1
|
Falo-Sanjuan J, Diaz-Tirado Y, Turner MA, Rourke O, Davis J, Medrano C, Haines J, McKenna J, Karshenas A, Eisen MB, Garcia HG. Targeted mutagenesis of specific genomic DNA sequences in animals for the in vivo generation of variant libraries. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.10.598328. [PMID: 38915503 PMCID: PMC11195090 DOI: 10.1101/2024.06.10.598328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Understanding how the number, placement and affinity of transcription factor binding sites dictates gene regulatory programs remains a major unsolved challenge in biology, particularly in the context of multicellular organisms. To uncover these rules, it is first necessary to find the binding sites within a regulatory region with high precision, and then to systematically modulate this binding site arrangement while simultaneously measuring the effect of this modulation on output gene expression. Massively parallel reporter assays (MPRAs), where the gene expression stemming from 10,000s of in vitro-generated regulatory sequences is measured, have made this feat possible in high-throughput in single cells in culture. However, because of lack of technologies to incorporate DNA libraries, MPRAs are limited in whole organisms. To enable MPRAs in multicellular organisms, we generated tools to create a high degree of mutagenesis in specific genomic loci in vivo using base editing. Targeting GFP integrated in the genome of Drosophila cell culture and whole animals as a case study, we show that the base editor AIDevoCDA1 stemming from sea lamprey fused to nCas9 is highly mutagenic. Surprisingly, longer gRNAs increase mutation efficiency and expand the mutating window, which can allow the introduction of mutations in previously untargetable sequences. Finally, we demonstrate arrays of >20 gRNAs that can efficiently introduce mutations along a 200bp sequence, making it a promising tool to test enhancer function in vivo in a high throughput manner.
Collapse
Affiliation(s)
- Julia Falo-Sanjuan
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Yuliana Diaz-Tirado
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Meghan A. Turner
- Biophysics Graduate Group, University of California, Berkeley, CA, USA
| | - Olivia Rourke
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Julian Davis
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Claudia Medrano
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Jenna Haines
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Joey McKenna
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Arman Karshenas
- Biophysics Graduate Group, University of California, Berkeley, CA, USA
| | - Michael B. Eisen
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Department of Integrative Biology, University of California, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA, USA
| | - Hernan G. Garcia
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Department of Physics, University of California, Berkeley, CA, USA
- Institute for Quantitative Biosciences-QB3, University of California, Berkeley, CA, USA
- Chan Zuckerberg Biohub – San Francisco, San Francisco, CA, USA
- Biophysics Graduate Group, University of California, Berkeley, CA, USA
| |
Collapse
|
2
|
Graeve FD, Debreuve E, Pushpalatha KV, Zhang X, Rahmoun S, Kozlowski D, Cedilnik N, Vijayakumar J, Cassini P, Schaub S, Descombes X, Besse F. An image-based RNAi screen identifies the EGFR signaling pathway as a regulator of Imp RNP granules. J Cell Sci 2024; 137:jcs262119. [PMID: 39479884 PMCID: PMC11698055 DOI: 10.1242/jcs.262119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 10/18/2024] [Indexed: 12/12/2024] Open
Abstract
Biomolecular condensates have recently retained much attention given that they provide a fundamental mechanism of cellular organization. Among those, cytoplasmic ribonucleoprotein (RNP) granules selectively and reversibly concentrate RNA molecules and regulatory proteins, thus contributing to the spatiotemporal regulation of associated RNAs. Extensive in vitro work has unraveled the molecular and chemical bases of RNP granule assembly. The signaling pathways controlling this process in a cellular context are, however, still largely unknown. Here, we aimed at identifying regulators of cytoplasmic RNP granules characterized by the presence of the evolutionarily conserved Imp RNA-binding protein (a homolog of IGF2BP proteins). We performed a high-content image-based RNAi screen targeting all Drosophila genes encoding RNA-binding proteins, phosphatases and kinases. This led to the identification of dozens of genes regulating the number of Imp-positive RNP granules in S2R+ cells, among which were components of the MAPK pathway. Combining functional approaches, phospho-mapping and generation of phospho-variants, we further showed that EGFR signaling inhibits Imp-positive RNP granule assembly through activation of the MAPK-ERK pathway and downstream phosphorylation of Imp at the S15 residue. This work illustrates how signaling pathways can regulate cellular condensate assembly by post-translational modifications of specific components.
Collapse
Affiliation(s)
- Fabienne De Graeve
- Université Côte D'Azur, CNRS, Inserm, Institut de Biologie Valrose, 06108 Nice, France
| | - Eric Debreuve
- Université Côte D'Azur, CNRS, INRIA, I3S, 06902 Sophia Antipolis, France
| | | | - Xuchun Zhang
- Université Côte D'Azur, INRIA, CNRS, I3S, 06902 Sophia Antipolis, France
| | - Somia Rahmoun
- Université Côte D'Azur, INRIA, CNRS, I3S, 06902 Sophia Antipolis, France
| | - Djampa Kozlowski
- Université Côte D'Azur, CNRS, Inserm, Institut de Biologie Valrose, 06108 Nice, France
| | - Nicolas Cedilnik
- Université Côte D'Azur, CNRS, Inserm, Institut de Biologie Valrose, 06108 Nice, France
| | - Jeshlee Vijayakumar
- Université Côte D'Azur, CNRS, Inserm, Institut de Biologie Valrose, 06108 Nice, France
| | - Paul Cassini
- Université Côte D'Azur, CNRS, Inserm, Institut de Biologie Valrose, 06108 Nice, France
| | - Sebastien Schaub
- Université Côte D'Azur, CNRS, Inserm, Institut de Biologie Valrose, 06108 Nice, France
- Université Sorbonne, CNRS, LBDV, 06230 Villefranche-sur-mer, France
| | - Xavier Descombes
- Université Côte D'Azur, INRIA, CNRS, I3S, 06902 Sophia Antipolis, France
| | - Florence Besse
- Université Côte D'Azur, CNRS, Inserm, Institut de Biologie Valrose, 06108 Nice, France
| |
Collapse
|
3
|
Nagai H, Adachi Y, Nakasugi T, Takigawa E, Ui J, Makino T, Miura M, Nakajima YI. Highly regenerative species-specific genes improve age-associated features in the adult Drosophila midgut. BMC Biol 2024; 22:157. [PMID: 39090637 PMCID: PMC11295675 DOI: 10.1186/s12915-024-01956-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 07/09/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND The remarkable regenerative abilities observed in planarians and cnidarians are closely linked to the active proliferation of adult stem cells and the precise differentiation of their progeny, both of which typically deteriorate during aging in low regenerative animals. While regeneration-specific genes conserved in highly regenerative organisms may confer regenerative abilities and long-term maintenance of tissue homeostasis, it remains unclear whether introducing these regenerative genes into low regenerative animals can improve their regeneration and aging processes. RESULTS Here, we ectopically express highly regenerative species-specific JmjC domain-encoding genes (HRJDs) in Drosophila, a widely used low regenerative model organism. Surprisingly, HRJD expression impedes tissue regeneration in the developing wing disc but extends organismal lifespan when expressed in the intestinal stem cell lineages of the adult midgut under non-regenerative conditions. Notably, HRJDs enhance the proliferative activity of intestinal stem cells while maintaining their differentiation fidelity, ameliorating age-related decline in gut barrier functions. CONCLUSIONS These findings together suggest that the introduction of highly regenerative species-specific genes can improve stem cell functions and promote a healthy lifespan when expressed in aging animals.
Collapse
Affiliation(s)
- Hiroki Nagai
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-0033, Japan
- Institute of Science and Technology Austria, Am Campus 1, 3400, Klosterneuburg, Austria
| | - Yuya Adachi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-0033, Japan
| | - Tenki Nakasugi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-0033, Japan
| | - Ema Takigawa
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-0033, Japan
| | - Junichiro Ui
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-0033, Japan
| | - Takashi Makino
- Graduate School of Life Sciences, Tohoku University, 6-3 Aramaki Aza Aoba, Aoba-Ku, Sendai, 980-8578, Japan
| | - Masayuki Miura
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-0033, Japan
| | - Yu-Ichiro Nakajima
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
4
|
Liu GY, Jouandin P, Bahng RE, Perrimon N, Sabatini DM. An evolutionary mechanism to assimilate new nutrient sensors into the mTORC1 pathway. Nat Commun 2024; 15:2517. [PMID: 38514639 PMCID: PMC10957897 DOI: 10.1038/s41467-024-46680-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 03/06/2024] [Indexed: 03/23/2024] Open
Abstract
Animals sense and respond to nutrient availability in their environments, a task coordinated in part by the mTOR complex 1 (mTORC1) pathway. mTORC1 regulates growth in response to nutrients and, in mammals, senses specific amino acids through specialized sensors that bind the GATOR1/2 signaling hub. Given that animals can occupy diverse niches, we hypothesized that the pathway might evolve distinct sensors in different metazoan phyla. Whether such customization occurs, and how the mTORC1 pathway might capture new inputs, is unknown. Here, we identify the Drosophila melanogaster protein Unmet expectations (CG11596) as a species-restricted methionine sensor that directly binds the fly GATOR2 complex in a fashion antagonized by S-adenosylmethionine (SAM). We find that in Dipterans GATOR2 rapidly evolved the capacity to bind Unmet and to thereby repurpose a previously independent methyltransferase as a SAM sensor. Thus, the modular architecture of the mTORC1 pathway allows it to co-opt preexisting enzymes to expand its nutrient sensing capabilities, revealing a mechanism for conferring evolvability on an otherwise conserved system.
Collapse
Affiliation(s)
- Grace Y Liu
- Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, Department of Biology, 455 Main Street, Cambridge, MA, USA.
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, USA.
- Koch Institute for Integrative Cancer Research and Massachusetts Institute of Technology, Department of Biology, 77 Massachusetts Avenue, Cambridge, MA, USA.
| | - Patrick Jouandin
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
- Institut de Recherche en Cancérologie de Montpellier, Inserm U1194-UM-ICM, Campus Val d'Aurelle, Montpellier, Cedex 5, France
| | - Raymond E Bahng
- Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, Department of Biology, 455 Main Street, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research and Massachusetts Institute of Technology, Department of Biology, 77 Massachusetts Avenue, Cambridge, MA, USA
| | - Norbert Perrimon
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA.
| | - David M Sabatini
- Institute of Organic Chemistry and Biochemistry, Flemingovo n. 2, 166 10 Praha 6, Prague, Czech Republic.
| |
Collapse
|
5
|
Niemirowicz GT, Carlevaro G, Campetella O, Bouvier LA, Mucci J. A versatile 2A peptide-based strategy for ectopic expression and endogenous gene tagging in Trypanosoma cruzi. Heliyon 2024; 10:e24595. [PMID: 38304823 PMCID: PMC10830525 DOI: 10.1016/j.heliyon.2024.e24595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 01/03/2024] [Accepted: 01/10/2024] [Indexed: 02/03/2024] Open
Abstract
Nearly all expression vectors currently available for Trypanosoma cruzi were conceived to produce a single primary transcript containing the genes of interest along with those that confer antibiotic resistance. However, since each messenger RNA (mRNA) matures separately, drug selection will only guarantee the expression of those derived from the selectable marker. Therefore, commonly a considerable fraction of the cells recovered after selection with these expression vectors, although resistant do not express the protein of interest. Consequently, in order to counteract this disadvantage, we developed vectors with an alternative arrangement in which the gene of interest and antibiotic resistance are fused sharing the same mRNA. To test this configuration, we included the coding sequence for the green fluorescent protein (mEGFP) linked to the one conferring neomycin resistance (Neo). Additionally, to allow for the production of two independent proteins the sequence for a Thosea asigna virus self-cleaving 2A peptide (T2A) was inserted in-between. Cells obtained with these vectors displayed higher mEGFP expression levels with more homogeneous transgenic parasite populations than those transfected with more conventional independent mRNA-based alternatives. Moreover, as determined by Western blot, 2A mediated fusion protein dissociation occurred with high efficiency in all parasite stages. In addition, these vectors could easily be transformed into endogenous tagging constructs that allowed the insertion, by ends-in homologous recombination, of a hemagglutinin tag (HA) fused to the actin gene. The use of 2A self-cleaving peptides in the context of single mRNA vectors represents an interesting strategy capable of improving ectopic transgene expression in T. cruzi as well as providing a simple alternative to more sophisticated methods, such as the one based on CRISPR/Cas9, for the endogenous labeling of genes.
