1
|
Lee C, Lee JS, Kwon Y, Shin A, Jeong TY, Yang J, Hwang JW, Kim HI, Choi HJ, Kim YK, Choi M, Kim K, Sun W, Chae JH. Effects of heterozygous SMG1 mutations on nonsense-mediated mRNA decay in human pluripotent stem cell model. Mol Cells 2025:100225. [PMID: 40403878 DOI: 10.1016/j.mocell.2025.100225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 05/09/2025] [Accepted: 05/15/2025] [Indexed: 05/24/2025] Open
Abstract
Nonsense-mediated mRNA decay (NMD) eliminates transcripts containing premature termination codons (PTCs), thereby preventing errors in protein synthesis. Serine/Threonine-protein kinase SMG1 is a crucial kinase for NMD response, interacting with other regulatory proteins such as SMG8 and SMG9. We identified a de novo heterozygous variant in SMG1 p.Gln2398Glu (c.7192C>G) in a patient with global developmental delay, facial dysmorphism, and oculomotor apraxia. Thus, stem cell models with SMG1 mutations using gene editing technology were established to address the functional consequences of this mutation. While mutations causing the reduction in SMG1 gene dosage by alterations in splicing (c.7192_7194delinsGAA; GAA/+) or frameshift (c.4331_4337del; KO/+) led to a mild but significant reduction of NMD activity, NMD activity was not altered in cells with the SMG1 GAG/+ mutation. Furthermore, cortical organoids from hPSCGAA/+ exhibited size reduction compared to the control (CTL) or GAG/+, suggesting that reduced NMD activity can affect nervous system development. These findings suggest that hypomorphic SMG1 mutations can cause reduced NMD activity and subsequent biological responses, while the mutation found in the patient alone may not be sufficient to induce pathological symptoms.
Collapse
Affiliation(s)
- Chanyoung Lee
- Department of Anatomy, Brain Korea 21 Plus Program for Biomedical Science, College of Medicine, Korea University, 73, Goryeodae-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Jin Sook Lee
- Department of Pediatrics, Seoul National University College of Medicine, Seoul Korea
| | - Yejin Kwon
- Department of Anatomy, Brain Korea 21 Plus Program for Biomedical Science, College of Medicine, Korea University, 73, Goryeodae-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Aeri Shin
- Department of Anatomy, Brain Korea 21 Plus Program for Biomedical Science, College of Medicine, Korea University, 73, Goryeodae-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Tae Yeong Jeong
- Department of Physiology, Brain Korea 21 Plus Program for Biomedical Science, College of Medicine, Korea University, 73, Goryeodae-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Jiyun Yang
- Department of Physiology, Brain Korea 21 Plus Program for Biomedical Science, College of Medicine, Korea University, 73, Goryeodae-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Jung Woo Hwang
- Department of Biomedical Science, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Hyeong-In Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Hee-Jung Choi
- Department of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Yoon Ki Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Murim Choi
- Department of Biomedical Science, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Kyoungmi Kim
- Department of Physiology, Brain Korea 21 Plus Program for Biomedical Science, College of Medicine, Korea University, 73, Goryeodae-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Woong Sun
- Department of Anatomy, Brain Korea 21 Plus Program for Biomedical Science, College of Medicine, Korea University, 73, Goryeodae-ro, Seongbuk-gu, Seoul 02841, Republic of Korea.
| | - Jong Hee Chae
- Department of Genomic Medicine, Seoul National University Hospital, Seoul, Republic of Korea; Department of Pediatrics, Seoul National University College of Medicine, Seoul Korea.
| |
Collapse
|
2
|
Peter L, Walotka L, Ptok J, Meyer C, Schüller D, Schaal H, Müller L. Bioinformatics-driven refinement of the commonly used TPI nonsense-mediated decay reporter system. RNA (NEW YORK, N.Y.) 2024; 31:32-42. [PMID: 39414360 DOI: 10.1261/rna.080134.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/21/2024] [Indexed: 10/18/2024]
Abstract
The cellular nonsense-mediated decay (NMD) pathway recognizes and degrades mRNAs with unusual structural features, such as long 3' UTRs or overlapping reading frames, and therefore serves as a transcript quality control mechanism. A broad spectrum of today's knowledge about the nonsense-mediated mRNA decay pathway has been discovered using NMD reporter systems, mostly consisting of multiple exons, with a wild-type and a premature termination codon-containing variant. In a preliminary NMD study, we used the seven-exon triose phosphate isomerase (TPI) reporter and observed that in this well-known NMD reporter, surprisingly, not all splice sites are used constitutively, but additional cryptic splice sites are used. As this is more frequently observed in the construction of minigenes, especially when unknown splicing regulatory elements (SREs) are removed, for example, by shortening introns, this may affect the reliability of such reporters. To demonstrate how such minigenes can be improved in general with respect to constitutive splice site recognition, we restored an intron length in the TPI reporter or made bioinformatic adjustments to SREs or intrinsic strength of the splice sites themselves. As a result, this NMD reporter could be made more robust and specific for the evaluation of NMD sensitivity within a single transcript. The modifications of the TPI reporter shown here as examples can generally be used for the transfer of cellular multiexon transcripts to minigenes.
Collapse
Affiliation(s)
- Laura Peter
- Institute of Virology, University Hospital Düsseldorf, Medical Faculty, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
| | - Lara Walotka
- Institute of Virology, University Hospital Düsseldorf, Medical Faculty, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
| | - Johannes Ptok
- Institute of Virology, University Hospital Düsseldorf, Medical Faculty, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
| | - Caroline Meyer
- Institute of Virology, University Hospital Düsseldorf, Medical Faculty, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
| | - Dominik Schüller
- Institute of Virology, University Hospital Düsseldorf, Medical Faculty, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
| | - Heiner Schaal
- Institute of Virology, University Hospital Düsseldorf, Medical Faculty, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
| | - Lisa Müller
- Institute of Virology, University Hospital Düsseldorf, Medical Faculty, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
| |
Collapse
|
3
|
Li L, Li J, Chen R, Huang C, Zuo Y, Lu R, Liu X, Huang J, Wang Y, Zhao X, Cheng J, Zhao X, Du C, Yu J. Loss of Fbxo45 in AT2 cells leads to insufficient histone supply and initiates lung adenocarcinoma. Cell Death Differ 2024:10.1038/s41418-024-01433-z. [PMID: 39672818 DOI: 10.1038/s41418-024-01433-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 11/27/2024] [Accepted: 12/05/2024] [Indexed: 12/15/2024] Open
Abstract
Dysregulation of histone supply is implicated in various cancers, including lung adenocarcinoma (LUAD), although the underlying mechanisms remain poorly understood. Here, we demonstrate that knockout of Fbxo45 in mouse alveolar epithelial type 2 (AT2) cells leads to spontaneous LUAD. Our findings reveal that FBXO45 is a novel cell-cycle-regulated protein that is degraded upon phosphorylation by CDK1 during the S/G2 phase. During the S phase or DNA damage repair, FBXO45 binds to UPF1 and recruits the phosphatase PPP6C, thereby inhibiting UPF1 phosphorylation. This process is crucial for preventing the degradation of replication-dependent (RD) histone mRNAs and ensuring an adequate histone supply. In the absence of FBXO45, the impaired interaction between PPP6C and UPF1 results in sustained hyperphosphorylation of UPF1 throughout the cell cycle, leading to an insufficient histone supply, chromatin relaxation, genomic instability, and an increased rate of gene mutations, ultimately culminating in malignant transformation. Notably, analysis of clinical LUAD specimens confirms a positive correlation between the loss of FBXO45 and genomic instability, which is consistent with our findings in the mouse model. These results highlight the critical role of FBXO45 as a genomic guardian in coordinating histone supply and DNA replication, providing valuable insights into potential therapeutic targets and strategies for the treatment of LUAD.
Collapse
Affiliation(s)
- Lian Li
- Department of Biochemistry and Molecular Cell Biology & Department of Thoracic Surgery Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Department of Respiratory and Critical Care Medicine, QingPu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, 201700, China
| | - Junya Li
- Department of Biochemistry and Molecular Cell Biology & Department of Thoracic Surgery Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ran Chen
- Department of Biochemistry and Molecular Cell Biology & Department of Thoracic Surgery Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Caihu Huang
- Department of Biochemistry and Molecular Cell Biology & Department of Thoracic Surgery Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yong Zuo
- Department of Biochemistry and Molecular Cell Biology & Department of Thoracic Surgery Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Runhui Lu
- Department of Biochemistry and Molecular Cell Biology & Department of Thoracic Surgery Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xiaojia Liu
- Department of Biochemistry and Molecular Cell Biology & Department of Thoracic Surgery Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jiayi Huang
- Department of Biochemistry and Molecular Cell Biology & Department of Thoracic Surgery Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yanli Wang
- Department of Biochemistry and Molecular Cell Biology & Department of Thoracic Surgery Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xian Zhao
- Department of Biochemistry and Molecular Cell Biology & Department of Thoracic Surgery Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jinke Cheng
- Department of Biochemistry and Molecular Cell Biology & Department of Thoracic Surgery Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xiaojing Zhao
- Department of Biochemistry and Molecular Cell Biology & Department of Thoracic Surgery Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Chunling Du
- Department of Respiratory and Critical Care Medicine, QingPu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, 201700, China.
| | - Jianxiu Yu
- Department of Biochemistry and Molecular Cell Biology & Department of Thoracic Surgery Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Department of Respiratory and Critical Care Medicine, QingPu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, 201700, China.
| |
Collapse
|
4
|
Sun X, Lin R, Lu X, Wu Z, Qi X, Jiang T, Jiang J, Mu P, Chen Q, Wen J, Deng Y. UPF3B modulates endoplasmic reticulum stress through interaction with inositol-requiring enzyme-1α. Cell Death Dis 2024; 15:587. [PMID: 39138189 PMCID: PMC11322666 DOI: 10.1038/s41419-024-06973-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 07/29/2024] [Accepted: 08/05/2024] [Indexed: 08/15/2024]
Abstract
The unfolded protein response (UPR) is a conserved and adaptive intracellular pathway that relieves the endoplasmic reticulum (ER) stress by activating ER transmembrane stress sensors. As a consequence of ER stress, the inhibition of nonsense-mediated mRNA decay (NMD) is due to an increase in the phosphorylation of eIF2α, which has the effect of inhibiting translation. However, the role of NMD in maintaining ER homeostasis remains unclear. In this study, we found that the three NMD factors, up-frameshift (UPF)1, UPF2, or UPF3B, were required to negate the UPR. Among these three NMD factors, only UPF3B interacted with inositol-requiring enzyme-1α (IRE1α). This interaction inhibited the kinase activity of IRE1α, abolished autophosphorylation, and reduced IRE1α clustering for ER stress. BiP and UPF3B jointly control the activation of IRE1α on both sides of the ER membrane. Under stress conditions, the phosphorylation of UPF3B was increased and the phosphorylated sites were identified. Both the UPF3BY160D genetic mutation and phosphorylation at Thr169 of UPF3B abolished its interaction with IRE1α and UPF2, respectively, leading to activation of ER stress and NMD dysfunction. Our study reveals a key physiological role for UPF3B in the reciprocal regulatory relationship between NMD and ER stress.
Collapse
Affiliation(s)
- XingSheng Sun
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou, 510642, Guangdong, China
- Guangdong provincial key laboratory for the development biology and environmental adaptation of agricultural organisms, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Ruqin Lin
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou, 510642, Guangdong, China
- Guangdong provincial key laboratory for the development biology and environmental adaptation of agricultural organisms, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Xinxia Lu
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou, 510642, Guangdong, China
- Guangdong provincial key laboratory for the development biology and environmental adaptation of agricultural organisms, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Zhikai Wu
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou, 510642, Guangdong, China
- Guangdong provincial key laboratory for the development biology and environmental adaptation of agricultural organisms, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Xueying Qi
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou, 510642, Guangdong, China
- Guangdong provincial key laboratory for the development biology and environmental adaptation of agricultural organisms, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Tianqing Jiang
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou, 510642, Guangdong, China
- Guangdong provincial key laboratory for the development biology and environmental adaptation of agricultural organisms, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Jun Jiang
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou, 510642, Guangdong, China
- Guangdong provincial key laboratory for the development biology and environmental adaptation of agricultural organisms, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Peiqiang Mu
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou, 510642, Guangdong, China
- Guangdong provincial key laboratory for the development biology and environmental adaptation of agricultural organisms, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Qingmei Chen
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou, 510642, Guangdong, China
- Guangdong provincial key laboratory for the development biology and environmental adaptation of agricultural organisms, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Jikai Wen
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou, 510642, Guangdong, China.
- Guangdong provincial key laboratory for the development biology and environmental adaptation of agricultural organisms, South China Agricultural University, Guangzhou, 510642, Guangdong, China.
| | - Yiqun Deng
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou, 510642, Guangdong, China.
- Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, China.
| |
Collapse
|
5
|
García-López M, Jiménez-Vicente L, González-Jabardo R, Dorado H, Gómez-Manjón I, Martín MÁ, Ayuso C, Arenas J, Gallardo ME. Creation of an Isogenic Human iPSC-Based RGC Model of Dominant Optic Atrophy Harboring the Pathogenic Variant c.1861C>T (p.Gln621Ter) in the OPA1 Gene. Int J Mol Sci 2024; 25:7240. [PMID: 39000346 PMCID: PMC11242102 DOI: 10.3390/ijms25137240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024] Open
Abstract
Autosomal dominant optic atrophy (ADOA) is a rare progressive disease mainly caused by mutations in OPA1, a nuclear gene encoding for a mitochondrial protein that plays an essential role in mitochondrial dynamics, cell survival, oxidative phosphorylation, and mtDNA maintenance. ADOA is characterized by the degeneration of retinal ganglion cells (RGCs). This causes visual loss, which can lead to legal blindness in many cases. Nowadays, there is no effective treatment for ADOA. In this article, we have established an isogenic human RGC model for ADOA using iPSC technology and the genome editing tool CRISPR/Cas9 from a previously generated iPSC line of an ADOA plus patient harboring the pathogenic variant NM_015560.3: c.1861C>T (p.Gln621Ter) in heterozygosis in OPA1. To this end, a protocol based on supplementing the iPSC culture media with several small molecules and defined factors trying to mimic embryonic development has been employed. Subsequently, the created model was validated, confirming the presence of a defect of intergenomic communication, impaired mitochondrial respiration, and an increase in apoptosis and ROS generation. Finally, we propose the analysis of OPA1 expression by qPCR as an easy read-out method to carry out future drug screening studies using the created RGC model. In summary, this model provides a useful platform for further investigation of the underlying pathophysiological mechanisms of ADOA plus and for testing compounds with potential pharmacological action.
Collapse
Affiliation(s)
- Marta García-López
- Grupo de Investigación Traslacional con Células iPS, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
| | - Lydia Jiménez-Vicente
- Grupo de Investigación Traslacional con Células iPS, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
| | - Raquel González-Jabardo
- Grupo de Investigación Traslacional con Células iPS, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
| | - Helena Dorado
- Grupo de Investigación Traslacional con Células iPS, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
| | - Irene Gómez-Manjón
- Servicio de Genética, Hospital 12 de Octubre, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
| | - Miguel Ángel Martín
- Servicio de Genética, Hospital 12 de Octubre, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
- Laboratorio de Enfermedades Mitocondriales y Neuromusculares, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain
| | - Carmen Ayuso
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain
| | - Joaquín Arenas
- Laboratorio de Enfermedades Mitocondriales y Neuromusculares, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain
| | - María Esther Gallardo
- Grupo de Investigación Traslacional con Células iPS, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
| |
Collapse
|
6
|
Moisan GJ, Kamath N, Apgar S, Schwehr M, Vedmurthy P, Conner O, Hayes K, Toro CP. Alternative Splicing and Nonsense-Mediated Decay of a Zebrafish GABA Receptor Subunit Transcript. Zebrafish 2024; 21:198-205. [PMID: 37751193 DOI: 10.1089/zeb.2023.0044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023] Open
Abstract
The superfamily of Cys-loop ionotropic neurotransmitter receptors includes those that detect GABA, glutamate, glycine, and acetylcholine. There is ample evidence that many Cys-loop receptor subunit genes include alternatively spliced exons. In this study, we report a novel example of alternative splicing (AS): we show that the 68-bp exon 3 in the zebrafish gabrr2b gene-which codes for the ρ2b GABAAR subunit-is an alternative cassette exon. Skipping of gabrr2b exon 3 results in a downstream frame shift and a premature termination codon (PTC). We provide evidence in larval zebrafish that transcripts containing the PTC are subject to degradation through nonsense-mediated decay. We also compile reports of AS of homologous exons in other Cys-loop receptor genes in multiple species. Our data add to a large body of research demonstrating that exon 3 in Cys-loop receptor genes is a conserved site for AS, the effects of which can vary from novel splice-isoform generation to downregulation of gene expression through transcript degradation.
Collapse
Affiliation(s)
- Gaia J Moisan
- Biology Department, Sarah Lawrence College, Bronxville, New York, USA
| | - Nitika Kamath
- Biology Department, Sarah Lawrence College, Bronxville, New York, USA
| | - Shannon Apgar
- Biology Department, Linfield University, McMinnville, Oregon, USA
| | - Megan Schwehr
- Biology Department, Linfield University, McMinnville, Oregon, USA
| | - Pooja Vedmurthy
- Biology Department, Sarah Lawrence College, Bronxville, New York, USA
| | - Olivya Conner
- Biology Department, Sarah Lawrence College, Bronxville, New York, USA
| | - Kyler Hayes
- Biology Department, Linfield University, McMinnville, Oregon, USA
| | - Cecilia Phillips Toro
- Biology Department, Sarah Lawrence College, Bronxville, New York, USA
- Biology Department, Linfield University, McMinnville, Oregon, USA
| |
Collapse
|
7
|
Tan Y, Zhang J, Jin Y. Nonsense-mediated mRNA decay suppresses injury-induced muscle regeneration via inhibiting MyoD transcriptional activity. J Cell Physiol 2023; 238:2638-2650. [PMID: 37683043 DOI: 10.1002/jcp.31118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/03/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023]
Abstract
Skeletal muscle regeneration is a crucial physiological process that occurs in response to injury or disease. As an important transcriptome surveillance system that regulates tissue development, the role of nonsense-mediated mRNA decay (NMD) in muscle regeneration remains unclear. Here, we found that NMD inhibits myoblast differentiation by targeting the phosphoinositide-3-kinase regulatory subunit 5 gene, which leads to the suppression of the transcriptional activity of myogenic differentiation (MyoD), a key regulator of myoblast differentiation. This disruption of MyoD transcriptional activity subsequently affects the expression levels of myogenin and myosin heavy chain, crucial markers of myoblast differentiation. Additionally, through up-frameshift protein 1 knockdown experiments, we observed that inhibiting NMD can accelerate muscle regeneration in vivo. These findings highlight the potential of NMD as a novel therapeutic target for the treatment of muscle-related injuries and diseases.
Collapse
Affiliation(s)
- Yanjie Tan
- Center for Cell Structure and Function, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Jing Zhang
- Center for Cell Structure and Function, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Yi Jin
- Research Center of Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
8
|
Lau HH, Krentz NAJ, Abaitua F, Perez-Alcantara M, Chan JW, Ajeian J, Ghosh S, Lee Y, Yang J, Thaman S, Champon B, Sun H, Jha A, Hoon S, Tan NS, Gardner DSL, Kao SL, Tai ES, Gloyn AL, Teo AKK. PAX4 loss of function increases diabetes risk by altering human pancreatic endocrine cell development. Nat Commun 2023; 14:6119. [PMID: 37777536 PMCID: PMC10542369 DOI: 10.1038/s41467-023-41860-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 09/20/2023] [Indexed: 10/02/2023] Open
Abstract
The coding variant (p.Arg192His) in the transcription factor PAX4 is associated with an altered risk for type 2 diabetes (T2D) in East Asian populations. In mice, Pax4 is essential for beta cell formation but its role on human beta cell development and/or function is unknown. Participants carrying the PAX4 p.His192 allele exhibited decreased pancreatic beta cell function compared to homozygotes for the p.192Arg allele in a cross-sectional study in which we carried out an intravenous glucose tolerance test and an oral glucose tolerance test. In a pedigree of a patient with young onset diabetes, several members carry a newly identified p.Tyr186X allele. In the human beta cell model, EndoC-βH1, PAX4 knockdown led to impaired insulin secretion, reduced total insulin content, and altered hormone gene expression. Deletion of PAX4 in human induced pluripotent stem cell (hiPSC)-derived islet-like cells resulted in derepression of alpha cell gene expression. In vitro differentiation of hiPSCs carrying PAX4 p.His192 and p.X186 risk alleles exhibited increased polyhormonal endocrine cell formation and reduced insulin content that can be reversed with gene correction. Together, we demonstrate the role of PAX4 in human endocrine cell development, beta cell function, and its contribution to T2D-risk.
Collapse
Affiliation(s)
- Hwee Hui Lau
- Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Proteos, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Nicole A J Krentz
- Division of Endocrinology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Fernando Abaitua
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | | | - Jun-Wei Chan
- Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Proteos, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Jila Ajeian
- Oxford Centre for Diabetes Endocrinology and Metabolism, University of Oxford, Oxford, UK
| | - Soumita Ghosh
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Yunkyeong Lee
- Division of Endocrinology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Jing Yang
- Division of Endocrinology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Swaraj Thaman
- Division of Endocrinology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Benoite Champon
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Han Sun
- Division of Endocrinology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Alokkumar Jha
- Division of Endocrinology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Shawn Hoon
- Molecular Engineering Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Proteos, Singapore
| | - Nguan Soon Tan
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | | | - Shih Ling Kao
- Department of Medicine, National University Hospital and National University Health System, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - E Shyong Tai
- Department of Medicine, National University Hospital and National University Health System, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - Anna L Gloyn
- Division of Endocrinology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA.
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK.
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.
- Stanford Diabetes Research Center, Stanford University, Stanford, CA, USA.
| | - Adrian Kee Keong Teo
- Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Proteos, Singapore.
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
9
|
Huang Z, Peng Y, Wei Y, Tan Y. Nonsense-mediated mRNA decay promote C2C12 cell proliferation by targeting PIK3R5. J Muscle Res Cell Motil 2022; 44:11-23. [PMID: 36512272 DOI: 10.1007/s10974-022-09639-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022]
Abstract
Nonsense mediated mRNA decay (NMD) is a highly conserved RNA quality control system, which can specifically clear abnormal mRNA and play an important role in tumorigenesis. Myoblast proliferation plays an important role in the repair of skeletal muscle injury and the development of myosarcoma, and is controlled by a variety of transcription factors and signals. The molecular mechanism by which NMD regulates the proliferation of myoblast cells is not completely clear. In this study, we found that the NMD activity of skeletal muscle is high in 1-week-old mice but decreases gradually with age, corresponding to a weakening capacity for muscle growth and regeneration. Here, we provide evidence that NMD plays an important role in myoblast proliferation and apoptosis. In addition, we found that PIK3R5 is an NMD substrate gene which can inhibit AKT activity and C2C12 cell proliferation. Therefore, NMD can target PIK3R5 to enhance AKT activity, which in turn promotes C2C12 cell proliferation. This study provides new insights into NMD regulatory mechanisms in muscular development and into potential novel therapeutic strategies for muscle atrophy.
Collapse
Affiliation(s)
- Zhenzhou Huang
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Institute of Biomedical Sciences, Shandong Normal University, Jinan, 250014, Shandong, China
| | - Yishu Peng
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Institute of Biomedical Sciences, Shandong Normal University, Jinan, 250014, Shandong, China
| | - Yuhui Wei
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Institute of Biomedical Sciences, Shandong Normal University, Jinan, 250014, Shandong, China
| | - Yanjie Tan
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Institute of Biomedical Sciences, Shandong Normal University, Jinan, 250014, Shandong, China.
| |
Collapse
|
10
|
Meraviglia-Crivelli D, Villanueva H, Zheleva A, Villalba-Esparza M, Moreno B, Menon AP, Calvo A, Cebollero J, Barainka M, de los Mozos IR, Huesa-Berral C, Pastor F. IL-6/STAT3 signaling in tumor cells restricts the expression of frameshift-derived neoantigens by SMG1 induction. Mol Cancer 2022; 21:211. [PMID: 36443756 PMCID: PMC9703761 DOI: 10.1186/s12943-022-01679-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/21/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND The quality and quantity of tumor neoantigens derived from tumor mutations determines the fate of the immune response in cancer. Frameshift mutations elicit better tumor neoantigens, especially when they are not targeted by nonsense-mediated mRNA decay (NMD). For tumor progression, malignant cells need to counteract the immune response including the silencing of immunodominant neoantigens (antigen immunoediting) and promoting an immunosuppressive tumor microenvironment. Although NMD inhibition has been reported to induce tumor immunity and increase the expression of cryptic neoantigens, the possibility that NMD activity could be modulated by immune forces operating in the tumor microenvironment as a new immunoediting mechanism has not been addressed. METHODS We study the effect of SMG1 expression (main kinase that initiates NMD) in the survival and the nature of the tumor immune infiltration using TCGA RNAseq and scRNAseq datasets of breast, lung and pancreatic cancer. Different murine tumor models were used to corroborate the antitumor immune dependencies of NMD. We evaluate whether changes of SMG1 expression in malignant cells impact the immune response elicited by cancer immunotherapy. To determine how NMD fluctuates in malignant cells we generated a luciferase reporter system to track NMD activity in vivo under different immune conditions. Cytokine screening, in silico studies and functional assays were conducted to determine the regulation of SMG1 via IL-6/STAT3 signaling. RESULTS IL-6/STAT3 signaling induces SMG1, which limits the expression of potent frameshift neoantigens that are under NMD control compromising the outcome of the immune response. CONCLUSION We revealed a new neoantigen immunoediting mechanism regulated by immune forces (IL-6/STAT3 signaling) responsible for silencing otherwise potent frameshift mutation-derived neoantigens.
