1
|
Cooper AN, Malmgren L, Hawkes FM, Farrell IW, Hien DFDS, Hopkins RJ, Lefèvre T, Stevenson PC. Identifying mosquito plant hosts from ingested nectar secondary metabolites. Sci Rep 2025; 15:6488. [PMID: 39987345 PMCID: PMC11846922 DOI: 10.1038/s41598-025-88933-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 01/31/2025] [Indexed: 02/24/2025] Open
Abstract
Establishing how plants contribute food and refuge to insects can be challenging for small species that are difficult to observe in their natural habitat, such as disease vectoring mosquitoes. Currently indirect methods of plant-host identification rely on DNA sequencing of ingested plant material but are often unsuccessful for small insects that feed primarily on plant sugars or have little contact with plant cells. Here we developed an innovative approach to determine species-specific phytophagy by detecting taxon-specific plant secondary metabolites (PSMs) in nectar. Two mosquito species were exposed to three PSMs, each present in the nectar of a known plant host, firstly from dosed sucrose solutions and secondly from flowers. Both experiments yielded high rates of PSM detection in mosquitoes using liquid chromatography-mass spectrometry (LC-MS). PSMs were consistently detected in mosquitoes up to 8 h post-ingestion. In experiments consisting of two or three plant species, multiple PSMs from different host plants could be detected. These positive results demonstrate that PSMs could be useful indicators of insect plant-hosts selection in the wild. With expanded knowledge of nectar-based PSMs across a landscape, improved knowledge of plant-host relationships could be achieved where direct observations in their natural habitat are lacking. Increasing understanding of vector insect ecology will have an important role in tackling vector-borne disease.
Collapse
Affiliation(s)
- Amanda N Cooper
- Royal Botanic Gardens Kew, Kew Road, Richmond, Surrey, TW9 3AE, UK.
| | - Louise Malmgren
- Natural Resources Institute, University of Greenwich, Chatham Maritime, Kent, ME4 4TB, UK
| | - Frances M Hawkes
- Natural Resources Institute, University of Greenwich, Chatham Maritime, Kent, ME4 4TB, UK
| | - Iain W Farrell
- Royal Botanic Gardens Kew, Kew Road, Richmond, Surrey, TW9 3AE, UK
| | - Domonbabele F D S Hien
- Institut de Recherche en Sciences de La Santé (IRSS), Bobo Dioulasso, Burkina Faso
- Laboratoire Mixte International Maladies à Vecteurs en Afrique de l'Ouest (LAMIVECT), Bobo Dioulasso, Burkina Faso
| | - Richard J Hopkins
- Natural Resources Institute, University of Greenwich, Chatham Maritime, Kent, ME4 4TB, UK
| | - Thierry Lefèvre
- MIVEGEC, Université de Montpellier, IRD, CNRS, Montpellier, France
| | - Philip C Stevenson
- Royal Botanic Gardens Kew, Kew Road, Richmond, Surrey, TW9 3AE, UK
- Natural Resources Institute, University of Greenwich, Chatham Maritime, Kent, ME4 4TB, UK
| |
Collapse
|
2
|
Assentato L, Nilsson LKJ, Brunius C, Feltelius V, Elleby R, Hopkins RJ, Terenius O. The type of environment has a greater impact on the larval microbiota of Anopheles arabiensis than on the microbiota of their breeding water. FEMS Microbiol Ecol 2025; 101:fiae161. [PMID: 39694819 PMCID: PMC11737318 DOI: 10.1093/femsec/fiae161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/25/2024] [Accepted: 12/17/2024] [Indexed: 12/20/2024] Open
Abstract
Mosquito larvae of the genus Anopheles develop entirely in water, frequently visiting the surface for air. The aquatic environment plays a key role in shaping their microbiota, but the connection between environmental characteristics of breeding sites and larval microbiota remains underexplored. This study focuses on Anopheles arabiensis, which inhabits the surface microlayer (SML) of breeding sites, a zone with high particle density. We hypothesized that the SML could allow us to capture the diversity of the surrounding environment, and in turn its influence on the larval microbial communities. To test this, we collected A. arabiensis larvae and SML samples from various breeding sites categorized by environmental features. Our results confirm that breeding site characteristics are significant drivers of the bacterial species present in mosquito larvae. Additionally, we found that the larval micro-environment selectively shapes its microbiota, highlighting a dynamic interplay between environmental and internal factors. Interestingly, specific bacterial families were associated with the presence or absence of larvae in breeding sites, suggesting potential ecological roles. These findings expand our understanding of vector-mosquito microbiota, emphasizing the importance of breeding site features in shaping larval microbial communities and providing a foundation for future research on mosquito ecology and control strategies.
Collapse
Affiliation(s)
- Lorenzo Assentato
- Department of Cell and Molecular Biology, Microbiology and Immunology, Uppsala University, Box 596, SE-751 24 Uppsala, Sweden
| | - Louise K J Nilsson
- Department of Cell and Molecular Biology, Microbiology and Immunology, Uppsala University, Box 596, SE-751 24 Uppsala, Sweden
- Department of Ecology, Swedish University of Agricultural Sciences (SLU), Box 7044, SE-750 07 Uppsala, Sweden
| | - Carl Brunius
- Department of Life Sciences, Food and Nutrition Science, Chalmers University of Technology, SE-412 96 Göteborg, Sweden
| | - Vilhelm Feltelius
- VA-guiden Sverige AB, Östra Ågatan 53, 4 tr, SE-753 22 Uppsala, Sweden
| | - Rasmus Elleby
- VA-guiden Sverige AB, Östra Ågatan 53, 4 tr, SE-753 22 Uppsala, Sweden
| | - Richard J Hopkins
- Natural Resources Institute, University of Greenwich, Central Avenue, Chatham Maritime, Kent ME4 4 TB, United Kingdom
| | - Olle Terenius
- Department of Cell and Molecular Biology, Microbiology and Immunology, Uppsala University, Box 596, SE-751 24 Uppsala, Sweden
| |
Collapse
|
3
|
Foo A, Brettell LE, Nichols HL, Medina Muñoz M, Lysne JA, Dhokiya V, Hoque AF, Brackney DE, Caragata EP, Hutchinson ML, Jacobs-Lorena M, Lampe DJ, Martin E, Valiente Moro C, Povelones M, Short SM, Steven B, Xu J, Paustian TD, Rondon MR, Hughes GL, Coon KL, Heinz E. MosAIC: An annotated collection of mosquito-associated bacteria with high-quality genome assemblies. PLoS Biol 2024; 22:e3002897. [PMID: 39546548 PMCID: PMC11633956 DOI: 10.1371/journal.pbio.3002897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/11/2024] [Accepted: 10/11/2024] [Indexed: 11/17/2024] Open
Abstract
Mosquitoes transmit medically important human pathogens, including viruses like dengue virus and parasites such as Plasmodium spp., the causative agent of malaria. Mosquito microbiomes are critically important for the ability of mosquitoes to transmit disease-causing agents. However, while large collections of bacterial isolates and genomic data exist for vertebrate microbiomes, the vast majority of work in mosquitoes to date is based on 16S rRNA gene amplicon data that provides limited taxonomic resolution and no functional information. To address this gap and facilitate future studies using experimental microbiome manipulations, we generated a bacterial Mosquito-Associated Isolate Collection (MosAIC) consisting of 392 bacterial isolates with extensive metadata and high-quality draft genome assemblies that are publicly available, both isolates and sequence data, for use by the scientific community. MosAIC encompasses 142 species spanning 29 bacterial families, with members of the Enterobacteriaceae comprising 40% of the collection. Phylogenomic analysis of 3 genera, Enterobacter, Serratia, and Elizabethkingia, reveal lineages of mosquito-associated bacteria isolated from different mosquito species in multiple laboratories. Investigation into species' pangenomes further reveals clusters of genes specific to these lineages, which are of interest for future work to test for functions connected to mosquito host association. Altogether, we describe the generation of a physical collection of mosquito-associated bacterial isolates, their genomic data, and analyses of selected groups in context of genome data from closely related isolates, providing a unique, highly valuable resource for research on bacterial colonisation and adaptation within mosquito hosts. Future efforts will expand the collection to include broader geographic and host species representation, especially from individuals collected from field populations, as well as other mosquito-associated microbes, including fungi, archaea, and protozoa.
Collapse
Affiliation(s)
- Aidan Foo
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Laura E. Brettell
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- School of Science, Engineering and Environment, University of Salford, Manchester, United Kingdom
| | - Holly L. Nichols
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | | | - Miguel Medina Muñoz
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Jessica A. Lysne
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Vishaal Dhokiya
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Ananya F. Hoque
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Doug E. Brackney
- Department of Entomology, Connecticut Agricultural Experiment Station, New Haven, Connecticut, United States of America
- Center for Vector Biology and Zoonotic Diseases, Connecticut Agricultural Experiment Station, New Haven, Connecticut, United States of America
| | - Eric P. Caragata
- Florida Medical Entomology Laboratory, Department of Entomology and Nematology, Institute of Food and Agricultural Sciences, University of Florida, Vero Beach, Florida, United States of America
| | - Michael L. Hutchinson
- Division of Vector Management, Pennsylvania Department of Environmental Protection, Harrisburg, Pennsylvania, United States of America
- Division of Plant Health, Pennsylvania Department of Agriculture, Harrisburg, Pennsylvania, United States of America
| | - Marcelo Jacobs-Lorena
- Department of Molecular Microbiology and Immunology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - David J. Lampe
- Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania, United States of America
| | - Edwige Martin
- Universite Claude Bernard Lyon 1, Laboratoire d'Ecologie Microbienne, UMR CNRS 5557, UMR INRAE 1418, VetAgro Sup, 69622 Villeurbanne, France
| | - Claire Valiente Moro
- Universite Claude Bernard Lyon 1, Laboratoire d'Ecologie Microbienne, UMR CNRS 5557, UMR INRAE 1418, VetAgro Sup, 69622 Villeurbanne, France
| | - Michael Povelones
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Sarah M. Short
- Department of Entomology, The Ohio State University, Columbus, Ohio, United States of America
| | - Blaire Steven
- Department of Environmental Science and Forestry, Connecticut Agricultural Experiment Station, New Haven, Connecticut, United States of America
| | - Jiannong Xu
- Department of Biology, New Mexico State University, Las Cruces, New Mexico, United States of America
| | - Timothy D. Paustian
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Michelle R. Rondon
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Grant L. Hughes
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Department of Tropical Disease Biology, Centre for Neglected Tropical Disease, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Kerri L. Coon
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Eva Heinz
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| |
Collapse
|
4
|
Liu H, Yin J, Huang X, Zang C, Zhang Y, Cao J, Gong M. Mosquito Gut Microbiota: A Review. Pathogens 2024; 13:691. [PMID: 39204291 PMCID: PMC11357333 DOI: 10.3390/pathogens13080691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/29/2024] [Accepted: 08/06/2024] [Indexed: 09/03/2024] Open
Abstract
Mosquitoes are vectors of many important human diseases. The prolonged and widespread use of insecticides has led to the development of mosquito resistance to these insecticides. The gut microbiota is considered the master of host development and physiology; it influences mosquito biology, disease pathogen transmission, and resistance to insecticides. Understanding the role and mechanisms of mosquito gut microbiota in mosquito insecticide resistance is useful for developing new strategies for tackling mosquito insecticide resistance. We searched online databases, including PubMed, MEDLINE, SciELO, Web of Science, and the Chinese Science Citation Database. We searched all terms, including microbiota and mosquitoes, or any specific genera or species of mosquitoes. We reviewed the relationships between microbiota and mosquito growth, development, survival, reproduction, and disease pathogen transmission, as well as the interactions between microbiota and mosquito insecticide resistance. Overall, 429 studies were included in this review after filtering 8139 search results. Mosquito gut microbiota show a complex community structure with rich species diversity, dynamic changes in the species composition over time (season) and across space (environmental setting), and variation among mosquito species and mosquito developmental stages (larval vs. adult). The community composition of the microbiota plays profound roles in mosquito development, survival, and reproduction. There was a reciprocal interaction between the mosquito midgut microbiota and virus infection in mosquitoes. Wolbachia, Asaia, and Serratia are the three most studied bacteria that influence disease pathogen transmission. The insecticide resistance or exposure led to the enrichment or reduction in certain microorganisms in the resistant mosquitoes while enhancing the abundance of other microorganisms in insect-susceptible mosquitoes, and they involved many different species/genera/families of microorganisms. Conversely, microbiota can promote insecticide resistance in their hosts by isolating and degrading insecticidal compounds or altering the expression of host genes and metabolic detoxification enzymes. Currently, knowledge is scarce about the community structure of mosquito gut microbiota and its functionality in relation to mosquito pathogen transmission and insecticide resistance. The new multi-omics techniques should be adopted to find the links among environment, mosquito, and host and bring mosquito microbiota studies to the next level.
Collapse
Affiliation(s)
- Hongmei Liu
- Key Laboratory of Parasite and Vector Biology, National Health Commission of People’s Republic of China, National Institute of Parasitic Diseases at Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), Shanghai 200025, China;
- Digestive Disease Hospital of Shandong First Medical University, Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining 272000, China; (X.H.); (C.Z.); (Y.Z.)
- World Health Organization Collaborating Centre for Tropical Diseases, Shanghai 200025, China
| | - Jianhai Yin
- Key Laboratory of Parasite and Vector Biology, National Health Commission of People’s Republic of China, National Institute of Parasitic Diseases at Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), Shanghai 200025, China;
- World Health Organization Collaborating Centre for Tropical Diseases, Shanghai 200025, China
| | - Xiaodan Huang
- Digestive Disease Hospital of Shandong First Medical University, Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining 272000, China; (X.H.); (C.Z.); (Y.Z.)
| | - Chuanhui Zang
- Digestive Disease Hospital of Shandong First Medical University, Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining 272000, China; (X.H.); (C.Z.); (Y.Z.)
| | - Ye Zhang
- Digestive Disease Hospital of Shandong First Medical University, Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining 272000, China; (X.H.); (C.Z.); (Y.Z.)
| | - Jianping Cao
- Key Laboratory of Parasite and Vector Biology, National Health Commission of People’s Republic of China, National Institute of Parasitic Diseases at Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), Shanghai 200025, China;
- World Health Organization Collaborating Centre for Tropical Diseases, Shanghai 200025, China
| | - Maoqing Gong
- Digestive Disease Hospital of Shandong First Medical University, Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining 272000, China; (X.H.); (C.Z.); (Y.Z.)
| |
Collapse
|
5
|
Akintola AA, Hwang UW. Microbiome profile of South Korean vector mosquitoes. Acta Trop 2024; 255:107213. [PMID: 38608996 DOI: 10.1016/j.actatropica.2024.107213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/09/2024] [Accepted: 04/09/2024] [Indexed: 04/14/2024]
Abstract
This research offers a comprehensive exploration of the microbial communities associated with vector mosquitoes from South Korea. Aedes albopictus, Anopheles sinensis, and Culex molestus are vectors of pathogens, and understanding the intricacies of their microbiome profile is paramount for unraveling their roles in disease transmission dynamics. In this study, we characterized the microbiome of the midguts of adult female vector mosquitoes collected from different locations in South Korea. After DNA extraction from dissected mosquito midguts, we used the Illumina MiSeq next-generation sequencing to obtain sequences spanning the V4 hypervariable region of the bacteria 16S rRNA. Morphological and molecular characterization using 506-bp mitochondrial 16S rRNA was used to identify the mosquito species before amplicon sequencing. Across the three vector mosquitoes surveyed, 21 bacteria genera belonging to 20 families and 5 phyla were discovered. Proteobacteria and Bacteriodota were the major phyla of bacteria associated with the three mosquito species. There were significant differences in the gut microbiome genera composition between the species and little variation in the gut microbiome between individuals of the same mosquito species. Wolbachia is the most dominant genus in Aedes while Aeromonas, Acinetobacter, and unassigned taxa are the most common in An. sinensis. In addition to that, Chromobacterium, Chryseobacterium, and Aeromonas are dominant in Cx. molestus. This study sheds light on the complex interactions between mosquitoes and their microbiome, revealing potential implications for vector competence, disease transmission, and vector control strategies.
