1
|
Wang D, Miao J, Zhang L, Zhang L. Research advances in the diagnosis and treatment of MASLD/MASH. Ann Med 2025; 57. [DOI: 10.1080/07853890.2024.2445780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/01/2024] [Accepted: 12/02/2024] [Indexed: 01/06/2025] Open
Affiliation(s)
- Dekai Wang
- Department of General Practice, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jinxian Miao
- Department of General Practice, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Lihua Zhang
- Department of General Practice, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Lin Zhang
- Department of General Practice, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
2
|
Lulic I, Lulic D, Pavicic Saric J, Bacak Kocman I, Rogic D. Personalized translational medicine: Investigating YKL-40 as early biomarker for clinical risk stratification in hepatocellular carcinoma recurrence post-liver transplantation. World J Transplant 2025; 15:103036. [DOI: 10.5500/wjt.v15.i2.103036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/05/2025] [Accepted: 01/14/2025] [Indexed: 02/21/2025] Open
Abstract
Hepatocellular carcinoma (HCC) recurrence after liver transplantation (LT) presents a significant challenge, with recurrence rates ranging from 8% to 20% globally. Current biomarkers, such as alpha-fetoprotein (AFP) and des-gamma-carboxy prothrombin (DCP), lack specificity, limiting their utility in risk stratification. YKL-40, a glycoprotein involved in extracellular matrix remodeling, hepatic stellate cell activation, and immune modulation, has emerged as a promising biomarker for post-LT surveillance. Elevated serum levels of YKL-40 are associated with advanced liver disease, tumor progression, and poorer post-LT outcomes, highlighting its potential to address gaps in early detection and personalized management of HCC recurrence. This manuscript synthesizes clinical and mechanistic evidence to evaluate YKL-40’s predictive utility in post-LT care. While preliminary findings demonstrate its specificity for liver-related pathologies, challenges remain, including assay standardization, lack of prospective validation, and the need to distinguish between malignant and non-malignant causes of elevated levels. Integrating YKL-40 into multi-biomarker panels with AFP and DCP could enhance predictive accuracy and enable tailored therapeutic strategies. Future research should focus on multicenter studies to validate YKL-40’s clinical utility, address confounding factors like graft rejection and systemic inflammation, and explore its role in predictive models driven by emerging technologies such as artificial intelligence. YKL-40 holds transformative potential in reshaping post-LT care through precision medicine, providing a pathway for better outcomes and improved management of high-risk LT recipients.
Collapse
Affiliation(s)
- Ileana Lulic
- Department of Anesthesiology, Intensive Care and Pain Medicine, Clinical Hospital Merkur, Zagreb 10000, Croatia
| | - Dinka Lulic
- Department of Anesthesiology, Intensive Care and Pain Medicine, Clinical Hospital Merkur, Zagreb 10000, Croatia
- Immediate Medical Care Unit, Saint James Hospital, Sliema SLM-1030, Malta
| | - Jadranka Pavicic Saric
- Department of Anesthesiology, Intensive Care and Pain Medicine, Clinical Hospital Merkur, Zagreb 10000, Croatia
| | - Iva Bacak Kocman
- Department of Anesthesiology, Intensive Care and Pain Medicine, Clinical Hospital Merkur, Zagreb 10000, Croatia
| | - Dunja Rogic
- Department of Laboratory Diagnostics, University Hospital Centre Zagreb, Zagreb 10000, Croatia
- Department of Medical Biochemistry and Hematology, Faculty of Pharmacy and Biochemistry, Zagreb 10000, Croatia
| |
Collapse
|
3
|
Guo L, Peng Y, Yang C, Liu X, Xiong W, Liao W, Fan J. Mechanistic studies on the role of CHI3L1 in eosinophilic inflammation in chronic sinusitis. Front Immunol 2025; 16:1562546. [PMID: 40201175 PMCID: PMC11975569 DOI: 10.3389/fimmu.2025.1562546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 03/05/2025] [Indexed: 04/10/2025] Open
Abstract
More than 10% of adults suffer from chronic rhinosinusitis (CRS), a chronic inflammatory condition that lowers quality of life, reduces productivity, and shortens work hours. Every year, more than 1 million surgeries are performed worldwide as a result of CRS. In recent years, targeted therapy for CRS has become a hotspot of research at home and abroad and has made significant progress, but CRS still has a high recurrence rate. Therefore CRS urgently needs precise targeted therapy. In the pathological process of CRS, the involvement of eosinophils is an important inflammatory mechanism. And excessive aggregation of eosinophils often leads to severe inflammatory responses. Studies have shown that chitinase 3-like protein 1 (CHI3L1) plays a key role in the activation and migration of eosinophils. This review will combine the latest research results to analyse in detail the biological properties of CHI3L1, its expression pattern in CRS, and the possible mechanisms by which it affects eosinophil aggregation by regulating immune responses and inflammatory processes, which will provide insights into the key role of CHI3L1 in the pathological process of CRS and offer a new target for the treatment of CRS.
