1
|
Alagarsamy KN, Saleth LR, Sekaran S, Fusco L, Delogu LG, Pogorielov M, Yilmazer A, Dhingra S. MXenes as emerging materials to repair electroactive tissues and organs. Bioact Mater 2025; 48:583-608. [PMID: 40123746 PMCID: PMC11926619 DOI: 10.1016/j.bioactmat.2025.01.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 01/21/2025] [Accepted: 01/27/2025] [Indexed: 03/25/2025] Open
Abstract
Nanomaterials with electroactive properties have taken a big leap for tissue repair and regeneration due to their unique physiochemical properties and biocompatibility. MXenes, an emerging class of electroactive materials have generated considerable interest for their biomedical applications from bench to bedside. Recently, the application of these two-dimensional wonder materials have been extensively investigated in the areas of biosensors, bioimaging and repair of electroactive organs, owing to their outstanding electromechanical properties, photothermal capabilities, hydrophilicity, and flexibility. The currently available data reports that there is significant potential to employ MXene nanomaterials for repair, regeneration and functioning of electroactive tissues and organs such as brain, spinal cord, heart, bone, skeletal muscle and skin. The current review is the first report that compiles the most recent advances in the application of MXenes in bioelectronics and the development of biomimetic scaffolds for repair, regeneration and functioning of electroactive tissues and organs including heart, nervous system, skin, bone and skeletal muscle. The content in this article focuses on unique features of MXenes, synthesis process, with emphasis on MXene-based electroactive tissue engineering constructs, biosensors and wearable biointerfaces. Additionally, a section on the future of MXenes is presented with a focus on the clinical applications of MXenes.
Collapse
Affiliation(s)
- Keshav Narayan Alagarsamy
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, Biomedical Engineering Program, University of Manitoba, Winnipeg, Manitoba, R2H 2A6, Canada
| | - Leena Regi Saleth
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, Biomedical Engineering Program, University of Manitoba, Winnipeg, Manitoba, R2H 2A6, Canada
| | - Saravanan Sekaran
- Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute for Medical and Technical Sciences, Saveetha University, Chennai, 600077, Tamil Nadu, India
| | - Laura Fusco
- University of Science & Technology, Abu Dhabi, United Arab Emirates
- ImmuneNano-Lab, Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Lucia Gemma Delogu
- University of Science & Technology, Abu Dhabi, United Arab Emirates
- ImmuneNano-Lab, Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Maksym Pogorielov
- Sumy State University, 2 Rymskogo-Korsakova Street, Sumy, 40007, Ukraine
- University of Latvia, 3 Jelgavas Street, Riga, LV-1004, Latvia
| | - Açelya Yilmazer
- Department of Biomedical Engineering, Ankara University, Golbasi, Ankara, 06830, Turkey
- Stem Cell Institute, Ankara University, Balgat, Ankara, 06520, Turkey
| | - Sanjiv Dhingra
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, Biomedical Engineering Program, University of Manitoba, Winnipeg, Manitoba, R2H 2A6, Canada
| |
Collapse
|
2
|
Murase D, Shinokita K, Wakafuji Y, Onodera M, Machida T, Watanabe K, Taniguchi T, Bi J, Zhou Z, Zhao S, Matsuda K. All Dry Transfer Processes Utilizing Au Exfoliation for Predetermined Shapes of Transition Metal Dichalcogenide. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025. [PMID: 40234203 DOI: 10.1021/acs.langmuir.4c04629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Two-dimensional (2D) materials have attracted significant attention owing to their exceptional electrical and optical properties. The high-quality monolayer 2D materials are usually fabricated by mechanical exfoliation from bulk single crystals using a scotch tape method, limiting the flake size and production yield. Extensive efforts have been made to increase the production yield and size by using an Au-assisted process, such as the modified mechanical exfoliation method. However, the wet-etching processes are inevitable in the scalable Au-assisted mechanical exfoliation method, which causes defect formation and unintentional contamination, leading to a quality decrease in the monolayer 2D material flakes. Here, we developed a Au-assisted all dry transfer method without any wet process for fabricating 2D materials and their van der Waals (vdW) heterostructures. The developed dry transfer technique using patterned Au substrates and h-BN on polymer stamps gives us a large area and designed shape of monolayer 2D materials and their vdW heterostructures with clean interfaces. It will be beneficial for building high-quality vdW heterostructures, allowing us to explore and develop more potential applications in electrical and optical devices based on monolayer 2D materials.
Collapse
Affiliation(s)
- Daiki Murase
- Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011, Japan
- College of Energy Engineering, Zhejiang University, Hangzhou 310003, China
| | - Keisuke Shinokita
- Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Yusai Wakafuji
- Institute of Industrial Science, University of Tokyo, Tokyo 153-8505, Japan
| | - Momoko Onodera
- Institute of Industrial Science, University of Tokyo, Tokyo 153-8505, Japan
| | - Tomoki Machida
- Institute of Industrial Science, University of Tokyo, Tokyo 153-8505, Japan
| | - Kenji Watanabe
- Research Center for Electronic and Optical Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Takashi Taniguchi
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Jianfeng Bi
- School of Physics, Interdisciplinary Center for Quantum Information, Zhejiang Key Laboratory of Micro-Nano Quantum Chips and Quantum Control, and State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou 310058, China
| | - Zhou Zhou
- School of Physics, Interdisciplinary Center for Quantum Information, Zhejiang Key Laboratory of Micro-Nano Quantum Chips and Quantum Control, and State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou 310058, China
| | - Sihan Zhao
- School of Physics, Interdisciplinary Center for Quantum Information, Zhejiang Key Laboratory of Micro-Nano Quantum Chips and Quantum Control, and State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou 310058, China
| | - Kazunari Matsuda
- Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
3
|
Zhou J, Ji T, Xu S, Wang X, Wang J, Tang Y, Li Y, Yin W, Ji H, Shi S, Yang G. Synergistically Designed Carbon-Free MoS 2/MoO 2 Heterostructure Anodes with Interfacial Covalent Bonds for High-Rate Sodium-Ion Batteries. Chemistry 2025:e202500589. [PMID: 40143610 DOI: 10.1002/chem.202500589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/18/2025] [Accepted: 03/25/2025] [Indexed: 03/28/2025]
Abstract
The development of hierarchical heterostructured materials for sodium-ion batteries (SIBs) remains hindered by suboptimal high-rate cycling performance, primarily due to phase interface pulverization and separation during charge-discharge processes. To address these challenges, we designed a carbon-free hierarchical structure comprising few-layered MoS₂ nanosheets and MoO₂ nanocrystals through precise compositional optimization and rational structural engineering. The heterogeneous components are interconnected through robust S─O covalent bonds, which theoretical calculations and experimental results confirm generate a built-in electric field at the heterointerfaces, significantly enhancing reaction kinetics. Crucially, these covalent bonds stabilize the heterointerfaces, improving structural integrity and mitigating electrode material agglomeration and pulverization. Additionally, the MoS₂/MoO₂ heterostructure enhances Na⁺ adsorption energetics and reduces Na⁺ diffusion barriers, facilitating efficient ion transport. Leveraging its abundant heterointerfaces and stable architecture, the composite delivers exceptional rate performance (432.7 mAh·g⁻¹ at 10 A·g⁻¹) and outstanding cycling stability (nearly 100% capacity retention over 400 cycles at 5 A·g⁻¹). This work provides a strategic framework for designing heterostructured materials with stable interface-rich architectures, advancing the development of high-performance conversion/alloy-type anodes for energy storage applications.
Collapse
Affiliation(s)
- Jinhua Zhou
- Jiangsu Laboratory of Advanced Functional Materials, School of Electronic and Information Engineering, Changshu Institute of Technology, Changshu, 215500, P. R. China
| | - Tao Ji
- Jiangsu Laboratory of Advanced Functional Materials, School of Materials Engineering, Changshu Institute of Technology, Changshu, 215500, P. R. China
| | - Shengyang Xu
- Jiangsu Laboratory of Advanced Functional Materials, School of Materials Engineering, Changshu Institute of Technology, Changshu, 215500, P. R. China
| | - Xiong Wang
- Jiangsu Laboratory of Advanced Functional Materials, School of Materials Engineering, Changshu Institute of Technology, Changshu, 215500, P. R. China
| | - Juntao Wang
- Jiangsu Laboratory of Advanced Functional Materials, School of Materials Engineering, Changshu Institute of Technology, Changshu, 215500, P. R. China
| | - Yating Tang
- Jiangsu Laboratory of Advanced Functional Materials, School of Materials Engineering, Changshu Institute of Technology, Changshu, 215500, P. R. China
| | - Yuhong Li
- Jiangsu Laboratory of Advanced Functional Materials, School of Materials Engineering, Changshu Institute of Technology, Changshu, 215500, P. R. China
| | - Wenyu Yin
- Jiangsu Laboratory of Advanced Functional Materials, School of Materials Engineering, Changshu Institute of Technology, Changshu, 215500, P. R. China
| | - Hongmei Ji
- Jiangsu Laboratory of Advanced Functional Materials, School of Materials Engineering, Changshu Institute of Technology, Changshu, 215500, P. R. China
| | - Shaojun Shi
- Jiangsu Laboratory of Advanced Functional Materials, School of Materials Engineering, Changshu Institute of Technology, Changshu, 215500, P. R. China
| | - Gang Yang
- Jiangsu Laboratory of Advanced Functional Materials, School of Materials Engineering, Changshu Institute of Technology, Changshu, 215500, P. R. China
| |
Collapse
|
4
|
Katiyar AK, Ahn JH. Strain-Engineered 2D Materials: Challenges, Opportunities, and Future Perspectives. SMALL METHODS 2025; 9:e2401404. [PMID: 39623800 DOI: 10.1002/smtd.202401404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/20/2024] [Indexed: 03/22/2025]
Abstract
Strain engineering is a powerful strategy that can strongly influence and tune the intrinsic characteristics of materials by incorporating lattice deformations. Due to atomically thin thickness, 2D materials are excellent candidates for strain engineering as they possess inherent mechanical flexibility and stretchability, which allow them to withstand large strains. The application of strain affects the atomic arrangement in the lattice of 2D material, which modify the electronic band structure. It subsequently tunes the electrical and optical characteristics, thereby enhances the performance and functionalities of the fabricated devices. Recent advances in strain engineering strategies for large-area flexible devices fabricated with 2D materials enable dynamic modulation of device performance. This perspective provides an overview of the strain engineering approaches employed so far for straining 2D materials, reviewing their advantages and disadvantages. The effect of various strains (uniaxial, biaxial, hydrostatic) on the characteristics of 2D material is also discussed, with a particular emphasis on electronic and optical properties. The strain-inducing methods employed for large-area device applications based on 2D materials are summarized. In addition, the future perspectives of strain engineering in functional devices, along with the associated challenges and potential solutions, are also outlined.
Collapse
Affiliation(s)
- Ajit Kumar Katiyar
- School of Electrical and Electronic Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jong-Hyun Ahn
- School of Electrical and Electronic Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| |
Collapse
|
5
|
Gupta S, Zhang JJ, Lei J, Yu H, Liu M, Zou X, Yakobson BI. Two-Dimensional Transition Metal Dichalcogenides: A Theory and Simulation Perspective. Chem Rev 2025; 125:786-834. [PMID: 39746214 DOI: 10.1021/acs.chemrev.4c00628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Two-dimensional transition metal dichalcogenides (2D TMDs) are a promising class of functional materials for fundamental physics explorations and applications in next-generation electronics, catalysis, quantum technologies, and energy-related fields. Theory and simulations have played a pivotal role in recent advancements, from understanding physical properties and discovering new materials to elucidating synthesis processes and designing novel devices. The key has been developments in ab initio theory, deep learning, molecular dynamics, high-throughput computations, and multiscale methods. This review focuses on how theory and simulations have contributed to recent progress in 2D TMDs research, particularly in understanding properties of twisted moiré-based TMDs, predicting exotic quantum phases in TMD monolayers and heterostructures, understanding nucleation and growth processes in TMD synthesis, and comprehending electron transport and characteristics of different contacts in potential devices based on TMD heterostructures. The notable achievements provided by theory and simulations are highlighted, along with the challenges that need to be addressed. Although 2D TMDs have demonstrated potential and prototype devices have been created, we conclude by highlighting research areas that demand the most attention and how theory and simulation might address them and aid in attaining the true potential of 2D TMDs toward commercial device realizations.
Collapse
Affiliation(s)
- Sunny Gupta
- Department of Materials Science and Nanoengineering, Rice University, Houston, Texas 77005, United States
- Department of Materials Science & Engineering, University of California Berkeley, Berkeley, California 94720, United States
| | - Jun-Jie Zhang
- Department of Materials Science and Nanoengineering, Rice University, Houston, Texas 77005, United States
- School of Physics, Southeast University, Nanjing 211189 China
| | - Jincheng Lei
- Department of Materials Science and Nanoengineering, Rice University, Houston, Texas 77005, United States
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Henry Yu
- Quantum Simulation Group, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Mingjie Liu
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
- Quantum Theory Project, University of Florida, Gainesville, Florida 32611, United States
| | - Xiaolong Zou
- Shenzhen Geim Graphene Center & Shenzhen Key Laboratory of Advanced Layered Materials for Value-added Applications, Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Boris I Yakobson
- Department of Materials Science and Nanoengineering, Rice University, Houston, Texas 77005, United States
- Smalley-Curl Institute for Nanoscale Science and Technology, Rice University, Houston, Texas 77005, United States
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
6
|
Maßmeyer O, Günkel R, Glowatzki J, Klement P, Ojaghi Dogahe B, Kachel SR, Gruber F, Müller M, Fey M, Schörmann J, Belz J, Beyer A, Gottfried JM, Chatterjee S, Volz K. Synthesis of 2D Gallium Sulfide with Ultraviolet Emission by MOCVD. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402155. [PMID: 38795001 DOI: 10.1002/smll.202402155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/18/2024] [Indexed: 05/27/2024]
Abstract
Two-dimensional (2D) materials exhibit the potential to transform semiconductor technology. Their rich compositional and stacking varieties allow tailoring materials' properties toward device applications. Monolayer to multilayer gallium sulfide (GaS) with its ultraviolet band gap, which can be tuned by varying the layer number, holds promise for solar-blind photodiodes and light-emitting diodes as applications. However, achieving commercial viability requires wafer-scale integration, contrasting with established, limited methods such as mechanical exfoliation. Here the one-step synthesis of 2D GaS is introduced via metal-organic chemical vapor deposition on sapphire substrates. The pulsed-mode deposition of industry-standard precursors promotes 2D growth by inhibiting the vapor phase and on-surface pre-reactions. The interface chemistry with the growth of a Ga adlayer that results in an epitaxial relationship is revealed. Probing structure and composition validate thin-film quality and 2D nature with the possibility to control the thickness by the number of GaS pulses. The results highlight the adaptability of established growth facilities for producing atomically thin to multilayered 2D semiconductor materials, paving the way for practical applications.
