérimentale du cœur et des Muscles, INSERM U1046, CNRS UMR 9214, University of Montpellier, Montpellier, France
| | - Yves Dauvilliers
- Sleep Unit, Department of Neurology, Gui-de-Chauliac hospital, Montpellier, France
| | - Jean Valmier
- Institute for Neurosciences of Montpellier, Institut national de la santé et de la recherche médicale, Montpellier, France
| | - Neal G Copeland
- Cancer Research Program, The Methodist Hospital Research Institute, Houston, United States
| | - Nancy A Jenkins
- Cancer Research Program, The Methodist Hospital Research Institute, Houston, United States
| | - Sylvain Richard
- Physiologie et Médecine Expérimentale du cœur et des Muscles, INSERM U1046, CNRS UMR 9214, University of Montpellier, Montpellier, France
| | - Frédéric Marmigère
- Institute for Neurosciences of Montpellier, Institut national de la santé et de la recherche médicale, Montpellier, France
| |
Collapse
|
8
|
Mendes FA, Coelho Aguiar JM, Kahn SA, Reis AH, Dubois LG, Romão LF, Ferreira LSS, Chneiweiss H, Moura Neto V, Abreu JG. Connective-Tissue Growth Factor (CTGF/CCN2) Induces Astrogenesis and Fibronectin Expression of Embryonic Neural Cells In Vitro. PLoS One 2015; 10:e0133689. [PMID: 26241738 PMCID: PMC4524627 DOI: 10.1371/journal.pone.0133689] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 07/01/2015] [Indexed: 02/06/2023] Open
Abstract
Connective-tissue growth factor (CTGF) is a modular secreted protein implicated in multiple cellular events such as chondrogenesis, skeletogenesis, angiogenesis and wound healing. CTGF contains four different structural modules. This modular organization is characteristic of members of the CCN family. The acronym was derived from the first three members discovered, cysteine-rich 61 (CYR61), CTGF and nephroblastoma overexpressed (NOV). CTGF is implicated as a mediator of important cell processes such as adhesion, migration, proliferation and differentiation. Extensive data have shown that CTGF interacts particularly with the TGFβ, WNT and MAPK signaling pathways. The capacity of CTGF to interact with different growth factors lends it an important role during early and late development, especially in the anterior region of the embryo. ctgf knockout mice have several cranio-facial defects, and the skeletal system is also greatly affected due to an impairment of the vascular-system development during chondrogenesis. This study, for the first time, indicated that CTGF is a potent inductor of gliogenesis during development. Our results showed that in vitro addition of recombinant CTGF protein to an embryonic mouse neural precursor cell culture increased the number of GFAP- and GFAP/Nestin-positive cells. Surprisingly, CTGF also increased the number of Sox2-positive cells. Moreover, this induction seemed not to involve cell proliferation. In addition, exogenous CTGF activated p44/42 but not p38 or JNK MAPK signaling, and increased the expression and deposition of the fibronectin extracellular matrix protein. Finally, CTGF was also able to induce GFAP as well as Nestin expression in a human malignant glioma stem cell line, suggesting a possible role in the differentiation process of gliomas. These results implicate ctgf as a key gene for astrogenesis during development, and suggest that its mechanism may involve activation of p44/42 MAPK signaling. Additionally, CTGF-induced differentiation of glioblastoma stem cells into a less-tumorigenic state could increase the chances of successful intervention, since differentiated cells are more vulnerable to cancer treatments.
Collapse
Affiliation(s)
- Fabio A. Mendes
- Instituto de Ciências Biomédicas, Programa de Biologia Celular e do Desenvolvimento, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Juliana M. Coelho Aguiar
- Instituto de Ciências Biomédicas, Programa de Biologia Celular e do Desenvolvimento, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Suzana A. Kahn
- Instituto de Ciências Biomédicas, Programa de Biologia Celular e do Desenvolvimento, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Inserm, UMR894, Team Glial Plasticity, University Paris Descartes, Paris, France
| | - Alice H. Reis
- Instituto de Ciências Biomédicas, Programa de Biologia Celular e do Desenvolvimento, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Luiz Gustavo Dubois
- Instituto Estadual do Cérebro Paulo Niemeyer (IEC), Rio de Janeiro, RJ, Brazil
| | | | - Lais S. S. Ferreira
- Instituto de Ciências Biomédicas, Programa de Biologia Celular e do Desenvolvimento, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Hervé Chneiweiss
- Inserm, UMR894, Team Glial Plasticity, University Paris Descartes, Paris, France
| | - Vivaldo Moura Neto
- Instituto Estadual do Cérebro Paulo Niemeyer (IEC), Rio de Janeiro, RJ, Brazil
| | - José G. Abreu
- Instituto de Ciências Biomédicas, Programa de Biologia Celular e do Desenvolvimento, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- * E-mail:
| |
Collapse
|
9
|
Dokanehiifard S, Soltani BM, Parsi S, Hosseini F, Javan M, Mowla SJ. Experimental verification of a conserved intronic microRNA located in the human TrkC gene with a cell type-dependent apoptotic function. Cell Mol Life Sci 2015; 72:2613-25. [PMID: 25772499 PMCID: PMC11113298 DOI: 10.1007/s00018-015-1868-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 02/09/2015] [Accepted: 02/17/2015] [Indexed: 12/21/2022]
Abstract
Tropomyosin receptor kinase C (TrkC) is involved in cell survival, apoptosis induction and tumorigenesis. We hypothesized that, similar to p75(NTR) receptor, some of the diverse functions of TrkC could be mediated by a microRNA (miRNA) embedded within the gene. Here, we experimentally verified the expression and processing of two bioinformatically predicted miRNAs named TrkC-miR1-5p and TrkC-miR1-3p. Transfecting a DNA fragment corresponding to the TrkC-premir1 sequence in HEK293t cells caused ~300-fold elevation in the level of mature TrkC-miR1 and also a significant downregulation of its predicted target genes. Furthermore, endogenous TrkC-miR1 was detected in several cell lines and brain tumors confirming its endogenous generation. Furthermore, its orthologous miRNA was detected in developing rat brain. Accordingly, TrkC-miR1 expression was increased during the course of neural differentiation of NT2 cell, whereas its suppression attenuated NT2 differentiation. Consistent with opposite functions of TrkC, TrkC-miR1 overexpression promoted survival and apoptosis in U87 and HEK293t cell lines, respectively. In conclusion, our data report the discovery of a new miRNA with overlapping function to TrkC.
Collapse
Affiliation(s)
- Sadat Dokanehiifard
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Bahram M. Soltani
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Sepideh Parsi
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fahimeh Hosseini
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Javan
- Department of Physiology, School of Medicine, Tarbiat Modares University, Tehran, Iran
| | - Seyed Javad Mowla
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
10
|
Fukasawa R, Iida S, Tsutsui T, Hirose Y, Ohkuma Y. Mediator complex cooperatively regulates transcription of retinoic acid target genes with Polycomb Repressive Complex 2 during neuronal differentiation. J Biochem 2015; 158:373-84. [PMID: 26002960 DOI: 10.1093/jb/mvv055] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 04/07/2015] [Indexed: 02/05/2023] Open
Abstract
The Mediator complex (Mediator) plays key roles in transcription and functions as the nexus for integration of various transcriptional signals. Previously, we screened for Mediator cyclin-dependent kinase (CDK)-interacting factors and identified three proteins related to chromatin regulation. One of them, SUZ12 is required for both stability and activity of Polycomb Repressive Complex 2 (PRC2). PRC2 primarily suppresses gene expression through histone H3 lysine 27 trimethylation, resulting in stem cell maintenance and differentiation; perturbation of this process leads to oncogenesis. Recent work showed that Mediator contributes to the embryonic stem cell state through DNA loop formation, which is strongly associated with chromatin architecture; however, it remains unclear how Mediator regulates gene expression in cooperation with chromatin regulators (i.e. writers, readers and remodelers). We found that Mediator CDKs interact directly with the PRC2 subunit EZH2, as well as SUZ12. Known PRC2 target genes were deregulated by Mediator CDK knockdown during neuronal differentiation, and both Mediator and PRC2 complexes co-occupied the promoters of developmental genes regulated by retinoic acid. Our results provide a mechanistic link between Mediator and PRC2 during neuronal differentiation.
Collapse
Affiliation(s)
- Rikiya Fukasawa
- Laboratory of Gene Regulation, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Satoshi Iida
- Laboratory of Gene Regulation, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Taiki Tsutsui
- Laboratory of Gene Regulation, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan; Department of Cellular and Molecular Medicine, UCSD School of Medicine, 9500 Gilman Drive, La Jolla, California 92093, USA; and
| | - Yutaka Hirose
- Laboratory of Gene Regulation, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Yoshiaki Ohkuma
- Laboratory of Gene Regulation, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan; Department of Biochemistry, Nagasaki University School of Medicine, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| |
Collapse
|
11
|
LeftyA sensitive cytosolic pH regulation and glycolytic flux in Ishikawa human endometrial cancer cells. Biochem Biophys Res Commun 2015; 460:845-9. [PMID: 25838200 DOI: 10.1016/j.bbrc.2015.03.120] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 03/21/2015] [Indexed: 12/11/2022]
Abstract
OBJECTIVE LeftyA, a powerful regulator of stemness, embryonic differentiation, and reprogramming of cancer cells, counteracts cell proliferation and tumor growth. Key properties of tumor cells include enhanced glycolytic flux, which is highly sensitive to cytosolic pH and thus requires export of H(+) and lactate. H(+) extrusion is in part accomplished by Na(+)/H(+) exchangers, such as NHE1. An effect of LeftyA on transport processes has, however, never been reported. The present study thus explored whether LeftyA modifies regulation of cytosolic pH (pHi) in Ishikawa cells, a well differentiated endometrial carcinoma cell model. METHODS NHE1 transcript levels were determined by qRT-PCR, NHE1 protein abundance quantified by Western blotting, pHi estimated utilizing (2',7'-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein [BCECF] fluorescence, Na(+)/H(+) exchanger activity from Na(+) dependent realkalinization after an ammonium pulse, and lactate concentration in the supernatant utilizing an enzymatic assay and subsequent colorimetry. RESULTS A 2 h treatment with LeftyA (8 ng/ml) significantly decreased NHE1 transcript levels (by 99.6%), NHE1 protein abundance (by 71%), Na(+)/H(+) exchanger activity (by 55%), pHi (from 7.22 ± 0.02 to 7.05 ± 0.02), and lactate release (by 41%). CONCLUSIONS LeftyA markedly down-regulates NHE1 expression, Na(+)/H(+) exchanger activity, pHi, and lactate release in Ishikawa cells. Those effects presumably contribute to cellular reprogramming and growth inhibition.