Collapse
Affiliation(s)
| | | | - Oscar Campetella
- Instituto de Investigaciones Biotecnológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Universidad Nacional de San Martín–Escuela de Bio y Nanotecnologías (EByN). Campus Miguelete, 25 de Mayo y Francia (B1650HMP), San Martín, Argentina
| | - León A. Bouvier
- Instituto de Investigaciones Biotecnológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Universidad Nacional de San Martín–Escuela de Bio y Nanotecnologías (EByN). Campus Miguelete, 25 de Mayo y Francia (B1650HMP), San Martín, Argentina
| | - Juan Mucci
- Instituto de Investigaciones Biotecnológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Universidad Nacional de San Martín–Escuela de Bio y Nanotecnologías (EByN). Campus Miguelete, 25 de Mayo y Francia (B1650HMP), San Martín, Argentina
| |
Collapse
|
6
|
Strutt H, Warrington S, Madathil ACK, Langenhan T, Strutt D. Molecular symmetry breaking in the Frizzled-dependent planar polarity pathway. Curr Biol 2023; 33:5340-5354.e6. [PMID: 37995695 PMCID: PMC7616066 DOI: 10.1016/j.cub.2023.10.071] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/03/2023] [Accepted: 10/31/2023] [Indexed: 11/25/2023]
Abstract
The core planar polarity pathway consists of six proteins that form asymmetric intercellular complexes that segregate to opposite cell ends in developing tissues and specify polarized cell structures or behaviors. Within these complexes, the atypical cadherin Flamingo localizes on both sides of intercellular junctions, where it interacts homophilically in trans via its cadherin repeats, whereas the transmembrane proteins Frizzled and Strabismus localize to the opposite sides of apposing junctions. However, the molecular mechanisms underlying the formation of such asymmetric complexes are poorly understood. Using a novel tissue culture system, we determine the minimum requirements for asymmetric complex assembly in the absence of confounding feedback mechanisms. We show that complexes are intrinsically asymmetric and that an interaction of Frizzled and Flamingo in one cell with Flamingo in the neighboring cell is the key symmetry-breaking step. In contrast, Strabismus is unable to promote homophilic Flamingo trans binding and is only recruited into complexes once Frizzled has entered on the opposite side. This interaction with Strabismus requires intact intracellular loops of the seven-pass transmembrane domain of Flamingo. Once recruited, Strabismus stabilizes the intercellular complexes together with the three cytoplasmic core proteins. We propose a model whereby Flamingo exists in a closed conformation and binding of Frizzled in one cell results in a conformational change that allows its cadherin repeats to interact with a Flamingo molecule in the neighboring cell. Flamingo in the adjacent cell then undergoes a further change in the seven-pass transmembrane region that promotes the recruitment of Strabismus.
Collapse
Affiliation(s)
- Helen Strutt
- School of Biosciences, University of Sheffield, Firth Court, Sheffield S10 2TN, UK.
| | - Samantha Warrington
- School of Biosciences, University of Sheffield, Firth Court, Sheffield S10 2TN, UK
| | | | - Tobias Langenhan
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, Leipzig University, 04103 Leipzig, Germany
| | - David Strutt
- School of Biosciences, University of Sheffield, Firth Court, Sheffield S10 2TN, UK.
| |
Collapse
|
7
|
Aimino MA, Humenik J, Parisi MJ, Duhart JC, Mosca TJ. SynLight: a bicistronic strategy for simultaneous active zone and cell labeling in the Drosophila nervous system. G3 (BETHESDA, MD.) 2023; 13:jkad221. [PMID: 37757863 PMCID: PMC10627267 DOI: 10.1093/g3journal/jkad221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 07/14/2023] [Accepted: 09/17/2023] [Indexed: 09/29/2023]
Abstract
At synapses, chemical neurotransmission mediates the exchange of information between neurons, leading to complex movement, behaviors, and stimulus processing. The immense number and variety of neurons within the nervous system make discerning individual neuron populations difficult, necessitating the development of advanced neuronal labeling techniques. In Drosophila, Bruchpilot-Short and mCD8-GFP, which label presynaptic active zones and neuronal membranes, respectively, have been widely used to study synapse development and organization. This labeling is often achieved via the expression of 2 independent constructs by a single binary expression system, but expression can weaken when multiple transgenes are expressed by a single driver. Recent work has sought to circumvent these drawbacks by developing methods that encode multiple proteins from a single transcript. Self-cleaving peptides, specifically 2A peptides, have emerged as effective sequences for accomplishing this task. We leveraged 2A ribosomal skipping peptides to engineer a construct that produces both Bruchpilot-Short-mStraw and mCD8-GFP from the same mRNA, which we named SynLight. Using SynLight, we visualized the putative synaptic active zones and membranes of multiple classes of olfactory, visual, and motor neurons and observed the correct separation of signal, confirming that both proteins are being generated separately. Furthermore, we demonstrate proof of principle by quantifying synaptic puncta number and neurite volume in olfactory neurons and finding no difference between the synapse densities of neurons expressing SynLight or neurons expressing both transgenes separately. At the neuromuscular junction, we determined that the synaptic puncta number labeled by SynLight was comparable to the endogenous puncta labeled by antibody staining. Overall, SynLight is a versatile tool for examining synapse density in any nervous system region of interest and allows new questions to be answered about synaptic development and organization.
Collapse
Affiliation(s)
- Michael A Aimino
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA 19107, USA
| | - Jesse Humenik
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA 19107, USA
| | - Michael J Parisi
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA 19107, USA
| | - Juan Carlos Duhart
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA 19107, USA
| | - Timothy J Mosca
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA 19107, USA
| |
Collapse
|
8
|
Shinoda N, Horikoshi M, Taira Y, Muramoto M, Hirayama S, Murata S, Miura M. Caspase cleaves Drosophila BubR1 to modulate spindle assembly checkpoint function and lifespan of the organism. FEBS J 2023; 290:4200-4223. [PMID: 37151120 DOI: 10.1111/febs.16811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 03/23/2023] [Accepted: 05/04/2023] [Indexed: 05/09/2023]
Abstract
Caspases cleave over 1500 substrates in the human proteome in both lethal and non-lethal scenarios. However, reports of the physiological consequences of substrate cleavage are limited. Additionally, the manner in which caspase cleaves only a subset of substrates in the non-lethal scenario remains to be elucidated. BubR1, a spindle assembly checkpoint component, is a caspase substrate in humans, the physiological function of which remains unclear. Here, we found that caspases, especially Drice, cleave Drosophila BubR1 between the N-terminal KEN box motif and C-terminal kinase domain. By using proximity labelling, we found that Drice, but not Dcp-1, is in proximity to BubR1, suggesting that protein proximity facilitates substrate preference. The cleaved fragments displayed altered subcellular localization and protein-protein interactions. Flies that harboured cleavage-resistant BubR1 showed longer duration of BubR1 localization to the kinetochore upon colchicine treatment. Furthermore, these flies showed extended lifespan. Thus, we propose that the caspase-mediated cleavage of BubR1 limits spindle assembly checkpoint and organismal lifespan. Our results highlight the importance of the individual analysis of substrates in vivo to determine the biological significance of caspase-dependent non-lethal cellular processes.
Collapse
Affiliation(s)
- Natsuki Shinoda
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Japan
| | - Misuzu Horikoshi
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Japan
| | - Yusuke Taira
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Japan
| | - Masaya Muramoto
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Japan
| | - Shoshiro Hirayama
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Japan
| | - Shigeo Murata
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Japan
| | - Masayuki Miura
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Japan
| |
Collapse
|
9
|
Aimino MA, Humenik J, Parisi MJ, Duhart JC, Mosca TJ. SynLight: a dicistronic strategy for simultaneous active zone and cell labeling in the Drosophila nervous system. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.17.549367. [PMID: 37502901 PMCID: PMC10370149 DOI: 10.1101/2023.07.17.549367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
At synapses, chemical neurotransmission mediates the exchange of information between neurons, leading to complex movement behaviors and stimulus processing. The immense number and variety of neurons within the nervous system makes discerning individual neuron populations difficult, necessitating the development of advanced neuronal labeling techniques. In Drosophila , Bruchpilot-Short and mCD8-GFP, which label presynaptic active zones and neuronal membranes, respectively, have been widely used to study synapse development and organization. This labeling is often achieved via expression of two independent constructs by a single binary expression system, but expression can weaken when multiple transgenes are expressed by a single driver. Ensuring adequate expression of each transgene is essential to enable more complex experiments; as such, work has sought to circumvent these drawbacks by developing methods that encode multiple proteins from a single transcript. Self-cleaving peptides, specifically 2A peptides, have emerged as effective sequences for accomplishing this task. We leveraged 2A ribosomal skipping peptides to engineer a construct that produces both Bruchpilot-Short and mCD8-GFP from the same mRNA, which we named SynLight. Using SynLight, we visualized the putative synaptic active zones and membranes of multiple classes of olfactory, visual, and motor neurons and observed correct separation of signal, confirming that both proteins are being generated separately. Furthermore, we demonstrate proof-of-principle by quantifying synaptic puncta number and neurite volume in olfactory neurons and finding no difference between the synapse densities of neurons expressing SynLight or neurons expressing both transgenes separately. At the neuromuscular junction, we determined that synaptic puncta number labeled by SynLight was comparable to endogenous puncta labeled by antibody staining. Overall, SynLight is a versatile tool for examining synapse density in any nervous system region of interest and allows new questions to be answered about synaptic development and organization.
Collapse
Affiliation(s)
- Michael A. Aimino
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA 19107
| | - Jesse Humenik
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA 19107
| | - Michael J. Parisi
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA 19107
| | - Juan Carlos Duhart
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA 19107
| | - Timothy J. Mosca
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA 19107
| |
Collapse
|
10
|
Liu GY, Jouandin P, Bahng RE, Perrimon N, Sabatini DM. An evolutionary mechanism to assimilate new nutrient sensors into the mTORC1 pathway. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.25.541239. [PMID: 37292894 PMCID: PMC10245982 DOI: 10.1101/2023.05.25.541239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Animals must sense and respond to nutrient availability in their local niche. This task is coordinated in part by the mTOR complex 1 (mTORC1) pathway, which regulates growth and metabolism in response to nutrients1-5. In mammals, mTORC1 senses specific amino acids through specialized sensors that act through the upstream GATOR1/2 signaling hub6-8. To reconcile the conserved architecture of the mTORC1 pathway with the diversity of environments that animals can occupy, we hypothesized that the pathway might maintain plasticity by evolving distinct nutrient sensors in different metazoan phyla1,9,10. Whether such customization occurs-and how the mTORC1 pathway might capture new nutrient inputs-is not known. Here, we identify the Drosophila melanogaster protein Unmet expectations (Unmet, formerly CG11596) as a species-restricted nutrient sensor and trace its incorporation into the mTORC1 pathway. Upon methionine starvation, Unmet binds to the fly GATOR2 complex to inhibit dTORC1. S-adenosylmethionine (SAM), a proxy for methionine availability, directly relieves this inhibition. Unmet expression is elevated in the ovary, a methionine-sensitive niche11, and flies lacking Unmet fail to maintain the integrity of the female germline under methionine restriction. By monitoring the evolutionary history of the Unmet-GATOR2 interaction, we show that the GATOR2 complex evolved rapidly in Dipterans to recruit and repurpose an independent methyltransferase as a SAM sensor. Thus, the modular architecture of the mTORC1 pathway allows it to co-opt preexisting enzymes and expand its nutrient sensing capabilities, revealing a mechanism for conferring evolvability on an otherwise highly conserved system.
Collapse
Affiliation(s)
- Grace Y. Liu
- Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, Department of Biology; 455 Main Street, Cambridge, Massachusetts 02142, USA
- Department of Biology, Massachusetts Institute of Technology; 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
- Koch Institute for Integrative Cancer Research and Massachusetts Institute of Technology, Department of Biology; 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Patrick Jouandin
- Department of Genetics, Blavatnik Institute, Harvard Medical School; Boston, MA 02115, USA
- Howard Hughes Medical Institute, Harvard Medical School; Boston, MA 02115, USA
- Present address: Institut de Recherche en Cancérologie de Montpellier, Inserm U1194-UM-ICM; Campus Val d’Aurelle, F-34298 Montpellier Cedex 5, France
| | - Raymond E. Bahng
- Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, Department of Biology; 455 Main Street, Cambridge, Massachusetts 02142, USA
- Department of Biology, Massachusetts Institute of Technology; 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
- Koch Institute for Integrative Cancer Research and Massachusetts Institute of Technology, Department of Biology; 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Norbert Perrimon
- Department of Genetics, Blavatnik Institute, Harvard Medical School; Boston, MA 02115, USA
- Howard Hughes Medical Institute, Harvard Medical School; Boston, MA 02115, USA
| | | |
Collapse
|
11
|
Zhu X, Ricci-Tam C, Hager ER, Sgro AE. Self-cleaving peptides for expression of multiple genes in Dictyostelium discoideum. PLoS One 2023; 18:e0281211. [PMID: 36862626 PMCID: PMC9980757 DOI: 10.1371/journal.pone.0281211] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 01/18/2023] [Indexed: 03/03/2023] Open
Abstract
The social amoeba Dictyostelium discoideum is a model for a wide range of biological processes including chemotaxis, cell-cell communication, phagocytosis, and development. Interrogating these processes with modern genetic tools often requires the expression of multiple transgenes. While it is possible to transfect multiple transcriptional units, the use of separate promoters and terminators for each gene leads to large plasmid sizes and possible interference between units. In many eukaryotic systems this challenge has been addressed through polycistronic expression mediated by 2A viral peptides, permitting efficient, co-regulated gene expression. Here, we screen the most commonly used 2A peptides, porcine teschovirus-1 2A (P2A), Thosea asigna virus 2A (T2A), equine rhinitis A virus 2A (E2A), and foot-and-mouth disease virus 2A (F2A), for activity in D. discoideum and find that all the screened 2A sequences are effective. However, combining the coding sequences of two proteins into a single transcript leads to notable strain-dependent decreases in expression level, suggesting additional factors regulate gene expression in D. discoideum that merit further investigation. Our results show that P2A is the optimal sequence for polycistronic expression in D. discoideum, opening up new possibilities for genetic engineering in this model system.
