1
|
Marsall P, Fandrich M, Griesbaum J, Harries M, Lange B, Ascough S, Dayananda P, Chiu C, Remppis J, Ganzenmueller T, Renk H, Strengert M, Schneiderhan-Marra N, Dulovic A. Development and validation of a respiratory syncytial virus multiplex immunoassay. Infection 2024; 52:597-609. [PMID: 38332255 PMCID: PMC10954859 DOI: 10.1007/s15010-024-02180-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 01/07/2024] [Indexed: 02/10/2024]
Abstract
PURPOSE Respiratory syncytial virus (RSV) is one of the leading causes of severe respiratory disease in infants and adults. While vaccines and monoclonal therapeutic antibodies either are or will shortly become available, correlates of protection remain unclear. For this purpose, we developed an RSV multiplex immunoassay that analyses antibody titers toward the post-F, Nucleoprotein, and a diverse mix of G proteins. METHODS A bead-based multiplex RSV immunoassay was developed, technically validated to standard FDA bioanalytical guidelines, and clinically validated using samples from human challenge studies. RSV antibody titers were then investigated in children aged under 2 and a population-based cohort. RESULTS Technical and clinical validation showed outstanding performance, while methodological developments enabled identification of the subtype of previous infections through use of the diverse G proteins for approximately 50% of samples. As a proof of concept to show the suitability of the assay in serosurveillance studies, we then evaluated titer decay and age-dependent antibody responses within population cohorts. CONCLUSION Overall, the developed assay shows robust performance, is scalable, provides additional information on infection subtype, and is therefore ideally suited to be used in future population cohort studies.
Collapse
Affiliation(s)
- Patrick Marsall
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Madeleine Fandrich
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Johanna Griesbaum
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Manuela Harries
- Department of Epidemiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Berit Lange
- Department of Epidemiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- German Centre for Infection Research (DZIF), TI BBD, Partner Site Hannover-Braunschweig, Braunschweig, Germany
| | - Stephanie Ascough
- Department of Infectious Disease, Imperial College London, London, UK
| | - Pete Dayananda
- Department of Infectious Disease, Imperial College London, London, UK
| | - Christopher Chiu
- Department of Infectious Disease, Imperial College London, London, UK
| | - Jonathan Remppis
- Department of Pediatric Neurology and Developmental Medicine, University Children's Hospital, Tübingen, Germany
| | - Tina Ganzenmueller
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany
| | - Hanna Renk
- Department of Pediatric Neurology and Developmental Medicine, University Children's Hospital, Tübingen, Germany
| | - Monika Strengert
- Department of Epidemiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | | | - Alex Dulovic
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany.
| |
Collapse
|
2
|
Meyer zu Natrup C, Tscherne A, Dahlke C, Ciurkiewicz M, Shin DL, Fathi A, Rohde C, Kalodimou G, Halwe S, Limpinsel L, Schwarz JH, Klug M, Esen M, Schneiderhan-Marra N, Dulovic A, Kupke A, Brosinski K, Clever S, Schünemann LM, Beythien G, Armando F, Mayer L, Weskamm ML, Jany S, Freudenstein A, Tuchel T, Baumgärtner W, Kremsner P, Fendel R, Addo MM, Becker S, Sutter G, Volz A. Stabilized recombinant SARS-CoV-2 spike antigen enhances vaccine immunogenicity and protective capacity. J Clin Invest 2022; 132:159895. [PMID: 36301637 PMCID: PMC9754005 DOI: 10.1172/jci159895] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 10/21/2022] [Indexed: 12/24/2022] Open
Abstract
The SARS-CoV-2 spike (S) glycoprotein is synthesized as a large precursor protein and must be activated by proteolytic cleavage into S1 and S2. A recombinant modified vaccinia virus Ankara (MVA) expressing native, full-length S protein (MVA-SARS-2-S) is currently under investigation as a candidate vaccine in phase I clinical studies. Initial results from immunogenicity monitoring revealed induction of S-specific antibodies binding to S2, but low-level antibody responses to the S1 domain. Follow-up investigations of native S antigen synthesis in MVA-SARS-2-S-infected cells revealed limited levels of S1 protein on the cell surface. In contrast, we found superior S1 cell surface presentation upon infection with a recombinant MVA expressing a stabilized version of SARS-CoV-2 S protein with an inactivated S1/S2 cleavage site and K986P and V987P mutations (MVA-SARS-2-ST). When comparing immunogenicity of MVA vector vaccines, mice vaccinated with MVA-SARS-2-ST mounted substantial levels of broadly reactive anti-S antibodies that effectively neutralized different SARS-CoV-2 variants. Importantly, intramuscular MVA-SARS-2-ST immunization of hamsters and mice resulted in potent immune responses upon challenge infection and protected from disease and severe lung pathology. Our results suggest that MVA-SARS-2-ST represents an improved clinical candidate vaccine and that the presence of plasma membrane-bound S1 is highly beneficial to induce protective antibody levels.