Collapse
Affiliation(s)
- Ashraf Akintayo Akintola
- Department of Biomedical Convergence Science and Technology, Kyungpook National University, Daegu, 41566, Republic of Korea; Department of Biology, Teachers College and Institute for Phylogenomics and Evolution, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Ui Wook Hwang
- Department of Biomedical Convergence Science and Technology, Kyungpook National University, Daegu, 41566, Republic of Korea; Department of Biology, Teachers College and Institute for Phylogenomics and Evolution, Kyungpook National University, Daegu, 41566, Republic of Korea; Institute for Korean Herb-Bio Convergence Promotion, Kyungpook National University, Daegu, 41566, Republic of Korea; Phylomics Inc., Daegu, 41910, Republic of Korea.
| |
Collapse
|
6
|
Li J, Du J, Ding G, Zhang W, Zhou Y, Xu Y, Zhou D, Sun Y, Liu X, Shen B. Isolation, characterization and functional analysis of a bacteriophage targeting Culex pipiens pallens resistance-associated Aeromonas hydrophila. Parasit Vectors 2024; 17:222. [PMID: 38745242 PMCID: PMC11094981 DOI: 10.1186/s13071-024-06281-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 04/15/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Culex pipiens pallens is a well-known mosquito vector for several diseases. Deltamethrin, a commonly used pyrethroid insecticide, has been frequently applied to manage adult Cx. pipiens pallens. However, mosquitoes can develop resistance to these insecticides as a result of insecticide misuse and, therefore, it is crucial to identify novel methods to control insecticide resistance. The relationship between commensal bacteria and vector resistance has been recently recognized. Bacteriophages (= phages) are effective tools by which to control insect commensal bacteria, but there have as yet been no studies using phages on adult mosquitoes. In this study, we isolated an Aeromonas phage vB AhM-LH that specifically targets resistance-associated symbiotic bacteria in mosquitoes. We investigated the impact of Aeromonas phage vB AhM-LH in an abundance of Aeromonas hydrophila in the gut of Cx. pipiens pallens and its effect on the status of deltamethrin resistance. METHODS Phages were isolated on double-layer agar plates and their biological properties analyzed. Phage morphology was observed by transmission electron microscopy (TEM) after negative staining. The phage was then introduced into the mosquito intestines via oral feeding. The inhibitory effect of Aeromonas phage vB AhM-LH on Aeromonas hydrophila in mosquito intestines was assessed through quantitative real-time PCR analysis. Deltamethrin resistance of mosquitoes was assessed using WHO bottle bioassays. RESULTS An Aeromonas phage vB AhM-LH was isolated from sewage and identified as belonging to the Myoviridae family in the order Caudovirales using TEM. Based on biological characteristics analysis and in vitro antibacterial experiments, Aeromonas phage vB AhM-LH was observed to exhibit excellent stability and effective bactericidal activity. Sequencing revealed that the Aeromonas phage vB AhM-LH genome comprises 43,663 bp (51.6% CG content) with 81 predicted open reading frames. No integrase-related gene was detected in the vB AH-LH genome, which marked it as a potential biological antibacterial. Finally, we found that Aeromonas phage vB AhM-LH could significantly reduce deltamethrin resistance in Cx. pipiens pallens, in both the laboratory and field settings, by decreasing the abundance of Aeromonas hydrophila in their midgut. CONCLUSIONS Our findings demonstrate that Aeromonas phage vB AhM-LH could effectively modulate commensal bacteria Aeromonas hydrophila in adult mosquitoes, thus representing a promising strategy to mitigate mosquito vector resistance.
Collapse
Affiliation(s)
- Jinze Li
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jiajia Du
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Guangshuo Ding
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wenxing Zhang
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yinghui Zhou
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yidan Xu
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Dan Zhou
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yan Sun
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaoqiu Liu
- Department of Pathogen Biology, China Medical University, Shenyang, China.
| | - Bo Shen
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
7
|
Cao J, Zheng W, Chen B, Yan Z, Tang X, Li J, Zhang Z, Ang S, Li C, Wu R, Wu P, Chen WH. Chemical Composition of Essential Oil from Citrus reticulata Blanco cv. Chachiensis (Chachi) and Its Anti-Mosquito Activity against Pyrethroid-Resistant Aedes albopictus. INSECTS 2024; 15:345. [PMID: 38786901 PMCID: PMC11122156 DOI: 10.3390/insects15050345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/06/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024]
Abstract
The overuse of synthetic insecticides has led to various negative consequences, including insecticide resistance, environmental pollution, and harm to public health. This may be ameliorated by using insecticides derived from botanical sources. The primary objective of this study was to evaluate the anti-mosquito activity of the essential oil (EO) of Citrus reticulata Blanco cv. Chachiensis (Chachi) (referred to as CRB) at immature, semi-mature, and mature stages. The chemical compositions of the CRB EO were analyzed using GC-MS. The main components were identified to be D-limonene and γ-terpinene. The contents of D-limonene at the immature, semi-mature, and mature stages were 62.35%, 76.72%, and 73.15%, respectively; the corresponding contents of γ-terpinene were 14.26%, 11.04%, and 11.27%, respectively. In addition, the corresponding contents of a characteristic component, methyl 2-aminobenzoate, were 4.95%, 1.93%, and 2.15%, respectively. CRB EO exhibited significant larvicidal activity against Aedes albopictus (Ae. albopictus, Diptera: Culicidae), with the 50% lethal doses being 65.32, 61.47, and 65.91 mg/L for immature, semi-mature, and mature CRB EO, respectively. CRB EO was able to inhibit acetylcholinesterase and three detoxification enzymes, significantly reduce the diversity of internal microbiota in mosquitoes, and decrease the relative abundance of core species within the microbiota. The present results may provide novel insights into the utilization of plant-derived essential oils in anti-mosquitoes.
Collapse
Affiliation(s)
- Jifan Cao
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China; (J.C.); (W.Z.); (Z.Y.); (X.T.); (J.L.); (Z.Z.); (S.A.); (C.L.); (R.W.)
- International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, China
| | - Wende Zheng
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China; (J.C.); (W.Z.); (Z.Y.); (X.T.); (J.L.); (Z.Z.); (S.A.); (C.L.); (R.W.)
- International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, China
| | - Baizhong Chen
- Guangdong Xinbaotang Biotechnology Co., Ltd., Jiangmen 529100, China;
| | - Zhenping Yan
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China; (J.C.); (W.Z.); (Z.Y.); (X.T.); (J.L.); (Z.Z.); (S.A.); (C.L.); (R.W.)
- International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, China
| | - Xiaowen Tang
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China; (J.C.); (W.Z.); (Z.Y.); (X.T.); (J.L.); (Z.Z.); (S.A.); (C.L.); (R.W.)
- International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, China
| | - Jiahao Li
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China; (J.C.); (W.Z.); (Z.Y.); (X.T.); (J.L.); (Z.Z.); (S.A.); (C.L.); (R.W.)
- International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, China
| | - Zhen Zhang
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China; (J.C.); (W.Z.); (Z.Y.); (X.T.); (J.L.); (Z.Z.); (S.A.); (C.L.); (R.W.)
- International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, China
| | - Song Ang
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China; (J.C.); (W.Z.); (Z.Y.); (X.T.); (J.L.); (Z.Z.); (S.A.); (C.L.); (R.W.)
- International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, China
| | - Chen Li
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China; (J.C.); (W.Z.); (Z.Y.); (X.T.); (J.L.); (Z.Z.); (S.A.); (C.L.); (R.W.)
- International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, China
| | - Rihui Wu
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China; (J.C.); (W.Z.); (Z.Y.); (X.T.); (J.L.); (Z.Z.); (S.A.); (C.L.); (R.W.)
- International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, China
| | - Panpan Wu
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China; (J.C.); (W.Z.); (Z.Y.); (X.T.); (J.L.); (Z.Z.); (S.A.); (C.L.); (R.W.)
- International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, China
| | - Wen-Hua Chen
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China; (J.C.); (W.Z.); (Z.Y.); (X.T.); (J.L.); (Z.Z.); (S.A.); (C.L.); (R.W.)
- International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, China
| |
Collapse
|
8
|
Tokash-Peters AG, Niyonzima JD, Kayirangwa M, Muhayimana S, Tokash IW, Jabon JD, Lopez SG, Kearns PJ, Woodhams DC. Mosquito Microbiomes of Rwanda: Characterizing Mosquito Host and Microbial Communities in the Land of a Thousand Hills. MICROBIAL ECOLOGY 2024; 87:64. [PMID: 38691215 PMCID: PMC11062966 DOI: 10.1007/s00248-024-02382-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 04/18/2024] [Indexed: 05/03/2024]
Abstract
Mosquitoes are a complex nuisance around the world and tropical countries bear the brunt of the burden of mosquito-borne diseases. Rwanda has had success in reducing malaria and some arboviral diseases over the last few years, but still faces challenges to elimination. By building our understanding of in situ mosquito communities in Rwanda at a disturbed, human-occupied site and at a natural, preserved site, we can build our understanding of natural mosquito microbiomes toward the goal of implementing novel microbial control methods. Here, we examined the composition of collected mosquitoes and their microbiomes at two diverse sites using Cytochrome c Oxidase I sequencing and 16S V4 high-throughput sequencing. The majority (36 of 40 species) of mosquitoes captured and characterized in this study are the first-known record of their species for Rwanda but have been characterized in other nations in East Africa. We found significant differences among mosquito genera and among species, but not between mosquito sexes or catch method. Bacteria of interest for arbovirus control, Asaia, Serratia, and Wolbachia, were found in abundance at both sites and varied greatly by species.
Collapse
Affiliation(s)
- Amanda G Tokash-Peters
- College of Science and Mathematics, University of Massachusetts Boston, Boston, MA, USA
- Center of Excellence in Biodiversity, University of Rwanda, Huye, Rwanda
| | | | | | - Simon Muhayimana
- Center of Excellence in Biodiversity, University of Rwanda, Huye, Rwanda
| | - Ivan W Tokash
- College of Science and Mathematics, University of Massachusetts Boston, Boston, MA, USA
| | - Jaimy D Jabon
- College of Science and Mathematics, University of Massachusetts Boston, Boston, MA, USA
| | - Sergio G Lopez
- College of Science and Mathematics, University of Massachusetts Boston, Boston, MA, USA
| | - Patrick J Kearns
- College of Science and Mathematics, University of Massachusetts Boston, Boston, MA, USA
| | - Douglas C Woodhams
- College of Science and Mathematics, University of Massachusetts Boston, Boston, MA, USA.
| |
Collapse
|
9
|
Yan Y, Schillemans T, Skantze V, Brunius C. Adjusting for covariates and assessing modeling fitness in machine learning using MUVR2. BIOINFORMATICS ADVANCES 2024; 4:vbae051. [PMID: 38645717 PMCID: PMC11031361 DOI: 10.1093/bioadv/vbae051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 03/05/2024] [Accepted: 04/03/2024] [Indexed: 04/23/2024]
Abstract
Motivation Machine learning (ML) methods are frequently used in Omics research to examine associations between molecular data and for example exposures and health conditions. ML is also used for feature selection to facilitate biological interpretation. Our previous MUVR algorithm was shown to generate predictions and variable selections at state-of-the-art performance. However, a general framework for assessing modeling fitness is still lacking. In addition, enabling to adjust for covariates is a highly desired, but largely lacking trait in ML. We aimed to address these issues in the new MUVR2 framework. Results The MUVR2 algorithm was developed to include the regularized regression framework elastic net in addition to partial least squares and random forest modeling. Compared with other cross-validation strategies, MUVR2 consistently showed state-of-the-art performance, including variable selection, while minimizing overfitting. Testing on simulated and real-world data, we also showed that MUVR2 allows for the adjustment for covariates using elastic net modeling, but not using partial least squares or random forest. Availability and implementation Algorithms, data, scripts, and a tutorial are open source under GPL-3 license and available in the MUVR2 R package at https://github.com/MetaboComp/MUVR2.
Collapse
Affiliation(s)
- Yingxiao Yan
- Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Tessa Schillemans
- Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| | - Viktor Skantze
- Fraunhofer-Chalmers Research Centre for Industrial Mathematics, Gothenburg, Sweden
| | - Carl Brunius
- Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
- Chalmers Mass Spectrometry Infrastructure, Chalmers University of Technology, Gothenburg SE-41296, Sweden
| |
Collapse
|
10
|
Hajra D, Kirthivasan N, Chakravortty D. Symbiotic Synergy from Sponges to Humans: Microflora-Host Harmony Is Crucial for Ensuring Survival and Shielding against Invading Pathogens. ACS Infect Dis 2024; 10:317-336. [PMID: 38170903 DOI: 10.1021/acsinfecdis.3c00554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Gut microbiota plays several roles in the host organism's metabolism and physiology. This phenomenon holds across different species from different kingdoms and classes. Different species across various classes engage in continuous crosstalk via various mechanisms with their gut microbiota, ensuring homeostasis of the host. In this Review, the diversity of the microflora, the development of the microflora in the host, its regulations by the host, and its functional implications on the host, especially in the context of dysbiosis, are discussed across different organisms from sponges to humans. Overall, our review aims to address the indispensable nature of the microbiome in the host's survival, fitness, and protection against invading pathogens.
Collapse
Affiliation(s)
- Dipasree Hajra
- Department of Microbiology & Cell Biology, Indian Institute of Science, Bangalore, Karnataka-560012, India
| | - Nikhita Kirthivasan
- Undergraduate Programme, Indian Institute of Science, Bangalore, Karnataka-560012, India
| | - Dipshikha Chakravortty
- Department of Microbiology & Cell Biology, Indian Institute of Science, Bangalore, Karnataka-560012, India
| |
Collapse
|
11
|
Kang Z, Martinson VG, Wang Y, Coon KL, Valzania L, Strand MR. Increased environmental microbial diversity reduces the disease risk of a mosquitocidal pathogen. mBio 2024; 15:e0272623. [PMID: 38055338 PMCID: PMC10790785 DOI: 10.1128/mbio.02726-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 10/25/2023] [Indexed: 12/08/2023] Open
Abstract
IMPORTANCE The host-specific microbiotas of animals can both reduce and increase disease risks from pathogens. In contrast, how environmental microbial communities affect pathogens is largely unexplored. Aquatic habitats are of interest because water enables environmental microbes to readily interact with animal pathogens. Here, we focused on mosquitoes, which are important disease vectors as terrestrial adults but are strictly aquatic as larvae. We identified a pathogen of mosquito larvae from the field as a strain of Chromobacterium haemolyticum. Comparative genomic analyses and functional assays indicate this strain and other Chromobacterium are mosquitocidal but are also opportunistic pathogens of other animals. We also identify a critical role for diversity of the environmental microbiota in disease risk. Our study characterizes both the virulence mechanisms of a pathogen and the role of the environmental microbiota in disease risk to an aquatic animal of significant importance to human health.