Collapse
Affiliation(s)
- Oliver Maßmeyer
- Material Sciences Center and Department of Physics, Philipps-Universität Marburg, Hans-Meerwein-Straße 6, 35043, Marburg, Germany
| | - Robin Günkel
- Material Sciences Center and Department of Physics, Philipps-Universität Marburg, Hans-Meerwein-Straße 6, 35043, Marburg, Germany
| | - Johannes Glowatzki
- Material Sciences Center and Department of Physics, Philipps-Universität Marburg, Hans-Meerwein-Straße 6, 35043, Marburg, Germany
| | - Philip Klement
- Institute of Experimental Physics I and Center for Materials Research, Justus Liebig University Giessen, Heinrich-Buff-Ring 16, D-35392, Giessen, Germany
| | - Badrosadat Ojaghi Dogahe
- Material Sciences Center and Department of Physics, Philipps-Universität Marburg, Hans-Meerwein-Straße 6, 35043, Marburg, Germany
| | - Stefan Renato Kachel
- Material Sciences Center and Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35043, Marburg, Germany
| | - Felix Gruber
- Material Sciences Center and Department of Physics, Philipps-Universität Marburg, Hans-Meerwein-Straße 6, 35043, Marburg, Germany
| | - Marius Müller
- Institute of Experimental Physics I and Center for Materials Research, Justus Liebig University Giessen, Heinrich-Buff-Ring 16, D-35392, Giessen, Germany
| | - Melanie Fey
- Institute of Experimental Physics I and Center for Materials Research, Justus Liebig University Giessen, Heinrich-Buff-Ring 16, D-35392, Giessen, Germany
| | - Jörg Schörmann
- Institute of Experimental Physics I and Center for Materials Research, Justus Liebig University Giessen, Heinrich-Buff-Ring 16, D-35392, Giessen, Germany
| | - Jürgen Belz
- Material Sciences Center and Department of Physics, Philipps-Universität Marburg, Hans-Meerwein-Straße 6, 35043, Marburg, Germany
| | - Andreas Beyer
- Material Sciences Center and Department of Physics, Philipps-Universität Marburg, Hans-Meerwein-Straße 6, 35043, Marburg, Germany
| | - J Michael Gottfried
- Material Sciences Center and Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35043, Marburg, Germany
| | - Sangam Chatterjee
- Institute of Experimental Physics I and Center for Materials Research, Justus Liebig University Giessen, Heinrich-Buff-Ring 16, D-35392, Giessen, Germany
| | - Kerstin Volz
- Material Sciences Center and Department of Physics, Philipps-Universität Marburg, Hans-Meerwein-Straße 6, 35043, Marburg, Germany
| |
Collapse
|
7
|
Chen S, Li B, Dai C, Zhu L, Shen Y, Liu F, Deng S, Ming F. Controlling Gold-Assisted Exfoliation of Large-Area MoS 2 Monolayers with External Pressure. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1418. [PMID: 39269080 PMCID: PMC11397389 DOI: 10.3390/nano14171418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 08/29/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024]
Abstract
Gold-assisted exfoliation can fabricate centimeter- or larger-sized monolayers of van der Waals (vdW) semiconductors, which is desirable for their applications in electronic and optoelectronic devices. However, there is still a lack of control over the exfoliation processes and a limited understanding of the atomic-scale mechanisms. Here, we tune the MoS2-Au interface using controlled external pressure and reveal two atomic-scale prerequisites for successfully producing large-area monolayers of MoS2. The first is the formation of strong MoS2-Au interactions to anchor the top MoS2 monolayer to the Au surface. The second is the integrity of the covalent network of the monolayer, as the majority of the monolayer is non-anchored and relies on the covalent network to be exfoliated from the bulk MoS2. Applying pressure or using smoother Au films increases the MoS2-Au interaction, but may cause the covalent network of the MoS2 monolayer to break due to excessive lateral strain, resulting in nearly zero exfoliation yield. Scanning tunneling microscopy measurements of the MoS2 monolayer-covered Au show that even the smallest atomic-scale imperfections can disrupt the MoS2-Au interaction. These findings can be used to develop new strategies for fabricating vdW monolayers through metal-assisted exfoliation, such as in cases involving patterned or non-uniform surfaces.
Collapse
Affiliation(s)
- Sikai Chen
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Guangdong Province Key Laboratory of Display Material, Sun Yat-sen University, Guangzhou 510275, China
| | - Bingrui Li
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Guangdong Province Key Laboratory of Display Material, Sun Yat-sen University, Guangzhou 510275, China
| | - Chaoqi Dai
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Guangdong Province Key Laboratory of Display Material, Sun Yat-sen University, Guangzhou 510275, China
| | - Lemei Zhu
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Guangdong Province Key Laboratory of Display Material, Sun Yat-sen University, Guangzhou 510275, China
| | - Yan Shen
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Guangdong Province Key Laboratory of Display Material, Sun Yat-sen University, Guangzhou 510275, China
| | - Fei Liu
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Guangdong Province Key Laboratory of Display Material, Sun Yat-sen University, Guangzhou 510275, China
| | - Shaozhi Deng
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Guangdong Province Key Laboratory of Display Material, Sun Yat-sen University, Guangzhou 510275, China
| | - Fangfei Ming
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Guangdong Province Key Laboratory of Display Material, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
8
|
Muhammad N, Su Z, Jiang Q, Wang Y, Huang L. Radiationless optical modes in metasurfaces: recent progress and applications. LIGHT, SCIENCE & APPLICATIONS 2024; 13:192. [PMID: 39152114 PMCID: PMC11329644 DOI: 10.1038/s41377-024-01548-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 07/02/2024] [Accepted: 07/22/2024] [Indexed: 08/19/2024]
Abstract
Non-radiative optical modes attracted enormous attention in optics due to strong light confinement and giant Q-factor at its spectral position. The destructive interference of multipoles leads to zero net-radiation and strong field trapping. Such radiationless states disappear in the far-field, localize enhanced near-field and can be excited in nano-structures. On the other hand, the optical modes turn out to be completely confined due to no losses at discrete point in the radiation continuum, such states result in infinite Q-factor and lifetime. The radiationless states provide a suitable platform for enhanced light matter interaction, lasing, and boost nonlinear processes at the state regime. These modes are widely investigated in different material configurations for various applications in both linear and nonlinear metasurfaces which are briefly discussed in this review.
Collapse
Affiliation(s)
- Naseer Muhammad
- School of Optics and Photonics, Beijing Engineering Research Center of Mixed Reality and Advanced Display, Beijing Institute of Technology, Beijing 100081, China, Beijing, 100081, China
- Beijing Engineering Research Center of Mixed Reality and Advanced Display, Beijing Institute of Technology, Beijing, 100081, China
| | - Zhaoxian Su
- School of Optics and Photonics, Beijing Engineering Research Center of Mixed Reality and Advanced Display, Beijing Institute of Technology, Beijing 100081, China, Beijing, 100081, China
- Beijing Engineering Research Center of Mixed Reality and Advanced Display, Beijing Institute of Technology, Beijing, 100081, China
| | - Qiang Jiang
- School of Optics and Photonics, Beijing Engineering Research Center of Mixed Reality and Advanced Display, Beijing Institute of Technology, Beijing 100081, China, Beijing, 100081, China
- Beijing Engineering Research Center of Mixed Reality and Advanced Display, Beijing Institute of Technology, Beijing, 100081, China
| | - Yongtian Wang
- School of Optics and Photonics, Beijing Engineering Research Center of Mixed Reality and Advanced Display, Beijing Institute of Technology, Beijing 100081, China, Beijing, 100081, China
- Beijing Engineering Research Center of Mixed Reality and Advanced Display, Beijing Institute of Technology, Beijing, 100081, China
| | - Lingling Huang
- School of Optics and Photonics, Beijing Engineering Research Center of Mixed Reality and Advanced Display, Beijing Institute of Technology, Beijing 100081, China, Beijing, 100081, China.
- Beijing Engineering Research Center of Mixed Reality and Advanced Display, Beijing Institute of Technology, Beijing, 100081, China.
| |
Collapse
|
9
|
Maurtua C, Zide J, Chakraborty C. Molecular beam epitaxy and other large-scale methods for producing monolayer transition metal dichalcogenides. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 36:383003. [PMID: 38901422 DOI: 10.1088/1361-648x/ad5a5d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 06/20/2024] [Indexed: 06/22/2024]
Abstract
Transition metal dichalcogenide (TMD/TMDC) monolayers have gained considerable attention in recent years for their unique properties. Some of these properties include direct bandgap emission and strong mechanical and electronic properties. For these reasons, monolayer TMDs have been considered a promising material for next-generation quantum technologies and optoelectronic devices. However, for the field to make more gainful advancements and be implemented in devices, high-quality TMD monolayers need to be produced at a larger scale with high quality. In this article, some of the current means to produce larger-scale semiconducting monolayer TMDs will be reviewed. An emphasis will be given to the technique of molecular beam epitaxy (MBE) for two main reasons: (1) there is a growing body of research using this technique to grow TMD monolayers and (2) there is yet to be a body of work that has summarized the current research for MBE monolayer growth of TMDs.
Collapse
Affiliation(s)
- Collin Maurtua
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, United States of America
| | - Joshua Zide
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, United States of America
| | - Chitraleema Chakraborty
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, United States of America
| |
Collapse
|
10
|
Rodríguez Á, Çakıroğlu O, Li H, Carrascoso F, Mompean F, Garcia-Hernandez M, Munuera C, Castellanos-Gomez A. Improved Strain Transfer Efficiency in Large-Area Two-Dimensional MoS 2 Obtained by Gold-Assisted Exfoliation. J Phys Chem Lett 2024; 15:6355-6362. [PMID: 38857301 PMCID: PMC11194808 DOI: 10.1021/acs.jpclett.4c00855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/31/2024] [Accepted: 06/05/2024] [Indexed: 06/12/2024]
Abstract
Strain engineering represents a pivotal approach to tailoring the optoelectronic properties of two-dimensional (2D) materials. However, typical bending experiments often encounter challenges, such as layer slippage and inefficient transfer of strain from the substrate to the 2D material, hindering the realization of their full potential. In our study, using molybdenum disulfide (MoS2) as a model 2D material, we have demonstrated that layers obtained through gold-assisted exfoliation on flexible polycarbonate substrates can achieve high-efficient strain transfer while also mitigating slippage effects, owing to the strong interfacial interaction established between MoS2 and gold. We employ differential reflectance and Raman spectroscopy for monitoring strain changes. We successfully applied uniaxial strains of up to 3% to trilayer MoS2, resulting in a notable energy shift of 168 meV. These values are comparable only to those obtained in encapsulated samples with organic polymers.
Collapse
Affiliation(s)
- Álvaro Rodríguez
- Materials Science Factory, Instituto de Ciencia de Materiales de Madrid (ICMM)−Consejo
Superior de Investigaciones Científicas (CSIC), C. Sor Juana Inés de la Cruz,
3, 28049 Madrid, Spain
| | - Onur Çakıroğlu
- Materials Science Factory, Instituto de Ciencia de Materiales de Madrid (ICMM)−Consejo
Superior de Investigaciones Científicas (CSIC), C. Sor Juana Inés de la Cruz,
3, 28049 Madrid, Spain
| | - Hao Li
- Materials Science Factory, Instituto de Ciencia de Materiales de Madrid (ICMM)−Consejo
Superior de Investigaciones Científicas (CSIC), C. Sor Juana Inés de la Cruz,
3, 28049 Madrid, Spain
| | - Felix Carrascoso
- Materials Science Factory, Instituto de Ciencia de Materiales de Madrid (ICMM)−Consejo
Superior de Investigaciones Científicas (CSIC), C. Sor Juana Inés de la Cruz,
3, 28049 Madrid, Spain
| | - Federico Mompean
- Materials Science Factory, Instituto de Ciencia de Materiales de Madrid (ICMM)−Consejo
Superior de Investigaciones Científicas (CSIC), C. Sor Juana Inés de la Cruz,
3, 28049 Madrid, Spain
| | - Mar Garcia-Hernandez
- Materials Science Factory, Instituto de Ciencia de Materiales de Madrid (ICMM)−Consejo
Superior de Investigaciones Científicas (CSIC), C. Sor Juana Inés de la Cruz,
3, 28049 Madrid, Spain
| | - Carmen Munuera
- Materials Science Factory, Instituto de Ciencia de Materiales de Madrid (ICMM)−Consejo
Superior de Investigaciones Científicas (CSIC), C. Sor Juana Inés de la Cruz,
3, 28049 Madrid, Spain
| | - Andres Castellanos-Gomez
- Materials Science Factory, Instituto de Ciencia de Materiales de Madrid (ICMM)−Consejo
Superior de Investigaciones Científicas (CSIC), C. Sor Juana Inés de la Cruz,
3, 28049 Madrid, Spain
| |
Collapse
|
11
|
Ramezani F, Strasbourg M, Parvez S, Saxena R, Jariwala D, Borys NJ, Whitaker BM. Predicting quantum emitter fluctuations with time-series forecasting models. Sci Rep 2024; 14:6920. [PMID: 38519600 PMCID: PMC10959974 DOI: 10.1038/s41598-024-56517-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 03/07/2024] [Indexed: 03/25/2024] Open
Abstract
2D materials have important fundamental properties allowing for their use in many potential applications, including quantum computing. Various Van der Waals materials, including Tungsten disulfide (WS2), have been employed to showcase attractive device applications such as light emitting diodes, lasers and optical modulators. To maximize the utility and value of integrated quantum photonics, the wavelength, polarization and intensity of the photons from a quantum emission (QE) must be stable. However, random variation of emission energy, caused by the inhomogeneity in the local environment, is a major challenge for all solid-state single photon emitters. In this work, we assess the random nature of the quantum fluctuations, and we present time series forecasting deep learning models to analyse and predict QE fluctuations for the first time. Our trained models can roughly follow the actual trend of the data and, under certain data processing conditions, can predict peaks and dips of the fluctuations. The ability to anticipate these fluctuations will allow physicists to harness quantum fluctuation characteristics to develop novel scientific advances in quantum computing that will greatly benefit quantum technologies.