Collapse
|
12
|
Chen Y, Meng L, Yu Q, Dong D, Tan G, Huang X, Tan Y. The miR-134 attenuates the expression of transcription factor FOXM1 during pluripotent NT2/D1 embryonal carcinoma cell differentiation. Exp Cell Res 2015; 330:442-450. [DOI: 10.1016/j.yexcr.2014.10.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 10/06/2014] [Accepted: 10/27/2014] [Indexed: 12/20/2022]
|
13
|
Hou PS, Huang WC, Chiang W, Lin WC, Chien CL. Impaired neural differentiation potency by retinoic acid receptor-α pathway defect in induced pluripotent stem cells. Cell Reprogram 2014; 16:467-76. [PMID: 25364979 DOI: 10.1089/cell.2014.0029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Induced pluripotent stem cells (iPSCs) are reprogrammed from somatic cells via ectopic gene expression and, similarly to embryonic stem cells (ESCs), possess powerful abilities to self-renew and differentiate into cells of various lineages. However, the neural differentiation potency of iPSCs remains unknown. In this study, we demonstrated the neural differentiation ability of iPSCs compared with ESCs using an retinoic acid (RA) induction system. The neural differentiation efficiency of iPSCs was obviously lower than that of ESCs. Retinoic acid receptor-α (RARα) was critical in the RA-induced neural differentiation of iPSCs, and the effect of RARα was confirmed by applying a specific RARα antagonist ER50891 to ESCs. These findings indicate that iPSCs do not possess the complete properties that ESCs have.
Collapse
Affiliation(s)
- Pei-Shan Hou
- 1 Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University , Taipei, 100, Taiwan
| | | | | | | | | |
Collapse
|
14
|
Differential gene expression profiling of enriched human spermatogonia after short- and long-term culture. BIOMED RESEARCH INTERNATIONAL 2014; 2014:138350. [PMID: 24738045 PMCID: PMC3971551 DOI: 10.1155/2014/138350] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 11/19/2013] [Indexed: 01/15/2023]
Abstract
This study aimed to provide a molecular signature for enriched adult human stem/progenitor spermatogonia during short-term (<2 weeks) and long-term culture (up to more than 14 months) in comparison to human testicular fibroblasts and human embryonic stem cells. Human spermatogonia were isolated by CD49f magnetic activated cell sorting and collagen(-)/laminin(+) matrix binding from primary testis cultures obtained from ten adult men. For transcriptomic analysis, single spermatogonia-like cells were collected based on their morphology and dimensions using a micromanipulation system from the enriched germ cell cultures. Immunocytochemical, RT-PCR and microarray analyses revealed that the analyzed populations of cells were distinct at the molecular level. The germ- and pluripotency-associated genes and genes of differentiation/spermatogenesis pathway were highly expressed in enriched short-term cultured spermatogonia. After long-term culture, a proportion of cells retained and aggravated the "spermatogonial" gene expression profile with the expression of germ and pluripotency-associated genes, while in the majority of long-term cultured cells this molecular profile, typical for the differentiation pathway, was reduced and more genes related to the extracellular matrix production and attachment were expressed. The approach we provide here to study the molecular status of in vitro cultured spermatogonia may be important to optimize the culture conditions and to evaluate the germ cell plasticity in the future.
Collapse
|
15
|
Yim CY, Mao P, Spinella MJ. Headway and hurdles in the clinical development of dietary phytochemicals for cancer therapy and prevention: lessons learned from vitamin A derivatives. AAPS JOURNAL 2014; 16:281-8. [PMID: 24431081 DOI: 10.1208/s12248-014-9562-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 01/02/2014] [Indexed: 01/11/2023]
Abstract
Accumulating epidemiologic and preclinical evidence support the pharmacologic use of a variety of dietary chemicals for the prevention and treatment of cancer. However, it will be challenging to translate these findings into routine clinical practice since phytochemicals have pleiotropic biological activities that have to be balanced for optimal efficacy without unacceptable and potentially unanticipated toxicities. Correctly matching patient populations and settings with optimal, natural product-based phytochemical therapies will require a greater understanding of the specific mechanisms underlying the efficacy, toxicity, and resistance of each agent in a variety of normal, premalignant, and malignant settings. This, in turn, necessitates continued commitment from the basic research community to guide carefully designed and informed clinical trials. The most developed class of anticancer phytochemicals consists of the derivatives of vitamin A called retinoids. Unlike other natural product chemicals currently under study, the retinoids have been extensively tested in humans. Over 30 years of clinical investigation has resulted in several disappointments, but there were some spectacular successes where certain retinoid-based protocols are now FDA-approved standard of care therapies to treat specific malignancies. Furthermore, retinoids are one of the most evaluated pharmacologic agents in the ultra-challenging setting of interventional cancer prevention. This review will summarize the development of retinoids in cancer therapy and prevention with an emphasis on currently proposed mechanisms mediating their efficacy, toxicity, and resistance.
Collapse
Affiliation(s)
- Christina Y Yim
- Department of Pharmacology and Toxicology, Geisel School of Medicine at Dartmouth, 7650 Remsen, Hanover, New Hampshire, 03755, USA
| | | | | |
Collapse
|
16
|
Barber BA, Liyanage VRB, Zachariah RM, Olson CO, Bailey MAG, Rastegar M. Dynamic expression of MEIS1 homeoprotein in E14.5 forebrain and differentiated forebrain-derived neural stem cells. Ann Anat 2013; 195:431-40. [PMID: 23756022 DOI: 10.1016/j.aanat.2013.04.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 04/03/2013] [Accepted: 04/09/2013] [Indexed: 01/31/2023]
Abstract
Central nervous system development is controlled by highly conserved homeoprotein transcription factors including HOX and TALE (Three Amino acid Loop Extension). TALE proteins are primarily known as HOX-cofactors and play key roles in cell proliferation, differentiation and organogenesis. MEIS1 is a TALE member with established expression in the developing central nervous system. MEIS1 is essential for embryonic development and Meis1 knockout mice dies at embryonic day (E) 14.5. However, Meis1/MEIS1 expression in the devolving forebrain, at this critical time-point has not been studied. Here, for the first time we characterize the region-specific expression of MEIS1 in E14.5 mouse forebrain, filling the gap of MEIS1 expression profile between E12.5 and E16.5. Previously, we reported MEIS1 transcriptional regulatory role in neuronal differentiation and established forebrain-derived neural stem cells (NSC) for gene therapy application of neuronal genes. Here, we show the dynamic expression of Meis1/MEIS1 during the differentiation of forebrain-derived NSC toward a glial lineage. Our results show that Meis1/MEIS1 expression is induced during NSC differentiation and is expressed in both differentiated neurons and astrocytes. Confirming these results, we detected MEIS1 expression in primary cultures of in vivo differentiated cortical neurons and astrocytes. We further demonstrate Meis1/MEIS1 expression relative to other TALE family members in the forebrain-derived NSC in the absence of Hox genes. Our data provide evidence that forebrain-derived NSC can be used as an accessible in vitro model to study the expression and function of TALE proteins, supporting their potential role in modulating NSC self-renewal and differentiation.
Collapse
Affiliation(s)
- Benjamin A Barber
- Regenerative Medicine Program, Department of Biochemistry and Medical Genetics, Faculty of Medicine, University of Manitoba, 745 Bannatyne Avenue, Winnipeg, MB R3E 0J9, Canada
| | | | | | | | | | | |
Collapse
|
17
|
Ribeiro JD, Morey L, Mas A, Gutierrez A, Luis NM, Mejetta S, Richly H, Benitah SA, Keyes WM, Di Croce L. ZRF1 controls oncogene-induced senescence through the INK4-ARF locus. Oncogene 2013; 32:2161-8. [PMID: 22733129 DOI: 10.1038/onc.2012.241] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2011] [Revised: 03/14/2012] [Accepted: 04/15/2012] [Indexed: 11/08/2022]
Abstract
The reactivation of the INK4-ARF locus, which is epigenetically repressed by Polycomb proteins in healthy cells, is a hallmark of senescence. One mechanism of reactivating Polycomb-silenced genes is mediated by the epigenetic factor ZRF1, which associates with ubiquitinated histone H2A. We show that cells undergoing senescence following oncogenic Ras expression have increased ZRF1 levels, and that this binds to the p15INK4b, ARF and p16INK4a promoters. Furthermore, ZRF1 depletion in oncogenic Ras-expressing cells restores proliferation by preventing Arf and p16Ink4a expression, consequently bypassing senescence. Thus, ZRF1 regulates the INK4-ARF locus during cellular proliferation and senescence, and alterations in ZRF1 may contribute to tumorigenesis.
Collapse
Affiliation(s)
- J D Ribeiro
- Department of Differentiation and Cancer, Center for Genomic Regulation (CRG), and Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Gouveia R, Schaffer L, Papp S, Grammel N, Kandzia S, Head SR, Kleene R, Schachner M, Conradt HS, Costa J. Expression of glycogenes in differentiating human NT2N neurons. Downregulation of fucosyltransferase 9 leads to decreased Lewis(x) levels and impaired neurite outgrowth. Biochim Biophys Acta Gen Subj 2012; 1820:2007-19. [PMID: 23000574 DOI: 10.1016/j.bbagen.2012.09.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 09/07/2012] [Accepted: 09/10/2012] [Indexed: 12/12/2022]
Abstract
BACKGROUND Several glycan structures are functionally relevant in biological events associated with differentiation and regeneration which occur in the central nervous system. Here we have analysed the glycogene expression and glycosylation patterns during human NT2N neuron differentiation. We have further studied the impact of downregulating fucosyltransferase 9 (FUT9) on neurite outgrowth. METHODS The expression of glycogenes in human NT2N neurons differentiating from teratocarcinoma NTERA-2/cl.D1 cells has been analysed using the GlycoV4 GeneChip expression microarray. Changes in glycosylation have been monitored by immunoblot, immunofluorescence microscopy, HPLC and MALDI-TOF MS. Peptide mass fingerprinting and immunoprecipitation have been used for protein identification. FUT9 was downregulated using silencing RNA. RESULTS AND CONCLUSIONS One hundred twelve mRNA transcripts showed statistically significant up-regulation, including the genes coding for proteins involved in the synthesis of the Lewis(x) motif (FUT9), polysialic acid (ST8SIA2 and ST8SIA4) and HNK-1 (B3GAT2). Accordingly, increased levels of the corresponding carbohydrate epitopes have been observed. The Lewis(x) structure was found in a carrier glycoprotein that was identified as the CRA-a isoform of human neural cell adhesion molecule 1. Downregulation of FUT9 caused significant decreases in the levels of Lewis(x), as well as GAP-43, a marker of neurite outgrowth. Concomitantly, a reduction in neurite formation and outgrowth has been observed that was reversed by FUT9 overexpression. GENERAL SIGNIFICANCE These results provided information about the regulation of glycogenes during neuron differentiation and they showed that the Lewis(x) motif plays a functional role in neurite outgrowth from human neurons.