Collapse
Affiliation(s)
| | - Alina Tscherne
- Division of Virology, Department of Veterinary Sciences, LMU Munich, Munich, Germany.,German Center for Infection Research, partner site Munich, and
| | - Christine Dahlke
- partner site Hamburg-Lübeck-Borstel-Riems.,University Medical Center Hamburg-Eppendorf, Institute for Infection Research and Vaccine Development (IIRVD), Hamburg, Germany
| | - Malgorzata Ciurkiewicz
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Hanover, Germany
| | - Dai-Lun Shin
- Institute of Virology, University of Veterinary Medicine Hannover, Foundation, Hanover, Germany
| | - Anahita Fathi
- partner site Hamburg-Lübeck-Borstel-Riems.,University Medical Center Hamburg-Eppendorf, Institute for Infection Research and Vaccine Development (IIRVD), Hamburg, Germany.,University Medical Center Hamburg-Eppendorf, Division of Infectious Diseases, Hamburg, Germany
| | - Cornelius Rohde
- German Center for Infection Research, partner site Gießen-Marburg-Langen.,Institute of Virology, Philipps University Marburg, Marburg, Germany
| | - Georgia Kalodimou
- Division of Virology, Department of Veterinary Sciences, LMU Munich, Munich, Germany.,German Center for Infection Research, partner site Munich, and
| | - Sandro Halwe
- Institute of Virology, Philipps University Marburg, Marburg, Germany
| | - Leonard Limpinsel
- Division of Virology, Department of Veterinary Sciences, LMU Munich, Munich, Germany
| | - Jan H. Schwarz
- Division of Virology, Department of Veterinary Sciences, LMU Munich, Munich, Germany
| | - Martha Klug
- German Center for Infection Research, partner site Tübingen.,Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
| | - Meral Esen
- German Center for Infection Research, partner site Tübingen.,Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
| | | | - Alex Dulovic
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Alexandra Kupke
- German Center for Infection Research, partner site Gießen-Marburg-Langen.,Institute of Virology, Philipps University Marburg, Marburg, Germany
| | - Katrin Brosinski
- Division of Virology, Department of Veterinary Sciences, LMU Munich, Munich, Germany
| | - Sabrina Clever
- Institute of Virology, University of Veterinary Medicine Hannover, Foundation, Hanover, Germany
| | - Lisa-Marie Schünemann
- Institute of Virology, University of Veterinary Medicine Hannover, Foundation, Hanover, Germany
| | - Georg Beythien
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Hanover, Germany
| | - Federico Armando
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Hanover, Germany
| | - Leonie Mayer
- partner site Hamburg-Lübeck-Borstel-Riems.,University Medical Center Hamburg-Eppendorf, Institute for Infection Research and Vaccine Development (IIRVD), Hamburg, Germany.,University Medical Center Hamburg-Eppendorf, Division of Infectious Diseases, Hamburg, Germany
| | - Marie L. Weskamm
- partner site Hamburg-Lübeck-Borstel-Riems.,University Medical Center Hamburg-Eppendorf, Institute for Infection Research and Vaccine Development (IIRVD), Hamburg, Germany.,University Medical Center Hamburg-Eppendorf, Division of Infectious Diseases, Hamburg, Germany
| | - Sylvia Jany
- Division of Virology, Department of Veterinary Sciences, LMU Munich, Munich, Germany
| | - Astrid Freudenstein
- Division of Virology, Department of Veterinary Sciences, LMU Munich, Munich, Germany
| | - Tamara Tuchel
- Institute of Virology, University of Veterinary Medicine Hannover, Foundation, Hanover, Germany
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Hanover, Germany
| | - Peter Kremsner
- German Center for Infection Research, partner site Tübingen.,Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany.,Centre de Recherches Médicales de Lambarene, Gabon
| | - Rolf Fendel
- German Center for Infection Research, partner site Tübingen.,Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
| | - Marylyn M. Addo
- University Medical Center Hamburg-Eppendorf, Institute for Infection Research and Vaccine Development (IIRVD), Hamburg, Germany.,German Center for Infection Research, partner site Tübingen
| | - Stephan Becker
- German Center for Infection Research, partner site Gießen-Marburg-Langen.,Institute of Virology, Philipps University Marburg, Marburg, Germany
| | - Gerd Sutter
- Division of Virology, Department of Veterinary Sciences, LMU Munich, Munich, Germany.,German Center for Infection Research, partner site Munich, and
| | - Asisa Volz
- Institute of Virology, University of Veterinary Medicine Hannover, Foundation, Hanover, Germany.,German Center for Infection Research, partner site Hanover-Braunschweig
| |
Collapse
|
3
|
Häring J, Hassenstein MJ, Becker M, Ortmann J, Junker D, Karch A, Berger K, Tchitchagua T, Leschnik O, Harries M, Gornyk D, Hernández P, Lange B, Castell S, Krause G, Dulovic A, Strengert M, Schneiderhan-Marra N. Borrelia multiplex: a bead-based multiplex assay for the simultaneous detection of Borrelia specific IgG/IgM class antibodies. BMC Infect Dis 2022; 22:859. [PMID: 36396985 PMCID: PMC9670078 DOI: 10.1186/s12879-022-07863-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 11/09/2022] [Indexed: 11/18/2022] Open
Abstract
Background Lyme borreliosis (LB) is the most common tick-borne infectious disease in the northern hemisphere. The diagnosis of LB is usually made by clinical symptoms and subsequently supported by serology. In Europe, a two-step testing consisting of an enzyme-linked immunosorbent assay (ELISA) and an immunoblot is recommended. However, due to the low sensitivity of the currently available tests, antibody detection is sometimes inaccurate, especially in the early phase of infection, leading to underdiagnoses. Methods To improve upon Borrelia diagnostics, we developed a multiplex Borrelia immunoassay (Borrelia multiplex), which utilizes the new INTELLIFLEX platform, enabling the simultaneous dual detection of IgG and IgM antibodies, saving further time and reducing the biosample material requirement. In order to enable correct classification, the Borrelia multiplex contains eight antigens from the five human pathogenic Borrelia species known in Europe. Six antigens are known to mainly induce an IgG response and two antigens are predominant for an IgM response. Results To validate the assay, we compared the Borrelia multiplex to a commercial bead-based immunoassay resulting in an overall assay sensitivity of 93.7% (95% CI 84.8–97.5%) and a specificity of 96.5% (95%CI 93.5–98.1%). To confirm the calculated sensitivity and specificity, a comparison with a conventional 2-step diagnostics was performed. With this comparison, we obtained a sensitivity of 95.2% (95% CI 84.2–99.2%) and a specificity of 93.0% (95% CI 90.6–94.7%). Conclusion Borrelia multiplex is a highly reproducible cost- and time-effective assay that enables the profiling of antibodies against several individual antigens simultaneously. Supplementary Information The online version contains supplementary material available at 10.1186/s12879-022-07863-9.
Collapse
|
4
|
Becker M, Cossmann A, Lürken K, Junker D, Gruber J, Juengling J, Ramos GM, Beigel A, Wrenger E, Lonnemann G, Stankov MV, Dopfer-Jablonka A, Kaiser PD, Traenkle B, Rothbauer U, Krause G, Schneiderhan-Marra N, Strengert M, Dulovic A, Behrens GMN. Longitudinal cellular and humoral immune responses after triple BNT162b2 and fourth full-dose mRNA-1273 vaccination in haemodialysis patients. Front Immunol 2022; 13:1004045. [PMID: 36275672 PMCID: PMC9582343 DOI: 10.3389/fimmu.2022.1004045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/12/2022] [Indexed: 11/30/2022] Open
Abstract
Haemodialysis patients respond poorly to vaccination and continue to be at-risk for severe COVID-19. Therefore, dialysis patients were among the first for which a fourth COVID-19 vaccination was recommended. However, targeted information on how to best maintain immune protection after SARS-CoV-2 vaccinations in at-risk groups for severe COVID-19 remains limited. We provide, to the best of our knowledge, for the first time longitudinal vaccination response data in dialysis patients and controls after a triple BNT162b2 vaccination and in the latter after a subsequent fourth full-dose of mRNA-1273. We analysed systemic and mucosal humoral IgG responses against the receptor-binding domain (RBD) and ACE2-binding inhibition towards variants of concern including Omicron and Delta with multiplex-based immunoassays. In addition, we assessed Spike S1-specific T-cell responses by interferon γ release assay. After triple BNT162b2 vaccination, anti-RBD B.1 IgG and ACE2 binding inhibition reached peak levels in dialysis patients, but remained inferior compared to controls. Whilst we detected B.1-specific ACE2 binding inhibition in 84% of dialysis patients after three BNT162b2 doses, binding inhibition towards the Omicron variant was only detectable in 38% of samples and declining to 16% before the fourth vaccination. By using mRNA-1273 as fourth dose, humoral immunity against all SARS-CoV-2 variants tested was strongly augmented with 80% of dialysis patients having Omicron-specific ACE2 binding inhibition. Modest declines in T-cell responses in dialysis patients and controls after the second vaccination were restored by the third BNT162b2 dose and significantly increased by the fourth vaccination. Our data support current advice for a four-dose COVID-19 immunisation scheme for at-risk individuals such as haemodialysis patients. We conclude that administration of a fourth full-dose of mRNA-1273 as part of a mixed mRNA vaccination scheme to boost immunity and to prevent severe COVID-19 could also be beneficial in other immune impaired individuals. Additionally, strategic application of such mixed vaccine regimens may be an immediate response against SARS-CoV-2 variants with increased immune evasion potential.