Collapse
Affiliation(s)
- Fereshteh Ramezani
- Electrical and Computer Engineering Department, Montana State University, Bozeman, USA.
| | | | - Sheikh Parvez
- Department of Physics, Montana State University, Bozeman, USA
- Materials Science Program, Montana State University, Bozeman, USA
| | - Ravindra Saxena
- Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, USA
| | - Deep Jariwala
- Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, USA
| | - Nicholas J Borys
- Department of Physics, Montana State University, Bozeman, USA
- Materials Science Program, Montana State University, Bozeman, USA
- Optical Technology Center, Montana State University, Bozeman, USA
| | - Bradley M Whitaker
- Electrical and Computer Engineering Department, Montana State University, Bozeman, USA
- Optical Technology Center, Montana State University, Bozeman, USA
| |
Collapse
|
12
|
Ding S, Liu C, Li Z, Lu Z, Tao Q, Lu D, Chen Y, Tong W, Liu L, Li W, Ma L, Yang X, Xiao Z, Wang Y, Liao L, Liu Y. Ag-Assisted Dry Exfoliation of Large-Scale and Continuous 2D Monolayers. ACS NANO 2024; 18:1195-1203. [PMID: 38153837 DOI: 10.1021/acsnano.3c11573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2023]
Abstract
Two-dimensional (2D) semiconductors have generated considerable attention for high-performance electronics and optoelectronics. However, to date, it is still challenging to mechanically exfoliate large-area and continuous monolayers while retaining their intrinsic properties. Here, we report a simple dry exfoliation approach to produce large-scale and continuous 2D monolayers by using a Ag film as the peeling tape. Importantly, the conducting Ag layer could be converted into AgOx nanoparticles at low annealing temperature, directly decoupling the conducting Ag with the underlayer 2D monolayers without involving any solution or etching process. Electrical characterization of the monolayer MoS2 transistor shows a decent carrier mobility of 42 cm2 V-1 s-1 and on-state current of 142 μA/μm. Finally, a plasmonic enhancement photodetector could be simultaneously realized due to the direct formation of Ag nanoparticles arrays on MoS2 monolayers, without complex approaches for nanoparticle synthesis and integration processes, demonstrating photoresponsivity and detectivity of 6.3 × 105 A/W and 2.3 × 1013 Jones, respectively.
Collapse
Affiliation(s)
- Shuimei Ding
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Chang Liu
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Zhiwei Li
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Zheyi Lu
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Quanyang Tao
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Donglin Lu
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Yang Chen
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Wei Tong
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Liting Liu
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Wanying Li
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Likuan Ma
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Xiaokun Yang
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Zhaojing Xiao
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Yiliu Wang
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Lei Liao
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Yuan Liu
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
| |
Collapse
|
13
|
Thotathil V, Sidiq N, Al Marri JS, Zaidi SA. Molecularly Imprinted Polymer-Based Sensors Integrated with Transition Metal Dichalcogenides (TMDs) and MXenes: A Review. Crit Rev Anal Chem 2023:1-26. [PMID: 38153424 DOI: 10.1080/10408347.2023.2298339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Molecularly imprinted polymer (MIP)-based electrochemical sensors have been extensively researched due to their higher sensitivity, quick response, and operational ease. To develop more advanced sensing devices with enhanced properties, MIPs have been integrated with two-dimensional (2D) layered materials such as transition metal dichalcogenides (TMDs) and MXenes. These 2D materials have unique electronic properties and an extended surface area, making them promising sensing materials that can improve the performance of MIPs. In this review article, we describe the methods used for the synthesis of TMDs and MXenes integrated MIP-based electrochemical sensors. Furthermore, we have provided a critical review of a wide range of analytes determined through the application of these electrochemical sensors. We also go over the influence of TMDs and MXenes on the binding kinetics and adsorption capacity which has enhanced binding recognition and sensing abilities. The combination of TMDs and MXenes with MIPs shows promising synergy in the development of highly efficient recognition materials. In the future, these sensors could be explored for a wider range of applications in environmental remediation, drug delivery, energy storage, and more. Finally, we address the challenges and future perspectives of using TMDs and MXenes integrated MIPs. We conclude with a focus on future development and the scope of integrating these materials in sensing technology.
Collapse
Affiliation(s)
- Vandana Thotathil
- Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Naheed Sidiq
- Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Jawaher S Al Marri
- Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Shabi Abbas Zaidi
- Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
| |
Collapse
|
14
|
Huang X, Han X, Dai Y, Xu X, Zhang Y, Tian X, Yuan Z, Xing J, Wang Y, Huang Y. Recent Progress in Two-Dimensional Material Exfoliation Technology and Enlightenment for Geological Sciences. J Phys Chem Lett 2023; 14:10181-10193. [PMID: 37930076 DOI: 10.1021/acs.jpclett.3c01683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Mechanical exfoliation technology is vital for the development of two-dimensional (2D) materials. This technology has also facilitated the verification of the performance of electronic and optical devices made from 2D materials. In this Perspective, we provide an overview of exfoliation techniques and highlight key physical properties. Additionally, we explored the chemical instability of certain 2D materials and proposed practical solutions to enhance their stability. Furthermore, we discuss the advantages of suspended 2D materials, which demonstrate improved compatibility and properties compared to nonsuspended materials. A particularly intriguing aspect of this Perspective is the exploration of the similarities between the Earth's crust and 2D materials, offering insights into the formation mechanisms of geological phenomena. In this context, 2D materials may serve as simulators for studying geological processes. We hope that this Perspective stimulates further research into exfoliation technology and the physical/chemical properties of 2D materials while providing new inspiration for earth science investigations.
Collapse
Affiliation(s)
- Xinyu Huang
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
- School of Integrated Circuits and Electronics, MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, Beijing Institute of Technology, Beijing 100081, China
| | - Xu Han
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
- School of Integrated Circuits and Electronics, MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, Beijing Institute of Technology, Beijing 100081, China
| | - Yunyun Dai
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
- School of Integrated Circuits and Electronics, MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, Beijing Institute of Technology, Beijing 100081, China
| | - Xiaolong Xu
- School of Integrated Circuits and Electronics, MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, Beijing Institute of Technology, Beijing 100081, China
| | - Yan Zhang
- Key Laboratory of Shale Gas and Geoengineering, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
| | - Xiaobo Tian
- Key Laboratory of Shale Gas and Geoengineering, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
| | - Zhengyi Yuan
- China Earthquake Networks Center, Beijing 100045, China
| | - Jie Xing
- School of Science, China University of Geosciences, Beijing 100083, China
| | - Yeliang Wang
- School of Integrated Circuits and Electronics, MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, Beijing Institute of Technology, Beijing 100081, China
- BIT Chongqing Institute of Microelectronics and Microsystems, Chongqing 100190, China
| | - Yuan Huang
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
- School of Integrated Circuits and Electronics, MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, Beijing Institute of Technology, Beijing 100081, China
- BIT Chongqing Institute of Microelectronics and Microsystems, Chongqing 100190, China
| |
Collapse
|
15
|
Pushkarna I, Pásztor Á, Renner C. Twist-Angle-Dependent Electronic Properties of Exfoliated Single Layer MoS 2 on Au(111). NANO LETTERS 2023; 23:9406-9412. [PMID: 37844067 PMCID: PMC10603799 DOI: 10.1021/acs.nanolett.3c02804] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/29/2023] [Indexed: 10/18/2023]
Abstract
Synthetic materials and heterostructures obtained by the controlled stacking of exfoliated monolayers are emerging as attractive functional materials owing to their highly tunable properties. We present a detailed scanning tunneling microscopy and spectroscopy study of single layer MoS2-on-gold heterostructures as a function of the twist angle. We find that their electronic properties are determined by the hybridization of the constituent layers and are modulated at the moiré period. The hybridization depends on the layer alignment, and the modulation amplitude vanishes with increasing twist angle. We explain our observations in terms of a hybridization between the nearest sulfur and gold atoms, which becomes spatially more homogeneous and weaker as the moiré periodicity decreases with increasing twist angle, unveiling the possibility of tunable hybridization of electronic states via twist angle engineering.
Collapse
Affiliation(s)
| | | | - Christoph Renner
- Department of Quantum Matter
Physics, Université de Genève, 24 Quai Ernest Ansermet, CH-1211 Geneva, Switzerland
| |
Collapse
|
16
|
Ren H, Lan M. Progress and Prospects in Metallic Fe xGeTe 2 (3 ≤ x ≤ 7) Ferromagnets. Molecules 2023; 28:7244. [PMID: 37959664 PMCID: PMC10649090 DOI: 10.3390/molecules28217244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/05/2023] [Accepted: 10/21/2023] [Indexed: 11/15/2023] Open
Abstract
Thermal fluctuations in two-dimensional (2D) isotropy systems at non-zero finite temperatures can destroy the long-range (LR) magnetic order due to the mechanisms addressed in the Mermin-Wanger theory. However, the magnetic anisotropy related to spin-orbit coupling (SOC) may stabilize magnetic order in 2D systems. Very recently, 2D FexGeTe2 (3 ≤ x ≤ 7) with a high Curie temperature (TC) has not only undergone significant developments in terms of synthetic methods and the control of ferromagnetism (FM), but is also being actively explored for applications in various devices. In this review, we introduce six experimental methods, ten ferromagnetic modulation strategies, and four spintronic devices for 2D FexGeTe2 materials. In summary, we outline the challenges and potential research directions in this field.
Collapse
Affiliation(s)
- Hongtao Ren
- School of Materials Science and Engineering, Liaocheng University, Liaocheng 252000, China
| | - Mu Lan
- College of Optoelectronic Engineering, Chengdu University of Information Technology, Chengdu 610225, China
| |
Collapse
|
17
|
Kim S, Kim SI, Ghods S, Kim JS, Lee YC, Kwun HJ, Moon JY, Lee JH. Nonmetal-Mediated Atomic Spalling of Large-Area Monolayer Transition Metal Dichalcogenide. SMALL SCIENCE 2023; 3:2300033. [PMID: 40212973 PMCID: PMC11935789 DOI: 10.1002/smsc.202300033] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/17/2023] [Indexed: 04/22/2025] Open
Abstract
Transition metal dichalcogenides (TMDCs) have attracted intense interest; however, despite the considerable effort of researchers, a universal manufacturing method that can guarantee both high material quality and throughput has not been realized to date. Herein, a universal approach to producing high-quality monolayer TMDCs on a large scale via germanium (Ge)-mediated atomic spalling is presented. Through the modified analytic model, the study verifies that the thin Ge film could be a suitable stressor that effectively reduces the crack propagation depth at the sub-nanometer range. In particular, an acid-etching process is not required in the overall atomic spalling process due to the water-soluble nature of the Ge, enabling it widely applicable to various TMDCs. Under the optimized spalling conditions, a millimeter-sized monolayer of stable MoS2, as well as unstable MoTe2, is successfully achieved. Through detailed spectroscopic and electrical characterizations, it is confirmed that the proposed methodology for obtaining large-area atomic layers does not introduce any significant structural defects or chemical contaminations.
Collapse
Affiliation(s)
- Sein Kim
- Department of Energy Systems ResearchAjou UniversitySuwon16499Republic of Korea
| | - Seung-Il Kim
- Department of Energy Systems ResearchAjou UniversitySuwon16499Republic of Korea
| | - Soheil Ghods
- Department of Energy Systems ResearchAjou UniversitySuwon16499Republic of Korea
| | - Jin-Su Kim
- Department of Materials Science and EngineeringAjou UniversitySuwon16499Republic of Korea
| | - Young Cheol Lee
- Department of Materials Science and EngineeringAjou UniversitySuwon16499Republic of Korea
| | - Hyung Jun Kwun
- Department of Materials Science and EngineeringAjou UniversitySuwon16499Republic of Korea
| | - Ji-Yun Moon
- Department of Energy Systems ResearchAjou UniversitySuwon16499Republic of Korea
| | - Jae-Hyun Lee
- Department of Energy Systems ResearchAjou UniversitySuwon16499Republic of Korea
- Department of Materials Science and EngineeringAjou UniversitySuwon16499Republic of Korea
| |
Collapse
|
18
|
Li Y, Zhao Y, Wang X, Liu W, He J, Luo X, Liu J, Liu Y. Precise Construction and Growth of Submillimeter Two-Dimensional WSe 2 and MoSe 2 Monolayers. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4795. [PMID: 37445110 DOI: 10.3390/ma16134795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/26/2023] [Accepted: 07/01/2023] [Indexed: 07/15/2023]
Abstract
Currently, as shown by large-scale research on two-dimensional materials in the field of nanoelectronics and catalysis, the construction of large-area two-dimensional materials is crucial for the development of devices and their application in photovoltaics, sensing, optoelectronics, and energy generation/storage. Here, using atmospheric-pressure chemical vapor deposition, we developed a method to regulate growth conditions according to the growth mechanism for WSe2 and MoSe2 materials. By accurately controlling the hydrogen flux within the range of 1 sccm and the distance between the precursor and the substrate, we obtained large-size films of single atomic layers with thicknesses of only about 1 nm. When growing the samples, we could not only obtain a 100 percent proportion of samples with the same shape, but the samples could also be glued into pieces of 700 μm and above in size, changing the shape and making it possible to reach the millimeter/submillimeter level visible to the naked eye. Our method is an effective method for the growth of large-area films with universal applicability.
Collapse
Affiliation(s)
- Yuqing Li
- International School of Materials Science and Engineering (ISMSE), State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Yuyan Zhao
- Southwest Institute of Technical Physics, Chengdu 610041, China
| | - Xiaoqian Wang
- International School of Materials Science and Engineering (ISMSE), State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Wanli Liu
- International School of Materials Science and Engineering (ISMSE), State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Jiazhen He
- International School of Materials Science and Engineering (ISMSE), State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Xuemin Luo
- International School of Materials Science and Engineering (ISMSE), State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Jinfeng Liu
- International School of Materials Science and Engineering (ISMSE), State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Yong Liu
- International School of Materials Science and Engineering (ISMSE), State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| |
Collapse
|
19
|
Chin JR, Frye MB, Liu DSH, Hilse M, Graham IC, Shallenberger J, Wang K, Engel-Herbert R, Wang M, Shin YK, Nayir N, van Duin ACT, Garten LM. Self-limiting stoichiometry in SnSe thin films. NANOSCALE 2023; 15:9973-9984. [PMID: 37272496 DOI: 10.1039/d3nr00645j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Unique functionalities can arise when 2D materials are scaled down near the monolayer limit. However, in 2D materials with strong van der Waals bonds between layers, such as SnSe, maintaining stoichiometry while limiting vertical growth is difficult. Here, we describe how self-limiting stoichiometry can promote the growth of SnSe thin films deposited by molecular beam epitaxy. The Pnma phase of SnSe was stabilized over a broad range of Sn : Se flux ratios from 1 : 1 to 1 : 5. Changing the flux ratio does not affect the film stoichiometry, but influences the predominant crystallographic orientation. ReaxFF molecular dynamics (MD) simulation demonstrates that, while a mixture of Sn/Se stoichiometries forms initially, SnSe stabilizes as the cluster size evolves. The MD results further show that the excess selenium coalesces into Se clusters that weakly interact with the surface of the SnSe particles, leading to the limited stoichiometric change. Raman spectroscopy corroborates this model showing the initial formation of SnSe2 transitioning into SnSe as experimental film growth progresses. Transmission electron microscopy measurements taken on films deposited with growth rates above 0.25 Å s-1 show a thin layer of SnSe2 that disrupts the crystallographic orientation of the SnSe films. Therefore, using the conditions for self-limiting SnSe growth while avoiding the formation of SnSe2 was found to increase the lateral scale of the SnSe layers. Overall, self-limiting stoichiometry provides a promising avenue for maintaining growth of large lateral-scale SnSe for device fabrication.