Collapse
Affiliation(s)
- Ricardo Gouveia
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Avenida da República, Oeiras, Portugal
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Addae C, Yi X, Gernapudi R, Cheng H, Musto A, Martinez-Ceballos E. All-trans-retinoid acid induces the differentiation of encapsulated mouse embryonic stem cells into GABAergic neurons. Differentiation 2012; 83:233-41. [PMID: 22466603 DOI: 10.1016/j.diff.2012.03.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 02/29/2012] [Accepted: 03/03/2012] [Indexed: 10/28/2022]
Abstract
Embryonic stem (ES) cells are pluripotent cells that can differentiate into all three main germ layers: endoderm, mesoderm, and ectoderm. Although a number of methods have been developed to differentiate ES cells into neuronal phenotypes such as sensory and motor neurons, the efficient generation of GABAergic interneurons from ES cells still presents an ongoing challenge. Because the main output of inhibitory GABAergic interneurons is the gamma-aminobutyric-acid (GABA), a neurotransmitter whose controlled homeostasis is required for normal brain function, the efficient generation in culture of functional interneurons may have future implications on the treatment of neurological disorders such as epilepsy, autism, and schizophrenia. The goal of this work was to examine the generation of GABAergic neurons from mouse ES cells by comparing an embryoid body-based methodology versus a hydrogel-based encapsulation protocol that involves the use of all-trans-retinoid acid (RA). We observed that (1) there was a 2-fold increase in neuronal differentiation in encapsulated versus non-encapsulated cells and (2) there was an increase in the specificity for interneuronal differentiation in encapsulated cells, as assessed by mRNA expression and electrophysiology approaches. Furthermore, our results indicate that most of the neurons obtained from encapsulated mouse ES cells are GABA-positive (∼87%). Thus, these results suggest that combining encapsulation of ES cells and RA treatment provide a more efficient and scalable differentiation strategy for the generation in culture of functional GABAergic interneurons. This technology may have implications for future cell replacement therapies and the treatment of CNS disorders.
Collapse
Affiliation(s)
- Cynthia Addae
- Department of Biological Sciences and Environmental Toxicology Program, Southern University and A&M College, Baton Rouge, LA 70813, USA
| | | | | | | | | | | |
Collapse
|
20
|
Li C, Harper A, Puddick J, Wang W, McMahon C. Proteomes and signalling pathways of antler stem cells. PLoS One 2012; 7:e30026. [PMID: 22279561 PMCID: PMC3261186 DOI: 10.1371/journal.pone.0030026] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2011] [Accepted: 12/12/2011] [Indexed: 12/15/2022] Open
Abstract
As the only known example of complete organ regeneration in mammals, deer antler in the growing or velvet phase is of major interest in developmental biology. This regeneration event initiates from self-renewing antler stem cells that exhibit pluripotency. At present, it remains unclear how the activation and quiescence of antler stem cells are regulated. Therefore, in the present study proteins that were differentially expressed between the antler stem cells and somatic cells (facial periosteum) were identified by a gel-based proteomic technique, and analysed using Ingenuity Pathway Analysis software. Several molecular pathways (PI3K/Akt, ERK/MAPK, p38 MAPK, etc.) were found to be activated during proliferation. Also expressed were the transcription factors POU5F1, SOX2, NANOG and MYC, which are key markers of embryonic stem cells. Expression of these proteins was confirmed in both cultured cells and fresh tissues by Western blot analysis. Therefore, the molecular pathways and transcription factors identified in the current study are common to embryonic and adult stem cells. However, expression of embryonic stem cell transcription factors would suggest that antler stem cells are, potentially, an intermediary stem cell type between embryonic and the more specialized tissue-specific stem cells like those residing in muscle, fat or from a hematopoietic origin. The retention of this embryonic, pluripotent lineage may be of fundamental importance for the subsequent regenerative capacity of antlers.
Collapse
Affiliation(s)
- Chunyi Li
- Developmental Biology Group, AgResearch Ltd, Invermay Agricultural Centre, Mosgiel, New Zealand
- State Key Laboratory for Molecular Biology of Special Economic Animals, Changchun, China
| | - Anne Harper
- Developmental Biology Group, AgResearch Ltd, Invermay Agricultural Centre, Mosgiel, New Zealand
| | - Jonathan Puddick
- Waikato Mass Spectrometry Facility, University of Waikato, Hamilton, New Zealand
| | - Wenying Wang
- Developmental Biology Group, AgResearch Ltd, Invermay Agricultural Centre, Mosgiel, New Zealand
| | - Chris McMahon
- Developmental Biology Group, AgResearch Ltd, Ruakura Agricultural Centre, Hamilton, New Zealand
- * E-mail:
| |
Collapse
|
21
|
Nikčević G, Kovačević-Grujičić N, Mojsin M, Krstić A, Savić T, Stevanović M. Regulation of the SOX3 gene expression by retinoid receptors. Physiol Res 2011; 60:S83-91. [PMID: 21777018 DOI: 10.33549/physiolres.932184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Sox3/SOX3 gene is considered to be one of the earliest neural markers in vertebrates. Despite the mounting evidence that Sox3/SOX3 is one of the key players in the development of the nervous system, limited data are available regarding the transcriptional regulation of its expression. This review is focused on the retinoic acid induced regulation of SOX3 gene expression, with particular emphasis on the involvement of retinoid receptors. Experiments with human embryonal carcinoma cells identified two response elements involved in retinoic acid/retinoid X receptor-dependent activation of the SOX3 gene expression: distal atypical retinoic acid-response element, consisting of two unique G-rich boxes separated by 49 bp, and proximal element comprising DR-3-like motif, composed of two imperfect hexameric half-sites. Importantly, the retinoic acid-induced SOX3 gene expression could be significantly down-regulated by a synthetic antagonist of retinoid receptors. This cell model provides a solid base for further studies on mechanism(s) underlying regulation of expression of SOX3 gene, which could improve the understanding of molecular signals that induce neurogenesis in the stem/progenitor cells both during development and in adulthood.
Collapse
Affiliation(s)
- G Nikčević
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia.
| | | | | | | | | | | |
Collapse
|
22
|
Watanabe K, Meyer MJ, Strizzi L, Lee JM, Gonzales M, Bianco C, Nagaoka T, Farid SS, Margaryan N, Hendrix MJC, Vonderhaar BK, Salomon DS. Cripto-1 is a cell surface marker for a tumorigenic, undifferentiated subpopulation in human embryonal carcinoma cells. Stem Cells 2011; 28:1303-14. [PMID: 20549704 DOI: 10.1002/stem.463] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Deregulation of stem cells is associated with the generation and progression of malignant tumors. In addition, genes that are associated with early embryogenesis are frequently expressed in cancer. Cripto-1 (CR-1), a glycosylphosphatidylinositol-linked glycoprotein, is expressed during early embryogenesis and in various human carcinomas. We demonstrated that human embryonal carcinoma (EC) cells are heterogeneous for CR-1 expression and consist of two distinct subpopulations: a CR-1(High) and a CR-1(Low) population. By segregating CR-1(High) and CR-1(Low) populations of NTERA2/D1 EC cells by fluorescence-activated cell sorting, we demonstrated that CR-1(High) cells were more tumorigenic than CR-1(Low) cells by an in vitro tumor sphere assay and by in vivo xenograft formation. The CR-1(High) population was enriched in mRNA expression for the pluripotent embryonic stem (ES) cell genes Oct4, Sox2, and Nanog. CR-1 expression in NTERA2/D1 cells was regulated by a Smad2/3-dependent autocrine loop, by the ES cell-related transcription factors Oct4/Nanog, and partially by the DNA methylation status of the promoter region. These results demonstrate that CR-1 expression is enriched in an undifferentiated, tumorigenic subpopulation and is regulated by key regulators of pluripotent stem cells.
Collapse
Affiliation(s)
- Kazuhide Watanabe
- Mammary Biology and Tumorigenesis Laboratory, Robert H. LurieCancer Center Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Sun C, Southard C, Witonsky DB, Kittler R, Di Rienzo A. Allele-specific down-regulation of RPTOR expression induced by retinoids contributes to climate adaptations. PLoS Genet 2010; 6:e1001178. [PMID: 21060808 PMCID: PMC2965758 DOI: 10.1371/journal.pgen.1001178] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Accepted: 09/23/2010] [Indexed: 11/28/2022] Open
Abstract
The mechanistic target of rapamycin (MTOR) pathway regulates cell growth, energy homeostasis, apoptosis, and immune response. The regulatory associated protein of MTOR encoded by the RPTOR gene is a key component of this pathway. A previous survey of candidate genes found that RPTOR contains multiple SNPs with strong correlations between allele frequencies and climate variables, consistent with the action of selective pressures that vary across environments. Using data from a recent genome scan for selection signals, we honed in on a SNP (rs11868112) 26 kb upstream to the transcription start site of RPTOR that exhibits the strongest association with temperature variables. Transcription factor motif scanning and mining of recently mapped transcription factor binding sites identified a binding site for POU class 2 homeobox 1 (POU2F1) spanning the SNP and an adjacent retinoid acid receptor (RAR) binding site. Using expression quantification, chromatin immunoprecipitation (ChIP), and reporter gene assays, we demonstrate that POU2F1 and RARA do bind upstream of the RPTOR gene to regulate its expression in response to retinoids; this regulation is affected by the allele status at rs11868112 with the derived allele resulting in lower expression levels. We propose a model in which the derived allele influences thermogenesis or immune response by altering MTOR pathway activity and thereby increasing fitness in colder climates. Our results show that signatures of genetic adaptations can identify variants with functional effects, consistent with the idea that selection signals may be used for SNP annotation. Climate has exerted strong selective pressures in human populations during their dispersal, and signatures of these adaptations are still detectable in the geographic distribution of polymorphisms. RPTOR is a key component of the mechanistic target of rapamycin pathway, which regulates cell growth, metabolism, and immune response; and its deregulation is associated with human diseases, including cancer and diabetes. Previous studies showed that variation in RPTOR carry strong signatures of adaptations to different climates. Here, we used evolutionary genetics approaches coupled with transcription factor motif data mining to refine the location of the selection target. We then used functional assays to show that the selected polymorphism resides in a sequence element that regulates gene expression levels in response to retinoids. The derived allele at this SNP, which results in lower expression levels, increases in frequency with decreasing temperatures, consistent with the notion that it confers a selective advantage in colder climates possibly through its effects on energy metabolism or immune response. These results suggest a novel regulatory role for retinoids in MTOR signaling. Moreover, they support the proposal that evolutionary approaches can be informative for SNP functional annotation.