Collapse
Affiliation(s)
- Matthias Becker
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Anne Cossmann
- Department for Rheumatology and Immunology, Hannover Medical School, Hannover, Germany
| | - Karsten Lürken
- Department of Internal Medicine and Nephrology, Dialysis Centre Eickenhof, Langenhagen, Germany
| | - Daniel Junker
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Jens Gruber
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Jennifer Juengling
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Gema Morillas Ramos
- Department for Rheumatology and Immunology, Hannover Medical School, Hannover, Germany
| | - Andrea Beigel
- Department of Internal Medicine and Nephrology, Dialysis Centre Eickenhof, Langenhagen, Germany
| | - Eike Wrenger
- Department of Internal Medicine and Nephrology, Dialysis Centre Eickenhof, Langenhagen, Germany
| | - Gerhard Lonnemann
- Department of Internal Medicine and Nephrology, Dialysis Centre Eickenhof, Langenhagen, Germany
| | - Metodi V. Stankov
- Department for Rheumatology and Immunology, Hannover Medical School, Hannover, Germany
| | - Alexandra Dopfer-Jablonka
- Department for Rheumatology and Immunology, Hannover Medical School, Hannover, Germany
- German Centre for Infection Research (DZIF), partner site Hannover-Braunschweig, Hannover, Germany
| | - Philipp D. Kaiser
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Bjoern Traenkle
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Ulrich Rothbauer
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
- Pharmaceutical Biotechnology, University of Tübingen, Tübingen, Germany
| | - Gérard Krause
- German Centre for Infection Research (DZIF), partner site Hannover-Braunschweig, Hannover, Germany
- Department Epidemiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- TWINCORE GmbH, Centre for Experimental and Clinical Infection Research, a joint venture of the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
| | | | - Monika Strengert
- Department Epidemiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- TWINCORE GmbH, Centre for Experimental and Clinical Infection Research, a joint venture of the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
| | - Alex Dulovic
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Georg M. N. Behrens
- Department for Rheumatology and Immunology, Hannover Medical School, Hannover, Germany
- German Centre for Infection Research (DZIF), partner site Hannover-Braunschweig, Hannover, Germany
- CiiM - Centre for Individualized Infection Medicine, Hannover, Germany
| |
Collapse
|
5
|
Dulovic A, Kessel B, Harries M, Becker M, Ortmann J, Griesbaum J, Jüngling J, Junker D, Hernandez P, Gornyk D, Glöckner S, Melhorn V, Castell S, Heise JK, Kemmling Y, Tonn T, Frank K, Illig T, Klopp N, Warikoo N, Rath A, Suckel C, Marzian AU, Grupe N, Kaiser PD, Traenkle B, Rothbauer U, Kerrinnes T, Krause G, Lange B, Schneiderhan-Marra N, Strengert M. Comparative Magnitude and Persistence of Humoral SARS-CoV-2 Vaccination Responses in the Adult Population in Germany. Front Immunol 2022; 13:828053. [PMID: 35251012 PMCID: PMC8888837 DOI: 10.3389/fimmu.2022.828053] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/17/2022] [Indexed: 12/01/2022] Open
Abstract
Recent increases in SARS-CoV-2 infections have led to questions about duration and quality of vaccine-induced immune protection. While numerous studies have been published on immune responses triggered by vaccination, these often focus on studying the impact of one or two immunisation schemes within subpopulations such as immunocompromised individuals or healthcare workers. To provide information on the duration and quality of vaccine-induced immune responses against SARS-CoV-2, we analyzed antibody titres against various SARS-CoV-2 antigens and ACE2 binding inhibition against SARS-CoV-2 wild-type and variants of concern in samples from a large German population-based seroprevalence study (MuSPAD) who had received all currently available immunisation schemes. We found that homologous mRNA-based or heterologous prime-boost vaccination produced significantly higher antibody responses than vector-based homologous vaccination. Ad26.CoV2S.2 performance was particularly concerning with reduced titres and 91.7% of samples classified as non-responsive for ACE2 binding inhibition, suggesting that recipients require a booster mRNA vaccination. While mRNA vaccination induced a higher ratio of RBD- and S1-targeting antibodies, vector-based vaccines resulted in an increased proportion of S2-targeting antibodies. Given the role of RBD- and S1-specific antibodies in neutralizing SARS-CoV-2, their relative over-representation after mRNA vaccination may explain why these vaccines have increased efficacy compared to vector-based formulations. Previously infected individuals had a robust immune response once vaccinated, regardless of which vaccine they received, which could aid future dose allocation should shortages arise for certain manufacturers. Overall, both titres and ACE2 binding inhibition peaked approximately 28 days post-second vaccination and then decreased.
