1
|
Zheng H, Wang Y, Ren Y, Wang X, Sui L, Xu H, Zheng C. Design, synthesis and biological evaluation of sulfur-containing tetrahydroxanthones as potential anti-tumor agents. Bioorg Med Chem Lett 2025; 121:130154. [PMID: 40010444 DOI: 10.1016/j.bmcl.2025.130154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/23/2025] [Accepted: 02/20/2025] [Indexed: 02/28/2025]
Abstract
Given the rising incidence and mortality rates of cancer, the development of highly effective, low-toxicity therapeutics is critical. Xanthones, a class of natural secondary metabolites, are notable for their distinct structure and exhibit promising antitumor activity, underscoring their potential as scaffolds for drug design. Sulfur heterocycles are also valuable in the development of bioactive small molecules. Therefore, we explored the introduction of sulfur in the core structure of xanthones, leading to the synthesis of a series of sulfur-containing tetrahydroxanthones. The in vitro cytotoxicity of these compounds was evaluated using the CCK8 assay, revealing that several derivatives exhibit anti-proliferative effects against HepG2 cells. Among them, compound 4k displayed potent inhibitory activity with an IC50 value of 6.08 μM and showed favorable selectivity, exhibiting low toxicity toward normal cells. Further studies demonstrated that 4k inhibited colony formation and migration of HepG2 cells, and induced apoptosis.
Collapse
Affiliation(s)
- Huimin Zheng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, People's Republic of China
| | - Youyi Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, People's Republic of China
| | - Yitao Ren
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, People's Republic of China
| | - Xueying Wang
- Institute of Medicine and Health Care, Dezhou University, Dezhou 253023, People's Republic of China
| | - Lu Sui
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, People's Republic of China
| | - Hongxi Xu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, People's Republic of China.
| | - Changwu Zheng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, People's Republic of China.
| |
Collapse
|
2
|
Ma Y, Dumesny C, Dong L, Ang CS, Nikfarjam M, He H. Knockout of p21-Activated Kinase 4 Stimulates MHC I Expression of Pancreatic Cancer Cells via an Autophagy-Independent Pathway. Cancers (Basel) 2025; 17:511. [PMID: 39941877 PMCID: PMC11817421 DOI: 10.3390/cancers17030511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 01/26/2025] [Accepted: 02/01/2025] [Indexed: 02/16/2025] Open
Abstract
BACKGROUND/OBJECTIVES Pancreatic ductal adenocarcinoma (PDA) is one of the most malignant solid cancers. KRAS mutation accounts for over 90% of cases. p21-activated kinases (PAKs) act downstream of KRAS and are involved in tumorigenesis. The inhibition of PAK4 suppresses PDA by stimulating the tumor infiltration of cytotoxic T cells. The major histocompatibility complex class I (MHC I) is a key in presenting antigens to cytotoxic T cells. MHC I degradation via autophagy promotes the immune evasion of pancreatic cancer. We investigated the effect of PAK4 inhibition on MHC I expression and autophagy. METHODS In this study, using proteomic analysis, fluorescence-activated cell sorting (FACS), and immunoblotting, we examined the effect of PAK4 knockout (KO) in human PDA cells on the expression of MHC I and autophagy to identify the mechanism involved in the stimulation of cytotoxic T cells by PAK4 inhibition. RESULTS We found that PAK4 KO increased MHC I expression in two human PDA cell lines: MiaPaCa-2 and PANC-1. PAK4 KO also increased cancer cell autophagy. However, the inhibition of autophagy by chloroquine (CQ) did not affect the effect of PAK4 KO on apoptosis and cell death. More importantly, the inhibition of autophagy by CQ did not alter the expression of MHC I stimulated by PAK4 KO, indicating that PAK4 KO stimulated MHC I expression via an autophagy-independent pathway. CONCLUSIONS We identified a role of PAK4 in MHC I expression by PDA cells, which is independent of autophagy.
Collapse
Affiliation(s)
- Yi Ma
- Department of Surgery, Austin Precinct, University of Melbourne, Heidelberg, VIC 3084, Australia; (Y.M.); (C.D.); (L.D.); (M.N.)
- Department of General Surgery, Monash Health, Clayton, VIC 3806, Australia
| | - Chelsea Dumesny
- Department of Surgery, Austin Precinct, University of Melbourne, Heidelberg, VIC 3084, Australia; (Y.M.); (C.D.); (L.D.); (M.N.)
| | - Li Dong
- Department of Surgery, Austin Precinct, University of Melbourne, Heidelberg, VIC 3084, Australia; (Y.M.); (C.D.); (L.D.); (M.N.)
| | - Ching-Seng Ang
- Mass Spectrometry and Proteomics Facility, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3052, Australia;
| | - Mehrdad Nikfarjam
- Department of Surgery, Austin Precinct, University of Melbourne, Heidelberg, VIC 3084, Australia; (Y.M.); (C.D.); (L.D.); (M.N.)
- Department of Hepato-Pancreato-Biliary Surgery, Austin Health, Heidelberg, VIC 3084, Australia
| | - Hong He
- Department of Surgery, Austin Precinct, University of Melbourne, Heidelberg, VIC 3084, Australia; (Y.M.); (C.D.); (L.D.); (M.N.)
| |
Collapse
|
3
|
Bunsick DA, Baghaie L, Li Y, Yaish AM, Aucoin EB, Skapinker E, Aldbai R, Szewczuk MR. Synthetic CB1 Cannabinoids Promote Tunneling Nanotube Communication, Cellular Migration, and Epithelial-Mesenchymal Transition in Pancreatic PANC-1 and Colorectal SW-620 Cancer Cell Lines. Cells 2025; 14:71. [PMID: 39851499 PMCID: PMC11763365 DOI: 10.3390/cells14020071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/19/2024] [Accepted: 01/03/2025] [Indexed: 01/26/2025] Open
Abstract
Metastasizing cancer cells surreptitiously can adapt to metabolic activity during their invasion. By initiating their communications for invasion, cancer cells can reprogram their cellular activities to initiate their proliferation and migration and uniquely counteract metabolic stress during their progression. During this reprogramming process, cancer cells' metabolism and other cellular activities are integrated and mutually regulated by tunneling nanotube communications to alter their specific metabolic functional drivers of tumor growth and progression. Here, we investigated the in vitro effects of the synthetic CB1 cannabinoids AM-404, arvanil, and olvanil on human pancreatic PANC-1 and colorectal SW-620 cancer cell lines to understand further cellular behaviors and the potential risks of their use in cancer therapy. For the first time, the synthetic CB1 cannabinoids AM-404, arvanil, and olvanil significantly altered cancer cells in forming missile-like shapes to induce tunneling nanotube (TNT) communications in PANC-1 cells. Oseltamivir phosphate (OP) significantly prevented TNT formation. To assess the key survival pathways critical for pancreatic cancer progression, we used the AlamarBlue assay to determine synthetic CB1 cannabinoids to induce the cell's metabolic viability drivers to stage migratory intercellular communication. The synthetic CB1 cannabinoids significantly increased cell viability compared to the untreated control for PANC-1 and SW-620 cells, and this response was significantly reduced with the NMBR inhibitor BIM-23127, neuraminidase-1 inhibitor OP, and MMP-9 inhibitor (MMP-9i). CB1 cannabinoids also significantly increased N-cadherin and decreased E-cadherin EMT markers compared to the untreated controls, inducing the process of metastatic phenotype for invasion. BIM-23127, MMP9i, and OP significantly inhibited CB1 agonist-induced NFκB-dependent secretory alkaline phosphatase (SEAP) activity. To confirm this concept, we investigated the migratory invasiveness of PANC-1 and SW-620 cancer cells treated with the synthetic CB1 cannabinoids AM-404, arvanil, and olvanil in a scratch wound assay. CB1 cannabinoids significantly induced the rate of migration and invasiveness of PANC-1 cancer cells, whereas they had minimal effect on the rate of migration of already metastatic SW-620 cancer cells. Interestingly, olvanil-treated SW-620 cells significantly enhanced the migration rate and invasiveness of these cells. The data support the cellular and molecular mechanisms of the synthetic CB1 cannabinoids, orchestrating intercellular conduits to enhance metabolic drivers to stage migratory intercellular communication in pancreatic cancer cells.
Collapse
Affiliation(s)
- David A. Bunsick
- Department of Biomedical & Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada; (D.A.B.); (L.B.); (R.A.)
| | - Leili Baghaie
- Department of Biomedical & Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada; (D.A.B.); (L.B.); (R.A.)
| | - Yunfan Li
- Faculty of Arts and Science, Queen’s University, Kingston, ON K7L 3N9, Canada; (Y.L.); (E.S.)
| | | | - Emilyn B. Aucoin
- Faculty of Science, Biology (Biomedical Science), York University, Toronto, ON M3J 1P3, Canada;
| | - Elizabeth Skapinker
- Faculty of Arts and Science, Queen’s University, Kingston, ON K7L 3N9, Canada; (Y.L.); (E.S.)
| | - Rashelle Aldbai
- Department of Biomedical & Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada; (D.A.B.); (L.B.); (R.A.)
| | - Myron R. Szewczuk
- Department of Biomedical & Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada; (D.A.B.); (L.B.); (R.A.)
| |
Collapse
|
4
|
Chueh FS, Hsu SY, Lai KC, Liu YC, Lyu PC, Kuo YH, Huang YP, Hsieh WT. Physalin A induces apoptosis through conjugating with Fas-FADD cell death receptor in human oral squamous carcinoma cells and suppresses HSC-3 cell xenograft tumors in NOD/SCID mice. Hum Exp Toxicol 2025; 44:9603271251335220. [PMID: 40239116 DOI: 10.1177/09603271251335220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
IntroductionOral carcinoma cancer exhibits high global incidence and mortality. Physalin A (PA) was reported to induce programmed cell death in cancer cells. No study has yet investigated the influence of PA in oral squamous cell carcinoma. Herein, this study aims to explore PA-induced anti-cancer effects in human oral carcinoma.MethodsThis study used DNA gel electrophoresis and Annexin V/PI staining to detect DNA fragmentation and cell apoptosis. Western blotting and immunofluorescence analyzed protein expression. Flow cytometry measured Ca2+ release and mitochondrial membrane potential (∆Ψm). Moreover, molecular docking models predicted the molecular binding affinity.ResultsDNA gel electrophoresis and annexin V/PI staining confirmed PA-induced DNA fragmentation and apoptosis. Flow cytometry showed PA increased Ca2+ release and reduced ∆Ψm levels. PA activated cleaved caspase-3, -8, and -9, upregulated Bax and Bid, and downregulated Bcl-2. PA dose-dependently increased Fas (CD95/APO-1), apoptosis-inducing factor (AIF), and cytochrome c release in western blotting analysis. Confocal microscopy confirmed increased Bax, AIF, cleaved caspase-3, and Fas, with decreased Bcl-2. Molecular docking showed strong PA binding via hydrophobic interactions with the Fas-associated death domain (FADD). Compared with cisplatin, PA inhibited HSC-3 cell xenograft tumor growth in NOD/SCID mice.DiscussionWe reveal that PA binds to the Fas-FADD complex, inducing caspase-8 activation and triggering extrinsic and intrinsic mitochondria-dependent apoptosis in HSC-3 cells. It also suppresses HSC-3 cell xenograft tumors in NOD/SCID mice. These findings suggest PA as a potential anti-oral cancer agent in the future.
Collapse
Affiliation(s)
- Fu-Shin Chueh
- Department of Food Nutrition and Health Biotechnology, Asia University, Taichung, Taiwan
| | - Sheng-Yao Hsu
- Department of Ophthalmology, Kaohsiung Show Chwan Memorial Hospital, Taiwan
- Department of Optometry, Chung Hwa University of Medical Technology, Tainan, Taiwan
| | - Kuang-Chi Lai
- Department of Surgery, China Medical University Beigang Hospital, Yunlin, Taiwan
| | - Yi-Chung Liu
- Institute of Population Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Ping-Chiang Lyu
- Institute of Bioinformatics and Structural Biology, National Tsing-Hua University, Hsinchu, Taiwan
| | - Yueh-Hsiung Kuo
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung, Taiwan
- Chinese Medicine Research Center, China Medical University, Taichung, Taiwan
- Department of Biotechnology, Asia University, Taichung, Taiwan
| | - Yi-Ping Huang
- Department of Physiology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Wen-Tsong Hsieh
- Chinese Medicine Research Center, China Medical University, Taichung, Taiwan
- Department of Pharmacology, China Medical University, Taichung, Taiwan
| |
Collapse
|
5
|
Stefàno E, Rovito G, Cossa LG, Castro FD, Vergaro V, Ali A, My G, Migoni D, Muscella A, Marsigliante S, Benedetti M, Fanizzi FP. Novel Pt (II) Complexes With Anticancer Activity Against Pancreatic Ductal Adenocarcinoma Cells. Bioinorg Chem Appl 2024; 2024:5588491. [PMID: 39886428 PMCID: PMC11779987 DOI: 10.1155/bca/5588491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 12/16/2024] [Indexed: 02/01/2025] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive type of solid tumor that is becoming more common. cis-[PtCl2 (NH3)2] (in short cisplatin or CDDP) has been shown to be effective in treating various cancers, including PDAC. However, the development of resistance to chemotherapy drugs has created a need for the synthesis of new anticancer agents. Platinum-based drugs containing the bidentate ligand phenanthroline have been found to have strong antitumor activity due to their ability to cause DNA damage. In this study, we examined the ability of two Pt (II) cationic complexes, [Pt(η 1-C2H4OR) (DMSO) (phen)]+ (in short Pt-EtORSOphen; R = Me, 1; Et, 2), to inhibit the growth and spread of BxPC-3 PDAC cells, in comparison to CDDP. The length of the alkyl chain and its associated lipophilic properties did not affect the anticancer effects of complexes 1 and 2 in BxPC-3 cells. However, it did appear to influence the rapid loss of mitochondrial membrane potential (ΔΨM), suggesting that these complexes could potentially be used as mitochondria-targeted lipophilic cations in anticancer therapy.
Collapse
Affiliation(s)
- Erika Stefàno
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Via Monteroni I-73100, Italy
| | - Gianluca Rovito
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Via Monteroni I-73100, Italy
| | - Luca G. Cossa
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Via Monteroni I-73100, Italy
| | - Federica De Castro
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Via Monteroni I-73100, Italy
| | - Viviana Vergaro
- Department of Experimental Medicine, University of Salento, Lecce, Via Monteroni I-73100, Italy
| | - Asjad Ali
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Via Monteroni I-73100, Italy
| | - Giulia My
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Via Monteroni I-73100, Italy
| | - Danilo Migoni
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Via Monteroni I-73100, Italy
| | - Antonella Muscella
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Via Monteroni I-73100, Italy
| | - Santo Marsigliante
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Via Monteroni I-73100, Italy
| | - Michele Benedetti
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Via Monteroni I-73100, Italy
| | - Francesco Paolo Fanizzi
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Via Monteroni I-73100, Italy
| |
Collapse
|
6
|
Ungefroren H, von der Ohe J, Braun R, Gätje Y, Lapshyna O, Schrader J, Lehnert H, Marquardt JU, Konukiewitz B, Hass R. Characterization of Epithelial-Mesenchymal and Neuroendocrine Differentiation States in Pancreatic and Small Cell Ovarian Tumor Cells and Their Modulation by TGF-β1 and BMP-7. Cells 2024; 13:2010. [PMID: 39682758 PMCID: PMC11640004 DOI: 10.3390/cells13232010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 11/20/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has an extremely poor prognosis, due in part to early invasion and metastasis, which in turn involves epithelial-mesenchymal transition (EMT) of the cancer cells. Prompted by the discovery that two PDAC cell lines of the quasi-mesenchymal subtype (PANC-1, MIA PaCa-2) exhibit neuroendocrine differentiation (NED), we asked whether NED is associated with EMT. Using real-time PCR and immunoblotting, we initially verified endogenous expressions of various NED markers, i.e., chromogranin A (CHGA), synaptophysin (SYP), somatostatin receptor 2 (SSTR2), and SSTR5 in PANC-1 and MIA PaCa-2 cells. By means of immunohistochemistry, the expressions of CHGA, SYP, SSTR2, and the EMT markers cytokeratin 7 (CK7) and vimentin could be allocated to the neoplastic ductal epithelial cells of pancreatic ducts in surgically resected tissues from patients with PDAC. In HPDE6c7 normal pancreatic duct epithelial cells and in epithelial subtype BxPC-3 PDAC cells, the expression of CHGA, SYP, and neuron-specific enolase 2 (NSE) was either undetectable or much lower than in PANC-1 and MIA PaCa-2 cells. Parental cultures of PANC-1 cells exhibit EM plasticity (EMP) and harbor clonal subpopulations with both M- and E-phenotypes. Of note, M-type clones were found to display more pronounced NED than E-type clones. Inducing EMT in parental cultures of PANC-1 cells by treatment with transforming growth factor-β1 (TGF-β1) repressed epithelial genes and co-induced mesenchymal and NED genes, except for SSTR5. Surprisingly, treatment with bone morphogenetic protein (BMP)-7 differentially affected gene expressions in PANC-1, MIA PaCa-2, BxPC-3, and HPDE cells. It synergized with TGF-β1 in the induction of vimentin, SNAIL, SSTR2, and NSE but antagonized it in the regulation of CHGA and SSTR5. Phospho-immunoblotting in M- and E-type PANC-1 clones revealed that both TGF-β1 and, surprisingly, also BMP-7 activated SMAD2 and SMAD3 and that in M- but not E-type clones BMP-7 was able to dramatically enhance the activation of SMAD3. From these data, we conclude that in EMT of PDAC cells mesenchymal and NED markers are co-regulated, and that mesenchymal-epithelial transition (MET) is associated with a loss of both the mesenchymal and NED phenotypes. Analyzing NED in another tumor type, small cell carcinoma of the ovary hypercalcemic type (SCCOHT), revealed that two model cell lines of this disease (SCCOHT-1, BIN-67) do express CDH1, SNAI1, VIM, CHGA, SYP, ENO2, and SSTR2, but that in contrast to BMP-7, none of these genes was transcriptionally regulated by TGF-β1. Likewise, in BIN-67 cells, BMP-7 was able to reduce proliferation, while in SCCOHT-1 cells this occurred only upon combined treatment with TGF-β and BMP-7. We conclude that in PDAC-derived tumor cells, NED is closely linked to EMT and TGF-β signaling, which may have implications for the therapeutic use of TGF-β inhibitors in PDAC management.