Collapse
Affiliation(s)
- Jonathan R Chin
- The School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245, USA.
| | - Marshall B Frye
- The School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245, USA.
| | - Derrick Shao-Heng Liu
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Maria Hilse
- Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Ian C Graham
- The School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245, USA.
| | - Jeffrey Shallenberger
- Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Ke Wang
- Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Roman Engel-Herbert
- Paul-Drude Institut für Festkörperelektronik Berlin, Leibniz-Institut im Forschungsverbund Berlin eV., Berlin 10117, Germany
| | - Mengyi Wang
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Yun Kyung Shin
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Nadire Nayir
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Physics Department, Karamanoglu Mehmetbey University, Karaman, 70000, Turkey
| | - Adri C T van Duin
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Lauren M Garten
- The School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245, USA.
| |
Collapse
|
20
|
Giri A, Park G, Jeong U. Layer-Structured Anisotropic Metal Chalcogenides: Recent Advances in Synthesis, Modulation, and Applications. Chem Rev 2023; 123:3329-3442. [PMID: 36719999 PMCID: PMC10103142 DOI: 10.1021/acs.chemrev.2c00455] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Indexed: 02/01/2023]
Abstract
The unique electronic and catalytic properties emerging from low symmetry anisotropic (1D and 2D) metal chalcogenides (MCs) have generated tremendous interest for use in next generation electronics, optoelectronics, electrochemical energy storage devices, and chemical sensing devices. Despite many proof-of-concept demonstrations so far, the full potential of anisotropic chalcogenides has yet to be investigated. This article provides a comprehensive overview of the recent progress made in the synthesis, mechanistic understanding, property modulation strategies, and applications of the anisotropic chalcogenides. It begins with an introduction to the basic crystal structures, and then the unique physical and chemical properties of 1D and 2D MCs. Controlled synthetic routes for anisotropic MC crystals are summarized with example advances in the solution-phase synthesis, vapor-phase synthesis, and exfoliation. Several important approaches to modulate dimensions, phases, compositions, defects, and heterostructures of anisotropic MCs are discussed. Recent significant advances in applications are highlighted for electronics, optoelectronic devices, catalysts, batteries, supercapacitors, sensing platforms, and thermoelectric devices. The article ends with prospects for future opportunities and challenges to be addressed in the academic research and practical engineering of anisotropic MCs.
Collapse
Affiliation(s)
- Anupam Giri
- Department
of Chemistry, Faculty of Science, University
of Allahabad, Prayagraj, UP-211002, India
| | - Gyeongbae Park
- Department
of Materials Science and Engineering, Pohang
University of Science and Technology, Cheongam-Ro 77, Nam-Gu, Pohang, Gyeongbuk790-784, Korea
- Functional
Materials and Components R&D Group, Korea Institute of Industrial Technology, Gwahakdanji-ro 137-41, Sacheon-myeon, Gangneung, Gangwon-do25440, Republic of Korea
| | - Unyong Jeong
- Department
of Materials Science and Engineering, Pohang
University of Science and Technology, Cheongam-Ro 77, Nam-Gu, Pohang, Gyeongbuk790-784, Korea
| |
Collapse
|
21
|
Kim JY, Ju X, Ang KW, Chi D. Van der Waals Layer Transfer of 2D Materials for Monolithic 3D Electronic System Integration: Review and Outlook. ACS NANO 2023; 17:1831-1844. [PMID: 36655854 DOI: 10.1021/acsnano.2c10737] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Two-dimensional materials (2DMs) have attracted a great deal of interest due to their immense potential for scientific breakthroughs and technological innovations. While some 2D transition metal dichalcogenides (TMDC) such as MoS2 and WS2 are considered as the ultimate channel materials in unltrascaled transistors as replacements for Si, there has also been increasing interest in the monolithic 3D integration of 2DMs on the Si CMOS platform or in flexible electronics as back-end-of-line transistors, memory devices/selectors, and sensors, taking advantage of 2DM properties such as a high current driving capability with low leakage current, nonvolatile switching characteristics, a large surface-to-volume ratio, and a tunable bandgap. However, the realization of both of these scenarios critically depends on the development of manufacturing-viable high-yield 2DM layers transfer from the growth substrate to the Si, since the growth of high-quality 2DM layers often requires a high-temperature growth process on template substrates. Motivated by this, extensive efforts have been made by the 2DM research community to develop various 2DM layer transfer methods, leveraging the van der Waals transfer capability of the layer-structured 2DMs. These efforts have led to a number of successful demonstrations of wafer-scale 2D TMDC layer transfer, while 2DM-enabled template growth/transfer of some functional bulk materials such as III-V, Ge, and AlN has also been demonstrated. This review surveys and compares different 2DM transfer methods developed recently, with a focus on large-area 2D TMDC film transfer along with an introduction of 2DM template-assisted van der Waals growth/transfer of non-2D thin films. We will also briefly present an outlook of our envisioned multifunctionalities in 3D integrated electronic systems enabled by monolithic 3D integration of 2DMs and III-V via van der Waals transfer and discuss possible technology options for overcoming remaining challenges.
Collapse
Affiliation(s)
- Jun-Young Kim
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research, 2 Fusionopolis Way, Singapore 138634, Singapore
| | - Xin Ju
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research, 2 Fusionopolis Way, Singapore 138634, Singapore
| | - Kah-Wee Ang
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research, 2 Fusionopolis Way, Singapore 138634, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore
| | - Dongzhi Chi
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research, 2 Fusionopolis Way, Singapore 138634, Singapore
| |
Collapse
|
22
|
Li M, Yin B, Gao C, Guo J, Zhao C, Jia C, Guo X. Graphene: Preparation, tailoring, and modification. EXPLORATION (BEIJING, CHINA) 2023; 3:20210233. [PMID: 37323621 PMCID: PMC10190957 DOI: 10.1002/exp.20210233] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 07/05/2022] [Indexed: 06/17/2023]
Abstract
Graphene is a 2D material with fruitful electrical properties, which can be efficiently prepared, tailored, and modified for a variety of applications, particularly in the field of optoelectronic devices thanks to its planar hexagonal lattice structure. To date, graphene has been prepared using a variety of bottom-up growth and top-down exfoliation techniques. To prepare high-quality graphene with high yield, a variety of physical exfoliation methods, such as mechanical exfoliation, anode bonding exfoliation, and metal-assisted exfoliation, have been developed. To adjust the properties of graphene, different tailoring processes have been emerged to precisely pattern graphene, such as gas etching and electron beam lithography. Due to the differences in reactivity and thermal stability of different regions, anisotropic tailoring of graphene can be achieved by using gases as the etchant. To meet practical requirements, further chemical functionalization at the edge and basal plane of graphene has been extensively utilized to modify its properties. The integration and application of graphene devices is facilitated by the combination of graphene preparation, tailoring, and modification. This review focuses on several important strategies for graphene preparation, tailoring, and modification that have recently been developed, providing a foundation for its potential applications.
Collapse
Affiliation(s)
- Mingyao Li
- Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center, College of Chemistry and Molecular EngineeringPeking UniversityBeijingChina
| | - Bing Yin
- Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center, College of Chemistry and Molecular EngineeringPeking UniversityBeijingChina
| | - Chunyan Gao
- Center of Single‐Molecule Sciences, Institute of Modern Optics, Tianjin Key Laboratory of Micro‐scale Optical Information Science and Technology, Frontiers Science Center for New Organic Matter, College of Electronic Information and Optical EngineeringNankai UniversityTianjinChina
| | - Jie Guo
- Center of Single‐Molecule Sciences, Institute of Modern Optics, Tianjin Key Laboratory of Micro‐scale Optical Information Science and Technology, Frontiers Science Center for New Organic Matter, College of Electronic Information and Optical EngineeringNankai UniversityTianjinChina
| | - Cong Zhao
- Center of Single‐Molecule Sciences, Institute of Modern Optics, Tianjin Key Laboratory of Micro‐scale Optical Information Science and Technology, Frontiers Science Center for New Organic Matter, College of Electronic Information and Optical EngineeringNankai UniversityTianjinChina
| | - Chuancheng Jia
- Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center, College of Chemistry and Molecular EngineeringPeking UniversityBeijingChina
- Center of Single‐Molecule Sciences, Institute of Modern Optics, Tianjin Key Laboratory of Micro‐scale Optical Information Science and Technology, Frontiers Science Center for New Organic Matter, College of Electronic Information and Optical EngineeringNankai UniversityTianjinChina
| | - Xuefeng Guo
- Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center, College of Chemistry and Molecular EngineeringPeking UniversityBeijingChina
- Center of Single‐Molecule Sciences, Institute of Modern Optics, Tianjin Key Laboratory of Micro‐scale Optical Information Science and Technology, Frontiers Science Center for New Organic Matter, College of Electronic Information and Optical EngineeringNankai UniversityTianjinChina
| |
Collapse
|
23
|
Liu F. Time- and angle-resolved photoemission spectroscopy (TR-ARPES) of TMDC monolayers and bilayers. Chem Sci 2023; 14:736-750. [PMID: 36755720 PMCID: PMC9890651 DOI: 10.1039/d2sc04124c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022] Open
Abstract
Many unique properties in two-dimensional (2D) materials and their heterostructures rely on charge excitation, scattering, transfer, and relaxation dynamics across different points in the momentum space. Understanding these dynamics is crucial in both the fundamental study of 2D physics and their incorporation in optoelectronic and quantum devices. A direct method to probe charge carrier dynamics with momentum resolution is time- and angle-resolved photoemission spectroscopy (TR-ARPES). Such measurements have been challenging, since photoexcited carriers in many 2D monolayers reside at high crystal momenta, requiring probe photon energies in the extreme UV (EUV) regime. These challenges have been recently addressed by development of table-top pulsed EUV sources based on high harmonic generation, and the successful integration into a TR-ARPES and/or time-resolved momentum microscope. Such experiments will allow direct imaging of photoelectrons with superior time, energy, and crystal momentum resolution, with unique advantage over traditional optical measurements. Recently, TR-ARPES experiments of 2D transition metal dichalcogenide (TMDC) monolayers and bilayers have created unprecedented opportunities to reveal many intrinsic dynamics of 2D materials, such as bandgap renormalization, charge carrier scattering, relaxation, and wavefunction localization in moiré patterns. This perspective aims to give a short review of recent discoveries and discuss the challenges and opportunities of such techniques in the future.
Collapse
Affiliation(s)
- Fang Liu
- Department of Chemistry and the PULSE Institute, Stanford University Stanford California 94305 USA
| |
Collapse
|
24
|
Guo S, Luo M, Shi G, Tian N, Huang Z, Yang F, Ma L, Wang NZ, Shi Q, Xu K, Xu Z, Watanabe K, Taniguchi T, Chen XH, Shen D, Zhang L, Ruan W, Zhang Y. An ultra-high vacuum system for fabricating clean two-dimensional material devices. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2023; 94:013903. [PMID: 36725600 DOI: 10.1063/5.0110875] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 12/21/2022] [Indexed: 06/18/2023]
Abstract
High mobility electron gases confined at material interfaces have been a venue for major discoveries in condensed matter physics. Ultra-high vacuum (UHV) technologies played a key role in creating such high-quality interfaces. The advent of two-dimensional (2D) materials brought new opportunities to explore exotic physics in flat lands. UHV technologies may once again revolutionize research in low dimensions by facilitating the construction of ultra-clean interfaces with a wide variety of 2D materials. Here, we describe the design and operation of a UHV 2D material device fabrication system, in which the entire fabrication process is performed under pressure lower than 5 × 10-10 mbar. Specifically, the UHV system enables the exfoliation of atomically clean 2D materials. Subsequent in situ assembly of van der Waals heterostructures produces high-quality interfaces that are free of contamination. We demonstrate functionalities of this system through exemplary fabrication of various 2D materials and their heterostructures.
Collapse
Affiliation(s)
- Shuaifei Guo
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200438, China
| | - Mingyan Luo
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200438, China
| | - Gang Shi
- Department of Physics, Southern University of Science and Technology, 518055 Shenzhen, China
| | - Ning Tian
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200438, China
| | - Zhe Huang
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology (SIMIT), Chinese Academy of Sciences, Shanghai 200050, China
| | - Fangyuan Yang
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200438, China
| | - Liguo Ma
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200438, China
| | - Nai Zhou Wang
- Hefei National Laboratory for Physical Science at Microscale and Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Qinzhen Shi
- Center for Biomedical Engineering, Fudan University, Shanghai 200438, China
| | - Kailiang Xu
- Center for Biomedical Engineering, Fudan University, Shanghai 200438, China
| | - Zihan Xu
- SixCarbon Technology, Youmagang Industry Park, Shenzhen 518106, China
| | - Kenji Watanabe
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Takashi Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Xian Hui Chen
- Hefei National Laboratory for Physical Science at Microscale and Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Dawei Shen
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology (SIMIT), Chinese Academy of Sciences, Shanghai 200050, China
| | - Liyuan Zhang
- Department of Physics, Southern University of Science and Technology, 518055 Shenzhen, China
| | - Wei Ruan
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200438, China
| | - Yuanbo Zhang
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200438, China
| |
Collapse
|
25
|
Fu Q, Dai J, Huang X, Dai Y, Pan Y, Yang L, Sun Z, Miao T, Zhou M, Zhao L, Zhao W, Han X, Lu J, Gao H, Zhou X, Wang Y, Ni Z, Ji W, Huang Y. One-Step Exfoliation Method for Plasmonic Activation of Large-Area 2D Crystals. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2204247. [PMID: 36104244 PMCID: PMC9661865 DOI: 10.1002/advs.202204247] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Indexed: 06/01/2023]
Abstract
Advanced exfoliation techniques are crucial for exploring the intrinsic properties and applications of 2D materials. Though the recently discovered Au-enhanced exfoliation technique provides an effective strategy for the preparation of large-scale 2D crystals, the high cost of gold hinders this method from being widely adopted in industrial applications. In addition, direct Au contact could significantly quench photoluminescence (PL) emission in 2D semiconductors. It is therefore crucial to find alternative metals that can replace gold to achieve efficient exfoliation of 2D materials. Here, the authors present a one-step Ag-assisted method that can efficiently exfoliate many large-area 2D monolayers, where the yield ratio is comparable to Au-enhanced exfoliation method. Differing from Au film, however, the surface roughness of as-prepared Ag films on SiO2 /Si substrate is much higher, which facilitates the generation of surface plasmons resulting from the nanostructures formed on the rough Ag surface. More interestingly, the strong coupling between 2D semiconductor crystals (e.g., MoS2 , MoSe2 ) and Ag film leads to a unique PL enhancement that has not been observed in other mechanical exfoliation techniques, which can be mainly attributed to enhanced light-matter interaction as a result of extended propagation of surface plasmonic polariton (SPP). This work provides a lower-cost and universal Ag-assisted exfoliation method, while at the same time offering enhanced SPP-matter interactions.