Collapse
Affiliation(s)
- Daniel Meraviglia-Crivelli
- grid.5924.a0000000419370271Molecular Therapeutics Program, Center for Applied Medical Research, CIMA, University of Navarra, 31008 Pamplona, Spain ,grid.508840.10000 0004 7662 6114Instituto de Investigación Sanitaria de Navarra (IDISNA), Recinto de Complejo Hospitalario de Navarra, 31008 Pamplona, Spain
| | - Helena Villanueva
- grid.5924.a0000000419370271Molecular Therapeutics Program, Center for Applied Medical Research, CIMA, University of Navarra, 31008 Pamplona, Spain ,grid.508840.10000 0004 7662 6114Instituto de Investigación Sanitaria de Navarra (IDISNA), Recinto de Complejo Hospitalario de Navarra, 31008 Pamplona, Spain
| | - Angelina Zheleva
- grid.5924.a0000000419370271Molecular Therapeutics Program, Center for Applied Medical Research, CIMA, University of Navarra, 31008 Pamplona, Spain ,grid.508840.10000 0004 7662 6114Instituto de Investigación Sanitaria de Navarra (IDISNA), Recinto de Complejo Hospitalario de Navarra, 31008 Pamplona, Spain
| | - María Villalba-Esparza
- grid.5924.a0000000419370271Molecular Therapeutics Program, Center for Applied Medical Research, CIMA, University of Navarra, 31008 Pamplona, Spain ,grid.508840.10000 0004 7662 6114Instituto de Investigación Sanitaria de Navarra (IDISNA), Recinto de Complejo Hospitalario de Navarra, 31008 Pamplona, Spain ,grid.47100.320000000419368710Department of Pathology, Yale University School of Medicine, New Haven, CT 06510 USA
| | - Beatriz Moreno
- grid.5924.a0000000419370271Molecular Therapeutics Program, Center for Applied Medical Research, CIMA, University of Navarra, 31008 Pamplona, Spain
| | - Ashwathi Puravankara Menon
- grid.5924.a0000000419370271Molecular Therapeutics Program, Center for Applied Medical Research, CIMA, University of Navarra, 31008 Pamplona, Spain ,grid.508840.10000 0004 7662 6114Instituto de Investigación Sanitaria de Navarra (IDISNA), Recinto de Complejo Hospitalario de Navarra, 31008 Pamplona, Spain
| | - Alfonso Calvo
- grid.5924.a0000000419370271IDISNA, CIBERONC, Program in Solid Tumors (CIMA), Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, Avenida Pío XII, 55, 31008 Pamplona, Spain
| | - Javier Cebollero
- grid.5924.a0000000419370271Molecular Therapeutics Program, Center for Applied Medical Research, CIMA, University of Navarra, 31008 Pamplona, Spain ,grid.508840.10000 0004 7662 6114Instituto de Investigación Sanitaria de Navarra (IDISNA), Recinto de Complejo Hospitalario de Navarra, 31008 Pamplona, Spain
| | - Martin Barainka
- grid.5924.a0000000419370271Molecular Therapeutics Program, Center for Applied Medical Research, CIMA, University of Navarra, 31008 Pamplona, Spain ,grid.508840.10000 0004 7662 6114Instituto de Investigación Sanitaria de Navarra (IDISNA), Recinto de Complejo Hospitalario de Navarra, 31008 Pamplona, Spain
| | - Igor Ruiz de los Mozos
- grid.5924.a0000000419370271Gene Therapy Program, Center for Applied Medical Research, CIMA, University of Navarra, 31008 Pamplona, Spain ,grid.424222.00000 0001 2242 5374Department of Personalized Medicine, NASERTIC, Government of Navarra, 31008 Pamplona, Spain
| | - Carlos Huesa-Berral
- grid.5924.a0000000419370271Department of Physics and Applied Mathematics, School of Science, University of Navarra, E-31008 Pamplona, Navarra Spain
| | - Fernando Pastor
- grid.5924.a0000000419370271Molecular Therapeutics Program, Center for Applied Medical Research, CIMA, University of Navarra, 31008 Pamplona, Spain ,grid.508840.10000 0004 7662 6114Instituto de Investigación Sanitaria de Navarra (IDISNA), Recinto de Complejo Hospitalario de Navarra, 31008 Pamplona, Spain ,grid.5924.a0000000419370271Department of Molecular Therapies, CIMA (Center for Applied Medical Research) University of Navarre, Av. de Pío XII, 55, 31008 Pamplona, Spain
| |
Collapse
|
11
|
Bubnell JE, Ulbing CKS, Fernandez Begne P, Aquadro CF. Functional Divergence of the bag-of-marbles Gene in the Drosophila melanogaster Species Group. Mol Biol Evol 2022; 39:6609986. [PMID: 35714266 PMCID: PMC9250105 DOI: 10.1093/molbev/msac137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
In Drosophila melanogaster, a key germline stem cell (GSC) differentiation factor, bag of marbles (bam) shows rapid bursts of amino acid fixations between sibling species D. melanogaster and Drosophila simulans, but not in the outgroup species Drosophila ananassae. Here, we test the null hypothesis that bam's differentiation function is conserved between D. melanogaster and four additional Drosophila species in the melanogaster species group spanning approximately 30 million years of divergence. Surprisingly, we demonstrate that bam is not necessary for oogenesis or spermatogenesis in Drosophila teissieri nor is bam necessary for spermatogenesis in D. ananassae. Remarkably bam function may change on a relatively short time scale. We further report tests of neutral sequence evolution at bam in additional species of Drosophila and find a positive, but not perfect, correlation between evidence for positive selection at bam and its essential role in GSC regulation and fertility for both males and females. Further characterization of bam function in more divergent lineages will be necessary to distinguish between bam's critical gametogenesis role being newly derived in D. melanogaster, D. simulans, Drosophila yakuba, and D. ananassae females or it being basal to the genus and subsequently lost in numerous lineages.
Collapse
Affiliation(s)
| | - Cynthia K S Ulbing
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | | | | |
Collapse
|
12
|
Udy DB, Bradley RK. Nonsense-mediated mRNA decay uses complementary mechanisms to suppress mRNA and protein accumulation. Life Sci Alliance 2022; 5:e202101217. [PMID: 34880103 PMCID: PMC8711849 DOI: 10.26508/lsa.202101217] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 12/13/2022] Open
Abstract
Nonsense-mediated mRNA decay (NMD) is an essential, highly conserved quality control pathway that detects and degrades mRNAs containing premature termination codons. Although the essentiality of NMD is frequently ascribed to its prevention of truncated protein accumulation, the extent to which NMD actually suppresses proteins encoded by NMD-sensitive transcripts is less well-understood than NMD-mediated suppression of mRNA. Here, we describe a reporter system that permits accurate quantification of both mRNA and protein levels via stable integration of paired reporters encoding NMD-sensitive and NMD-insensitive transcripts into the AAVS1 safe harbor loci in human cells. We use this system to demonstrate that NMD suppresses proteins encoded by NMD-sensitive transcripts by up to eightfold more than the mRNA itself. Our data indicate that NMD limits the accumulation of proteins encoded by NMD substrates by mechanisms beyond mRNA degradation, such that even when NMD-sensitive mRNAs escape destruction, their encoded proteins are still effectively suppressed.
Collapse
Affiliation(s)
- Dylan B Udy
- Computational Biology Program, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA, USA
| | - Robert K Bradley
- Computational Biology Program, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| |
Collapse
|
13
|
Brown AL, Wilkins OG, Keuss MJ, Kargbo-Hill SE, Zanovello M, Lee WC, Bampton A, Lee FCY, Masino L, Qi YA, Bryce-Smith S, Gatt A, Hallegger M, Fagegaltier D, Phatnani H, Newcombe J, Gustavsson EK, Seddighi S, Reyes JF, Coon SL, Ramos D, Schiavo G, Fisher EMC, Raj T, Secrier M, Lashley T, Ule J, Buratti E, Humphrey J, Ward ME, Fratta P. TDP-43 loss and ALS-risk SNPs drive mis-splicing and depletion of UNC13A. Nature 2022; 603:131-137. [PMID: 35197628 PMCID: PMC8891020 DOI: 10.1038/s41586-022-04436-3] [Citation(s) in RCA: 250] [Impact Index Per Article: 83.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 01/18/2022] [Indexed: 12/12/2022]
Abstract
Variants of UNC13A, a critical gene for synapse function, increase the risk of amyotrophic lateral sclerosis and frontotemporal dementia1-3, two related neurodegenerative diseases defined by mislocalization of the RNA-binding protein TDP-434,5. Here we show that TDP-43 depletion induces robust inclusion of a cryptic exon in UNC13A, resulting in nonsense-mediated decay and loss of UNC13A protein. Two common intronic UNC13A polymorphisms strongly associated with amyotrophic lateral sclerosis and frontotemporal dementia risk overlap with TDP-43 binding sites. These polymorphisms potentiate cryptic exon inclusion, both in cultured cells and in brains and spinal cords from patients with these conditions. Our findings, which demonstrate a genetic link between loss of nuclear TDP-43 function and disease, reveal the mechanism by which UNC13A variants exacerbate the effects of decreased TDP-43 function. They further provide a promising therapeutic target for TDP-43 proteinopathies.
Collapse
Affiliation(s)
- Anna-Leigh Brown
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL, London, UK
| | - Oscar G Wilkins
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL, London, UK
- The Francis Crick Institute, London, UK
| | - Matthew J Keuss
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL, London, UK
| | - Sarah E Kargbo-Hill
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
| | - Matteo Zanovello
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL, London, UK
| | - Weaverly Colleen Lee
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL, London, UK
| | - Alexander Bampton
- Queen Square Brain Bank, UCL Queen Square Institute of Neurology, University College London, London, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Flora C Y Lee
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL, London, UK
- The Francis Crick Institute, London, UK
| | | | - Yue A Qi
- Center for Alzheimer's and Related Dementias, National Institutes of Health, Bethesda, MD, USA
| | - Sam Bryce-Smith
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL, London, UK
| | - Ariana Gatt
- Queen Square Brain Bank, UCL Queen Square Institute of Neurology, University College London, London, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Martina Hallegger
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL, London, UK
- The Francis Crick Institute, London, UK
| | - Delphine Fagegaltier
- Center for Genomics of Neurodegenerative Disease, New York Genome Center (NYGC), New York, NY, USA
| | - Hemali Phatnani
- Center for Genomics of Neurodegenerative Disease, New York Genome Center (NYGC), New York, NY, USA
| | - Jia Newcombe
- NeuroResource, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, London, UK
| | - Emil K Gustavsson
- Queen Square Brain Bank, UCL Queen Square Institute of Neurology, University College London, London, UK
- Great Ormond Street Institute of Child Health, Genetics and Genomic Medicine, University College London, London, UK
| | - Sahba Seddighi
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
- Medical Scientist Training Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Joel F Reyes
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
| | - Steven L Coon
- Molecular Genomics Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA
| | - Daniel Ramos
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
- Center for Alzheimer's and Related Dementias, National Institutes of Health, Bethesda, MD, USA
| | - Giampietro Schiavo
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL, London, UK
- UK Dementia Research Institute, University College London, London, UK
| | - Elizabeth M C Fisher
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL, London, UK
| | - Towfique Raj
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences and Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Maria Secrier
- Department of Genetics, Evolution and Environment, UCL Genetics Institute, University College London, London, UK
| | - Tammaryn Lashley
- Queen Square Brain Bank, UCL Queen Square Institute of Neurology, University College London, London, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Jernej Ule
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL, London, UK
- The Francis Crick Institute, London, UK
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Emanuele Buratti
- Molecular Pathology Lab, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Jack Humphrey
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences and Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michael E Ward
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA.
| | - Pietro Fratta
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL, London, UK.
| |
Collapse
|
14
|
Mesa-Perez M, Hamilton PT, Miranda A, Brodie N, O’Sullivan C, Christie J, Ryan B, Chow R, Goodlett D, Nelson C, Howard P. Cytoplasmic switch of ARS2 isoforms promotes nonsense-mediated mRNA decay and arsenic sensitivity. Nucleic Acids Res 2022; 50:1620-1638. [PMID: 35104878 PMCID: PMC8860587 DOI: 10.1093/nar/gkac033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/29/2021] [Accepted: 01/13/2022] [Indexed: 12/03/2022] Open
Abstract
The life of RNA polymerase II (RNAPII) transcripts is shaped by the dynamic formation of mutually exclusive ribonucleoprotein complexes (RNPs) that direct transcript biogenesis and turnover. A key regulator of RNA metabolism in the nucleus is the scaffold protein ARS2 (arsenic resistance protein 2), bound to the cap binding complex (CBC). We report here that alternative splicing of ARS2's intron 5, generates cytoplasmic isoforms that lack 270 amino acids from the N-terminal of the protein and are functionally distinct from nuclear ARS2. Switching of ARS2 isoforms within the CBC in the cytoplasm has dramatic functional consequences, changing ARS2 from a NMD inhibitor to a NMD promoter that enhances the binding of UPF1 to NCBP1 and ERF1, favouring SURF complex formation, SMG7 recruitment and transcript degradation. ARS2 isoform exchange is also relevant during arsenic stress, where cytoplasmic ARS2 promotes a global response to arsenic in a CBC-independent manner. We propose that ARS2 isoform switching promotes the proper recruitment of RNP complexes during NMD and the cellular response to arsenic stress. The existence of non-redundant ARS2 isoforms is relevant for cell homeostasis, and stress response.