Collapse
Affiliation(s)
- Zhiwei Kang
- Hebei University, College of Life Sciences, Baoding, Hebei, China
| | - Vincent G. Martinson
- Department of Entomology, University of Georgia, Athens, Georgia, USA
- Department of Biology, University of New Mexico, Albuquerque, New Mexico, USA
| | - Yin Wang
- Department of Entomology, University of Georgia, Athens, Georgia, USA
| | - Kerri L. Coon
- Department of Entomology, University of Georgia, Athens, Georgia, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Luca Valzania
- Department of Entomology, University of Georgia, Athens, Georgia, USA
- Institut Curie, Paris, France
| | - Michael R. Strand
- Department of Entomology, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
12
|
Zheng R, Wang Q, Wu R, Paradkar PN, Hoffmann AA, Wang GH. Holobiont perspectives on tripartite interactions among microbiota, mosquitoes, and pathogens. THE ISME JOURNAL 2023; 17:1143-1152. [PMID: 37231184 PMCID: PMC10356850 DOI: 10.1038/s41396-023-01436-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 04/18/2023] [Accepted: 05/16/2023] [Indexed: 05/27/2023]
Abstract
Mosquito-borne diseases like dengue and malaria cause a significant global health burden. Unfortunately, current insecticides and environmental control strategies aimed at the vectors of these diseases are only moderately effective in decreasing disease burden. Understanding and manipulating the interaction between the mosquito holobiont (i.e., mosquitoes and their resident microbiota) and the pathogens transmitted by these mosquitoes to humans and animals could help in developing new disease control strategies. Different microorganisms found in the mosquito's microbiota affect traits related to mosquito survival, development, and reproduction. Here, we review the physiological effects of essential microbes on their mosquito hosts; the interactions between the mosquito holobiont and mosquito-borne pathogen (MBP) infections, including microbiota-induced host immune activation and Wolbachia-mediated pathogen blocking (PB); and the effects of environmental factors and host regulation on the composition of the microbiota. Finally, we briefly overview future directions in holobiont studies, and how these may lead to new effective control strategies against mosquitoes and their transmitted diseases.
Collapse
Affiliation(s)
- Ronger Zheng
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qiqi Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Runbiao Wu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Prasad N Paradkar
- CSIRO Health and Biosecurity, Australian Centre for Disease Preparedness, Geelong, VIC, Australia
| | - Ary A Hoffmann
- Pest and Environmental Adaptation Research Group, Bio21 Institute and the School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
| | - Guan-Hong Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
13
|
Baltar JMC, Pavan MG, Corrêa-Antônio J, Couto-Lima D, Maciel-de-Freitas R, David MR. Gut Bacterial Diversity of Field and Laboratory-Reared Aedes albopictus Populations of Rio de Janeiro, Brazil. Viruses 2023; 15:1309. [PMID: 37376609 DOI: 10.3390/v15061309] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/25/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND The mosquito microbiota impacts different parameters in host biology, such as development, metabolism, immune response and vector competence to pathogens. As the environment is an important source of acquisition of host associate microbes, we described the microbiota and the vector competence to Zika virus (ZIKV) of Aedes albopictus from three areas with distinct landscapes. METHODS Adult females were collected during two different seasons, while eggs were used to rear F1 colonies. Midgut bacterial communities were described in field and F1 mosquitoes as well as in insects from a laboratory colony (>30 generations, LAB) using 16S rRNA gene sequencing. F1 mosquitoes were infected with ZIKV to determine virus infection rates (IRs) and dissemination rates (DRs). Collection season significantly affected the bacterial microbiota diversity and composition, e.g., diversity levels decreased from the wet to the dry season. Field-collected and LAB mosquitoes' microbiota had similar diversity levels, which were higher compared to F1 mosquitoes. However, the gut microbiota composition of field mosquitoes was distinct from that of laboratory-reared mosquitoes (LAB and F1), regardless of the collection season and location. A possible negative correlation was detected between Acetobacteraceae and Wolbachia, with the former dominating the gut microbiota of F1 Ae. albopictus, while the latter was absent/undetectable. Furthermore, we detected significant differences in infection and dissemination rates (but not in the viral load) between the mosquito populations, but it does not seem to be related to gut microbiota composition, as it was similar between F1 mosquitoes regardless of their population. CONCLUSIONS Our results indicate that the environment and the collection season play a significant role in shaping mosquitoes' bacterial microbiota.
Collapse
Affiliation(s)
- João M C Baltar
- Laboratório de Mosquitos Transmissores de Hematozoários, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, RJ, Brazil
| | - Márcio G Pavan
- Laboratório de Mosquitos Transmissores de Hematozoários, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, RJ, Brazil
| | - Jessica Corrêa-Antônio
- Laboratório de Mosquitos Transmissores de Hematozoários, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, RJ, Brazil
| | - Dinair Couto-Lima
- Laboratório de Mosquitos Transmissores de Hematozoários, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, RJ, Brazil
| | - Rafael Maciel-de-Freitas
- Laboratório de Mosquitos Transmissores de Hematozoários, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, RJ, Brazil
- Department of Arbovirology, Bernhard Nocht Institute of Tropical Medicine, 20359 Hamburg, Germany
| | - Mariana R David
- Laboratório de Mosquitos Transmissores de Hematozoários, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, RJ, Brazil
| |
Collapse
|
14
|
Zhao SY, Hughes GL, Coon KL. A cryopreservation method to recover laboratory- and field-derived bacterial communities from mosquito larval habitats. PLoS Negl Trop Dis 2023; 17:e0011234. [PMID: 37018374 PMCID: PMC10109488 DOI: 10.1371/journal.pntd.0011234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 04/17/2023] [Accepted: 03/10/2023] [Indexed: 04/06/2023] Open
Abstract
Mosquitoes develop in a wide range of aquatic habitats containing highly diverse and variable bacterial communities that shape both larval and adult traits, including the capacity of adult females of some mosquito species to transmit disease-causing organisms to humans. However, while most mosquito studies control for host genotype and environmental conditions, the impact of microbiota variation on phenotypic outcomes of mosquitoes is often unaccounted for. The inability to conduct reproducible intra- and inter-laboratory studies of mosquito-microbiota interactions has also greatly limited our ability to identify microbial targets for mosquito-borne disease control. Here, we developed an approach to isolate and cryopreserve bacterial communities derived from lab and field-based larval rearing environments of the yellow fever mosquito Aedes aegypti-a primary vector of dengue, Zika, and chikungunya viruses. We then validated the use of our approach to generate experimental microcosms colonized by standardized lab- and field-derived bacterial communities. Our results overall reveal minimal effects of cryopreservation on the recovery of both lab- and field-derived bacteria when directly compared with isolation from non-cryopreserved fresh material. Our results also reveal improved reproducibility of bacterial communities in replicate microcosms generated using cryopreserved stocks over fresh material. Communities in replicate microcosms further captured the majority of total bacterial diversity present in both lab- and field-based larval environments, although the relative richness of recovered taxa as compared to non-recovered taxa was substantially lower in microcosms containing field-derived bacteria. Altogether, these results provide a critical next step toward the standardization of mosquito studies to include larval rearing environments colonized by defined microbial communities. They also lay the foundation for long-term studies of mosquito-microbe interactions and the identification and manipulation of taxa with potential to reduce mosquito vectorial capacity.
Collapse
Affiliation(s)
- Serena Y. Zhao
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Grant L. Hughes
- Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Topical Disease, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Kerri L. Coon
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
15
|
Wei X, Peng H, Li Y, Meng B, Wang S, Bi S, Zhao X. Pyrethroids exposure alters the community and function of the internal microbiota in Aedes albopictus. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 252:114579. [PMID: 36706527 DOI: 10.1016/j.ecoenv.2023.114579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/10/2023] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Large amounts of insecticides bring selection pressure and then develop insecticide resistance in Aedes albopictus. This study demonstrated for the first time the effect of pyrethroid exposure on the internal microbiota in Ae. albopictus. 36, 48, 57 strains of virgin adult Ae. albopictus were exposed to the pyrethroids deltamethrin (Dme group), β-cypermethrin (Bcy group), and cis-permethrin (Cper group), respectively, with n-hexane exposure (Hex group) as the controls (n = 36). The internal microbiota community and functions were analyzed based on the metagenomic analysis. The analysis of similarity (ANOSIM) results showed that the Hex/Bcy (p = 0.001), Hex/Cper (p = 0.006), Hex/Dme (p = 0.001) groups were well separated, and the internal microbes of Ae. albopictus vary in the composition and functions depending on the type of pyrethroid insecticide they are applied. Four short chain fatty acid-producing genera, Butyricimonas, Prevotellaceae, Anaerococcus, Pseudorhodobacter were specifically absent in the pyrethroid-exposed mosquitoes. Morganella and Streptomyces were significantly enriched in cis-permethrin-exposed mosquitoes. Wolbachia and Chryseobacterium showed significant enrichment in β-cypermethrin-exposed mosquitoes. Pseudomonas was significantly abundant in deltamethrin-exposed mosquitoes. The significant proliferation of these bacteria may be closely related to insecticide metabolism. Our study recapitulated a specifically enhanced metabolic networks relevant to the exposure to cis-permethrin and β-cypermethrin, respectively. Benzaldehyde dehydrogenase (EC 1.2.1.28), key enzyme in aromatic compounds metabolism, was detected enhanced in cis-permethrin and β-cypermethrin exposed mosquitoes. The internal microbiota metabolism of aromatic compounds may be important influencing factors for pyrethroid resistance. Future work will be needed to elucidate the specific mechanisms by which mosquito microbiota influences host resistance and vector ability.
Collapse
Affiliation(s)
- Xiao Wei
- Centers for Disease Control and Prevention of PLA, Beijing, China
| | - Hong Peng
- Centers for Disease Control and Prevention of PLA, Beijing, China
| | - Yan Li
- Centers for Disease Control and Prevention of PLA, Beijing, China
| | - Biao Meng
- Centers for Disease Control and Prevention of PLA, Beijing, China; Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
| | - Shichao Wang
- Centers for Disease Control and Prevention of PLA, Beijing, China
| | - Shanzheng Bi
- Centers for Disease Control and Prevention of PLA, Beijing, China
| | - Xiangna Zhao
- Centers for Disease Control and Prevention of PLA, Beijing, China; Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China.
| |
Collapse
|
16
|
Cottis S, Blisnick AA, Failloux AB, Vernick KD. Determinants of Chikungunya and O'nyong-Nyong Virus Specificity for Infection of Aedes and Anopheles Mosquito Vectors. Viruses 2023; 15:589. [PMID: 36992298 PMCID: PMC10051923 DOI: 10.3390/v15030589] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/02/2023] [Accepted: 02/14/2023] [Indexed: 02/23/2023] Open
Abstract
Mosquito-borne diseases caused by viruses and parasites are responsible for more than 700 million infections each year. Anopheles and Aedes are the two major vectors for, respectively, malaria and arboviruses. Anopheles mosquitoes are the primary vector of just one known arbovirus, the alphavirus o'nyong-nyong virus (ONNV), which is closely related to the chikungunya virus (CHIKV), vectored by Aedes mosquitoes. However, Anopheles harbor a complex natural virome of RNA viruses, and a number of pathogenic arboviruses have been isolated from Anopheles mosquitoes in nature. CHIKV and ONNV are in the same antigenic group, the Semliki Forest virus complex, are difficult to distinguish via immunodiagnostic assay, and symptomatically cause essentially the same human disease. The major difference between the arboviruses appears to be their differential use of mosquito vectors. The mechanisms governing this vector specificity are poorly understood. Here, we summarize intrinsic and extrinsic factors that could be associated with vector specificity by these viruses. We highlight the complexity and multifactorial aspect of vectorial specificity of the two alphaviruses, and evaluate the level of risk of vector shift by ONNV or CHIKV.
Collapse
Affiliation(s)
- Solène Cottis
- Genetics and Genomics of Insect Vectors Unit, Department of Parasites and Insect Vectors, Institut Pasteur, Université de Paris Cité, CNRS UMR2000, F-75015 Paris, France
- Graduate School of Life Sciences ED515, Sorbonne Université UPMC Paris VI, 75252 Paris, France
| | - Adrien A. Blisnick
- Arboviruses and Insect Vectors Unit, Department of Virology, Institut Pasteur, Université de Paris Cité, F-75015 Paris, France
| | - Anna-Bella Failloux
- Arboviruses and Insect Vectors Unit, Department of Virology, Institut Pasteur, Université de Paris Cité, F-75015 Paris, France
| | - Kenneth D. Vernick
- Genetics and Genomics of Insect Vectors Unit, Department of Parasites and Insect Vectors, Institut Pasteur, Université de Paris Cité, CNRS UMR2000, F-75015 Paris, France
- Graduate School of Life Sciences ED515, Sorbonne Université UPMC Paris VI, 75252 Paris, France
| |
Collapse
|
17
|
Vinayagam S, Rajendran D, Sekar K, Renu K, Sattu K. The microbiota, the malarial parasite, and the mosquito [MMM] - A three-sided relationship. Mol Biochem Parasitol 2023; 253:111543. [PMID: 36642385 DOI: 10.1016/j.molbiopara.2023.111543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 11/23/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023]
Abstract
The mosquito gut microbiota is vital to the proper functioning of the host organism. Mosquitoes may benefit from this microbiota in their guts because it promotes factors including blood digestion, fecundity, metamorphosis, and living habitat and inhibits malarial parasites (Plasmodium) growth or transmission. In this overview, we analyzed how mosquitoes acquire their gut microbiota, characterized those bacteria, and discussed the functions they provide. We also investigated the effects of microbiota on malaria vectors, with a focus on the mosquito species Anopheles, as well as the relationship between microbiota and Plasmodium, the aspects in which microbiota influences Plasmodium via immune response, metabolism, and redox mechanisms, and the strategies in which gut bacteria affect the life cycle of malaria vectors and provide the ability to resist insecticides. This article explores the difficulties in studying triadic interactions, such as the interplay between Mosquitoes, Malarial parasite, and the Microbiota that dwell in the mosquitoes' guts, and need additional research for a better understanding of these multiple connections to implement an exact vector control strategies using Gut microbiota in malaria control.
Collapse
Affiliation(s)
- Sathishkumar Vinayagam
- Department of Biotechnology, Periyar University, Centre for Postgraduate and Research Studies, Dharmapuri, Tamil Nadu 635205, India
| | - Devianjana Rajendran
- Department of Biotechnology, Periyar University, Centre for Postgraduate and Research Studies, Dharmapuri, Tamil Nadu 635205, India
| | - Kathirvel Sekar
- Department of Biotechnology, Periyar University, Centre for Postgraduate and Research Studies, Dharmapuri, Tamil Nadu 635205, India
| | - Kaviyarasi Renu
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu 600077, India
| | - Kamaraj Sattu
- Department of Biotechnology, Periyar University, Centre for Postgraduate and Research Studies, Dharmapuri, Tamil Nadu 635205, India.
| |
Collapse
|
18
|
Seal M, Chatterjee S. Combined effect of physico-chemical and microbial quality of breeding habitat water on oviposition of malarial vector Anopheles subpictus. PLoS One 2023; 18:e0282825. [PMID: 36897874 PMCID: PMC10004544 DOI: 10.1371/journal.pone.0282825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 02/24/2023] [Indexed: 03/11/2023] Open
Abstract
Mosquitoes prefer diverse water bodies for egg laying and larval survival. Present study was performed with an objective to characterize physico-chemical properties and microbial profiling of breeding habitat water bodies of Anopheles subpictus mosquitoes. A field survey was accomplished to check the presence of An. subpictus larvae to record per dip larval density in various breeding habitats throughout the year. Physico-chemical and bacteriological properties in relation to mosquito oviposition were assessed. Dissolved oxygen content, pH and alkalinity were found to have major impacts and ponderosity on the prevalence of An. subpictus larvae. Larval density showed significant positive correlation with dissolved oxygen content of water and significant negative correlation with pH and alkalinity of habitat water. Comparatively higher population (cfu/mL) of Bacillus spp. competent with starch hydrolyzing and nitrate reducing properties were recorded all the breeding habitat water bodies of An. subpictus. Higher amplitude of anopheline larvae was portrayed during monsoon and post-monsoon season in clear water with an inclining trend to high dissolved oxygen content and neutral pH. B. cereus, B. megaterium, B. subtilis and B. tequilensis prevalent in all habitat water bodies were marked as oviposition attractants of gravid An. subpictus mosquitoes. Microbial population played key roles in the modulation of physico-chemical parameters of habitat water with a view to enhance its acceptability by gravid mosquitoes in relation to their oviposition. Better understanding of the interactions along with the control of oviposition attractant bacterial strains from mosquito breeding habitats might contribute to the vector management programme.