Collapse
Affiliation(s)
- Alex Dulovic
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Barbora Kessel
- Department of Epidemiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Manuela Harries
- Department of Epidemiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Matthias Becker
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Julia Ortmann
- Department of Epidemiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Johanna Griesbaum
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Jennifer Jüngling
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Daniel Junker
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Pilar Hernandez
- Department of Epidemiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Daniela Gornyk
- Department of Epidemiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Stephan Glöckner
- Department of Epidemiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Vanessa Melhorn
- Department of Epidemiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Stefanie Castell
- Department of Epidemiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Jana-Kristin Heise
- Department of Epidemiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Yvonne Kemmling
- Department of Epidemiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Torsten Tonn
- German Red Cross Blood Donation Service North East, Dresden, Germany
| | - Kerstin Frank
- German Red Cross Blood Donation Service North East, Dresden, Germany
| | - Thomas Illig
- Hannover Unified Biobank, Hannover Medical School, Hannover, Germany
| | - Norman Klopp
- Hannover Unified Biobank, Hannover Medical School, Hannover, Germany
| | - Neha Warikoo
- Department of Epidemiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Angelika Rath
- Department of Epidemiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Christina Suckel
- Department of Epidemiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Anne Ulrike Marzian
- Department of Epidemiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Nicole Grupe
- Department of Epidemiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Philipp D. Kaiser
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Bjoern Traenkle
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Ulrich Rothbauer
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
- Pharmaceutical Biotechnology, Department of Pharmacy and Biochemistry, University of Tübingen, Tübingen, Germany
| | - Tobias Kerrinnes
- Department of RNA-Biology of Bacterial Infections, Helmholtz Institute for RNA-Based Infection Research, Würzburg, Germany
| | - Gérard Krause
- Department of Epidemiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture of the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
- German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Braunschweig, Germany
| | - Berit Lange
- Department of Epidemiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Braunschweig, Germany
| | | | - Monika Strengert
- Department of Epidemiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture of the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
| |
Collapse
|
6
|
Renk H, Dulovic A, Seidel A, Becker M, Fabricius D, Zernickel M, Junker D, Groß R, Müller J, Hilger A, Bode SFN, Fritsch L, Frieh P, Haddad A, Görne T, Remppis J, Ganzemueller T, Dietz A, Huzly D, Hengel H, Kaier K, Weber S, Jacobsen EM, Kaiser PD, Traenkle B, Rothbauer U, Stich M, Tönshoff B, Hoffmann GF, Müller B, Ludwig C, Jahrsdörfer B, Schrezenmeier H, Peter A, Hörber S, Iftner T, Münch J, Stamminger T, Groß HJ, Wolkewitz M, Engel C, Liu W, Rizzi M, Hahn BH, Henneke P, Franz AR, Debatin KM, Schneiderhan-Marra N, Janda A, Elling R. Robust and durable serological response following pediatric SARS-CoV-2 infection. Nat Commun 2022; 13:128. [PMID: 35013206 PMCID: PMC8748910 DOI: 10.1038/s41467-021-27595-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/22/2021] [Indexed: 02/07/2023] Open
Abstract
The quality and persistence of children's humoral immune response following SARS-CoV-2 infection remains largely unknown but will be crucial to guide pediatric SARS-CoV-2 vaccination programs. Here, we examine 548 children and 717 adults within 328 households with at least one member with a previous laboratory-confirmed SARS-CoV-2 infection. We assess serological response at 3-4 months and 11-12 months after infection using a bead-based multiplex immunoassay for 23 human coronavirus antigens including SARS-CoV-2 and its Variants of Concern (VOC) and endemic human coronaviruses (HCoVs), and additionally by three commercial SARS-CoV-2 antibody assays. Neutralization against wild type SARS-CoV-2 and the Delta VOC are analysed in a pseudotyped virus assay. Children, compared to adults, are five times more likely to be asymptomatic, and have higher specific antibody levels which persist longer (96.2% versus 82.9% still seropositive 11-12 months post infection). Of note, symptomatic and asymptomatic infections induce similar humoral responses in all age groups. SARS-CoV-2 infection occurs independent of HCoV serostatus. Neutralization responses of children and adults are similar, although neutralization is reduced for both against the Delta VOC. Overall, the long-term humoral immune response to SARS-CoV-2 infection in children is of longer duration than in adults even after asymptomatic infection.
Collapse
Affiliation(s)
- Hanna Renk
- University Children's Hospital Tübingen, Tübingen, Germany
| | - Alex Dulovic
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Alina Seidel
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Matthias Becker
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Dorit Fabricius
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm University, Ulm, Germany
| | - Maria Zernickel
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm University, Ulm, Germany
| | - Daniel Junker
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Rüdiger Groß
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Janis Müller
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Alexander Hilger
- Center for Pediatrics and Adolescent Medicine, Medical Center Freiburg, Germany and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sebastian F N Bode
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm University, Ulm, Germany
| | - Linus Fritsch
- Center for Pediatrics and Adolescent Medicine, Medical Center Freiburg, Germany and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Pauline Frieh
- Center for Pediatrics and Adolescent Medicine, Medical Center Freiburg, Germany and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Anneke Haddad
- Center for Pediatrics and Adolescent Medicine, Medical Center Freiburg, Germany and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Tessa Görne
- Center for Pediatrics and Adolescent Medicine, Medical Center Freiburg, Germany and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | | | - Tina Ganzemueller
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany
| | - Andrea Dietz
- Institute of Virology, Ulm University Medical Center, Ulm, Germany
| | - Daniela Huzly
- Institute of Virology, Medical Center Freiburg, Germany and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Hartmut Hengel
- Institute of Virology, Medical Center Freiburg, Germany and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Klaus Kaier
- Institute of Medical Biometry and Statistics, Medical Center Freiburg, Germany and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Susanne Weber
- Institute of Medical Biometry and Statistics, Medical Center Freiburg, Germany and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Eva-Maria Jacobsen
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm University, Ulm, Germany
| | - Philipp D Kaiser
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Bjoern Traenkle
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Ulrich Rothbauer
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Maximilian Stich
- Department of Pediatrics I, University Children's Hospital Heidelberg, Heidelberg, Germany
| | - Burkhard Tönshoff
- Department of Pediatrics I, University Children's Hospital Heidelberg, Heidelberg, Germany
| | - Georg F Hoffmann
- Department of Pediatrics I, University Children's Hospital Heidelberg, Heidelberg, Germany