Collapse
Affiliation(s)
- Monica Mesa-Perez
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 2Y2, Canada
| | | | - Alex Miranda
- Deeley Research Centre, BC Cancer, Victoria, BC V8R 6V5, Canada
| | - Nicholas Brodie
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 2Y2, Canada
- University of Victoria Genome BC Proteomics Centre, Vancouver Island Technology Park, Victoria, BC V8Z 7X8, Canada
| | - Connor O’Sullivan
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 2Y2, Canada
| | - Jennifer Christie
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 2Y2, Canada
| | - Bridget C Ryan
- Department of Biology, University of Victoria, Victoria, BC V8W 3N5, Canada
| | - Robert L Chow
- Department of Biology, University of Victoria, Victoria, BC V8W 3N5, Canada
| | - David Goodlett
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 2Y2, Canada
- University of Victoria Genome BC Proteomics Centre, Vancouver Island Technology Park, Victoria, BC V8Z 7X8, Canada
| | - Christopher J Nelson
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 2Y2, Canada
| | - Perry L Howard
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 2Y2, Canada
| |
Collapse
|
15
|
Evtushenko NA, Beilin AK, Dashinimaev EB, Ziganshin RH, Kosykh AV, Perfilov MM, Rippa AL, Alpeeva EV, Vasiliev AV, Vorotelyak EA, Gurskaya NG. hTERT-Driven Immortalization of RDEB Fibroblast and Keratinocyte Cell Lines Followed by Cre-Mediated Transgene Elimination. Int J Mol Sci 2021; 22:3809. [PMID: 33916959 PMCID: PMC8067634 DOI: 10.3390/ijms22083809] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/29/2021] [Accepted: 04/03/2021] [Indexed: 12/20/2022] Open
Abstract
The recessive form of dystrophic epidermolysis bullosa (RDEB) is a crippling disease caused by impairments in the junctions of the dermis and the basement membrane of the epidermis. Using ectopic expression of hTERT/hTERT + BMI-1 in primary cells, we developed expansible cultures of RDEB fibroblasts and keratinocytes. We showed that they display the properties of their founders, including morphology, contraction ability and expression of the respective specific markers including reduced secretion of type VII collagen (C7). The immortalized keratinocytes retained normal stratification in 3D skin equivalents. The comparison of secreted protein patterns from immortalized RDEB and healthy keratinocytes revealed the differences in the contents of the extracellular matrix that were earlier observed specifically for RDEB. We demonstrated the possibility to reverse the genotype of immortalized cells to the state closer to the progenitors by the Cre-dependent hTERT switch off. Increased β-galactosidase activity and reduced proliferation of fibroblasts were shown after splitting out of transgenes. We anticipate our cell lines to be tractable models for studying RDEB from the level of single-cell changes to the evaluation of 3D skin equivalents. Our approach permits the creation of standardized and expandable models of RDEB that can be compared with the models based on primary cell cultures.
Collapse
Affiliation(s)
- Nadezhda A. Evtushenko
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Ostrovityanova 1, 117997 Moscow, Russia; (N.A.E.); (A.K.B.); (E.B.D.); (A.V.K.)
| | - Arkadii K. Beilin
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Ostrovityanova 1, 117997 Moscow, Russia; (N.A.E.); (A.K.B.); (E.B.D.); (A.V.K.)
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, 26 Vavilova Str., 119334 Moscow, Russia; (A.L.R.); (E.V.A.); (A.V.V.); (E.A.V.)
| | - Erdem B. Dashinimaev
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Ostrovityanova 1, 117997 Moscow, Russia; (N.A.E.); (A.K.B.); (E.B.D.); (A.V.K.)
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, 26 Vavilova Str., 119334 Moscow, Russia; (A.L.R.); (E.V.A.); (A.V.V.); (E.A.V.)
| | - Rustam H. Ziganshin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (R.H.Z.); (M.M.P.)
| | - Anastasiya V. Kosykh
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Ostrovityanova 1, 117997 Moscow, Russia; (N.A.E.); (A.K.B.); (E.B.D.); (A.V.K.)
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, 26 Vavilova Str., 119334 Moscow, Russia; (A.L.R.); (E.V.A.); (A.V.V.); (E.A.V.)
| | - Maxim M. Perfilov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (R.H.Z.); (M.M.P.)
| | - Alexandra L. Rippa
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, 26 Vavilova Str., 119334 Moscow, Russia; (A.L.R.); (E.V.A.); (A.V.V.); (E.A.V.)
| | - Elena V. Alpeeva
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, 26 Vavilova Str., 119334 Moscow, Russia; (A.L.R.); (E.V.A.); (A.V.V.); (E.A.V.)
| | - Andrey V. Vasiliev
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, 26 Vavilova Str., 119334 Moscow, Russia; (A.L.R.); (E.V.A.); (A.V.V.); (E.A.V.)
| | - Ekaterina A. Vorotelyak
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, 26 Vavilova Str., 119334 Moscow, Russia; (A.L.R.); (E.V.A.); (A.V.V.); (E.A.V.)
| | - Nadya G. Gurskaya
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Ostrovityanova 1, 117997 Moscow, Russia; (N.A.E.); (A.K.B.); (E.B.D.); (A.V.K.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (R.H.Z.); (M.M.P.)
| |
Collapse
|
16
|
Havranek KE, White LA, Bisom TC, Lanchy JM, Lodmell JS. The Atypical Kinase RIOK3 Limits RVFV Propagation and Is Regulated by Alternative Splicing. Viruses 2021; 13:v13030367. [PMID: 33652597 PMCID: PMC7996929 DOI: 10.3390/v13030367] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 02/16/2021] [Accepted: 02/22/2021] [Indexed: 12/17/2022] Open
Abstract
In recent years, transcriptome profiling studies have identified changes in host splicing patterns caused by viral invasion, yet the functional consequences of the vast majority of these splicing events remain uncharacterized. We recently showed that the host splicing landscape changes during Rift Valley fever virus MP-12 strain (RVFV MP-12) infection of mammalian cells. Of particular interest, we observed that the host mRNA for Rio Kinase 3 (RIOK3) was alternatively spliced during infection. This kinase has been shown to be involved in pattern recognition receptor (PRR) signaling mediated by RIG-I like receptors to produce type-I interferon. Here, we characterize RIOK3 as an important component of the interferon signaling pathway during RVFV infection and demonstrate that RIOK3 mRNA expression is skewed shortly after infection to produce alternatively spliced variants that encode premature termination codons. This splicing event plays a critical role in regulation of the antiviral response. Interestingly, infection with other RNA viruses and transfection with nucleic acid-based RIG-I agonists also stimulated RIOK3 alternative splicing. Finally, we show that specifically stimulating alternative splicing of the RIOK3 transcript using a morpholino oligonucleotide reduced interferon expression. Collectively, these results indicate that RIOK3 is an important component of the mammalian interferon signaling cascade and its splicing is a potent regulatory mechanism capable of fine-tuning the host interferon response.
Collapse
Affiliation(s)
- Katherine E. Havranek
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA; (K.E.H.); (L.A.W.); (J.-M.L.)
| | - Luke Adam White
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA; (K.E.H.); (L.A.W.); (J.-M.L.)
| | - Thomas C. Bisom
- Department of Chemistry and Biochemistry, University of Montana, Missoula, MT 59812, USA;
| | - Jean-Marc Lanchy
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA; (K.E.H.); (L.A.W.); (J.-M.L.)
| | - J. Stephen Lodmell
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA; (K.E.H.); (L.A.W.); (J.-M.L.)
- Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, MT 59812, USA
- Correspondence:
| |
Collapse
|
17
|
van Gent M, Reich A, Velu SE, Gack MU. Nonsense-mediated decay controls the reactivation of the oncogenic herpesviruses EBV and KSHV. PLoS Biol 2021; 19:e3001097. [PMID: 33596193 PMCID: PMC7888593 DOI: 10.1371/journal.pbio.3001097] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 01/08/2021] [Indexed: 12/20/2022] Open
Abstract
The oncogenic human herpesviruses Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV) are the causative agents of multiple malignancies. A hallmark of herpesviruses is their biphasic life cycle consisting of latent and lytic infection. In this study, we identified that cellular nonsense-mediated decay (NMD), an evolutionarily conserved RNA degradation pathway, critically regulates the latent-to-lytic switch of EBV and KSHV infection. The NMD machinery suppresses EBV and KSHV Rta transactivator expression and promotes maintenance of viral latency by targeting the viral polycistronic transactivator transcripts for degradation through the recognition of features in their 3' UTRs. Treatment with a small-molecule NMD inhibitor potently induced reactivation in a variety of EBV- and KSHV-infected cell types. In conclusion, our results identify NMD as an important host process that controls oncogenic herpesvirus reactivation, which may be targeted for the therapeutic induction of lytic reactivation and the eradication of tumor cells.
Collapse
Affiliation(s)
- Michiel van Gent
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, Florida, United States of America
- Department of Microbiology, The University of Chicago, Chicago, Illinois, United States of America
| | - Adrian Reich
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, Florida, United States of America
| | - Sadanandan E. Velu
- Department of Chemistry, University of Alabama Birmingham, Birmingham, Alabama, United States of America
| | - Michaela U. Gack
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, Florida, United States of America
- Department of Microbiology, The University of Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
18
|
Trottier AM, Druhan LJ, Kraft IL, Lance A, Feurstein S, Helgeson M, Segal JP, Das S, Avalos BR, Godley LA. Heterozygous germ line CSF3R variants as risk alleles for development of hematologic malignancies. Blood Adv 2020; 4:5269-5284. [PMID: 33108454 PMCID: PMC7594406 DOI: 10.1182/bloodadvances.2020002013] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 09/11/2020] [Indexed: 12/16/2022] Open
Abstract
Colony-stimulating factor 3 receptor (CSF3R) encodes the receptor for granulocyte colony-stimulating factor (G-CSF), a cytokine vital for granulocyte proliferation and differentiation. Acquired activating heterozygous variants in CSF3R are the main cause of chronic neutrophilic leukemia, a hyperproliferative disorder. In contrast, biallelic germ line hypomorphic variants in CSF3R are a rare cause of severe congenital neutropenia, a hypoproliferative condition. The impact of heterozygous germ line CSF3R variants, however, is unknown. We identified CSF3R as a new germ line hematologic malignancy predisposition gene through analysis of 832 next-generation sequencing tests conducted in 632 patients with hematologic malignancies. Among germ line CSF3R variants, 3 were abnormal in functional testing, indicating their deleterious nature. p.Trp547* was identified in 2 unrelated men with myelodysplastic syndromes diagnosed at 76 and 33 years of age, respectively. p.Trp547* is a loss-of-function nonsense variant in the extracellular domain that results in decreased CSF3R messenger RNA expression and abrogation of CSF3R surface expression and proliferative responses to G-CSF. p.Ala119Thr is a missense variant found in 2 patients with multiple myeloma and acute lymphoblastic leukemia, respectively. This variant is located between the extracellular immunoglobulin-like and cytokine receptor homology domains and results in decreased G-CSF sensitivity. p.Pro784Thr was identified in a 67-year-old man with multiple myeloma. p.Pro784Thr is a missense variant in the cytoplasmic domain that inhibits CSF3R internalization, producing a gain-of-function phenotype and G-CSF hypersensitivity. Our findings identify germ line heterozygous CSF3R variants as risk factors for development of myeloid and lymphoid malignancies.