Collapse
Affiliation(s)
- Madhurima Seal
- Department of Zoology, Parasitology and Microbiology Research Laboratory, The University of Burdwan, Burdwan, West Bengal, India
| | - Soumendranath Chatterjee
- Department of Zoology, Parasitology and Microbiology Research Laboratory, The University of Burdwan, Burdwan, West Bengal, India
- * E-mail:
| |
Collapse
|
19
|
Microbiota Community Structure and Interaction Networks within Dermacentor silvarum, Ixodes persulcatus, and Haemaphysalis concinna. Animals (Basel) 2022; 12:ani12233237. [PMID: 36496758 PMCID: PMC9735619 DOI: 10.3390/ani12233237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/16/2022] [Accepted: 11/20/2022] [Indexed: 11/24/2022] Open
Abstract
Ticks carry and transmit a variety of pathogens, which are very harmful to humans and animals. To characterize the microbial interactions in ticks, we analysed the microbiota of the hard ticks, Dermacentor silvarum, Ixodes persulcatus, and Haemaphysalis concinna, using 16S rRNA, showing that microbial interactions are underappreciated in terms of shaping arthropod microbiomes. The results show that the bacterial richness and microbiota structures of these three tick species had significant differences. Interestingly, the bacterial richness (Chao1 index) of all ticks decreased significantly after they became engorged. All the operational taxonomic units (OTUs) were assigned to 26 phyla, 67 classes, 159 orders, 279 families, and 627 genera. Microbial interactions in D. silvarum demonstrated more connections than in I. persulcatus and H. concinna. Bacteria with a high abundance were not important families in microbial interactions. Positive interactions of Bacteroidaceae and F_Solibacteraceae Subgroup 3 with other bacterial families were detected in all nine groups of ticks. This study provides an overview of the microbiota structure and interactions of three tick species and improves our understanding of the role of the microbiota in tick physiology and vector capacity, thus being conducive to providing basic data for the prevention of ticks and tick-borne diseases.
Collapse
|
20
|
Fofana A, Yerbanga RS, Bilgo E, Ouedraogo GA, Gendrin M, Ouedraogo JB. The Strategy of Paratransgenesis for the Control of Malaria Transmission. FRONTIERS IN TROPICAL DISEASES 2022. [DOI: 10.3389/fitd.2022.867104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Insect-borne diseases are responsible for important burdens on health worldwide particularly in Africa. Malaria alone causes close to half a million deaths every year, mostly in developing, tropical and subtropical countries, with 94% of the global deaths in 2019 occurring in the WHO African region. With several decades, vector control measures have been fundamental to fight against malaria. Considering the spread of resistance to insecticides in mosquitoes and to drugs in parasites, the need for novel strategies to inhibit the transmission of the disease is pressing. In recent years, several studies have focused on the interaction of malaria parasites, bacteria and their insect vectors. Their findings suggested that the microbiota of mosquitoes could be used to block Plasmodium transmission. A strategy, termed paratransgenesis, aims to interfere with the development of malaria parasites within their vectors through genetically-modified microbes, which produce antimalarial effectors inside the insect host. Here we review the progress of the paratransgenesis approach. We provide a historical perspective and then focus on the choice of microbial strains and on genetic engineering strategies. We finally describe the different steps from laboratory design to field implementation to fight against malaria.
Collapse
|
21
|
Pérez-Ramos DW, Ramos MM, Payne KC, Giordano BV, Caragata EP. Collection Time, Location, and Mosquito Species Have Distinct Impacts on the Mosquito Microbiota. FRONTIERS IN TROPICAL DISEASES 2022. [DOI: 10.3389/fitd.2022.896289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The mosquito microbiota affects many aspects of mosquito biology including development and reproduction. It also strongly impacts interactions between the mosquito host and pathogens that cause important disease in humans, such as dengue and malaria. Critically, the mosquito microbiota is highly diverse and can vary in composition in response to multiple environmental variables, but these effects are not always consistent. Understanding how the environment shapes mosquito microbial diversity is a critical step in elucidating the ubiquity of key host-microbe-pathogen interactions in nature. To that end, we examined the role of time of collection, collection location and host species on mosquito microbial diversity by repeating collections at two-month intervals on a trapping grid spanning three distinct biomes. We then used 16S rRNA sequencing to compare the microbiomes of Aedes taeniorhynchus, Anopheles crucians, and Culex nigripalpus mosquitoes from those collections. We saw that mosquito diversity was strongly affected by both time and collection location. We also observed that microbial richness and diversity increased from March to May, and that An. crucians and Cx. nigripalpus had greater microbial diversity than Ae. taeniorhynchus. However, we also observed that collection location had no impact on microbial diversity except for significantly lower bacterial richness observed in mosquitoes collected from the mangrove wetlands. Our results highlight that collection time, collection location, and mosquito species each affect aspects of mosquito microbial diversity, but their importance is context dependent. We also demonstrate that these variables have differing impacts on mosquito diversity and mosquito microbial diversity. Our findings suggest that the environment likely plays an important but variable role in influencing the composition of the mosquito microbiota.
Collapse
|
22
|
Coon KL, Hegde S, Hughes GL. Interspecies microbiome transplantation recapitulates microbial acquisition in mosquitoes. MICROBIOME 2022; 10:58. [PMID: 35410630 PMCID: PMC8996512 DOI: 10.1186/s40168-022-01256-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 03/07/2022] [Indexed: 05/13/2023]
Abstract
BACKGROUND Mosquitoes harbor microbial communities that play important roles in their growth, survival, reproduction, and ability to transmit human pathogens. Microbiome transplantation approaches are often used to study host-microbe interactions and identify microbial taxa and assemblages associated with health or disease. However, no such approaches have been developed to manipulate the microbiota of mosquitoes. RESULTS Here, we developed an approach to transfer entire microbial communities between mosquito cohorts. We undertook transfers between (Culex quinquefasciatus to Aedes aegypti) and within (Ae. aegypti to Ae. aegypti) species to validate the approach and determine the number of mosquitoes required to prepare donor microbiota. After the transfer, we monitored mosquito development and microbiota dynamics throughout the life cycle. Typical holometabolous lifestyle-related microbiota structures were observed, with higher dynamics of microbial structures in larval stages, including the larval water, and less diversity in adults. Microbiota diversity in recipient adults was also more similar to the microbiota diversity in donor adults. CONCLUSIONS This study provides the first evidence for successful microbiome transplantation in mosquitoes. Our results highlight the value of such methods for studying mosquito-microbe interactions and lay the foundation for future studies to elucidate the factors underlying microbiota acquisition, assembly, and function in mosquitoes under controlled conditions. Video Abstract.
Collapse
Affiliation(s)
- Kerri L Coon
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| | - Shivanand Hegde
- Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Topical Disease, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Grant L Hughes
- Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Topical Disease, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK.
| |
Collapse
|
23
|
Arellano AA, Coon KL. Bacterial communities in carnivorous pitcher plants colonize and persist in inquiline mosquitoes. Anim Microbiome 2022; 4:13. [PMID: 35172907 PMCID: PMC8848819 DOI: 10.1186/s42523-022-00164-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 02/04/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The leaves of carnivorous pitcher plants harbor diverse communities of inquiline species, including bacteria and larvae of the pitcher plant mosquito (Wyeomyia smithii), which aid the plant by processing captured prey. Despite the growing appreciation for this microecosystem as a tractable model in which to study food web dynamics and the moniker of W. smithii as a 'keystone predator', very little is known about microbiota acquisition and assembly in W. smithii mosquitoes or the impacts of W. smithii-microbiota interactions on mosquito and/or plant fitness. RESULTS In this study, we used high throughput sequencing of bacterial 16S rRNA gene amplicons to characterize and compare microbiota diversity in field- and laboratory-derived W. smithii larvae. We then conducted controlled experiments in the laboratory to better understand the factors shaping microbiota acquisition and persistence across the W. smithii life cycle. Methods were also developed to produce axenic (microbiota-free) W. smithii larvae that can be selectively recolonized with one or more known bacterial species in order to study microbiota function. Our results support a dominant role for the pitcher environment in shaping microbiota diversity in W. smithii larvae, while also indicating that pitcher-associated microbiota can persist in and be dispersed by adult W. smithii mosquitoes. We also demonstrate the successful generation of axenic W. smithii larvae and report variable fitness outcomes in gnotobiotic larvae monocolonized by individual bacterial isolates derived from naturally occurring pitchers in the field. CONCLUSIONS This study provides the first information on microbiota acquisition and assembly in W. smithii mosquitoes. This study also provides the first evidence for successful microbiota manipulation in this species. Altogether, our results highlight the value of such methods for studying host-microbiota interactions and lay the foundation for future studies to understand how W. smithii-microbiota interactions shape the structure and stability of this important model ecosystem.
Collapse
Affiliation(s)
- Aldo A. Arellano
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI 53706 USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706 USA
| | - Kerri L. Coon
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706 USA
| |
Collapse
|
24
|
Caragata EP, Otero LM, Tikhe CV, Barrera R, Dimopoulos G. Microbial Diversity of Adult Aedes aegypti and Water Collected from Different Mosquito Aquatic Habitats in Puerto Rico. MICROBIAL ECOLOGY 2022; 83:182-201. [PMID: 33860847 PMCID: PMC11328149 DOI: 10.1007/s00248-021-01743-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 03/19/2021] [Indexed: 05/06/2023]
Abstract
Mosquitoes, the major vectors of viruses like dengue, are naturally host to diverse microorganisms, which play an important role in their development, fecundity, immunity, and vector competence. The composition of their microbiota is strongly influenced by the environment, particularly their aquatic larval habitat. In this study, we used 2×300 bp 16s Illumina sequencing to compare the microbial profiles of emerging adult Aedes aegypti mosquitoes and the water collected from common types of aquatic habitat containers in Puerto Rico, which has endemic dengue transmission. We sequenced 141 mosquito and 46 water samples collected from plastic containers, septic tanks, discarded tires, underground trash cans, tree holes, or water meters. We identified 9 bacterial genera that were highly prevalent in the mosquito microbiome, and 77 for the microbiome of the aquatic habitat. The most abundant mosquito-associated bacterial OTUs were from the families Burkholderiaceae, Pseudomonadaceae, Comamonadaceae, and Xanthomonadaceae. Microbial profiles varied greatly between mosquitoes, and there were few major differences explained by container type; however, the microbiome of mosquitoes from plastic containers was more diverse and contained more unique taxa than the other groups. Container water was significantly more diverse than mosquitoes, and our data suggest that mosquitoes filter out many bacteria, with Alphaproteobacteria in particular being far more abundant in water. These findings provide novel insight into the microbiome of mosquitoes in the region and provide a platform to improve our understanding of the fundamental mosquito-microbe interactions.
Collapse
Affiliation(s)
- E P Caragata
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - L M Otero
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
- Entomology and Ecology Team, Dengue Branch, Centers for Disease Control and Prevention, San Juan, Puerto Rico
| | - C V Tikhe
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - R Barrera
- Entomology and Ecology Team, Dengue Branch, Centers for Disease Control and Prevention, San Juan, Puerto Rico
| | - G Dimopoulos
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
25
|
Birnberg L, Climent-Sanz E, Codoñer FM, Busquets N. Microbiota Variation Across Life Stages of European Field-Caught Anopheles atroparvus and During Laboratory Colonization: New Insights for Malaria Research. Front Microbiol 2021; 12:775078. [PMID: 34899658 PMCID: PMC8652072 DOI: 10.3389/fmicb.2021.775078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/26/2021] [Indexed: 01/30/2023] Open
Abstract
The potential use of bacteria for developing novel vector control approaches has awakened new interests in the study of the microbiota associated with vector species. To set a baseline for future malaria research, a high-throughput sequencing of the bacterial 16S ribosomal gene V3-V4 region was used to profile the microbiota associated with late-instar larvae, newly emerged females, and wild-caught females of a sylvan Anopheles atroparvus population from a former malaria transmission area of Spain. Field-acquired microbiota was then assessed in non-blood-fed laboratory-reared females from the second, sixth, and 10th generations. Diversity analyses revealed that bacterial communities varied and clustered differently according to origin with sylvan larvae and newly emerged females distributing closer to laboratory-reared females than to their field counterparts. Inter-sample variation was mostly observed throughout the different developmental stages in the sylvan population. Larvae harbored the most diverse bacterial communities; wild-caught females, the poorest. In the transition from the sylvan environment to the first time point of laboratory breeding, a significant increase in diversity was observed, although this did decline under laboratory conditions. Despite diversity differences between wild-caught and laboratory-reared females, a substantial fraction of the bacterial communities was transferred through transstadial transmission and these persisted over 10 laboratory generations. Differentially abundant bacteria were mostly identified between breeding water and late-instar larvae, and in the transition from wild-caught to laboratory-reared females from the second generation. Our findings confirmed the key role of the breeding environment in shaping the microbiota of An. atroparvus. Gram-negative bacteria governed the microbiota of An. atroparvus with the prevalence of proteobacteria. Pantoea, Thorsellia, Serratia, Asaia, and Pseudomonas dominating the microbiota associated with wild-caught females, with the latter two governing the communities of laboratory-reared females. A core microbiota was identified with Pseudomonas and Serratia being the most abundant core genera shared by all sylvan and laboratory specimens. Overall, understanding the microbiota composition of An. atroparvus and how this varies throughout the mosquito life cycle and laboratory colonization paves the way when selecting potential bacterial candidates for use in microbiota-based intervention strategies against mosquito vectors, thereby improving our knowledge of laboratory-reared An. atroparvus mosquitoes for research purposes.
Collapse
Affiliation(s)
- Lotty Birnberg
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Barcelona, Spain
| | - Eric Climent-Sanz
- ADM-Biopolis, Parc Cientific Universitat de València, Paterna, Spain
| | | | - Núria Busquets
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Barcelona, Spain
| |
Collapse
|
26
|
Pereira MH, Mohanty AK, Garg S, Tyagi S, Kumar A. Characterization of midgut microbiome of Anopheles stephensi Liston. J Vector Borne Dis 2021; 58:74-84. [PMID: 34818867 DOI: 10.4103/0972-9062.289392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND & OBJECTIVES Anopheles stephensi is an important vector of malaria in South East Asia. The abundance and diversity of gut microbiota in the disease vectors affect their development, digestion, metabolism and immunity. The immatures of An. stephensi engulf microbes from their aquatic environment. The present study investigates midgut microbiota of wild and laboratory populations and compares it with their habitat bacterial diversity to study transstadial transmissibility. METHODS The gut microbes from immatures, adults and water samples were cultured at ambient conditions on different media. The colony and biochemical characteristics, and 16S rRNA gene sequencing of gut microbes were studied. RESULTS Altogether, 298 bacterial isolates were characterized as 21 genera belonging to four major Phyla viz., Actinobacteria, Bacteroidetes, Firmicutes and Proteobacteria. In the field population-1, Proteobacteria and Firmicutes accounted for 49% and Actinobacteria constituted 51% of the bacterial isolates. In field population-2, Bacteroidetes and Firmicutes accounted for 99% of the isolates. In the laboratory populations, Firmicutes constituted 77%, while Proteobacteria 23% of the isolates. Additionally, 9 genera occurred in the breeding habitats, 13 in the larval midgut, 6 in pupal midgut, 9 in male midgut and 10 in the female midgut. INTERPRETATION & CONCLUSION This is a unique study on diversity of microbiota of An. stephensi from breeding water, developmental stages and adults. Different culture media used enhanced the isolation of diverse bacteria. The presence of Micrococcus and Leucobacter in different life stages indicates their adaptation in An. stephensi as symbionts which need further evaluation for their role in paratransgenesis.