Collapse
Affiliation(s)
- Qiang Fu
- Advanced Research Institute of Multidisciplinary ScienceBeijing Institute of TechnologyBeijing100081P. R. China
- School of Physics and Key Laboratory of MEMS of the Ministry of EducationSoutheast UniversityNanjing211189P. R. China
- Institute of PhysicsChinese Academy of ScienceBeijing100190P. R. China
| | - Jia‐Qi Dai
- Department of Physics and Beijing Key Laboratory of Optoelectronic Functional Materials & Micro‐Nano DevicesRenmin University of ChinaBeijing100872P. R. China
| | - Xin‐Yu Huang
- Advanced Research Institute of Multidisciplinary ScienceBeijing Institute of TechnologyBeijing100081P. R. China
| | - Yun‐Yun Dai
- Advanced Research Institute of Multidisciplinary ScienceBeijing Institute of TechnologyBeijing100081P. R. China
| | - Yu‐Hao Pan
- China North Vehicle Research InstituteBeijing100072P. R. China
| | - Long‐Long Yang
- Institute of PhysicsChinese Academy of ScienceBeijing100190P. R. China
| | - Zhen‐Yu Sun
- Institute of PhysicsChinese Academy of ScienceBeijing100190P. R. China
| | - Tai‐Min Miao
- Institute of PhysicsChinese Academy of ScienceBeijing100190P. R. China
| | - Meng‐Fan Zhou
- School of Physics and Key Laboratory of MEMS of the Ministry of EducationSoutheast UniversityNanjing211189P. R. China
| | - Lin Zhao
- Institute of PhysicsChinese Academy of ScienceBeijing100190P. R. China
- Songshan Lake Materials LaboratoryDongguan523808P. R. China
| | - Wei‐Jie Zhao
- School of Physics and Key Laboratory of MEMS of the Ministry of EducationSoutheast UniversityNanjing211189P. R. China
| | - Xu Han
- Advanced Research Institute of Multidisciplinary ScienceBeijing Institute of TechnologyBeijing100081P. R. China
- Institute of PhysicsChinese Academy of ScienceBeijing100190P. R. China
| | - Jun‐Peng Lu
- School of Physics and Key Laboratory of MEMS of the Ministry of EducationSoutheast UniversityNanjing211189P. R. China
| | - Hong‐Jun Gao
- Institute of PhysicsChinese Academy of ScienceBeijing100190P. R. China
- University of Chinese Academy of SciencesBeijing100049P. R. China
| | - Xing‐Jiang Zhou
- Institute of PhysicsChinese Academy of ScienceBeijing100190P. R. China
- Songshan Lake Materials LaboratoryDongguan523808P. R. China
- University of Chinese Academy of SciencesBeijing100049P. R. China
| | - Ye‐Liang Wang
- Advanced Research Institute of Multidisciplinary ScienceBeijing Institute of TechnologyBeijing100081P. R. China
| | - Zhen‐Hua Ni
- School of Physics and Key Laboratory of MEMS of the Ministry of EducationSoutheast UniversityNanjing211189P. R. China
| | - Wei Ji
- Department of Physics and Beijing Key Laboratory of Optoelectronic Functional Materials & Micro‐Nano DevicesRenmin University of ChinaBeijing100872P. R. China
| | - Yuan Huang
- Advanced Research Institute of Multidisciplinary ScienceBeijing Institute of TechnologyBeijing100081P. R. China
- Institute of PhysicsChinese Academy of ScienceBeijing100190P. R. China
| |
Collapse
|
26
|
Kosnan MA, Azam MA, Safie NE, Munawar RF, Takasaki A. Recent Progress of Electrode Architecture for MXene/MoS 2 Supercapacitor: Preparation Methods and Characterizations. MICROMACHINES 2022; 13:mi13111837. [PMID: 36363860 PMCID: PMC9695226 DOI: 10.3390/mi13111837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/18/2022] [Accepted: 10/21/2022] [Indexed: 05/31/2023]
Abstract
Since their discovery, MXenes have conferred various intriguing features because of their distinctive structures. Focus has been placed on using MXenes in electrochemical energy storage including a supercapacitor showing significant and promising development. However, like other 2D materials, MXene layers unavoidably experience stacking agglomeration because of its great van der Waals forces, which causes a significant loss of electrochemically active sites. With the help of MoS2, a better MXene-based electrodecan is planned to fabricate supercapacitors with the remarkable electrochemical performance. The synthesis of MXene/MoS2 and the ground effects of supercapacitors are currently being analysed by many researchers internationally. The performance of commercial supercapacitors might be improved via electrode architecture. This analysis will support the design of MXene and MoS2 hybrid electrodes for highly effective supercapacitors. Improved electrode capacitance, voltage window and energy density are discussed in this literature study. With a focus on the most recent electrochemical performance of both MXene and MoS2-based electrodes and devices, this review summarises recent developments in materials synthesis and its characterisation. It also helps to identify the difficulties and fresh possibilities MXenes MoS2 and its hybrid heterostructure in this developing field of energy storage. Future choices for constructing supercapacitors will benefit from this review. This review examines the newest developments in MXene/MoS2 supercapacitors, primarily focusing on compiling literature from 2017 through 2022. This review also presents an overview of the design (structures), recent developments, and challenges of the emerging electrode materials, with thoughts on how well such materials function electrochemically in supercapacitors.
Collapse
Affiliation(s)
- Muhammad Akmal Kosnan
- Fakulti Kejuruteraan Pembuatan, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, Durian Tunggal, Melaka 76100, Malaysia
| | - Mohd Asyadi Azam
- Fakulti Kejuruteraan Pembuatan, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, Durian Tunggal, Melaka 76100, Malaysia
| | - Nur Ezyanie Safie
- Fakulti Kejuruteraan Pembuatan, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, Durian Tunggal, Melaka 76100, Malaysia
| | - Rose Farahiyan Munawar
- Fakulti Kejuruteraan Pembuatan, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, Durian Tunggal, Melaka 76100, Malaysia
| | - Akito Takasaki
- Department of Engineering Science and Mechanics, Shibaura Institute of Technology, 3 Chome-7-5 Toyosu, Koto City, Tokyo 135-8548, Japan
| |
Collapse
|
27
|
Radtke M, Hess C. Operando spectroelectrochemistry of bulk-exfoliated 2D SnS2 for anodes within alkali metal ion batteries reveals unusual tin (III) states. Front Chem 2022; 10:1038327. [DOI: 10.3389/fchem.2022.1038327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/04/2022] [Indexed: 11/13/2022] Open
Abstract
In this study we report an affordable synthesis and preparation of an electrochemically exfoliated few-layer 2-dimensional (2D) SnS2 anode material of high cycling durability and demonstrate its performance on the example of alkali metal batteries. The metalation mechanism consists of highly unusual and previously only speculated Sn (III)-state grasped by operando Raman spectroelectrochemistry aided by symmetry analysis. The prepared 2D material flakes were characterized by high resolution transmission electron microscopy, X-ray photoelectron and Raman spectroscopies. The operando Raman spectroelectrochemistry was chosen as a dedicated tool for the investigation of alkali-metal-ion intercalation (Li, Na, K), whereby the distortion of the A1g Raman active mode (out-of-plane S-Sn-S vibration) during battery charging exhibited a substantial dependence on the electrochemically applied potential. As a result of the structural dynamics a considerable Raman red-shift of 17.6 cm−1 was observed during metalation. Linewidth changes were used to evaluate the expansion caused by metalation, which in case of sodium and potassium were found to be minimal compared to lithium. Based on the spectroscopic and electrochemical results, a mechanism for the de-/intercalation of lithium, sodium and potassium is proposed which includes alloying in few-layer 2D SnS2 materials and the generation of point-defects.
Collapse
|
28
|
Li H, Xiong X, Hui F, Yang D, Jiang J, Feng W, Han J, Duan J, Wang Z, Sun L. Constructing van der Waals heterostructures by dry-transfer assembly for novel optoelectronic device. NANOTECHNOLOGY 2022; 33:465601. [PMID: 35313295 DOI: 10.1088/1361-6528/ac5f96] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 03/21/2022] [Indexed: 06/14/2023]
Abstract
Since the first successful exfoliation of graphene, the superior physical and chemical properties of two-dimensional (2D) materials, such as atomic thickness, strong in-plane bonding energy and weak inter-layer van der Waals (vdW) force have attracted wide attention. Meanwhile, there is a surge of interest in novel physics which is absent in bulk materials. Thus, vertical stacking of 2D materials could be critical to discover such physics and develop novel optoelectronic applications. Although vdW heterostructures have been grown by chemical vapor deposition, the available choices of materials for stacking is limited and the device yield is yet to be improved. Another approach to build vdW heterostructure relies on wet/dry transfer techniques like stacking Lego bricks. Although previous reviews have surveyed various wet transfer techniques, novel dry transfer techniques have been recently been demonstrated, featuring clean and sharp interfaces, which also gets rid of contamination, wrinkles, bubbles formed during wet transfer. This review summarizes the optimized dry transfer methods, which paves the way towards high-quality 2D material heterostructures with optimized interfaces. Such transfer techniques also lead to new physical phenomena while enable novel optoelectronic applications on artificial vdW heterostructures, which are discussed in the last part of this review.
Collapse
Affiliation(s)
- Huihan Li
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
- Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Xiaolu Xiong
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
- Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Fei Hui
- School of Materials Science and Engineering, The Key Laboratory of Material Processing and Mold of Ministry of Education, Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Dongliang Yang
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
- Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Jinbao Jiang
- School of Microelectronic Science and Technology, Sun Yat-Sen University, Zhuhai, 519082, People's Republic of China
| | - Wanxiang Feng
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
- Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Junfeng Han
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
- Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Junxi Duan
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
- Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Zhongrui Wang
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, People's Republic of China
| | - Linfeng Sun
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
- Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| |
Collapse
|
29
|
Huang CC. Anisotropic slot waveguides with bulk transition metal dichalcogenides for crosstalk reduction and high-efficiency mode conversion. OPTICS EXPRESS 2022; 30:30219-30232. [PMID: 36242130 DOI: 10.1364/oe.465978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 07/21/2022] [Indexed: 06/16/2023]
Abstract
Conventional slot waveguides (CSWs) consisting of an isotropic low-index material sandwiched by two high-index silicon wires have been extensively used in functional photonic devices, including chemical sensing, optical modulating, and all-optical signal processing, due to its significantly enhanced electric field perpendicular to the interfaces in the slot layer. However, there are two drawbacks to be improved if the CSWs are used for signal transmission in photonic integrated circuits, including the crosstalk between waveguides and direct butting mode conversion efficiency (MCE) to a silicon (Si)-strip waveguide. In this study, we propose an anisotropic SW with bulk transition metal dichalcogenide (ASWTMD) to relieve the two shortcomings by replacing the isotropic low-index slot layer with a bulk molybdenum disulfide layer having a high refractive index and giant optical anisotropy. We demonstrated the crosstalk reduction (CR) of the proposed ASWTMD by analyzing the mode profile, power confinement, and coupling strength. We also investigated the MCE by examining the mode overlap ratio and power evolution. The proposed ASWTMD shows significant CR and superior MCE for the transverse electric and transverse magnetic modes compared to those of a CSW with a SiO2-slot layer. The present design paves the possible extensibility to other transition metal dichalcogenides (TMDs) for designing state-of-the-art TMD-based photonic devices exploiting their extraordinary optical properties.
Collapse
|
30
|
Lin H, Zhang Z, Zhang H, Lin KT, Wen X, Liang Y, Fu Y, Lau AKT, Ma T, Qiu CW, Jia B. Engineering van der Waals Materials for Advanced Metaphotonics. Chem Rev 2022; 122:15204-15355. [PMID: 35749269 DOI: 10.1021/acs.chemrev.2c00048] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The outstanding chemical and physical properties of 2D materials, together with their atomically thin nature, make them ideal candidates for metaphotonic device integration and construction, which requires deep subwavelength light-matter interaction to achieve optical functionalities beyond conventional optical phenomena observed in naturally available materials. In addition to their intrinsic properties, the possibility to further manipulate the properties of 2D materials via chemical or physical engineering dramatically enhances their capability, evoking new science on light-matter interaction, leading to leaped performance of existing functional devices and giving birth to new metaphotonic devices that were unattainable previously. Comprehensive understanding of the intrinsic properties of 2D materials, approaches and capabilities for chemical and physical engineering methods, the resulting property modifications and novel functionalities, and applications of metaphotonic devices are provided in this review. Through reviewing the detailed progress in each aspect and the state-of-the-art achievement, insightful analyses of the outstanding challenges and future directions are elucidated in this cross-disciplinary comprehensive review with the aim to provide an overall development picture in the field of 2D material metaphotonics and promote rapid progress in this fast emerging and prosperous field.