Collapse
Affiliation(s)
- Hendrik Ungefroren
- First Department of Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, 23538 Lübeck, Germany
- Institute of Pathology, University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| | - Juliane von der Ohe
- Biochemistry and Tumor Biology Lab, Department of Obstetrics and Gynecology, Hannover Medical School, 30625 Hannover, Germany
| | - Rüdiger Braun
- Department of Surgery, University Hospital Schleswig-Holstein, Campus Lübeck, 23538 Lübeck, Germany
| | - Yola Gätje
- First Department of Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, 23538 Lübeck, Germany
| | - Olha Lapshyna
- Department of Surgery, University Hospital Schleswig-Holstein, Campus Lübeck, 23538 Lübeck, Germany
| | - Jörg Schrader
- First Department of Medicine, University Hospital Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Hendrik Lehnert
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire (UHCW), Coventry CV2 2DX, UK
| | - Jens-Uwe Marquardt
- First Department of Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, 23538 Lübeck, Germany
| | - Björn Konukiewitz
- Institute of Pathology, University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| | - Ralf Hass
- Biochemistry and Tumor Biology Lab, Department of Obstetrics and Gynecology, Hannover Medical School, 30625 Hannover, Germany
| |
Collapse
|
7
|
Shih WH, Huang HL, HuangFu WC, Lin TE, Sung TY, Li MC, Huang GL, Chang YW, Yen SC, Hsieh HP, Hsu KC, Pan SL. Discovery of novel TANK-Binding Kinase 1 (TBK1) inhibitor against pancreatic ductal adenocarcinoma. Int J Biol Macromol 2024; 283:137296. [PMID: 39515714 DOI: 10.1016/j.ijbiomac.2024.137296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/25/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has limited treatment options, underscoring the urgent need for developing new therapies. The upregulation of TBK1 activity plays a crucial role in multiple pancreatic cancer-related signaling pathways, suggesting that inhibiting the kinase activity of TBK1 could be a promising strategy. Herein, we discovered a novel TBK1 inhibitor, LIB3S0280, using a structure-based virtual screening (SBVS) strategy. In the anti-proliferative and viability assays, LIB3S0280 showed significant inhibition against pancreatic cancer cell lines that highly express TBK1 with the GI50 values of 2.24 and 4.71 μM and IC50 values of 6.64 and 10.98 μM at 96 h. For the downstream targets, LIB3S0280 can inhibit TBK1 downstream signaling by decreasing the phosphorylation of IκBα and AKT better than a known TBK1 inhibitor, BX-795. Furthermore, PDAC cells were arrested in G2/M and underwent apoptosis or senescence with the treatment of LIB3S0280. These findings suggest that TBK1 inhibitor LIB3S0280 has great potential as a lead compound in the further development of a novel treatment for PDAC.
Collapse
Affiliation(s)
- Wan-Hsi Shih
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Han-Li Huang
- TMU Research Center for Drug Discovery, Taipei Medical University, Taipei, Taiwan; TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
| | - Wei-Chun HuangFu
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
| | - Tony Eight Lin
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Tzu-Ying Sung
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Mu-Chun Li
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County, Taiwan; Biomedical Translation Research Center, Academia Sinica, Taipei, Taiwan
| | - Guan-Lin Huang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County, Taiwan
| | - Yu-Wei Chang
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Keelung Medical Center, Keelung, Taiwan
| | - Shih-Chung Yen
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Guangdong, People's Republic of China
| | - Hsing-Pang Hsieh
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County, Taiwan; Biomedical Translation Research Center, Academia Sinica, Taipei, Taiwan; Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan
| | - Kai-Cheng Hsu
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; TMU Research Center for Drug Discovery, Taipei Medical University, Taipei, Taiwan; TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan; Cancer Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
| | - Shiow-Lin Pan
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; TMU Research Center for Drug Discovery, Taipei Medical University, Taipei, Taiwan; TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
8
|
Živanović M, Selaković M, Pavić A, Selaković Ž, Šolaja B, Santibanez JF, Srdić-Rajić T. Unveiling the 4-aminoquinoline derivatives as potent agents against pancreatic ductal adenocarcinoma (PDAC) cell lines. Chem Biol Interact 2024; 404:111281. [PMID: 39428053 DOI: 10.1016/j.cbi.2024.111281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/04/2024] [Accepted: 10/16/2024] [Indexed: 10/22/2024]
Abstract
Common antimalarials such as artemisinins, chloroquine and their derivatives also possess potent anti-inflamantory, antiviral and anticancer properties. In the search for new therapeutics to combat difficult-to-treat pancreatic carcinomas, we unveiled that 4-aminoquinoline derivatives, with significant antiplasmodial properties and a great safety profile in vivo, have remarkable anticancer activity against pancreatic ductal adenocarcinoma (PDAC) and considerable efficacy in the xenograft model in vivo. The aim of the present study was to further investigate anticancer properties of these compounds in a drug-repurposing manner. The compounds showed profound cytotoxic effects at nanomolar to low micromolar concentration in 2D cultured cells (in vitro) and in the zebrafish PDAC xenograft model (in vivo). A deeper insight into their mechanisms of cytotoxic action showed these compounds induce apoptosis while increasing reactive oxygen species levels along with autophagy inhibition. Additional investigation of the autophagy modulation proved that tested quinoline derivatives cause P62 and LC3-II accumulation in PDAC cells alongside lysosomal alkalinization. Further, in vivo toxicity studies in the zebrafish model showed low toxicity without developmental side effects of the investigated 4-aminoquinolines, while the applied compounds effectively inhibited tumor growth and prevented the metastasis of xenografted pancreatic cells. Taken together, these results highlight the 4-aminoquinolines as privileged structures that ought to be investigated further for potential application in pancreatic carcinoma treatment.
Collapse
Affiliation(s)
- Marija Živanović
- Department of Experimental Oncology, Institute for Oncology and Radiology of Serbia, Pasterova 14, 11000, Belgrade, Serbia; Department of Molecular Oncology, Institute for Medical Research, National Institute of the Republic of Serbia, University of Belgrade, Dr. Subotića 4, 11129 Belgrade, Serbia
| | - Milica Selaković
- Innovative Centre of the Faculty of Chemistry in Belgrade, ltd., Studentski Trg 12-16, 11158, Belgrade, Serbia.
| | - Aleksandar Pavić
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042, Belgrade, Serbia
| | - Života Selaković
- University of Belgrade - Faculty of Chemistry, Studentski Trg 12-16, 11158, Belgrade, Serbia
| | - Bogdan Šolaja
- Serbian Academy of Sciences and Arts, Knez Mihailova 35, 11158, Belgrade, Serbia
| | - Juan F Santibanez
- Department of Molecular Oncology, Institute for Medical Research, National Institute of the Republic of Serbia, University of Belgrade, Dr. Subotića 4, 11129 Belgrade, Serbia
| | - Tatjana Srdić-Rajić
- Department of Experimental Oncology, Institute for Oncology and Radiology of Serbia, Pasterova 14, 11000, Belgrade, Serbia.
| |
Collapse
|
9
|
Pratt EC, Mezzadra R, Kulick A, Kaminsky S, Samuels ZV, Loor A, de Stanchina E, Lowe SW, Lewis JS. uPAR Immuno-PET in Pancreatic Cancer, Aging, and Chemotherapy-Induced Senescence. J Nucl Med 2024; 65:1718-1723. [PMID: 39362768 PMCID: PMC11533913 DOI: 10.2967/jnumed.124.268278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/13/2024] [Indexed: 10/05/2024] Open
Abstract
Identifying cancer therapy resistance is a key time-saving tool for physicians. Part of chemotherapy resistance includes senescence, a persistent state without cell division or cell death. Chemically inducing senescence with the combination of trametinib and palbociclib (TP) yields several tumorigenic and prometastatic factors in pancreatic cancer models with many potential antibody-based targets. In particular, urokinase plasminogen activator receptor (uPAR) has been shown to be a membrane-bound marker of senescence in addition to an oncology target. Methods: Here, 2 antibodies against murine uPAR and human uPAR were developed as immuno-PET agents to noninvasively track uPAR antigen abundance. Results: TP treatment increased cell uptake both in murine KPC cells and in human MiaPaCa2 cells. In vivo, subcutaneously implanted murine KPC tumors had high tumor uptake with the antimurine uPAR antibody independently of TP in young mice, yet uPAR uptake was maintained in aged mice on TP. Mice xenografted with human MiaPaCa2 tumors showed a significant increase in tumor uptake on TP therapy when imaged with the antihuman uPAR antibody. Imaging with either uPAR antibody was found to be more tumor-selective than imaging with [18F]FDG or [18F]F-DPA-714. Conclusion: The use of radiolabeled uPAR-targeting antibodies provides a new antibody-based PET imaging candidate for pancreatic cancer imaging as well as chemotherapy-induced senescence.
Collapse
Affiliation(s)
- Edwin C Pratt
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Riccardo Mezzadra
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Amanda Kulick
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Spencer Kaminsky
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Zachary V Samuels
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Angelique Loor
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Elisa de Stanchina
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Scott W Lowe
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York
- HHMI, Memorial Sloan Kettering Cancer Center, New York, New York; and
| | - Jason S Lewis
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York;
- Department of Pharmacology, Weill Cornell Graduate School, New York, New York
| |
Collapse
|
10
|
Ghai S, Shrestha R, Hegazi A, Boualoy V, Liu SH, Su KH. The Role of Heat Shock Factor 1 in Preserving Proteomic Integrity During Copper-Induced Cellular Toxicity. Int J Mol Sci 2024; 25:11657. [PMID: 39519208 PMCID: PMC11546224 DOI: 10.3390/ijms252111657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 10/27/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Copper is crucial for many physiological processes across mammalian cells, including energy metabolism, neurotransmitter synthesis, and antioxidant defense mechanisms. However, excessive copper levels can lead to cellular toxicity and "cuproptosis", a form of programmed cell death characterized by the accumulation of copper within mitochondria. Tumor cells are less sensitive to this toxicity than normal cells, the mechanism for which remains unclear. We address this important issue by exploring the role of heat shock factor 1 (HSF1), a transcription factor that is highly expressed across several types of cancer and has a crucial role in tumor survival, in protecting against copper-mediated cytotoxicity. Using pancreatic ductal adenocarcinoma cells, we show that excessive copper triggers a proteotoxic stress response (PSR), activating HSF1 and that overexpressing HSF1 diminishes intracellular copper accumulation and prevents excessive copper-induced cell death and amyloid fibrils formation, highlighting HSF1's role in preserving proteasomal integrity. Copper treatment decreases the lipoylation of dihydrolipoamide S-acetyltransferase (DLAT), an enzyme necessary for cuproptosis, induces DLAT oligomerization, and induces insoluble DLAT formation, which is suppressed by overexpressing HSF1, in addition to enhancing the interaction between HSF1 and DLAT. Our findings uncover how HSF1 protects against copper-induced damage in cancer cells and thus represents a novel therapeutic target for enhancing copper-mediated cancer cell death.
Collapse
Affiliation(s)
| | | | | | | | | | - Kuo-Hui Su
- Department of Cell and Cancer Biology, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH 43614, USA; (S.G.); (R.S.); (A.H.); (V.B.); (S.-H.L.)
| |
Collapse
|
11
|
Xie G, Zhang L, Usman OH, Kumar S, Modak C, Patel D, Kavanaugh M, Mallory X, Wang YJ, Irianto J. Phenotypic, Genomic, and Transcriptomic Heterogeneity in a Pancreatic Cancer Cell Line. Pancreas 2024; 53:e748-e759. [PMID: 38710020 PMCID: PMC11384550 DOI: 10.1097/mpa.0000000000002371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
OBJECTIVE To evaluate the suitability of the MIA PaCa-2 cell line for studying pancreatic cancer intratumor heterogeneity, we aim to further characterize the nature of MIA PaCa-2 cells' phenotypic, genomic, and transcriptomic heterogeneity. MATERIALS AND METHODS MIA PaCa-2 single-cell clones were established through flow cytometry. For the phenotypic study, we quantified the cellular morphology, proliferation rate, migration potential, and drug sensitivity of the clones. The chromosome copy number and transcriptomic profiles were quantified using SNPa and RNA-seq, respectively. RESULTS Four MIA PaCa-2 clones showed distinctive phenotypes, with differences in cellular morphology, proliferation rate, migration potential, and drug sensitivity. We also observed a degree of genomic variations between these clones in form of chromosome copy number alterations and single nucleotide variations, suggesting the genomic heterogeneity of the population, and the intrinsic genomic instability of MIA PaCa-2 cells. Lastly, transcriptomic analysis of the clones also revealed gene expression profile differences between the clones, including the uniquely regulated ITGAV , which dictates the morphology of MIA PaCa-2 clones. CONCLUSIONS MIA PaCa-2 is comprised of cells with distinctive phenotypes, heterogeneous genomes, and differential transcriptomic profiles, suggesting its suitability as a model to study the underlying mechanisms behind pancreatic cancer heterogeneity.
Collapse
Affiliation(s)
- Gengqiang Xie
- From the Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL
| | - Liting Zhang
- Department of Computer Science, Florida State University, Tallahassee, FL
| | - Olalekan H Usman
- From the Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL
| | - Sampath Kumar
- From the Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL
| | - Chaity Modak
- From the Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL
| | - Dhenu Patel
- From the Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL
| | - Megan Kavanaugh
- From the Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL
| | - Xian Mallory
- Department of Computer Science, Florida State University, Tallahassee, FL
| | - Yue Julia Wang
- From the Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL
| | - Jerome Irianto
- From the Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL
| |
Collapse
|
12
|
Connaughton M, Dabagh M. Impact of stroma remodeling on forces experienced by cancer cells and stromal cells within a pancreatic tumor tissue. Biomed Eng Online 2024; 23:88. [PMID: 39210409 PMCID: PMC11363431 DOI: 10.1186/s12938-024-01278-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
Remodeling (re-engineering) of a tumor's stroma has been shown to improve the efficacy of anti-tumor therapies, without destroying the stroma. Even though it still remains unclear which stromal component/-s and what characteristics hinder the reach of nanoparticles deep into cancer cells, we hypothesis that mechanisms behind stroma's resistance to the penetration of nanoparticles rely heavily on extrinsic mechanical forces on stromal cells and cancer cells. Our hypothesis has been formulated on the basis of our previous study which has shown that changes in extracellular matrix (ECM) stiffness with tumor growth influence stresses exerted on fibroblasts and cancer cells, and that malignant cancer cells generate higher stresses on their stroma. This study attempts to establish a distinct identification of the components' remodeling on the distribution and magnitude of stress within a tumor tissue which ultimately will impact the resistance of stroma to treatment. In this study, our objective is to construct a three-dimensional in silico model of a pancreas tumor tissue consisting of cancer cells, stromal cells, and ECM to determine how stromal remodeling alters the stresses distribution and magnitude within the pancreas tumor tissue. Our results show that changes in mechanical properties of ECM significantly alter the magnitude and distribution of stresses within the pancreas tumor tissue. Our results revealed that these stresses are more sensitive to ECM properties as we see the stresses reaching to a maximum of 22,000 Pa for softer ECM with Young's modulus of 250 Pa. The stress distribution and magnitude within the pancreas tumor tissue does not show high sensitivity to the changes in mechanical properties of stromal cells surrounding stiffer cancer cells (PANC-1 with Young's modulus of 2400 Pa). However, softer cancer cells (MIA-PaCa-2 with (Young's modulus of 500 Pa) increase the stresses experienced by stiffer stromal cells and for stiffer ECM. By providing a unique platform to dissect and quantify the impact of individual stromal components on the stress distribution within a tumor tissue, this study serves as an important first step in understanding of which stromal components are vital for an efficient remodeling. This knowledge will be leveraged to overcome a tumor's resistance against the penetration of nanoparticles on a per-patient basis.
Collapse
Affiliation(s)
- Morgan Connaughton
- Department of Biomedical Engineering, University of Wisconsin-Milwaukee, Milwaukee, WI, 53211, USA
| | - Mahsa Dabagh
- Department of Biomedical Engineering, University of Wisconsin-Milwaukee, Milwaukee, WI, 53211, USA.
| |
Collapse
|
13
|
Garcia-Sampedro A, Prieto-Castañeda A, Agarrabeitia AR, Bañuelos J, García-Moreno I, Villanueva A, de la Moya S, Ortiz MJ, Acedo P. A highly fluorescent and readily accessible all-organic photosensitizer model for advancing image-guided cancer PDT. J Mater Chem B 2024; 12:7618-7625. [PMID: 38994651 PMCID: PMC11305095 DOI: 10.1039/d4tb00385c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 07/01/2024] [Indexed: 07/13/2024]
Abstract
The potential of using image-guided photodynamic therapy (ig-PDT) for cancer, especially with highly biocompatible fluorescent agents free of heavy atoms, is well recognized. This is due to key advantages related to minimizing adverse side effects associated with standard cancer chemotherapy. However, this theragnostic approach is strongly limited by the lack of synthetically-accessible and easily-modulable chemical scaffolds, enabling the rapid design and construction of advanced agents for clinical ig-PDT. In fact, there are still very few ig-PDT agents clinically approved. Herein we report a readily accessible, easy-tunable and highly fluorescent all-organic small photosensitizer, as a model design for accelerating the development and translation of advanced ig-PDT agents for cancer. This scaffold is based on BODIPY, which assures high fluorescence, accessibility, and ease of performance adaptation by workable chemistry. The optimal PDT performance of this BODIPY dye, tested in highly resistant pancreatic cancer cells, despite its high fluorescent behavior, maintained even after fixation and cancer cell death, is based on its selective accumulation in mitochondria. This induces apoptosis upon illumination, as evidenced by proteomic studies and flow cytometry. All these characteristics make the reported BODIPY-based fluorescent photosensitizer a valuable model for the rapid development of ig-PDT agents for clinical use.
Collapse
Affiliation(s)
- Andres Garcia-Sampedro
- Institute for Liver and Digestive Health, Royal Free Hospital Campus, University College London, Pond Street, London NW3 2QG, UK.
| | - Alejandro Prieto-Castañeda
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain.
- Departamento de Química-Física, Universidad del País Vasco-EHU, 48080 Bilbao, Spain
| | - Antonia R Agarrabeitia
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain.