Collapse
Affiliation(s)
- Xinwen Zhu
- Department of Biomedical Engineering, Boston University, Boston, MA, United States of America
- Biological Design Center, Boston University, Boston, MA, United States of America
| | - Chiara Ricci-Tam
- Department of Biomedical Engineering, Boston University, Boston, MA, United States of America
- Biological Design Center, Boston University, Boston, MA, United States of America
| | - Emily R. Hager
- Department of Biomedical Engineering, Boston University, Boston, MA, United States of America
- Biological Design Center, Boston University, Boston, MA, United States of America
| | - Allyson E. Sgro
- Department of Biomedical Engineering, Boston University, Boston, MA, United States of America
- Biological Design Center, Boston University, Boston, MA, United States of America
- * E-mail:
| |
Collapse
|
12
|
Plk4 Is a Novel Substrate of Protein Phosphatase 5. Int J Mol Sci 2023; 24:ijms24032033. [PMID: 36768356 PMCID: PMC9917060 DOI: 10.3390/ijms24032033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
The conserved Ser/Thr protein phosphatase 5 (PP5) is involved in the regulation of key cellular processes, including DNA damage repair and cell division in eukaryotes. As a co-chaperone of Hsp90, PP5 has been shown to modulate the maturation and activity of numerous oncogenic kinases. Here, we identify a novel substrate of PP5, the Polo-like kinase 4 (Plk4), which is the master regulator of centriole duplication in animal cells. We show that PP5 specifically interacts with Plk4, and is able to dephosphorylate the kinase in vitro and in vivo, which affects the interaction of Plk4 with its partner proteins. In addition, we provide evidence that PP5 and Plk4 co-localize to the centrosomes in Drosophila embryos and cultured cells. We demonstrate that PP5 is not essential; the null mutant flies are viable without a severe mitotic phenotype; however, its loss significantly reduces the fertility of the animals. Our results suggest that PP5 is a novel regulator of the Plk4 kinase in Drosophila.
Collapse
|
13
|
Jaiswal V, Varghese SA, Ghosh S. Validation of CRISPR activation system in Aedes cells using multicistronic plasmid vectors. Front Bioeng Biotechnol 2023; 11:1142415. [PMID: 37152643 PMCID: PMC10155059 DOI: 10.3389/fbioe.2023.1142415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/05/2023] [Indexed: 05/09/2023] Open
Abstract
Aedes mosquitoes transmit several pathogens including flaviviruses to humans which result in high morbidity and mortality. Owing to adaptability and climate change, these mosquito vectors are predicted to establish in new geographical areas thus exposing larger populations to the risk of infection. Therefore, control of Aedes vector is necessary to prevent disease transmission. Recently, genetic approaches to vector control have shown promise; however, the tools and methods for manipulating the mosquito genome are rather limited. While CRISPR-Cas9 system has been adapted for gene editing purposes in Aedes mosquito, the dCas9-based transcription control of genes remain unexplored. In this study we report implementation of the CRISPR activation system in Aedes cells. For this we designed, constructed and tested a bi-partite plasmid-based strategy that allows expression of the dCas9-VPR and targeting guide RNA together with a reporter cassette. Quantitative analysis of the fluorescent reporter gene levels showed a robust over-expression validating CRISPR activation in Aedes cells. This strategy and the biological parts will be useful resource for synthetic transcription factor-based robust upregulation of Aedes genes for application of synthetic biology approaches for vector control.
Collapse
|
14
|
Hashemi L, Ormsbee ME, Patel PJ, Nielson JA, Ahlander J, Padash Barmchi M. A Drosophila model of HPV16-induced cancer reveals conserved disease mechanism. PLoS One 2022; 17:e0278058. [PMID: 36508448 PMCID: PMC9744332 DOI: 10.1371/journal.pone.0278058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 11/09/2022] [Indexed: 12/14/2022] Open
Abstract
High-risk human papillomaviruses (HR-HPVs) cause almost all cervical cancers and a significant number of vaginal, vulvar, penile, anal, and oropharyngeal cancers. HPV16 and 18 are the most prevalent types among HR-HPVs and together cause more than 70% of all cervical cancers. Low vaccination rate and lack of molecularly-targeted therapeutics for primary therapy have led to a slow reduction in cervical cancer incidence and high mortality rate. Hence, creating new models of HPV-induced cancer that can facilitate understanding of the disease mechanism and identification of key cellular targets of HPV oncogenes are important for development of new interventions. Here in this study, we used the tissue-specific expression technique, Gal4-UAS, to establish the first Drosophila model of HPV16-induced cancer. Using this technique, we expressed HPV16 oncogenes E5, E6, E7 and the human E3 ligase (hUBE3A) specifically in the epithelia of Drosophila eye, which allows simple phenotype scoring without affecting the viability of the organism. We found that, as in human cells, hUBE3A is essential for cellular abnormalities caused by HPV16 oncogenes in flies. Several proteins targeted for degradation by HPV16 oncoproteins in human cells were also reduced in the Drosophila epithelial cells. Cell polarity and adhesion were compromised, resulting in impaired epithelial integrity. Cells did not differentiate to the specific cell types of ommatidia, but instead were transformed into neuron-like cells. These cells extended axon-like structures to connect to each other and exhibited malignant behavior, migrating away to distant sites. Our findings suggest that given the high conservation of genes and signaling pathways between humans and flies, the Drosophila model of HPV16- induced cancer could serve as an excellent model for understanding the disease mechanism and discovery of novel molecularly-targeted therapeutics.
Collapse
Affiliation(s)
- Lydia Hashemi
- Department of Biology, University of Oklahoma, Norman, OK, United States of America
| | - McKenzi E. Ormsbee
- Department of Biology, University of Oklahoma, Norman, OK, United States of America
| | - Prashant J. Patel
- Department of Biology, University of Oklahoma, Norman, OK, United States of America
| | - Jacquelyn A. Nielson
- Stead Family Department of Pediatrics, University of Iowa, Iowa City, IA, United States of America
| | - Joseph Ahlander
- Department of Natural Sciences, Northeastern State University, Broken Arrow, OK, United States of America
| | - Mojgan Padash Barmchi
- Department of Biology, University of Oklahoma, Norman, OK, United States of America
- * E-mail:
| |
Collapse
|
15
|
Boyd-Shiwarski CR, Shiwarski DJ, Griffiths SE, Beacham RT, Norrell L, Morrison DE, Wang J, Mann J, Tennant W, Anderson EN, Franks J, Calderon M, Connolly KA, Cheema MU, Weaver CJ, Nkashama LJ, Weckerly CC, Querry KE, Pandey UB, Donnelly CJ, Sun D, Rodan AR, Subramanya AR. WNK kinases sense molecular crowding and rescue cell volume via phase separation. Cell 2022; 185:4488-4506.e20. [PMID: 36318922 PMCID: PMC9699283 DOI: 10.1016/j.cell.2022.09.042] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 07/23/2022] [Accepted: 09/29/2022] [Indexed: 11/24/2022]
Abstract
When challenged by hypertonicity, dehydrated cells must recover their volume to survive. This process requires the phosphorylation-dependent regulation of SLC12 cation chloride transporters by WNK kinases, but how these kinases are activated by cell shrinkage remains unknown. Within seconds of cell exposure to hypertonicity, WNK1 concentrates into membraneless condensates, initiating a phosphorylation-dependent signal that drives net ion influx via the SLC12 cotransporters to restore cell volume. WNK1 condensate formation is driven by its intrinsically disordered C terminus, whose evolutionarily conserved signatures are necessary for efficient phase separation and volume recovery. This disorder-encoded phase behavior occurs within physiological constraints and is activated in vivo by molecular crowding rather than changes in cell size. This allows kinase activity despite an inhibitory ionic milieu and permits cell volume recovery through condensate-mediated signal amplification. Thus, WNK kinases are physiological crowding sensors that phase separate to coordinate a cell volume rescue response.
Collapse
Affiliation(s)
- Cary R Boyd-Shiwarski
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Pittsburgh Center for Kidney Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Daniel J Shiwarski
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Shawn E Griffiths
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Rebecca T Beacham
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Logan Norrell
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84132, USA
| | - Daryl E Morrison
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84132, USA
| | - Jun Wang
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Jacob Mann
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - William Tennant
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Eric N Anderson
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Jonathan Franks
- Center for Biological Imaging, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Michael Calderon
- Center for Biological Imaging, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Kelly A Connolly
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Muhammad Umar Cheema
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Claire J Weaver
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Lubika J Nkashama
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Claire C Weckerly
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Katherine E Querry
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Udai Bhan Pandey
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Center for Protein Conformational Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Christopher J Donnelly
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Center for Protein Conformational Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Dandan Sun
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; VA Pittsburgh Healthcare System, Pittsburgh, PA 15240, USA
| | - Aylin R Rodan
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84132, USA; Molecular Medicine Program, University of Utah, Salt Lake City, UT 84132, USA; Department of Internal Medicine, Division of Nephrology and Hypertension, University of Utah, Salt Lake City, UT 84132, USA; Medical Service, VA Salt Lake City Health Care System, Salt Lake City, UT 84148, USA
| | - Arohan R Subramanya
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Center for Protein Conformational Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Pittsburgh Center for Kidney Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; VA Pittsburgh Healthcare System, Pittsburgh, PA 15240, USA.
| |
Collapse
|
16
|
Torres TZB, Prince BC, Robison A, Rückert C. Optimized In Vitro CRISPR/Cas9 Gene Editing Tool in the West Nile Virus Mosquito Vector, Culex quinquefasciatus. INSECTS 2022; 13:856. [PMID: 36135557 PMCID: PMC9502113 DOI: 10.3390/insects13090856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/13/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Culex quinquefasciatus mosquitoes are a globally widespread vector of multiple human and animal pathogens, including West Nile virus, Saint Louis encephalitis virus, and lymphatic filariasis. Since the introduction of West Nile virus to the United States in 1999, a cumulative 52,532 cases have been reported to the CDC, including 25,849 (49.2%) neuroinvasive cases and 2456 (5%) deaths. Viral infections elicit immune responses in their mosquito vectors, including the RNA interference (RNAi) pathway considered to be the cornerstone antiviral response in insects. To investigate mosquito host genes involved in pathogen interactions, CRISPR/Cas9-mediated gene-editing can be used for functional studies of mosquito-derived cell lines. Yet, the tools available for the study of Cx. quinquefasciatus-derived (Hsu) cell lines remain largely underdeveloped compared to other mosquito species. In this study, we constructed and characterized a Culex-optimized CRISPR/Cas9 plasmid for use in Hsu cell cultures. By comparing it to the original Drosophila melanogaster CRISPR/Cas9 plasmid, we showed that the Culex-optimized plasmid demonstrated highly efficient editing of the genomic loci of the RNAi proteins Dicer-2 and PIWI4 in Hsu cells. These new tools support our ability to investigate gene targets involved in mosquito antiviral response, and thus the future development of gene-based vector control strategies.
Collapse
|
17
|
Lin B, Luo J, Lehmann R. An AMPK phosphoregulated RhoGEF feedback loop tunes cortical flow-driven amoeboid migration in vivo. SCIENCE ADVANCES 2022; 8:eabo0323. [PMID: 36103538 PMCID: PMC9473612 DOI: 10.1126/sciadv.abo0323] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 07/29/2022] [Indexed: 05/31/2023]
Abstract
Development, morphogenesis, immune system function, and cancer metastasis rely on the ability of cells to move through diverse tissues. To dissect migratory cell behavior in vivo, we developed cell type-specific imaging and perturbation techniques for Drosophila primordial germ cells (PGCs). We find that PGCs use global, retrograde cortical actin flows for orientation and propulsion during guided developmental homing. PGCs use RhoGEF2, a RhoA-specific RGS-RhoGEF, as a dose-dependent regulator of cortical flow through a feedback loop requiring its conserved PDZ and PH domains for membrane anchoring and local RhoA activation. This feedback loop is regulated for directional migration by RhoGEF2 availability and requires AMPK rather than canonical Gα12/13 signaling. AMPK multisite phosphorylation of RhoGEF2 near a conserved EB1 microtubule-binding SxIP motif releases RhoGEF2 from microtubule-dependent inhibition. Thus, we establish the mechanism by which global cortical flow and polarized RhoA activation can be dynamically adapted during natural cell navigation in a changing environment.
Collapse
Affiliation(s)
- Benjamin Lin
- Skirball Institute and Department of Cell Biology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Jonathan Luo
- Skirball Institute and Department of Cell Biology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Ruth Lehmann
- Skirball Institute and Department of Cell Biology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
18
|
Tanaka A, Nakano T, Watanabe K, Masuda K, Honda G, Kamata S, Yasui R, Kozuka-Hata H, Watanabe C, Chinen T, Kitagawa D, Sawai S, Oyama M, Yanagisawa M, Kunieda T. Stress-dependent cell stiffening by tardigrade tolerance proteins that reversibly form a filamentous network and gel. PLoS Biol 2022; 20:e3001780. [PMID: 36067153 PMCID: PMC9592077 DOI: 10.1371/journal.pbio.3001780] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 08/02/2022] [Indexed: 12/30/2022] Open
Abstract
Tardigrades are able to tolerate almost complete dehydration by entering a reversible ametabolic state called anhydrobiosis and resume their animation upon rehydration. Dehydrated tardigrades are exceptionally stable and withstand various physical extremes. Although trehalose and late embryogenesis abundant (LEA) proteins have been extensively studied as potent protectants against dehydration in other anhydrobiotic organisms, tardigrades produce high amounts of tardigrade-unique protective proteins. Cytoplasmic-abundant heat-soluble (CAHS) proteins are uniquely invented in the lineage of eutardigrades, a major class of the phylum Tardigrada and are essential for their anhydrobiotic survival. However, the precise mechanisms of their action in this protective role are not fully understood. In the present study, we first postulated the presence of tolerance proteins that form protective condensates via phase separation in a stress-dependent manner and searched for tardigrade proteins that reversibly form condensates upon dehydration-like stress. Through a comprehensive search using a desolvating agent, trifluoroethanol (TFE), we identified 336 proteins, collectively dubbed "TFE-Dependent ReversiblY condensing Proteins (T-DRYPs)." Unexpectedly, we rediscovered CAHS proteins as highly enriched in T-DRYPs, 3 of which were major components of T-DRYPs. We revealed that these CAHS proteins reversibly polymerize into many cytoskeleton-like filaments depending on hyperosmotic stress in cultured cells and undergo reversible gel-transition in vitro. Furthermore, CAHS proteins increased cell stiffness in a hyperosmotic stress-dependent manner and counteract the cell shrinkage caused by osmotic pressure, and even improved the survival against hyperosmotic stress. The conserved putative helical C-terminal region is necessary and sufficient for filament formation by CAHS proteins, and mutations disrupting the secondary structure of this region impaired both the filament formation and the gel transition. On the basis of these results, we propose that CAHS proteins are novel cytoskeleton-like proteins that form filamentous networks and undergo gel-transition in a stress-dependent manner to provide on-demand physical stabilization of cell integrity against deformative forces during dehydration and could contribute to the exceptional physical stability in a dehydrated state.