Collapse
Affiliation(s)
- Minisha Heracl Pereira
- ICMR-National Institute of Malaria Research, DHS Building, Campal, Panaji, Goa, India; Department of Zoology, Goa University, India
| | - Ajeet Kumar Mohanty
- ICMR-National Institute of Malaria Research, DHS Building, Campal, Panaji, Goa, India
| | - Sandeep Garg
- Department of Microbiology, Goa University, Goa, India
| | - Suchi Tyagi
- ICMR-Vector Control Research Centre (ICMR), Indira Nagar, Puducherry, India
| | - Ashwani Kumar
- ICMR-Vector Control Research Centre (ICMR), Indira Nagar, Puducherry, India
| |
Collapse
|
27
|
MacLeod HJ, Dimopoulos G, Short SM. Larval Diet Abundance Influences Size and Composition of the Midgut Microbiota of Aedes aegypti Mosquitoes. Front Microbiol 2021; 12:645362. [PMID: 34220739 PMCID: PMC8249813 DOI: 10.3389/fmicb.2021.645362] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 04/19/2021] [Indexed: 11/13/2022] Open
Abstract
The midgut microbiota of the yellow fever mosquito Aedes aegypti impacts pathogen susceptibility and transmission by this important vector species. However, factors influencing the composition and size of the microbiome in mosquitoes are poorly understood. We investigated the impact of larval diet abundance during development on the composition and size of the larval and adult microbiota by rearing Aedes aegypti under four larval food regimens, ranging from nutrient deprivation to nutrient excess. We assessed the persistent impacts of larval diet availability on the microbiota of the larval breeding water, larval mosquitoes, and adult mosquitoes under sugar and blood fed conditions using qPCR and high-throughput 16S amplicon sequencing to determine bacterial load and microbiota composition. Bacterial loads in breeding water increased with increasing larval diet. Larvae reared with the lowest diet abundance had significantly fewer bacteria than larvae from two higher diet treatments, but not from the highest diet abundance. Adults from the lowest diet abundance treatment had significantly fewer bacteria in their midguts compared to all higher diet abundance treatments. Larval diet amount also had a significant impact on microbiota composition, primarily within larval breeding water and larvae. Increasing diet correlated with increased relative levels of Enterobacteriaceae and Flavobacteriaceae and decreased relative levels of Sphingomonadaceae. Multiple individual OTUs were significantly impacted by diet including one mapping to the genus Cedecea, which increased with higher diet amounts. This was consistent across all sample types, including sugar fed and blood fed adults. Taken together, these data suggest that availability of diet during development can cause lasting shifts in the size and composition of the microbiota in the disease vector Aedes aegypti.
Collapse
Affiliation(s)
- Hannah J MacLeod
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | - George Dimopoulos
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | - Sarah M Short
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
28
|
Martinson VG, Strand MR. Diet-Microbiota Interactions Alter Mosquito Development. Front Microbiol 2021; 12:650743. [PMID: 34168624 PMCID: PMC8217444 DOI: 10.3389/fmicb.2021.650743] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 04/28/2021] [Indexed: 12/27/2022] Open
Abstract
Gut microbes and diet can both strongly affect the biology of multicellular animals, but it is often difficult to disentangle microbiota–diet interactions due to the complex microbial communities many animals harbor and the nutritionally variable diets they consume. While theoretical and empirical studies indicate that greater microbiota diversity is beneficial for many animal hosts, there have been few tests performed in aquatic invertebrates. Most mosquito species are aquatic detritivores during their juvenile stages that harbor variable microbiotas and consume diets that range from nutrient rich to nutrient poor. In this study, we produced a gnotobiotic model that allowed us to examine how interactions between specific gut microbes and diets affect the fitness of Aedes aegypti, the yellow fever mosquito. Using a simplified seven-member community of bacteria (ALL7) and various laboratory and natural mosquito diets, we allowed larval mosquitoes to develop under different microbial and dietary conditions and measured the resulting time to adulthood and adult size. Larvae inoculated with the ALL7 or a more complex community developed similarly when fed nutrient-rich rat chow or fish food laboratory diets, whereas larvae inoculated with individual bacterial members of the ALL7 community exhibited few differences in development when fed a rat chow diet but exhibited large differences in performance when fed a fish food diet. In contrast, the ALL7 community largely failed to support the growth of larvae fed field-collected detritus diets unless supplemented with additional protein or yeast. Collectively, our results indicate that mosquito development and fitness are strongly contingent on both diet and microbial community composition.
Collapse
Affiliation(s)
- Vincent G Martinson
- Department of Entomology, University of Georgia, Athens, GA, United States.,Department of Biology, University of New Mexico, Albuquerque, NM, United States
| | - Michael R Strand
- Department of Entomology, University of Georgia, Athens, GA, United States
| |
Collapse
|
29
|
Cuesta EB, Coulibaly B, Bukhari T, Eiglmeier K, Kone R, Coulibaly MB, Zongo S, Barry M, Gneme A, Guelbeogo WM, Beavogui AH, Traore SF, Sagnon N, Vernick KD, Riehle MM. Comprehensive Ecological and Geographic Characterization of Eukaryotic and Prokaryotic Microbiomes in African Anopheles. Front Microbiol 2021; 12:635772. [PMID: 34054746 PMCID: PMC8153677 DOI: 10.3389/fmicb.2021.635772] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 04/12/2021] [Indexed: 12/14/2022] Open
Abstract
Exposure of mosquitoes to numerous eukaryotic and prokaryotic microbes in their associated microbiomes has probably helped drive the evolution of the innate immune system. To our knowledge, a metagenomic catalog of the eukaryotic microbiome has not been reported from any insect. Here we employ a novel approach to preferentially deplete host 18S ribosomal RNA gene amplicons to reveal the composition of the eukaryotic microbial communities of Anopheles larvae sampled in Kenya, Burkina Faso and Republic of Guinea (Conakry). We identified 453 eukaryotic operational taxonomic units (OTUs) associated with Anopheles larvae in nature, but an average of 45% of the 18S rRNA sequences clustered into OTUs that lacked a taxonomic assignment in the Silva database. Thus, the Anopheles microbiome contains a striking proportion of novel eukaryotic taxa. Using sequence similarity matching and de novo phylogenetic placement, the fraction of unassigned sequences was reduced to an average of 4%, and many unclassified OTUs were assigned as relatives of known taxa. A novel taxon of the genus Ophryocystis in the phylum Apicomplexa (which also includes Plasmodium) is widespread in Anopheles larvae from East and West Africa. Notably, Ophryocystis is present at fluctuating abundance among larval breeding sites, consistent with the expected pattern of an epidemic pathogen. Species richness of the eukaryotic microbiome was not significantly different across sites from East to West Africa, while species richness of the prokaryotic microbiome was significantly lower in West Africa. Laboratory colonies of Anopheles coluzzii harbor 26 eukaryotic OTUs, of which 38% (n = 10) are shared with wild populations, while 16 OTUs are unique to the laboratory colonies. Genetically distinct An. coluzzii colonies co-housed in the same facility maintain different prokaryotic microbiome profiles, suggesting a persistent host genetic influence on microbiome composition. These results provide a foundation to understand the role of the Anopheles eukaryotic microbiome in vector immunity and pathogen transmission. We hypothesize that prevalent apicomplexans such as Ophryocystis associated with Anopheles could induce interference or competition against Plasmodium within the vector. This and other members of the eukaryotic microbiome may offer candidates for new vector control tools.
Collapse
Affiliation(s)
- Eugeni Belda Cuesta
- Unit of Insect Vector Genetics and Genomics, Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France
- CNRS Unit of Evolutionary Genomics, Modeling, and Health (UMR2000), Institut Pasteur, Paris, France
| | - Boubacar Coulibaly
- Malaria Research and Training Centre, Faculty of Medicine and Dentistry, University of Mali, Bamako, Mali
| | - Tullu Bukhari
- International Centre of Insect Physiology and Ecology, Department of Human Health. Nairobi,Kenya
| | - Karin Eiglmeier
- Unit of Insect Vector Genetics and Genomics, Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France
- CNRS Unit of Evolutionary Genomics, Modeling, and Health (UMR2000), Institut Pasteur, Paris, France
| | - Raymond Kone
- Centre de Formation et de Recherche en Santé Rurale de Mafèrinyah, Conakry, Guinea
| | - Mamadou B. Coulibaly
- Malaria Research and Training Centre, Faculty of Medicine and Dentistry, University of Mali, Bamako, Mali
| | - Soumanaba Zongo
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Mamadou Barry
- Centre de Formation et de Recherche en Santé Rurale de Mafèrinyah, Conakry, Guinea
| | - Awa Gneme
- Département de Biologie et Physiologie Animales, Université Joseph Ki-Zerbo, Ouagadougou, Burkina Faso
| | - Wamdaogo M. Guelbeogo
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Abdoul H. Beavogui
- Centre de Formation et de Recherche en Santé Rurale de Mafèrinyah, Conakry, Guinea
| | - Sekou F. Traore
- Malaria Research and Training Centre, Faculty of Medicine and Dentistry, University of Mali, Bamako, Mali
| | - N’Fale Sagnon
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Kenneth D. Vernick
- Unit of Insect Vector Genetics and Genomics, Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France
- CNRS Unit of Evolutionary Genomics, Modeling, and Health (UMR2000), Institut Pasteur, Paris, France
| | - Michelle M. Riehle
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
30
|
Juma EO, Allan BF, Kim CH, Stone C, Dunlap C, Muturi EJ. The larval environment strongly influences the bacterial communities of Aedes triseriatus and Aedes japonicus (Diptera: Culicidae). Sci Rep 2021; 11:7910. [PMID: 33846445 PMCID: PMC8042029 DOI: 10.1038/s41598-021-87017-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 03/22/2021] [Indexed: 02/01/2023] Open
Abstract
Mosquito bacterial communities are essential in mosquito biology, and knowing the factors shaping these bacterial communities is critical to their application in mosquito-borne disease control. This study investigated how the larval environment influences the bacterial communities of larval stages of two container-dwelling mosquito species, Aedes triseriatus, and Aedes japonicus. Larval and water samples were collected from tree holes and used tires at two study sites, and their bacteria characterized through MiSeq sequencing of the 16S rRNA gene. Bacterial richness was highest in Ae. japonicus, intermediate in Ae. triseriatus, and lowest in water samples. Dysgonomonas was the dominant bacterial taxa in Ae. triseriatus larvae; the unclassified Comamonadaceae was dominant in water samples from waste tires, while Mycobacterium and Carnobacterium, dominated Ae. japonicus. The two mosquito species harbored distinct bacterial communities that were different from those of the water samples. The bacterial communities also clustered by habitat type (used tires vs. tree holes) and study site. These findings demonstrate that host species, and the larval sampling environment are important determinants of a significant component of bacterial community composition and diversity in mosquito larvae and that the mosquito body may select for microbes that are generally rare in the larval environment.
Collapse
Affiliation(s)
- Elijah O Juma
- Department of Entomology, University of Illinois at Urbana-Champaign, 505 S. Goodwin Ave, Urbana, IL, 61801, USA.
| | - Brian F Allan
- Department of Entomology, University of Illinois at Urbana-Champaign, 505 S. Goodwin Ave, Urbana, IL, 61801, USA
| | - Chang-Hyun Kim
- Illinois Natural History Survey, University of Illinois at Urbana-Champaign, 1816 S. Oak St, Champaign, IL, 61820, USA
| | - Christopher Stone
- Illinois Natural History Survey, University of Illinois at Urbana-Champaign, 1816 S. Oak St, Champaign, IL, 61820, USA
| | - Christopher Dunlap
- Crop Bioprotection Research Unit, U.S. Department of Agriculture, Agricultural Research Service, 1815 N. University St., Peoria, IL, 61604, USA
| | - Ephantus J Muturi
- Crop Bioprotection Research Unit, U.S. Department of Agriculture, Agricultural Research Service, 1815 N. University St., Peoria, IL, 61604, USA
| |
Collapse
|
31
|
Riboflavin instability is a key factor underlying the requirement of a gut microbiota for mosquito development. Proc Natl Acad Sci U S A 2021; 118:2101080118. [PMID: 33827929 PMCID: PMC8053949 DOI: 10.1073/pnas.2101080118] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We previously determined that several diets used to rear Aedes aegypti and other mosquito species support the development of larvae with a gut microbiota but do not support the development of axenic larvae. In contrast, axenic larvae have been shown to develop when fed other diets. To understand the mechanisms underlying this dichotomy, we developed a defined diet that could be manipulated in concert with microbiota composition and environmental conditions. Initial studies showed that axenic larvae could not grow under standard rearing conditions (27 °C, 16-h light: 8-h dark photoperiod) when fed a defined diet but could develop when maintained in darkness. Downstream assays identified riboflavin decay to lumichrome as the key factor that prevented axenic larvae from growing under standard conditions, while gut community members like Escherichia coli rescued development by being able to synthesize riboflavin. Earlier results showed that conventional and gnotobiotic but not axenic larvae exhibit midgut hypoxia under standard rearing conditions, which correlated with activation of several pathways with essential growth functions. In this study, axenic larvae in darkness also exhibited midgut hypoxia and activation of growth signaling but rapidly shifted to midgut normoxia and arrested growth in light, which indicated that gut hypoxia was not due to aerobic respiration by the gut microbiota but did depend on riboflavin that only resident microbes could provide under standard conditions. Overall, our results identify riboflavin provisioning as an essential function for the gut microbiota under most conditions A. aegypti larvae experience in the laboratory and field.
Collapse
|
32
|
Saraiva RG, Dimopoulos G. Bacterial natural products in the fight against mosquito-transmitted tropical diseases. Nat Prod Rep 2021; 37:338-354. [PMID: 31544193 DOI: 10.1039/c9np00042a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Covering: up to 2019 Secondary metabolites of microbial origin have long been acknowledged as medically relevant, but their full potential remains largely unexploited. Of the countless natural compounds discovered thus far, only 5-10% have been isolated from microorganisms. At the same time, while whole-genome sequencing has demonstrated that bacteria and fungi often encode natural products, only a few genera have yet been mined for new compounds. This review explores the contributions of bacterial natural products to combatting infection by malaria parasites, filarial worms, and arboviruses such as dengue, Zika, Chikungunya, and West Nile. It highlights how molecules isolated from microorganisms ranging from marine cyanobacteria to mosquito endosymbionts can be exploited as antimicrobials and antivirals. Pursuit of this mostly untapped source of chemical entities will potentially result in new interventions against these tropical diseases, which are urgently needed to combat the increase in the incidence of resistance.
Collapse
Affiliation(s)
- Raúl G Saraiva
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA.
| | - George Dimopoulos
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA.
| |
Collapse
|
33
|
Dada N, Jupatanakul N, Minard G, Short SM, Akorli J, Villegas LM. Considerations for mosquito microbiome research from the Mosquito Microbiome Consortium. MICROBIOME 2021; 9:36. [PMID: 33522965 PMCID: PMC7849159 DOI: 10.1186/s40168-020-00987-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 12/28/2020] [Indexed: 05/17/2023]
Abstract
In the past decade, there has been increasing interest in mosquito microbiome research, leading to large amounts of data on different mosquito species, with various underlying physiological characteristics, and from diverse geographical locations. However, guidelines and standardized methods for conducting mosquito microbiome research are lacking. To streamline methods in mosquito microbiome research and optimize data quality, reproducibility, and comparability, as well as facilitate data curation in a centralized location, we are establishing the Mosquito Microbiome Consortium, a collaborative initiative for the advancement of mosquito microbiome research. Our overall goal is to collectively work on unraveling the role of the mosquito microbiome in mosquito biology, while critically evaluating its potential for mosquito-borne disease control. This perspective serves to introduce the consortium and invite broader participation. It highlights the issues we view as most pressing to the community and proposes guidelines for conducting mosquito microbiome research. We focus on four broad areas in this piece: (1) sampling/experimental design for field, semi-field, or laboratory studies; (2) metadata collection; (3) sample processing, sequencing, and use of appropriate controls; and (4) data handling and analysis. We finally summarize current challenges and highlight future directions in mosquito microbiome research. We hope that this piece will spark discussions around this area of disease vector biology, as well as encourage careful considerations in the design and implementation of mosquito microbiome research. Video Abstract.