| | - Barbara Müller
- Department of Infectious Diseases, Virology, Heidelberg University Hospital, Heidelberg, Germany
| | - Carolin Ludwig
- Institute of Transfusion Medicine, Ulm University, Ulm, Germany
- Institute for Clinical Transfusion Medicine and Immunogenetics, Ulm, Germany
- German Red Cross Blood Transfusion Service, Baden-Württemberg-Hessen, Germany
| | - Bernd Jahrsdörfer
- Institute of Transfusion Medicine, Ulm University, Ulm, Germany
- Institute for Clinical Transfusion Medicine and Immunogenetics, Ulm, Germany
- German Red Cross Blood Transfusion Service, Baden-Württemberg-Hessen, Germany
| | - Hubert Schrezenmeier
- Institute of Transfusion Medicine, Ulm University, Ulm, Germany
- Institute for Clinical Transfusion Medicine and Immunogenetics, Ulm, Germany
- German Red Cross Blood Transfusion Service, Baden-Württemberg-Hessen, Germany
| | - Andreas Peter
- Institute for Clinical Chemistry and Pathobiochemistry, University Hospital Tübingen, Tübingen, Germany
| | - Sebastian Hörber
- Institute for Clinical Chemistry and Pathobiochemistry, University Hospital Tübingen, Tübingen, Germany
| | - Thomas Iftner
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany
| | - Jan Münch
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | | | | | - Martin Wolkewitz
- Institute of Medical Biometry and Statistics, Medical Center Freiburg, Germany and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Corinna Engel
- University Children's Hospital Tübingen, Tübingen, Germany
- Center for Pediatric Clinical Studies, University Hospital Tübingen, Tübingen, Germany
| | - Weimin Liu
- Department of Microbiology and Department of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Marta Rizzi
- Department of Rheumatology and Clinical Immunology, Medical Center Freiburg, Germany and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Beatrice H Hahn
- Department of Microbiology and Department of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Philipp Henneke
- Center for Pediatrics and Adolescent Medicine, Medical Center Freiburg, Germany and Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Institute for Immunodeficiency, Medical Center Freiburg, Germany and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Axel R Franz
- University Children's Hospital Tübingen, Tübingen, Germany
- Center for Pediatric Clinical Studies, University Hospital Tübingen, Tübingen, Germany
| | - Klaus-Michael Debatin
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm University, Ulm, Germany
| | | | - Ales Janda
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm University, Ulm, Germany
| | - Roland Elling
- Center for Pediatrics and Adolescent Medicine, Medical Center Freiburg, Germany and Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- Institute for Immunodeficiency, Medical Center Freiburg, Germany and Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
7
|
Determining seropositivity-A review of approaches to define population seroprevalence when using multiplex bead assays to assess burden of tropical diseases. PLoS Negl Trop Dis 2021; 15:e0009457. [PMID: 34181665 PMCID: PMC8270565 DOI: 10.1371/journal.pntd.0009457] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 07/09/2021] [Accepted: 05/10/2021] [Indexed: 11/19/2022] Open
Abstract
Background Serological surveys with multiplex bead assays can be used to assess seroprevalence to multiple pathogens simultaneously. However, multiple methods have been used to generate cut-off values for seropositivity and these may lead to inconsistent interpretation of results. A literature review was conducted to describe the methods used to determine cut-off values for data generated by multiplex bead assays. Methodology/Principal findings A search was conducted in PubMed that included articles published from January 2010 to January 2020, and 308 relevant articles were identified that included the terms “serology”, “cut-offs”, and “multiplex bead assays”. After application of exclusion of articles not relevant to neglected tropical diseases (NTD), vaccine preventable diseases (VPD), or malaria, 55 articles were examined based on their relevance to NTD or VPD. The most frequently applied approaches to determine seropositivity included the use of presumed unexposed populations, mixture models, receiver operating curves (ROC), and international standards. Other methods included the use of quantiles, pre-exposed endemic cohorts, and visual inflection points. Conclusions/Significance For disease control programmes, seropositivity is a practical and easily interpretable health metric but determining appropriate cut-offs for positivity can be challenging. Considerations for optimal cut-off approaches should include factors such as methods recommended by previous research, transmission dynamics, and the immunological backgrounds of the population. In the absence of international standards for estimating seropositivity in a population, the use of consistent methods that align with individual disease epidemiological data will improve comparability between settings and enable the assessment of changes over time. Serological surveys can provide information regarding population-level disease exposure by assessing immune responses created during infection. Multiplex bead assays (MBAs) allow for an integrated serological platform to monitor antibody responses to multiple pathogens concurrently. As programs adopt integrated disease control strategies, MBAs are especially advantageous since many of these diseases may be present in the same population and antibodies against all pathogens of interest can be detected simultaneously from a single blood sample. Interpreting serological data in a programmatic context typically involves classifying individuals as seronegative or seropositive using a ‘cut-off’, whereby anyone with a response above the defined threshold is considered to be seropositive. Although studies increasingly test blood samples with MBAs, published studies have applied different methods of determining seropositivity cut-offs, making results difficult to compare across settings and over time. The lack of harmonized methods for defining seropositivity is due to the absence of international standards, pathogen biology, or assay-specific methods that may impact resulting data. This review highlights the need for a standardized approach for which cut-off methods to use per pathogen when applied to integrated disease surveillance using platforms such as MBAs.
Collapse
|
8
|
Becker M, Dulovic A, Junker D, Ruetalo N, Kaiser PD, Pinilla YT, Heinzel C, Haering J, Traenkle B, Wagner TR, Layer M, Mehrlaender M, Mirakaj V, Held J, Planatscher H, Schenke-Layland K, Krause G, Strengert M, Bakchoul T, Althaus K, Fendel R, Kreidenweiss A, Koeppen M, Rothbauer U, Schindler M, Schneiderhan-Marra N. Immune response to SARS-CoV-2 variants of concern in vaccinated individuals. Nat Commun 2021; 12:3109. [PMID: 34035301 PMCID: PMC8149389 DOI: 10.1038/s41467-021-23473-6] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 04/28/2021] [Indexed: 12/20/2022] Open
Abstract
SARS-CoV-2 is evolving with mutations in the receptor binding domain (RBD) being of particular concern. It is important to know how much cross-protection is offered between strains following vaccination or infection. Here, we obtain serum and saliva samples from groups of vaccinated (Pfizer BNT-162b2), infected and uninfected individuals and characterize the antibody response to RBD mutant strains. Vaccinated individuals have a robust humoral response after the second dose and have high IgG antibody titers in the saliva. Antibody responses however show considerable differences in binding to RBD mutants of emerging variants of concern and substantial reduction in RBD binding and neutralization is observed against a patient-isolated South African variant. Taken together our data reinforce the importance of the second dose of Pfizer BNT-162b2 to acquire high levels of neutralizing antibodies and high antibody titers in saliva suggest that vaccinated individuals may have reduced transmission potential. Substantially reduced neutralization for the South African variant further highlights the importance of surveillance strategies to detect new variants and targeting these in future vaccines.