Collapse
Affiliation(s)
- Chang Sun
- Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
| | - Catherine Southard
- Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
| | - David B. Witonsky
- Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
| | - Ralf Kittler
- Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
| | - Anna Di Rienzo
- Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
24
|
Zhao Y, Wang S. Human NT2 Neural Precursor-Derived Tumor-Infiltrating Cells as Delivery Vehicles for Treatment of Glioblastoma. Hum Gene Ther 2010; 21:683-94. [DOI: 10.1089/hum.2009.196] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Affiliation(s)
- Ying Zhao
- Institute of Bioengineering and Nanotechnology, Singapore 138669
| | - Shu Wang
- Institute of Bioengineering and Nanotechnology, Singapore 138669
- Department of Biological Sciences, National University of Singapore, Singapore 117543
| |
Collapse
|
25
|
Snow GE, Kasper AC, Busch AM, Schwarz E, Ewings KE, Bee T, Spinella MJ, Dmitrovsky E, Freemantle SJ. Wnt pathway reprogramming during human embryonal carcinoma differentiation and potential for therapeutic targeting. BMC Cancer 2009; 9:383. [PMID: 19874621 PMCID: PMC2777936 DOI: 10.1186/1471-2407-9-383] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2009] [Accepted: 10/29/2009] [Indexed: 12/05/2022] Open
Abstract
Background Testicular germ cell tumors (TGCTs) are classified as seminonas or non-seminomas of which a major subset is embryonal carcinoma (EC) that can differentiate into diverse tissues. The pluripotent nature of human ECs resembles that of embryonic stem (ES) cells. Many Wnt signalling species are regulated during differentiation of TGCT-derived EC cells. This study comprehensively investigated expression profiles of Wnt signalling components regulated during induced differentiation of EC cells and explored the role of key components in maintaining pluripotency. Methods Human embryonal carcinoma cells were stably infected with a lentiviral construct carrying a canonical Wnt responsive reporter to assess Wnt signalling activity following induced differentiation. Cells were differentiated with all-trans retinoic acid (RA) or by targeted repression of pluripotency factor, POU5F1. A Wnt pathway real-time-PCR array was used to evaluate changes in gene expression as cells differentiated. Highlighted Wnt pathway genes were then specifically repressed using siRNA or stable shRNA and transfected EC cells were assessed for proliferation, differentiation status and levels of core pluripotency genes. Results Canonical Wnt signalling activity was low basally in undifferentiated EC cells, but substantially increased with induced differentiation. Wnt pathway gene expression levels were compared during induced differentiation and many components were altered including ligands (WNT2B), receptors (FZD5, FZD6, FZD10), secreted inhibitors (SFRP4, SFRP1), and other effectors of Wnt signalling (FRAT2, DAAM1, PITX2, Porcupine). Independent repression of FZD5, FZD7 and WNT5A using transient as well as stable methods of RNA interference (RNAi) inhibited cell growth of pluripotent NT2/D1 human EC cells, but did not appreciably induce differentiation or repress key pluripotency genes. Silencing of FZD7 gave the greatest growth suppression in all human EC cell lines tested including NT2/D1, NT2/D1-R1, Tera-1 and 833K cells. Conclusion During induced differentiation of human EC cells, the Wnt signalling pathway is reprogrammed and canonical Wnt signalling induced. Specific species regulating non-canonical Wnt signalling conferred growth inhibition when targeted for repression in these EC cells. Notably, FZD7 repression significantly inhibited growth of human EC cells and is a promising therapeutic target for TGCTs.
Collapse
Affiliation(s)
- Grace E Snow
- Department of Pharmacology and Toxicology, Dartmouth Medical School, Hanover, NH 03755, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Dhrs3a regulates retinoic acid biosynthesis through a feedback inhibition mechanism. Dev Biol 2009; 338:1-14. [PMID: 19874812 DOI: 10.1016/j.ydbio.2009.10.029] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Revised: 10/13/2009] [Accepted: 10/21/2009] [Indexed: 11/21/2022]
Abstract
Retinoic acid (RA) is an important developmental signaling molecule responsible for the patterning of multiple vertebrate tissues. RA is also a potent teratogen, causing multi-organ birth defects in humans. Endogenous RA levels must therefore be tightly controlled in the developing embryo. We used a microarray approach to identify genes that function as negative feedback regulators of retinoic acid signaling. We screened for genes expressed in early somite-stage embryos that respond oppositely to treatment with RA versus RA antagonists and validated them by RNA in situ hybridization. Focusing on genes known to be involved in RA metabolism, we determined that dhrs3a, which encodes a member of the short-chain dehydrogenase/reductase protein family, is both RA dependent and strongly RA inducible. Dhrs3a is known to catalyze the reduction of the RA precursor all-trans retinaldehyde to vitamin A; however, a developmental function has not been demonstrated. Using morpholino knockdown and mRNA over-expression, we demonstrate that Dhrs3a is required to limit RA levels in the embryo, primarily within the central nervous system. Dhrs3a is thus an RA-induced feedback inhibitor of RA biosynthesis. We conclude that retinaldehyde availability is an important level at which RA biosynthesis is regulated in vertebrate embryos.
Collapse
|
27
|
Tchatchou S, Jung A, Hemminki K, Sutter C, Wappenschmidt B, Bugert P, Weber BHF, Niederacher D, Arnold N, Varon-Mateeva R, Ditsch N, Meindl A, Schmutzler RK, Bartram CR, Burwinkel B. A variant affecting a putative miRNA target site in estrogen receptor (ESR) 1 is associated with breast cancer risk in premenopausal women. Carcinogenesis 2008; 30:59-64. [PMID: 19028706 DOI: 10.1093/carcin/bgn253] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
MicroRNAs (miRNAs) negatively regulate expression of target transcripts by hybridization to complementary sites of their messenger RNA targets. Chen et al. have described several putative functional single nucleotide polymorphisms (SNPs) in miRNA target sites. Here, we selected 11 miRNA target site SNPs located in 3' untranslated regions of genes involved in cancer and breast cancer to analyze their impact on breast cancer risk using a large familial study population. Whereas no association was observed for 10 SNPs, a significant association was revealed for the variant affecting a miRNA target site in the estrogen receptor (ESR) 1. Age stratification showed that the association was stronger in premenopausal women [C versus T: odds ratio (OR) = 0.60, confidence interval (CI) = 0.41-0.89, P = 0.010]. Furthermore, the effect was stronger in high-risk familial cases (C versus T: OR = 0.42, CI = 0.25-0.71, P = 0.0009). Clinical studies have shown that elimination of ESR1 significantly reduces breast cancer risk. Thus, therapies that inhibit ESR1 are used for breast cancer treatment. According to in silico analysis, ESR1_rs2747648 affects the binding capacity of miR-453, which is stronger when the C allele is present. In contrast, the T allele attenuates the binding of miR-453, which might lead to a reduced miRNA-mediated ESR1 repression, in consequence higher ESR1 protein levels and an increased breast cancer risk. Thus, the breast cancer protective effect observed for the C allele in premenopausal women is biologically reasonable. The analysis of large study populations in multicentre collaboration will be needed to verify the association and answer questions regarding the possible impact of this variant on therapeutic and clinical outcome.
Collapse
Affiliation(s)
- Sandrine Tchatchou
- Helmholtz-University Group Molecular Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Wen S, Li H, Liu J. Epigenetic background of neuronal fate determination. Prog Neurobiol 2008; 87:98-117. [PMID: 19007844 DOI: 10.1016/j.pneurobio.2008.10.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2008] [Revised: 09/03/2008] [Accepted: 10/15/2008] [Indexed: 01/07/2023]
Abstract
The development of the central nervous system (CNS) starts from neural stem cells (NSCs). During this process, NSCs are specified in space- and time-related fashions, becoming spatially heterogeneous and generating a progressively restricted repertoire of cell types: neurons, astrocytes and oligodendrocytes. The processes of neurodevelopment are determined reciprocally by intrinsic and external factors which interface to program and re-program the profiling of fate-determination gene expression. Multiple signaling pathways act in a dynamic web mode to determine the fate of NSCs through modulating the activity of a distinct set of transcription factors which in turn trigger the transcription of neural fate-determination genes. Accumulating evidence reveals that during CNS development, multiple epigenetic factors regulate the activities of extracellular signaling and corresponding transcription factors in a coordinative manner, leading to the formation of a system with sophisticated structure and magic functions. This review aims to introduce recent advances in the epigenetic background of neural cell fate determination.
Collapse
Affiliation(s)
- Shu Wen
- Department of Cell Biology, College of Basic Medical Sciences, Dalian Medical University, 116044 Dalian, Liaoning, PR China
| | | | | |
Collapse
|
29
|
Estler M, Boskovic G, Denvir J, Miles S, Primerano DA, Niles RM. Global analysis of gene expression changes during retinoic acid-induced growth arrest and differentiation of melanoma: comparison to differentially expressed genes in melanocytes vs melanoma. BMC Genomics 2008; 9:478. [PMID: 18847503 PMCID: PMC2572629 DOI: 10.1186/1471-2164-9-478] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2008] [Accepted: 10/11/2008] [Indexed: 11/28/2022] Open
Abstract
Background The incidence of malignant melanoma has significantly increased over the last decade. Some of these malignancies are susceptible to the growth inhibitory and pro-differentiating effects of all-trans-retinoic acid (RA). The molecular changes responsible for the biological activity of RA in melanoma are not well understood. Results In an analysis of sequential global gene expression changes during a 4–48 h RA treatment of B16 mouse melanoma cells, we found that RA increased the expression of 757 genes and decreased the expression of 737 genes. We also compared the gene expression profile (no RA treatment) between non-malignant melan-a mouse melanocytes and B16 melanoma cells. Using the same statistical test, we found 1495 genes whose expression was significantly higher in melan-a than in B16 cells and 2054 genes whose expression was significantly lower in melan-a than in B16 cells. By intersecting these two gene sets, we discovered a common set of 233 genes whose RNA levels were significantly different between B16 and melan-a cells and whose expression was altered by RA treatment. Within this set, RA treatment altered the expression of 203 (87%) genes toward the melan-a expression level. In addition, hierarchical clustering showed that after 48 h of RA treatment expression of the 203 genes was more closely related to the melan-a gene set than any other RA treatment time point. Functional analysis of the 203 gene set indicated that RA decreased expression of mRNAs that encode proteins involved in cell division/cell cycle, DNA replication, recombination and repair, and transcription regulation. Conversely, it stimulated genes involved in cell-cell signaling, cell adhesion and cell differentiation/embryonic development. Pathway analysis of the 203 gene set revealed four major hubs of connectivity: CDC2, CHEK1, CDC45L and MCM6. Conclusion Our analysis of common genes in the 48 h RA-treatment of B16 melanoma cells and untreated B16 vs. melan-a data set show that RA "normalized" the expression of genes involved in energy metabolism, DNA replication, DNA repair and differentiation. These results are compatible with the known growth inhibitory and pro-differentiating effects of RA. Pathway analysis suggests that CDC2, CHEK1, CDC45L and MCM6 are key players in mediating the biological activity of RA in B16 melanoma cells.