- Sección Departamental de Química Orgánica, Facultad de Óptica y Optometría, Universidad Complutense de Madrid, Arcos de Jalón 118, 28037 Madrid, Spain
| | - Jorge Bañuelos
- Departamento de Química-Física, Universidad del País Vasco-EHU, 48080 Bilbao, Spain
| | - Inmaculada García-Moreno
- Departamento de Química-Física de Materiales, Instituto de Química-Física Blas Cabrera, Consejo Superior de Investigaciones Científicas (CSIC), Serrano 119, 28006 Madrid, Spain
| | - Angeles Villanueva
- Departamento de Biología, Universidad Autónoma de Madrid, Darwin 2, 28049 Madrid, Spain
- Instituto Madrileño de Estudios Avanzados (IMDEA) Nanociencia, Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain
| | - Santiago de la Moya
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain.
| | - María J Ortiz
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain.
| | - Pilar Acedo
- Institute for Liver and Digestive Health, Royal Free Hospital Campus, University College London, Pond Street, London NW3 2QG, UK.
| |
Collapse
|
14
|
Singh R, Singh B, Singh A, Rana S, Sharma K, Viswakarma P, Gopu B, Nalli Y. Canniprene B, a new prenylated dihydrostilbene with cytotoxic activities from the leaves of Cannabis sativa. Nat Prod Res 2024:1-9. [PMID: 38989798 DOI: 10.1080/14786419.2024.2376348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/01/2024] [Indexed: 07/12/2024]
Abstract
A new, canniprene B (4), along with five known (1-3 and 5-6) dihydrostilbenes were isolated from the leaves of Cannabis sativa collected at CSIR - IIIM, Jammu, India. Structures of all isolated compounds were elucidated by spectroscopic data analysis, including 1D and 2D NMR, and HR-ESI-MS. Canniprene B is a new prenylated dihydrostilbenes, a positional isomer of the known compound canniprene (5). The cytotoxic activities of these compounds (1-6) were evaluated using the SRB assay against a panel of five human cancer cell lines. Notably, canniprene B (4) exhibited varying levels of cytotoxicity with IC50 values ranging from 2.5 to 33.52 μM, demonstrating the most potent activity against pancreatic cancer cells.
Collapse
Affiliation(s)
- Ruhi Singh
- Pharmacology Division, CSIR - Indian Institute of Integrative Medicine, Jammu, India
| | - Bikram Singh
- Pharmacology Division, CSIR - Indian Institute of Integrative Medicine, Jammu, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Ajay Singh
- Pharmacology Division, CSIR - Indian Institute of Integrative Medicine, Jammu, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Shivani Rana
- Pharmacology Division, CSIR - Indian Institute of Integrative Medicine, Jammu, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Kirti Sharma
- Natural Products and Medicinal Chemistry Division, CSIR - Indian Institute of Integrative Medicine, Jammu, India
| | - Pooja Viswakarma
- Natural Products and Medicinal Chemistry Division, CSIR - Indian Institute of Integrative Medicine, Jammu, India
| | - Boobalan Gopu
- Pharmacology Division, CSIR - Indian Institute of Integrative Medicine, Jammu, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Yedukondalu Nalli
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Natural Products and Medicinal Chemistry Division, CSIR - Indian Institute of Integrative Medicine, Jammu, India
| |
Collapse
|
15
|
Tanwar D, Kaur T, Sudheendranath A, Kumar U, Sharma D. Pd(II) complexes bearing NNS pincer ligands: unveiling potent cytotoxicity against breast and pancreatic cancer. Dalton Trans 2024; 53:9798-9811. [PMID: 38787690 DOI: 10.1039/d4dt00282b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
The continuously increasing rate of breast cancer is one of the major threats to female health worldwide. Recently, palladium complexes have emerged as impressive candidates with effective biocompatibility and anticancer activities. Hence, in the present study, we report a new series of palladium complexes bearing NNS pincer ligands for cytotoxicity studies. The reaction of thiophenol/4-chlorothiophenol/4-methylthiophenol/4-methoxythiophenol with 2-bromo-N-quinolin-8-yl-acetamide in the presence of sodium hydroxide in ethanol at 80 °C gave [C9H6N-NH-C(O)-CH2-S-Ar] [Ar = C6H5 (L1), C6H4Cl-4 (L2), C6H4Me-4 (L3), and C6H4-OMe-4 (L4)]. The corresponding reaction of L1-L4 with Na2PdCl4 in methanol at room temperature for 3 h resulted in complexes [(L1-H)PdCl] (C1), [(L2-H)PdCl] (C2), [(L3-H)PdCl] (C3), and [(L4-H)PdCl] (C4). All new compounds have been characterized by spectroscopic analyses. The structures of complexes C1, C3, and C4 have also been determined from single-crystal X-ray diffraction data. The cytotoxicities of L1-L4 and C1-C4 have been investigated for breast cancer 4T1 and pancreatic cancer MIA-PaCa-2 cells. The IC50 values for complexes C2 and C3 were observed to be comparable to or higher than those of cisplatin. The stressed morphology and cell death of cancerous cells were successfully observed through cellular morphology analysis and the assessment of cytoskeleton damage.
Collapse
Affiliation(s)
- Deepika Tanwar
- Catalysis and Bioinorganic Research Lab, Department of Chemistry, Deshbandhu College, University of Delhi, New Delhi-110019, India.
- Department of Chemistry, University of Delhi, New Delhi-110007, India
| | - Tashmeen Kaur
- Institute of Nano Science and Technology, Knowledge City, Mohali, Punjab-140306, India.
| | - Athul Sudheendranath
- Department of Chemistry, Indian Institute of Technology, New Delhi-110016, India
| | - Umesh Kumar
- Catalysis and Bioinorganic Research Lab, Department of Chemistry, Deshbandhu College, University of Delhi, New Delhi-110019, India.
| | - Deepika Sharma
- Institute of Nano Science and Technology, Knowledge City, Mohali, Punjab-140306, India.
| |
Collapse
|
16
|
Kim S, Li S, Jangid AK, Park HW, Lee DJ, Jung HS, Kim K. Surface Engineering of Natural Killer Cells with CD44-targeting Ligands for Augmented Cancer Immunotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306738. [PMID: 38161257 DOI: 10.1002/smll.202306738] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/14/2023] [Indexed: 01/03/2024]
Abstract
Adoptive immunotherapy utilizing natural killer (NK) cells has demonstrated remarkable efficacy in treating hematologic malignancies. However, its clinical intervention for solid tumors is hindered by the limited expression of tumor-specific antigens. Herein, lipid-PEG conjugated hyaluronic acid (HA) materials (HA-PEG-Lipid) for the simple ex-vivo surface coating of NK cells is developed for 1) lipid-mediated cellular membrane anchoring via hydrophobic interaction and thereby 2) sufficient presentation of the CD44 ligand (i.e., HA) onto NK cells for cancer targeting, without the need for genetic manipulation. Membrane-engineered NK cells can selectively recognize CD44-overexpressing cancer cells through HA-CD44 affinity and subsequently induce in situ activation of NK cells for cancer elimination. Therefore, the surface-engineered NK cells using HA-PEG-Lipid (HANK cells) establish an immune synapse with CD44-overexpressing MIA PaCa-2 pancreatic cancer cells, triggering the "recognition-activation" mechanism, and ultimately eliminating cancer cells. Moreover, in mouse xenograft tumor models, administrated HANK cells demonstrate significant infiltration into solid tumors, resulting in tumor apoptosis/necrosis and effective suppression of tumor progression and metastasis, as compared to NK cells and gemcitabine. Taken together, the HA-PEG-Lipid biomaterials expedite the treatment of solid tumors by facilitating a sequential recognition-activation mechanism of surface-engineered HANK cells, suggesting a promising approach for NK cell-mediated immunotherapy.
Collapse
Affiliation(s)
- Sungjun Kim
- Department of Chemical & Biochemical Engineering, Dongguk University, 30, Pildong-ro 1-gil, Jung-gu, Seoul, 04620, Republic of Korea
| | - Shujin Li
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Taste Research Center, Oral Science Research Center, BK21 FOUR Project, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Ashok Kumar Jangid
- Department of Chemical & Biochemical Engineering, Dongguk University, 30, Pildong-ro 1-gil, Jung-gu, Seoul, 04620, Republic of Korea
| | - Hee Won Park
- Department of Chemical & Biochemical Engineering, Dongguk University, 30, Pildong-ro 1-gil, Jung-gu, Seoul, 04620, Republic of Korea
| | - Dong-Joon Lee
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Taste Research Center, Oral Science Research Center, BK21 FOUR Project, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
- Department of Oral Histology, Dankook University College of Dentistry, 119, Dandae-ro, Dongnam-gu, Cheonan, 31116, Chungcheongnam-do, Republic of Korea
| | - Han-Sung Jung
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Taste Research Center, Oral Science Research Center, BK21 FOUR Project, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Kyobum Kim
- Department of Chemical & Biochemical Engineering, Dongguk University, 30, Pildong-ro 1-gil, Jung-gu, Seoul, 04620, Republic of Korea
| |
Collapse
|
17
|
Gu X, Majumder J, Taratula O, Kuzmov A, Garbuzenko O, Pogrebnyak N, Minko T. Nanotechnology-Based Strategy for Enhancing Therapeutic Efficacy in Pancreatic Cancer: Receptor-Targeted Drug Delivery by Somatostatin Analog. Int J Mol Sci 2024; 25:5545. [PMID: 38791582 PMCID: PMC11122428 DOI: 10.3390/ijms25105545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/12/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024] Open
Abstract
A novel nanotechnology-based drug delivery system (DDS) targeted at pancreatic cancer cells was developed, characterized, and tested. The system consisted of liposomes as carriers, an anticancer drug (paclitaxel) as a chemotherapeutic agent, and a modified synthetic somatostatin analog, 5-pentacarbonyl-octreotide, a ligand for somatostatin receptor 2 (SSTR2), as a targeting moiety for pancreatic cancer. The cellular internalization, cytotoxicity, and antitumor activity of the DDS were tested in vitro using human pancreatic ductal adenocarcinoma (PDAC) cells with different expressions of the targeted SSTR2 receptors, and in vivo on immunodeficient mice bearing human PDAC xenografts. The targeted drug delivery system containing paclitaxel exhibited significantly enhanced cytotoxicity compared to non-targeted DDS, and this efficacy was directly related to the levels of SSTR2 expression. It was found that octreotide-targeted DDS proved exceptionally effective in suppressing the growth of PDAC tumors. This study underscores the potential of octreotide-targeted liposomal delivery systems to enhance the therapeutic outcomes for PDAC compared with non-targeted liposomal DDS and Paclitaxel-Cremophor® EL, suggesting a promising avenue for future cancer therapy innovations.
Collapse
Affiliation(s)
- Xin Gu
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08554, USA
| | - Joydeb Majumder
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08554, USA
| | - Olena Taratula
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR 97201, USA
| | - Andriy Kuzmov
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08554, USA
| | - Olga Garbuzenko
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08554, USA
| | - Natalia Pogrebnyak
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08554, USA
| | - Tamara Minko
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08554, USA
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| |
Collapse
|
18
|
Huang YP, Yeh CA, Ma YS, Chen PY, Lai KC, Lien JC, Hsieh WT. PW06 suppresses cancer cell metastasis in human pancreatic carcinoma MIA PaCa-2 cells via the inhibitions of p-Akt/mTOR/NF-κB and MMP2/MMP9 signaling pathways in vitro. ENVIRONMENTAL TOXICOLOGY 2024; 39:2768-2781. [PMID: 38264921 DOI: 10.1002/tox.24143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 12/14/2023] [Accepted: 01/06/2024] [Indexed: 01/25/2024]
Abstract
PW06 [(E)-3-(9-ethyl-9H-carbazol-3-yl)-1-(2,5-dimethoxyphenyl) prop-2-en-1-one], a kind of the carbazole derivative containing chalcone moiety, induced cell apoptosis in human pancreatic carcinoma in vitro. There is no investigation to show that PW06 inhibits cancer cell metastasis in human pancreatic carcinoma in vitro. Herein, PW06 (0.1-0.8 μM) significantly exists in the antimetastatic activities of human pancreatic carcinoma MIA PaCa-2 cells in vitro. Wound healing assay shows PW06 at 0.2 μM suppressed cell mobility by 7.45 and 16.55% at 6 and 24 hours of treatments. PW06 at 0.1 and 0.2 μM reduced cell mobility by 14.72 and 21.8% for 48 hours of treatment. Transwell chamber assay indicated PW06 (0.1-0.2 μM) suppressed the cell migration (decreased 26.67-35.42%) and invasion (decreased 48.51-68.66%). Atomic force microscopy assay shows PW06 (0.2 μM) significantly changed the shape of cell morphology. The gelatin zymography assay indicates PW06 decreased MMP2's and MMP9's activities at 48 hours of treatment. Western blotting assay further confirms PW06 reduced levels of MMP2 and MMP9 and increased protein expressions of EGFR, SOS1, and Ras. PW06 also increased the p-JNK, p-ERK, and p-p38. PW06 increased the expression of PI3K, PTEN, Akt, GSK3α/β, and E-cadherin. Nevertheless, results also show PW06 decreased p-Akt, mTOR, NF-κB, p-GSK3β, β-catenin, Snail, N-cadherin, and vimentin in MIA PaCa-2 cells. The confocal laser microscopy examination shows PW06 increased E-cadherin but decreased vimentin in MIA PaCa-2 cells. Together, our findings strongly suggest that PW06 inhibited the p-Akt/mTOR/NF-κB/MMPs pathways, increased E-cadherin, and decreased N-cadherin/vimentin, suppressing the migration and invasion in MIA PaCa-2 cells in vitro.
Collapse
Affiliation(s)
- Yi-Ping Huang
- Department of Physiology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Chun-An Yeh
- Department of Physiology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Yi-Shih Ma
- School of Chinese Medicine for Post-Baccalaureate, College of Medicine, I-Shou University, Kaohsiung, Taiwan
- Department of Chinese Medicine, E-Da Cancer Hospital, Kaohsiung, Taiwan
| | - Po-Yuan Chen
- Department of Biological Science and Technology, College of Life Science, China Medical University, Taichung, Taiwan
| | - Kuang-Chi Lai
- Department of Medical Laboratory Science and Biotechnology, College of Medical Technology, Chung Hwa University of Medical Technology, Tainan, Taiwan
- Department of Surgery, School of Medicine, China Medical University, Taichung, Taiwan
| | - Jin-Cherng Lien
- School of Pharmacy, China Medical University, Taichung, Taiwan
| | - Wen-Tsong Hsieh
- Chinese Medicine Research Center, China Medical University, Taichung, Taiwan
- Department of Pharmacology, China Medical University, Taichung, Taiwan
| |
Collapse
|
19
|
Frimpong E, Bulusu R, Okoro J, Inkoom A, Ndemazie N, Rogers S, Zhu X, Han B, Agyare E. Development of novel pyrimidine nucleoside analogs as potential anticancer agents: Synthesis, characterization, and In-vitro evaluation against pancreatic cancer. Eur J Pharm Sci 2024; 196:106754. [PMID: 38554983 PMCID: PMC11229414 DOI: 10.1016/j.ejps.2024.106754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/18/2024] [Accepted: 03/25/2024] [Indexed: 04/02/2024]
Abstract
The present study proposed modification of 5-FU by conjugation with an acyl chloride and a 5-membered heterocyclic ring to improve its in-vitro cytotoxicity and metabolic stability. XYZ-I-71 and XYZ-I-73 were synthesized by introducing a tetrahydrofuran ring on 5-fluorocytosine (a precursor of 5-FU) and conjugation with octanoyl chloride and lauroyl chloride, respectively. The structure of the synthesized compounds was validated using NMR and micro-elemental analysis. The antiproliferative activity of the analogs was determined against MiaPaCa-2, PANC-1, and BxPC-3 pancreatic cancer cells. The analog's stability in human liver microsomes was quantified by HPLC. We found that the XYZ-I-73 (IC50 3.6 ± 0.4 μM) analog was most effective against MiaPaCa-2 cells compared to XYZ-I-71(IC50 12.3 ± 1.7 μM), GemHCl (IC50 24.2 ± 1.3 μM), Irinotecan (IC50 10.1 ± 1.5 μM) and 5-FU (IC50 13.2 ± 1.1 μM). The antiproliferative effects of this analog in Miapaca-2 cells is evident based on it having a 7-fold,3-fold, and 4-fold increased cytotoxic effect over Gem-HCl, Irinotecan, and 5-FU, respectively. On the other hand, XYZ-I-71 exhibited a 2-fold increased cytotoxic effect over Gem-HCl but a comparable cytotoxic effect to 5-FU and Irinotecan in MiaPaCa-2 cells. A similar trend of higher XYZ-I-73 inhibition was observed in PANC-1 and BxPC-3 cultures. For 48-h MiaPaCa-2 cell migration studies, XYZ-I-73 (5 μM) significantly reduced migration (# of migrated cells, 168 ± 2.9), followed by XYZ-I-71(315±2.1), Gem-HCl (762±3.1) and 5-FU (710 ± 3.2). PARP absorbance studies demonstrated significant inhibition of PARP expression of XYZ-I-73 treated cells compared to 5-FU, GemHCl, and XYZ-I-71. Further, BAX and p53 expressions were significantly increased in cells treated with XYZ-I-73 compared to 5-FU, GemHCl, and XYZ-I-71. In-vitro, metabolic stability studies showed that 80 ± 5.9% of XYZ-I-71 and XYZ-I-73 remained intact after 2 h exposure in liver microsomal solution compared to 5-FU. The XYZ-I-73 analog demonstrated a remarkable cytotoxic effect and improved in-vitro metabolic stability over the selected standard drugs and may have potential anticancer activity against pancreatic cancer.