Collapse
Affiliation(s)
- Akihiro Tanaka
- Department of Biological Sciences, Graduate School of Science, The
University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Tomomi Nakano
- Department of Biological Sciences, Graduate School of Science, The
University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Kento Watanabe
- Department of Biological Sciences, Graduate School of Science, The
University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Kazutoshi Masuda
- Komaba Institute for Science, Graduate School of Arts and Sciences, The
University of Tokyo, Meguro-ku, Tokyo, Japan
- Department of Basic Science, Graduate School of Arts and Sciences, The
University of Tokyo, Meguro-ku, Tokyo, Japan
| | - Gen Honda
- Komaba Institute for Science, Graduate School of Arts and Sciences, The
University of Tokyo, Meguro-ku, Tokyo, Japan
- Department of Basic Science, Graduate School of Arts and Sciences, The
University of Tokyo, Meguro-ku, Tokyo, Japan
| | - Shuichi Kamata
- Department of Biological Sciences, Graduate School of Science, The
University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Reitaro Yasui
- Department of Biological Sciences, Graduate School of Science, The
University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Hiroko Kozuka-Hata
- Medical Proteomics Laboratory, The Institute of Medical Science, The
University of Tokyo, Minato-ku, Tokyo, Japan
| | - Chiho Watanabe
- Komaba Institute for Science, Graduate School of Arts and Sciences, The
University of Tokyo, Meguro-ku, Tokyo, Japan
- Department of Basic Science, Graduate School of Arts and Sciences, The
University of Tokyo, Meguro-ku, Tokyo, Japan
| | - Takumi Chinen
- Department of Physiological Chemistry, Graduate School of Pharmaceutical
Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Daiju Kitagawa
- Department of Physiological Chemistry, Graduate School of Pharmaceutical
Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Satoshi Sawai
- Department of Biological Sciences, Graduate School of Science, The
University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Department of Basic Science, Graduate School of Arts and Sciences, The
University of Tokyo, Meguro-ku, Tokyo, Japan
| | - Masaaki Oyama
- Medical Proteomics Laboratory, The Institute of Medical Science, The
University of Tokyo, Minato-ku, Tokyo, Japan
| | - Miho Yanagisawa
- Komaba Institute for Science, Graduate School of Arts and Sciences, The
University of Tokyo, Meguro-ku, Tokyo, Japan
- Department of Basic Science, Graduate School of Arts and Sciences, The
University of Tokyo, Meguro-ku, Tokyo, Japan
| | - Takekazu Kunieda
- Department of Biological Sciences, Graduate School of Science, The
University of Tokyo, Bunkyo-ku, Tokyo, Japan
- * E-mail:
| |
Collapse
|
19
|
Brischigliaro M, Cabrera‐Orefice A, Sturlese M, Elurbe DM, Frigo E, Fernandez‐Vizarra E, Moro S, Huynen MA, Arnold S, Viscomi C, Zeviani M. CG7630 is the
Drosophila melanogaster
homolog of the cytochrome
c
oxidase subunit COX7B. EMBO Rep 2022; 23:e54825. [PMID: 35699132 PMCID: PMC9346487 DOI: 10.15252/embr.202254825] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/16/2022] [Accepted: 05/27/2022] [Indexed: 11/24/2022] Open
Abstract
The mitochondrial respiratory chain (MRC) is composed of four multiheteromeric enzyme complexes. According to the endosymbiotic origin of mitochondria, eukaryotic MRC derives from ancestral proteobacterial respiratory structures consisting of a minimal set of complexes formed by a few subunits associated with redox prosthetic groups. These enzymes, which are the “core” redox centers of respiration, acquired additional subunits, and increased their complexity throughout evolution. Cytochrome c oxidase (COX), the terminal component of MRC, has a highly interspecific heterogeneous composition. Mammalian COX consists of 14 different polypeptides, of which COX7B is considered the evolutionarily youngest subunit. We applied proteomic, biochemical, and genetic approaches to investigate the COX composition in the invertebrate model Drosophila melanogaster. We identified and characterized a novel subunit which is widely different in amino acid sequence, but similar in secondary and tertiary structures to COX7B, and provided evidence that this object is in fact replacing the latter subunit in virtually all protostome invertebrates. These results demonstrate that although individual structures may differ the composition of COX is functionally conserved between vertebrate and invertebrate species.
Collapse
Affiliation(s)
| | - Alfredo Cabrera‐Orefice
- Radboud Institute for Molecular Life Sciences Radboud University Medical Center Nijmegen The Netherlands
| | - Mattia Sturlese
- Molecular Modeling Section Department of Pharmaceutical and Pharmacological Sciences University of Padova Padova Italy
| | - Dei M Elurbe
- Centre for Molecular and Biomolecular Informatics Radboud University Medical Center Nijmegen The Netherlands
| | - Elena Frigo
- Department of Biomedical Sciences University of Padova Padova Italy
| | - Erika Fernandez‐Vizarra
- Department of Biomedical Sciences University of Padova Padova Italy
- Veneto Institute of Molecular Medicine Padova Italy
| | - Stefano Moro
- Molecular Modeling Section Department of Pharmaceutical and Pharmacological Sciences University of Padova Padova Italy
| | - Martijn A Huynen
- Centre for Molecular and Biomolecular Informatics Radboud University Medical Center Nijmegen The Netherlands
| | - Susanne Arnold
- Radboud Institute for Molecular Life Sciences Radboud University Medical Center Nijmegen The Netherlands
- Cologne Excellence Cluster on Cellular Stress Responses in Aging‐Associated Diseases (CECAD) University of Cologne Cologne Germany
| | - Carlo Viscomi
- Department of Biomedical Sciences University of Padova Padova Italy
| | - Massimo Zeviani
- Veneto Institute of Molecular Medicine Padova Italy
- Department of Neurosciences University of Padova Padova Italy
| |
Collapse
|
20
|
The Dengue Virus Nonstructural Protein 1 (NS1) Interacts with the Putative Epigenetic Regulator DIDO1 to Promote Flavivirus Replication in Mosquito Cells. J Virol 2022; 96:e0070422. [PMID: 35652656 DOI: 10.1128/jvi.00704-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Dengue virus (DENV) NS1 is a multifunctional protein essential for viral replication. To gain insights into NS1 functions in mosquito cells, the protein interactome of DENV NS1 in C6/36 cells was investigated using a proximity biotinylation system and mass spectrometry. A total of 817 mosquito targets were identified as protein-protein interacting with DENV NS1. Approximately 14% of them coincide with interactomes previously obtained in vertebrate cells, including the oligosaccharide transferase complex, the chaperonin containing TCP-1, vesicle localization, and ribosomal proteins. Notably, other protein pathways not previously reported in vertebrate cells, such as epigenetic regulation and RNA silencing, were also found in the NS1 interactome in mosquito cells. Due to the novel and strong interactions observed for NS1 and the epigenetic regulator DIDO1 (Death-Inducer Obliterator 1), the role of DIDO1 in viral replication was further explored. Interactions between NS1 and DIDO1 were corroborated in infected mosquito cells, by colocalization and proximity ligation assays. Silencing DIDO1 expression results in a significant reduction in DENV and ZIKV replication and progeny production. Comparison of transcription analysis of mock or DENV infected cells silenced for DIDO1 revealed variations in multiple gene expression pathways, including pathways associated with DENV infection such as RNA surveillance, IMD, and Toll. These results suggest that DIDO1 is a host factor involved in the negative modulation of the antiviral response necessary for flavivirus replication in mosquito cells. Our findings uncover novel mechanisms of NS1 to promote DENV and ZIKV replication, and add to the understanding of NS1 as a multifunctional protein. IMPORTANCE Dengue is the most important mosquito-borne viral disease to humans. Dengue virus NS1 is a multifunctional protein essential for replication and modulation of innate immunity. To gain insights into NS1 functions, the protein interactome of dengue virus NS1 in Aedes albopictus cells was investigated using a proximity biotinylation system and mass spectrometry. Several protein pathways, not previously observed in vertebrate cells, such as transcription and epigenetic regulation, were found as part of the NS1 interactome in mosquito cells. Among those, DIDO1 was found to be a necessary host factor for dengue and Zika virus replication in mosquito cells. Transcription analysis of infected mosquito cells silenced for DIDO1 revealed alterations of the IMD and Toll pathways, part of the antiviral response in mosquitoes. The results suggest that DIDO1 is a host factor involved in modulation of the antiviral response and necessary for flavivirus replication.
Collapse
|
21
|
Abstract
Zika virus is a mosquito-borne flavivirus known to cause severe birth defects and neuroimmunological disorders. We have previously demonstrated that mosquito transmission of Zika virus decreases with temperature. While transmission was optimized at 29°C, it was limited at cool temperatures (<22°C) due to poor virus establishment in the mosquitoes. Temperature is one of the strongest drivers of vector-borne disease transmission due to its profound effect on ectothermic mosquito vectors, viruses, and their interaction. Although there is substantial evidence of temperature effects on arbovirus replication and dissemination inside mosquitoes, little is known about whether temperature affects virus replication directly or indirectly through mosquito physiology. In order to determine the mechanisms behind temperature-induced changes in Zika virus transmission potential, we investigated different steps of the virus replication cycle in mosquito cells (C6/36) at optimal (28°C) and cool (20°C) temperatures. We found that the cool temperature did not alter Zika virus entry or translation, but it affected genome replication and reduced the amount of double-stranded RNA replication intermediates. If replication complexes were first formed at 28°C and the cells were subsequently shifted to 20°C, the late steps in the virus replication cycle were efficiently completed. These data suggest that cool temperature decreases the efficiency of Zika virus genome replication in mosquito cells. This phenotype was observed in the Asian lineage of Zika virus, while the African lineage Zika virus was less restricted at 20°C. IMPORTANCE With half of the human population at risk, arboviral diseases represent a substantial global health burden. Zika virus, previously known to cause sporadic infections in humans, emerged in the Americas in 2015 and quickly spread worldwide. There was an urgent need to better understand the disease pathogenesis and develop therapeutics and vaccines, as well as to understand, predict, and control virus transmission. In order to efficiently predict the seasonality and geography for Zika virus transmission, we need a deeper understanding of the host-pathogen interactions and how they can be altered by environmental factors such as temperature. Identifying the step in the virus replication cycle that is inhibited under cool conditions can have implications in modeling the temperature suitability for arbovirus transmission as global environmental patterns change. Understanding the link between pathogen replication and environmental conditions can potentially be exploited to develop new vector control strategies in the future.
Collapse
|
22
|
Schellinger JN, Sun Q, Pleinis JM, An SW, Hu J, Mercenne G, Titos I, Huang CL, Rothenfluh A, Rodan AR. Chloride oscillation in pacemaker neurons regulates circadian rhythms through a chloride-sensing WNK kinase signaling cascade. Curr Biol 2022; 32:1429-1438.e6. [PMID: 35303418 PMCID: PMC8972083 DOI: 10.1016/j.cub.2022.03.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 12/02/2021] [Accepted: 03/04/2022] [Indexed: 12/21/2022]
Abstract
Central pacemaker neurons regulate circadian rhythms and undergo diurnal variation in electrical activity in mammals and flies.1,2 Circadian variation in the intracellular chloride concentration of mammalian pacemaker neurons has been proposed to influence the response to GABAergic neurotransmission through GABAA receptor chloride channels.3 However, results have been contradictory,4-9 and a recent study demonstrated circadian variation in pacemaker neuron chloride without an effect on GABA response.10 Therefore, whether and how intracellular chloride regulates circadian rhythms remains controversial. Here, we demonstrate a signaling role for intracellular chloride in the Drosophila small ventral lateral (sLNv) pacemaker neurons. In control flies, intracellular chloride increases in sLNvs over the course of the morning. Chloride transport through sodium-potassium-2-chloride (NKCC) and potassium-chloride (KCC) cotransporters is a major determinant of intracellular chloride concentrations.11Drosophila melanogaster with loss-of-function mutations in the NKCC encoded by Ncc69 have abnormally low intracellular chloride 6 h after lights on, loss of morning anticipation, and a prolonged circadian period. Loss of kcc, which is expected to increase intracellular chloride, suppresses the long-period phenotype of Ncc69 mutant flies. Activation of a chloride-inhibited kinase cascade, consisting of WNK (with no lysine [K]) kinase and its downstream substrate, Fray, is necessary and sufficient to prolong period length. Fray activation of an inwardly rectifying potassium channel, Irk1, is also required for the long-period phenotype. These results indicate that the NKCC-dependent rise in intracellular chloride in Drosophila sLNv pacemakers restrains WNK-Fray signaling and overactivation of an inwardly rectifying potassium channel to maintain normal circadian period length.