Collapse
Affiliation(s)
- Mary Estler
- Department of Biochemistry and Microbiology, Joan C. Edwards School of Medicine, Marshall University, One John Marshall Drive - BBSC, Huntington, WV 25755, USA.
| | | | | | | | | | | |
Collapse
|
30
|
Fadloun A, Kobi D, Delacroix L, Dembélé D, Michel I, Lardenois A, Tisserand J, Losson R, Mengus G, Davidson I. Retinoic acid induces TGFbeta-dependent autocrine fibroblast growth. Oncogene 2008; 27:477-89. [PMID: 17637747 DOI: 10.1038/sj.onc.1210657] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2006] [Revised: 05/29/2007] [Accepted: 06/07/2007] [Indexed: 01/22/2023]
Abstract
To evaluate the role of murine TFIID subunit TAF4 in activation of cellular genes by all-trans retinoic acid (T-RA), we have characterized the T-RA response of taf4(lox/-) and taf4(-/-) embryonic fibroblasts. T-RA regulates almost 1000 genes in taf4(lox/-) cells, but less than 300 in taf4(-/-) cells showing that TAF4 is required for T-RA regulation of most, but not all cellular genes. We further show that T-RA-treated taf4(lox/-) cells exhibit transforming growth factor (TGF)beta-dependent autocrine growth and identify a set of genes regulated by loss of TAF4 and by T-RA corresponding to key mediators of the TGFbeta signalling pathway. T-RA rapidly and potently induces expression of connective tissue growth factor (CTGF) via a conserved DR2 type response element in its proximal promoter leading to serum-free autocrine growth. These results highlight the role of TAF4 as a cofactor in the cellular response to T-RA and identify the genetic programme of a novel cross talk between the T-RA and TGFbeta pathways that leads to deregulated cell growth.
Collapse
Affiliation(s)
- A Fadloun
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP. UMR7104, 1 Rue Laurent Fries, Illkirch Cédex, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Heim KC, White KA, Deng D, Tomlinson CR, Moore JH, Freemantle SJ, Spinella MJ. Selective repression of retinoic acid target genes by RIP140 during induced tumor cell differentiation of pluripotent human embryonal carcinoma cells. Mol Cancer 2007; 6:57. [PMID: 17880687 PMCID: PMC2034384 DOI: 10.1186/1476-4598-6-57] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2007] [Accepted: 09/19/2007] [Indexed: 11/10/2022] Open
Abstract
Background The use of retinoids as anti-cancer agents has been limited due to resistance and low efficacy. The dynamics of nuclear receptor coregulation are incompletely understood. Cell-and context-specific activities of nuclear receptors may be in part due to distinct coregulator complexes recruited to distinct subsets of target genes. RIP140 (also called NRIP1) is a ligand-dependent corepressor that is inducible with retinoic acid (RA). We had previously shown that RIP140 limits RA induced tumor cell differentiation of embryonal carcinoma; the pluriopotent stem cells of testicular germ cell tumors. This implies that RIP140 represses key genes required for RA-mediated tumor cell differentiation. Identification of these genes would be of considerable interest. Results To begin to address this issue, microarray technology was employed to elucidate in a de novo fashion the global role of RIP140 in RA target gene regulation of embryonal carcinoma. Subclasses of genes were affected by RIP140 in distinct manners. Interestingly, approximately half of the RA-dependent genes were unaffected by RIP140. Hence, RIP140 appears to discriminate between different classes of RA target genes. In general, RIP140-dependent gene expression was consistent with RIP140 functioning to limit RA signaling and tumor cell differentiation. Few if any genes were regulated in a manner to support a role for RIP140 in "active repression". We also demonstrated that RIP140 silencing sensitizes embryonal carcinoma cells to low doses of RA. Conclusion Together the data demonstrates that RIP140 has profound effects on RA-mediated gene expression in this cancer stem cell model. The RIP140-dependent RA target genes identified here may be particularly important in mediating RA-induced tumor cell differentiation and the findings suggest that RIP140 may be an attractive target to sensitize tumor cells to retinoid-based differentiation therapy. We discuss these data in the context of proposed models of RIP140-mediated repression.
Collapse
Affiliation(s)
- Kelly C Heim
- Department of Pharmacology and Toxicology, Dartmouth Medical School, Hanover, USA
| | - Kristina A White
- Department of Pharmacology and Toxicology, Dartmouth Medical School, Hanover, USA
| | - Dexin Deng
- Department of Pharmacology and Toxicology, Dartmouth Medical School, Hanover, USA
| | - Craig R Tomlinson
- Department of Pharmacology and Toxicology, Dartmouth Medical School, Hanover, USA
- Norris Cotton Cancer Center, Dartmouth Hitchcock Medical Center, Lebanon, USA
| | - Jason H Moore
- Department of Genetics, Dartmouth Medical School, Hanover, USA
- Norris Cotton Cancer Center, Dartmouth Hitchcock Medical Center, Lebanon, USA
| | - Sarah J Freemantle
- Department of Pharmacology and Toxicology, Dartmouth Medical School, Hanover, USA
- Norris Cotton Cancer Center, Dartmouth Hitchcock Medical Center, Lebanon, USA
| | - Michael J Spinella
- Department of Pharmacology and Toxicology, Dartmouth Medical School, Hanover, USA
- Norris Cotton Cancer Center, Dartmouth Hitchcock Medical Center, Lebanon, USA
| |
Collapse
|
32
|
Oppenheimer O, Cheung NK, Gerald WL. TheREToncogene is a critical component of transcriptional programs associated with retinoic acid–induced differentiation in neuroblastoma. Mol Cancer Ther 2007; 6:1300-9. [PMID: 17431108 DOI: 10.1158/1535-7163.mct-06-0587] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Differentiation is a key feature in pathologic classification and prognosis of neuroblastic tumors, although the underlying molecular mechanisms are not well defined. To identify key differentiation-related molecules and pathways, we evaluated gene expression during retinoic acid (RA)-induced differentiation of seven neuroblastic tumor cell lines. Transcriptional response to RA was highly variable among cell lines despite the fact that six of seven showed similar morphologic changes. RA consistently altered expression of a small set of genes, some of which are known to play a role in neurogenesis and differentiation. Expression of genes that were regulated by RA was associated with important clinical subgroups of neuroblastic tumors and were differentially expressed by stroma-rich and stroma-poor subtypes. RET, a receptor tyrosine kinase involved with differentiation, was consistently up-regulated throughout the time course of RA treatment in the majority of neuroblastic tumor cell lines. Interference with RET activation abrogated RA-induced transcriptional programs and differentiation, suggesting a key role of RET in this process. The core set of RA-regulated genes includes critical molecular components of pathways necessary for neuroblastic tumor differentiation and have potential as therapeutic targets and molecular markers of response to differentiating agents.
Collapse
Affiliation(s)
- Orit Oppenheimer
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York 10021, USA
| | | | | |
Collapse
|
33
|
Kerley-Hamilton JS, Pike AM, Hutchinson JA, Freemantle SJ, Spinella MJ. The direct p53 target gene, FLJ11259/DRAM, is a member of a novel family of transmembrane proteins. ACTA ACUST UNITED AC 2007; 1769:209-19. [PMID: 17397945 PMCID: PMC1936437 DOI: 10.1016/j.bbaexp.2007.02.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2006] [Revised: 02/08/2007] [Accepted: 02/08/2007] [Indexed: 10/23/2022]
Abstract
The tumor suppressor p53 regulates diverse biological processes primarily via activation of downstream target genes. Even though many p53 target genes have been described, the precise mechanisms of p53 biological actions are uncertain. In previous work we identified by microarray analysis a candidate p53 target gene, FLJ11259/DRAM. In this report we have identified three uncharacterized human proteins with sequence homology to FLJ11259, suggesting that FLJ11259 is a member of a novel family of proteins with six transmembrane domains. Several lines of investigation confirm FLJ11259 is a direct p53 target gene. p53 siRNA prevented cisplatin-mediated up-regulation of FLJ11259 in NT2/D1 cells. Likewise in HCT116 p53+/+ cells and MCF10A cells, FLJ11259 is induced by cisplatin treatment but to a much lesser extent in isogenic p53-suppressed cells. A functional p53 response element was identified 22.3 kb upstream of the first coding exon of FLJ11259 and is shown to be active in reporter assays. In addition, chromatin immunoprecipitation assays indicate that p53 binds directly to this element in vivo and that binding is enhanced following cisplatin treatment. Confocal microscopy showed that an FLJ-GFP fusion protein localizes mainly in a punctate pattern in the cytoplasm. Overexpression studies in Cos-7, Saos2, and NT2/D1 cells suggest that FLJ11259 is associated with increased clonal survival. In summary, we have identified FLJ11259/DRAM as a p53-inducible member of a novel family of transmembrane proteins. FLJ11259/DRAM may be an important modulator of p53 responses in diverse tumor types.
Collapse
|
34
|
Chadalavada RSV, Korkola JE, Houldsworth J, Olshen AB, Bosl GJ, Studer L, Chaganti RSK. Constitutive gene expression predisposes morphogen-mediated cell fate responses of NT2/D1 and 27X-1 human embryonal carcinoma cells. Stem Cells 2006; 25:771-8. [PMID: 17138961 DOI: 10.1634/stemcells.2006-0271] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Human embryonal carcinoma (EC) cell lines exhibit considerable heterogeneity in their levels of pluripotency. Thus, NT2/D1 cells differentiate into neural lineages upon exposure to all-trans retinoic acid (ATRA) and non-neural epithelial lineages upon exposure to bone morphogenetic protein-2 (BMP-2). In contrast, 27X-1 cells differentiate into extra-embryonic endodermal (ExE) cells upon treatment with either morphogen. To understand the molecular basis for the differential responses of the two cell lines, we performed gene expression profiling at the undifferentiated EC cell line state to identify constitutive differences in gene expression. NT2/D1 cells preferentially expressed transcripts associated with neurectodermal development, whereas 27X-1 cells expressed high levels of transcripts associated with mesendodermal characteristics. We then determined temporal expression profiles of 27X-1 cells during ExE differentiation upon treatment with ATRA and BMP-2 and compared the data with changes in gene expression observed during BMP-2- and ATRA-induced differentiation of NT2/D1 cells. ATRA and BMP-2 induced distinct sets of transcription factors and phenotypic markers in the two EC cell lines, underlying distinct lineage choices. Although 27X-1 differentiation yielded comprehensive gene expression profiles of parietal endodermal lineages, we were able to use the combined analysis of 27X-1 data with data derived from yolk sac tumors for the identification of transcripts associated with visceral endoderm formation. Our results demonstrate constitutive differences in the levels of pluripotency between NT2/D1 and 27X-1 cells that correlate with lineage potential. This study also demonstrates that EC cells can serve as robust models to investigate early lineage choices during both embryonic and extra-embryonic human development.