Collapse
Affiliation(s)
- Esther Frimpong
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, United States
| | - Raviteja Bulusu
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, United States
| | - Joy Okoro
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, United States
| | - Andriana Inkoom
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, United States
| | - Nkafu Ndemazie
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, United States; Department of Internal Medicine, Richmond University Medical Center, Staten Island, NY, United States
| | - Sherise Rogers
- Department of Medicine, Division of Hematology and Oncology, University of Florida College of Medicine, Gainesville, FL, United States
| | - Xue Zhu
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, United States
| | - Bo Han
- Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Edward Agyare
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, United States.
| |
Collapse
|
20
|
Gu X, Minko T. Targeted Nanoparticle-Based Diagnostic and Treatment Options for Pancreatic Cancer. Cancers (Basel) 2024; 16:1589. [PMID: 38672671 PMCID: PMC11048786 DOI: 10.3390/cancers16081589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC), one of the deadliest cancers, presents significant challenges in diagnosis and treatment due to its aggressive, metastatic nature and lack of early detection methods. A key obstacle in PDAC treatment is the highly complex tumor environment characterized by dense stroma surrounding the tumor, which hinders effective drug delivery. Nanotechnology can offer innovative solutions to these challenges, particularly in creating novel drug delivery systems for existing anticancer drugs for PDAC, such as gemcitabine and paclitaxel. By using customization methods such as incorporating conjugated targeting ligands, tumor-penetrating peptides, and therapeutic nucleic acids, these nanoparticle-based systems enhance drug solubility, extend circulation time, improve tumor targeting, and control drug release, thereby minimizing side effects and toxicity in healthy tissues. Moreover, nanoparticles have also shown potential in precise diagnostic methods for PDAC. This literature review will delve into targeted mechanisms, pathways, and approaches in treating pancreatic cancer. Additional emphasis is placed on the study of nanoparticle-based delivery systems, with a brief mention of those in clinical trials. Overall, the overview illustrates the significant advances in nanomedicine, underscoring its role in transcending the constraints of conventional PDAC therapies and diagnostics.
Collapse
Affiliation(s)
- Xin Gu
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08554, USA
| | - Tamara Minko
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08554, USA
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| |
Collapse
|
21
|
Connaughton M, Dabagh M. Modeling Physical Forces Experienced by Cancer and Stromal Cells Within Different Organ-Specific Tumor Tissue. IEEE JOURNAL OF TRANSLATIONAL ENGINEERING IN HEALTH AND MEDICINE 2024; 12:413-434. [PMID: 38765886 PMCID: PMC11100865 DOI: 10.1109/jtehm.2024.3388561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/07/2024] [Accepted: 04/10/2024] [Indexed: 05/22/2024]
Abstract
Mechanical force exerted on cancer cells by their microenvironment have been reported to drive cells toward invasive phenotypes by altering cells' motility, proliferation, and apoptosis. These mechanical forces include compressive, tensile, hydrostatic, and shear forces. The importance of forces is then hypothesized to be an alteration of cancer cells' and their microenvironment's biophysical properties as the indicator of a tumor's malignancy state. Our objective is to investigate and quantify the correlation between a tumor's malignancy state and forces experienced by the cancer cells and components of the microenvironment. In this study, we have developed a multicomponent, three-dimensional model of tumor tissue consisting of a cancer cell surrounded by fibroblasts and extracellular matrix (ECM). Our results on three different organs including breast, kidney, and pancreas show that: A) the stresses within tumor tissue are impacted by the organ specific ECM's biophysical properties, B) more invasive cancer cells experience higher stresses, C) in pancreas which has a softer ECM (Young modulus of 1.0 kPa) and stiffer cancer cells (Young modulus of 2.4 kPa and 1.7 kPa) than breast and kidney, cancer cells experienced significantly higher stresses, D) cancer cells in contact with ECM experienced higher stresses compared to cells surrounded by fibroblasts but the area of tumor stroma experiencing high stresses has a maximum length of 40 μm when the cancer cell is surrounded by fibroblasts and 12 μm for when the cancer cell is in vicinity of ECM. This study serves as an important first step in understanding of how the stresses experienced by cancer cells, fibroblasts, and ECM are associated with malignancy states of cancer cells in different organs. The quantification of forces exerted on cancer cells by different organ-specific ECM and at different stages of malignancy will help, first to develop theranostic strategies, second to predict accurately which tumors will become highly malignant, and third to establish accurate criteria controlling the progression of cancer cells malignancy. Furthermore, our in silico model of tumor tissue can yield critical, useful information for guiding ex vivo or in vitro experiments, narrowing down variables to be investigated, understanding what factors could be impacting cancer treatments or even biomarkers to be looking for.
Collapse
Affiliation(s)
- Morgan Connaughton
- Department of Biomedical EngineeringUniversity of Wisconsin-MilwaukeeMilwaukeeWI53211USA
| | - Mahsa Dabagh
- Department of Biomedical EngineeringUniversity of Wisconsin-MilwaukeeMilwaukeeWI53211USA
| |
Collapse
|
22
|
Nguyen A, Mustafa AHM, Leydecker AK, Halilovic M, Murr J, Butter F, Krämer OH. The protein phosphatase-2A subunit PR130 is involved in the formation of cytotoxic protein aggregates in pancreatic ductal adenocarcinoma cells. Cell Commun Signal 2024; 22:217. [PMID: 38570831 PMCID: PMC10993613 DOI: 10.1186/s12964-024-01597-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 03/26/2024] [Indexed: 04/05/2024] Open
Abstract
As a major source of cellular serine and threonine phosphatase activity, protein phosphatase-2A (PP2A) modulates signaling pathways in health and disease. PP2A complexes consist of catalytic, scaffolding, and B-type subunits. Seventeen PP2A B-type subunits direct PP2A complexes to selected substrates. It is ill-defined how PP2A B-type subunits determine the growth and drug responsiveness of tumor cells. Pancreatic ductal adenocarcinoma (PDAC) is a disease with poor prognosis. We analyzed the responses of murine and human mesenchymal and epithelial PDAC cells to the specific PP2A inhibitor phendione. We assessed protein levels by immunoblot and proteomics and cell fate by flow cytometry, confocal microscopy, and genetic manipulation. We show that murine mesenchymal PDAC cells express significantly higher levels of the PP2A B-type subunit PR130 than epithelial PDAC cells. This overexpression of PR130 is associated with a dependency of such metastasis-prone cells on the catalytic activity of PP2A. Phendione induces apoptosis and an accumulation of cytotoxic protein aggregates in murine mesenchymal and human PDAC cells. These processes occur independently of the frequently mutated tumor suppressor p53. Proteomic analyses reveal that phendione upregulates the chaperone HSP70 in mesenchymal PDAC cells. Inhibition of HSP70 promotes phendione-induced apoptosis and phendione promotes a proteasomal degradation of PR130. Genetic elimination of PR130 sensitizes murine and human PDAC cells to phendione-induced apoptosis and protein aggregate formation. These data suggest that the PP2A-PR130 complex dephosphorylates and thereby prevents the aggregation of proteins in tumor cells.
Collapse
Affiliation(s)
- Alexandra Nguyen
- Institute of Toxicology, University Medical Center of the Johannes Gutenberg University Mainz, Obere Zahlbacher St. 67, 55131, Mainz, Germany
| | - Al-Hassan M Mustafa
- Institute of Toxicology, University Medical Center of the Johannes Gutenberg University Mainz, Obere Zahlbacher St. 67, 55131, Mainz, Germany
- Department of Zoology, Faculty of Science, Aswan University, Aswan, Egypt
| | - Alessa K Leydecker
- Institute of Toxicology, University Medical Center of the Johannes Gutenberg University Mainz, Obere Zahlbacher St. 67, 55131, Mainz, Germany
| | - Melisa Halilovic
- Institute of Toxicology, University Medical Center of the Johannes Gutenberg University Mainz, Obere Zahlbacher St. 67, 55131, Mainz, Germany
| | - Janine Murr
- Medical Clinic and Polyclinic II, Klinikum Rechts Der Isar, Technical University Munich, 81675, Munich, Germany
| | - Falk Butter
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128, Mainz, Germany
- Federal Research Institute for Animal Health, Südufer 10, 17493, Greifswald, Insel Riems, Germany
| | - Oliver H Krämer
- Institute of Toxicology, University Medical Center of the Johannes Gutenberg University Mainz, Obere Zahlbacher St. 67, 55131, Mainz, Germany.
| |
Collapse
|
23
|
Szász Z, Enyedi KN, Takács A, Fekete N, Mező G, Kőhidai L, Lajkó E. Characterisation of the cell and molecular biological effect of peptide-based daunorubicin conjugates developed for targeting pancreatic adenocarcinoma (PANC-1) cell line. Biomed Pharmacother 2024; 173:116293. [PMID: 38430628 DOI: 10.1016/j.biopha.2024.116293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/12/2024] [Accepted: 02/17/2024] [Indexed: 03/05/2024] Open
Abstract
Pancreatic adenocarcinoma is one of the tumours with the worst prognosis, with a 5-year survival rate of 5-10%. Our aim was to find and optimise peptide-based drug conjugates with daunorubicin (Dau) as the cytotoxic antitumour agent. When conjugated with targeting peptides, the side effect profile and pharmacokinetics of Dau can be improved. The targeting peptide sequences (e.g. GSSEQLYL) we studied were originally selected by phage display. By Ala-scan technique, we identified that position 6 in the parental sequence (Dau=Aoa-LRRY-GSSEQLYL-NH2, ConjA) could be modified without the loss of antitumour activity (Dau=Aoa-LRRY-GSSEQAYL-NH2, Conj03: 14. 9% viability). Our results showed that the incorporation of p-chloro-phenylalanine (Dau=Aoa-LRRY-GSSEQF(pCl)YL-NH2, Conj16) further increased the antitumour potency (10-5 M: 9.7% viability) on pancreatic adenocarcinoma cells (PANC-1). We found that conjugates containing modified GSSEQLYL sequences could be internalised to PANC-1 cells and induce cellular senescence in the short term and subsequent apoptotic cell death. Furthermore, the cardiotoxic effect of Dau was markedly reduced in the form of peptide conjugates. In conclusion, Conj16 had the most effective antitumor activity on PANC-1 cells, which makes this conjugate promising for developing new targeted therapies without cardiotoxic effects.
Collapse
Affiliation(s)
- Zsófia Szász
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest H-1089, Hungary
| | - Kata Nóra Enyedi
- Department of Organic Chemistry, Institute of Chemistry, Eötvös Loránd University, Budapest H-1117, Hungary; ELKH Research Group of Peptide Chemistry, Hungarian Academy of Sciences, Budapest H-1117, Hungary
| | - Angéla Takács
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest H-1089, Hungary
| | - Nóra Fekete
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest H-1089, Hungary
| | - Gábor Mező
- Department of Organic Chemistry, Institute of Chemistry, Eötvös Loránd University, Budapest H-1117, Hungary; ELKH Research Group of Peptide Chemistry, Hungarian Academy of Sciences, Budapest H-1117, Hungary
| | - László Kőhidai
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest H-1089, Hungary
| | - Eszter Lajkó
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest H-1089, Hungary.
| |
Collapse
|
24
|
Gupta S, Tak H, Rathore K, Banavath HN, Tejavath KK. Caffeic acid, a dietary polyphenol, pre-sensitizes pancreatic ductal adenocarcinoma to chemotherapeutic drug. J Biomol Struct Dyn 2024:1-15. [PMID: 38385452 DOI: 10.1080/07391102.2024.2318481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 02/08/2024] [Indexed: 02/23/2024]
Abstract
Resistance to chemotherapeutics is an eminent cause that leads to search for options that help in diminution of pancreatic ductal adenocarcinoma (PDAC) by overcoming resistance issues. Caffeic acid (CFA), a polyphenol occurring in many dietary foods, is known to show antidiabetic and anticancer properties potential. To unveil the effect of CFA on PDAC, we carried out this research in PDAC cells, following which we checked the combination effect of CFA and chemotherapeutics and pre-sensitization effects of CFA. Multitudinous web-based approaches were applied for identifying CFA targets in PDAC and then getting their interconnections. Subsequently, we manifested CFA effects by in-vitro analysis showing IC50 concentrations of 37.37 and 15.06 µM on Panc-1 and Mia-PaCa-2, respectively. The combination index of CFA with different drugs was explored which showed the antagonistic effects of combination treatment leading to further investigation of the pre-sensitizing effects. CFA pre-sensitization reduced IC50 concentration of doxorubicin in both PDAC cell lines which also triggered ROS generation determined by 2',7'-dichlorofluorescin diacetate assay. The differential gene expression analysis after CFA treatment showed discrete genes affected in both cells, i.e. N-Cad and Cas9 in Panc-1 and Pi3K/AkT/mTOR along with p53 in Mia-PaCa-2. Collectively, this study investigated the role of CFA as PDAC therapeutics and explored the mechanism in mitigating resistance of PDAC by sensitizing to chemotherapeutics.
Collapse
Affiliation(s)
- Shruti Gupta
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Rajasthan, Ajmer, India
| | - Harshita Tak
- Department of Sports Bio-Sciences, School of Sports Science MYAS-CURAJ, Central University of Rajasthan, Rajasthan, Ajmer, India
| | - Khushhal Rathore
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Rajasthan, Ajmer, India
| | - Hemanth Naick Banavath
- Department of Sports Bio-Sciences, School of Sports Science MYAS-CURAJ, Central University of Rajasthan, Rajasthan, Ajmer, India
| | - Kiran Kumar Tejavath
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Rajasthan, Ajmer, India
| |
Collapse
|
25
|
Ranđelović I, Nyíri K, Koppány G, Baranyi M, Tóvári J, Kigyós A, Tímár J, Vértessy BG, Grolmusz V. Gluing GAP to RAS Mutants: A New Approach to an Old Problem in Cancer Drug Development. Int J Mol Sci 2024; 25:2572. [PMID: 38473821 DOI: 10.3390/ijms25052572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/11/2024] [Accepted: 02/17/2024] [Indexed: 03/14/2024] Open
Abstract
Mutated genes may lead to cancer development in numerous tissues. While more than 600 cancer-causing genes are known today, some of the most widespread mutations are connected to the RAS gene; RAS mutations are found in approximately 25% of all human tumors. Specifically, KRAS mutations are involved in the three most lethal cancers in the U.S., namely pancreatic ductal adenocarcinoma, colorectal adenocarcinoma, and lung adenocarcinoma. These cancers are among the most difficult to treat, and they are frequently excluded from chemotherapeutic attacks as hopeless cases. The mutated KRAS proteins have specific three-dimensional conformations, which perturb functional interaction with the GAP protein on the GAP-RAS complex surface, leading to a signaling cascade and uncontrolled cell growth. Here, we describe a gluing docking method for finding small molecules that bind to both the GAP and the mutated KRAS molecules. These small molecules glue together the GAP and the mutated KRAS molecules and may serve as new cancer drugs for the most lethal, most difficult-to-treat, carcinomas. As a proof of concept, we identify two new, drug-like small molecules with the new method; these compounds specifically inhibit the growth of the PANC-1 cell line with KRAS mutation G12D in vitro and in vivo. Importantly, the two new compounds show significantly lower IC50 and higher specificity against the G12D KRAS mutant human pancreatic cancer cell line PANC-1, as compared to the recently described selective G12D KRAS inhibitor MRTX-1133.
Collapse
Affiliation(s)
| | - Kinga Nyíri
- Laboratory of Genome Metabolism and Repair, Institute of Molecular Life Sciences, Research Centre for Natural Sciences, Hungarian Research Network, 1117 Budapest, Hungary
- Department of Applied Biotechnology and Food Science, BME Budapest University of Technology and Economics, 1111 Budapest, Hungary
| | - Gergely Koppány
- Laboratory of Genome Metabolism and Repair, Institute of Molecular Life Sciences, Research Centre for Natural Sciences, Hungarian Research Network, 1117 Budapest, Hungary
- Department of Applied Biotechnology and Food Science, BME Budapest University of Technology and Economics, 1111 Budapest, Hungary
| | - Marcell Baranyi
- KINETO Lab Ltd., 1037 Budapest, Hungary
- Department of Pathology, Forensic and Insurance Medicine, Semmelweis University, 1091 Budapest, Hungary
| | - József Tóvári
- Department of Experimental Pharmacology and the National Tumor Biology Laboratory, National Institute of Oncology, 1122 Budapest, Hungary
| | | | - József Tímár
- Department of Pathology, Forensic and Insurance Medicine, Semmelweis University, 1091 Budapest, Hungary
| | - Beáta G Vértessy
- Laboratory of Genome Metabolism and Repair, Institute of Molecular Life Sciences, Research Centre for Natural Sciences, Hungarian Research Network, 1117 Budapest, Hungary
- Department of Applied Biotechnology and Food Science, BME Budapest University of Technology and Economics, 1111 Budapest, Hungary
| | - Vince Grolmusz
- Department of Computer Science, Mathematical Institute, Eötvös Loránd University, 1117 Budapest, Hungary
- Uratim Ltd., 1118 Budapest, Hungary
| |
Collapse
|
26
|
Budka J, Debowski D, Mai S, Narajczyk M, Hac S, Rolka K, Vrettos EI, Tzakos AG, Inkielewicz-Stepniak I. Design, Synthesis, and Antitumor Evaluation of an Opioid Growth Factor Bioconjugate Targeting Pancreatic Ductal Adenocarcinoma. Pharmaceutics 2024; 16:283. [PMID: 38399336 PMCID: PMC10892429 DOI: 10.3390/pharmaceutics16020283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/02/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) presents a formidable challenge with high lethality and limited effective drug treatments. Its heightened metastatic potential further complicates the prognosis. Owing to the significant toxicity of current chemotherapeutics, compounds like [Met5]-enkephalin, known as opioid growth factor (OGF), have emerged in oncology clinical trials. OGF, an endogenous peptide interacting with the OGF receptor (OGFr), plays a crucial role in inhibiting cell proliferation across various cancer types. This in vitro study explores the potential anticancer efficacy of a newly synthesized OGF bioconjugate in synergy with the classic chemotherapeutic agent, gemcitabine (OGF-Gem). The study delves into assessing the impact of the OGF-Gem conjugate on cell proliferation inhibition, cell cycle regulation, the induction of cellular senescence, and apoptosis. Furthermore, the antimetastatic potential of the OGF-Gem conjugate was demonstrated through evaluations using blood platelets and AsPC-1 cells with a light aggregometer. In summary, this article demonstrates the cytotoxic impact of the innovative OGF-Gem conjugate on pancreatic cancer cells in both 2D and 3D models. We highlight the potential of both the OGF-Gem conjugate and OGF alone in effectively inhibiting the ex vivo pancreatic tumor cell-induced platelet aggregation (TCIPA) process, a phenomenon not observed with Gem alone. Furthermore, the confirmed hemocompatibility of OGF-Gem with platelets reinforces its promising potential. We anticipate that this conjugation strategy will open avenues for the development of potent anticancer agents.