Collapse
Affiliation(s)
- Matthias Becker
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Alex Dulovic
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Daniel Junker
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Natalia Ruetalo
- Institute for Medical Virology and Epidemiology, University Hospital Tübingen, Tübingen, Germany
| | - Philipp D Kaiser
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Yudi T Pinilla
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
| | - Constanze Heinzel
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
| | - Julia Haering
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Bjoern Traenkle
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Teresa R Wagner
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
- Pharmaceutical Biotechnology, University of Tübingen, Tübingen, Germany
| | - Mirjam Layer
- Institute for Medical Virology and Epidemiology, University Hospital Tübingen, Tübingen, Germany
| | - Martin Mehrlaender
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Valbona Mirakaj
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Jana Held
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
- German Center for Infection Research (DZIF), partner site Tübingen, Tübingen, Germany
| | | | - Katja Schenke-Layland
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
- Department of Women's Health, Research Institute for Women's Health, University of Tübingen, Tübingen, Germany
- Department of Medicine/Cardiology, Cardiovascular Research Laboratories, David Geffen School of Medicine at UCLA, Los Angeles, USA
| | - Gérard Krause
- Helmholtz Centre for Infection Research, Braunschweig, Germany
- TWINCORE GmbH, Centre for Experimental and Clinical Infection Research, a joint venture of the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
| | - Monika Strengert
- Helmholtz Centre for Infection Research, Braunschweig, Germany
- TWINCORE GmbH, Centre for Experimental and Clinical Infection Research, a joint venture of the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
| | - Tamam Bakchoul
- Institute for Clinical and Experimental Transfusion Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Karina Althaus
- Institute for Clinical and Experimental Transfusion Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Rolf Fendel
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
- German Center for Infection Research (DZIF), partner site Tübingen, Tübingen, Germany
| | - Andrea Kreidenweiss
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
- German Center for Infection Research (DZIF), partner site Tübingen, Tübingen, Germany
| | - Michael Koeppen
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Ulrich Rothbauer
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany.
- Pharmaceutical Biotechnology, University of Tübingen, Tübingen, Germany.
| | - Michael Schindler
- Institute for Medical Virology and Epidemiology, University Hospital Tübingen, Tübingen, Germany.
| | | |
Collapse
|
9
|
Savvateeva E, Smoldovskaya O, Feyzkhanova G, Rubina A. Multiple biomarker approach for the diagnosis and therapy of rheumatoid arthritis. Crit Rev Clin Lab Sci 2020; 58:17-28. [PMID: 32552254 DOI: 10.1080/10408363.2020.1775545] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The lack of specific clinical symptoms for patients in the early stage of rheumatoid arthritis (RA) has created strong interest in the laboratory diagnosis of RA. The main laboratory markers of RA, rheumatoid factor (RF) and anti-citrullinated protein antibodies (ACPAs), can be found in patients with other pathologies and in healthy donors. Even today, there is no single laboratory test that can diagnosis RA with high sensitivity and specificity. To improve the diagnosis and treatment of RA, alternative biomarkers, including 14-3-3η protein, connective tissue growth factor (CTGF), antibodies against PAD4, antibodies against BRAF, and anti-acetylated and anti-carbamylated protein antibodies have been studied extensively. The use of a multiple biomarker approach, the simultaneous measurement of a set of biomarkers, is an alternative strategy for the diagnosis of RA and for predicting the therapeutic effect of biological disease-modifying antirheumatic drugs (DMARDs). However, despite the large number of studies, only a few biomarker combinations have been validated and can be applied in clinical practice. In this article, results of studies focused on the multiple biomarker approach (both multiplex and combined single-analyte assays) to diagnose RA and to predict response to biological drug therapy are reviewed. Additionally, general factors limiting the use of multiplex analysis in RA diagnostics and therapy are discussed.
Collapse
Affiliation(s)
- Elena Savvateeva
- Laboratory of Biological Microchips, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Olga Smoldovskaya
- Laboratory of Biological Microchips, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Guzel Feyzkhanova
- Laboratory of Biological Microchips, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Alla Rubina
- Laboratory of Biological Microchips, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
10
|
Chandler JC, Baeten LA, Griffin DL, Gidlewski T, DeLiberto TJ, Petersen JM, Pappert R, Young JW, Bevins SN. A Bead-Based Flow Cytometric Assay for Monitoring Yersinia pestis Exposure in Wildlife. J Clin Microbiol 2018; 56:e00273-18. [PMID: 29695520 PMCID: PMC6018325 DOI: 10.1128/jcm.00273-18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 04/19/2018] [Indexed: 01/24/2023] Open
Abstract
Yersinia pestis is the causative agent of plague and is considered a category A priority pathogen due to its potential for high transmissibility and the significant morbidity and mortality it causes in humans. Y. pestis is endemic to the western United States and much of the world, necessitating programs to monitor for this pathogen on the landscape. Elevated human risk of plague infection has been spatially correlated with spikes in seropositive wildlife numbers, particularly rodent-eating carnivores, which are frequently in contact with the enzootic hosts and the associated arthropod vectors of Y. pestis In this study, we describe a semiautomated bead-based flow cytometric assay developed for plague monitoring in wildlife called the F1 Luminex plague assay (F1-LPA). Based upon Luminex/Bio-Plex technology, the F1-LPA targets serological responses to the F1 capsular antigen of Y. pestis and was optimized to analyze antibodies eluted from wildlife blood samples preserved on Nobuto filter paper strips. In comparative evaluations with passive hemagglutination, the gold standard tool for wildlife plague serodiagnosis, the F1-LPA demonstrated as much as 64× improvement in analytical sensitivity for F1-specific IgG detection and allowed for unambiguous classification of IgG status. The functionality of the F1-LPA was demonstrated for coyotes and other canids, which are the primary sentinels in wildlife plague monitoring, as well as felids and raccoons. Additionally, assay formats that do not require species-specific immunological reagents, which are not routinely available for several wildlife species used in plague monitoring, were determined to be functional in the F1-LPA.