Collapse
|
35
|
Shelton DN, Sandoval IT, Eisinger A, Chidester S, Ratnayake A, Ireland CM, Jones DA. Up-regulation of CYP26A1 in adenomatous polyposis coli-deficient vertebrates via a WNT-dependent mechanism: implications for intestinal cell differentiation and colon tumor development. Cancer Res 2006; 66:7571-7. [PMID: 16885356 DOI: 10.1158/0008-5472.can-06-1067] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Mutations in the adenomatous polyposis coli (APC) tumor suppressor gene seem to underlie the initiation of many colorectal carcinomas. Loss of APC function results in accumulation of beta-catenin and activation of beta-catenin/TCF-dependent transcription. Recent studies have implicated APC in controlling retinoic acid biosynthesis during normal intestinal development through a WNT-independent mechanism. Paradoxically, however, previous studies found that dietary supplementation of Apc(MIN) mice with retinoic acid failed to abrogate adenoma formation. While investigating the above finding, we found that expression of CYP26A1, a major retinoic acid catabolic enzyme, was up-regulated in Apc(MIN) mouse adenomas, human FAP adenomas, human sporadic colon carcinomas, and in the intestine of apc(mcr) mutant zebrafish embryos. Mechanistically, cyp26a1 induction following apc mutation is dependent on WNT signaling as antisense morpholino knockdown of tcf4 or injection of a dnLEF construct into apc(mcr) mutant zebrafish suppressed expression of cyp26a1 along with known WNT target genes. In addition, injection of stabilized beta-catenin or dnGSK3beta into wild-type embryos induced cyp26a1 expression. Genetic knockdown or pharmacologic inhibition of cyp26a1 in apc(mcr) mutant zebrafish embryos rescued gut differentiation defects such as expression of intestinal fatty acid-binding protein and pancreatic trypsin. These findings support a novel role for APC in balancing retinoic acid biosynthesis and catabolism through WNT-independent and WNT-dependent mechanisms.
Collapse
Affiliation(s)
- Dawne N Shelton
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, 2000 Circle of Hope, Salt Lake City, UT 84112, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Mojsin M, Grujicić NK, Nikcević G, Krstić A, Savić T, Stevanović M. Mapping of the RXRalpha binding elements involved in retinoic acid induced transcriptional activation of the human SOX3 gene. Neurosci Res 2006; 56:409-18. [PMID: 17005281 DOI: 10.1016/j.neures.2006.08.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2006] [Revised: 07/27/2006] [Accepted: 08/19/2006] [Indexed: 11/27/2022]
Abstract
Sox3/SOX3 gene is implicated in the control of nervous system development and is considered to be one of the earliest neural markers. Expression of human SOX3 gene is modulated during the RA-induced neuronal differentiation cascade of NT2/D1 cells. Our present results demonstrate that the sequences responsible for RA-induced activation of SOX3 gene are localized within the 0.4 kb of its 5'-flanking region and implicate RXRalpha involvement in this regulation. The active RA/RXRalpha responsive region is pinned down to two regulatory elements. Only in the presence of both elements full RA/RXRalpha inducibility is achieved, suggesting they act synergistically. These elements comprise two unique G-rich boxes, separated by 49 bp, that could be considered as a novel, atypical RA-response element. Here, for the first time, we have demonstrated direct interaction of RXRalpha and SOX3 control elements. Furthermore, the functional in vivo analysis revealed that liganded RXRalpha is a potent activator of endogenous SOX3 protein expression. Since it is proven that Sox3 is critical determinant of neurogenesis our data may help in providing new insight into complex regulatory networks involved in retinoic acid induced neural differentiation of NT2/D1 cells.
Collapse
Affiliation(s)
- Marija Mojsin
- Institute of Molecular Genetics and Genetic Engineering, Vojvode Stepe 444a, 11010 Belgrade, Serbia
| | | | | | | | | | | |
Collapse
|
37
|
Fischer M, Oberthuer A, Brors B, Kahlert Y, Skowron M, Voth H, Warnat P, Ernestus K, Hero B, Berthold F. Differential Expression of Neuronal Genes Defines Subtypes of Disseminated Neuroblastoma with Favorable and Unfavorable Outcome. Clin Cancer Res 2006; 12:5118-28. [PMID: 16951229 DOI: 10.1158/1078-0432.ccr-06-0985] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Identification of molecular characteristics of spontaneously regressing stage IVS and progressing stage IV neuroblastoma to improve discrimination of patients with metastatic disease following favorable and unfavorable clinical courses. EXPERIMENTAL DESIGN Serial analysis of gene expression profiles were generated from five stage IVS and three stage IV neuroblastoma. Differential expression of candidate genes was evaluated by real-time quantitative reverse transcription-PCR in 76 pretreatment tumor samples (stage IVS n=27 and stage IV n=49). Gene expression-based outcome prediction was determined by Prediction Analysis for Microarrays using 38 tumors as a training set and 38 tumors as a test set. RESULTS Comparison of serial analysis of gene expression profiles from stage IV and IVS neuroblastoma revealed approximately 500 differentially expressed transcripts. Genes related to neuronal differentiation were observed more frequently in stage IVS tumors as determined by associating transcripts to Gene Ontology annotations. Forty-one candidate genes were evaluated by quantitative reverse transcription-PCR and 18 were confirmed to be differentially expressed (P<or=0.001). Classification of patients according to expression patterns of these 18 genes using Prediction Analysis for Microarrays discriminated two subgroups with significantly differing event-free survival (96+/-6% versus 40+/-8% at 3 years; P<0.0001) and overall survival (100% versus 72+/-7% at 3 years; P=0.0003). This classifier was the only independent covariate marker in a multivariate analysis considering the variables stage, age, MYCN amplification, and gene signature. CONCLUSIONS Spontaneously regressing and progressing metastatic neuroblastoma differ by specific gene expression patterns, indicating distinct levels of neuronal differentiation and allowing for an improved risk estimation of children with disseminated disease.
Collapse
Affiliation(s)
- Matthias Fischer
- Department of Pediatric Oncology and Hematology and Center of Molecular Medicine Cologne, University Children's Hospital, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Shimizu T, Esaki L, Mizuno H, Takeda K. Granulocyte macrophage colony-stimulating factor enhances retinoic acid-induced gene expression. J Leukoc Biol 2006; 80:889-96. [PMID: 16885501 DOI: 10.1189/jlb.0905502] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
We reported previously that treatment of human myeloblastic leukemia ML-1 cells with all-trans retinoic acid (ATRA) in combination with GM-CSF enhances the granulocytic differentiation, which is induced only slightly by ATRA alone. To investigate the mechanism underlying this differentiation and the synergistic effect of ATRA and GM-CSF, we used cDNA microarray to examine gene expression profiles of ML-1 cells treated with ATRA and/or GM-CSF. We identified 22 up-regulated genes in ML-1 cells treated with both reagents and examined the expression of these genes in cells treated with ATRA and/or GM-CSF by Northern blot analysis. Comparison of cells treated with both reagents and cells treated with ATRA or GM-CSF alone revealed that expression of nine of the 19 genes was induced synergistically by combined treatment with ATRA and GM-CSF. Expression of most of these genes was increased only slightly by ATRA alone, and this induction was enhanced by the addition of GM-CSF. These results indicate that GM-CSF enhances ATRA-induced gene expression. Moreover, studies with inhibitors of signaling molecules suggested that activation of JAK2 is associated with the synergistic induction of several genes by ATRA and GM-CSF. JAK2 inhibitor suppressed induction of NBT-reducing activity in ML-1 cells treated with both reagents. It is likely that the enhancer effect of GM-CSF on ATRA-induced gene expression leads to the differentiation induced synergistically by ATRA combined with GM-CSF. Further studies of the mechanism underlying this effect may identify better approaches for the treatment of RA-insensitive leukemia.
Collapse
Affiliation(s)
- Takahisa Shimizu
- Department of Hygiene-Chemistry, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba 278-8510, Japan.
| | | | | | | |
Collapse
|
39
|
Giuliano CJ, Freemantle SJ, Spinella MJ. Testicular Germ Cell Tumors: A Paradigm for the Successful Treatment of Solid Tumor Stem Cells. CURRENT CANCER THERAPY REVIEWS 2006; 2:255-270. [PMID: 24482633 PMCID: PMC3904303 DOI: 10.2174/157339406777934681] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Treatment of testicular germ cell tumors (TGCTs) has been a success primarily due to the exquisite responsiveness of this solid tumor to cisplatin-based therapy. Despite the promise of cure for the majority of TGCT patients, the effectiveness of therapy for some patients is limited by toxicity and the problem of resistance. There is compelling rationale to further understand the biology of TGCTs in order to better treat other solid tumors and to address the shortcomings of present TGCT therapies. TGCTs contain undifferentiated pluripotent stem cells, known as embryonal carcinoma, that share many properties with human embryonic stem cells. The importance of cancer stem cells in the initiation, progression and treatment of solid tumors is beginning to emerge. We discuss TGCTs in the context of solid tumor curability and targeted cancer stem cell therapy.