Collapse
Affiliation(s)
- Justyna Budka
- Department of Pharmaceutical Pathophysiology, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Dawid Debowski
- Department of Molecular Biochemistry, University of Gdansk, 80-309 Gdansk, Poland
| | - Shaoshan Mai
- Department of Pharmaceutical Pathophysiology, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Magdalena Narajczyk
- Bioimaging Laboratory, Faculty of Biology, University of Gdansk, 80-309 Gdansk, Poland
| | - Stanislaw Hac
- Department of General Endocrine and Transplant Surgery, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Krzysztof Rolka
- Department of Molecular Biochemistry, University of Gdansk, 80-309 Gdansk, Poland
| | | | - Andreas G. Tzakos
- Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece
- University Research Center of Ioannina, Institute of Materials Science and Computing, 45110 Ioannina, Greece
| | | |
Collapse
|
27
|
Choi D, Gonzalez‐Suarez AM, Dumbrava MG, Medlyn M, de Hoyos‐Vega JM, Cichocki F, Miller JS, Ding L, Zhu M, Stybayeva G, Gaspar‐Maia A, Billadeau DD, Ma WW, Revzin A. Microfluidic Organoid Cultures Derived from Pancreatic Cancer Biopsies for Personalized Testing of Chemotherapy and Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2303088. [PMID: 38018486 PMCID: PMC10837378 DOI: 10.1002/advs.202303088] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 10/17/2023] [Indexed: 11/30/2023]
Abstract
Patient-derived cancer organoids (PDOs) hold considerable promise for personalizing therapy selection and improving patient outcomes. However, it is challenging to generate PDOs in sufficient numbers to test therapies in standard culture platforms. This challenge is particularly acute for pancreatic ductal adenocarcinoma (PDAC) where most patients are diagnosed at an advanced stage with non-resectable tumors and where patient tissue is in the form of needle biopsies. Here the development and characterization of microfluidic devices for testing therapies using a limited amount of tissue or PDOs available from PDAC biopsies is described. It is demonstrated that microfluidic PDOs are phenotypically and genotypically similar to the gold-standard Matrigel organoids with the advantages of 1) spheroid uniformity, 2) minimal cell number requirement, and 3) not relying on Matrigel. The utility of microfluidic PDOs is proven by testing PDO responses to several chemotherapies, including an inhibitor of glycogen synthase kinase (GSKI). In addition, microfluidic organoid cultures are used to test effectiveness of immunotherapy comprised of NK cells in combination with a novel biologic. In summary, our microfluidic device offers considerable benefits for personalizing oncology based on cancer biopsies and may, in the future, be developed into a companion diagnostic for chemotherapy or immunotherapy treatments.
Collapse
Affiliation(s)
- Daheui Choi
- Department of Physiology and Biomedical EngineeringMayo ClinicRochesterMN55905USA
| | | | - Mihai G. Dumbrava
- Division of Experimental PathologyMayo ClinicRochesterMN55905USA
- Center for Individualized MedicineEpigenomics programMayo ClinicRochesterMN55905USA
| | - Michael Medlyn
- Division of Oncology ResearchCollege of MedicineMayo ClinicRochesterMN55905USA
| | | | - Frank Cichocki
- Department of MedicineUniversity of MinnesotaMinneapolisMN55455USA
| | | | - Li Ding
- Division of Oncology ResearchCollege of MedicineMayo ClinicRochesterMN55905USA
| | - Mojun Zhu
- Division of Medical OncologyMayo ClinicRochesterMN55905USA
| | - Gulnaz Stybayeva
- Department of Physiology and Biomedical EngineeringMayo ClinicRochesterMN55905USA
| | - Alexandre Gaspar‐Maia
- Division of Experimental PathologyMayo ClinicRochesterMN55905USA
- Center for Individualized MedicineEpigenomics programMayo ClinicRochesterMN55905USA
| | - Daniel D. Billadeau
- Division of Oncology ResearchCollege of MedicineMayo ClinicRochesterMN55905USA
| | - Wen Wee Ma
- Division of Medical OncologyMayo ClinicRochesterMN55905USA
| | - Alexander Revzin
- Department of Physiology and Biomedical EngineeringMayo ClinicRochesterMN55905USA
| |
Collapse
|
28
|
Schwartz-Duval A, Mackeyev Y, Mahmud I, Lorenzi PL, Gagea M, Krishnan S, Sokolov KV. Intratumoral Biosynthesis of Gold Nanoclusters by Pancreatic Cancer to Overcome Delivery Barriers to Radiosensitization. ACS NANO 2024; 18:1865-1881. [PMID: 38206058 PMCID: PMC10811688 DOI: 10.1021/acsnano.3c04260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 12/22/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024]
Abstract
Nanoparticle delivery to solid tumors is a prime challenge in nanomedicine. Here, we approach this challenge through the lens of biogeochemistry, the field that studies the flow of chemical elements within ecosystems as manipulated by living cellular organisms and their environments. We leverage biogeochemistry concepts related to gold cycling against pancreatic cancer, considering mammalian organisms as drivers for gold nanoparticle biosynthesis. Sequestration of gold nanoparticles within tumors has been demonstrated as an effective strategy to enhance radiotherapy; however, the desmoplasia of pancreatic cancer impedes nanoparticle delivery. Our strategy overcomes this barrier by applying an atomic-scale agent, ionic gold, for intratumoral gold nanoparticle biosynthesis. Our comprehensive studies showed the cancer-specific synthesis of gold nanoparticles from externally delivered gold ions in vitro and in a murine pancreatic cancer model in vivo; a substantial colocalization of gold nanoparticles (GNPs) with cancer cell nuclei in vitro and in vivo; a strong radiosensitization effect by the intracellularly synthesized GNPs; a uniform distribution of in situ synthesized GNPs throughout the tumor volume; a nearly 40-day total suppression of tumor growth in animal models of pancreatic cancer treated with a combination of gold ions and radiation that was also associated with a significantly higher median survival versus radiation alone (235 vs 102 days, respectively).
Collapse
Affiliation(s)
- Aaron
S. Schwartz-Duval
- Department
of Imaging Physics, The University of Texas
MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030, United States
| | - Yuri Mackeyev
- Vivian
L. Smith Department of Neurosurgery, University
of Texas Health Science Center, Houston, Texas 77030, United States
| | - Iqbal Mahmud
- Department
of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030, United States
| | - Philip L. Lorenzi
- Department
of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030, United States
| | - Mihai Gagea
- Department
of Veterinary Medicine & Surgery, The
University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030, United States
| | - Sunil Krishnan
- Vivian
L. Smith Department of Neurosurgery, University
of Texas Health Science Center, Houston, Texas 77030, United States
| | - Konstantin V. Sokolov
- Department
of Imaging Physics, The University of Texas
MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030, United States
| |
Collapse
|
29
|
Park SJ, Min HJ, Yoon C, Kim SH, Kim JH, Lee SY. Integrin β1 regulates the perineural invasion and radioresistance of oral squamous carcinoma cells by modulating cancer cell stemness. Cell Signal 2023; 110:110808. [PMID: 37481218 DOI: 10.1016/j.cellsig.2023.110808] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/24/2023]
Abstract
Perineural invasion and radioresistance are the main determinants of treatment outcomes in oral squamous cell carcinoma (OSCC), but the exact mechanism is still unknown. We conducted an in vitro experiment to evaluate the role of integrin β1 (ITGB1) in the perineural invasion, radioresistance, and tumor aggressiveness of OSCC. Two OSCC cell lines (SCC25, SCC15) and radiation-induced radioresistant OSCC cell lines were used in this study. The expression of ITGB1 was compared between control radiosensitive and radioresistant OSCC cell lines. ITGB1 was inhibited by small hairpin RNA, and then the adhesion to neuronal cells, responsiveness to radiation, and aggressiveness of both OSCC cell lines were evaluated. Expression of ITGB1 and adhesion to neuronal cells were increased in radioresistant OSCC compared with control radiosensitive OSCC, and increased ITGB1 expression was more prominent in cancer stem cell-like cells. When the expression of ITGB1 was inhibited, the adhesion to neuronal cells, resistance to radiation, and invasion and migration of radioresistant OSCC were significantly reduced. Moreover, the expression of cancer stem cell markers and size of spheroid formations were also significantly attenuated by inhibiting ITGB1. These findings suggest that ITGB1 may be a significant contributor to perineural invasion and the maintenance of radioresistance in OSCC cells, and is associated with cancer stem cell-like cells. Furthermore, our results suggest a possible relationship between perineural invasion and radioresistance of OSCC. More detailed research is warranted to evaluate the role of ITGB1 as a novel emerging therapeutic target for radioresistant OSCC.
Collapse
Affiliation(s)
- Sung Joon Park
- Department of Otorhinolaryngology-Head and Neck Surgery, Chung-Ang University Gwangmyeong Hospital, Chung-Ang University College of Medicine, Gwangmyeong-si, Gyeonggi-do 14353, Republic of Korea.
| | - Hyun Jin Min
- Department of Otorhinolaryngology-Head and Neck Surgery, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul 06973, Republic of Korea.
| | - Changhwan Yoon
- Department of Surgery, Columbia University Irving Medical Center, New York, NY 10032, USA.
| | - Seong Hee Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul 06973, Republic of Korea.
| | - Jin Hyun Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul 06973, Republic of Korea.
| | - Sei Young Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul 06973, Republic of Korea.
| |
Collapse
|
30
|
Otowa Y, Kishimoto S, Saida Y, Yamashita K, Yamamoto K, Chandramouli GV, Devasahayam N, Mitchell JB, Krishna MC, Brender JR. Evofosfamide and Gemcitabine Act Synergistically in Pancreatic Cancer Xenografts by Dual Action on Tumor Vasculature and Inhibition of Homologous Recombination DNA Repair. Antioxid Redox Signal 2023; 39:432-444. [PMID: 37051681 PMCID: PMC10623073 DOI: 10.1089/ars.2022.0118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 03/02/2023] [Accepted: 03/13/2023] [Indexed: 04/14/2023]
Abstract
Aims: Pancreatic ductal adenocarcinomas (PDACs) form hypovascular and hypoxic tumors, which are difficult to treat with current chemotherapy regimens. Gemcitabine (GEM) is often used as a first-line treatment for PDACs but has issues with chemoresistance and penetration in the interior of the tumor. Evofosfamide, a hypoxia-activated prodrug, has been shown to be effective in combination with GEM, although the mechanism of each drug on the other has not been established. We used mouse xenografts from two cell lines (MIA Paca-2 and SU.86.86) with different tumor microenvironmental characteristics to probe the action of each drug on the other. Results: GEM treatment enhanced survival times in mice with SU.86.86 leg xenografts (hazard ratio [HR] = 0.35, p = 0.03) but had no effect on MIA Paca-2 mice (HR = 0.91, 95% confidence interval = 0.37-2.25, p = 0.84). Conversely, evofosfamide did not improve survival times in SU.86.86 mice to a statistically significant degree (HR = 0.57, p = 0.22). Electron paramagnetic resonance imaging showed that oxygenation worsened in MIA Paca-2 tumors when treated with GEM, providing a direct mechanism for the activation of the hypoxia-activated prodrug evofosfamide by GEM. Sublethal amounts of either treatment enhanced the toxicity of other treatment in vitro in SU.86.86 but not in MIA Paca-2. By the biomarker γH2AX, combination treatment increased the number of double-stranded DNA lesions in vitro for SU.86.86 but not MIA Paca-2. Innovation and Conclusion: The synergy between GEM and evofosfamide appears to stem from the dual action of GEMs effect on tumor vasculature and inhibition by GEM of the homologous recombination DNA repair process. Antioxid. Redox Signal. 39, 432-444.
Collapse
Affiliation(s)
- Yasunori Otowa
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
| | - Shun Kishimoto
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
| | - Yu Saida
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
| | - Kota Yamashita
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
| | - Kazutoshi Yamamoto
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
| | - Gadisetti V.R. Chandramouli
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
| | - Nallathamby Devasahayam
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
| | - James B. Mitchell
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
| | - Murali C. Krishna
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
| | - Jeffrey R. Brender
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
| |
Collapse
|
31
|
Zhao Z, Khurana A, Antony F, Young JW, Hewton KG, Brough Z, Zhong T, Parker SJ, Duong van Hoa F. A Peptidisc-Based Survey of the Plasma Membrane Proteome of a Mammalian Cell. Mol Cell Proteomics 2023; 22:100588. [PMID: 37295717 PMCID: PMC10416069 DOI: 10.1016/j.mcpro.2023.100588] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 05/05/2023] [Accepted: 06/05/2023] [Indexed: 06/12/2023] Open
Abstract
Membrane proteins play critical roles at the cell surface and their misfunction is a hallmark of many human diseases. A precise evaluation of the plasma membrane proteome is therefore essential for cell biology and for discovering novel biomarkers and therapeutic targets. However, the low abundance of this proteome relative to soluble proteins makes it difficult to characterize, even with the most advanced proteomics technologies. Here, we apply the peptidisc membrane mimetic to purify the cell membrane proteome. Using the HeLa cell line as a reference, we capture 500 different integral membrane proteins, with half annotated to the plasma membrane. Notably, the peptidisc library is enriched with several ABC, SLC, GPCR, CD, and cell adhesion molecules that generally exist at low to very low copy numbers in the cell. We extend the method to compare two pancreatic cell lines, Panc-1 and hPSC. Here we observe a striking difference in the relative abundance of the cell surface cancer markers L1CAM, ANPEP, ITGB4, and CD70. We also identify two novel SLC transporters, SLC30A1 and SLC12A7, that are highly present in the Panc-1 cell only. The peptidisc library thus emerges as an effective way to survey and compare the membrane proteome of mammalian cells. Furthermore, since the method stabilizes membrane proteins in a water-soluble state, members of the library, here SLC12A7, can be specifically isolated.
Collapse
Affiliation(s)
- Zhiyu Zhao
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Arshdeep Khurana
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Frank Antony
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - John W Young
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Keeley G Hewton
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada; British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Zora Brough
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Tianshuang Zhong
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Seth J Parker
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada; British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada; Centre for Molecular Medicine and Therapeutics, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Franck Duong van Hoa
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
32
|
Pang J, Zhu D, Liu Y, Liu D, Zhao C, Zhang J, Li S, Liu Z, Li X, Huang P, Wen S, Yang J. A Cyclodiaryliodonium NOX Inhibitor for the Treatment of Pancreatic Cancer via Enzyme-Activatable Targeted Delivery by Sulfated Glycosaminoglycan Derivatives. Adv Healthc Mater 2023; 12:e2203011. [PMID: 36841552 DOI: 10.1002/adhm.202203011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/03/2023] [Indexed: 02/27/2023]
Abstract
Pancreatic cancer renders a principal cause of cancer mortalities with a dismal prognosis, lacking sufficiently safe and effective therapeutics. Here, diversified cyclodiaryliodonium (CDAI) NADPH oxidase (NOX) inhibitors are rationally designed with tens of nanomolar optimal growth inhibition, and CD44-targeted delivery is implemented using synthesized sulfated glycosaminoglycan derivatives. The self-assembled nanoparticle-drug conjugate (NDC) enables hyaluronidase-activatable controlled release and facilitates cellular trafficking. NOX inhibition reprograms the metabolic phenotype by simultaneously impairing mitochondrial respiration and glycolysis. Moreover, the NDC selectively diminishes non-mitochondrial reactive oxygen species (ROS) but significantly elevates cytotoxic ROS through mitochondrial membrane depolarization. Transcriptomic profiling reveals perturbed p53, NF-κB, and GnRH signaling pathways interconnected with NOX inhibition. After being validated in patient-derived pancreatic cancer cells, the anticancer efficacy is further verified in xenograft mice bearing heterotopic and orthotopic pancreatic tumors, with extended survival and ameliorated systemic toxicity. It is envisaged that the translation of cyclodiaryliodonium inhibitors with an optimized molecular design can be expedited by enzyme-activatable targeted delivery with improved pharmacokinetic profiles and preserved efficacy.
Collapse
Affiliation(s)
- Jiadong Pang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Daqian Zhu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Yang Liu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Dingxin Liu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Chunhua Zhao
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Jianeng Zhang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Shengping Li
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
- Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Zexian Liu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Xiaobing Li
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Peng Huang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Shijun Wen
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Jiang Yang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| |
Collapse
|
33
|
Lu J, Wu XJ, Hassouna A, Wang KS, Li Y, Feng T, Zhao Y, Jin M, Zhang B, Ying T, Li J, Cheng L, Liu J, Huang Y. Gemcitabine‑fucoxanthin combination in human pancreatic cancer cells. Biomed Rep 2023; 19:46. [PMID: 37324167 PMCID: PMC10265583 DOI: 10.3892/br.2023.1629] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023] Open
Abstract
Gemcitabine is a chemotherapeutic agent for pancreatic cancer treatment. It has also been demonstrated to inhibit human pancreatic cancer cell lines, MIA PaCa-2 and PANC-1. The aim of the present study was to investigate the suppressive effect of fucoxanthin, a marine carotenoid, in combination with gemcitabine on pancreatic cancer cells. MTT assays and cell cycle analysis using flow cytometry were performed to study the mechanism of action. The results revealed that combining a low dose of fucoxanthin with gemcitabine enhanced the cell viability of human embryonic kidney cells, 293, while a high dose of fucoxanthin enhanced the inhibitory effect of gemcitabine on the cell viability of this cell line. In addition, the enhanced effect of fucoxanthin on the inhibitory effect of gemcitabine on PANC-1 cells was significant (P<0.01). Fucoxanthin combined with gemcitabine also exerted significant enhancement of the anti-proliferation effect in MIA PaCa-2 cells in a concentration dependent manner (P<0.05), compared with gemcitabine treatment alone. In conclusion, fucoxanthin improved the cytotoxicity of gemcitabine on human pancreatic cancer cells at concentrations that were not cytotoxic to non-cancer cells. Thus, fucoxanthin has the potential to be used as an adjunct in pancreatic cancer treatment.