Collapse
Affiliation(s)
- Jeffrey N Schellinger
- Department of Internal Medicine, Division of Nephrology, University of Texas Southwestern, Dallas, TX 75390, USA
| | - Qifei Sun
- Department of Internal Medicine, Division of Nephrology, University of Texas Southwestern, Dallas, TX 75390, USA
| | - John M Pleinis
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112, USA
| | - Sung-Wan An
- Department of Internal Medicine, Division of Nephrology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Jianrui Hu
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112, USA
| | - Gaëlle Mercenne
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112, USA
| | - Iris Titos
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112, USA
| | - Chou-Long Huang
- Department of Internal Medicine, Division of Nephrology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Adrian Rothenfluh
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112, USA; Department of Psychiatry, Huntsman Mental Health Institute, University of Utah, Salt Lake City, UT 84108, USA; Department of Neurobiology, University of Utah, Salt Lake City, UT 84112, USA; Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Aylin R Rodan
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112, USA; Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA; Department of Internal Medicine, Division of Nephrology and Hypertension, University of Utah, Salt Lake City, UT 84132, USA; Medical Service, Veterans Affairs Salt Lake City Health Care System, Salt Lake City, UT 84148, USA.
| |
Collapse
|
23
|
Abstract
CRISPR-mediated genome engineering technologies have been adapted to a wide variety of organisms with high efficiency and specificity. The yellow fever mosquito, Aedes aegypti , is one such organism. It is also responsible for transmitting a wide variety of deadly viruses including Dengue, Zika, Yellow fever, and Chikungunya. The key to successful CRISPR-mediated gene editing applications is the delivery of both Cas9 ribonuclease and single-guide RNA (sgRNA ) to the nucleus of desired cells. Various methods have been developed for supplying the Cas9 endonuclease, sgRNA , and donor DNA to Ae. aegypti. In this chapter, we focus on methods of direct embryo delivery of editing components, presenting detailed step-by-step CRISPR/Cas9-based genome-editing protocols for inducing desired heritable edits in mosquitoes as well as insights into successful application of these protocols. We also highlight potential opportunities for customizing these protocols to manipulate the mosquito genome for innovative in vivo gene function studies.
Collapse
Affiliation(s)
- Ruichen Sun
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, USA
| | - Ming Li
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, USA
| | - Conor J McMeniman
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Omar S Akbari
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
24
|
Brischigliaro M, Frigo E, Corrà S, De Pittà C, Szabò I, Zeviani M, Costa R. Modelling of BCS1L-related human mitochondrial disease in Drosophila melanogaster. J Mol Med (Berl) 2021; 99:1471-1485. [PMID: 34274978 PMCID: PMC8455400 DOI: 10.1007/s00109-021-02110-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 06/04/2021] [Accepted: 06/29/2021] [Indexed: 11/09/2022]
Abstract
Mutations in BCS1L are the most frequent cause of human mitochondrial disease linked to complex III deficiency. Different forms of BCS1L-related diseases and more than 20 pathogenic alleles have been reported to date. Clinical symptoms are highly heterogenous, and multisystem involvement is often present, with liver and brain being the most frequently affected organs. BCS1L encodes a mitochondrial AAA + -family member with essential roles in the latest steps in the biogenesis of mitochondrial respiratory chain complex III. Since Bcs1 has been investigated mostly in yeast and mammals, its function in invertebrates remains largely unknown. Here, we describe the phenotypical, biochemical and metabolic consequences of Bcs1 genetic manipulation in Drosophila melanogaster. Our data demonstrate the fundamental role of Bcs1 in complex III biogenesis in invertebrates and provide novel, reliable models for BCS1L-related human mitochondrial diseases. These models recapitulate several features of the human disorders, collectively pointing to a crucial role of Bcs1 and, in turn, of complex III, in development, organismal fitness and physiology of several tissues.
Collapse
Affiliation(s)
| | - Elena Frigo
- Department of Biology, University of Padova, Padova, Italy
| | - Samantha Corrà
- Department of Biology, University of Padova, Padova, Italy
| | | | - Ildikò Szabò
- Department of Biology, University of Padova, Padova, Italy
| | - Massimo Zeviani
- Department of Neurosciences, University of Padova, Padova, Italy
| | - Rodolfo Costa
- Department of Biology, University of Padova, Padova, Italy. .,Italian National Research Council (CNR) Institute of Neuroscience, Padova, Italy.
| |
Collapse
|
25
|
Mariyappa D, Luhur A, Overton D, Zelhof AC. Generation of Drosophila attP containing cell lines using CRISPR-Cas9. G3-GENES GENOMES GENETICS 2021; 11:6272517. [PMID: 33963853 PMCID: PMC8496291 DOI: 10.1093/g3journal/jkab161] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/01/2021] [Indexed: 11/14/2022]
Abstract
The generation of Drosophila stable cell lines have become invaluable for complementing in vivo experiments and as tools for genetic screens. Recent advances utilizing attP/PhiC31 integrase system has permitted the creation of Drosophila cells in which recombination mediated cassette exchange (RMCE) can be utilized to generate stably integrated transgenic cell lines that contain a single copy of the transgene at the desired locus. Current techniques, besides being laborious and introducing extraneous elements, are limited to a handful of cell lines of embryonic origin. Nonetheless, with well over 100 Drosophila cell lines available, including an ever-increasing number CRISPR/Cas9 modified cell lines, a more universal methodology is needed to generate a stably integrated transgenic line from any one of the available Drosophila melanogaster cell lines. Here we describe a toolkit and procedure that combines CRISPR/Cas9 and the PhiC31 integrase system. We have generated and isolated single cell clones containing an Actin5C::dsRed cassette flanked by attP sites into the genome of Kc167 and S2R+ cell lines that mimic the in vivo attP sites located at 25C6 and 99F8 of the Drosophila genome. Furthermore, we tested the functionality of the attP docking sites utilizing two independent GFP expressing constructs flanked by attB sites that permit RMCE and therefore the insertion of any DNA of interest. Lastly, to demonstrate the universality of our methodology and existing constructs, we have successfully integrated the Actin5C::dsRed cassette flanked by attP sites into two different CNS cell lines, ML-DmBG2-c2 and ML-DmBG3-c2. Overall, the reagents and methodology reported here permit the efficient generation of stable transgenic cassettes with minimal change in the cellular genomes in existing D. melanogaster cell lines.
Collapse
Affiliation(s)
- Daniel Mariyappa
- Drosophila Genomics Resource Center, Indiana University, Bloomington, Indiana 47405, USA.,Department of Biology, Indiana University, Bloomington, Indiana 47405, USA
| | - Arthur Luhur
- Drosophila Genomics Resource Center, Indiana University, Bloomington, Indiana 47405, USA.,Department of Biology, Indiana University, Bloomington, Indiana 47405, USA
| | - Danielle Overton
- Drosophila Genomics Resource Center, Indiana University, Bloomington, Indiana 47405, USA.,Department of Biology, Indiana University, Bloomington, Indiana 47405, USA
| | - Andrew C Zelhof
- Drosophila Genomics Resource Center, Indiana University, Bloomington, Indiana 47405, USA.,Department of Biology, Indiana University, Bloomington, Indiana 47405, USA
| |
Collapse
|
26
|
Pleinis JM, Norrell L, Akella R, Humphreys JM, He H, Sun Q, Zhang F, Sosa-Pagan J, Morrison DE, Schellinger JN, Jackson LK, Goldsmith EJ, Rodan AR. WNKs are potassium-sensitive kinases. Am J Physiol Cell Physiol 2021; 320:C703-C721. [PMID: 33439774 DOI: 10.1152/ajpcell.00456.2020] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
With no lysine (K) (WNK) kinases regulate epithelial ion transport in the kidney to maintain homeostasis of electrolyte concentrations and blood pressure. Chloride ion directly binds WNK kinases to inhibit autophosphorylation and activation. Changes in extracellular potassium are thought to regulate WNKs through changes in intracellular chloride. Prior studies demonstrate that in some distal nephron epithelial cells, intracellular potassium changes with chronic low- or high-potassium diet. We, therefore, investigated whether potassium regulates WNK activity independent of chloride. We found decreased activity of Drosophila WNK and mammalian WNK3 and WNK4 in fly Malpighian (renal) tubules bathed in high extracellular potassium, even when intracellular chloride was kept constant at either ∼13 mM or 26 mM. High extracellular potassium also inhibited chloride-insensitive mutants of WNK3 and WNK4. High extracellular rubidium was also inhibitory and increased tubule rubidium. The Na+/K+-ATPase inhibitor, ouabain, which is expected to lower intracellular potassium, increased tubule Drosophila WNK activity. In vitro, potassium increased the melting temperature of Drosophila WNK, WNK1, and WNK3 kinase domains, indicating ion binding to the kinase. Potassium inhibited in vitro autophosphorylation of Drosophila WNK and WNK3, and also inhibited WNK3 and WNK4 phosphorylation of their substrate, Ste20-related proline/alanine-rich kinase (SPAK). The greatest sensitivity of WNK4 to potassium occurred in the range of 80-180 mM, encompassing physiological intracellular potassium concentrations. Together, these data indicate chloride-independent potassium inhibition of Drosophila and mammalian WNK kinases through direct effects of potassium ion on the kinase.
Collapse
Affiliation(s)
- John M Pleinis
- Molecular Medicine Program, University of Utah, Salt Lake City, Utah
| | - Logan Norrell
- Molecular Medicine Program, University of Utah, Salt Lake City, Utah
| | - Radha Akella
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas
| | - John M Humphreys
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Haixia He
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Qifei Sun
- Division of Nephrology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Feng Zhang
- Molecular Medicine Program, University of Utah, Salt Lake City, Utah
| | - Jason Sosa-Pagan
- Molecular Medicine Program, University of Utah, Salt Lake City, Utah
| | - Daryl E Morrison
- Molecular Medicine Program, University of Utah, Salt Lake City, Utah
| | - Jeffrey N Schellinger
- Division of Nephrology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | | | - Elizabeth J Goldsmith
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Aylin R Rodan
- Molecular Medicine Program, University of Utah, Salt Lake City, Utah.,Division of Nephrology and Hypertension, Department of Internal Medicine, University of Utah, Salt Lake City, Utah.,Department of Human Genetics, University of Utah, Salt Lake City, Utah.,Medical Service, Veterans Affairs Salt Lake City Health Care System, Salt Lake City, Utah
| |
Collapse
|
27
|
A selectable, plasmid-based system to generate CRISPR/Cas9 gene edited and knock-in mosquito cell lines. Sci Rep 2021; 11:736. [PMID: 33436886 PMCID: PMC7804293 DOI: 10.1038/s41598-020-80436-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/20/2020] [Indexed: 12/15/2022] Open
Abstract
Aedes (Ae.) aegypti and Ae. albopictus mosquitoes transmit arthropod-borne diseases around the globe, causing ~ 700,000 deaths each year. Genetic mutants are valuable tools to interrogate both fundamental vector biology and mosquito host factors important for viral infection. However, very few genetic mutants have been described in mosquitoes in comparison to model organisms. The relative ease of applying CRISPR/Cas9-based gene editing has transformed genome engineering and has rapidly increased the number of available gene mutants in mosquitoes. Yet, in vivo studies may not be practical for screening large sets of mutants or possible for laboratories that lack insectaries. Thus, it would be useful to adapt CRISPR/Cas9 systems to common mosquito cell lines. In this study, we generated and characterized a mosquito optimized, plasmid-based CRISPR/Cas9 system for use in U4.4 (Ae. albopictus) and Aag2 (Ae. aegypti) cell lines. We demonstrated highly efficient editing of the AGO1 locus and isolated U4.4 and Aag2 cell lines with reduced AGO1 expression. Further, we used homology-directed repair to establish knock-in Aag2 cell lines with a 3xFLAG-tag at the N-terminus of endogenous AGO1. These experimentally verified plasmids are versatile, cost-effective, and efficiently edit immune competent mosquito cell lines that are widely used in arbovirus studies.
Collapse
|
28
|
Huynh N, Depner N, Larson R, King-Jones K. A versatile toolkit for CRISPR-Cas13-based RNA manipulation in Drosophila. Genome Biol 2020; 21:279. [PMID: 33203452 PMCID: PMC7670108 DOI: 10.1186/s13059-020-02193-y] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 11/04/2020] [Indexed: 02/08/2023] Open
Abstract
Advances in CRISPR technology have immensely improved our ability to manipulate nucleic acids, and the recent discovery of the RNA-targeting endonuclease Cas13 adds even further functionality. Here, we show that Cas13 works efficiently in Drosophila, both ex vivo and in vivo. We test 44 different Cas13 variants to identify enzymes with the best overall performance and show that Cas13 could target endogenous Drosophila transcripts in vivo with high efficiency and specificity. We also develop Cas13 applications to edit mRNAs and target mitochondrial transcripts. Our vector collection represents a versatile tool collection to manipulate gene expression at the post-transcriptional level.
Collapse
Affiliation(s)
- Nhan Huynh
- Department of Biological Sciences, University of Alberta, G-504 Biological Sciences Bldg., Edmonton, Alberta, T6G 2E9, Canada
| | - Noah Depner
- Department of Biological Sciences, University of Alberta, G-504 Biological Sciences Bldg., Edmonton, Alberta, T6G 2E9, Canada
| | - Raegan Larson
- Department of Biological Sciences, University of Alberta, G-504 Biological Sciences Bldg., Edmonton, Alberta, T6G 2E9, Canada
| | - Kirst King-Jones
- Department of Biological Sciences, University of Alberta, G-504 Biological Sciences Bldg., Edmonton, Alberta, T6G 2E9, Canada.
| |
Collapse
|
29
|
Abstract
Proteinaceous liquid-liquid phase separation (LLPS) occurs when a polypeptide coalesces into a dense phase to form a liquid droplet (i.e., condensate) in aqueous solution. In vivo, functional protein-based condensates are often referred to as membraneless organelles (MLOs), which have roles in cellular processes ranging from stress responses to regulation of gene expression. Late embryogenesis abundant (LEA) proteins containing seed maturation protein domains (SMP; PF04927) have been linked to storage tolerance of orthodox seeds. The mechanism by which anhydrobiotic longevity is improved is unknown. Interestingly, the brine shrimp Artemia franciscana is the only animal known to express such a protein (AfrLEA6) in its anhydrobiotic embryos. Ectopic expression of AfrLEA6 (AWM11684) in insect cells improves their desiccation tolerance and a fraction of the protein is sequestered into MLOs, while aqueous AfrLEA6 raises the viscosity of the cytoplasm. LLPS of AfrLEA6 is driven by the SMP domain, while the size of formed MLOs is regulated by a domain predicted to engage in protein binding. AfrLEA6 condensates formed in vitro selectively incorporate target proteins based on their surface charge, while cytoplasmic MLOs formed in AfrLEA6-transfected insect cells behave like stress granules. We suggest that AfrLEA6 promotes desiccation tolerance by engaging in two distinct molecular mechanisms: by raising cytoplasmic viscosity at even modest levels of water loss to promote cell integrity during drying and by forming condensates that may act as protective compartments for desiccation-sensitive proteins. Identifying and understanding the molecular mechanisms that govern anhydrobiosis will lead to significant advancements in preserving biological samples.