Collapse
Affiliation(s)
- Caryl J. Giuliano
- Department of Pharmacology and Toxicology, Dartmouth Medical School, and the Norris Cotton Cancer Center, Dartmouth Hitchcock-Medical Center, Hanover, NH 03755, USA
| | - Sarah J. Freemantle
- Department of Pharmacology and Toxicology, Dartmouth Medical School, and the Norris Cotton Cancer Center, Dartmouth Hitchcock-Medical Center, Hanover, NH 03755, USA
| | - Michael J. Spinella
- Department of Pharmacology and Toxicology, Dartmouth Medical School, and the Norris Cotton Cancer Center, Dartmouth Hitchcock-Medical Center, Hanover, NH 03755, USA
| |
Collapse
|
40
|
Tabe Y, Konopleva M, Kondo Y, Contractor R, Jin L, Ruvolo V, Tsutsumi-Ishii Y, Miyake K, Miyake N, Ohsaka A, Nagaoka I, Issa JPJ, Andreeff M. PML-RARα and AML1–ETO translocations are rarely associated with methylation of the RARβ2 promoter. Ann Hematol 2006; 85:689-704. [PMID: 16832676 DOI: 10.1007/s00277-006-0148-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2005] [Accepted: 05/16/2006] [Indexed: 12/29/2022]
Abstract
The acute promyelocytic leukemia-specific PML-RARalpha fusion protein is a dominant-negative transcriptional repressor of retinoic acid receptor (RAR) target genes, which recruits HDAC and corepressor proteins and inhibits coactivators. Another oncogenic transcription factor, AML1-ETO, was proposed to cause an HDAC-dependent repression of RAR target genes. The RAR target RARbeta2 gene has been reported to be frequently silenced by hypermethylation in many types of cancer cells. We examined the methylation status of the RARbeta2 and asked if demethylation could reverse ATRA resistance in ATRA-resistant PML-RARalpha and AML1-ETO-positive cells. PML-RARalpha positive NB4 and its ATRA-resistant subvariant MR2 and AML1-ETO expressing Kasumi-1 cells had heterozygous methylation of RARbeta2. Although DNA methyltransferase inhibitor 5-aza-2'-deoxycytidine partially reversed RARbeta2 CpG methylation in these cells, it did not significantly enhance ATRA-induced RARbeta2 mRNA expression and induction of maturation. However, the histone acetylase inhibitor SAHA combined with ATRA significantly reactivated RARbeta2 mRNA both in NB4 and MR2 cells with degradation of PML-RARalpha, which was associated with maturation. In contrast, SAHA did not affect AML1-ETO levels and failed to induce RARbeta2 expression and maturation in Kasumi-1 cells. In primary AML samples, RARbeta2 expression was uniformly low; however, no specific correlation was observed between the methylation of the RARbeta2 gene and expression of the fusion proteins, PML-RARalpha, and AML1-ETO. These results demonstrate that oncogenic PML-RARalpha and AML1-ETO translocations are rarely associated with RARbeta2 promoter methylation in primary AML samples.
Collapse
MESH Headings
- Antineoplastic Agents/pharmacology
- Azacitidine/analogs & derivatives
- Azacitidine/pharmacology
- Core Binding Factor Alpha 2 Subunit/biosynthesis
- Core Binding Factor Alpha 2 Subunit/genetics
- DNA (Cytosine-5-)-Methyltransferases/antagonists & inhibitors
- DNA (Cytosine-5-)-Methyltransferases/metabolism
- DNA Methylation/drug effects
- Decitabine
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Gene Expression Regulation, Leukemic/drug effects
- HL-60 Cells
- Histone Deacetylases/biosynthesis
- Histone Deacetylases/genetics
- Humans
- K562 Cells
- Leukemia, Promyelocytic, Acute/genetics
- Leukemia, Promyelocytic, Acute/metabolism
- Oncogene Proteins, Fusion/biosynthesis
- Oncogene Proteins, Fusion/genetics
- Promoter Regions, Genetic
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- RNA, Neoplasm/biosynthesis
- RNA, Neoplasm/genetics
- RUNX1 Translocation Partner 1 Protein
- Receptors, Retinoic Acid/biosynthesis
- Receptors, Retinoic Acid/genetics
- Translocation, Genetic/drug effects
- Translocation, Genetic/genetics
- Tretinoin/pharmacology
- U937 Cells
Collapse
Affiliation(s)
- Yoko Tabe
- Section of Molecular Hematology and Therapy, Department of Blood and Marrow Transplantation, The University of Texas M D Anderson Cancer Center, 1400 Holcombe Boulevard, Unit 448, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Fritsch MK, Schneider DT, Schuster AE, Murdoch FE, Perlman EJ. Activation of Wnt/beta-catenin signaling in distinct histologic subtypes of human germ cell tumors. Pediatr Dev Pathol 2006; 9:115-31. [PMID: 16822086 DOI: 10.2350/08-05-0097.1] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2005] [Accepted: 12/13/2005] [Indexed: 12/21/2022]
Abstract
The molecular signaling pathways mediating human germ cell tumor (GCT) formation and progression are poorly understood despite a large number of studies detailing recurrent cytogenetic abnormalities. Germ cell tumors consist of multiple histologic subtypes and can also be divided into infantile/childhood or adolescent/adult tumors as well as gonadal or nongonadal sites of origin. All of these parameters are important in defining clinical outcome and in understanding the pathogenesis of these tumors. We utilized complementary DNA (cDNA) microarray analysis to identify differences in signal transduction pathways between 2 histologic subtypes of malignant ovarian GCTs (dysgerminomas versus ovarian endodermal sinus tumors). Hierarchical cluster analysis using only the genes involved in Wnt/beta-catenin signaling was able to distinguish these 2 tumor subtypes from each other. Wnt13 and beta-catenin showed significant differential expression patterns between the 2 tumor subtypes, and the results were confirmed by semiquantitative reverse transcriptase-polymerase chain reaction. Additional GCTs were studied for the expression of other members of Wnt/beta-catenin signaling, including Wnt13, frizzled, disheveled, low-density lipoprotein receptor-related protein 6, and beta-catenin. Differential expression levels were identified for several histologic subtypes of human GCTs. Finally, we prepared tissue microarrays containing GCTs from 83 different patients and demonstrated high levels of beta-catenin protein expression in 100% and nuclear accumulation in approximately 50% to 70% of all endodermal sinus tumors and immature teratomas (ITs). This pattern was independent of the patient's age. No nuclear accumulation of beta-catenin was observed in germinomas, embryonal carcinomas, or choriocarcinomas. These results indicate that activation of Wnt/beta-catenin signaling plays an important role in the pathogenesis of 2 histologic subtypes of human GCTs.
Collapse
Affiliation(s)
- Michael K Fritsch
- Department of Pathology, University of Wisconsin-Madison, 53706, USA
| | | | | | | | | |
Collapse
|
42
|
Patel NA, Song SS, Cooper DR. PKCdelta alternatively spliced isoforms modulate cellular apoptosis in retinoic acid-induced differentiation of human NT2 cells and mouse embryonic stem cells. Gene Expr 2006; 13:73-84. [PMID: 17017122 PMCID: PMC2664302 DOI: 10.3727/000000006783991890] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
NT2 cells are a human teratocarcinoma cell line that, upon treatment with retinoic acid (RA), begin differentiating into a neuronal phenotype. The transformation of undifferentiated NT2 cells into hNT neurons presents an opportunity to investigate the mechanisms involved in neurogenesis because a key component is cell apoptosis, which is essential for building neural networks. Protein kinase Cdelta (PKCdelta) plays an important role as a mediator of cellular apoptosis in response to various stimuli. PKCdelta (deltaI) is proteolytically cleaved at its hinge region (V3) by caspase 3 and the catalytic fragment is sufficient to induce apoptosis in various cell types. Mouse PKCdeltaII is rendered caspase resistant due to an insertion of 78 bp within the caspase recognition site in its V3 domain. No functional role has been attributed to these alternatively spliced variants of PKCdelta. We sought to find a correlation between the onset of apoptosis, neurogenesis, and the expression of PKCdelta isoforms. Our results indicate that RA regulates the expression of PKCdelta alternative splicing variants in NT2 cells. Further, overexpression of PKCdeltaI promotes apoptosis while PKCdeltaII overexpression shields the cells from apoptosis. This is the first report to attribute physiological function to PKCdeltaI and -deltaII isoforms. Next we demonstrated that mouse embryonic stem cells differentiate in vitro into dopaminergic neurons upon stimulation with RA and ciliary neurotrophic factor. These cells showed a simultaneous increase in tyrosine hydroxylase and PKCdeltaII expression. We suggest that the molecular mechanisms regulating differentiation and apoptosis could be understood by alternative expression of PKCdelta isoforms.
Collapse
Affiliation(s)
- Niketa A Patel
- James A. Haley Veterans Hospital, Research Service, Tampa, FL 33612, USA.
| | | | | |
Collapse
|
43
|
Kerley-Hamilton JS, Pike AM, Li N, DiRenzo J, Spinella MJ. A p53-dominant transcriptional response to cisplatin in testicular germ cell tumor-derived human embryonal carcinoma. Oncogene 2005; 24:6090-100. [PMID: 15940259 DOI: 10.1038/sj.onc.1208755] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Testicular germ cell cancers remain one of the few solid tumors routinely cured in advanced stages with conventional cisplatin-based chemotherapy. The mechanisms remain largely unknown. Through use of gene-expression array profiling we define immediate transcriptional targets in response to cisplatin in testicular germ cell-derived human embryonal carcinoma cells. We report 46 genes upregulated and five genes repressed by cisplatin. Several of these gene products, including FAS, TRAILR3, PHLDA3, LRDD, and IER3 are previously implicated in the apoptotic death receptor pathway, while others including SESN1, FDXR, PLK3, and DDIT4 are known mediators of reactive oxygen species generation. Approximately 54% of the upregulated genes are established or suspected downstream targets of p53. Specific siRNA to p53 prevents cisplatin-mediated activation of p53 and p53 pathway genes and renders embryonal carcinoma cells relatively resistant to cisplatin cytotoxicity. Interestingly, in p53 knockdown cells nearly the entire set of identified cisplatin targets fail to respond or have a diminished response to cisplatin, suggesting that many are new direct or indirect targets of p53 including GPR87, STK17A, INPP5D, FLJ11259, and EPS8L2. The data indicate that robust transcriptional activation of p53 is linked to the known hypersensitivity of testicular germ cell tumors to chemotherapy. Many of the gene products may participate in the unique curability of this disease.
Collapse
Affiliation(s)
- Joanna S Kerley-Hamilton
- Department of Pharmacology and Toxicology, Dartmouth Medical School and Norris Cotton Cancer Center, Hanover, NH 03755, USA
| | | | | | | | | |
Collapse
|
44
|
Giuliano CJ, Kerley-Hamilton JS, Bee T, Freemantle SJ, Manickaratnam R, Dmitrovsky E, Spinella MJ. Retinoic acid represses a cassette of candidate pluripotency chromosome 12p genes during induced loss of human embryonal carcinoma tumorigenicity. ACTA ACUST UNITED AC 2005; 1731:48-56. [PMID: 16168501 DOI: 10.1016/j.bbaexp.2005.08.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2005] [Revised: 08/08/2005] [Accepted: 08/17/2005] [Indexed: 10/25/2022]
Abstract
Testicular germ cell tumors (TGCTs) are the most common carcinomas of young men aged 15-35. The molecular events involved in TGCT genesis are poorly understood. TGCTs have near universal amplification of the short arm of chromosome 12, however positional cloning efforts have not identified causative genes on 12p involved in formation or progression of TGCTs. Human embryonal carcinoma (EC) are the stem cells of TGCTs and are pluripotent. EC cells terminally differentiate toward a neuronal lineage with all-trans retinoic acid (RA) treatment resulting in a concomitant G1 cell cycle arrest and loss of tumorigenicity. Our efforts to define the molecular mechanisms of RA-mediated tumor cell differentiation at a critical "commitment to differentiate" window has identified a cassette of genes on 12p that are repressed with RA precisely as EC cells lose tumorigenic potential. These are Nanog, CD9, EDR1 (PHC1), SCNN1A, GDF3, Glut3 and Stella. The master pluripotency regulator Oct4 is located on chromosome 6 and is also repressed by RA. Notably, knockdown of Oct4 with siRNA results in repression of basal Nanog, EDR1, GDF3 and Stella gene expression. Nanog has recently been identified to play a role in maintenance of the pluripotency of mouse embryonic stem cells and CD9, EDR1, GDF3, and Stella have each been implicated as stem cell markers. Since RA suppresses the tumorigenicity of EC cells, these genes may have a critical role in the etiology of TGCTs, suggesting a link between enforced pluripotency and transformation.