Collapse
Affiliation(s)
- Jeffrey C Chandler
- National Wildlife Research Center, Wildlife Services, Animal and Plant Health Inspection Service, United States Department of Agriculture, Fort Collins, Colorado, USA
| | - Laurie A Baeten
- National Wildlife Research Center, Wildlife Services, Animal and Plant Health Inspection Service, United States Department of Agriculture, Fort Collins, Colorado, USA
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Doreen L Griffin
- National Wildlife Research Center, Wildlife Services, Animal and Plant Health Inspection Service, United States Department of Agriculture, Fort Collins, Colorado, USA
| | - Thomas Gidlewski
- National Wildlife Research Center, Wildlife Services, Animal and Plant Health Inspection Service, United States Department of Agriculture, Fort Collins, Colorado, USA
| | - Thomas J DeLiberto
- National Wildlife Research Center, Wildlife Services, Animal and Plant Health Inspection Service, United States Department of Agriculture, Fort Collins, Colorado, USA
| | - Jeannine M Petersen
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, USA
| | - Ryan Pappert
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, USA
| | - John W Young
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, USA
| | - Sarah N Bevins
- National Wildlife Research Center, Wildlife Services, Animal and Plant Health Inspection Service, United States Department of Agriculture, Fort Collins, Colorado, USA
| |
Collapse
|
11
|
Nonyane BAS, Nicol MP, Andreas NJ, Rimmele S, Schneiderhan-Marra N, Workman LJ, Perkins MD, Joos T, Broger T, Ellner JJ, Alland D, Kampmann B, Dorman SE, Zar HJ. Serologic Responses in Childhood Pulmonary Tuberculosis. Pediatr Infect Dis J 2018; 37:1-9. [PMID: 28719497 PMCID: PMC6261442 DOI: 10.1097/inf.0000000000001683] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND Identification of the Mycobacterium tuberculosis immunoproteome and antigens associated with serologic responses in adults has renewed interest in developing a serologic test for childhood tuberculosis (TB). We investigated IgG antibody responses against M. tuberculosis antigens in children with well-characterized TB. METHODS We studied archived sera obtained from hospitalized children with suspected pulmonary TB, and classified as having confirmed TB (culture-confirmed), unlikely TB (clinical improvement without TB treatment), or unconfirmed TB (all others). A multiplexed bead-based assay for IgG antibodies against 119 M. tuberculosis antigens was developed, validated and used to test sera. The area under the curves (AUCs) of the empiric receiver-operator characteristic curves were generated as measures of predictive ability. A cross-validated generalized linear model was used to select the most predictive combinations of antigens. RESULTS For the confirmed TB versus unlikely TB comparison, the maximal single antigen AUC was 0.63, corresponding to sensitivity 0.60 and specificity 0.60. Older (age: 60+ months old) children's responses were better predictive of TB status than younger (age: 12-59 months old) children's, with a maximal single antigen AUC of -0.76. For the confirmed TB versus unlikely TB groups, the most predictive combinations of antigens assigned TB risk probabilities of 0.33 and 0.33, respectively, when all ages were considered, and 0.57 (interquartile range: 0.48-0.64) and 0.35 (interquartile range: 0.32-0.40) when only older children were considered. CONCLUSION An antigen-based IgG test is unlikely to meet the performance characteristics required of a TB detection test applicable to all age groups.
Collapse
Affiliation(s)
- Bareng A. S. Nonyane
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Mark P. Nicol
- Division of Medical Microbiology and Institute for Infectious Diseases and Molecular Medicine, University of Cape Town
- National Health Laboratory Service, Groote Schuur Hospital, Cape Town, South Africa
| | - Nicholas J. Andreas
- Centre for International Child Health, Department of Paediatrics, Imperial College London, St. Mary’s Hospital, London, W2 1NY, United Kingdom
| | - Stefanie Rimmele
- Natural and Medical Sciences Institute at the University of Tuebingen, Reutlingen, Germany
| | | | - Lesley J. Workman
- Department of Paediatrics & Child Health and MRC Unit on Child & Adolescent Health University of Cape Town, Cape Town, South Africa
| | | | - Thomas Joos
- Natural and Medical Sciences Institute at the University of Tuebingen, Reutlingen, Germany
| | | | - Jerrold J. Ellner
- Department of Medicine, Boston Medical Center, Boston, Massachusetts
| | - David Alland
- Department of Medicine, Rutgers-New Jersey Medical Center, Newark, New Jersey
| | - Beate Kampmann
- Centre for International Child Health, Department of Paediatrics, Imperial College London, St. Mary’s Hospital, London, W2 1NY, United Kingdom
- Vaccines & Immunity Theme, MRC Unit The Gambia, Serrekunda, Gambia
| | - Susan E. Dorman
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Heather J. Zar
- Department of Paediatrics & Child Health and MRC Unit on Child & Adolescent Health University of Cape Town, Cape Town, South Africa
| |
Collapse
|
12
|
Study of the Humoral Immune Response towards HCV Genotype 4 Using a Bead-Based Multiplex Serological Assay. High Throughput 2017; 6:ht6040015. [PMID: 29855459 PMCID: PMC5748594 DOI: 10.3390/ht6040015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 09/26/2017] [Accepted: 10/23/2017] [Indexed: 12/17/2022] Open
Abstract
Hepatitis C is one of the leading causes of hepatocellular carcinoma and remains at a high prevalence in Egypt and other resource-limited countries. Several hepatitis C virus (HCV) genotypes are distributed throughout the world, with genotype 4 being most common in North and Central Africa. We developed a multiplex serological assay for the detection of the HCV specific humoral immune response, with a focus on genotype 4. For the multiplex HCV assay we used twelve antigenic regions of different HCV proteins (core, and non-structural (NS) proteins NS3, NS4, NS5A, NS5B) and validated the assay technically and clinically. In comparison to a commercially available test, our assay revealed a higher sensitivity for genotype 4, and is therefore more suited for studying immune seroconversion in samples from acutely infected Egyptian HCV patients. Furthermore, our assay discriminates acutely and chronically infected HCV patients. Of 296 well characterized HCV patient samples, 83.9% of the acute samples and 86.5% of the chronic samples could be correctly classified. In sum, this newly developed serological HCV assay has a higher sensitivity for HCV genotype 4, and can thus improve diagnostic accuracy. Through the discrimination of acutely and chronically infected HCV patients the assay may be useful in supporting clinical management of HCV patients.
Collapse
|
13
|
Development of a Bead-Based Multiplex Assay for the Analysis of the Serological Response against the Six Pathogens HAV, HBV, HCV, CMV, T. gondii, and H. pylori. High Throughput 2017; 6:ht6040014. [PMID: 29855458 PMCID: PMC5748593 DOI: 10.3390/ht6040014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 10/17/2017] [Accepted: 10/26/2017] [Indexed: 02/06/2023] Open
Abstract
The spread of infectious diseases and vaccination history are common subjects of epidemiological and immunological research studies. Multiplexed serological assays are useful tools for assessing both current and previous infections as well as vaccination efficacy. We developed a serological multi-pathogen assay for hepatitis A, B and C virus, cytomegalovirus (CMV), Toxoplasma gondii, and Helicobacter pylori using a bead-based multiplex assay format. The multi-pathogen assay consisting of 15 antigens was utilized for the analysis of the serological response in elderly individuals of an influenza vaccination study (n = 34). The technical assay validation revealed a mean intra-assay precision of coefficient of variation (CV) = 3.2 ± 1.5% and a mean inter-assay precision of CV = 8.2 ± 5.3% across all 15 antigens and all tested samples, indicating a robust test system. Furthermore, the assay shows high sensitivities (ranging between 94% and 100%) and specificities (ranging between 93% and 100%) for the different pathogens. The highest seroprevalence rates in our cohort were observed for hepatitis A virus (HAV; 73.5%), followed by CMV (70.6%), T. gondii (67.6%) and H. pylori (32.4%). Seroprevalences for hepatitis B virus (HBV, 8.8%) and hepatitis C virus (HCV, 0%) were low. The seroprevalences observed in our study were similar to those from other population-based studies in Germany. In summary, we conclude that our multiplex serological assay represents a suitable tool for epidemiological studies.