Collapse
Affiliation(s)
- Nsa Dada
- Faculty of Science and Technology, Norwegian University of Life Sciences, Ås, Norway.
| | - Natapong Jupatanakul
- Protein-Ligand Engineering and Molecular Biology Research Team, National Center for Genetic Engineering and Biotechnology, Khlong Neung, Thailand
| | - Guillaume Minard
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, F-69622, Villeurbanne, France
| | - Sarah M Short
- Department of Entomology, The Ohio State University, Columbus, USA
| | - Jewelna Akorli
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | | |
Collapse
|
34
|
Kang X, Wang Y, Li S, Sun X, Lu X, Rajaofera MJN, Lu Y, Kang L, Zheng A, Zou Z, Xia Q. Comparative Analysis of the Gut Microbiota of Adult Mosquitoes From Eight Locations in Hainan, China. Front Cell Infect Microbiol 2021; 10:596750. [PMID: 33384969 PMCID: PMC7769952 DOI: 10.3389/fcimb.2020.596750] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 11/17/2020] [Indexed: 11/13/2022] Open
Abstract
The midgut microbial community composition, structure, and function of field-collected mosquitoes may provide a way to exploit microbial function for mosquito-borne disease control. However, it is unclear how adult mosquitoes acquire their microbiome, how the microbiome affects life history traits and how the microbiome influences community structure. We analyzed the composition of 501 midgut bacterial communities from field-collected adult female mosquitoes, including Aedes albopictus, Aedes galloisi, Culex pallidothorax, Culex pipiens, Culex gelidus, and Armigeres subalbatus, across eight habitats using the HiSeq 4000 system and the V3-V4 hyper-variable region of 16S rRNA gene. After quality filtering and rarefaction, a total of 1421 operational taxonomic units, belonging to 29 phyla, 44 families, and 43 genera were identified. Proteobacteria (75.67%) were the most common phylum, followed by Firmicutes (10.38%), Bacteroidetes (6.87%), Thermi (4.60%), and Actinobacteria (1.58%). The genera Rickettsiaceae (33.00%), Enterobacteriaceae (20.27%), Enterococcaceae (7.49%), Aeromonadaceae (7.00%), Thermaceae (4.52%), and Moraxellaceae (4.31%) were dominant in the samples analyzed and accounted for 76.59% of the total genera. We characterized the midgut bacterial communities of six mosquito species in Hainan province, China. The gut bacterial communities were different in composition and abundance, among locations, for all mosquito species. There were significant differences in the gut microbial composition between some species and substantial variation in the gut microbiota between individuals of the same mosquito species. There was a marked variation in different mosquito gut microbiota within the same location. These results might be useful in the identification of microbial communities that could be exploited for disease control.
Collapse
Affiliation(s)
- Xun Kang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education and School of Tropical Medicine and Laboratory Medicine, Hainan Medical University, Haikou, China
| | - Yanhong Wang
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Siping Li
- Key Laboratory of Tropical Translational Medicine of Ministry of Education and School of Tropical Medicine and Laboratory Medicine, Hainan Medical University, Haikou, China
| | - Xiaomei Sun
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xiangyang Lu
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Mamy Jayne Nelly Rajaofera
- Key Laboratory of Tropical Translational Medicine of Ministry of Education and School of Tropical Medicine and Laboratory Medicine, Hainan Medical University, Haikou, China
| | - Yajun Lu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education and School of Tropical Medicine and Laboratory Medicine, Hainan Medical University, Haikou, China
| | - Le Kang
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Aihua Zheng
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Zhen Zou
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Qianfeng Xia
- Key Laboratory of Tropical Translational Medicine of Ministry of Education and School of Tropical Medicine and Laboratory Medicine, Hainan Medical University, Haikou, China
| |
Collapse
|
35
|
Bogale HN, Cannon MV, Keita K, Camara D, Barry Y, Keita M, Coulibaly D, Kone AK, Doumbo OK, Thera MA, Plowe CV, Travassos M, Irish S, Serre D. Relative contributions of various endogenous and exogenous factors to the mosquito microbiota. Parasit Vectors 2020; 13:619. [PMID: 33303025 PMCID: PMC7726613 DOI: 10.1186/s13071-020-04491-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 11/19/2020] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND The commensal microbiota of mosquitoes impacts their development, immunity, and competency, and could provide a target for alternative entomological control approaches. However, despite the importance of the mosquito/microbiota interactions, little is known about the relative contribution of endogenous and exogenous factors in shaping the bacterial communities of mosquitoes. METHODS We used a high-throughput sequencing-based assay to characterize the bacterial composition and diversity of 665 individual field-caught mosquitoes, as well as their species, genotype at an insecticide resistance locus, blood-meal composition, and the eukaryotic parasites and viruses they carry. We then used these data to rigorously estimate the individual effect of each parameter on the bacterial diversity as well as the relative contribution of each parameter to the microbial composition. RESULTS Overall, multivariate analyses did not reveal any significant contribution of the mosquito species, insecticide resistance, or blood meal to the bacterial composition of the mosquitoes surveyed, and infection with parasites and viruses only contributed very marginally. The main driver of the bacterial diversity was the location at which each mosquito was collected, which explained roughly 20% of the variance observed. CONCLUSIONS This analysis shows that when confounding factors are taken into account, the site at which the mosquitoes are collected is the main driver of the bacterial diversity of wild-caught mosquitoes, although further studies will be needed to determine which specific components of the local environment affect bacterial composition.
Collapse
Affiliation(s)
- Haikel N. Bogale
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD USA
| | - Matthew V. Cannon
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD USA
| | - Kalil Keita
- Programme National de Lutte contre le Paludisme, Conakry, Guinea
| | - Denka Camara
- Programme National de Lutte contre le Paludisme, Conakry, Guinea
| | - Yaya Barry
- Programme National de Lutte contre le Paludisme, Conakry, Guinea
| | - Moussa Keita
- Programme National de Lutte contre le Paludisme, Conakry, Guinea
| | - Drissa Coulibaly
- Malaria Research and Training Center, University Science, Techniques and Technologies of Bamako, Bamako, Mali
| | - Abdoulaye K. Kone
- Malaria Research and Training Center, University Science, Techniques and Technologies of Bamako, Bamako, Mali
| | - Ogobara K. Doumbo
- Malaria Research and Training Center, University Science, Techniques and Technologies of Bamako, Bamako, Mali
| | - Mahamadou A. Thera
- Malaria Research and Training Center, University Science, Techniques and Technologies of Bamako, Bamako, Mali
| | | | - Mark Travassos
- Malaria Research Program, Center of Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD USA
| | - Seth Irish
- U.S. President’s Malaria Initiative and Entomology Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, US Centers for Disease Prevention, Atlanta, GA USA
| | - David Serre
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD USA
| |
Collapse
|
36
|
Tongkrajang N, Ruenchit P, Tananchai C, Chareonviriyaphap T, Kulkeaw K. Molecular identification of native Wolbachia pipientis in Anopheles minimus in a low-malaria transmission area of Umphang Valley along the Thailand-Myanmar border. Parasit Vectors 2020; 13:579. [PMID: 33198811 PMCID: PMC7670599 DOI: 10.1186/s13071-020-04459-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 11/05/2020] [Indexed: 11/24/2022] Open
Abstract
Background Wolbachia, obligate intracellular bacteria, infect the majority of arthropods, including many mosquito species of medical importance. Some Wolbachia strains interfere with the development of Plasmodium parasites in female Anopheles, a major vector of malaria. The use of Wolbachia as a means to block malaria transmission is an emerging vector control strategy in highly endemic areas. Hence, identification of native Wolbachia strains in areas where malaria transmission is low may uncover a particular Wolbachia strain capable of Plasmodium interference. This study aims to identify native Wolbachia strains in female Anopheles spp. that are predominant in a low-malaria transmission area in mainland Southeast Asia. Methods Following a 2-year survey of malaria vectors in Umphang Valley of Tak Province, Thailand, DNA extracts of female An. minimus, An. peditaeniatus, and An. maculatus were subjected to amplification of the conserved region of the 16S rRNA-encoding gene. The DNA sequences of the amplicons were phylogenetically compared with those of known Wolbachia strains. Results Among three Anopheles spp., amplification was detected in only the DNA samples from An. minimus. The DNA sequencing of amplicons revealed 100% similarity to Wolbachia pipientis, confirming the specificity of amplification. The Wolbachia-positive An. minimus samples were devoid of Plasmodium 18S rRNA amplification. The phylogenetic trees indicate a close relationship with Wolbachia strains in subgroup B. Conclusion To the best of our knowledge, the data presented herein provide the first molecular evidence of a Wolbachia strain in An. minimus, hereinafter named wAnmi, in a low-malaria transmission area in the Umphang Valley of western Thailand. Further biological characterization is required to examine its potential for malaria transmission control in the field. ![]()
Collapse
Affiliation(s)
- Nongnat Tongkrajang
- Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, The 7th floor, Adulyadejvikrom Building, 2 Wang Lang Road, Bangkok-Noi, Bangkok, 10700, Thailand
| | - Pichet Ruenchit
- Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, The 7th floor, Adulyadejvikrom Building, 2 Wang Lang Road, Bangkok-Noi, Bangkok, 10700, Thailand
| | - Chatchai Tananchai
- Department of Entomology, Faculty of Agriculture, Kasetsart University, 2nd floor, Jarad Sunthornsingh Building, 50 Ngam Wong Wan Road, Chatuchak, Bangkok, 10900, Thailand
| | - Theeraphap Chareonviriyaphap
- Department of Entomology, Faculty of Agriculture, Kasetsart University, 2nd floor, Jarad Sunthornsingh Building, 50 Ngam Wong Wan Road, Chatuchak, Bangkok, 10900, Thailand
| | - Kasem Kulkeaw
- Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, The 7th floor, Adulyadejvikrom Building, 2 Wang Lang Road, Bangkok-Noi, Bangkok, 10700, Thailand.
| |
Collapse
|
37
|
Onyango GM, Bialosuknia MS, Payne FA, Mathias N, Ciota TA, Kramer DL. Increase in temperature enriches heat tolerant taxa in Aedes aegypti midguts. Sci Rep 2020; 10:19135. [PMID: 33154438 PMCID: PMC7644690 DOI: 10.1038/s41598-020-76188-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 06/15/2020] [Indexed: 02/06/2023] Open
Abstract
Insect midgut microbial symbionts have been considered as an integral component in thermal adaptation due to their differential thermal sensitivity. Altered midgut microbial communities can influence both insect physiology and competence for important vector-borne pathogens. This study sought to gain insights into how Aedes aegypti midgut microbes and life history traits are affected by increase in baseline diurnal temperature. Increase in temperature resulted in the enrichment of specific taxa with Bacillus being the most enriched. Bacillus is known to be heat tolerant. It also resulted in a dissimilar microbial assemblage (Bray-Curtis Index, PERMANOVA, F = 2.2063; R2 = 0.16706; P = 0.002) and reduced survivorship (Log-rank [Mantel-Cox] test, Chi-square = 35.66 df = 5, P < 0.0001). Blood meal intake resulted in proliferation of pathogenic bacteria such as Elizabethkingia in the midgut of the mosquitoes. These results suggest that alteration of temperature within realistic parameters such as 2 °C for Ae. aegypti in nature may impact the midgut microbiome favoring specific taxa that could alter mosquito fitness, adaptation and vector-pathogen interactions.
Collapse
Affiliation(s)
- Gorreti Maria Onyango
- Wadsworth Center, New York State Department of Health, 5668 State Farm Road, Slingerlands, NY, 12159, USA
| | - M Sean Bialosuknia
- Wadsworth Center, New York State Department of Health, 5668 State Farm Road, Slingerlands, NY, 12159, USA
- School of Public Health, State University of New York Albany, 1400 Washington Avenue, Albany, NY, 12222, USA
| | - F Anne Payne
- Wadsworth Center, New York State Department of Health, 5668 State Farm Road, Slingerlands, NY, 12159, USA
| | - Nicholas Mathias
- Wadsworth Center, New York State Department of Health, 5668 State Farm Road, Slingerlands, NY, 12159, USA
| | - T Alexander Ciota
- Wadsworth Center, New York State Department of Health, 5668 State Farm Road, Slingerlands, NY, 12159, USA
- School of Public Health, State University of New York Albany, 1400 Washington Avenue, Albany, NY, 12222, USA
| | - D Laura Kramer
- Wadsworth Center, New York State Department of Health, 5668 State Farm Road, Slingerlands, NY, 12159, USA.
- School of Public Health, State University of New York Albany, 1400 Washington Avenue, Albany, NY, 12222, USA.
| |
Collapse
|
38
|
Straub TJ, Shaw WR, Marcenac P, Sawadogo SP, Dabiré RK, Diabaté A, Catteruccia F, Neafsey DE. The Anopheles coluzzii microbiome and its interaction with the intracellular parasite Wolbachia. Sci Rep 2020; 10:13847. [PMID: 32796890 PMCID: PMC7427791 DOI: 10.1038/s41598-020-70745-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/27/2020] [Indexed: 11/26/2022] Open
Abstract
Wolbachia, an endosymbiotic alpha-proteobacterium commonly found in insects, can inhibit the transmission of human pathogens by mosquitoes. Biocontrol programs are underway using Aedes aegypti mosquitoes trans-infected with a non-natural Wolbachia strain to reduce dengue virus transmission. Less is known about the impact of Wolbachia on the biology and vectorial capacity of Anopheles mosquitoes, the vectors of malaria parasites. A naturally occurring strain of Wolbachia, wAnga, infects populations of the major malaria vectors Anopheles gambiae and Anopheles coluzzii in Burkina Faso. Previous studies found wAnga infection was negatively correlated with Plasmodium infection in the mosquito and wAnga influenced mosquito egg-laying behavior. Here, we investigate wAnga in natural populations of An. coluzzii and its interactions with other resident microbiota using targeted 16S sequencing. Though we find no major differences in microbiota composition associated with wAnga infection, we do find several taxa that correlate with the presence or absence of wAnga in female mosquitoes following oviposition, with the caveat that we could not rule out batch effects due to the unanticipated impact of wAnga on oviposition timing. These data suggest wAnga may influence or interact with the Anopheles microbiota, which may contribute to the impact of wAnga on Anopheles biology and vectorial capacity.
Collapse
Affiliation(s)
- Timothy J Straub
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, 02144, USA.
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA.
| | - W Robert Shaw
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Perrine Marcenac
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Simon P Sawadogo
- Institut de Recherche en Sciences de La Santé/Centre Muraz, O1 BP 390, Bobo-Dioulasso 01, Burkina Faso
| | - Roch K Dabiré
- Institut de Recherche en Sciences de La Santé/Centre Muraz, O1 BP 390, Bobo-Dioulasso 01, Burkina Faso
| | - Abdoulaye Diabaté
- Institut de Recherche en Sciences de La Santé/Centre Muraz, O1 BP 390, Bobo-Dioulasso 01, Burkina Faso
| | - Flaminia Catteruccia
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Daniel E Neafsey
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, 02144, USA.