Collapse
|
30
|
Akintayo A, Mayoral J, Asada M, Tang J, Sundaram S, Stanley P. Point mutations that inactivate MGAT4D-L, an inhibitor of MGAT1 and complex N-glycan synthesis. J Biol Chem 2020; 295:14053-14064. [PMID: 32763972 DOI: 10.1074/jbc.ra120.014784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/31/2020] [Indexed: 11/06/2022] Open
Abstract
The membrane-bound, long form of MGAT4D, termed MGAT4D-L, inhibits MGAT1 activity in transfected cells and reduces the generation of complex N-glycans. MGAT1 is the GlcNAc-transferase that initiates complex and hybrid N-glycan synthesis. We show here that Drosophila MGAT1 was also inhibited by MGAT4D-L in S2 cells. In mammalian cells, expression of MGAT4D-L causes the substrate of MGAT1 (Man5GlcNAc2Asn) to accumulate on glycoproteins, a change that is detected by the lectin Galanthus nivalis agglutinin (GNA). Using GNA binding as an assay for the inhibition of MGAT1 in MGAT4D-L transfectants, we performed site-directed mutagenesis to determine requirements for MGAT1 inhibition. Deletion of 25 amino acids (aa) from the C terminus inactivated MGAT4D-L, but deletion of 20 aa did not. Conversion of the five key amino acids (PSLFQ) to Ala, or deletion of PSLFQ in the context of full-length MGAT4D-L, also inactivated MGAT1 inhibitory activity. Nevertheless, mutant, inactive MGAT4D-L interacted with MGAT1 in co-immuno-precipitation experiments. The PSLFQ sequence also occurs in MGAT4A and MGAT4B GlcNAc-transferases. However, neither inhibited MGAT1 in transfected CHO cells. MGAT4D-L inhibitory activity could be partially transferred by attaching PSLFQ or the 25-aa C terminus of MGAT4D-L to the C terminus of MGAT1. Mutation of each amino acid in PSLFQ to Ala identified both Leu and Phe as independently essential for MGAT4D-L activity. Thus, replacement of either Leu-395 or Phe-396 with Ala led to inactivation of MGAT4D-L inhibitory activity. These findings provide new insights into the mechanism of inhibition of MGAT1 by MGAT4D-L, and for the development of small molecule inhibitors of MGAT1.
Collapse
Affiliation(s)
- Ayodele Akintayo
- Dept. of Cell Biology, Albert Einstein College of Medicine, New York, New York
| | - Joshua Mayoral
- Dept. of Cell Biology, Albert Einstein College of Medicine, New York, New York
| | - Masahiro Asada
- Dept. of Cell Biology, Albert Einstein College of Medicine, New York, New York
| | - Jian Tang
- Dept. of Cell Biology, Albert Einstein College of Medicine, New York, New York
| | - Subha Sundaram
- Dept. of Cell Biology, Albert Einstein College of Medicine, New York, New York
| | - Pamela Stanley
- Dept. of Cell Biology, Albert Einstein College of Medicine, New York, New York
| |
Collapse
|
31
|
Transcriptomic analyses of Aedes aegypti cultured cells and ex vivo midguts in response to an excess or deficiency of heme: a quest for transcriptionally-regulated heme transporters. BMC Genomics 2020; 21:604. [PMID: 32867680 PMCID: PMC7460771 DOI: 10.1186/s12864-020-06981-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 08/11/2020] [Indexed: 12/26/2022] Open
Abstract
Background Aedes aegypti is the principle vector of many arboviruses, including dengue virus and Zika virus, which are transmitted when an infected female mosquito takes a blood meal in order to initiate vitellogenesis. During blood digestion, ~ 10 mM heme-iron is ingested into the midgut lumen. While heme acts as both a nutrient and signaling molecule during blood digestion, it can also be highly toxic if left unchaperoned. Both signaling by, and degradation of, heme are intracellular processes, occurring in the nucleus and cytoplasm, respectively. However, the precise mechanism of heme uptake into the midgut epithelium is not currently known. Results We used next generation RNA sequencing with the goal to identify genes that code for membrane bound heme import protein(s) responsible for heme uptake into the midgut epithelium. Heme deprivation increased uptake of a heme fluorescent analog in cultured cells, while treatment of midguts with an excess of heme decreased uptake, confirming physiological changes were occurring in these heme-sensitive cells/tissues prior to sequencing. A list of candidate genes was assembled for each of the experimental sample sets, which included Aag2 and A20 cultured cells as well as midgut tissue, based on the results of a differential expression analysis, soft cluster analysis and number of predicted transmembrane domains. Lastly, the functions related to heme transport were examined through RNAi knockdown. Conclusions Despite a large number of transmembrane domain containing genes differentially expressed in response to heme, very few were highly differentially expressed in any of the datasets examined. RNAi knockdown of a subset of candidates resulted in subtle changes in heme uptake, but minimal overall disruption to blood digestion/egg production. These results could indicate that heme import in Ae. aegypti may be controlled by a redundant system of multiple distinct transport proteins. Alternatively, heme membrane bound transport in Ae. aegypti could be regulated post-translationally.
Collapse
|
32
|
Strategies for Functional Interrogation of Big Cancer Data Using Drosophila Cancer Models. Int J Mol Sci 2020; 21:ijms21113754. [PMID: 32466549 PMCID: PMC7312059 DOI: 10.3390/ijms21113754] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/21/2020] [Accepted: 05/22/2020] [Indexed: 12/12/2022] Open
Abstract
Rapid development of high throughput genome analysis technologies accompanied by significant reduction in costs has led to the accumulation of an incredible amount of data during the last decade. The emergence of big data has had a particularly significant impact in biomedical research by providing unprecedented, systems-level access to many disease states including cancer, and has created promising opportunities as well as new challenges. Arguably, the most significant challenge cancer research currently faces is finding effective ways to use big data to improve our understanding of molecular mechanisms underlying tumorigenesis and developing effective new therapies. Functional exploration of these datasets and testing predictions from computational approaches using experimental models to interrogate their biological relevance is a key step towards achieving this goal. Given the daunting scale and complexity of the big data available, experimental systems like Drosophila that allow large-scale functional studies and complex genetic manipulations in a rapid, cost-effective manner will be of particular importance for this purpose. Findings from these large-scale exploratory functional studies can then be used to formulate more specific hypotheses to be explored in mammalian models. Here, I will discuss several strategies for functional exploration of big cancer data using Drosophila cancer models.
Collapse
|
33
|
Hallinen KM, Guardiola-Flores KA, Wood KB. Fluorescent reporter plasmids for single-cell and bulk-level composition assays in E. faecalis. PLoS One 2020; 15:e0232539. [PMID: 32369497 PMCID: PMC7199960 DOI: 10.1371/journal.pone.0232539] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 04/16/2020] [Indexed: 01/04/2023] Open
Abstract
Fluorescent reporters are an important tool for monitoring dynamics of bacterial populations at the single cell and community level. While there are a large range of reporter constructs available–particularly for common model organisms like E. coli–fewer options exist for other species, including E. faecalis, a gram-positive opportunistic pathogen. To expand the potential toolkit available for E. faecalis, we exchanged the original fluorescent reporter in a previously developed plasmid (pBSU101) with one of eight fluorescent reporters and confirmed that all constructs exhibited detectable fluorescence in single E. faecalis cells and mixed biofilm communities. To identify promising constructs for bulk-level experiments, we then measured the fluorescence spectra from E. faecalis populations in microwell plate (liquid) cultures during different phases of aerobic growth. Cultures showed density- and reporter-specific variations in fluorescent signal, though spectral signatures of all reporters become clear in late-exponential and stationary-phase populations. Based on these results, we identified six pairs of reporters that can be combined with simple spectral unmixing to accurately estimate population composition in 2-strain mixtures at or near stationary phase. This approach offers a simple and scalable method for selection and competition experiments in simple two-species populations under aerobic growth conditions. Finally, we incorporated codon-optimized variants of blue (BFP) and red (RFP) reporters and show that they lead to increased fluorescence in exponentially growing cells. As a whole, the results inform the scope of application of different reporters and identify both single reporters and reporter pairs that are promising for fluorescence-based assays at bulk and single-cell levels in E. faecalis.
Collapse
Affiliation(s)
- Kelsey M. Hallinen
- Department of Biophysics, University of Michigan, Ann Arbor, Michigan, United States of America
| | | | - Kevin B. Wood
- Department of Biophysics, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Physics, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
34
|
Huynh N, Wang S, King-Jones K. Spatial and temporal control of gene manipulation in Drosophila via drug-activated Cas9 nucleases. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 120:103336. [PMID: 32105778 DOI: 10.1016/j.ibmb.2020.103336] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/18/2020] [Accepted: 02/20/2020] [Indexed: 06/10/2023]
Abstract
Advances in CRISPR/Cas9 have revolutionized molecular biology and greatly facilitated the ability to manipulate gene function through the creation of precisely engineered mutants. We recently reported a collection of modular gateway-compatible Cas9/gRNA Drosophila lines to interfere with gene expression in a tissue-specific manner, including polytene tissues. However, most current in vivo CRISPR/Cas9 tools cannot temporally control the induction of Cas9 or gRNAs via external stimuli such as RU486. A drug-inducible CRISPR/Cas9 system would allow studying genes at later stages where early lethality is an issue. This would be especially useful when combined with tissue-specific expression of Cas9 or gRNAs, allowing for full spatiotemporal control. Here, we present a RU486-inducible version of Cas9 and also show that a Rapamycin-inducible Cas9, previously used in mammalian cell culture, works in Drosophila as well. Both RU486 and rapamycin-inducible Cas9 work in vivo and in Drosophila cell culture. We also present split Cas9 constructs for rapamycin-dependent gene disruption and activation. These approaches establish drug-inducible and thus temporally controlled CRISPR/Cas9 tools for gene disruption and expression in a living model organism. Our CRISPR/Cas9 vector collection can be easily adapted for any tissue and provides higher fidelity compared to RNAi approaches.
Collapse
Affiliation(s)
- Nhan Huynh
- Department of Biological Sciences, Faculty of Sciences, University of Alberta, G-502 Biological Sciences Bldg., Edmonton, Alberta, T6G 2E9, Canada
| | - Song Wang
- Department of Biological Sciences, Faculty of Sciences, University of Alberta, G-502 Biological Sciences Bldg., Edmonton, Alberta, T6G 2E9, Canada
| | - Kirst King-Jones
- Department of Biological Sciences, Faculty of Sciences, University of Alberta, G-502 Biological Sciences Bldg., Edmonton, Alberta, T6G 2E9, Canada.
| |
Collapse
|
35
|
Boukhatmi H, Martins T, Pillidge Z, Kamenova T, Bray S. Notch Mediates Inter-tissue Communication to Promote Tumorigenesis. Curr Biol 2020; 30:1809-1820.e4. [DOI: 10.1016/j.cub.2020.02.088] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 02/03/2020] [Accepted: 02/27/2020] [Indexed: 12/19/2022]
|
36
|
Addressing Manufacturing Challenges for Commercialization of iPSC-Based Therapies. Methods Mol Biol 2020; 2286:179-198. [PMID: 32430594 DOI: 10.1007/7651_2020_288] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The development of reprogramming technology to generate human induced pluripotent stem cells (iPSCs) has tremendously influenced the field of regenerative medicine and clinical therapeutics where curative cell replacement therapies can be used in the treatment of devastating diseases such as Parkinson's disease (PD) and diabetes. In order to commercialize these therapies to treat a large number of individuals, it is important to demonstrate the safety and efficacy of these therapies and ensure that the manufacturing process for iPSC-derived functional cells can be industrialized at an affordable cost. However, there are a number of manufacturing obstacles that need to be addressed in order to meet this vision. It is important to note that the manufacturing process for generation of iPSC-derived specialized cells is relatively long and fairly complex and requires differentiation of high-quality iPSCs into specialized cells in a controlled manner. In this chapter, we have summarized our efforts to address the main challenges present in the industrialization of iPSC-derived cell therapy products with focus on the development of a current Good Manufacturing Practice (cGMP)-compliant iPSC manufacturing process, a comprehensive iPSC characterization platform, long-term stability of cGMP compliant iPSCs, and innovative technologies to address some of the scale-up challenges in establishment of iPSC processing in 3D computer-controlled bioreactors.