Collapse
Affiliation(s)
- Caryl J Giuliano
- Department of Pharmacology and Toxicology, 7650 Remsen, Dartmouth Medical School, Dartmouth Hitchcock-Medical Center, Hanover, NH 03755, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Morgunkova AA. The p53 Gene Family: Control of Cell Proliferation and Developmental Programs. BIOCHEMISTRY (MOSCOW) 2005; 70:955-71. [PMID: 16266265 DOI: 10.1007/s10541-005-0210-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
For a quarter of a century the gene p53 has attracted close attention of scientists who deal with problems of carcinogenesis and maintenance of genetic stability. Multicellular organisms on our planet owe their rich evolution in many respects to the ability of this gene to protect cells from oncogenic transformation and harmful changes in DNA. A relatively recent discovery of structural p53 homologs, the genes p63 and p73, which seem to have more ancient roots, has roused keen interest in their function. Do they carry out oncosuppressor functions in partnership with p53 or do they possess their own specific functions? This review analyzes data on p53, p63, and p73 functional activity at the levels of the molecule, cell, and whole organism with the accent on examination of specific p63/p73 targets indicating a unique role of these genes in control of developmental processes.
Collapse
Affiliation(s)
- A A Morgunkova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.
| |
Collapse
|
46
|
Williams SS, Mear JP, Liang HC, Potter SS, Aronow BJ, Colbert MC. Large-scale reprogramming of cranial neural crest gene expression by retinoic acid exposure. Physiol Genomics 2005; 19:184-97. [PMID: 15466718 DOI: 10.1152/physiolgenomics.00136.2004] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Although retinoic acid (RA), the active form of vitamin A, is required for normal embryonic growth and development, it is also a powerful teratogen. Infants born to mothers exposed to retinoids during pregnancy have a 25-fold increased risk for malformations, nearly exclusively of cranial neural crest-derived tissues. To characterize neural crest cell responses to RA, we exposed murine crest cultures to teratogenic levels of RA and subjected their RNA to microarray-based gene expression profile analysis using Affymetrix MG-U74Av2 GeneChips. RNAs were isolated from independent cultures treated with 10(-6) M RA for 6, 12, 24, or 48 h. Statistical analyses of gene expression profile data facilitated identification of the 205 top-ranked differentially regulated genes whose expression was reproducibly changed by RA over time. Cluster analyses of these genes across the independently treated sample series revealed distinctive kinetic patterns of altered gene expression. The largest group was transiently affected within the first 6 h of exposure, representing early responding genes. Group 2 showed sustained induction by RA over all times, whereas group 3 was characterized by the suppression of a time-dependent expression increase normally seen in untreated cells. Additional patterns demonstrated time-dependent increased or decreased expression among genes not normally regulated to a significant extent. Gene function analysis revealed that more than one-third of all RA-regulated genes were associated with developmental regulation, including both canonical and noncanonical Wnt signaling pathways. Multiple genes associated with cell adhesion and cell cycle regulation, recognized targets for the biological effects of RA, were also affected. Taken together, these results support the hypothesis that the teratogenic effects of RA derive from reprogramming gene expression of a host of genes, which play critical roles during embryonic development regulating pathways that determine subsequent differentiation of cranial neural crest cells.
Collapse
Affiliation(s)
- Sarah S Williams
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA
| | | | | | | | | | | |
Collapse
|
47
|
Wang L, Mear JP, Kuan CY, Colbert MC. Retinoic acid induces CDK inhibitors and growth arrest specific (Gas) genes in neural crest cells. Dev Growth Differ 2005; 47:119-30. [PMID: 15839997 DOI: 10.1111/j.1440-169x.2005.00788.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Retinoic acid (RA), the active metabolite of vitamin A, regulates cellular growth and differentiation during embryonic development. In excess, this vitamin is also highly teratogenic to animals and humans. The neural crest is particularly sensitive to RA, and high levels adversely affect migration, proliferation and cell death. We investigated potential gene targets of RA associated with neural crest proliferation by determining RA-mediated changes in gene expression over time, using microarrays. Statistical analysis of the top ranked RA-regulated genes identified modest changes in multiple genes previously associated with cell cycle control and proliferation including the cyclin-dependent kinase inhibitors Cdkn1a (p21), Cdkn2b (p15(INK4b)), and Gas3/PMP22. The expression of p21 and p15(INK4b) contribute to decreased proliferation by blocking cell cycle progression at G1-S. This checkpoint is pivotal to decisions regulating proliferation, apoptosis, or differentiation. We have also confirmed the overexpression of Gas3/PMP22 in RA-treated neural crests, which is associated with cytoskeletal changes and increased apoptosis. Our results suggest that increases in multiple components of diverse regulatory pathways have an overall cumulative effect on cellular decisions. This heterogeneity contributes to the pleiotropic effects of RA, specifically those affecting proliferation and cell death.
Collapse
Affiliation(s)
- Linping Wang
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | | | | | | |
Collapse
|
48
|
Abstract
Insulin-like growth factor binding protein (IGFBP)-6 is unique among IGFBPs for its IGF-II binding specificity. IGFBP-6 inhibits growth of a number of IGF-II-dependent cancers, including rhabdomyosarcoma, neuroblastoma and colon cancer. Although the major action of IGFBP-6 appears to be inhibition of IGF-II actions, a number of studies suggest that it may also have IGF-independent actions. Gene array studies show regulation of IGFBP-6 in many circumstances that are consistent with antiproliferative actions. However, other studies show the opposite, so that IGFBP-6 may be acting as a counter-regulator in these situations or it may have other as yet undetermined actions. Both the N-terminal and C-terminal domains of IGFBP-6 contribute to high affinity IGF binding, and the C-terminal domain appears to confer its IGF-II specificity. The three-dimensional structure of the C-domain of IGFBP-6 contains a thyroglobulin type 1 fold, and the IGF-II binding site is located in the proximal half of this domain adjacent to the glycosaminoglycan binding site. Future studies are needed to further delineate the putative IGF-independent actions of IGFBP-6 and to build on the structural information to enhance our understanding of this IGFBP. This is particularly significant since IGFBP-6 provides an attractive basis for therapy of IGF-II-dependent tumors.
Collapse
Affiliation(s)
- Leon A Bach
- Department of Endocrinology and Diabetes, Alfred Hospital, Melbourne, Vic. 3004, Australia.
| |
Collapse
|
49
|
Zirn B, Samans B, Spangenberg C, Graf N, Eilers M, Gessler M. All-trans retinoic acid treatment of Wilms tumor cells reverses expression of genes associated with high risk and relapse in vivo. Oncogene 2005; 24:5246-51. [PMID: 15897880 DOI: 10.1038/sj.onc.1208725] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Wilms tumor is one of the most frequent neoplasias in children. Our previous microarray screening in a large series of Wilms tumors revealed several candidate genes that are deregulated in advanced tumors and are part of the retinoic acid signaling pathway. To investigate whether retinoic acid could be employed as a novel therapeutic agent in these tumors, we treated cultured Wilms tumor cells with different concentrations of all-trans retinoic acid (ATRA) and assessed gene expression changes by real-time RT-PCR as well as microarray analysis. Several genes like RARRES1, RARRES3, CTGF, CKS2, CCNA2, IGFBP3, UBE2C, CCL2 or ITM2B that were previously found to be deregulated in advanced tumors exhibited opposite expression changes after ATRA treatment. In addition to enhanced retinoid signaling, the transforming growth factor-beta (TGFbeta) pathway was strongly activated by ATRA treatment of Wilms tumor cells. Both the retinoic acid and the TGFbeta pathway mediate inhibition of cell growth. These findings represent the first molecular evidence of a potential benefit from ATRA treatment in Wilms tumors.
Collapse
Affiliation(s)
- Birgit Zirn
- Physiological Chemistry I, Theodor-Boveri-Institute, Biocenter of the University of Wuerzburg, Wuerzburg 97074, Germany
| | | | | | | | | | | |
Collapse
|
50
|
Barnes EA, Heidtman KJ, Donoghue DJ. Constitutive activation of the shh-ptc1 pathway by a patched1 mutation identified in BCC. Oncogene 2005; 24:902-15. [PMID: 15592520 DOI: 10.1038/sj.onc.1208240] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Mutations in the transmembrane receptor patched1 (ptc1) are responsible for the majority of basal cell carcinoma (BCC) cases. Many of these mutations, including ptc1-Q688X, result in premature truncation of the ptc1 protein. ptc1-Q688X has been identified in patients with both BCC and nevoid basal cell carcinoma syndrome, an inheritable disorder causing a predisposition to cancer susceptibility. Here we describe a mechanism by which ptc1-Q688X causes constitutive cellular signaling. Cells expressing ptc1-Q688X demonstrate an increase in cell cycle progression and induce cell transformation. The ptc1-Q688X mutant enhances Gli1 activity, a downstream reporter of sonic hedgehog (shh)-ptc1 signaling, independent of shh stimulation. In contrast to wild-type ptc1, ptc1-Q688X fails to associate with endogenous cyclin B1. Expression of nuclear-targeted cyclin B1 derivatives promotes Gli1-dependent transcription, which correlates temporally with cyclin B1-cdk1 kinase activity. Coexpression of wild-type ptc1 with a nuclear-targeted cyclin B1 derivative, mutated to mimic constitutive phosphorylation, dramatically decreases Gli1 activity. In addition, the coexpression of this constitutively nuclear cyclin B1 derivative with ptc1-Q688X substantially enhances foci formation. These studies therefore describe a molecular mechanism for the aberrant activity of ptc1-Q688X that includes the premature activation of the transcription factor Gli1.
Collapse
Affiliation(s)
- Elizabeth A Barnes
- Department of Chemistry and Biochemistry, Center for Molecular Genetics, University of California, 9500 Gilman Drive, Urey Hall-6114, San Diego, La Jolla, CA 92093-0367, USA
| | | | | |
Collapse
|