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA.
| |
Collapse
|
39
|
Ma W, Zheng X, Li L, Shen J, Li W, Gao Y. Changes in the gut microbiota of honey bees associated with jujube flower disease. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 198:110616. [PMID: 32334202 DOI: 10.1016/j.ecoenv.2020.110616] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 04/06/2020] [Accepted: 04/08/2020] [Indexed: 06/11/2023]
Abstract
Honeybees are prone to poisoning after collecting jujube nectar during the jujube flowering period ('honeybee's jujube flower disease'). To explore the mechanism of honeybee poisoning, the gut microbiota of honeybees undergoing the disease were characterised based on amplicon sequencing of the 16 S rRNA gene. Our results showed that the composition and diversity of the gut microbiota were significantly altered in diseased honeybees. We observed a decrease in the relative abundance of Proteobacteria and increased abundances of Firmicutes and Actinobacteria in the midgut and hindgut of diseased honeybees. Moreover, linear discriminant analysis (LDA) effect size revealed significantly selected enrichment of Fructobacillus and Snodgrassella in the midguts from diseased honeybees and Lactobacillus, Bifidobacterium, and Snodgrassella in the hindguts from diseased honeybees. Tax4Fun anylasis indicated that the functional potential of the diseased honeybee gut bacterial community was significantly changed relative to the healthy honeybee. Carbohydrate metabolism, nucleotides metabolism, amino acid synthesis metabolism, coenzyme and vitamins metabolism were increased, while energy metabolism and xenobiotic biodegradation and metabolism were decreased in the diseased honeybees. These results provide a new perspective for evaluating the response of honeybees to jujube flower disease based on changes in the intestinal microflora.
Collapse
Affiliation(s)
- WeiHua Ma
- Institute of Horticulture, Shanxi Academy of Agricultural Sciences, Taiyuan, Shanxi, China.
| | - Xianyun Zheng
- Institute of Environmental Science, Shanxi University, Taiyuan, Shanxi, China.
| | - Lixin Li
- Institute of Horticulture, Shanxi Academy of Agricultural Sciences, Taiyuan, Shanxi, China
| | - Jinshan Shen
- Institute of Horticulture, Shanxi Academy of Agricultural Sciences, Taiyuan, Shanxi, China
| | - Wanghong Li
- School of Physical Exercise and Education, Shanxi University, Taiyuan, Shanxi, China
| | - Ye Gao
- School of Physical Exercise and Education, Shanxi University, Taiyuan, Shanxi, China
| |
Collapse
|
40
|
Qing W, Zhijing X, Guangfu Y, Fengxia M, Qiyong L, Zhong Z, Ruiling Z. Variation in the microbiota across different developmental stages of Aedes albopictus is affected by ampicillin exposure. Microbiologyopen 2020; 9:1162-1174. [PMID: 32207564 PMCID: PMC7294303 DOI: 10.1002/mbo3.1026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/14/2020] [Accepted: 02/15/2020] [Indexed: 12/23/2022] Open
Abstract
The microbiota plays an important role in the growth of mosquitoes and the transmission of mosquito-borne pathogens. The effects of changes in aquatic habitats in which mosquitoes live, as one of the major factors closely associated with the microbial communities of mosquitoes, on the microbiota of different developmental stages remain to be elucidated. Here, we compared the microbiota of larvae and pupae of Aedes albopictus exposed to different ampicillin concentrations and investigated the bacterial composition of adult females. The results demonstrate that the microbial community differed substantially between developmental stages and that samples of the same stages shared similarities, whereas differences were observed between adult females. Based on all observations, we hypothesize that the use of ampicillin caused dysbiosis rather than excluding bacteria from mosquitoes and that the disturbing effect of ampicillin was obvious in adults. Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses revealed that most of the bacteria identified in this study were significantly associated with metabolism. Taken together, our results indicate that ampicillin can change the abundance of bacteria, while microbial communities of Ae. albopictus showed obvious stage-specific characteristics. Further investigations are needed to characterize specific bacterial components that are affected by ampicillin exposure and to quantify their functions, thereby providing a better understanding of the influence of antibiotics on microbial communities at different life stages.
Collapse
Affiliation(s)
- Wan Qing
- School of Basic Medical ScienceShandong First Medical UniversityTaianChina
| | - Xue Zhijing
- State Key Laboratory of Infectious Disease Prevention and ControlNational Institute for Communicable Disease Control and PreventionChinese Center for Disease Control and PreventionBeijingChina
| | - Yu Guangfu
- School of Basic Medical ScienceShandong First Medical UniversityTaianChina
| | - Meng Fengxia
- State Key Laboratory of Infectious Disease Prevention and ControlNational Institute for Communicable Disease Control and PreventionChinese Center for Disease Control and PreventionBeijingChina
| | - Liu Qiyong
- State Key Laboratory of Infectious Disease Prevention and ControlNational Institute for Communicable Disease Control and PreventionChinese Center for Disease Control and PreventionBeijingChina
| | - Zhang Zhong
- School of Basic Medical ScienceShandong First Medical UniversityTaianChina
| | - Zhang Ruiling
- School of Basic Medical ScienceShandong First Medical UniversityTaianChina
| |
Collapse
|
41
|
The environment and species affect gut bacteria composition in laboratory co-cultured Anopheles gambiae and Aedes albopictus mosquitoes. Sci Rep 2020; 10:3352. [PMID: 32099004 PMCID: PMC7042291 DOI: 10.1038/s41598-020-60075-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 12/16/2019] [Indexed: 12/15/2022] Open
Abstract
The midgut microbiota of disease vectors plays a critical role in the successful transmission of human pathogens. The environment influences the microbiota composition; however, the relative mosquito-species contribution has not been rigorously disentangled from the environmental contribution to the microbiota structure. Also, the extent to which the microbiota of the adult sugar food source and larval water can predict that of the adult midgut and vice versa is not fully understood. To address these relationships, larvae and adults of Anopheles gambiae and Aedes albopictus were either reared separately or in a co-rearing system, whereby aquatic and adult stages of both species shared the larval water and sugar food source, respectively. Despite being reared under identical conditions, clear intra- and interspecies differences in midgut microbiota-composition were observed across seven cohorts, collected at different time points over a period of eight months. Fitting a linear model separately for each OTU in the mosquito midgut showed that two OTUs significantly differed between the midguts of the two mosquito species. We also show an effect for the sugar food source and larval water on the adult midgut microbiota. Our findings suggest that the mosquito midgut microbiota is highly dynamic and controlled by multiple factors.
Collapse
|
42
|
Galeano-Castañeda Y, Bascuñán P, Serre D, Correa MM. Trans-stadial fate of the gut bacterial microbiota in Anopheles albimanus. Acta Trop 2020; 201:105204. [PMID: 31574253 DOI: 10.1016/j.actatropica.2019.105204] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/27/2019] [Accepted: 09/27/2019] [Indexed: 01/09/2023]
Abstract
Gut microbiota communities in mosquitoes are influenced among others, by developmental stage. There is evidence that the aquatic environment where larvae feed influences the mosquito gut bacterial community composition with only a subgroup of these bacteria been transmitted trans-stadially to adults. This study evaluated the gut bacterial composition of Anopheles albimanus larvae, emerged and circulating mosquitoes, as well as water from the larval habitat, to elucidate transitions in these bacterial communities and determine the final composition in circulating mosquitoes. A 16S rRNA Illumina sequencing allowed to determine that Proteobacteria was the most abundant phylum in larvae (72.4%), emerged mosquitoes (75%), circulating adults (45.4%) and water from the larval habitat (79.1%). A core microbiome analysis evidenced that Enterobacter, Bacillus and Staphylococcus genera were the core bacterial microbiota (OTUs detected in >90%) in the four groups evaluated. PCoA cluster based on Jaccard and Bray Curtis distances showed two main bacterial clusters, one comprising the emerged and circulating adults, and the other the larvae. The results indicated that the gut microbiota of An. albimanus larvae is composed of bacteria acquired from the larval habitat; then, a rearrangement of the bacterial communities occurs in the trans-stadial passage. However, the higher bacterial richness detected in circulating adults suggests bacterial acquisition from the terrestrial environment where the mosquito feeds. Finally, the trans-stadially passage of some bacteria makes of interest their evaluation as candidates for paratransgenic control.
Collapse
|
43
|
Galeano-Castañeda Y, Urrea-Aguirre P, Piedrahita S, Bascuñán P, Correa MM. Composition and structure of the culturable gut bacterial communities in Anopheles albimanus from Colombia. PLoS One 2019; 14:e0225833. [PMID: 31790474 PMCID: PMC6886788 DOI: 10.1371/journal.pone.0225833] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 11/13/2019] [Indexed: 11/18/2022] Open
Abstract
The understanding of factors affecting the gut bacterial communities in malaria vectors is essential for the design of vector control interventions, such as those based on a paratransgenic approach. One of the requirements of this method is the availability of bacteria from the mosquito susceptible to culture. Thus, the aim of this study was to evaluate the composition and structure of the culturable gut bacterial communities in field mosquitoes Anopheles albimanus from Colombia, in addition to generate a bacterial collection to further analyze microbial functional activity. Gut bacteria were isolated from An. albimanus larvae and adult mosquitoes collected in localities of the Atlantic and Pacific Coasts. The bacterial isolates were grouped in 28 morphospecies that corresponded to three phyla, three classes, nine families and 14 genera. The larvae guts from San Antero (Atlantic Coast) and Buenaventura (Pacific Coast) shared the genera Bacillus and Lysinibacillus and in adults, Bacillus and Bacillus cereus Group were registered in both localities. Gut bacterial richness was higher in adults from the Pacific with respect to the Atlantic Coast, while larval richness was similar in samples of both coasts. The Shannon index indicated uniformity in morphospecies abundances in both localities. Finally, the characterization of morphospecies from the gut of Anopheles albimanus mosquitoes from Colombia by culture-dependent methods complemented with 16S rRNA gene sequencing allowed the definition, at a finer resolution, of the composition and structure of these microbial communities. In addition, the obtained bacterial culture collection will allow further evaluation of the microorganisms for their potential as biocontrol agents.
Collapse
Affiliation(s)
- Yadira Galeano-Castañeda
- Grupo de Microbiología Molecular, Escuela de Microbiología, Universidad de Antioquia, Medellín, Colombia
| | - Paula Urrea-Aguirre
- Grupo de Microbiología Molecular, Escuela de Microbiología, Universidad de Antioquia, Medellín, Colombia
| | - Stefani Piedrahita
- Grupo de Microbiología Molecular, Escuela de Microbiología, Universidad de Antioquia, Medellín, Colombia
| | - Priscila Bascuñán
- Grupo de Microbiología Molecular, Escuela de Microbiología, Universidad de Antioquia, Medellín, Colombia
| | - Margarita M. Correa
- Grupo de Microbiología Molecular, Escuela de Microbiología, Universidad de Antioquia, Medellín, Colombia
- * E-mail:
| |
Collapse
|
44
|
Bacterial communities associated with the midgut microbiota of wild Anopheles gambiae complex in Burkina Faso. Mol Biol Rep 2019; 47:211-224. [PMID: 31643044 DOI: 10.1007/s11033-019-05121-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 10/09/2019] [Indexed: 10/25/2022]
Abstract
Plasmodium falciparum is transmitted by mosquitoes from the Anopheles gambiae sensu lato (s.l) species complex and is responsible for severe forms of malaria. The composition of the mosquitoes' microbiota plays a role in P. falciparum transmission, so we studied midgut bacterial communities of An. gambiae s.l from Burkina Faso. DNA was extracted from 17 pools of midgut of mosquitoes from the Anopheles gambiae complex from six localities in three climatic areas, including cotton-growing and cotton-free localities to include potential differences in insecticide selection pressure. The v3-v4 region of the 16S rRNA gene was targeted and sequenced using Illumina Miseq (2 × 250 nt). Diversity analysis was performed using QIIME and R software programs. The major bacterial phylum was Proteobacteria (97.2%) in all samples. The most abundant genera were Enterobacter (32.8%) and Aeromonas (29.8%), followed by Pseudomonas (11.8%), Acinetobacter (5.9%) and Thorsellia (2.2%). No statistical difference in operational taxonomic units (OTUs) was found (Kruskal-Wallis FDR-p > 0.05) among the different areas, fields or localities. Richness and diversity indexes (observed OTUs, Chao1, Simpson and Shannon indexes) showed significant differences in the cotton-growing fields and in the agroclimatic zones, mainly in the Sudano-Sahelian area. OTUs from seven bacterial species that mediate refractoriness to Plasmodium infection in An. gambiae s.l were detected. The beta diversity analysis did not show any significant difference. Therefore, a same control strategy of using bacterial species refractoriness to Plasmodium to target mosquito midgut bacterial community and affect their fitness in malaria transmission may be valuable tool for future malaria control efforts in Burkina Faso.
Collapse
|
45
|
Bennett KL, Almanza A, McMillan WO, Saltonstall K, Vdovenko EL, Vinda JS, Mejia L, Driesse K, De León LF, Loaiza JR. Habitat disturbance and the organization of bacterial communities in Neotropical hematophagous arthropods. PLoS One 2019; 14:e0222145. [PMID: 31491005 PMCID: PMC6730880 DOI: 10.1371/journal.pone.0222145] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 08/22/2019] [Indexed: 12/21/2022] Open
Abstract
The microbiome plays a key role in the biology, ecology and evolution of arthropod vectors of human pathogens. Vector-bacterial interactions could alter disease transmission dynamics through modulating pathogen replication and/or vector fitness. Nonetheless, our understanding of the factors shaping the bacterial community in arthropod vectors is incomplete. Using large-scale 16S amplicon sequencing, we examine how habitat disturbance structures the bacterial assemblages of field-collected whole-body hematophagous arthropods that vector human pathogens including mosquitoes (Culicidae), sand flies (Psychodidae), biting midges (Ceratopogonidae) and hard ticks (Ixodidae). We found that all comparisons of the bacterial community among species yielded statistically significant differences, but a difference was not observed between adults and nymphs of the hard tick, Haemaphysalis juxtakochi. While Culicoides species had the most distinct bacterial community among dipterans, tick species were composed of entirely different bacterial OTU’s. We observed differences in the proportions of some bacterial types between pristine and disturbed habitats for Coquillettidia mosquitoes, Culex mosquitoes, and Lutzomyia sand flies, but their associations differed within and among arthropod assemblages. In contrast, habitat quality was a poor predictor of differences in bacterial classes for Culicoides biting midges and hard tick species. In general, similarities in the bacterial communities among hematophagous arthropods could be explained by their phylogenetic relatedness, although intraspecific variation seems influenced by habitat disturbance.