Collapse
|
14
|
Performance of a Multiplex Serological Helicobacter pylori Assay on a Novel Microfluidic Assay Platform. Proteomes 2017; 5:proteomes5040024. [PMID: 28972560 PMCID: PMC5748559 DOI: 10.3390/proteomes5040024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 09/19/2017] [Accepted: 09/29/2017] [Indexed: 01/25/2023] Open
Abstract
Infection with Helicobacter pylori (H. pylori) occurs in 50% of the world population, and is associated with the development of ulcer and gastric cancer. Serological diagnostic tests indicate an H. pylori infection by detecting antibodies directed against H. pylori proteins. In addition to line blots, multiplex assay platforms provide smart solutions for the simultaneous analysis of antibody responses towards several H. pylori proteins. We used seven H. pylori proteins (FliD, gGT, GroEL, HpaA, CagA, VacA, and HP0231) and an H. pylori lysate for the development of a multiplex serological assay on a novel microfluidic platform. The reaction limited binding regime in the microfluidic channels allows for a short incubation time of 35 min. The developed assay showed very high sensitivity (99%) and specificity (100%). Besides sensitivity and specificity, the technical validation (intra-assay CV = 3.7 ± 1.2% and inter-assay CV = 5.5 ± 1.2%) demonstrates that our assay is also a robust tool for the analysis of the H. pylori-specific antibody response. The integration of the virulence factors CagA and VacA allow for the assessment of the risk for gastric cancer development. The short assay time and the performance of the platform shows the potential for implementation of such assays in a clinical setting.
Collapse
|
15
|
Broger T, Basu Roy R, Filomena A, Greef CH, Rimmele S, Havumaki J, Danks D, Schneiderhan-Marra N, Gray CM, Singh M, Rosenkrands I, Andersen P, Husar GM, Joos TO, Gennaro ML, Lochhead MJ, Denkinger CM, Perkins MD. Diagnostic Performance of Tuberculosis-Specific IgG Antibody Profiles in Patients with Presumptive Tuberculosis from Two Continents. Clin Infect Dis 2017; 64:947-955. [PMID: 28362937 PMCID: PMC5848306 DOI: 10.1093/cid/cix023] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 01/12/2017] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Development of rapid diagnostic tests for tuberculosis is a global priority. A whole proteome screen identified Mycobacterium tuberculosis antigens associated with serological responses in tuberculosis patients. We used World Health Organization (WHO) target product profile (TPP) criteria for a detection test and triage test to evaluate these antigens. METHODS Consecutive patients presenting to microscopy centers and district hospitals in Peru and to outpatient clinics at a tuberculosis reference center in Vietnam were recruited. We tested blood samples from 755 HIV-uninfected adults with presumptive pulmonary tuberculosis to measure IgG antibody responses to 57 M. tuberculosis antigens using a field-based multiplexed serological assay and a 132-antigen bead-based reference assay. We evaluated single antigen performance and models of all possible 3-antigen combinations and multiantigen combinations. RESULTS Three-antigen and multiantigen models performed similarly and were superior to single antigens. With specificity set at 90% for a detection test, the best sensitivity of a 3-antigen model was 35% (95% confidence interval [CI], 31-40). With sensitivity set at 85% for a triage test, the specificity of the best 3-antigen model was 34% (95% CI, 29-40). The reference assay also did not meet study targets. Antigen performance differed significantly between the study sites for 7/22 of the best-performing antigens. CONCLUSIONS Although M. tuberculosis antigens were recognized by the IgG response during tuberculosis, no single antigen or multiantigen set performance approached WHO TPP criteria for clinical utility among HIV-uninfected adults with presumed tuberculosis in high-volume, urban settings in tuberculosis-endemic countries.
Collapse
Affiliation(s)
| | | | - Angela Filomena
- Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | | | - Stefanie Rimmele
- Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | | | - David Danks
- Department of Philosophy, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | | | | | | | | | | | | | - Thomas O Joos
- Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Maria L Gennaro
- Public Health Research Institute, Rutgers New Jersey Medical School, New Brunswick
| | | | | | | |
Collapse
|
16
|
Milewski MC, Broger T, Kirkpatrick J, Filomena A, Komadina D, Schneiderhan-Marra N, Wilmanns M, Parret AHA. A standardized production pipeline for high profile targets from Mycobacterium tuberculosis. Proteomics Clin Appl 2016; 10:1049-1057. [PMID: 27400835 PMCID: PMC5095800 DOI: 10.1002/prca.201600033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 05/23/2016] [Accepted: 07/07/2016] [Indexed: 01/21/2023]
Abstract
Purpose Tuberculosis is still a major threat to global health. New tools and strategies to produce disease‐related proteins are quintessential for the development of novel vaccines and diagnostic markers. Experimental design To obtain recombinant proteins from Mycobacterium tuberculosis (Mtb) for use in clinical applications, a standardized procedure was developed that includes subcloning, protein expression in Mycobacterium smegmatis and protein purification using chromatography. The potential for the different protein targets to serve as diagnostic markers for tuberculosis was established using multiplex immunoassays. Results Twelve soluble proteins from Mtb, including one protein complex, were purified to near‐homogeneity following recombinant expression in M. smegmatis. Protein purity was assessed both by size exclusion chromatography and MS. Multiplex serological testing of the final protein preparations showed that all but one protein displayed a clear antibody response in serum samples from 278 tuberculosis patients. Conclusion and clinical relevance The established workflow comprises a simple, cost‐effective, and scalable pipeline for production of soluble proteins from Mtb and can be used to prioritize immunogenic proteins suitable for use as diagnostic markers.
Collapse
Affiliation(s)
- Morlin C Milewski
- European Molecular Biology Laboratory (EMBL), Hamburg Unit, Hamburg, Germany
| | - Tobias Broger
- Foundation for Innovative New Diagnostics (FIND), Geneva, Switzerland
| | - Joanna Kirkpatrick
- European Molecular Biology Laboratory (EMBL), Proteomics Core Facility, Heidelberg, Germany
| | - Angela Filomena
- Natural and Medical Sciences Institute, University of Tübingen, Reutlingen, Germany
| | - Dana Komadina
- European Molecular Biology Laboratory (EMBL), Hamburg Unit, Hamburg, Germany
| | | | - Matthias Wilmanns
- European Molecular Biology Laboratory (EMBL), Hamburg Unit, Hamburg, Germany.,University of Hamburg Clinical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Annabel H A Parret
- European Molecular Biology Laboratory (EMBL), Hamburg Unit, Hamburg, Germany.
| |
Collapse
|