Collapse
Affiliation(s)
- Han Lin
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia.,The Australian Research Council (ARC) Industrial Transformation Training, Centre in Surface Engineering for Advanced Materials (SEAM), Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Zhenfang Zhang
- School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an 710048, China
| | - Huihui Zhang
- Centre for Translational Atomaterials, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, P.O. Box 218, Hawthorn, Victoria 3122, Australia
| | - Keng-Te Lin
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| | - Xiaoming Wen
- Centre for Translational Atomaterials, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, P.O. Box 218, Hawthorn, Victoria 3122, Australia
| | - Yao Liang
- Centre for Translational Atomaterials, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, P.O. Box 218, Hawthorn, Victoria 3122, Australia
| | - Yang Fu
- Centre for Translational Atomaterials, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, P.O. Box 218, Hawthorn, Victoria 3122, Australia
| | - Alan Kin Tak Lau
- Centre for Translational Atomaterials, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, P.O. Box 218, Hawthorn, Victoria 3122, Australia
| | - Tianyi Ma
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia.,Centre for Translational Atomaterials, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, P.O. Box 218, Hawthorn, Victoria 3122, Australia
| | - Cheng-Wei Qiu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Baohua Jia
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia.,The Australian Research Council (ARC) Industrial Transformation Training, Centre in Surface Engineering for Advanced Materials (SEAM), Swinburne University of Technology, Hawthorn, Victoria 3122, Australia.,Centre for Translational Atomaterials, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, P.O. Box 218, Hawthorn, Victoria 3122, Australia
| |
Collapse
|
31
|
2D Material and Perovskite Heterostructure for Optoelectronic Applications. NANOMATERIALS 2022; 12:nano12122100. [PMID: 35745439 PMCID: PMC9228184 DOI: 10.3390/nano12122100] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/06/2022] [Accepted: 06/16/2022] [Indexed: 02/06/2023]
Abstract
Optoelectronic devices are key building blocks for sustainable energy, imaging applications, and optical communications in modern society. Two-dimensional materials and perovskites have been considered promising candidates in this research area due to their fascinating material properties. Despite the significant progress achieved in the past decades, challenges still remain to further improve the performance of devices based on 2D materials or perovskites and to solve stability issues for their reliability. Recently, a novel concept of 2D material/perovskite heterostructure has demonstrated remarkable achievements by taking advantage of both materials. The diverse fabrication techniques and large families of 2D materials and perovskites open up great opportunities for structure modification, interface engineering, and composition tuning in state-of-the-art optoelectronics. In this review, we present comprehensive information on the synthesis methods, material properties of 2D materials and perovskites, and the research progress of optoelectronic devices, particularly solar cells and photodetectors which are based on 2D materials, perovskites, and 2D material/perovskite heterostructures with future perspectives.
Collapse
|
32
|
Wang QH, Bedoya-Pinto A, Blei M, Dismukes AH, Hamo A, Jenkins S, Koperski M, Liu Y, Sun QC, Telford EJ, Kim HH, Augustin M, Vool U, Yin JX, Li LH, Falin A, Dean CR, Casanova F, Evans RFL, Chshiev M, Mishchenko A, Petrovic C, He R, Zhao L, Tsen AW, Gerardot BD, Brotons-Gisbert M, Guguchia Z, Roy X, Tongay S, Wang Z, Hasan MZ, Wrachtrup J, Yacoby A, Fert A, Parkin S, Novoselov KS, Dai P, Balicas L, Santos EJG. The Magnetic Genome of Two-Dimensional van der Waals Materials. ACS NANO 2022; 16:6960-7079. [PMID: 35442017 PMCID: PMC9134533 DOI: 10.1021/acsnano.1c09150] [Citation(s) in RCA: 109] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 02/23/2022] [Indexed: 05/23/2023]
Abstract
Magnetism in two-dimensional (2D) van der Waals (vdW) materials has recently emerged as one of the most promising areas in condensed matter research, with many exciting emerging properties and significant potential for applications ranging from topological magnonics to low-power spintronics, quantum computing, and optical communications. In the brief time after their discovery, 2D magnets have blossomed into a rich area for investigation, where fundamental concepts in magnetism are challenged by the behavior of spins that can develop at the single layer limit. However, much effort is still needed in multiple fronts before 2D magnets can be routinely used for practical implementations. In this comprehensive review, prominent authors with expertise in complementary fields of 2D magnetism (i.e., synthesis, device engineering, magneto-optics, imaging, transport, mechanics, spin excitations, and theory and simulations) have joined together to provide a genome of current knowledge and a guideline for future developments in 2D magnetic materials research.
Collapse
Affiliation(s)
- Qing Hua Wang
- Materials
Science and Engineering, School for Engineering of Matter, Transport
and Energy, Arizona State University, Tempe, Arizona 85287, United States
| | - Amilcar Bedoya-Pinto
- NISE
Department, Max Planck Institute of Microstructure
Physics, 06120 Halle, Germany
- Instituto
de Ciencia Molecular (ICMol), Universitat
de València, 46980 Paterna, Spain
| | - Mark Blei
- Materials
Science and Engineering, School for Engineering of Matter, Transport
and Energy, Arizona State University, Tempe, Arizona 85287, United States
| | - Avalon H. Dismukes
- Department
of Chemistry, Columbia University, New York, New York 10027, United States
| | - Assaf Hamo
- Department
of Physics, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Sarah Jenkins
- Twist
Group,
Faculty of Physics, University of Duisburg-Essen, Campus Duisburg, 47057 Duisburg, Germany
| | - Maciej Koperski
- Institute
for Functional Intelligent Materials, National
University of Singapore, 117544 Singapore
| | - Yu Liu
- Condensed
Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Qi-Chao Sun
- Physikalisches
Institut, University of Stuttgart, 70569 Stuttgart, Germany
| | - Evan J. Telford
- Department
of Chemistry, Columbia University, New York, New York 10027, United States
- Department
of Physics, Columbia University, New York, New York 10027, United States
| | - Hyun Ho Kim
- School
of Materials Science and Engineering, Department of Energy Engineering
Convergence, Kumoh National Institute of
Technology, Gumi 39177, Korea
| | - Mathias Augustin
- Institute
for Condensed Matter Physics and Complex Systems, School of Physics
and Astronomy, The University of Edinburgh, Edinburgh, EH9 3FD, United Kingdom
- Donostia
International Physics Center (DIPC), 20018 Donostia-San Sebastián, Basque Country, Spain
| | - Uri Vool
- Department
of Physics, Harvard University, Cambridge, Massachusetts 02138, United States
- John Harvard
Distinguished Science Fellows Program, Harvard
University, Cambridge, Massachusetts 02138, United States
| | - Jia-Xin Yin
- Laboratory
for Topological Quantum Matter and Spectroscopy, Department of Physics, Princeton University, Princeton, New Jersey 08544, United States
| | - Lu Hua Li
- Institute
for Frontier Materials, Deakin University, Geelong Waurn Ponds Campus, Waurn Ponds, Victoria 3216, Australia
| | - Alexey Falin
- Institute
for Frontier Materials, Deakin University, Geelong Waurn Ponds Campus, Waurn Ponds, Victoria 3216, Australia
| | - Cory R. Dean
- Department
of Physics, Columbia University, New York, New York 10027, United States
| | - Fèlix Casanova
- CIC nanoGUNE
BRTA, 20018 Donostia - San Sebastián, Basque
Country, Spain
- IKERBASQUE,
Basque Foundation for Science, 48013 Bilbao, Basque Country, Spain
| | - Richard F. L. Evans
- Department
of Physics, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Mairbek Chshiev
- Université
Grenoble Alpes, CEA, CNRS, Spintec, 38000 Grenoble, France
- Institut
Universitaire de France, 75231 Paris, France
| | - Artem Mishchenko
- Department
of Physics and Astronomy, University of
Manchester, Manchester, M13 9PL, United Kingdom
- National
Graphene Institute, University of Manchester, Manchester, M13 9PL, United Kingdom
| | - Cedomir Petrovic
- Condensed
Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Rui He
- Department
of Electrical and Computer Engineering, Texas Tech University, 910 Boston Avenue, Lubbock, Texas 79409, United
States
| | - Liuyan Zhao
- Department
of Physics, University of Michigan, 450 Church Street, Ann Arbor, Michigan 48109, United States
| | - Adam W. Tsen
- Institute
for Quantum Computing and Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Brian D. Gerardot
- SUPA, Institute
of Photonics and Quantum Sciences, Heriot-Watt
University, Edinburgh EH14 4AS, United Kingdom
| | - Mauro Brotons-Gisbert
- SUPA, Institute
of Photonics and Quantum Sciences, Heriot-Watt
University, Edinburgh EH14 4AS, United Kingdom
| | - Zurab Guguchia
- Laboratory
for Muon Spin Spectroscopy, Paul Scherrer
Institute, CH-5232 Villigen PSI, Switzerland
| | - Xavier Roy
- Department
of Chemistry, Columbia University, New York, New York 10027, United States
| | - Sefaattin Tongay
- Materials
Science and Engineering, School for Engineering of Matter, Transport
and Energy, Arizona State University, Tempe, Arizona 85287, United States
| | - Ziwei Wang
- Department
of Physics and Astronomy, University of
Manchester, Manchester, M13 9PL, United Kingdom
- National
Graphene Institute, University of Manchester, Manchester, M13 9PL, United Kingdom
| | - M. Zahid Hasan
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Princeton
Institute for Science and Technology of Materials, Princeton University, Princeton, New Jersey 08544, United States
- National
High Magnetic Field Laboratory, Florida
State University, Tallahassee, Florida 32310, United States
| | - Joerg Wrachtrup
- Physikalisches
Institut, University of Stuttgart, 70569 Stuttgart, Germany
- Max Planck
Institute for Solid State Research, 70569 Stuttgart, Germany
| | - Amir Yacoby
- Department
of Physics, Harvard University, Cambridge, Massachusetts 02138, United States
- John A.
Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Albert Fert
- Donostia
International Physics Center (DIPC), 20018 Donostia-San Sebastián, Basque Country, Spain
- Unité
Mixte de Physique, CNRS, Thales, Université Paris-Saclay, 91767 Palaiseau, France
- Department
of Materials Physics UPV/EHU, 20018 Donostia - San Sebastián, Basque Country, Spain
| | - Stuart Parkin
- NISE
Department, Max Planck Institute of Microstructure
Physics, 06120 Halle, Germany
| | - Kostya S. Novoselov
- Institute
for Functional Intelligent Materials, National
University of Singapore, 117544 Singapore
| | - Pengcheng Dai
- Department
of Physics and Astronomy, Rice University, Houston, Texas 77005, United States
| | - Luis Balicas
- National
High Magnetic Field Laboratory, Florida
State University, Tallahassee, Florida 32310, United States
- Department
of Physics, Florida State University, Tallahassee, Florida 32306, United States
| | - Elton J. G. Santos
- Institute
for Condensed Matter Physics and Complex Systems, School of Physics
and Astronomy, The University of Edinburgh, Edinburgh, EH9 3FD, United Kingdom
- Donostia
International Physics Center (DIPC), 20018 Donostia-San Sebastián, Basque Country, Spain
- Higgs Centre
for Theoretical Physics, The University
of Edinburgh, Edinburgh EH9 3FD, United Kingdom
| |
Collapse
|
33
|
MoS2 as a Co-Catalyst for Photocatalytic Hydrogen Production: A Mini Review. Molecules 2022; 27:molecules27103289. [PMID: 35630769 PMCID: PMC9145188 DOI: 10.3390/molecules27103289] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/09/2022] [Accepted: 05/17/2022] [Indexed: 02/04/2023] Open
Abstract
Molybdenum disulfide (MoS2), with a two-dimensional (2D) structure, has attracted huge research interest due to its unique electrical, optical, and physicochemical properties. MoS2 has been used as a co-catalyst for the synthesis of novel heterojunction composites with enhanced photocatalytic hydrogen production under solar light irradiation. In this review, we briefly highlight the atomic-scale structure of MoS2 nanosheets. The top-down and bottom-up synthetic methods of MoS2 nanosheets are described. Additionally, we discuss the formation of MoS2 heterostructures with titanium dioxide (TiO2), graphitic carbon nitride (g-C3N4), and other semiconductors and co-catalysts for enhanced photocatalytic hydrogen generation. This review addresses the challenges and future perspectives for enhancing solar hydrogen production performance in heterojunction materials using MoS2 as a co-catalyst.
Collapse
|
34
|
Thermal and mechanical characterization of nanoporous two-dimensional MoS 2 membranes. Sci Rep 2022; 12:7777. [PMID: 35546613 PMCID: PMC9095662 DOI: 10.1038/s41598-022-11883-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 04/29/2022] [Indexed: 11/30/2022] Open
Abstract
For practical application, determining the thermal and mechanical characterization of nanoporous two-dimensional MoS2 membranes is critical. To understand the influences of the temperature and porosity on the mechanical properties of single-layer MoS2 membrane, uniaxial and biaxial tensions were conducted using molecular dynamics simulations. It was found that Young’s modulus, ultimate strength, and fracture strain reduce with the temperature increases. At the same time, porosity effects were found to cause a decrease in the ultimate strength, fracture strain, and Young’s modulus of MoS2 membranes. Because the pore exists, the most considerable stresses will be concentrated around the pore site throughout uniaxial and biaxial tensile tests, increasing the possibility of fracture compared to tensing the pristine membrane. Moreover, this article investigates the impacts of temperature, porosity, and length size on the thermal conductivity of MoS2 membrane using the non-equilibrium molecular dynamics (NEMD) method. The results show that the thermal conductivity of the MoS2 membrane is strongly dependent on the temperature, porosity, and length size. Specifically, the thermal conductivity decreases as the temperature increases, and the thermal conductivity reduces as the porosity density increases. Interestingly, the thermal and mechanical properties of the pristine MoS2 membrane are similar in armchair and zigzag directions.
Collapse
|
35
|
Zhou R, Wu J, Chen Y, Xie L. Polymorph Structures, Rich Physical Properties and Potential Applications of
Two‐Dimensional MoTe
2
,
WTe
2
and Its Alloys. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202100777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Rui Zhou
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Juanxia Wu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology Beijing 100190 China
| | - Yuansha Chen
- Beijing National Laboratory for Condensed Matter Physics & Institute of Physics, Chinese Academy of Sciences Beijing 100190 China
| | - Liming Xie
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
36
|
Panasci SE, Koos A, Schilirò E, Di Franco S, Greco G, Fiorenza P, Roccaforte F, Agnello S, Cannas M, Gelardi FM, Sulyok A, Nemeth M, Pécz B, Giannazzo F. Multiscale Investigation of the Structural, Electrical and Photoluminescence Properties of MoS 2 Obtained by MoO 3 Sulfurization. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:182. [PMID: 35055201 PMCID: PMC8778062 DOI: 10.3390/nano12020182] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/01/2022] [Accepted: 01/03/2022] [Indexed: 01/27/2023]
Abstract
In this paper, we report a multiscale investigation of the compositional, morphological, structural, electrical, and optical emission properties of 2H-MoS2 obtained by sulfurization at 800 °C of very thin MoO3 films (with thickness ranging from ~2.8 nm to ~4.2 nm) on a SiO2/Si substrate. XPS analyses confirmed that the sulfurization was very effective in the reduction of the oxide to MoS2, with only a small percentage of residual MoO3 present in the final film. High-resolution TEM/STEM analyses revealed the formation of few (i.e., 2-3 layers) of MoS2 nearly aligned with the SiO2 surface in the case of the thinnest (~2.8 nm) MoO3 film, whereas multilayers of MoS2 partially standing up with respect to the substrate were observed for the ~4.2 nm one. Such different configurations indicate the prevalence of different mechanisms (i.e., vapour-solid surface reaction or S diffusion within the film) as a function of the thickness. The uniform thickness distribution of the few-layer and multilayer MoS2 was confirmed by Raman mapping. Furthermore, the correlative plot of the characteristic A1g-E2g Raman modes revealed a compressive strain (ε ≈ -0.78 ± 0.18%) and the coexistence of n- and p-type doped areas in the few-layer MoS2 on SiO2, where the p-type doping is probably due to the presence of residual MoO3. Nanoscale resolution current mapping by C-AFM showed local inhomogeneities in the conductivity of the few-layer MoS2, which are well correlated to the lateral changes in the strain detected by Raman. Finally, characteristic spectroscopic signatures of the defects/disorder in MoS2 films produced by sulfurization were identified by a comparative analysis of Raman and photoluminescence (PL) spectra with CVD grown MoS2 flakes.