Collapse
|
37
|
Barata AG, Dick TP. A role for peroxiredoxins in H 2O 2- and MEKK-dependent activation of the p38 signaling pathway. Redox Biol 2020; 28:101340. [PMID: 31629169 PMCID: PMC6807362 DOI: 10.1016/j.redox.2019.101340] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 10/01/2019] [Accepted: 10/07/2019] [Indexed: 12/30/2022] Open
Abstract
The p38 mitogen-activated protein kinase (MAPK) signaling pathway plays an important role in the cellular response to various stresses and its deregulation accompanies pathological conditions such as cancer and chronic inflammation. Hydrogen peroxide (H2O2) is a well-established activator of the p38 MAPK signaling pathway. However, the mechanisms of H2O2-induced p38 activation are not yet fully understood. In Drosophila cells, we find that H2O2-induced activation of p38 depends on the MAPK kinase kinase (MAP3K) Mekk1. In line with the emerging role of peroxiredoxins as H2O2 sensors and signal transmitters we observe an H2O2-dependent interaction between Mekk1 and the cytosolic peroxiredoxin of Drosophila, Jafrac1. In human cells, MEKK4 (the homologue of Mekk1) and peroxiredoxin-2 (Prx2) interact in a similar manner, suggesting an evolutionarily conserved mechanism. In both organisms, H2O2 induces transient disulfide-linked conjugates between the MAP3K and a typical 2-Cys peroxiredoxin. We propose that these conjugates represent the relaying of oxidative equivalents from H2O2 to the MAP3K and that the oxidation of Mekk1/MEKK4 leads to the downstream activation of p38 MAPK. Indeed, the depletion of cytosolic 2-Cys peroxiredoxins in human cells diminished H2O2-induced activation of p38 MAPK.
Collapse
Affiliation(s)
- Ana G Barata
- Division of Redox Regulation, DKFZ-ZMBH Alliance, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Tobias P Dick
- Division of Redox Regulation, DKFZ-ZMBH Alliance, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| |
Collapse
|
38
|
Yang Q, Yu CH, Zhao F, Dang Y, Wu C, Xie P, Sachs MS, Liu Y. eRF1 mediates codon usage effects on mRNA translation efficiency through premature termination at rare codons. Nucleic Acids Res 2019; 47:9243-9258. [PMID: 31410471 PMCID: PMC6755126 DOI: 10.1093/nar/gkz710] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/23/2019] [Accepted: 08/02/2019] [Indexed: 12/16/2022] Open
Abstract
Codon usage bias is a universal feature of eukaryotic and prokaryotic genomes and plays an important role in regulating gene expression levels. A major role of codon usage is thought to regulate protein expression levels by affecting mRNA translation efficiency, but the underlying mechanism is unclear. By analyzing ribosome profiling results, here we showed that codon usage regulates translation elongation rate and that rare codons are decoded more slowly than common codons in all codon families in Neurospora. Rare codons resulted in ribosome stalling in manners both dependent and independent of protein sequence context and caused premature translation termination. This mechanism was shown to be conserved in Drosophila cells. In both Neurospora and Drosophila cells, codon usage plays an important role in regulating mRNA translation efficiency. We found that the rare codon-dependent premature termination is mediated by the translation termination factor eRF1, which recognizes ribosomes stalled on rare sense codons. Silencing of eRF1 expression resulted in codon usage-dependent changes in protein expression. Together, these results establish a mechanism for how codon usage regulates mRNA translation efficiency.
Collapse
Affiliation(s)
- Qian Yang
- Department of Physiology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Chien-Hung Yu
- Department of Physiology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA.,Department of Biochemistry and Molecular Biology, National Cheng Kung University, Tainan 701, Taiwan
| | - Fangzhou Zhao
- Department of Physiology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Yunkun Dang
- Department of Physiology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA.,State Key Laboratory for Conservation and Utilization of Bio-Resources and Center for Life Science, School of Life Sciences, Yunnan University, Kunming, Yunnan 650500, China
| | - Cheng Wu
- Department of Biology, Texas A&M University, College Station, TX 77843-3258, USA
| | - Pancheng Xie
- Department of Physiology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA.,Jiangsu Key Laboratory of Neuropsychiatric Diseases and Cambridge-Suda Genomic Resource Center, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Matthew S Sachs
- Department of Biology, Texas A&M University, College Station, TX 77843-3258, USA
| | - Yi Liu
- Department of Physiology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| |
Collapse
|
39
|
Huynh N, Ou Q, Cox P, Lill R, King-Jones K. Glycogen branching enzyme controls cellular iron homeostasis via Iron Regulatory Protein 1 and mitoNEET. Nat Commun 2019; 10:5463. [PMID: 31784520 PMCID: PMC6884552 DOI: 10.1038/s41467-019-13237-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 10/22/2019] [Indexed: 11/25/2022] Open
Abstract
Iron Regulatory Protein 1 (IRP1) is a bifunctional cytosolic iron sensor. When iron levels are normal, IRP1 harbours an iron-sulphur cluster (holo-IRP1), an enzyme with aconitase activity. When iron levels fall, IRP1 loses the cluster (apo-IRP1) and binds to iron-responsive elements (IREs) in messenger RNAs (mRNAs) encoding proteins involved in cellular iron uptake, distribution, and storage. Here we show that mutations in the Drosophila 1,4-Alpha-Glucan Branching Enzyme (AGBE) gene cause porphyria. AGBE was hitherto only linked to glycogen metabolism and a fatal human disorder known as glycogen storage disease type IV. AGBE binds specifically to holo-IRP1 and to mitoNEET, a protein capable of repairing IRP1 iron-sulphur clusters. This interaction ensures nuclear translocation of holo-IRP1 and downregulation of iron-dependent processes, demonstrating that holo-IRP1 functions not just as an aconitase, but throttles target gene expression in anticipation of declining iron requirements. Higher organisms regulate cellular iron concentrations through Iron Regulatory Proteins (IRPs), which regulate specific messenger RNAs. Here Huynh et al. show that IRP1 requires a Glycogen Branching Enzyme for proper function, and that IRP1 has additional regulatory roles in cell nuclei.
Collapse
Affiliation(s)
- Nhan Huynh
- Department of Biological Sciences, University of Alberta, G-504 Biological Sciences Bldg, Edmonton, Alberta, T6G 2E9, Canada
| | - Qiuxiang Ou
- Department of Biological Sciences, University of Alberta, G-504 Biological Sciences Bldg, Edmonton, Alberta, T6G 2E9, Canada
| | - Pendleton Cox
- Department of Biological Sciences, University of Alberta, G-504 Biological Sciences Bldg, Edmonton, Alberta, T6G 2E9, Canada
| | - Roland Lill
- Institut für Zytobiologie und Zytopathologie, Philipps-Universität Marburg, Robert-Koch-Strasse 6, 35032, Marburg, Germany.,LOEWE Zentrum für Synthetische Mikrobiologie SynMikro, Philipps-Universität Marburg, Hans-Meerwein-Straße, 35043, Marburg, Germany
| | - Kirst King-Jones
- Department of Biological Sciences, University of Alberta, G-504 Biological Sciences Bldg, Edmonton, Alberta, T6G 2E9, Canada.
| |
Collapse
|
40
|
Rashed MZ, Belott CJ, Janis BR, Menze MA, Williams SJ. New insights into anhydrobiosis using cellular dielectrophoresis-based characterization. BIOMICROFLUIDICS 2019; 13:064113. [PMID: 31768199 PMCID: PMC6858285 DOI: 10.1063/1.5126810] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 11/04/2019] [Indexed: 05/04/2023]
Abstract
Late embryogenesis abundant (LEA) proteins are found in desiccation-tolerant species from all domains of life. Despite several decades of investigation, the molecular mechanisms by which LEA proteins confer desiccation tolerance are still unclear. In this study, dielectrophoresis (DEP) was used to determine the electrical properties of Drosophila melanogaster (Kc167) cells ectopically expressing LEA proteins from the anhydrobiotic brine shrimp, Artemia franciscana. Dielectrophoresis-based characterization data demonstrate that the expression of two different LEA proteins, AfrLEA3m and AfrLEA6, increases cytoplasmic conductivity of Kc167 cells to a similar extent above control values. The impact on cytoplasmic conductivity was surprising, given that the concentration of cytoplasmic ions is much higher than the concentrations of ectopically expressed proteins. The DEP data also supported previously reported data suggesting that AfrLEA3m can interact directly with membranes during water stress. This hypothesis was strengthened using scanning electron microscopy, where cells expressing AfrLEA3m were found to retain more circular morphology during desiccation, while control cells exhibited a larger variety of shapes in the desiccated state. These data demonstrate that DEP can be a powerful tool to investigate the role of LEA proteins in desiccation tolerance and may allow to characterize protein-membrane interactions in vivo, when direct observations are challenging.
Collapse
Affiliation(s)
- Mohamed Z Rashed
- Department of Mechanical Engineering, University of Louisville, 200 Sackett Hall, Louisville, Kentucky 40208, USA
| | - Clinton J Belott
- Department of Biology, University of Louisville, Life Sciences Building, Louisville, Kentucky 40292, USA
| | - Brett R Janis
- Department of Biology, University of Louisville, Life Sciences Building, Louisville, Kentucky 40292, USA
| | - Michael A Menze
- Department of Biology, University of Louisville, Life Sciences Building, Louisville, Kentucky 40292, USA
| | - Stuart J Williams
- Department of Mechanical Engineering, University of Louisville, 200 Sackett Hall, Louisville, Kentucky 40208, USA
| |
Collapse
|
41
|
Garcia-Marques J, Yang CP, Espinosa-Medina I, Mok K, Koyama M, Lee T. Unlimited Genetic Switches for Cell-Type-Specific Manipulation. Neuron 2019; 104:227-238.e7. [PMID: 31395429 DOI: 10.1016/j.neuron.2019.07.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 06/11/2019] [Accepted: 07/03/2019] [Indexed: 01/23/2023]
Abstract
Gaining independent genetic access to discrete cell types is critical to interrogate their biological functions as well as to deliver precise gene therapy. Transcriptomics has allowed us to profile cell populations with extraordinary precision, revealing that cell types are typically defined by a unique combination of genetic markers. Given the lack of adequate tools to target cell types based on multiple markers, most cell types remain inaccessible to genetic manipulation. Here we present CaSSA, a platform to create unlimited genetic switches based on CRISPR/Cas9 (Ca) and the DNA repair mechanism known as single-strand annealing (SSA). CaSSA allows engineering of independent genetic switches, each responding to a specific gRNA. Expressing multiple gRNAs in specific patterns enables multiplex cell-type-specific manipulations and combinatorial genetic targeting. CaSSA is a new genetic tool that conceptually works as an unlimited number of recombinases and will facilitate genetic access to cell types in diverse organisms.
Collapse
Affiliation(s)
- Jorge Garcia-Marques
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Ching-Po Yang
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | | | - Kent Mok
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Minoru Koyama
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Tzumin Lee
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA.
| |
Collapse
|
42
|
A novel protein domain in an ancestral splicing factor drove the evolution of neural microexons. Nat Ecol Evol 2019; 3:691-701. [DOI: 10.1038/s41559-019-0813-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 01/16/2019] [Indexed: 02/02/2023]
|
43
|
Rosales Ramirez R, Ludert JE. The Dengue Virus Nonstructural Protein 1 (NS1) Is Secreted from Mosquito Cells in Association with the Intracellular Cholesterol Transporter Chaperone Caveolin Complex. J Virol 2019; 93:e01985-18. [PMID: 30463973 PMCID: PMC6364000 DOI: 10.1128/jvi.01985-18] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 11/10/2018] [Indexed: 12/16/2022] Open
Abstract
Dengue virus (DENV) is a mosquito-borne virus of the family Flaviviridae The RNA viral genome encodes three structural and seven nonstructural proteins. Nonstructural protein 1 (NS1) is a multifunctional protein actively secreted in vertebrate and mosquito cells during infection. In mosquito cells, NS1 is secreted in a caveolin-1-dependent manner by an unconventional route. The caveolin chaperone complex (CCC) is a cytoplasmic complex formed by caveolin-1 and the chaperones FKBP52, Cy40, and CyA and is responsible for the cholesterol traffic inside the cell. In this work, we demonstrate that in mosquito cells, but not in vertebrate cells, NS1 associates with and relies on the CCC for secretion. Treatment of mosquito cells with classic secretion inhibitors, such as brefeldin A, Golgicide A, and Fli-06, showed no effect on NS1 secretion but significant reductions in recombinant luciferase secretion and virion release. Silencing the expression of CAV-1 or FKBP52 with short interfering RNAs or the inhibition of CyA by cyclosporine resulted in significant decrease in NS1 secretion, again without affecting virion release. Colocalization, coimmunoprecipitation, and proximity ligation assays indicated that NS1 colocalizes and interacts with all proteins of the CCC. In addition, CAV-1 and FKBP52 expression was found augmented in DENV-infected cells. Results obtained with Zika virus-infected cells suggest that in mosquito cells, ZIKV NS1 follows the same secretory pathway as that observed for DENV NS1. These results uncover important differences in the dengue virus-cell interactions between the vertebrate host and the mosquito vector as well as novel functions for the chaperone caveolin complex.IMPORTANCE The dengue virus protein NS1 is secreted efficiently from both infected vertebrate and mosquito cells. Previously, our group reported that NS1 secretion in mosquito cells follows an unconventional secretion pathway dependent on caveolin-1. In this work, we demonstrate that in mosquito cells, but not in vertebrate cells, NS1 secretion takes place in association with the chaperone caveolin complex, a complex formed by caveolin-1 and the chaperones FKBP52, CyA, and Cy40, which are in charge of cholesterol transport inside the cell. Results obtained with ZIKV-infected mosquito cells suggest that ZIKV NS1 is released following an unconventional secretory route in association with the chaperone caveolin complex. These results uncover important differences in the virus-cell interactions between the vertebrate host and the mosquito vector, as well as novel functions for the chaperone caveolin complex. Moreover, manipulation of the NS1 secretory route may prove a valuable strategy to combat these two mosquito-borne diseases.