Collapse
Affiliation(s)
- Jun Lu
- College of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, P.R. China
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1142, New Zealand
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518071, P.R. China
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710119, P.R. China
- Auckland Bioengineering Institute, University of Auckland, Auckland 1010, New Zealand
| | - Xiaowu Jenifer Wu
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1142, New Zealand
| | - Amira Hassouna
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo 11956, Egypt
| | - Kelvin Sheng Wang
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1142, New Zealand
| | - Yan Li
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1142, New Zealand
| | - Tao Feng
- College of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, P.R. China
| | - Yu Zhao
- College of Life Sciences, Shanghai Normal University, Shanghai 200234, P.R. China
| | - Minfeng Jin
- College of Life Sciences, Shanghai Normal University, Shanghai 200234, P.R. China
| | - Baohong Zhang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Tianlei Ying
- Key Laboratory of Medical Molecular Virology of MOE/MOH, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Jinyao Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang 830046, P.R. China
| | - Lufeng Cheng
- Department of Pharmacology, College of Pharmacy, Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China
| | - Johnson Liu
- School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Yue Huang
- Shanghai Business School, Fengxian, Shanghai 201499, P.R. China
| |
Collapse
|
34
|
Inkoom A, Ndemazie NB, Smith T, Frimpong E, Bulusu R, Poku R, Zhu X, Han B, Trevino J, Agyare E. Biological evaluation of novel gemcitabine analog in patient-derived xenograft models of pancreatic cancer. BMC Cancer 2023; 23:435. [PMID: 37179357 PMCID: PMC10182601 DOI: 10.1186/s12885-023-10928-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 05/07/2023] [Indexed: 05/15/2023] Open
Abstract
Gemcitabine (Gem) has been a standard first-line drug for pancreatic cancer (PCa) treatment; however, Gem's rapid metabolism and systemic instability (short half-life) limit its clinical outcome. The objective of this study was to modify Gem into a more stable form called 4-(N)-stearoyl-gemcitabine (4NSG) and evaluate its therapeutic efficacy in patient-derived xenograft (PDX) models from PCa of Black and White patients.Methods 4NSG was synthesized and characterized using nuclear magnetic resonance (NMR), elemental analysis, and high-performance liquid chromatography (HPLC). 4NSG-loaded solid lipid nanoparticles (4NSG-SLN) were developed using the cold homogenization technique and characterized. Patient-derived pancreatic cancer cell lines labeled Black (PPCL-192, PPCL-135) and White (PPCL-46, PPCL-68) were used to assess the in vitro anticancer activity of 4NSG-SLN. Pharmacokinetics (PK) and tumor efficacy studies were conducted using PDX mouse models bearing tumors from Black and White PCa patients.Results 4NSG was significantly stable in liver microsomal solution. The effective mean particle size (hydrodynamic diameter) of 4NSG-SLN was 82 ± 6.7 nm, and the half maximal inhibitory concentration (IC50) values of 4NSG-SLN treated PPCL-192 cells (9 ± 1.1 µM); PPCL-135 (11 ± 1.3 µM); PPCL-46 (12 ± 2.1) and PPCL-68 equaled to 22 ± 2.6 were found to be significantly lower compared to Gem treated PPCL-192 (57 ± 1.5 µM); PPCL-135 (56 ± 1.5 µM); PPCL-46 (56 ± 1.8 µM) and PPCL-68 (57 ± 2.4 µM) cells. The area under the curve (AUC), half-life, and pharmacokinetic clearance parameters for 4NSG-SLN were 3-fourfold higher than that of GemHCl. For in-vivo studies, 4NSG-SLN exhibited a two-fold decrease in tumor growth compared with GemHCl in PDX mice bearing Black and White PCa tumors.Conclusion 4NSG-SLN significantly improved the Gem's pharmacokinetic profile, enhanced Gem's systemic stability increased its antitumor efficacy in PCa PDX mice bearing Black and White patient tumors.
Collapse
Affiliation(s)
- Andriana Inkoom
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, 1415 South Martin Luther King Jr Blvd, Tallahassee, FL, 32307, USA
| | - Nkafu Bechem Ndemazie
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, 1415 South Martin Luther King Jr Blvd, Tallahassee, FL, 32307, USA
| | - Taylor Smith
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, 1415 South Martin Luther King Jr Blvd, Tallahassee, FL, 32307, USA
| | - Esther Frimpong
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, 1415 South Martin Luther King Jr Blvd, Tallahassee, FL, 32307, USA
| | - Raviteja Bulusu
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, 1415 South Martin Luther King Jr Blvd, Tallahassee, FL, 32307, USA
| | - Rosemary Poku
- College of Medicine, Central Michigan University, Mount Pleasant, MI, 48859, USA
| | - Xue Zhu
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, 1415 South Martin Luther King Jr Blvd, Tallahassee, FL, 32307, USA
| | - Bo Han
- Department of Surgery, Keck School of Medicine University of Southern California, Los Angeles, California, 90033, USA
| | - Jose Trevino
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, 32610, USA
- Department of Surgery, College of Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Edward Agyare
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, 1415 South Martin Luther King Jr Blvd, Tallahassee, FL, 32307, USA.
| |
Collapse
|
35
|
Bhat MP, Chakraborty B, Nagaraja SK, Gunagambhire PV, Kumar RS, Nayaka S, Almansour AI, Perumal K. Aspergillus niger CJ6 extract with antimicrobial potential promotes in-vitro cytotoxicity and induced apoptosis against MIA PaCa-2 cell line. ENVIRONMENTAL RESEARCH 2023; 229:116008. [PMID: 37121347 DOI: 10.1016/j.envres.2023.116008] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/05/2023] [Accepted: 04/26/2023] [Indexed: 05/08/2023]
Abstract
Nowadays, the increased number of multidrug-resistant strains among pathogens is a severe public health concern and cancer is posing a great threat for humans. These problems should be tackled with the development of novel and broad-spectrum antimicrobials from microbial origin. During the present study, the bioactive secondary metabolites from Aspergillus niger CJ6 were extracted, characterized; their biological properties were evaluated by subjecting them for antimicrobial, antifungal and anticancer activities. The potent isolate Aspergillus niger CJ6 with nucleotide sequence of 959 base pairs showed antagonistic activity against fungal pathogens in dual culture. The chemical profiling of crude ethyl acetate extract indicated the presence of various bioactive molecules belonging to phenolic, hydrocarbons, and phthalate derivative classes. In antimicrobial activity, the crude extract displayed increasing activity with increased concentration; the highest activity observed against Shigella flexneri with 15 ± 1.0, 19 ± 0.5, 20 ± 1.0 and 24 ± 1.0 mm zones of inhibition at 25, 50, 75 and 100 μl concentrations. The MTT assay illustrated deformed cells of MIA PaCa-2 cell line in in-vitro cytotoxic activity; outflow of cell matrix and membrane rupture; the IC50 of 90.78 μg/ml suggested moderate potential of extract to prevent cancer cell growth. The apoptosis/necrosis study by flow cytometer exhibited 8.98 ± 0.85% early and 73 ± 0.7% of late apoptotic population with 3.8 ± 1.1% necrotic cells; only 14.22 ± 0.6% of healthy cells suggested the increased apoptosis inducing capacity of Aspergillus niger CJ6 crude extract. The outcomes of this study persuade further exploration on the identification, purification and development of novel bioactive agents that could help battle fatal diseases in humans.
Collapse
Affiliation(s)
| | - Bidhayak Chakraborty
- P.G. Department of Studies in Botany, Karnatak University, Dharwad, 580001, Karnataka, India.
| | | | | | - Raju Suresh Kumar
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia.
| | - Sreenivasa Nayaka
- P.G. Department of Studies in Botany, Karnatak University, Dharwad, 580001, Karnataka, India.
| | - Abdulrahman I Almansour
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia.
| | - Karthikeyan Perumal
- Department of Chemistry and Biochemistry, The Ohio State University, 151 W. Woodruff Ave, Columbus, OH, 43210, USA.
| |
Collapse
|
36
|
Di Giorgio C, Bellini R, Lupia A, Massa C, Bordoni M, Marchianò S, Rosselli R, Sepe V, Rapacciuolo P, Moraca F, Morretta E, Ricci P, Urbani G, Monti MC, Biagioli M, Distrutti E, Catalanotti B, Zampella A, Fiorucci S. Discovery of BAR502, as potent steroidal antagonist of leukemia inhibitory factor receptor for the treatment of pancreatic adenocarcinoma. Front Oncol 2023; 13:1140730. [PMID: 36998446 PMCID: PMC10043345 DOI: 10.3389/fonc.2023.1140730] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/20/2023] [Indexed: 03/15/2023] Open
Abstract
IntroductionThe leukemia inhibitory factor (LIF), is a cytokine belonging to IL-6 family, whose overexpression correlate with poor prognosis in cancer patients, including pancreatic ductal adenocarcinoma (PDAC). LIF signaling is mediate by its binding to the heterodimeric LIF receptor (LIFR) complex formed by the LIFR receptor and Gp130, leading to JAK1/STAT3 activation. Bile acids are steroid that modulates the expression/activity of membrane and nuclear receptors, including the Farnesoid-X-Receptor (FXR) and G Protein Bile Acid Activated Receptor (GPBAR1).MethodsHerein we have investigated whether ligands to FXR and GPBAR1 modulate LIF/LIFR pathway in PDAC cells and whether these receptors are expressed in human neoplastic tissues. ResultsThe transcriptome analysis of a cohort of PDCA patients revealed that expression of LIF and LIFR is increased in the neoplastic tissue in comparison to paired non-neoplastic tissues. By in vitro assay we found that both primary and secondary bile acids exert a weak antagonistic effect on LIF/LIFR signaling. In contrast, BAR502 a non-bile acid steroidal dual FXR and GPBAR1 ligand, potently inhibits binding of LIF to LIFR with an IC50 of 3.8 µM.DiscussionBAR502 reverses the pattern LIF-induced in a FXR and GPBAR1 independent manner, suggesting a potential role for BAR502 in the treatment of LIFR overexpressing-PDAC.
Collapse
Affiliation(s)
| | - Rachele Bellini
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Antonio Lupia
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
- Net4Science srl, University “Magna Græcia”, Catanzaro, Italy
| | - Carmen Massa
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Martina Bordoni
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Silvia Marchianò
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | | | - Valentina Sepe
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | | | - Federica Moraca
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
- Net4Science srl, University “Magna Græcia”, Catanzaro, Italy
| | - Elva Morretta
- Department of Pharmacy, University of Salerno, Salerno, Italy
| | - Patrizia Ricci
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Ginevra Urbani
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | | | - Michele Biagioli
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Eleonora Distrutti
- Department of Gastroenterology, Azienda Ospedaliera di Perugia, Perugia, Italy
| | - Bruno Catalanotti
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Angela Zampella
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Stefano Fiorucci
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
- *Correspondence: Stefano Fiorucci,
| |
Collapse
|
37
|
Skaraitė I, Maccioni E, Petrikaitė V. Anticancer Activity of Sunitinib Analogues in Human Pancreatic Cancer Cell Cultures under Normoxia and Hypoxia. Int J Mol Sci 2023; 24:ijms24065422. [PMID: 36982496 PMCID: PMC10049421 DOI: 10.3390/ijms24065422] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
Pancreatic cancer remains one of the deadliest cancer types. It is usually characterized by high resistance to chemotherapy. However, cancer-targeted drugs, such as sunitinib, recently have shown beneficial effects in pancreatic in vitro and in vivo models. Therefore, we chose to study a series of sunitinib derivatives developed by us, that were proven to be promising compounds for cancer treatment. The aim of our research was to evaluate the anticancer activity of sunitinib derivatives in human pancreatic cancer cell lines MIA PaCa-2 and PANC-1 under normoxia and hypoxia. The effect on cell viability was determined by the MTT assay. The compound effect on cell colony formation and growth was established by clonogenic assay and the activity on cell migration was estimated using a ‘wound healing’ assay. Six out of 17 tested compounds at 1 µM after 72 h of incubation reduced cell viability by 90% and were more active than sunitinib. Compounds for more detailed experiments were chosen based on their activity and selectivity towards cancer cells compared to fibroblasts. The most promising compound EMAC4001 was 24 and 35 times more active than sunitinib against MIA PaCa-2 cells, and 36 to 47 times more active against the PANC-1 cell line in normoxia and hypoxia. It also inhibited MIA PaCa-2 and PANC-1 cell colony formation. Four tested compounds inhibited MIA PaCa-2 and PANC-1 cell migration under hypoxia, but none was more active than sunitinib. In conclusion, sunitinib derivatives possess anticancer activity in human pancreatic adenocarcinoma MIA PaCa-2 and PANC-1 cell lines, and they are promising for further research.
Collapse
Affiliation(s)
- Ieva Skaraitė
- Laboratory of Drug Targets Histopathology, Institute of Cardiology, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50162 Kaunas, Lithuania
| | - Elias Maccioni
- Department of Life and Environmental Sciences, University of Cagliari, Via Ospedale 72, 09124 Cagliari, Italy
| | - Vilma Petrikaitė
- Laboratory of Drug Targets Histopathology, Institute of Cardiology, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50162 Kaunas, Lithuania
- Correspondence: ; Tel.: +370-68629383
| |
Collapse
|
38
|
New Insights into the Biological Response Triggered by Dextran-Coated Maghemite Nanoparticles in Pancreatic Cancer Cells and Their Potential for Theranostic Applications. Int J Mol Sci 2023; 24:ijms24043307. [PMID: 36834718 PMCID: PMC9965009 DOI: 10.3390/ijms24043307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023] Open
Abstract
Iron oxide nanoparticles are one of the most promising tools for theranostic applications of pancreatic cancer due to their unique physicochemical and magnetic properties making them suitable for both diagnosis and therapy. Thus, our study aimed to characterize the properties of dextran-coated iron oxide nanoparticles (DIO-NPs) of maghemite (γ-Fe2O3) type synthesized by co-precipitation and to investigate their effects (low-dose versus high-dose) on pancreatic cancer cells focusing on NP cellular uptake, MR contrast, and toxicological profile. This paper also addressed the modulation of heat shock proteins (HSPs) and p53 protein expression as well as the potential of DIO-NPs for theranostic purposes. DIO-NPs were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), dynamic light scattering analyses (DLS), and zeta potential. Pancreatic cancer cells (PANC-1 cell line) were exposed to different doses of dextran-coated ɣ-Fe2O3 NPs (14, 28, 42, 56 μg/mL) for up to 72 h. The results revealed that DIO-NPs with a hydrodynamic diameter of 16.3 nm produce a significant negative contrast using a 7 T MRI scanner correlated with dose-dependent cellular iron uptake and toxicity levels. We showed that DIO-NPs are biocompatible up to a concentration of 28 μg/mL (low-dose), while exposure to a concentration of 56 μg/mL (high-dose) caused a reduction in PANC-1 cell viability to 50% after 72 h by inducing reactive oxygen species (ROS) production, reduced glutathione (GSH) depletion, lipid peroxidation, enhancement of caspase-1 activity, and LDH release. An alteration in Hsp70 and Hsp90 protein expression was also observed. At low doses, these findings provide evidence that DIO-NPs could act as safe platforms in drug delivery, as well as antitumoral and imaging agents for theranostic uses in pancreatic cancer.
Collapse
|
39
|
Taylor AJ, Panzhinskiy E, Orban PC, Lynn FC, Schaeffer DF, Johnson JD, Kopp JL, Verchere CB. Islet amyloid polypeptide does not suppress pancreatic cancer. Mol Metab 2023; 68:101667. [PMID: 36621763 PMCID: PMC9938314 DOI: 10.1016/j.molmet.2023.101667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 12/24/2022] [Accepted: 01/02/2023] [Indexed: 01/06/2023] Open
Abstract
OBJECTIVES Pancreatic cancer risk is elevated approximately two-fold in type 1 and type 2 diabetes. Islet amyloid polypeptide (IAPP) is an abundant beta-cell peptide hormone that declines with diabetes progression. IAPP has been reported to act as a tumour-suppressor in p53-deficient cancers capable of regressing tumour volumes. Given the decline of IAPP during diabetes development, we investigated the actions of IAPP in pancreatic ductal adenocarcinoma (PDAC; the most common form of pancreatic cancer) to determine if IAPP loss in diabetes may increase the risk of pancreatic cancer. METHODS PANC-1, MIA PaCa-2, and H1299 cells were treated with rodent IAPP, and the IAPP analogs pramlintide and davalintide, and assayed for changes in proliferation, death, and glycolysis. An IAPP-deficient mouse model of PDAC (Iapp-/-; Kras+/LSL-G12D; Trp53flox/flox; Ptf1a+/CreER) was generated for survival analysis. RESULTS IAPP did not impact glycolysis in MIA PaCa-2 cells, and did not impact cell death, proliferation, or glycolysis in PANC-1 cells or in H1299 cells, which were previously reported as IAPP-sensitive. Iapp deletion in Kras+/LSL-G12D; Trp53flox/flox; Ptf1a+/CreER mice had no effect on survival time to lethal tumour burden. CONCLUSIONS In contrast to previous reports, we find that IAPP does not function as a tumour suppressor. This suggests that loss of IAPP signalling likely does not increase the risk of pancreatic cancer in individuals with diabetes.