Collapse
Affiliation(s)
- Salvatore E. Panasci
- Consiglio Nazionale delle Ricerche—Istituto per la Microelettronica e Microsistemi (CNR-IMM), Strada VIII 5, 95121 Catania, Italy; (S.E.P.); (E.S.); (S.D.F.); (G.G.); (P.F.); (F.R.); (S.A.)
- Department of Physics and Astronomy, University of Catania, 95123 Catania, Italy
| | - Antal Koos
- Centre for Energy Research, Institute of Technical Physics and Materials Science, Konkoly-Thege ut 29-33, 1121 Budapest, Hungary; (A.K.); (A.S.); (M.N.)
| | - Emanuela Schilirò
- Consiglio Nazionale delle Ricerche—Istituto per la Microelettronica e Microsistemi (CNR-IMM), Strada VIII 5, 95121 Catania, Italy; (S.E.P.); (E.S.); (S.D.F.); (G.G.); (P.F.); (F.R.); (S.A.)
| | - Salvatore Di Franco
- Consiglio Nazionale delle Ricerche—Istituto per la Microelettronica e Microsistemi (CNR-IMM), Strada VIII 5, 95121 Catania, Italy; (S.E.P.); (E.S.); (S.D.F.); (G.G.); (P.F.); (F.R.); (S.A.)
| | - Giuseppe Greco
- Consiglio Nazionale delle Ricerche—Istituto per la Microelettronica e Microsistemi (CNR-IMM), Strada VIII 5, 95121 Catania, Italy; (S.E.P.); (E.S.); (S.D.F.); (G.G.); (P.F.); (F.R.); (S.A.)
| | - Patrick Fiorenza
- Consiglio Nazionale delle Ricerche—Istituto per la Microelettronica e Microsistemi (CNR-IMM), Strada VIII 5, 95121 Catania, Italy; (S.E.P.); (E.S.); (S.D.F.); (G.G.); (P.F.); (F.R.); (S.A.)
| | - Fabrizio Roccaforte
- Consiglio Nazionale delle Ricerche—Istituto per la Microelettronica e Microsistemi (CNR-IMM), Strada VIII 5, 95121 Catania, Italy; (S.E.P.); (E.S.); (S.D.F.); (G.G.); (P.F.); (F.R.); (S.A.)
| | - Simonpietro Agnello
- Consiglio Nazionale delle Ricerche—Istituto per la Microelettronica e Microsistemi (CNR-IMM), Strada VIII 5, 95121 Catania, Italy; (S.E.P.); (E.S.); (S.D.F.); (G.G.); (P.F.); (F.R.); (S.A.)
- Department of Physics and Chemistry Emilio Segrè, University of Palermo, 90123 Palermo, Italy; (M.C.); (F.M.G.)
- ATEN Center, University of Palermo, 90123 Palermo, Italy
| | - Marco Cannas
- Department of Physics and Chemistry Emilio Segrè, University of Palermo, 90123 Palermo, Italy; (M.C.); (F.M.G.)
| | - Franco M. Gelardi
- Department of Physics and Chemistry Emilio Segrè, University of Palermo, 90123 Palermo, Italy; (M.C.); (F.M.G.)
| | - Attila Sulyok
- Centre for Energy Research, Institute of Technical Physics and Materials Science, Konkoly-Thege ut 29-33, 1121 Budapest, Hungary; (A.K.); (A.S.); (M.N.)
| | - Miklos Nemeth
- Centre for Energy Research, Institute of Technical Physics and Materials Science, Konkoly-Thege ut 29-33, 1121 Budapest, Hungary; (A.K.); (A.S.); (M.N.)
| | - Béla Pécz
- Centre for Energy Research, Institute of Technical Physics and Materials Science, Konkoly-Thege ut 29-33, 1121 Budapest, Hungary; (A.K.); (A.S.); (M.N.)
| | - Filippo Giannazzo
- Consiglio Nazionale delle Ricerche—Istituto per la Microelettronica e Microsistemi (CNR-IMM), Strada VIII 5, 95121 Catania, Italy; (S.E.P.); (E.S.); (S.D.F.); (G.G.); (P.F.); (F.R.); (S.A.)
| |
Collapse
|
37
|
Moradi Z, Vaezzadeh M, Saeidi M. Thermoelectric, spin-dependent optical and quantum transport properties of 2D half-metallic Co2Se3. Phys Chem Chem Phys 2022; 24:22016-22027. [DOI: 10.1039/d2cp02541h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this paper, the thermoelectric, spin-dependent optical and quantum transport properties of two-dimensional(2D) Co2Se3 monolayer are investigated using first principle calculations. The stability of Co2Se3 monolayer is confirmed by energy-cohesive...
Collapse
|
38
|
Khattab Y, Aleksandrov SE, Fedorov VV, Koval’ OY. Influence of the Deposition Temperature on the Structure of Thin Molybdenum Disulfide Films Formed by Chemical Vapor Deposition. RUSS J APPL CHEM+ 2021. [DOI: 10.1134/s1070427221080048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
39
|
Substrate-Driven Atomic Layer Deposition of High-κ Dielectrics on 2D Materials. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app112211052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Atomic layer deposition (ALD) of high-κ dielectrics on two-dimensional (2D) materials (including graphene and transition metal dichalcogenides) still represents a challenge due to the lack of out-of-plane bonds on the pristine surfaces of 2D materials, thus making the nucleation process highly disadvantaged. The typical methods to promote the nucleation (i.e., the predeposition of seed layers or the surface activation via chemical treatments) certainly improve the ALD growth but can affect, to some extent, the electronic properties of 2D materials and the interface with high-κ dielectrics. Hence, direct ALD on 2D materials without seed and functionalization layers remains highly desirable. In this context, a crucial role can be played by the interaction with the substrate supporting the 2D membrane. In particular, metallic substrates such as copper or gold have been found to enhance the ALD nucleation of Al2O3 and HfO2 both on monolayer (1 L) graphene and MoS2. Similarly, uniform ALD growth of Al2O3 on the surface of 1 L epitaxial graphene (EG) on SiC (0001) has been ascribed to the peculiar EG/SiC interface properties. This review provides a detailed discussion of the substrate-driven ALD growth of high-κ dielectrics on 2D materials, mainly on graphene and MoS2. The nucleation mechanism and the influence of the ALD parameters (namely the ALD temperature and cycle number) on the coverage as well as the structural and electrical properties of the deposited high-κ thin films are described. Finally, the open challenges for applications are discussed.
Collapse
|
40
|
Huo J, Xiao Y, Sun T, Zou G, Shen D, Feng B, Lin L, Wang W, Zhao G, Liu L. Femtosecond Laser Irradiation-Mediated MoS 2-Metal Contact Engineering for High-Performance Field-Effect Transistors and Photodetectors. ACS APPLIED MATERIALS & INTERFACES 2021; 13:54246-54257. [PMID: 34726368 DOI: 10.1021/acsami.1c12685] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
2D materials exhibit intriguing electrical and optical properties, making them promising candidates for next-generation nanoelectronic devices. However, the high contact resistance of 2D materials to electrode material often limits the ultimate performance and potential of 2D materials and devices. In this work, we demonstrate a localized femtosecond (fs) laser irradiation process to substantially minimize the resistance of MoS2-metal contacts. A reduction of the contact resistance exceeding three orders of magnitude is achieved for mechanically exfoliated MoS2, which remarkably improves the overall FET performance. The underlying mechanisms of resistance reduction are the removal of organic contamination induced by the transfer process, as well as the lowering of Schottky barrier resistance (RSB) attributed to interface Fermi level pinning (FLP) by Au diffusion, and the lowering of interlayer resistance (Rint) due to interlayer coupling enhancement by Au intercalation under fs laser irradiation. By taking advantage of the improved MoS2-metal contact behavior, a high-performance MoS2 photodetector was developed with a photoresponsivity of 68.8 A W-1 at quite a low Vds of 0.5 V, which is ∼80 times higher than the pristine multilayer photodetector. This contamination-free, site-specific, and universal photonic fabrication technique provides an effective tool for the integration of complex 2D devices, and the mechanism of MoS2-metal interface modification reveals a new pathway to engineer the 2D material-metal interface.
Collapse
Affiliation(s)
- Jinpeng Huo
- Department of Mechanical Engineering, State Key Laboratory of Tribology, Key Laboratory for Advanced Manufacturing by Materials Processing Technology, Ministry of Education of PR China, Tsinghua University, Beijing 100084, China
| | - Yu Xiao
- Department of Mechanical Engineering, State Key Laboratory of Tribology, Key Laboratory for Advanced Manufacturing by Materials Processing Technology, Ministry of Education of PR China, Tsinghua University, Beijing 100084, China
| | - Tianming Sun
- Department of Mechanical Engineering, State Key Laboratory of Tribology, Key Laboratory for Advanced Manufacturing by Materials Processing Technology, Ministry of Education of PR China, Tsinghua University, Beijing 100084, China
- Taiyuan University of Technology, Taiyuan 030024, China
| | - Guisheng Zou
- Department of Mechanical Engineering, State Key Laboratory of Tribology, Key Laboratory for Advanced Manufacturing by Materials Processing Technology, Ministry of Education of PR China, Tsinghua University, Beijing 100084, China
| | - Daozhi Shen
- Institute for Quantum Computing, Department of Chemistry, Centre for Advanced Materials Joining, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Bin Feng
- Department of Mechanical Engineering, State Key Laboratory of Tribology, Key Laboratory for Advanced Manufacturing by Materials Processing Technology, Ministry of Education of PR China, Tsinghua University, Beijing 100084, China
| | - Luchan Lin
- Shanghai Key Laboratory of Materials Laser Processing and Modification School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wengan Wang
- Department of Mechanical Engineering, State Key Laboratory of Tribology, Key Laboratory for Advanced Manufacturing by Materials Processing Technology, Ministry of Education of PR China, Tsinghua University, Beijing 100084, China
| | - Guanlei Zhao
- State Key Lab of Automotive Safety and Energy, Tsinghua University, Beijing 100084, China
| | - Lei Liu
- Department of Mechanical Engineering, State Key Laboratory of Tribology, Key Laboratory for Advanced Manufacturing by Materials Processing Technology, Ministry of Education of PR China, Tsinghua University, Beijing 100084, China
| |
Collapse
|
41
|
Erdewyk MV, Sambur JB. Single Nanoflake Photoelectrochemistry Reveals Intrananoflake Doping Heterogeneity That Explains Ensemble-Level Photoelectrochemical Behavior. ACS APPLIED MATERIALS & INTERFACES 2021; 14:22737-22746. [PMID: 34723470 DOI: 10.1021/acsami.1c14928] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Transition metal dichalcogenide (TMD) nanoflake thin films are attractive electrode materials for photoelectrochemical (PEC) solar energy conversion and sensing applications, but their photocurrent quantum yields are generally lower than those of bulk TMD electrodes. The poor PEC performance has been primarily attributed to enhanced charge carrier recombination at exposed defect and edge sites introduced by the exfoliation process. Here, a single nanoflake PEC approach reveals how an alternative effect, doping heterogeneity, limits ensemble-level PEC performance. Photocurrent mapping and local photocurrent-potential (i-E) measurements of MoS2 nanoflakes exfoliated from naturally occurring bulk crystals revealed the presence of n- and p-type domains within the same nanoflake. Interestingly, the n- and p-type domains in the natural MoS2 nanoflakes were equally efficient for iodide oxidation and tri-iodide reduction (IQE values exceed 80%). At the single domain-level, the natural MoS2 nanoflakes were nearly as efficient as nanoflakes exfoliated from synthetic n-type MoS2 crystals. Single domain-level i-E measurements explain why natural MoS2 nanoflakes exhibit an n-type to p-type photocurrent switching effect in ensemble-level measurements: the n- and p-type diode currents from individual domains oppose each other upon illuminating the entire nanoflake, resulting in zero photocurrent at the switching potential. The doping heterogeneity effect is likely due to nonideal stoichiometry, where p-type domains are S-rich according to XPS measurements. Although this doping heterogeneity effect limits photoanode or photocathode performance, these findings open the possibility to synthesize efficient TMD nanoflake photocatalysts with well-defined lateral p- and n-type domains for enhanced charge separation.