Collapse
Affiliation(s)
- Romel Rosales Ramirez
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City, Mexico
| | - Juan E Ludert
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City, Mexico
| |
Collapse
|
44
|
Luhur A, Klueg KM, Zelhof AC. Generating and working with Drosophila cell cultures: Current challenges and opportunities. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2018; 8:e339. [PMID: 30561900 DOI: 10.1002/wdev.339] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 10/30/2018] [Accepted: 11/21/2018] [Indexed: 12/26/2022]
Abstract
The use of Drosophila cell cultures has positively impacted both fundamental and biomedical research. The most widely used cell lines: Schneider, Kc, the CNS and imaginal disc lines continue to be the choice for many applications. Drosophila cell lines provide a homogenous source of cells suitable for biochemical experimentations, transcriptomics, functional genomics, and biomedical applications. They are amenable to RNA interference and serve as a platform for high-throughput screens to identify relevant candidate genes or drugs for any biological process. Currently, CRISPR-based functional genomics are also being developed for Drosophila cell lines. Even though many uniquely derived cell lines exist, cell genetic techniques such the transgenic UAS-GAL4-based RasV12 oncogene expression, CRISPR-Cas9 editing and recombination mediated cassette exchange are likely to drive the establishment of many more lines from specific tissues, cells, or genotypes. However, the pace of creating new lines is hindered by several factors inherent to working with Drosophila cell cultures: single cell cloning, optimal media formulations and culture conditions capable of supporting lines from novel tissue sources or genotypes. Moreover, even though many Drosophila cell lines are morphologically and transcriptionally distinct it may be necessary to implement a standard for Drosophila cell line authentication, ensuring the identity and purity of each cell line. Altogether, recent advances and a standardized authentication effort should improve the utility of Drosophila cell cultures as a relevant model for fundamental and biomedical research. This article is categorized under: Technologies > Analysis of Cell, Tissue, and Animal Phenotypes.
Collapse
Affiliation(s)
- Arthur Luhur
- Department of Biology, Drosophila Genomics Resource Center, Indiana University Bloomington, Bloomington, Indiana
| | - Kristin M Klueg
- Department of Biology, Drosophila Genomics Resource Center, Indiana University Bloomington, Bloomington, Indiana
| | - Andrew C Zelhof
- Department of Biology, Drosophila Genomics Resource Center, Indiana University Bloomington, Bloomington, Indiana
| |
Collapse
|
45
|
Chai A, Mateus AM, Oozeer F, Sousa-Nunes R. Spatiotemporally controlled genetic perturbation for efficient large-scale studies of cell non-autonomous effects. eLife 2018; 7:e38393. [PMID: 30479273 PMCID: PMC6320068 DOI: 10.7554/elife.38393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 11/26/2018] [Indexed: 11/13/2022] Open
Abstract
Studies in genetic model organisms have revealed much about the development and pathology of complex tissues. Most have focused on cell-intrinsic gene functions and mechanisms. Much less is known about how transformed, or otherwise functionally disrupted, cells interact with healthy ones toward a favorable or pathological outcome. This is largely due to technical limitations. We developed new genetic tools in Drosophila melanogaster that permit efficient multiplexed gain- and loss-of-function genetic perturbations with separable spatial and temporal control. Importantly, our novel tool-set is independent of the commonly used GAL4/UAS system, freeing the latter for additional, non-autonomous, genetic manipulations; and is built into a single strain, allowing one-generation interrogation of non-autonomous effects. Altogether, our design opens up efficient genome-wide screens on any deleterious phenotype, once plasmid or genome engineering is used to place the desired miRNA(s) or ORF(s) into our genotype. Specifically, we developed tools to study extrinsic effects on neural tumor growth but the strategy presented has endless applications within and beyond neurobiology, and in other model organisms.
Collapse
Affiliation(s)
- Andrea Chai
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and NeuroscienceKing’s College LondonLondonUnited Kingdom
| | - Ana M Mateus
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and NeuroscienceKing’s College LondonLondonUnited Kingdom
| | - Fazal Oozeer
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and NeuroscienceKing’s College LondonLondonUnited Kingdom
| | - Rita Sousa-Nunes
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and NeuroscienceKing’s College LondonLondonUnited Kingdom
| |
Collapse
|
46
|
N-cadherin provides a cis and trans ligand for astrotactin that functions in glial-guided neuronal migration. Proc Natl Acad Sci U S A 2018; 115:10556-10563. [PMID: 30262652 PMCID: PMC6196552 DOI: 10.1073/pnas.1811100115] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Prior studies demonstrate that astrotactin (ASTN1) provides a neuronal receptor for glial-guided CNS migration. Here we report that ASTN1 binds N-cadherin (CDH2) and that the ASTN1:CDH2 interaction supports cell-cell adhesion. To test the function of ASTN1:CDH2 binding in glial-guided neuronal migration, we generated a conditional loss of Cdh2 in cerebellar granule cells and in glia. Granule cell migration was slowed in cerebellar slice cultures after a conditional loss of neuronal Cdh2, and more severe migration defects occurred after a conditional loss of glial Cdh2 Expression in granule cells of a mutant form of ASTN1 that does not bind CDH2 also slowed migration. Moreover, in vitro chimeras of granule cells and glia showed impaired neuron-glia attachment in the absence of glial, but not neuronal, Cdh2 Thus, cis and trans bindings of ASTN1 to neuronal and glial CDH2 form an asymmetric neuron-glial bridge complex that promotes glial-guided neuronal migration.
Collapse
|
47
|
Di Cara F, Bülow MH, Simmonds AJ, Rachubinski RA. Dysfunctional peroxisomes compromise gut structure and host defense by increased cell death and Tor-dependent autophagy. Mol Biol Cell 2018; 29:2766-2783. [PMID: 30188767 PMCID: PMC6249834 DOI: 10.1091/mbc.e18-07-0434] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The gut has a central role in digestion and nutrient absorption, but it also serves in defending against pathogens, engages in mutually beneficial interactions with commensals, and is a major source of endocrine signals. Gut homeostasis is necessary for organismal health and changes to the gut are associated with conditions like obesity and diabetes and inflammatory illnesses like Crohn's disease. We report that peroxisomes, organelles involved in lipid metabolism and redox balance, are required to maintain gut epithelium homeostasis and renewal in Drosophila and for survival and development of the organism. Dysfunctional peroxisomes in gut epithelial cells activate Tor kinase-dependent autophagy that increases cell death and epithelial instability, which ultimately alter the composition of the intestinal microbiota, compromise immune pathways in the gut in response to infection, and affect organismal survival. Peroxisomes in the gut effectively function as hubs that coordinate responses from stress, metabolic, and immune signaling pathways to maintain enteric health and the functionality of the gut-microbe interface.
Collapse
Affiliation(s)
- Francesca Di Cara
- Department of Cell Biology, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Margret H Bülow
- Development, Genetics and Molecular Physiology, LIMES (Life and Medical Sciences), University of Bonn, D-53115 Bonn, Germany
| | - Andrew J Simmonds
- Department of Cell Biology, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | | |
Collapse
|
48
|
Chaverra-Rodriguez D, Macias VM, Hughes GL, Pujhari S, Suzuki Y, Peterson DR, Kim D, McKeand S, Rasgon JL. Targeted delivery of CRISPR-Cas9 ribonucleoprotein into arthropod ovaries for heritable germline gene editing. Nat Commun 2018; 9:3008. [PMID: 30068905 PMCID: PMC6070532 DOI: 10.1038/s41467-018-05425-9] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 07/06/2018] [Indexed: 11/09/2022] Open
Abstract
Cas9-mediated gene editing is a powerful tool for addressing research questions in arthropods. Current approaches rely upon delivering Cas9 ribonucleoprotein (RNP) complex by embryonic microinjection, which is challenging, is limited to a small number of species, and is inefficient even in optimized taxa. Here we develop a technology termed Receptor-Mediated Ovary Transduction of Cargo (ReMOT Control) to deliver Cas9 RNP to the arthropod germline by injection into adult female mosquitoes. We identify a peptide (P2C) that mediates transduction of Cas9 RNP from the female hemolymph to the developing mosquito oocytes, resulting in heritable gene editing of the offspring with efficiency as high as 0.3 mutants per injected mosquito. We demonstrate that P2C functions in six mosquito species. Identification of taxa-specific ovary-specific ligand-receptor pairs may further extend the use of ReMOT Control for gene editing in novel species.
Collapse
Affiliation(s)
- Duverney Chaverra-Rodriguez
- Department of Entomology, The Huck Institutes of the Life Sciences, and the Center for infectious Disease Dynamics, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Vanessa M Macias
- Department of Entomology, The Huck Institutes of the Life Sciences, and the Center for infectious Disease Dynamics, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Grant L Hughes
- Department of Entomology, The Huck Institutes of the Life Sciences, and the Center for infectious Disease Dynamics, The Pennsylvania State University, University Park, PA, 16802, USA.,Department of Pathology, Institute for Human Infections and Immunity, Center for Tropical Diseases, Center for Biodefense and Emerging Infectious Disease, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Sujit Pujhari
- Department of Entomology, The Huck Institutes of the Life Sciences, and the Center for infectious Disease Dynamics, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Yasutsugu Suzuki
- Department of Entomology, The Huck Institutes of the Life Sciences, and the Center for infectious Disease Dynamics, The Pennsylvania State University, University Park, PA, 16802, USA.,Institut Pasteur, Viruses and RNA Interference Unit, CNRS Unité Mixte de Recherche, 3569, Paris, France
| | - David R Peterson
- Department of Entomology, The Huck Institutes of the Life Sciences, and the Center for infectious Disease Dynamics, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Donghun Kim
- Department of Entomology, The Huck Institutes of the Life Sciences, and the Center for infectious Disease Dynamics, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Sage McKeand
- Department of Entomology, The Huck Institutes of the Life Sciences, and the Center for infectious Disease Dynamics, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Jason L Rasgon
- Department of Entomology, The Huck Institutes of the Life Sciences, and the Center for infectious Disease Dynamics, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
49
|
Kogenaru M, Isalan M. Drug-Inducible Control of Lethality Genes: A Low Background Destabilizing Domain Architecture Applied to the Gal4-UAS System in Drosophila. ACS Synth Biol 2018; 7:1496-1506. [PMID: 29733646 PMCID: PMC6008732 DOI: 10.1021/acssynbio.7b00302] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Indexed: 11/28/2022]
Abstract
Destabilizing domains (DDs) are genetic tags that conditionally control the level of abundance of proteins-of-interest (POI) with specific stabilizing small-molecule drugs, rapidly and reversibly, in a wide variety of organisms. The amount of the DD-tagged fusion protein directly impacts its molecular function. Hence, it is important that the background levels be tightly regulated in the absence of any drug. This is especially true for classes of proteins that function at extremely low levels, such as lethality genes involved in tissue development and certain transcriptional activator proteins. Here, we establish the uninduced background and induction levels for two widely used DDs (FKBP and DHFR) by developing an accurate quantification method. We show that both DDs exhibit functional background levels in the absence of a drug, but each to a different degree. To overcome this limitation, we systematically test a double architecture for these DDs (DD-POI-DD) that completely suppresses the protein's function in an uninduced state, while allowing tunable functional levels upon adding a drug. As an example, we generate a drug-stabilizable Gal4 transcriptional activator with extremely low background levels. We show that this functions in vivo in the widely used Gal4-UAS bipartite expression system in Drosophila melanogaster. By regulating a cell death gene, we demonstrate that only the low background double architecture enables tight regulation of the lethal phenotype in vivo. These improved tools will enable applications requiring exceptionally tight control of protein function in living cells and organisms.
Collapse
Affiliation(s)
| | - Mark Isalan
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, United Kingdom
- Imperial College Centre
for
Synthetic Biology, Imperial College London, London, SW7 2AZ, United Kingdom
| |
Collapse
|
50
|
Maselli V, Xu F, Syed NI, Polese G, Di Cosmo A. A Novel Approach to Primary Cell Culture for Octopus vulgaris Neurons. Front Physiol 2018; 9:220. [PMID: 29666582 PMCID: PMC5891582 DOI: 10.3389/fphys.2018.00220] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 02/27/2018] [Indexed: 11/26/2022] Open
Abstract
Octopus vulgaris is a unique model system for studying complex behaviors in animals. It has a large and centralized nervous system made up of lobes that are involved in controlling various sophisticated behaviors. As such, it may be considered as a model organism for untangling the neuronal mechanisms underlying behaviors—including learning and memory. However, despite considerable efforts, Octopus lags behind its other counterparts vis-à-vis its utility in deciphering the cellular, molecular and synaptic mechanisms underlying various behaviors. This study represents a novel approach designed to establish a neuronal cell culture protocol that makes this species amenable to further exploitation as a model system. Here we developed a protocol that enables dissociation of neurons from two specific Octopus' brain regions, the vertical-superior frontal system and the optic lobes, which are involved in memory, learning, sensory integration and adult neurogenesis. In particular, cells dissociated with enzyme papain and cultured on Poly-D-Lysine-coated dishes with L15-medium and fetal bovine serum yielded high neuronal survival, axon growth, and re-growth after injury. This model was also explored to define optimal culture conditions and to demonstrate the regenerative capabilities of adult Octopus neurons after axotomy. This study thus further underscores the importance of Octopus neurons as a model system for deciphering fundamental molecular and cellular mechanism of complex brain function and underlying behaviors.
Collapse
Affiliation(s)
- Valeria Maselli
- Department of Biology, University of Naples Federico II, Napoli, Italy
| | - Fenglian Xu
- Department of Biology, Saint Louis University, Saint Louis, MO, United States
| | - Naweed I Syed
- Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Gianluca Polese
- Department of Biology, University of Naples Federico II, Napoli, Italy
| | - Anna Di Cosmo
- Department of Biology, University of Naples Federico II, Napoli, Italy
| |
Collapse
|