Collapse
Affiliation(s)
- Amy M Trottier
- Section of Hematology/Oncology, Department of Medicine, and
- University of Chicago Comprehensive Cancer Center, University of Chicago, Chicago, IL
| | - Lawrence J Druhan
- Department of Hematologic Oncology and Blood Disorders, Levine Cancer Institute, Atrium Health, Charlotte, NC; and
| | - Ira L Kraft
- Section of Hematology/Oncology, Department of Medicine, and
- University of Chicago Comprehensive Cancer Center, University of Chicago, Chicago, IL
- Internal Medicine-Pediatrics Residency Program, Department of Medicine
| | - Amanda Lance
- Department of Hematologic Oncology and Blood Disorders, Levine Cancer Institute, Atrium Health, Charlotte, NC; and
| | - Simone Feurstein
- Section of Hematology/Oncology, Department of Medicine, and
- University of Chicago Comprehensive Cancer Center, University of Chicago, Chicago, IL
| | | | - Jeremy P Segal
- Department of Pathology, University of Chicago, Chicago, IL
| | - Soma Das
- Department of Human Genetics, and
| | - Belinda R Avalos
- Department of Hematologic Oncology and Blood Disorders, Levine Cancer Institute, Atrium Health, Charlotte, NC; and
| | - Lucy A Godley
- Section of Hematology/Oncology, Department of Medicine, and
- University of Chicago Comprehensive Cancer Center, University of Chicago, Chicago, IL
- Department of Human Genetics, and
| |
Collapse
|
19
|
Sparber P, Sharova M, Filatova A, Shchagina O, Ivanova E, Dadali E, Skoblov M. Recessive myotonia congenita caused by a homozygous splice site variant in CLCN1 gene: a case report. BMC MEDICAL GENETICS 2020; 21:197. [PMID: 33092578 PMCID: PMC7579786 DOI: 10.1186/s12881-020-01128-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 09/22/2020] [Indexed: 02/01/2023]
Abstract
Background Myotonia congenita is a rare neuromuscular disease, which is characterized by a delay in muscle relaxation after evoked or voluntary contraction. Myotonia congenita can be inherited in a dominant (Thomsen disease) and recessive form (Becker disease) and both are caused by pathogenic variants in the CLCN1 gene. Noncanonical splice site variants are often classified as variants of uncertain significance, due to insufficient accuracy of splice-predicting tools. Functional analysis using minigene plasmids is widely used in such cases. Moreover, functional analysis is very useful in investigation of the disease pathogenesis, which is necessary for development of future therapeutic approaches. To our knowledge only one noncanonical splice site variant in the CLCN1 gene was functionally characterized to date. We further contribute to this field by evaluation the molecular mechanism of splicing alteration caused by the c.1582 + 5G > A in a homozygous state. Case presentation We report a clinical case of an affected 6-y.o boy with athletic appearance due to muscle hypertrophy, calf muscle stiffness, cramping and various myotonic signs in a consanguineous family with no history of neuromuscular disorders. The neurological examination showed percussion-activated myotonia in the hands and legs. Plasma creatine kinase enzyme and transaminases levels were normal. Electromyography at the time of examination shows myotonic runs in the upper and lower extremities. Conclusions Functional analysis of the variant in a minigene system showed alteration of splicing leading to loss of function, thereby confirming that the variant is pathogenic.
Collapse
Affiliation(s)
- Peter Sparber
- Research Centre for Medical Genetics Moskvorechie 1, Moscow, 115522, Russia.
| | - Margarita Sharova
- Research Centre for Medical Genetics Moskvorechie 1, Moscow, 115522, Russia
| | - Alexandra Filatova
- Research Centre for Medical Genetics Moskvorechie 1, Moscow, 115522, Russia
| | - Olga Shchagina
- Research Centre for Medical Genetics Moskvorechie 1, Moscow, 115522, Russia
| | - Evgeniya Ivanova
- Research Centre for Medical Genetics Moskvorechie 1, Moscow, 115522, Russia
| | - Elena Dadali
- Research Centre for Medical Genetics Moskvorechie 1, Moscow, 115522, Russia
| | - Mikhail Skoblov
- Research Centre for Medical Genetics Moskvorechie 1, Moscow, 115522, Russia
| |
Collapse
|
20
|
Tan Y, Jin Y, Wang S, Cao J, Ren Z. The RNA surveillance factor UPF1 regulates the migration and adhesion of porcine skeletal muscle satellite cells. J Muscle Res Cell Motil 2020; 42:203-217. [PMID: 32990898 DOI: 10.1007/s10974-020-09585-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Skeletal muscle satellite cells (SCs) play an important role in the repairment and regeneration of damaged muscle. The activation, proliferation, migration, and differentiation of SCs are essential to the response to muscle injury. Up-frameshift 1 (UPF1) is involved in the regulation of many developmental processes. However, the role of UPF1 and its associated regulatory mechanism in SCs are still unclear. Here, we analyzed changes in the transcriptome of porcine SCs with UPF1 knockdown. The results showed that focal adhesion and actin cytoskeleton processes were regulated by UPF1. We also confirmed experimentally that UPF1 promoted SC migration and adhesion by regulating the expression of F-Actin, Vinculin, and several adhesion-related genes. Furthermore, we found that phosphorylated focal adhesion kinase (p-FAK) was down-regulated by UPF1 knockdown. This study identifies the role of UPF1 in regulating SC migration and adhesion and therefore provides new insight into the regulatory mechanism of UPF1 in the process of repairing damaged muscle.
Collapse
Affiliation(s)
- Yanjie Tan
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Yi Jin
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Sheng Wang
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Jianhua Cao
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Zhuqing Ren
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China.
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China.
| |
Collapse
|
21
|
Li X, Han X, Tu X, Zhu D, Feng Y, Jiang T, Yang Y, Qu J, Chen JG. An Autism-Related, Nonsense Foxp1 Mutant Induces Autophagy and Delays Radial Migration of the Cortical Neurons. Cereb Cortex 2020; 29:3193-3208. [PMID: 30124790 DOI: 10.1093/cercor/bhy185] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 07/16/2018] [Accepted: 07/19/2018] [Indexed: 12/21/2022] Open
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder that has a strong genetic component. Disruptions of FOXP1, a transcription factor expressed in the developing cerebral cortex, were associated with ASD. FOXP1(R525X) is a de novo heterozygous mutation found in patients with autism and severe mental retardation. To explore the neuronal basis of FOXP1(R525X) in ASD, we created Foxp1(R521X), a mouse homolog of the human variant. Ectopic expression of Foxp1(R521X) led to cytoplasmic aggregates and activated macroautophagy in neuroblastoma N2a cells and the developing neuronal cells. Cortical neurons expressing Foxp1(R521X) exhibited delayed migration and altered dendritic morphology. As a control, mutant Y435X that was expressed diffusively in the cytoplasm did not induce autophagy and migration delay in the cortex. The embryonic cortical cells had a minimal activity of nonsense-mediated mRNA decay (NMD) as assayed by a splicing-dependent NMD reporter. We hypothesize that the developing neuronal cells use autophagy but not NMD as a safeguard mechanism against nonsense mutant aggregates, resulting in impairment of the cortical development. This study suggests a novel mechanism other than heterozygous loss of FOXP1 for the development of ASD and may advance our understanding of the complex relationships between gene mutation and the related psychiatric disorders.
Collapse
Affiliation(s)
- Xue Li
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, PR China.,State Key Laboratory of Optometry, Ophthalmology and Vision Science, Wenzhou, Zhejiang, PR China.,Zhejiang Provincial Key Laboratory of Optometry and Ophthalmology, Wenzhou, Zhejiang, PR China
| | - Xin Han
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, PR China.,State Key Laboratory of Optometry, Ophthalmology and Vision Science, Wenzhou, Zhejiang, PR China.,Zhejiang Provincial Key Laboratory of Optometry and Ophthalmology, Wenzhou, Zhejiang, PR China
| | - Xiaomeng Tu
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, PR China.,State Key Laboratory of Optometry, Ophthalmology and Vision Science, Wenzhou, Zhejiang, PR China.,Zhejiang Provincial Key Laboratory of Optometry and Ophthalmology, Wenzhou, Zhejiang, PR China
| | - Dan Zhu
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, PR China.,State Key Laboratory of Optometry, Ophthalmology and Vision Science, Wenzhou, Zhejiang, PR China.,Zhejiang Provincial Key Laboratory of Optometry and Ophthalmology, Wenzhou, Zhejiang, PR China
| | - Yue Feng
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, PR China.,State Key Laboratory of Optometry, Ophthalmology and Vision Science, Wenzhou, Zhejiang, PR China.,Zhejiang Provincial Key Laboratory of Optometry and Ophthalmology, Wenzhou, Zhejiang, PR China
| | - Tian Jiang
- Research Center for Translational Medicine, the Affiliated Wenling Hospital of Wenzhou Medical University, Wenling, Zhejiang, PR China
| | - Youping Yang
- Research Center for Translational Medicine, the Affiliated Wenling Hospital of Wenzhou Medical University, Wenling, Zhejiang, PR China
| | - Jia Qu
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, PR China.,State Key Laboratory of Optometry, Ophthalmology and Vision Science, Wenzhou, Zhejiang, PR China.,Zhejiang Provincial Key Laboratory of Optometry and Ophthalmology, Wenzhou, Zhejiang, PR China
| | - Jie-Guang Chen
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, PR China.,State Key Laboratory of Optometry, Ophthalmology and Vision Science, Wenzhou, Zhejiang, PR China.,Zhejiang Provincial Key Laboratory of Optometry and Ophthalmology, Wenzhou, Zhejiang, PR China
| |
Collapse
|
22
|
Longman D, Jackson-Jones KA, Maslon MM, Murphy LC, Young RS, Stoddart JJ, Hug N, Taylor MS, Papadopoulos DK, Cáceres JF. Identification of a localized nonsense-mediated decay pathway at the endoplasmic reticulum. Genes Dev 2020; 34:1075-1088. [PMID: 32616520 PMCID: PMC7397857 DOI: 10.1101/gad.338061.120] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 06/05/2020] [Indexed: 12/25/2022]
Abstract
Nonsense-mediated decay (NMD) is a translation-dependent RNA quality control mechanism that occurs in the cytoplasm. However, it is unknown how NMD regulates the stability of RNAs translated at the endoplasmic reticulum (ER). Here, we identify a localized NMD pathway dedicated to ER-translated mRNAs. We previously identified NBAS, a component of the Syntaxin 18 complex involved in Golgi-to-ER trafficking, as a novel NMD factor. Furthermore, we show that NBAS fulfills an independent function in NMD. This ER-NMD pathway requires the interaction of NBAS with the core NMD factor UPF1, which is partially localized at the ER in the proximity of the translocon. NBAS and UPF1 coregulate the stability of ER-associated transcripts, in particular those associated with the cellular stress response. We propose a model where NBAS recruits UPF1 to the membrane of the ER and activates an ER-dedicated NMD pathway, thus providing an ER-protective function by ensuring quality control of ER-translated mRNAs.
Collapse
Affiliation(s)
- Dasa Longman
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Kathryn A Jackson-Jones
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Magdalena M Maslon
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Laura C Murphy
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Robert S Young
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Jack J Stoddart
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Nele Hug
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Martin S Taylor
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Dimitrios K Papadopoulos
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Javier F Cáceres
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| |
Collapse
|
23
|
Pararajalingam P, Coyle KM, Arthur SE, Thomas N, Alcaide M, Meissner B, Boyle M, Qureshi Q, Grande BM, Rushton C, Slack GW, Mungall AJ, Tam CS, Agarwal R, Dawson SJ, Lenz G, Balasubramanian S, Gascoyne RD, Steidl C, Connors J, Villa D, Audas TE, Marra MA, Johnson NA, Scott DW, Morin RD. Coding and noncoding drivers of mantle cell lymphoma identified through exome and genome sequencing. Blood 2020; 136:572-584. [PMID: 32160292 PMCID: PMC7440974 DOI: 10.1182/blood.2019002385] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 02/20/2020] [Indexed: 12/11/2022] Open
Abstract
Mantle cell lymphoma (MCL) is an uncommon B-cell non-Hodgkin lymphoma (NHL) that is incurable with standard therapies. The genetic drivers of this cancer have not been firmly established, and the features that contribute to differences in clinical course remain limited. To extend our understanding of the biological pathways involved in this malignancy, we performed a large-scale genomic analysis of MCL using data from 51 exomes and 34 genomes alongside previously published exome cohorts. To confirm our findings, we resequenced the genes identified in the exome cohort in 191 MCL tumors, each having clinical follow-up data. We confirmed the prognostic association of TP53 and NOTCH1 mutations. Our sequencing revealed novel recurrent noncoding mutations surrounding a single exon of the HNRNPH1gene. In RNA-seq data from 103 of these cases, MCL tumors with these mutations had a distinct imbalance of HNRNPH1 isoforms. This altered splicing of HNRNPH1 was associated with inferior outcomes in MCL and showed a significant increase in protein expression by immunohistochemistry. We describe a functional role for these recurrent noncoding mutations in disrupting an autoregulatory feedback mechanism, thereby deregulating HNRNPH1 protein expression. Taken together, these data strongly imply a role for aberrant regulation of messenger RNA processing in MCL pathobiology.