Collapse
Affiliation(s)
- Michael Van Erdewyk
- Department of Chemistry, Colorado State University, 200 West Lake Street, Fort Collins, Colorado 80523-1872, United States
| | - Justin B Sambur
- Department of Chemistry, Colorado State University, 200 West Lake Street, Fort Collins, Colorado 80523-1872, United States
| |
Collapse
|
42
|
Zhang HZ, Wu WJ, Zhou L, Wu Z, Zhu J. Steering on Degrees of Freedom of 2D Van der Waals Heterostructures. SMALL SCIENCE 2021. [DOI: 10.1002/smsc.202100033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- Hui-Zhen Zhang
- National Laboratory of Solid State Microstructures College of Engineering and Applied Sciences School of Physics Key Laboratory of Intelligent Optical Sensing and Manipulation Ministry of Education Jiangsu Key Laboratory of Artificial Functional Materials Nanjing University Nanjing 210093 P. R. China
| | - Wen-Jing Wu
- Department of Electrical Engineering The Pennsylvania State University University Park Pennsylvania 16802 USA
| | - Lin Zhou
- National Laboratory of Solid State Microstructures College of Engineering and Applied Sciences School of Physics Key Laboratory of Intelligent Optical Sensing and Manipulation Ministry of Education Jiangsu Key Laboratory of Artificial Functional Materials Nanjing University Nanjing 210093 P. R. China
| | - Zhen Wu
- National Laboratory of Solid State Microstructures College of Engineering and Applied Sciences School of Physics Key Laboratory of Intelligent Optical Sensing and Manipulation Ministry of Education Jiangsu Key Laboratory of Artificial Functional Materials Nanjing University Nanjing 210093 P. R. China
| | - Jia Zhu
- National Laboratory of Solid State Microstructures College of Engineering and Applied Sciences School of Physics Key Laboratory of Intelligent Optical Sensing and Manipulation Ministry of Education Jiangsu Key Laboratory of Artificial Functional Materials Nanjing University Nanjing 210093 P. R. China
| |
Collapse
|
43
|
Brunet Cabré M, Paiva AE, Velický M, Colavita PE, McKelvey K. Electrochemical kinetics as a function of transition metal dichalcogenide thickness. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.139027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
44
|
Molybdenum disulfide/reduced graphene oxide: Progress in synthesis and electro-catalytic properties for electrochemical sensing and dye sensitized solar cells. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106583] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
45
|
Yao Y, Zhan X, Sendeku MG, Yu P, Dajan FT, Zhu C, Li N, Wang J, Wang F, Wang Z, He J. Recent progress on emergent two-dimensional magnets and heterostructures. NANOTECHNOLOGY 2021; 32:472001. [PMID: 34315143 DOI: 10.1088/1361-6528/ac17fd] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
Intrinsic two-dimensional (2D) magnetic materials own strong long-range magnetism while their characteristics of the ultrathin thickness and smooth surface provide an ideal platform for manipulating the magnetic properties at 2D limit. This makes them to be potential candidates in various spintronic applications compared to their corresponding bulk counterparts. The discovery of magnetic ordering in 2D CrI3and Gr2Ge2Te6nanostructures stimulated tremendous research interest in both experimental and theoretical studies on various intrinsic magnets at 2D limit. This review gives a comprehensive overview of the recent progress on the emergent 2D magnets and heterostructures. Firstly, several kinds of typical 2D magnetic materials discovered in the last few years and their fabrication methods are summarized in detail. Secondly, the current strategies for manipulating magnetic properties in 2D materials are further discussed. Then, the recent advances on the construction of representative van der Waals magnetic heterostructures and their respective performance are provided. With the hope of motivating the researchers in this area, we finally offered the challenges and outlook on 2D magnetism.
Collapse
Affiliation(s)
- Yuyu Yao
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- Sino-Danish Center for Education, Beijing 100049, People's Republic of China
| | - Xueying Zhan
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
| | - Marshet Getaye Sendeku
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
| | - Peng Yu
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
| | - Fekadu Tsegaye Dajan
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
| | - Chuanchao Zhu
- Institute for Quantum Information & State Key Laboratory of High Performance Computing, National University of Defense Technology, Changsha 410073, People's Republic of China
| | - Ningning Li
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- Sino-Danish Center for Education, Beijing 100049, People's Republic of China
| | - Junjun Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
| | - Feng Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
| | - Zhenxing Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Jun He
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, People's Republic of China
| |
Collapse
|
46
|
Li Z, Ren L, Wang S, Huang X, Li Q, Lu Z, Ding S, Deng H, Chen P, Lin J, Hu Y, Liao L, Liu Y. Dry Exfoliation of Large-Area 2D Monolayer and Heterostructure Arrays. ACS NANO 2021; 15:13839-13846. [PMID: 34355880 DOI: 10.1021/acsnano.1c05734] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Two-dimensional (2D) semiconductors have attracted considerable attention in recent years. However, to date, there is still no effective approach to produce large-scale monolayers while retaining their intrinsic properties. Here, we report a simple mechanical exfoliation method to produce large-scale and high-quality 2D semiconductors, by designing an atomically flat Au-mesh film as the peeling tape. Using our prefabricated mesh tape, the limited contact region (between the 2D crystal and Au) could provide enough adhesion to mechanically exfoliate uniform 2D monolayers, and the noncontact region (between the mesh holes and monolayers) ensures weak interaction to mechanically release the 2D monolayers on desired substrates. Together, we demonstrate a scalable method to dry exfoliate various 2D monolayer arrays onto different substrates without involving any solutions or contaminations, representing the optimization between material yield, scalability, and quality. Furthermore, detailed optical and electrical characterizations are conducted to confirm their intrinsic quality. With the ability to mechanically exfoliate various 2D arrays and further restacking them, we have demonstrated large-scale van der Waals heterostructure arrays through layer-to-layer assembling. Our study offers a simple and scalable method for dry exfoliating 2D monolayer and heterostructure arrays with intrinsic material quality, which could be crucial to accelerate fundamental investigations as well as practical applications of proof-of-concepts devices.
Collapse
Affiliation(s)
- Zhiwei Li
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Liwang Ren
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Shiyu Wang
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Xinxin Huang
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Qianyuan Li
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Zheyi Lu
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Shuimei Ding
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Hanjun Deng
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Pingan Chen
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Jun Lin
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Yuanyuan Hu
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Lei Liao
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Yuan Liu
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
| |
Collapse
|
47
|
Cao Y, Wood S, Richheimer F, Blakesley J, Young RJ, Castro FA. Enhancing and quantifying spatial homogeneity in monolayer WS 2. Sci Rep 2021; 11:14831. [PMID: 34290292 PMCID: PMC8295334 DOI: 10.1038/s41598-021-94263-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 07/05/2021] [Indexed: 11/17/2022] Open
Abstract
Controlling the radiative properties of monolayer transition metal dichalcogenides is key to the development of atomically thin optoelectronic devices applicable to a wide range of industries. A common problem for exfoliated materials is the inherent disorder causing spatially varying nonradiative losses and therefore inhomogeneity. Here we demonstrate a five-fold reduction in the spatial inhomogeneity in monolayer WS2, resulting in enhanced overall photoluminescence emission and quality of WS2 flakes, by using an ambient-compatible laser illumination process. We propose a method to quantify spatial uniformity using statistics of spectral photoluminescence mapping. Analysis of the dynamic spectral changes shows that the enhancement is due to a spatially sensitive reduction of the charged exciton spectral weighting. The methods presented here are based on widely adopted instrumentation. They can be easily automated, making them ideal candidates for quality assessment of transition metal dichalcogenide materials, both in the laboratory and industrial environments.
Collapse
Affiliation(s)
- Yameng Cao
- National Physical Laboratory, Hampton Road, Teddington, TW11, 0LW, UK.
| | - Sebastian Wood
- National Physical Laboratory, Hampton Road, Teddington, TW11, 0LW, UK
| | - Filipe Richheimer
- National Physical Laboratory, Hampton Road, Teddington, TW11, 0LW, UK
| | - J Blakesley
- National Physical Laboratory, Hampton Road, Teddington, TW11, 0LW, UK
| | - Robert J Young
- Department of Physics, Lancaster University, Lancaster, LA1 4YB, UK
| | - Fernando A Castro
- National Physical Laboratory, Hampton Road, Teddington, TW11, 0LW, UK
- Advanced Technology Institute, University of Surrey, Guildford, GU2 7XH, Surrey, UK
| |
Collapse
|
48
|
Wong J, Davoyan A, Liao B, Krayev A, Jo K, Rotenberg E, Bostwick A, Jozwiak CM, Jariwala D, Zewail AH, Atwater HA. Spatiotemporal Imaging of Thickness-Induced Band-Bending Junctions. NANO LETTERS 2021; 21:5745-5753. [PMID: 34152777 DOI: 10.1021/acs.nanolett.1c01481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
van der Waals materials exhibit naturally passivated surfaces and an ability to form versatile heterostructures to enable an examination of carrier transport mechanisms not seen in traditional materials. Here, we report a new type of homojunction termed a "band-bending junction" whose potential landscape depends solely on the difference in thickness between the two sides of the junction. Using MoS2 on Au as a prototypical example, we find that surface potential differences can arise from the degree of vertical band bending in thin and thick regions. Furthermore, by using scanning ultrafast electron microscopy, we examine the spatiotemporal dynamics of charge carriers generated at this junction and find that lateral carrier separation is enabled by differences in the band bending in the vertical direction, which we verify with simulations. Band-bending junctions may therefore enable new optoelectronic devices that rely solely on band bending arising from thickness variations to separate charge carriers.
Collapse
Affiliation(s)
| | - Artur Davoyan
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, California 90095 United States
| | - Bolin Liao
- Department of Mechanical Engineering, University of California, Santa Barbara, California 93106, United States
| | - Andrey Krayev
- Horiba Scientific, Novato, California 94949, United States
| | - Kiyoung Jo
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Eli Rotenberg
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720,United States
| | - Aaron Bostwick
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720,United States
| | - Chris M Jozwiak
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720,United States
| | - Deep Jariwala
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | | | | |
Collapse
|
49
|
Panasci S, Schilirò E, Greco G, Cannas M, Gelardi FM, Agnello S, Roccaforte F, Giannazzo F. Strain, Doping, and Electronic Transport of Large Area Monolayer MoS 2 Exfoliated on Gold and Transferred to an Insulating Substrate. ACS APPLIED MATERIALS & INTERFACES 2021; 13:31248-31259. [PMID: 34165956 PMCID: PMC9280715 DOI: 10.1021/acsami.1c05185] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Gold-assisted mechanical exfoliation currently represents a promising method to separate ultralarge (centimeter scale) transition metal dichalcogenide (TMD) monolayers (1L) with excellent electronic and optical properties from the parent van der Waals (vdW) crystals. The strong interaction between Au and chalcogen atoms is key to achieving this nearly perfect 1L exfoliation yield. On the other hand, it may significantly affect the doping and strain of 1L TMDs in contact with Au. In this paper, we systematically investigated the morphology, strain, doping, and electrical properties of large area 1L MoS2 exfoliated on ultraflat Au films (0.16-0.21 nm roughness) and finally transferred to an insulating Al2O3 substrate. Raman mapping and correlative analysis of the E' and A1' peak positions revealed a moderate tensile strain (ε ≈ 0.2%) and p-type doping (n ≈ -0.25 × 1013 cm-2) of 1L MoS2 in contact with Au. Nanoscale resolution current mapping and current-voltage (I-V) measurements by conductive atomic force microscopy (C-AFM) showed direct tunneling across the 1L MoS2 on Au, with a broad distribution of tunneling barrier values (ΦB from 0.7 to 1.7 eV) consistent with p-type doping of MoS2. After the final transfer of 1L MoS2 on Al2O3/Si, the strain was converted to compressive strain (ε ≈ -0.25%). Furthermore, an n-type doping (n ≈ 0.5 × 1013 cm-2) was deduced by Raman mapping and confirmed by electrical measurements of an Al2O3/Si back-gated 1L MoS2 transistor. These results provide a deeper understanding of the Au-assisted exfoliation mechanism and can contribute to its widespread application for the realization of novel devices and artificial vdW heterostructures.
Collapse
Affiliation(s)
- Salvatore
Ethan Panasci
- CNR-IMM, Strada VIII, 5 95121, Catania, Italy
- Department
of Physics and Astronomy, University of
Catania, Via Santa Sofia
64, 95123 Catania, Italy
| | | | | | - Marco Cannas
- Department
of Physics and Chemistry Emilio Segrè, University of Palermo, Via Archirafi 36, 90123 Palermo, Italy
| | - Franco M. Gelardi
- Department
of Physics and Chemistry Emilio Segrè, University of Palermo, Via Archirafi 36, 90123 Palermo, Italy
| | - Simonpietro Agnello
- CNR-IMM, Strada VIII, 5 95121, Catania, Italy
- Department
of Physics and Chemistry Emilio Segrè, University of Palermo, Via Archirafi 36, 90123 Palermo, Italy
- ATeN
Center, Università degli Studi di
Palermo, Viale delle
Scienze, Edificio 18, 90128 Palermo, Italy
| | | | | |
Collapse
|
50
|
Pollmann E, Sleziona S, Foller T, Hagemann U, Gorynski C, Petri O, Madauß L, Breuer L, Schleberger M. Large-Area, Two-Dimensional MoS 2 Exfoliated on Gold: Direct Experimental Access to the Metal-Semiconductor Interface. ACS OMEGA 2021; 6:15929-15939. [PMID: 34179637 PMCID: PMC8223410 DOI: 10.1021/acsomega.1c01570] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/06/2021] [Indexed: 06/13/2023]
Abstract
Two-dimensional semiconductors such as MoS2 are promising for future electrical devices. The interface to metals is a crucial and critical aspect for these devices because undesirably high resistances due to Fermi level pinning are present, resulting in unwanted energy losses. To date, experimental information on such junctions has been obtained mainly indirectly by evaluating transistor characteristics. The fact that the metal-semiconductor interface is typically embedded, further complicates the investigation of the underlying physical mechanisms at the interface. Here, we present a method to provide access to a realistic metal-semiconductor interface by large-area exfoliation of single-layer MoS2 on clean polycrystalline gold surfaces. This approach allows us to measure the relative charge neutrality level at the MoS2-gold interface and its spatial variation almost directly using Kelvin probe force microscopy even under ambient conditions. By bringing together hitherto unconnected findings about the MoS2-gold interface, we can explain the anomalous Raman signature of MoS2 in contact to metals [ACS Nano. 7, 2013, 11350] which has been the subject of intense recent discussions. In detail, we identify the unusual Raman mode as the A1g mode with a reduced Raman shift (397 cm-1) due to the weakening of the Mo-S bond. Combined with our X-ray photoelectron spectroscopy data and the measured charge neutrality level, this is in good agreement with a previously predicted mechanism for Fermi level pinning at the MoS2-gold interface [Nano Lett. 14, 2014, 1714]. As a consequence, the strength of the MoS2-gold contact can be determined from the intensity ratio between the reduced A1greduced mode and the unperturbed A1g mode.
Collapse
Affiliation(s)
- Erik Pollmann
- Faculty
of Physics and CENIDE, University of Duisburg-Essen, D-47057 Duisburg, Germany
| | - Stephan Sleziona
- Faculty
of Physics and CENIDE, University of Duisburg-Essen, D-47057 Duisburg, Germany
| | - Tobias Foller
- Faculty
of Physics and CENIDE, University of Duisburg-Essen, D-47057 Duisburg, Germany
| | - Ulrich Hagemann
- ICAN
and CENIDE, University of Duisburg-Essen, D-47057 Duisburg, Germany
| | - Claudia Gorynski
- Faculty
of Engineering and CENIDE, University Duisburg-Essen, D-47057 Duisburg, Germany
| | - Oliver Petri
- Faculty
of Physics and CENIDE, University of Duisburg-Essen, D-47057 Duisburg, Germany
| | - Lukas Madauß
- Faculty
of Physics and CENIDE, University of Duisburg-Essen, D-47057 Duisburg, Germany
| | - Lars Breuer
- Faculty
of Physics and CENIDE, University of Duisburg-Essen, D-47057 Duisburg, Germany
| | - Marika Schleberger
- Faculty
of Physics and CENIDE, University of Duisburg-Essen, D-47057 Duisburg, Germany
| |
Collapse
|