Collapse
Affiliation(s)
- Kelly L. Bennett
- Smithsonian Tropical Research Institute, Balboa Ancon, República de Panamá
- * E-mail: (KLB); (JRL)
| | - Alejandro Almanza
- Smithsonian Tropical Research Institute, Balboa Ancon, República de Panamá
| | - W. Owen McMillan
- Smithsonian Tropical Research Institute, Balboa Ancon, República de Panamá
| | | | | | - Jorge S. Vinda
- Smithsonian Tropical Research Institute, Balboa Ancon, República de Panamá
| | - Luis Mejia
- Smithsonian Tropical Research Institute, Balboa Ancon, República de Panamá
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología, Panamá, República de Panamá
| | - Kaitlin Driesse
- University at Albany, State University of New York, NY, United States of America
| | - Luis F. De León
- Department of Biology, University of Massachusetts Boston, Boston, MA, United States of America
| | - Jose R. Loaiza
- Smithsonian Tropical Research Institute, Balboa Ancon, República de Panamá
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología, Panamá, República de Panamá
- Programa Centroamericano de Maestría en Entomología, Universidad de Panamá, Panamá, República de Panamá
- * E-mail: (KLB); (JRL)
| |
Collapse
|
46
|
Martinez-Villegas L, Assis-Geraldo J, Koerich LB, Collier TC, Lee Y, Main BJ, Rodrigues NB, Orfano AS, Pires ACAM, Campolina TB, Nacif-Pimenta R, Baia-da-Silva DC, Duarte APM, Bahia AC, Rios-Velásquez CM, Lacerda MVG, Monteiro WM, Lanzaro GC, Secundino NFC, Pimenta PFP. Characterization of the complete mitogenome of Anopheles aquasalis, and phylogenetic divergences among Anopheles from diverse geographic zones. PLoS One 2019; 14:e0219523. [PMID: 31479460 PMCID: PMC6720026 DOI: 10.1371/journal.pone.0219523] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 06/25/2019] [Indexed: 11/18/2022] Open
Abstract
Whole mitogenome sequences (mtDNA) have been exploited for insect ecology studies, using them as molecular markers to reconstruct phylogenies, or to infer phylogeographic relationships and gene flow. Recent Anopheles phylogenomic studies have provided information regarding the time of deep lineage divergences within the genus. Here we report the complete 15,393 bp mtDNA sequences of Anopheles aquasalis, a Neotropical human malaria vector. When comparing its structure and base composition with other relevant and available anopheline mitogenomes, high similarity and conserved genomic features were observed. Furthermore, 22 mtDNA sequences comprising anopheline and Dipteran sibling species were analyzed to reconstruct phylogenies and estimate dates of divergence between taxa. Phylogenetic analysis using complete mtDNA sequences suggests that A. aquasalis diverged from the Anopheles albitarsis complex ~28 million years ago (MYA), and ~38 MYA from Anopheles darlingi. Bayesian analysis suggests that the most recent ancestor of Nyssorhynchus and Anopheles + Cellia was extant ~83 MYA, corroborating current estimates of ~79–100 MYA. Additional sampling and publication of African, Asian, and North American anopheline mitogenomes would improve the resolution of the Anopheles phylogeny and clarify early continental dispersal routes.
Collapse
Affiliation(s)
- Luis Martinez-Villegas
- Laboratory of Medical Entomology, Institute René Rachou, Oswaldo Cruz Foundation, Minas Gerais, FIOCRUZ, Belo Horizonte, MG, Brazil
| | - Juliana Assis-Geraldo
- Biosystems Informatics and Genomics Group, Institute René Rachou, Oswaldo Cruz Foundation, Minas Gerais, FIOCRUZ, Belo Horizonte, MG, Brazil
| | - Leonardo B Koerich
- Laboratory of Physiology of Haematophagous Insects, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Travis C Collier
- Daniel K. Inouye US Pacific Basin Agricultural Research Center (PBARC), United States Department of Agriculture, Agricultural Research Service, Hilo, Hawaii, United States of America
| | - Yoosook Lee
- Vector Genetics Laboratory, Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California-Davis, Davis, California, United States of America
| | - Bradley J Main
- Davis Arbovirus Research and Training, School of Veterinary Medicine, University of California-Davis, Davis, California, United States of America
| | - Nilton B Rodrigues
- Laboratory of Medical Entomology, Institute René Rachou, Oswaldo Cruz Foundation, Minas Gerais, FIOCRUZ, Belo Horizonte, MG, Brazil
| | - Alessandra S Orfano
- Laboratory of Medical Entomology, Institute René Rachou, Oswaldo Cruz Foundation, Minas Gerais, FIOCRUZ, Belo Horizonte, MG, Brazil
| | - Ana C A M Pires
- Laboratory of Medical Entomology, Institute René Rachou, Oswaldo Cruz Foundation, Minas Gerais, FIOCRUZ, Belo Horizonte, MG, Brazil
| | - Thais B Campolina
- Laboratory of Medical Entomology, Institute René Rachou, Oswaldo Cruz Foundation, Minas Gerais, FIOCRUZ, Belo Horizonte, MG, Brazil
| | - Rafael Nacif-Pimenta
- Laboratory of Medical Entomology, Institute René Rachou, Oswaldo Cruz Foundation, Minas Gerais, FIOCRUZ, Belo Horizonte, MG, Brazil
| | - Djane C Baia-da-Silva
- Institute of Clinical Research Borborema, Tropical Medicine Foundation Dr. Heitor Vieira Dourado, Manaus, AM, Brazil
- Graduation Program in Tropical Medicine, Amazonas State University, Manaus, AM, Brazil
- Foundation of Tropical Medicine Dr. Heitor Vieira Dourado, Manaus, AM, Brazil
| | - Ana P M Duarte
- Institute of Clinical Research Borborema, Tropical Medicine Foundation Dr. Heitor Vieira Dourado, Manaus, AM, Brazil
- Graduation Program in Tropical Medicine, Amazonas State University, Manaus, AM, Brazil
- Foundation of Tropical Medicine Dr. Heitor Vieira Dourado, Manaus, AM, Brazil
| | - Ana C Bahia
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Marcus V G Lacerda
- Institute of Clinical Research Borborema, Tropical Medicine Foundation Dr. Heitor Vieira Dourado, Manaus, AM, Brazil
- Graduation Program in Tropical Medicine, Amazonas State University, Manaus, AM, Brazil
- Foundation of Tropical Medicine Dr. Heitor Vieira Dourado, Manaus, AM, Brazil
- Institute Leonidas and Maria Deane, Oswaldo Cruz Foundation, FIOCRUZ, Manaus, AM, Brazil
| | - Wuelton M Monteiro
- Institute of Clinical Research Borborema, Tropical Medicine Foundation Dr. Heitor Vieira Dourado, Manaus, AM, Brazil
- Graduation Program in Tropical Medicine, Amazonas State University, Manaus, AM, Brazil
- Foundation of Tropical Medicine Dr. Heitor Vieira Dourado, Manaus, AM, Brazil
| | - Gregory C Lanzaro
- Vector Genetics Laboratory, Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California-Davis, Davis, California, United States of America
| | - Nagila F C Secundino
- Laboratory of Medical Entomology, Institute René Rachou, Oswaldo Cruz Foundation, Minas Gerais, FIOCRUZ, Belo Horizonte, MG, Brazil
- Graduation Program in Tropical Medicine, Amazonas State University, Manaus, AM, Brazil
- Foundation of Tropical Medicine Dr. Heitor Vieira Dourado, Manaus, AM, Brazil
| | - Paulo F P Pimenta
- Laboratory of Medical Entomology, Institute René Rachou, Oswaldo Cruz Foundation, Minas Gerais, FIOCRUZ, Belo Horizonte, MG, Brazil
- Institute of Clinical Research Borborema, Tropical Medicine Foundation Dr. Heitor Vieira Dourado, Manaus, AM, Brazil
- Graduation Program in Tropical Medicine, Amazonas State University, Manaus, AM, Brazil
- Foundation of Tropical Medicine Dr. Heitor Vieira Dourado, Manaus, AM, Brazil
| |
Collapse
|
47
|
Bennett KL, Gómez-Martínez C, Chin Y, Saltonstall K, McMillan WO, Rovira JR, Loaiza JR. Dynamics and diversity of bacteria associated with the disease vectors Aedes aegypti and Aedes albopictus. Sci Rep 2019; 9:12160. [PMID: 31434963 PMCID: PMC6704126 DOI: 10.1038/s41598-019-48414-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 07/17/2019] [Indexed: 01/02/2023] Open
Abstract
Aedes aegypti and Aedes albopictus develop in the same aquatic sites where they encounter microorganisms that influence their life history and capacity to transmit human arboviruses. Some bacteria such as Wolbachia are currently being considered for the control of Dengue, Chikungunya and Zika. Yet little is known about the dynamics and diversity of Aedes-associated bacteria, including larval habitat features that shape their tempo-spatial distribution. We applied large-scale 16S rRNA amplicon sequencing to 960 adults and larvae of both Ae. aegypti and Ae. albopictus mosquitoes from 59 sampling sites widely distributed across nine provinces of Panama. We find both species share a limited, yet highly variable core microbiota, reflecting high stochasticity within their oviposition habitats. Despite sharing a large proportion of microbiota, Ae. aegypti harbours higher bacterial diversity than Ae. albopictus, primarily due to rarer bacterial groups at the larval stage. We find significant differences between the bacterial communities of larvae and adult mosquitoes, and among samples from metal and ceramic containers. However, we find little support for geography, water temperature and pH as predictors of bacterial associates. We report a low incidence of natural Wolbachia infection for both Aedes and its geographical distribution. This baseline information provides a foundation for studies on the functions and interactions of Aedes-associated bacteria with consequences for bio-control within Panama.
Collapse
Affiliation(s)
- Kelly L Bennett
- Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancon, Panama.
| | - Carmelo Gómez-Martínez
- Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancon, Panama
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología, Ciudad del Saber, Apartado, 0843-01103, Ciudad de Panamá, Panama
| | - Yamileth Chin
- Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancon, Panama
| | - Kristin Saltonstall
- Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancon, Panama
| | - W Owen McMillan
- Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancon, Panama
| | - Jose R Rovira
- Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancon, Panama
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología, Ciudad del Saber, Apartado, 0843-01103, Ciudad de Panamá, Panama
| | - Jose R Loaiza
- Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancon, Panama.
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología, Ciudad del Saber, Apartado, 0843-01103, Ciudad de Panamá, Panama.
- Programa Centroamericano de Maestría en Entomología, Universidad de Panamá, Ciudad de Panamá, Panama.
| |
Collapse
|
48
|
Caragata EP, Tikhe CV, Dimopoulos G. Curious entanglements: interactions between mosquitoes, their microbiota, and arboviruses. Curr Opin Virol 2019; 37:26-36. [PMID: 31176069 PMCID: PMC6768729 DOI: 10.1016/j.coviro.2019.05.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/03/2019] [Accepted: 05/06/2019] [Indexed: 11/22/2022]
Abstract
Mosquitoes naturally harbor a diverse community of microorganisms that play a crucial role in their biology. Mosquito-microbiota interactions are abundant and complex. They can dramatically alter the mosquito immune response, and impede or enhance a mosquito's ability to transmit medically important arboviral pathogens. Yet critically, given the massive public health impact of arboviral disease, few such interactions have been well characterized. In this review, we describe the current state of knowledge of the role of microorganisms in mosquito biology, how microbial-induced changes to mosquito immunity moderate infection with arboviruses, cases of mosquito-microbial-virus interactions with a defined mechanism, and the molecular interactions that underlie the endosymbiotic bacterium Wolbachia's ability to block virus infection in mosquitoes.
Collapse
Affiliation(s)
- Eric P Caragata
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | - Chinmay V Tikhe
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | - George Dimopoulos
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States.
| |
Collapse
|
49
|
Abstract
Wolbachia (Alphaproteobacteria, Rickettsiales) is an intraovarially transmitted symbiont of insects able to exert striking phenotypes, including reproductive manipulations and pathogen blocking. These phenotypes make Wolbachia a promising tool to combat mosquito-borne diseases. Although Wolbachia is present in the majority of terrestrial arthropods, including many disease vectors, it was considered absent from Anopheles gambiae mosquitos, the main vectors of malaria in sub-Saharan Africa. In 2014, Wolbachia sequences were detected in A. gambiae samples collected in Burkina Faso. Subsequently, similar evidence came from collections all over Africa, revealing a high Wolbachia 16S rRNA sequence diversity, low abundance, and a lack of congruence between host and symbiont phylogenies. Here, we reanalyze and discuss recent evidence on the presence of Wolbachia sequences in A. gambiae. We find that although detected at increasing frequencies, the unusual properties of these Wolbachia sequences render them insufficient to diagnose natural infections in A. gambiae Future studies should focus on uncovering the origin of Wolbachia sequence variants in Anopheles and seeking sequence-independent evidence for this new symbiosis. Understanding the ecology of Anopheles mosquitos and their interactions with Wolbachia will be key in designing successful, integrative approaches to limit malaria spread. Although the prospect of using Wolbachia to fight malaria is intriguing, the newly discovered strains do not bring it closer to realization.IMPORTANCEAnopheles gambiae mosquitos are the main vectors of malaria, threatening around half of the world's population. The bacterial symbiont Wolbachia can interfere with disease transmission by other important insect vectors, but until recently, it was thought to be absent from natural A. gambiae populations. Here, we critically analyze the genomic, metagenomic, PCR, imaging, and phenotypic data presented in support of the presence of natural Wolbachia infections in A. gambiae We find that they are insufficient to diagnose Wolbachia infections and argue for the need of obtaining robust data confirming basic Wolbachia characteristics in this system. Determining the Wolbachia infection status of Anopheles is critical due to its potential to influence Anopheles population structure and Plasmodium transmission.
Collapse
Affiliation(s)
- Ewa Chrostek
- Max Planck Institute for Infection Biology, Berlin, Germany
- Institute of Integrative Biology, University of Liverpool, United Kingdom
| | - Michael Gerth
- Institute of Integrative Biology, University of Liverpool, United Kingdom
| |
Collapse
|
50
|
Tchouassi DP, Muturi EJ, Arum SO, Kim CH, Fields CJ, Torto B. Host species and site of collection shape the microbiota of Rift Valley fever vectors in Kenya. PLoS Negl Trop Dis 2019; 13:e0007361. [PMID: 31173595 PMCID: PMC6584011 DOI: 10.1371/journal.pntd.0007361] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 06/19/2019] [Accepted: 04/04/2019] [Indexed: 12/14/2022] Open
Abstract
The composition and structure of microbial communities associated with mosquitoes remain poorly understood despite their important role in host biology and potential to be harnessed as novel strategies for mosquito-borne disease control. We employed MiSeq sequencing of the 16S rRNA gene amplicons to characterize the bacterial flora of field-collected populations of Aedes mcintoshi and Aedes ochraceus, the primary vectors of Rift Valley fever (RVF) virus in Kenya. Proteobacteria (53.5%), Firmicutes (22.0%) and Actinobacteria (10.0%) were the most abundant bacterial phyla accounting for 85.5% of the total sequences. Non-metric multi-dimensional scaling plots based on Bray-Curtis dissimilarities revealed a clear grouping of the samples by mosquito species, indicating that the two mosquito species harbored distinct microbial communities. Microbial diversity, richness and composition was strongly influenced by the site of mosquito collection and overall, Ae. ochraceus had significantly higher microbial diversity and richness than Ae. mcintoshi. Our findings suggest that host species and site of collection are important determinants of bacterial community composition and diversity in RVF virus vectors and these differences likely contribute to the spatio-temporal transmission dynamics of RVF virus. Knowledge of the microbial communities associated with disease vectors can be exploited for symbiotic control of vector-borne diseases. Here, we characterized and compared the bacterial communities of field-caught populations of Aedes mcintoshi and Aedes ochraceus, the primary vectors of Rift Valley fever (RVF) virus in Kenya. We show that the two mosquito species harbor distinct microbial communities whose diversity and richness are heavily influenced by the site of collection. Because some bacterial species are known to influence vector susceptibility to pathogens, differences in bacterial communities between the two mosquito species is likely one of the primary factors accounting for the spatial and temporal variation in transmission dynamics of RVF virus.
Collapse
Affiliation(s)
- David P. Tchouassi
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
- * E-mail:
| | - Ephantus J. Muturi
- Crop Bioprotection Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Peoria, Illinois, United States of America
| | - Samwel O. Arum
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | - Chang-Hyun Kim
- Illinois Natural History Survey, University of Illinois at Urbana-Champaign, Champaign, Illinois, United States of America
| | - Christopher J. Fields
- High Performance Computing in Biology (HPCBio), Roy J Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Illinois, United States of America
| | - Baldwyn Torto
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| |
Collapse
|