Collapse
Affiliation(s)
- Prasath Pararajalingam
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Krysta M Coyle
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Sarah E Arthur
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Nicole Thomas
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Miguel Alcaide
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Barbara Meissner
- BC Cancer Centre for Lymphoid Cancer and
- BC Cancer Research Centre, Vancouver, BC, Canada
| | - Merrill Boyle
- BC Cancer Centre for Lymphoid Cancer and
- BC Cancer Research Centre, Vancouver, BC, Canada
| | - Quratulain Qureshi
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Bruno M Grande
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Christopher Rushton
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Graham W Slack
- BC Cancer Centre for Lymphoid Cancer and
- BC Cancer Research Centre, Vancouver, BC, Canada
| | | | - Constantine S Tam
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- University of Melbourne, Melbourne, VIC, Australia
| | - Rishu Agarwal
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Sarah-Jane Dawson
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- University of Melbourne, Melbourne, VIC, Australia
| | - Georg Lenz
- Department of Medicine A, Hematology, Oncology, and Pneumology, University Hospital Münster, Münster, Germany
| | | | - Randy D Gascoyne
- BC Cancer Centre for Lymphoid Cancer and
- BC Cancer Research Centre, Vancouver, BC, Canada
| | - Christian Steidl
- BC Cancer Centre for Lymphoid Cancer and
- BC Cancer Research Centre, Vancouver, BC, Canada
| | - Joseph Connors
- BC Cancer Centre for Lymphoid Cancer and
- BC Cancer Research Centre, Vancouver, BC, Canada
| | - Diego Villa
- BC Cancer Centre for Lymphoid Cancer and
- BC Cancer Research Centre, Vancouver, BC, Canada
| | - Timothy E Audas
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Marco A Marra
- BC Cancer Centre for Lymphoid Cancer and
- BC Cancer Research Centre, Vancouver, BC, Canada
| | | | - David W Scott
- BC Cancer Centre for Lymphoid Cancer and
- BC Cancer Research Centre, Vancouver, BC, Canada
| | - Ryan D Morin
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
- Michael Smith Genome Sciences Centre, Vancouver, BC, Canada
| |
Collapse
|
24
|
Han X, Wei Y, Wang H, Wang F, Ju Z, Li T. Nonsense-mediated mRNA decay: a 'nonsense' pathway makes sense in stem cell biology. Nucleic Acids Res 2019; 46:1038-1051. [PMID: 29272451 PMCID: PMC5814811 DOI: 10.1093/nar/gkx1272] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 12/09/2017] [Indexed: 01/04/2023] Open
Abstract
Nonsense-mediated mRNA decay (NMD) is a highly conserved post-transcriptional regulatory mechanism of gene expression in eukaryotes. Originally, NMD was identified as an RNA surveillance machinery in degrading 'aberrant' mRNA species with premature termination codons. Recent studies indicate that NMD regulates the stability of natural gene transcripts that play significant roles in cell functions. Although components and action modes of the NMD machinery in degrading its RNA targets have been extensively studied with biochemical and structural approaches, the biological roles of NMD remain to be defined. Stem cells are rare cell populations, which play essential roles in tissue homeostasis and hold great promises in regenerative medicine. Stem cells self-renew to maintain the cellular identity and differentiate into somatic lineages with specialized functions to sustain tissue integrity. Transcriptional regulations and epigenetic modulations have been extensively implicated in stem cell biology. However, post-transcriptional regulatory mechanisms, such as NMD, in stem cell regulation are largely unknown. In this paper, we summarize the recent findings on biological roles of NMD factors in embryonic and tissue-specific stem cells. Furthermore, we discuss the possible mechanisms of NMD in regulating stem cell fates.
Collapse
Affiliation(s)
- Xin Han
- Institute of Aging Research, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 310036, China
| | - Yanling Wei
- Institute of Aging Research, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 310036, China
| | - Hua Wang
- Institute of Aging Research, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 310036, China
| | - Feilong Wang
- Institute of Aging Research, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 310036, China
| | - Zhenyu Ju
- Institute of Aging Research, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 310036, China
| | - Tangliang Li
- Institute of Aging Research, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 310036, China
| |
Collapse
|
25
|
Lin JH, Tang XY, Boulling A, Zou WB, Masson E, Fichou Y, Raud L, Le Tertre M, Deng SJ, Berlivet I, Ka C, Mort M, Hayden M, Leman R, Houdayer C, Le Gac G, Cooper DN, Li ZS, Férec C, Liao Z, Chen JM. First estimate of the scale of canonical 5' splice site GT>GC variants capable of generating wild-type transcripts. Hum Mutat 2019; 40:1856-1873. [PMID: 31131953 DOI: 10.1002/humu.23821] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 04/10/2019] [Accepted: 05/24/2019] [Indexed: 12/13/2022]
Abstract
It has long been known that canonical 5' splice site (5'SS) GT>GC variants may be compatible with normal splicing. However, to date, the actual scale of canonical 5'SSs capable of generating wild-type transcripts in the case of GT>GC substitutions remains unknown. Herein, combining data derived from a meta-analysis of 45 human disease-causing 5'SS GT>GC variants and a cell culture-based full-length gene splicing assay of 103 5'SS GT>GC substitutions, we estimate that ~15-18% of canonical GT 5'SSs retain their capacity to generate between 1% and 84% normal transcripts when GT is substituted by GC. We further demonstrate that the canonical 5'SSs in which substitution of GT by GC-generated normal transcripts exhibit stronger complementarity to the 5' end of U1 snRNA than those sites whose substitutions of GT by GC did not lead to the generation of normal transcripts. We also observed a correlation between the generation of wild-type transcripts and a milder than expected clinical phenotype but found that none of the available splicing prediction tools were capable of reliably distinguishing 5'SS GT>GC variants that generated wild-type transcripts from those that did not. Our findings imply that 5'SS GT>GC variants in human disease genes may not invariably be pathogenic.
Collapse
Affiliation(s)
- Jin-Huan Lin
- EFS, Univ Brest, Inserm, UMR 1078, GGB, F-29200, Brest, France.,Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai, China.,Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - Xin-Ying Tang
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai, China.,Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - Arnaud Boulling
- EFS, Univ Brest, Inserm, UMR 1078, GGB, F-29200, Brest, France
| | - Wen-Bin Zou
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai, China.,Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - Emmanuelle Masson
- EFS, Univ Brest, Inserm, UMR 1078, GGB, F-29200, Brest, France.,CHU Brest, Service de Génétique, Brest, France
| | - Yann Fichou
- EFS, Univ Brest, Inserm, UMR 1078, GGB, F-29200, Brest, France.,Laboratory of Excellence GR-Ex, Paris, France
| | - Loann Raud
- EFS, Univ Brest, Inserm, UMR 1078, GGB, F-29200, Brest, France
| | | | - Shun-Jiang Deng
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai, China.,Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | | | - Chandran Ka
- EFS, Univ Brest, Inserm, UMR 1078, GGB, F-29200, Brest, France.,CHU Brest, Service de Génétique, Brest, France.,Laboratory of Excellence GR-Ex, Paris, France
| | - Matthew Mort
- Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Matthew Hayden
- Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Raphaël Leman
- Laboratoire de Biologie et Génétique du Cancer, Centre François Baclesse, Caen, France.,Department of Genetics, F76000 and Normandy University, UNIROUEN, Inserm U1245, Normandy Centre for Genomic and Personalized Medicine, Rouen University Hospital, Rouen, France
| | - Claude Houdayer
- Department of Genetics, F76000 and Normandy University, UNIROUEN, Inserm U1245, Normandy Centre for Genomic and Personalized Medicine, Rouen University Hospital, Rouen, France
| | - Gerald Le Gac
- EFS, Univ Brest, Inserm, UMR 1078, GGB, F-29200, Brest, France.,CHU Brest, Service de Génétique, Brest, France.,Laboratory of Excellence GR-Ex, Paris, France
| | - David N Cooper
- Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Zhao-Shen Li
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai, China.,Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - Claude Férec
- EFS, Univ Brest, Inserm, UMR 1078, GGB, F-29200, Brest, France
| | - Zhuan Liao
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai, China.,Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - Jian-Min Chen
- EFS, Univ Brest, Inserm, UMR 1078, GGB, F-29200, Brest, France
| |
Collapse
|
26
|
Tan Y, Ma Z, Jin Y, Zong R, Wu J, Ren Z. MicroRNA 4651 regulates nonsense-mediated mRNA decay by targeting SMG9 mRNA. Gene 2019; 701:65-71. [PMID: 30902786 DOI: 10.1016/j.gene.2019.03.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 03/11/2019] [Accepted: 03/17/2019] [Indexed: 02/07/2023]
Abstract
Nonsense-mediated mRNA decay (NMD) is originally identified as a conserved RNA surveillance mechanism that rapidly degrades aberrant mRNA containing premature termination codons (PTCs). However, the molecular regulation mechanisms by which microRNAs inhibit NMD has not been well understood. Here we identified that miR-4651 participated in the NMD pathway by downregulating expression levels of SMG9. We provided evidences that (1) Overexpression of miR-4651 mimic significantly inhibited the expression of SMG9 (P < 0.05); (2) NMD substrates genes, TBL2 and GADD45B were both increased at mRNA and protein expression levels when SMG9 was suppressed by siRNA, whereas decreased by SMG9 overexpression; (3) Expression of SMG9 was significantly increased but TBL2, GADD45B were significantly decreased when cells transfected with miR-4651 inhibitor (P < 0.05). These results indicated that miR-4651 regulated NMD by targeting SMG9 mRNA. Our study highlights that miR-4651 represses NMD. miR-4651 targets SMG9 and represses the expression levels of SMG9. NMD activity is decreased additionally when SMG9 is inhibited. The present study provides evidence for microRNA/NMD regulatory mechanism.
Collapse
Affiliation(s)
- Yanjie Tan
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Zhenfa Ma
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Yi Jin
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Ruojun Zong
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Jian Wu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China.
| | - Zhuqing Ren
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China.
| |
Collapse
|
27
|
Papageorgiou I, Loken MR, Brodersen LE, Gbadamosi M, Uy GL, Meshinchi S, Lamba JK. CCGG deletion (rs201074739) in CD33 results in premature termination codon and complete loss of CD33 expression: another key variant with potential impact on response to CD33-directed agents. Leuk Lymphoma 2019; 60:2287-2290. [PMID: 30721105 DOI: 10.1080/10428194.2019.1569232] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Ioannis Papageorgiou
- Department of Pharmacotherapy and Translational Research, University of Florida , Gainesville , FL , USA.,Center for Pharmacogenetics, College of Pharmacy, University of Florida , Gainesville , FL , USA
| | | | | | - Mohammed Gbadamosi
- Department of Pharmacotherapy and Translational Research, University of Florida , Gainesville , FL , USA.,Center for Pharmacogenetics, College of Pharmacy, University of Florida , Gainesville , FL , USA
| | - Geoffrey L Uy
- Division of Oncology, Washington University , St Louis , MI , USA
| | - Soheil Meshinchi
- Clinical Research Division, Fred Hutchinson Cancer Center , Seattle , WA , USA
| | - Jatinder K Lamba
- Department of Pharmacotherapy and Translational Research, University of Florida , Gainesville , FL , USA.,Center for Pharmacogenetics, College of Pharmacy, University of Florida , Gainesville , FL , USA
| |
Collapse
|
28
|
Sparber P, Marakhonov A, Filatova A, Sharkova I, Skoblov M. Novel case of neurodegeneration with brain iron accumulation 4 (NBIA4) caused by a pathogenic variant affecting splicing. Neurogenetics 2018; 19:257-260. [PMID: 30392167 DOI: 10.1007/s10048-018-0558-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 10/28/2018] [Indexed: 11/24/2022]
Abstract
Neurodegeneration with brain iron accumulation type 4 (NBIA4) also known as MPAN (mitochondria protein-associated neurodegeneration) is a rare neurological disorder which main feature is brain iron accumulation most frequently in the globus pallidus and substantia nigra. Whole exome sequencing (WES) in a 12-year-old patient revealed 2 variants in the C19orf12 gene, a previously reported common 11 bp deletion c.204_214del11, p.(Gly69Argfs*10) and a novel splicing variant c.193+5G>A. Functional analysis of novel variant showed skipping of the second exon, resulting in a formation of a truncated nonfunctional protein. This is the first functionally annotated pathogenic splicing variant in NBIA4.
Collapse
Affiliation(s)
- Peter Sparber
- Research Centre for Medical Genetics Moskvorechie 1, Moscow, Russia, 115522.
| | - Andrey Marakhonov
- Research Centre for Medical Genetics Moskvorechie 1, Moscow, Russia, 115522.,School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Alexandra Filatova
- Research Centre for Medical Genetics Moskvorechie 1, Moscow, Russia, 115522
| | - Inna Sharkova
- Research Centre for Medical Genetics Moskvorechie 1, Moscow, Russia, 115522
| | - Mikhail Skoblov
- Research Centre for Medical Genetics Moskvorechie 1, Moscow, Russia, 115522.,School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| |
Collapse
|
29
|
Filatova AY, Vasilyeva TA, Marakhonov AV, Voskresenskaya AA, Zinchenko RA, Skoblov MY. Functional reassessment of PAX6 single nucleotide variants by in vitro splicing assay. Eur J Hum Genet 2018; 27:488-493. [PMID: 30315214 DOI: 10.1038/s41431-018-0288-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 08/14/2018] [Accepted: 09/28/2018] [Indexed: 11/09/2022] Open
Abstract
Nucleotide variants that disrupt normal splicing might be the cause of a large number of diseases. Nevertheless, because of the complexity of splicing regulation, it is not always possible to accurately predict the effect of nucleotide sequence changes on splicing events and mRNA structure. Thereby, a number of newly identified nucleotide variants are falsely classified as VUS (a variant of uncertain significance). In the present study we used the minigene assay to analyze the functional consequences of six intronic (c.142-5T>G, c.142-14C>G, c.142-64A>C, c.141+4A>G, c.1032+ 6T>G, c.682+4delA), one missense (c.140A>G) and one synonymous (c.174C>T) variants in the PAX6 gene found in patients with congenital aniridia. We revealed that all except one (c.142-64A>C) variants lead to the disruption of normal splicing patterns resulting in premature termination codon formation followed by mRNA degradation through the nonsense mediated decay pathway. This produces a null allele of the PAX6 gene. That allowed us to reclassify the analyzed variants as loss-of-function and to establish their functional role.