Collapse
Affiliation(s)
- Austin J Taylor
- BC Children's Hospital Research Institute, Vancouver, BC, Canada; Centre for Molecular Medicine and Therapeutics, Vancouver, BC, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, BC, Canada
| | - Evgeniy Panzhinskiy
- Life Sciences Institute, University of British Columbia, BC, Canada; Department of Biochemistry, University of British Columbia, BC, Canada
| | - Paul C Orban
- BC Children's Hospital Research Institute, Vancouver, BC, Canada; Centre for Molecular Medicine and Therapeutics, Vancouver, BC, Canada; Department of Surgery, University of British Columbia, BC, Canada
| | - Francis C Lynn
- BC Children's Hospital Research Institute, Vancouver, BC, Canada; Department of Surgery, University of British Columbia, BC, Canada; Department of Cellular and Physiological Sciences, University of British Columbia, BC, Canada
| | - David F Schaeffer
- Department of Pathology and Laboratory Medicine, University of British Columbia, BC, Canada; Pancreas Centre BC, Vancouver, BC, Canada
| | - James D Johnson
- Life Sciences Institute, University of British Columbia, BC, Canada; Department of Cellular and Physiological Sciences, University of British Columbia, BC, Canada
| | - Janel L Kopp
- Life Sciences Institute, University of British Columbia, BC, Canada; Department of Cellular and Physiological Sciences, University of British Columbia, BC, Canada
| | - C Bruce Verchere
- BC Children's Hospital Research Institute, Vancouver, BC, Canada; Centre for Molecular Medicine and Therapeutics, Vancouver, BC, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, BC, Canada; Department of Surgery, University of British Columbia, BC, Canada.
| |
Collapse
|
40
|
Metformin Induces Apoptosis in Human Pancreatic Cancer (PC) Cells Accompanied by Changes in the Levels of Histone Acetyltransferases (Particularly, p300/CBP-Associated Factor (PCAF) Protein Levels). Pharmaceuticals (Basel) 2023; 16:ph16010115. [PMID: 36678613 PMCID: PMC9863441 DOI: 10.3390/ph16010115] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/05/2022] [Accepted: 12/16/2022] [Indexed: 01/15/2023] Open
Abstract
Accumulating evidence (mainly from experimental research) suggests that metformin possesses anticancer properties through the induction of apoptosis and inhibition of the growth and proliferation of cancer cells. However, its effect on the enzymes responsible for histone acetylation status, which plays a key role in carcinogenesis, remains unclear. Therefore, the aim of our study was to evaluate the impact of metformin on histone acetyltransferases (HATs) (i.e., p300/CBP-associated factor (PCAF), p300, and CBP) and on histone deacetylases (HDACs) (i.e., SIRT-1 in human pancreatic cancer (PC) cell lines, 1.2B4, and PANC-1). The cells were exposed to metformin, an HAT inhibitor (HATi), or a combination of an HATi with metformin for 24, 48, or 72 h. Cell viability was determined using an MTT assay, and the percentage of early apoptotic cells was determined with an Annexin V-Cy3 Apoptosis Detection Assay Kit. Caspase-9 activity was also assessed. SIRT-1, PCAF, p300, and CBP expression were determined at the mRNA and protein levels using RT-PCR and Western blotting methods, respectively. Our results reveal an increase in caspase-9 in response to the metformin, indicating that it induced the apoptotic death of both 1.2B4 and PANC-1 cells. The number of cells in early apoptosis and the activity of caspase-9 decreased when treated with an HATi alone or a combination of an HATi with metformin, as compared to metformin alone. Moreover, metformin, an HATi, and a combination of an HATi with metformin also modified the mRNA expression of SIRT-1, PCAF, CBP, and p300. However, metformin did not change the expression of the studied genes in 1.2B4 cells. The results of the Western blot analysis showed that metformin diminished the protein expression of PCAF in both the 1.2B4 and PANC-1 cells. Hence, it appears possible that PCAF may be involved in the metformin-mediated apoptosis of PC cells.
Collapse
|
41
|
Brough D, Amos H, Turley K, Murkin J. Trends in Subcutaneous Tumour Height and Impact on Measurement Accuracy. Cancer Inform 2023; 22:11769351231165181. [PMID: 37113645 PMCID: PMC10126793 DOI: 10.1177/11769351231165181] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/05/2023] [Indexed: 04/29/2023] Open
Abstract
Tumour volume is typically calculated using only length and width measurements, using width as a proxy for height in a 1:1 ratio. When tracking tumour growth over time, important morphological information and measurement accuracy is lost by ignoring height, which we show is a unique variable. Lengths, widths, and heights of 9522 subcutaneous tumours in mice were measured using 3D and thermal imaging. The average height:width ratio was found to be 1:3 proving that using width as a proxy for height overestimates tumour volume. Comparing volumes calculated with and without tumour height to the true volumes of excised tumours indeed showed that using the volume formula including height produced volumes 36X more accurate (based off of percentage difference). Monitoring the height:width relationship (prominence) across tumour growth curves indicated that prominence varied, and that height could change independent of width. Twelve cell lines were investigated individually; the scale of tumour prominence was cell line-dependent with relatively less prominent tumours (MC38, BL2, LL/2) and more prominent tumours (RENCA, HCT116) detected. Prominence trends across the growth cycle were also dependent on cell line; prominence was correlated with tumour growth in some cell lines (4T1, CT26, LNCaP), but not others (MC38, TC-1, LL/2). When pooled, invasive cell lines produced tumours that were significantly less prominent at volumes >1200 mm3 compared to non-invasive cell lines (P < .001). Modelling was used to show the impact of the increased accuracy gained by including height in volume calculations on several efficacy study outcomes. Variations in measurement accuracy contribute to experimental variation and irreproducibility of data, therefore we strongly advise researchers to measure height to improve accuracy in tumour studies.
Collapse
Affiliation(s)
- Daniel Brough
- Daniel Brough, BioVolume Ltd, Witney Business & Innovation Centre, Windrush Industrial Park, Burford Road, Witney OX29 7DX, UK.
| | | | | | | |
Collapse
|
42
|
Al-Akkad W, Acedo P, Vilia MG, Frenguelli L, Ney A, Rodriguez-Hernandez I, Labib PL, Tamburrino D, Spoletini G, Hall AR, Canestrari S, Osnato A, Garcia-Bernardo J, Sejour L, Vassileva V, Vlachos IS, Fusai G, Luong TV, Whittaker SR, Pereira SP, Vallier L, Pinzani M, Rombouts K, Mazza G. Tissue-Specific Human Extracellular Matrix Scaffolds Promote Pancreatic Tumour Progression and Chemotherapy Resistance. Cells 2022; 11:3652. [PMID: 36429078 PMCID: PMC9688243 DOI: 10.3390/cells11223652] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/01/2022] [Accepted: 11/08/2022] [Indexed: 11/19/2022] Open
Abstract
Over 80% of patients with pancreatic ductal adenocarcinoma (PDAC) are diagnosed at a late stage and are locally advanced or with concurrent metastases. The aggressive phenotype and relative chemo- and radiotherapeutic resistance of PDAC is thought to be mediated largely by its prominent stroma, which is supported by an extracellular matrix (ECM). Therefore, we investigated the impact of tissue-matched human ECM in driving PDAC and the role of the ECM in promoting chemotherapy resistance. Decellularized human pancreata and livers were recellularized with PANC-1 and MIA PaCa-2 (PDAC cell lines), as well as PK-1 cells (liver-derived metastatic PDAC cell line). PANC-1 cells migrated into the pancreatic scaffolds, MIA PaCa-2 cells were able to migrate into both scaffolds, whereas PK-1 cells were able to migrate into the liver scaffolds only. These differences were supported by significant deregulations in gene and protein expression between the pancreas scaffolds, liver scaffolds, and 2D culture. Moreover, these cell lines were significantly more resistant to gemcitabine and doxorubicin chemotherapy treatments in the 3D models compared to 2D cultures, even after confirmed uptake by confocal microscopy. These results suggest that tissue-specific ECM provides the preserved native cues for primary and metastatic PDAC cells necessary for a more reliable in vitro cell culture.
Collapse
Affiliation(s)
- Walid Al-Akkad
- UCL Institute for Liver and Digestive Health, Royal Free Hospital, University College London, London NW3 2PF, UK
- Engitix Therapeutics, The Westworks, 195 Wood Lane, Shepherd’s Bush, London W12 7FQ, UK
| | - Pilar Acedo
- UCL Institute for Liver and Digestive Health, Royal Free Hospital, University College London, London NW3 2PF, UK
| | - Maria-Giovanna Vilia
- UCL Institute for Liver and Digestive Health, Royal Free Hospital, University College London, London NW3 2PF, UK
- Engitix Therapeutics, The Westworks, 195 Wood Lane, Shepherd’s Bush, London W12 7FQ, UK
| | - Luca Frenguelli
- UCL Institute for Liver and Digestive Health, Royal Free Hospital, University College London, London NW3 2PF, UK
- Engitix Therapeutics, The Westworks, 195 Wood Lane, Shepherd’s Bush, London W12 7FQ, UK
| | - Alexander Ney
- UCL Institute for Liver and Digestive Health, Royal Free Hospital, University College London, London NW3 2PF, UK
| | | | - Peter L. Labib
- UCL Institute for Liver and Digestive Health, Royal Free Hospital, University College London, London NW3 2PF, UK
| | - Domenico Tamburrino
- Division of Surgery, Royal Free London NHS Foundation Trust, University College London, London NW3 2QG, UK
| | - Gabriele Spoletini
- Division of Surgery, Royal Free London NHS Foundation Trust, University College London, London NW3 2QG, UK
| | - Andrew R. Hall
- UCL Institute for Liver and Digestive Health, Royal Free Hospital, University College London, London NW3 2PF, UK
- Sheila Sherlock Liver Centre, Royal Free London NHS Foundation Trust, London NW3 2PF, UK
| | - Simone Canestrari
- UCL Institute for Liver and Digestive Health, Royal Free Hospital, University College London, London NW3 2PF, UK
| | - Anna Osnato
- Wellcome Trust-MRC Cambridge Stem Cell Institute, Anne McLaren Laboratory, University of Cambridge, Cambridge CB2 0AW, UK
- Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire CB10 1RQ, UK
| | | | - Leinal Sejour
- Cancer Research Institute, HMS Initiative for RNA Medicine, Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Vessela Vassileva
- Department of Surgery and Cancer, Imperial College London, London SW7 2AZ, UK
| | - Ioannis S. Vlachos
- Cancer Research Institute, HMS Initiative for RNA Medicine, Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Giuseppe Fusai
- Division of Surgery, Royal Free London NHS Foundation Trust, University College London, London NW3 2QG, UK
| | - Tu Vinh Luong
- UCL Institute for Liver and Digestive Health, Royal Free Hospital, University College London, London NW3 2PF, UK
- Sheila Sherlock Liver Centre, Royal Free London NHS Foundation Trust, London NW3 2PF, UK
| | - Steven R. Whittaker
- Engitix Therapeutics, The Westworks, 195 Wood Lane, Shepherd’s Bush, London W12 7FQ, UK
| | - Stephen P. Pereira
- UCL Institute for Liver and Digestive Health, Royal Free Hospital, University College London, London NW3 2PF, UK
| | - Ludovic Vallier
- Wellcome Trust-MRC Cambridge Stem Cell Institute, Anne McLaren Laboratory, University of Cambridge, Cambridge CB2 0AW, UK
- Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire CB10 1RQ, UK
| | - Massimo Pinzani
- UCL Institute for Liver and Digestive Health, Royal Free Hospital, University College London, London NW3 2PF, UK
| | - Krista Rombouts
- UCL Institute for Liver and Digestive Health, Royal Free Hospital, University College London, London NW3 2PF, UK
| | - Giuseppe Mazza
- UCL Institute for Liver and Digestive Health, Royal Free Hospital, University College London, London NW3 2PF, UK
- Engitix Therapeutics, The Westworks, 195 Wood Lane, Shepherd’s Bush, London W12 7FQ, UK
| |
Collapse
|
43
|
David KI, Ravikumar TS, Sethuraman S, Krishnan UM. Investigations of an organic-inorganic nanotheranostic hybrid for pancreatic cancer therapy using cancer-in-a-dish and in vivomodels. Biomed Mater 2022; 18. [PMID: 36270604 DOI: 10.1088/1748-605x/ac9cb2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 10/21/2022] [Indexed: 12/14/2022]
Abstract
The incidence of highly aggressive pancreatic cancer is increasing across the globe and is projected to increase to 18.6% by 2050. The mortality rate for this form of cancer is very high and the 5 y relative survival rate is only about 9%-10%. The 3D pancreatic cancer microenvironment exerts a major influence on the poor survival rate. A key factor is the prevention of the penetration of the chemotherapeutic drugs in the three-dimensional (3D) microenvironment leading to the development of chemoresistance which is a major contributor to the survival rates. Hence,in vitrostudies using 3D cultures represent a better approach to understand the effect of therapeutic formulations on the cancer cells when compared to conventional 2D cultures. In the present study, we have explored three different conditions for the development of a 3D pancreatic tumour spheroid model from MiaPaCa-2 and PanC1 cells cultured for 10 days using Matrigel matrix. This optimized spheroid model was employed to evaluate a multi-functional nanotheranostic system fabricated using chitosan nanoparticles co-encapsulated with the chemotherapeutic agent gemcitabine and gold-capped iron oxide nanoparticles for multimodal imaging. The effect of the single and multiple-dose regimens of the theranostic system on the viability of 3D spheroids formed from the two pancreatic cancer cell lines was studied. It was observed that the 3D tumour spheroids cultured for 10 days exhibited resistance towards free gemcitabine drug, unlike the 2D culture. The administration of the multifunctional nanotheranostic system on alternate days effectively reduced the cancer cell viability after five doses to about 20% when compared with other groups. The repeated doses of the nanotheranostic system were found to be more effective than the single dose. Cell line-based differences in internalization of the carrier was also reflected in their response to the nanocarrier with PanC1 showing better sensitivity to the treatment.In vivostudies revealed that the combination of gemcitabine and magnetic field induced hypothermia produced superior regression in cancer when compared with the chemotherapeutic agent alone by a combination of activating the pro-apoptotic pathway and heat-induced necrosis. Our results reveal that this multi-functional system holds promise to overcome the current challenges to treat pancreatic cancers.
Collapse
Affiliation(s)
- Karolyn Infanta David
- Centre for Nanotechnology and Advanced Biomaterials, SASTRA Deemed University, Thanjavur, TamilNadu 613401, India.,School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, TamilNadu 613401, India
| | - T S Ravikumar
- Formerly at Sri Venkateswara Institute of Medical Sciences (SVIMS) Tirupati 517507, India
| | - Swaminathan Sethuraman
- Centre for Nanotechnology and Advanced Biomaterials, SASTRA Deemed University, Thanjavur, TamilNadu 613401, India.,School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, TamilNadu 613401, India
| | - Uma Maheswari Krishnan
- Centre for Nanotechnology and Advanced Biomaterials, SASTRA Deemed University, Thanjavur, TamilNadu 613401, India.,School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, TamilNadu 613401, India.,School of Arts, Sciences, Humanities and Education, SASTRA Deemed University, Thanjavur, TamilNadu 613401, India
| |
Collapse
|
44
|
Di Giorgio C, Lupia A, Marchianò S, Bordoni M, Bellini R, Massa C, Urbani G, Roselli R, Moraca F, Sepe V, Catalanotti B, Morretta E, Monti MC, Biagioli M, Distrutti E, Zampella A, Fiorucci S. Repositioning Mifepristone as a Leukaemia Inhibitory Factor Receptor Antagonist for the Treatment of Pancreatic Adenocarcinoma. Cells 2022; 11:3482. [PMID: 36359879 PMCID: PMC9657739 DOI: 10.3390/cells11213482] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/27/2022] [Accepted: 11/01/2022] [Indexed: 11/12/2023] Open
Abstract
Pancreatic cancer is a leading cause of cancer mortality and is projected to become the second-most common cause of cancer mortality in the next decade. While gene-wide association studies and next generation sequencing analyses have identified molecular patterns and transcriptome profiles with prognostic relevance, therapeutic opportunities remain limited. Among the genes that are upregulated in pancreatic ductal adenocarcinomas (PDAC), the leukaemia inhibitory factor (LIF), a cytokine belonging to IL-6 family, has emerged as potential therapeutic candidate. LIF is aberrantly secreted by tumour cells and promotes tumour progression in pancreatic and other solid tumours through aberrant activation of the LIF receptor (LIFR) and downstream signalling that involves the JAK1/STAT3 pathway. Since there are no LIFR antagonists available for clinical use, we developed an in silico strategy to identify potential LIFR antagonists and drug repositioning with regard to LIFR antagonists. The results of these studies allowed the identification of mifepristone, a progesterone/glucocorticoid antagonist, clinically used in medical abortion, as a potent LIFR antagonist. Computational studies revealed that mifepristone binding partially overlapped the LIFR binding site. LIF and LIFR are expressed by human PDAC tissues and PDAC cell lines, including MIA-PaCa-2 and PANC-1 cells. Exposure of these cell lines to mifepristone reverses cell proliferation, migration and epithelial mesenchymal transition induced by LIF in a concentration-dependent manner. Mifepristone inhibits LIFR signalling and reverses STAT3 phosphorylation induced by LIF. Together, these data support the repositioning of mifepristone as a potential therapeutic agent in the treatment of PDAC.
Collapse
Affiliation(s)
- Cristina Di Giorgio
- Department of Medicine and Surgery, University of Perugia, 06123 Perugia, Italy
| | - Antonio Lupia
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
- Campus Salvatore Venuta, Net4Science Srl, University “Magna Græcia”, Viale Europa, 88100 Catanzaro, Italy
| | - Silvia Marchianò
- Department of Medicine and Surgery, University of Perugia, 06123 Perugia, Italy
| | - Martina Bordoni
- Department of Medicine and Surgery, University of Perugia, 06123 Perugia, Italy
| | - Rachele Bellini
- Department of Medicine and Surgery, University of Perugia, 06123 Perugia, Italy
| | - Carmen Massa
- Department of Medicine and Surgery, University of Perugia, 06123 Perugia, Italy
| | - Ginevra Urbani
- Department of Medicine and Surgery, University of Perugia, 06123 Perugia, Italy
| | - Rosalinda Roselli
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
| | - Federica Moraca
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
- Campus Salvatore Venuta, Net4Science Srl, University “Magna Græcia”, Viale Europa, 88100 Catanzaro, Italy
| | - Valentina Sepe
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
| | - Bruno Catalanotti
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
| | - Elva Morretta
- Department of Pharmacy, University of Salerno, 84084 Salerno, Italy
| | | | - Michele Biagioli
- Department of Medicine and Surgery, University of Perugia, 06123 Perugia, Italy
| | | | - Angela Zampella
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
| | - Stefano Fiorucci
- Department of Medicine and Surgery, University of Perugia, 06123 Perugia, Italy
| |
Collapse
|
45
|
Wang T, Chen P, Weir S, Baltezor M, Schoenen FJ, Chen Q. Novel compound C150 inhibits pancreatic cancer through induction of ER stress and proteosome assembly. Front Oncol 2022; 12:870473. [PMID: 36276125 PMCID: PMC9579335 DOI: 10.3389/fonc.2022.870473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 09/13/2022] [Indexed: 11/24/2022] Open
Abstract
Pancreatic cancer is a devastating disease with a dismal prognosis and poor treatment outcomes. Searching for new agents for pancreatic cancer treatment is of great significance. We previously identified a novel activity of compound C150 to inhibit pancreatic cancer epithelial-to-mesenchymal transition (EMT). Here, we further revealed its mechanism of action. C150 induced ER stress in pancreatic cancer cells and subsequently increased proteasome activity by enhancing proteasome assembly, which subsequently enhanced the degradation of critical EMT transcription factors (EMT-TFs). In addition, as cellular responses to ER stress, autophagy was elevated, and general protein synthesis was inhibited in pancreatic cancer cells. Besides EMT inhibition, the C150-induced ER stress resulted in G2/M cell cycle arrest, which halted cell proliferation and led to cellular senescence. In an orthotopic syngeneic mouse model, an oral dose of C150 at 150 mg/kg 3× weekly significantly increased survival of mice bearing pancreatic tumors, and reduced tumor growth and ascites occurrence. These results suggested that compound C150 holds promises in comprehensively inhibiting pancreatic cancer progression.