Collapse
Affiliation(s)
| | | | - Andrey V Marakhonov
- Research Centre for Medical Genetics, Moscow, Russian Federation.,Moscow Institute of Physics and Technology (State University), Moscow, Russian Federation
| | - Anna A Voskresenskaya
- Cheboksary branch of S. Fyodorov Eye Microsurgery Federal State Institution, Cheboksary, Russian Federation
| | - Rena A Zinchenko
- Research Centre for Medical Genetics, Moscow, Russian Federation.,Pirogov Russian National Research Medical University, Moscow, Russian Federation
| | - Mikhail Yu Skoblov
- Research Centre for Medical Genetics, Moscow, Russian Federation.,Moscow Institute of Physics and Technology (State University), Moscow, Russian Federation
| |
Collapse
|
30
|
Pregnancy-Associated Plasma Protein-aa Regulates Photoreceptor Synaptic Development to Mediate Visually Guided Behavior. J Neurosci 2018; 38:5220-5236. [PMID: 29739870 DOI: 10.1523/jneurosci.0061-18.2018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 04/04/2018] [Accepted: 04/30/2018] [Indexed: 02/08/2023] Open
Abstract
To guide behavior, sensory systems detect the onset and offset of stimuli and process these distinct inputs via parallel pathways. In the retina, this strategy is implemented by splitting neural signals for light onset and offset via synapses connecting photoreceptors to ON and OFF bipolar cells, respectively. It remains poorly understood which molecular cues establish the architecture of this synaptic configuration to split light-onset and light-offset signals. A mutant with reduced synapses between photoreceptors and one bipolar cell type, but not the other, could reveal a critical cue. From this approach, we report a novel synaptic role for pregnancy-associated plasma protein aa (pappaa) in promoting the structure and function of cone synapses that transmit light-offset information. Electrophysiological and behavioral analyses indicated pappaa mutant zebrafish have dysfunctional cone-to-OFF bipolar cell synapses and impaired responses to light offset, but intact cone-to-ON bipolar cell synapses and light-onset responses. Ultrastructural analyses of pappaa mutant cones showed a lack of presynaptic domains at synapses with OFF bipolar cells. pappaa is expressed postsynaptically to the cones during retinal synaptogenesis and encodes a secreted metalloprotease known to stimulate insulin-like growth factor 1 (IGF1) signaling. Induction of dominant-negative IGF1 receptor expression during synaptogenesis reduced light-offset responses. Conversely, stimulating IGF1 signaling at this time improved pappaa mutants' light-offset responses and cone presynaptic structures. Together, our results indicate Pappaa-regulated IGF1 signaling as a novel pathway that establishes how cone synapses convey light-offset signals to guide behavior.SIGNIFICANCE STATEMENT Distinct sensory inputs, like stimulus onset and offset, are often split at distinct synapses into parallel circuits for processing. In the retina, photoreceptors and ON and OFF bipolar cells form discrete synapses to split neural signals coding light onset and offset, respectively. The molecular cues that establish this synaptic configuration to specifically convey light onset or offset remain unclear. Our work reveals a novel cue: pregnancy-associated plasma protein aa (pappaa), which regulates photoreceptor synaptic structure and function to specifically transmit light-offset information. Pappaa is a metalloprotease that stimulates local insulin-like growth factor 1 (IGF1) signaling. IGF1 promotes various aspects of synaptic development and function and is broadly expressed, thus requiring local regulators, like Pappaa, to govern its specificity.
Collapse
|
31
|
Generation of Cell Lines Stably Expressing a Fluorescent Reporter of Nonsense-Mediated mRNA Decay Activity. Methods Mol Biol 2017. [PMID: 29236260 DOI: 10.1007/978-1-4939-7540-2_14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Nonsense-mediated mRNA decay (NMD) is a mechanism of mRNA surveillance ubiquitous among eukaryotes. Importantly, NMD not only removes aberrant transcripts with premature stop codons, but also regulates expression of many normal genes. A recently introduced dual-color fluorescent protein-based reporter enables analysis of NMD activity in live cells. In this chapter we describe the method to generate stable transgenic cell lines expressing the splicing-dependent NMD reporter using consecutive steps of lentivirus transduction and Tol2 transposition.
Collapse
|
32
|
Zou WB, Wu H, Boulling A, Cooper DN, Li ZS, Liao Z, Chen JM, Férec C. In silico prioritization and further functional characterization of SPINK1 intronic variants. Hum Genomics 2017; 11:7. [PMID: 28472998 PMCID: PMC5418720 DOI: 10.1186/s40246-017-0103-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Accepted: 04/20/2017] [Indexed: 01/25/2023] Open
Abstract
Background SPINK1 (serine protease inhibitor, kazal-type, 1), which encodes human pancreatic secretory trypsin inhibitor, is one of the most extensively studied genes underlying chronic pancreatitis. Recently, based upon data from qualitative reverse transcription-PCR (RT-PCR) analyses of transfected HEK293T cells, we concluded that 24 studied SPINK1 intronic variants were not of pathological significance, the sole exceptions being two canonical splice site variants (i.e., c.87 + 1G > A and c.194 + 2T > C). Herein, we employed the splicing prediction tools included within the Alamut software suite to prioritize the ‘non-pathological’ SPINK1 intronic variants for further quantitative RT-PCR analysis. Results Although our results demonstrated the utility of in silico prediction in classifying and prioritizing intronic variants, we made two observations worth noting. First, we established that most of the prediction tools employed ignored the general rule that GC is a weaker donor splice site than the canonical GT site. This finding is potentially important because for a given disease gene, a GC variant donor splice site may be associated with a milder clinical manifestation. Second, the non-pathological c.194 + 13T > G variant was consistently predicted by different programs to generate a new and viable donor splice site, the prediction scores being comparable to those for the physiological c.194 + 2T donor splice site and even higher than those for the physiological c.87 + 1G donor splice site. We do however provide convincing in vitro evidence that the predicted donor splice site was not entirely spurious. Conclusions Our findings, taken together, serve to emphasize the importance of functional analysis in helping to establish or refute the pathogenicity of specific intronic variants. Electronic supplementary material The online version of this article (doi:10.1186/s40246-017-0103-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wen-Bin Zou
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai, China.,Institut National de la Santé et de la Recherche Médicale (INSERM), U1078, Brest, France.,Etablissement Français du Sang (EFS)-Bretagne, Brest, France.,Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - Hao Wu
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai, China.,Institut National de la Santé et de la Recherche Médicale (INSERM), U1078, Brest, France.,Etablissement Français du Sang (EFS)-Bretagne, Brest, France.,Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - Arnaud Boulling
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1078, Brest, France.,Etablissement Français du Sang (EFS)-Bretagne, Brest, France
| | - David N Cooper
- Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff, UK
| | - Zhao-Shen Li
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai, China. .,Shanghai Institute of Pancreatic Diseases, Shanghai, China.
| | - Zhuan Liao
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai, China. .,Shanghai Institute of Pancreatic Diseases, Shanghai, China.
| | - Jian-Min Chen
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1078, Brest, France. .,Etablissement Français du Sang (EFS)-Bretagne, Brest, France. .,Faculté de Médecine et des Sciences de la Santé, Université de Bretagne Occidentale (UBO), Brest, France.
| | - Claude Férec
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1078, Brest, France.,Etablissement Français du Sang (EFS)-Bretagne, Brest, France.,Faculté de Médecine et des Sciences de la Santé, Université de Bretagne Occidentale (UBO), Brest, France.,Laboratoire de Génétique Moléculaire et d'Histocompatibilité, Centre Hospitalier Universitaire (CHU) Brest, Hôpital Morvan, Brest, France
| |
Collapse
|
33
|
Whole-genome sequencing identifies rare genotypes in COMP and CHADL associated with high risk of hip osteoarthritis. Nat Genet 2017; 49:801-805. [DOI: 10.1038/ng.3816] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 02/23/2017] [Indexed: 12/13/2022]
|
34
|
Kost LA, Putintseva EV, Pereverzeva AR, Chudakov DM, Lukyanov KA, Bogdanov AM. Bimolecular fluorescence complementation based on the red fluorescent protein FusionRed. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2017. [DOI: 10.1134/s1068162016060054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
35
|
Alexandrov A, Shu MD, Steitz JA. Fluorescence Amplification Method for Forward Genetic Discovery of Factors in Human mRNA Degradation. Mol Cell 2017; 65:191-201. [PMID: 28017590 PMCID: PMC5301997 DOI: 10.1016/j.molcel.2016.11.032] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 10/05/2016] [Accepted: 11/18/2016] [Indexed: 12/21/2022]
Abstract
Nonsense-mediated decay (NMD) degrades mRNAs containing a premature termination codon (PTC). PTCs are a frequent cause of human genetic diseases, and the NMD pathway is known to modulate disease severity. Since partial NMD attenuation can potentially enhance nonsense suppression therapies, better definition of human-specific NMD is required. However, the majority of NMD factors were first discovered in model organisms and then subsequently identified by homology in human. Sensitivity and throughput limitations of existing approaches have hindered systematic forward genetic screening for NMD factors in human cells. We developed a method of in vivo amplification of NMD reporter fluorescence (Fireworks) that enables CRISPR-based forward genetic screening for NMD pathway defects in human cells. The Fireworks genetic screen identifies multiple known NMD factors and numerous human candidate genes, providing a platform for discovery of additional key factors in human mRNA degradation.
Collapse
Affiliation(s)
- Andrei Alexandrov
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Boyer Center for Molecular Medicine, Yale University School of Medicine, 295 Congress Avenue, New Haven, CT 06536, USA.
| | - Mei-Di Shu
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Boyer Center for Molecular Medicine, Yale University School of Medicine, 295 Congress Avenue, New Haven, CT 06536, USA
| | - Joan A Steitz
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Boyer Center for Molecular Medicine, Yale University School of Medicine, 295 Congress Avenue, New Haven, CT 06536, USA
| |
Collapse
|
36
|
Zou WB, Boulling A, Masamune A, Issarapu P, Masson E, Wu H, Sun XT, Hu LH, Zhou DZ, He L, Fichou Y, Nakano E, Hamada S, Kakuta Y, Kume K, Isayama H, Paliwal S, Mani R, Bhaskar S, Cooper D, Férec C, Shimosegawa T, Chandak G, Chen JM, Li ZS, Liao Z. No Association Between CEL-HYB Hybrid Allele and Chronic Pancreatitis in Asian Populations. Gastroenterology 2016; 150:1558-1560.e5. [PMID: 26946345 PMCID: PMC5380763 DOI: 10.1053/j.gastro.2016.02.071] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 02/24/2016] [Accepted: 02/25/2016] [Indexed: 01/10/2023]
Abstract
A hybrid allele between the carboxyl ester lipase gene (CEL) and its pseudogene, CELP (called CEL-HYB), generated by nonallelic homologous recombination between CEL intron 10 and CELP intron 10', was found to increase susceptibility to chronic pancreatitis in a case-control study of patients of European ancestry. We attempted to replicate this finding in 3 independent cohorts from China, Japan, and India, but failed to detect the CEL-HYB allele in any of these populations. The CEL-HYB allele might therefore be an ethnic-specific risk factor for chronic pancreatitis. An alternative hybrid allele (CEL-HYB2) was identified in all 3 Asian populations (1.7% combined carrier frequency), but was not associated with chronic pancreatitis.
Collapse
Affiliation(s)
- Wen-Bin Zou
- Génétique, génomique fonctionnelle et biotechnologies
EFS - Université de Bretagne Occidentale - Institut National de la Santé et de la Recherche Médicale - U1078EFS Bretagne, 46 rue Félix le Dantec 29218 Brest Cedex 2,Shanghai Institute of Pancreatic Diseases, Shanghai, China
Shanghai Institute of Pancreatic Diseases - ,Department of Gastroenterology [Shanghai]
Changhai Hospital of Shanghai - Second Military Medical University [Shanghai] - 168 Changhai Rd, Yangpu, Shanghai
| | - Arnaud Boulling
- Génétique, génomique fonctionnelle et biotechnologies
EFS - Université de Bretagne Occidentale - Institut National de la Santé et de la Recherche Médicale - U1078EFS Bretagne, 46 rue Félix le Dantec 29218 Brest Cedex 2
| | - Atsushi Masamune
- Division of Gastroenterology [Tohoku]
Tohoku University Graduate School of Medicine - 2 Chome-1-1 Katahira, Aoba Ward, Sendai, Miyagi Prefecture 980-8577
| | - Prachand Issarapu
- Genomic Research on Complex Diseases [Hyderabad]
Centre for Cellular and Molecular Biology (CSIR-CCMB) - Habsiguda, Uppal Road - Hyderabad - 500 007 Andhra Pradesh
| | - Emmanuelle Masson
- Génétique, génomique fonctionnelle et biotechnologies
EFS - Université de Bretagne Occidentale - Institut National de la Santé et de la Recherche Médicale - U1078EFS Bretagne, 46 rue Félix le Dantec 29218 Brest Cedex 2,Laboratoire de Génétique Moléculaire et d’Histocompatibilité [Morvan]
Hôpital Morvan - CHRU de Brest - 2 Avenue Maréchal Foch, 29200 Brest
| | - Hao Wu
- Shanghai Institute of Pancreatic Diseases, Shanghai, China
Shanghai Institute of Pancreatic Diseases - ,Department of Gastroenterology [Shanghai]
Changhai Hospital of Shanghai - Second Military Medical University [Shanghai] - 168 Changhai Rd, Yangpu, Shanghai
| | - Xiao-Tian Sun
- Shanghai Institute of Pancreatic Diseases, Shanghai, China
Shanghai Institute of Pancreatic Diseases - ,Department of Gastroenterology [Shanghai]
Changhai Hospital of Shanghai - Second Military Medical University [Shanghai] - 168 Changhai Rd, Yangpu, Shanghai
| | - Liang-Hao Hu
- Shanghai Institute of Pancreatic Diseases, Shanghai, China
Shanghai Institute of Pancreatic Diseases - ,Department of Gastroenterology [Shanghai]
Changhai Hospital of Shanghai - Second Military Medical University [Shanghai] - 168 Changhai Rd, Yangpu, Shanghai
| | - Dai-Zhan Zhou
- Key Laboratory of Developmental Genetics and Neuropsychiatric Diseases [Ministry of Education, Shanghai]
Bio-X Institutes [Shanghai] - Shanghai Jiao Tong University - 800 Dongchuan Rd, Minhang, 200240 Shanghai
| | - Lin He
- Key Laboratory of Developmental Genetics and Neuropsychiatric Diseases [Ministry of Education, Shanghai]
Bio-X Institutes [Shanghai] - Shanghai Jiao Tong University - 800 Dongchuan Rd, Minhang, 200240 Shanghai
| | - Yann Fichou
- Génétique, génomique fonctionnelle et biotechnologies
EFS - Université de Bretagne Occidentale - Institut National de la Santé et de la Recherche Médicale - U1078EFS Bretagne, 46 rue Félix le Dantec 29218 Brest Cedex 2
| | - Eriko Nakano
- Division of Gastroenterology [Tohoku]
Tohoku University Graduate School of Medicine - 2 Chome-1-1 Katahira, Aoba Ward, Sendai, Miyagi Prefecture 980-8577
| | - Shin Hamada
- Division of Gastroenterology [Tohoku]
Tohoku University Graduate School of Medicine - 2 Chome-1-1 Katahira, Aoba Ward, Sendai, Miyagi Prefecture 980-8577
| | - Yoichi Kakuta
- Division of Gastroenterology [Tohoku]
Tohoku University Graduate School of Medicine - 2 Chome-1-1 Katahira, Aoba Ward, Sendai, Miyagi Prefecture 980-8577
| | - Kiyoshi Kume
- Division of Gastroenterology [Tohoku]
Tohoku University Graduate School of Medicine - 2 Chome-1-1 Katahira, Aoba Ward, Sendai, Miyagi Prefecture 980-8577
| | - Hiroyuki Isayama
- Department of Gastroenterology [Tokyo]
The University of Tokyo - Faculty of Medicine, Graduate School of Medicine [Tokyo] - 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033
| | - Sumit Paliwal
- Genomic Research on Complex Diseases [Hyderabad]
Centre for Cellular and Molecular Biology (CSIR-CCMB) - Habsiguda, Uppal Road - Hyderabad - 500 007 Andhra Pradesh
| | - Radha Mani
- Genomic Research on Complex Diseases [Hyderabad]
Centre for Cellular and Molecular Biology (CSIR-CCMB) - Habsiguda, Uppal Road - Hyderabad - 500 007 Andhra Pradesh
| | - Seema Bhaskar
- Genomic Research on Complex Diseases [Hyderabad]
Centre for Cellular and Molecular Biology (CSIR-CCMB) - Habsiguda, Uppal Road - Hyderabad - 500 007 Andhra Pradesh
| | - David Cooper
- School of Medicine [Cardiff]
Cardiff University - Institute of Medical Genetics [Cardiff] - UHW Main Building - Heath Park - Cardiff CF14 4XN
| | - Claude Férec
- Génétique, génomique fonctionnelle et biotechnologies
EFS - Université de Bretagne Occidentale - Institut National de la Santé et de la Recherche Médicale - U1078EFS Bretagne, 46 rue Félix le Dantec 29218 Brest Cedex 2,Laboratoire de Génétique Moléculaire et d’Histocompatibilité [Morvan]
Hôpital Morvan - CHRU de Brest - 2 Avenue Maréchal Foch, 29200 Brest
| | - Tooru Shimosegawa
- Division of Gastroenterology [Tohoku]
Tohoku University Graduate School of Medicine - 2 Chome-1-1 Katahira, Aoba Ward, Sendai, Miyagi Prefecture 980-8577
| | - Giriraj Chandak
- Human Genetics Division [Singapore]
Genome Institute of Singapore - 60 Biopolis St, #02-01, Singapour 138672
| | - Jian-Min Chen
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1078, Brest, France; Etablissement Français du Sang (EFS)-Bretagne, Brest, France; Faculté de Médecine et des Sciences de la Santé, Université de Bretagne Occidentale (UBO), Brest, France.
| | - Zhao-Shen Li
- Department of Gastroenterology, Changhai Hospital, the Second Military Medical University, Shanghai, China; Shanghai Institute of Pancreatic Diseases, Shanghai, China.
| | - Zhuan Liao
- Department of Gastroenterology, Changhai Hospital, the Second Military Medical University, Shanghai, China; Shanghai Institute of Pancreatic Diseases, Shanghai, China.
| |
Collapse
|
37
|
Gurskaya NG, Pereverzev AP, Staroverov DB, Markina NM, Lukyanov KA. Analysis of Nonsense-Mediated mRNA Decay at the Single-Cell Level Using Two Fluorescent Proteins. Methods Enzymol 2016; 572:291-314. [PMID: 27241760 DOI: 10.1016/bs.mie.2016.02.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nonsense-mediated mRNA decay (NMD) is an evolutionarily conserved mechanism of specific degradation of transcripts with a premature stop codon. NMD eliminates aberrant mRNAs arising from mutations, alternative splicing, and other events in cells. In addition, many normal transcripts undergo NMD. Recent studies demonstrated that NMD activity is specifically regulated and that NMD can play a role of global regulator of gene expression. Recently, we developed dual-color fluorescent protein-based reporters for quantification of NMD activity using fluorescence microscopy and flow cytometry (Pereverzev, Gurskaya, et al., 2015). Due to ratiometric fluorescence response, these reporters make it possible to assess NMD activity in live cells at the single-cell level and to reveal otherwise hidden heterogeneity of cells in respect of NMD activity. Here we provide a detailed description of applications of the NMD reporters in mammalian cell lines.
Collapse
Affiliation(s)
- N G Gurskaya
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia; Nizhny Novgorod State Medical Academy, Nizhny Novgorod, Russia
| | - A P Pereverzev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - D B Staroverov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - N M Markina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - K A Lukyanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia; Nizhny Novgorod State Medical Academy, Nizhny Novgorod, Russia.
| |
Collapse
|
38
|
Gurskaya NG, Staroverov DB, Lukyanov KA. Fluorescent Protein-Based Quantification of Alternative Splicing of a Target Cassette Exon in Mammalian Cells. Methods Enzymol 2016; 572:255-68. [PMID: 27241758 DOI: 10.1016/bs.mie.2016.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Alternative splicing is an important mechanism of regulation of gene expression and expansion of proteome complexity. Recently we developed a new fluorescence reporter for quantitative analysis of alternative splicing of a target cassette exon in live cells (Gurskaya et al., 2012). It consists of a specially designed minigene encoding red and green fluorescent proteins (Katushka and TagGFP2) and a fragment of the target gene between them. Skipping or inclusion of the alternative exon induces a frameshift; ie, alternative exon length must not be a multiple of 3. Finally, red and green fluorescence intensities of cells expressing this reporter are used to estimate the percentage of alternative (exon-skipped) and normal (exon-retained) transcripts. Here, we provide a detailed description of design and application of the fluorescence reporter of a target alternative exon splicing in mammalian cell lines.
Collapse
Affiliation(s)
- N G Gurskaya
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia; Nizhny Novgorod State Medical Academy, Nizhny Novgorod, Russia
| | - D B Staroverov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - K A Lukyanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia; Nizhny Novgorod State Medical Academy, Nizhny Novgorod, Russia.
| |
Collapse
|
39
|
Pereverzev AP, Matlashov ME, Staroverov DB, Lukyanov KA, Gurskaya NG. [Differences of Nonsense-Mediated mRNA Degradation Activity in Mammalian Cell Lines Revealed by a Fluorescence Reporter]. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2016; 41:587-91. [PMID: 26762096 DOI: 10.1134/s1068162015050118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Activity of nonsense-mediated mRNA degradation (NMD) was studied in several mammalian cell cultures using recently developed genetically encoded fluorescence sensor [Pereverzev et al., Sci. Rep., 2015, vol. 5, p. 7729]. This NMD reporter enables measurement of NMD activity in single live cells using ratio of green and red fluorescent proteins signals. The following cell lines were analyzed: mouse colon carcinoma CT26, mouse Lewis lung carcinoma LLC, human T-cell leukemia Jurkat, and spontaneously immortalized human keratinocytes HaCaT. These cell lines demonstrated very different NMD activities. In CT26, NMD activity was low, whereas in LLC it was high (8.5-fold higher than in CT26). Jurkat and HaCaT cells possessed strong heterogeneity and consisted of two cell subpopulations with high and low NMD activities. In addition, we detected high NMD activity in primary culture of mouse embryonic hippocampal neurons.
Collapse
|
40
|
Regulation of Shootin1 Gene Expression Involves NGF-induced Alternative Splicing during Neuronal Differentiation of PC12 Cells. Sci Rep 2015; 5:17931. [PMID: 26648138 PMCID: PMC4673418 DOI: 10.1038/srep17931] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 11/06/2015] [Indexed: 11/08/2022] Open
Abstract
Shootin1 is a protein involved in neuronal polarization, and has been shown to be a key molecule for the positive/negative feedback loop for axon induction required during neuronal symmetry breaking. To better understand the molecular basis of shootin1 dynamics, we analysed the regulatory pathways and the expressional status of shootin1 gene during NGF-induced neuronal differentiation. We demonstrated that the isoform-1 and isoform-2 of shootin1 is differentially expressed during neuronal differentiation. By blocking individual downstream pathways of NGF signalling, we found that PI3K/Akt pathway plays a major role in the expression of shootin1 isoform-2. Western blot and RT-PCR results showed that the isoform-1 of shootin1 is constitutively expressed, while the isoform-2 is expressed in a manner that is strictly dependent on NGF-stimulation. Isoform-specific RT-PCR results demonstrated that the differential expression of the isoform-1 and isoform-2 of shootin1 is a consequence of alternative splicing of shootin1 pre-mRNA, in response to NGF-signalling. Collectively these findings provide the first information on the molecular mechanisms regulating the expression of shootin1 gene and represent the first example of NGF-induced alternative splicing process that has a regulatory role in neuritogenesis.
Collapse
|
41
|
Mishin AS, Belousov VV, Solntsev KM, Lukyanov KA. Novel uses of fluorescent proteins. Curr Opin Chem Biol 2015; 27:1-9. [PMID: 26022943 DOI: 10.1016/j.cbpa.2015.05.002] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 05/07/2015] [Indexed: 11/28/2022]
Abstract
The field of genetically encoded fluorescent probes is developing rapidly. New chromophore structures were characterized in proteins of green fluorescent protein (GFP) family. A number of red fluorescent sensors, for example, for pH, Ca(2+) and H2O2, were engineered for multiparameter imaging. Progress in development of microscopy hardware and software together with specially designed FPs pushed superresolution fluorescence microscopy towards fast live-cell imaging. Deeper understanding of FPs structure and photophysics led to further development of imaging techniques. In addition to commonly used GFP-like proteins, unrelated types of FPs on the base of flavin-binding domains, bilirubin-binding domains or biliverdin-binding domains were designed. Their distinct biochemical and photophysical properties opened previously unexplored niches of FP uses such as labeling under anaerobic conditions, deep tissue imaging and even patients' blood analysis.
Collapse
Affiliation(s)
- Alexander S Mishin
- Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; Nizhny Novgorod State Medical Academy, Minin and Pozharsky Sq. 10/1, 603005 Nizhny Novgorod, Russia
| | - Vsevolod V Belousov
- Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Kyril M Solntsev
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, GA 30332-0400, United States
| | - Konstantin A Lukyanov
- Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; Nizhny Novgorod State Medical Academy, Minin and Pozharsky Sq. 10/1, 603005 Nizhny Novgorod, Russia.
| |
Collapse
|