Collapse
Affiliation(s)
- Tao Wang
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas, KS, United States
| | - Ping Chen
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas, KS, United States
| | - Scott Weir
- Department of Cancer Biology, University of Kansas Medical Center, Kansas, KS, United States
| | - Michael Baltezor
- Biotechnology Innovation and Optimization Center, University of Kansas, Lawrence, KS, United States
| | - Frank J. Schoenen
- Higuchi Biosciences Center, University of Kansas, Lawrence, KS, United States
- Medicinal Chemistry Core Laboratory, Lead Development and Optimization Shared Resource, University of Kansas Cancer Center, Lawrence, KS, United States
| | - Qi Chen
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas, KS, United States
- *Correspondence: Qi Chen,
| |
Collapse
|
46
|
Sayed S, Sidorova OA, Hennig A, Augsburg M, Cortés Vesga CP, Abohawya M, Schmitt LT, Sürün D, Stange DE, Mircetic J, Buchholz F. Efficient Correction of Oncogenic KRAS and TP53 Mutations through CRISPR Base Editing. Cancer Res 2022; 82:3002-3015. [PMID: 35802645 PMCID: PMC9437569 DOI: 10.1158/0008-5472.can-21-2519] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/19/2021] [Accepted: 06/29/2022] [Indexed: 01/07/2023]
Abstract
KRAS is the most frequently mutated oncogene in human cancer, and its activating mutations represent long-sought therapeutic targets. Programmable nucleases, particularly the CRISPR-Cas9 system, provide an attractive tool for genetically targeting KRAS mutations in cancer cells. Here, we show that cleavage of a panel of KRAS driver mutations suppresses growth in various human cancer cell lines, revealing their dependence on mutant KRAS. However, analysis of the remaining cell population after long-term Cas9 expression unmasked the occurence of oncogenic KRAS escape variants that were resistant to Cas9-cleavage. In contrast, the use of an adenine base editor to correct oncogenic KRAS mutations progressively depleted the targeted cells without the appearance of escape variants and allowed efficient and simultaneous correction of a cancer-associated TP53 mutation. Oncogenic KRAS and TP53 base editing was possible in patient-derived cancer organoids, suggesting that base editor approaches to correct oncogenic mutations could be developed for functional interrogation of vulnerabilities in a personalized manner for future precision oncology applications. SIGNIFICANCE Repairing KRAS mutations with base editors can be used for providing a better understanding of RAS biology and may lay the foundation for improved treatments for KRAS-mutant cancers.
Collapse
Affiliation(s)
- Shady Sayed
- Medical Systems Biology, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,National Center for Tumor Diseases (NCT), Dresden, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
| | - Olga A. Sidorova
- Medical Systems Biology, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Alexander Hennig
- National Center for Tumor Diseases (NCT), Dresden, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany.,Mildred Scheel Early Career Center (MSNZ) P2, National Center for Tumor Diseases Dresden (NCT/UCC), Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Martina Augsburg
- Medical Systems Biology, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Catherine P. Cortés Vesga
- Medical Systems Biology, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Moustafa Abohawya
- German Cancer Research Center (DKFZ), Heidelberg and German Cancer Consortium (DKTK) Partner Site, Dresden, Germany
| | - Lukas T. Schmitt
- Medical Systems Biology, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Duran Sürün
- Medical Systems Biology, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Daniel E. Stange
- National Center for Tumor Diseases (NCT), Dresden, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany.,Mildred Scheel Early Career Center (MSNZ) P2, National Center for Tumor Diseases Dresden (NCT/UCC), Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,German Cancer Research Center (DKFZ), Heidelberg and German Cancer Consortium (DKTK) Partner Site, Dresden, Germany
| | - Jovan Mircetic
- Medical Systems Biology, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,German Cancer Research Center (DKFZ), Heidelberg and German Cancer Consortium (DKTK) Partner Site, Dresden, Germany
| | - Frank Buchholz
- Medical Systems Biology, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,National Center for Tumor Diseases (NCT), Dresden, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany.,Mildred Scheel Early Career Center (MSNZ) P2, National Center for Tumor Diseases Dresden (NCT/UCC), Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,German Cancer Research Center (DKFZ), Heidelberg and German Cancer Consortium (DKTK) Partner Site, Dresden, Germany.,Corresponding Author: Frank Buchholz, Medical Systems Biology, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany. E-mail:
| |
Collapse
|
47
|
McCubrey JA, Meher AK, Akula SM, Abrams SL, Steelman LS, LaHair MM, Franklin RA, Martelli AM, Ratti S, Cocco L, Barbaro F, Duda P, Gizak A. Wild type and gain of function mutant TP53 can regulate the sensitivity of pancreatic cancer cells to chemotherapeutic drugs, EGFR/Ras/Raf/MEK, and PI3K/mTORC1/GSK-3 pathway inhibitors, nutraceuticals and alter metabolic properties. Aging (Albany NY) 2022; 14:3365-3386. [PMID: 35477123 PMCID: PMC9085237 DOI: 10.18632/aging.204038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/20/2022] [Indexed: 11/25/2022]
Abstract
TP53 is a master regulator of many signaling and apoptotic pathways involved in: aging, cell cycle progression, gene regulation, growth, apoptosis, cellular senescence, DNA repair, drug resistance, malignant transformation, metastasis, and metabolism. Most pancreatic cancers are classified as pancreatic ductal adenocarcinomas (PDAC). The tumor suppressor gene TP53 is mutated frequently (50-75%) in PDAC. Different types of TP53 mutations have been observed including gain of function (GOF) point mutations and various deletions of the TP53 gene resulting in lack of the protein expression. Most PDACs have point mutations at the KRAS gene which result in constitutive activation of KRas and multiple downstream signaling pathways. It has been difficult to develop specific KRas inhibitors and/or methods that result in recovery of functional TP53 activity. To further elucidate the roles of TP53 in drug-resistance of pancreatic cancer cells, we introduced wild-type (WT) TP53 or a control vector into two different PDAC cell lines. Introduction of WT-TP53 increased the sensitivity of the cells to multiple chemotherapeutic drugs, signal transduction inhibitors, drugs and nutraceuticals and influenced key metabolic properties of the cells. Therefore, TP53 is a key molecule which is critical in drug sensitivity and metabolism of PDAC.
Collapse
Affiliation(s)
- James A. McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA
| | - Akshaya K. Meher
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA
| | - Shaw M. Akula
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA
| | - Stephen L. Abrams
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA
| | - Linda S. Steelman
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA
| | - Michelle M. LaHair
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA
| | - Richard A. Franklin
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA
| | - Alberto M. Martelli
- Department of Biomedical and Neuromotor Sciences, Università di Bologna, Bologna, Italy
| | - Stefano Ratti
- Department of Biomedical and Neuromotor Sciences, Università di Bologna, Bologna, Italy
| | - Lucio Cocco
- Department of Biomedical and Neuromotor Sciences, Università di Bologna, Bologna, Italy
| | - Fulvio Barbaro
- Department of Medicine and Surgery, Re.Mo.Bio.S. Laboratory, Anatomy Section, University of Parma, Parma, Italy
| | - Przemysław Duda
- Department of Molecular Physiology and Neurobiology, University of Wroclaw, Wroclaw, Poland
| | - Agnieszka Gizak
- Department of Molecular Physiology and Neurobiology, University of Wroclaw, Wroclaw, Poland
| |
Collapse
|
48
|
Ungefroren H, Thürling I, Färber B, Kowalke T, Fischer T, De Assis LVM, Braun R, Castven D, Oster H, Konukiewitz B, Wellner UF, Lehnert H, Marquardt JU. The Quasimesenchymal Pancreatic Ductal Epithelial Cell Line PANC-1-A Useful Model to Study Clonal Heterogeneity and EMT Subtype Shifting. Cancers (Basel) 2022; 14:cancers14092057. [PMID: 35565186 PMCID: PMC9101310 DOI: 10.3390/cancers14092057] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/13/2022] [Accepted: 04/18/2022] [Indexed: 12/18/2022] Open
Abstract
Simple Summary Malignant tumors often escape therapy due to clonal propagation of a subfraction of drug-resistant cancer cells. The underlying phenomenon of intratumoral heterogeneity is driven by epithelial–mesenchymal plasticity (EMP) involving the developmental programs, epithelial–mesenchymal transition (EMT), in which epithelial cells are converted to invasive mesenchymal cells, and the reverse process, mesenchymal–epithelial transition (MET), which allows for metastatic outgrowth at distant sites. For therapeutic targeting of EMP, a better understanding of this process is required; however, cellular models with which to study EMP in pancreatic ductal adenocarcinoma (PDAC) are scarce. Using single-cell clonal analysis, we have found the PDAC cell line, PANC-1, to consist of cells with different E/M phenotypes and functional attributes. Parental PANC-1 cultures could be induced in vitro to shift towards either a more mesenchymal or a more epithelial phenotype, and this bidirectional shift was controlled by the small GTPases RAC1 and RAC1b, together identifying PANC-1 cells as a useful model with which to study EMP. Abstract Intratumoral heterogeneity (ITH) is an intrinsic feature of malignant tumors that eventually allows a subfraction of resistant cancer cells to clonally evolve and cause therapy failure or relapse. ITH, cellular plasticity and tumor progression are driven by epithelial–mesenchymal transition (EMT) and the reverse process, MET. During these developmental programs, epithelial (E) cells are successively converted to invasive mesenchymal (M) cells, or back to E cells, by passing through a series of intermediate E/M states, a phenomenon termed E–M plasticity (EMP). The induction of MET has clinical potential as it can block the initial EMT stages that favor tumor cell dissemination, while its inhibition can curb metastatic outgrowth at distant sites. In pancreatic ductal adenocarcinoma (PDAC), cellular models with which to study EMP or MET induction are scarce. Here, we have generated single cell-derived clonal cultures of the quasimesenchymal PDAC-derived cell line, PANC-1, and found that these differ strongly with respect to cell morphology and EMT marker expression, allowing for their tentative classification as E, E/M or M. Interestingly, the different EMT phenotypes were found to segregate with differences in tumorigenic potential in vitro, as measured by colony forming and invasive activities, and in circadian clock function. Moreover, the individual clones the phenotypes of which remained stable upon prolonged culture also responded differently to treatment with transforming growth factor (TGF)β1 in regard to regulation of growth and individual TGFβ target genes, and to culture conditions that favour ductal-to-endocrine transdifferentiation as a more direct measure for cellular plasticity. Of note, stimulation with TGFβ1 induced a shift in parental PANC-1 cultures towards a more extreme M and invasive phenotype, while exposing the cells to a combination of the proinflammatory cytokines IFNγ, IL1β and TNFα (IIT) elicited a shift towards a more E and less invasive phenotype resembling a MET-like process. Finally, we show that the actions of TGFβ1 and IIT both converge on regulating the ratio of the small GTPase RAC1 and its splice isoform, RAC1b. Our data provide strong evidence for dynamic EMT–MET transitions and qualify this cell line as a useful model with which to study EMP.
Collapse
Affiliation(s)
- Hendrik Ungefroren
- First Department of Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, D-23538 Lübeck, Germany; (I.T.); (T.K.); (T.F.); (D.C.); (J.-U.M.)
- Clinic for Surgery, University Hospital Schleswig-Holstein, Campus Lübeck, University of Lübeck, D-23538 Lübeck, Germany; (B.F.); (R.B.); (U.F.W.)
- Institute of Pathology, University Hospital Schleswig-Holstein, Campus Kiel, D-24105 Kiel, Germany;
- Correspondence:
| | - Isabel Thürling
- First Department of Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, D-23538 Lübeck, Germany; (I.T.); (T.K.); (T.F.); (D.C.); (J.-U.M.)
| | - Benedikt Färber
- Clinic for Surgery, University Hospital Schleswig-Holstein, Campus Lübeck, University of Lübeck, D-23538 Lübeck, Germany; (B.F.); (R.B.); (U.F.W.)
| | - Tanja Kowalke
- First Department of Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, D-23538 Lübeck, Germany; (I.T.); (T.K.); (T.F.); (D.C.); (J.-U.M.)
| | - Tanja Fischer
- First Department of Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, D-23538 Lübeck, Germany; (I.T.); (T.K.); (T.F.); (D.C.); (J.-U.M.)
| | - Leonardo Vinícius Monteiro De Assis
- Institute for Neurobiology, Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, D-23538 Lübeck, Germany; (L.V.M.D.A.); (H.O.)
| | - Rüdiger Braun
- Clinic for Surgery, University Hospital Schleswig-Holstein, Campus Lübeck, University of Lübeck, D-23538 Lübeck, Germany; (B.F.); (R.B.); (U.F.W.)
| | - Darko Castven
- First Department of Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, D-23538 Lübeck, Germany; (I.T.); (T.K.); (T.F.); (D.C.); (J.-U.M.)
| | - Henrik Oster
- Institute for Neurobiology, Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, D-23538 Lübeck, Germany; (L.V.M.D.A.); (H.O.)
| | - Björn Konukiewitz
- Institute of Pathology, University Hospital Schleswig-Holstein, Campus Kiel, D-24105 Kiel, Germany;
| | - Ulrich Friedrich Wellner
- Clinic for Surgery, University Hospital Schleswig-Holstein, Campus Lübeck, University of Lübeck, D-23538 Lübeck, Germany; (B.F.); (R.B.); (U.F.W.)
| | | | - Jens-Uwe Marquardt
- First Department of Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, D-23538 Lübeck, Germany; (I.T.); (T.K.); (T.F.); (D.C.); (J.-U.M.)
| |
Collapse
|
49
|
Adachi K, Sakurai Y, Ichinoe M, Tadehara M, Tamaki A, Kesen Y, Kato T, Mii S, Enomoto A, Takahashi M, Koizumi W, Murakumo Y. CD109 expression in tumor cells and stroma correlates with progression and prognosis in pancreatic cancer. Virchows Arch 2022; 480:819-829. [PMID: 34762199 DOI: 10.1007/s00428-021-03230-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/20/2021] [Accepted: 10/30/2021] [Indexed: 10/19/2022]
Abstract
CD109 is a glycosylphosphatidylinositol-anchored glycoprotein, whose expression is upregulated in some types of malignant tumors. High levels of CD109 in tumor cells have been reported to correlate with poor prognosis; however, significance of CD109 stromal expression in human malignancy has not been elucidated. In this study, we investigated the tumorigenic properties of CD109 in pancreatic ductal adenocarcinoma (PDAC). Immunohistochemical analysis of 92 PDAC surgical specimens revealed that positive CD109 expression in tumor cells was significantly associated with poor prognosis (disease-free survival, p = 0.003; overall survival, p = 0.002), and was an independent prognostic factor (disease-free survival, p = 0.0173; overall survival, p = 0.0104) in PDAC. Furthermore, CD109 expression was detected in the stroma surrounding tumor cells, similar to that of α-smooth muscle actin, a histological marker of cancer-associated fibroblasts. The stromal CD109 expression significantly correlated with tumor progression in PDAC (TNM stage, p = 0.033; N factor, p = 0.024; lymphatic invasion, p = 0.028). In addition, combined assessment of CD109 in tumor cells and stroma could identify the better prognosis group of patients from the entire patient population. In MIA PaCa-2 PDAC cell line, we demonstrated the involvement of CD109 in tumor cell motility, but not in PANC-1. Taken together, CD109 not only in the tumor cells but also in the stroma is involved in the progression and prognosis of PDAC, and may serve as a useful prognostic marker in PDAC.
Collapse
Affiliation(s)
- Kai Adachi
- Department of Pathology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, 252-0374, Japan
- Department of Gastroenterology, Kitasato University School of Medicine, Sagamihara, Japan
| | - Yasutaka Sakurai
- Department of Pathology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, 252-0374, Japan
| | - Masaaki Ichinoe
- Department of Pathology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, 252-0374, Japan
| | - Masayoshi Tadehara
- Department of Pathology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, 252-0374, Japan
- Department of Gastroenterology, Kitasato University School of Medicine, Sagamihara, Japan
| | - Akihiro Tamaki
- Department of Pathology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, 252-0374, Japan
- Department of Gastroenterology, Kitasato University School of Medicine, Sagamihara, Japan
| | - Yurika Kesen
- Department of Pathology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, 252-0374, Japan
| | - Takuya Kato
- Department of Pathology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, 252-0374, Japan
| | - Shinji Mii
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Atsushi Enomoto
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masahide Takahashi
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- International Center for Cell and Gene Therapy, Fujita Health University, Toyoake, Japan
| | - Wasaburo Koizumi
- Department of Gastroenterology, Kitasato University School of Medicine, Sagamihara, Japan
| | - Yoshiki Murakumo
- Department of Pathology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, 252-0374, Japan.
| |
Collapse
|
50
|
Microfluidics Formulated Liposomes of Hypoxia Activated Prodrug for Treatment of Pancreatic Cancer. Pharmaceutics 2022; 14:pharmaceutics14040713. [PMID: 35456547 PMCID: PMC9031349 DOI: 10.3390/pharmaceutics14040713] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/17/2022] [Accepted: 03/22/2022] [Indexed: 02/05/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) presents as an unmet clinical challenge for drug delivery due to its unique hypoxic biology. Vinblastine-N-Oxide (CPD100) is a hypoxia-activated prodrug (HAP) that selectively converts to its parent compound, vinblastine, a potent cytotoxic agent, under oxygen gradient. The study evaluates the efficacy of microfluidics formulated liposomal CPD100 (CPD100Li) in PDAC. CPD100Li were formulated with a size of 95 nm and a polydispersity index of 0.2. CPD100Li was stable for a period of 18 months when freeze-dried at a concentration of 3.55 mg/mL. CPD100 and CPD100Li confirmed selective activation at low oxygen levels in pancreatic cancer cell lines. Moreover, in 3D spheroids, CPD100Li displayed higher penetration and disruption compared to CPD100. In patient-derived 3D organoids, CPD100Li exhibited higher cell inhibition in the organoids that displayed higher expression of hypoxia-inducible factor 1 alpha (HIF1A) compared to CPD100. In the orthotopic model, the combination of CPD100Li with gemcitabine (GEM) (standard of care for PDAC) showed higher efficacy than CPD100Li alone for a period of 90 days. In summary, the evaluation of CPD100Li in multiple cellular models provides a strong foundation for its clinical application in PDAC.
Collapse
|