Collapse
Affiliation(s)
- Ling Guo
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yi Peng
- Department of Otolaryngology Head and Neck Surgery, Chengdu Second People's Hospital, Chengdu, China
| | - Cheng Yang
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xinghong Liu
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Weilan Xiong
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Weijiang Liao
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Jiangang Fan
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
4
|
Kim JH, Yeo IJ, Son DJ, Han SB, Yoon DY, Lee DH, Hong JT. Chitinase 3-like protein 1 deficiency ameliorates drug-induced acute liver injury by inhibition of neutrophil recruitment through lipocalin-2. Front Pharmacol 2025; 16:1548832. [PMID: 40196357 PMCID: PMC11973357 DOI: 10.3389/fphar.2025.1548832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 03/06/2025] [Indexed: 04/09/2025] Open
Abstract
Chitinase-3-like protein 1 (Chi3l1) is a member of the mammalian Chitinase-like protein family, and several studies reported that Chi3l1 is associated with various inflammatory diseases as well as liver diseases. Acetaminophen (APAP) is usually used for antipyretic drug, but its overdose induces acute liver injury (ALI). Several studies reported that subsequent inflammatory responses of the immune system play a critical role in the severity and outcome of APAP-induced ALI. In the present study, we investigated the role of Chi3l1 and its mechanism during APAP-induced ALI using Chi3l1 knock-out (KO) mice. We explored the function of Chi3l1 using APAP-injected KO mice and sought proteins associated with Chi3l1 through biological research data program for investigating mechanism. Liver histological analysis revealed that APAP-induced ALI was attenuated in KO mice compared to wild-type (WT) mice. We observed that APAP-induced neutrophil infiltration was decreased in the liver of KO mice compared to WT mice. To investigate this mechanism, we sought proteins potentially associated with Chi3l1 by mRNA sequencing and protein correlation analysis data. We found lipocalin-2 (Lcn2) and examined Chi3l1, Lcn2, and their relationship in the APAP-induced ALI model using recombinant proteins and antibodies. Our results suggest that Chi3l1 deficiency ameliorates APAP-induced liver injury through abrogating Lcn2-mediated neutrophil infiltration in the liver.
Collapse
Affiliation(s)
- Ji Hye Kim
- Department of Biological Sciences, Research Center of Ecomimetics, Chonnam National University, Gwangju, Republic of Korea
| | - In Jun Yeo
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
- College of Pharmacy, Kyungpook National University, Daegu, Republic of Korea
| | - Dong Ju Son
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Sang Bae Han
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Do Young Yoon
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Republic of Korea
| | - Dong Hun Lee
- Department of Biological Sciences, Research Center of Ecomimetics, Chonnam National University, Gwangju, Republic of Korea
| | - Jin Tae Hong
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| |
Collapse
|
5
|
Lv Z, Yong JK, Liu Y, Zhou Y, Pan Y, Xiang X, Li L, Wang Y, Zhao Y, Liu Z, Zhang Z, Xia Q, Feng H. A blood-based PT-LIFE (Pediatric Liver Transplantation-LIver Fibrosis Evaluation) biomarker panel for noninvasive evaluation of pediatric liver fibrosis after liver transplantation: A prospective derivation and validation study. Am J Transplant 2025; 25:501-515. [PMID: 39447750 DOI: 10.1016/j.ajt.2024.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 10/10/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024]
Abstract
Allograft fibrosis is increasingly detected in graft biopsies as the postoperative period extends, potentially emerging as a pivotal determinant of long-term graft function and graft survival among pediatric recipients. Currently, there is a paucity of noninvasive diagnostic tools capable of identifying allograft fibrosis in pediatric recipients of liver transplants. This study involved 507 pediatric liver transplant patients and developed a novel blood-based diagnostic assay, Pediatric Liver Transplantation-Liver Fibrosis Evaluation (PT-LIFE), to noninvasively distinguish allograft fibrosis using blood samples, clinical data, and biopsy outcomes. The PT-LIFE assay was derived from a matrix of 23 variables and validated in 2 independent cohorts. It integrates 3 biomarkers (LECT2, YKL-40, FBLN3) with an area under the receiver operating characteristic curve of 0.91. In the pooled analysis, a PT-LIFE score lower than 0.12 identified liver allograft fibrosis semiquantitative scores 0 to 2 with a sensitivity of 91.9%, whereas scores above 0.29 indicated liver allograft fibrosis semiquantitative scores 3 to 6, with a specificity of 88.4%. The PT-LIFE assay presents as a promising noninvasive diagnostic tool for the detection of allograft fibrosis in pediatric liver transplant recipients.
Collapse
Affiliation(s)
- Zicheng Lv
- Department of Liver Surgery, Renji Hospital (Punan Branch), School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Clinical Research Unit, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - June-Kong Yong
- Department of Liver Surgery, Renji Hospital (Punan Branch), School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yuan Liu
- Department of Liver Surgery, Renji Hospital (Punan Branch), School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yi Zhou
- Department of Liver Surgery, Renji Hospital (Punan Branch), School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Engineering Research Centre of Transplantation and Immunology, Shanghai, China
| | - Yixiao Pan
- Shanghai Engineering Research Centre of Transplantation and Immunology, Shanghai, China
| | - Xuelin Xiang
- Shanghai Engineering Research Centre of Transplantation and Immunology, Shanghai, China
| | - Linman Li
- Shanghai Engineering Research Centre of Transplantation and Immunology, Shanghai, China
| | - Yuanhao Wang
- Shanghai Engineering Research Centre of Transplantation and Immunology, Shanghai, China
| | - Yue Zhao
- Department of General, Visceral, Cancer and Transplantation Surgery, University Hospital Cologne, Cologne, Germany
| | - Zebing Liu
- Shanghai Engineering Research Centre of Transplantation and Immunology, Shanghai, China
| | - Zijie Zhang
- Shanghai Engineering Research Centre of Transplantation and Immunology, Shanghai, China.
| | - Qiang Xia
- Department of Liver Surgery, Renji Hospital (Punan Branch), School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Engineering Research Centre of Transplantation and Immunology, Shanghai, China.
| | - Hao Feng
- Department of Liver Surgery, Renji Hospital (Punan Branch), School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Clinical Research Unit, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Engineering Research Centre of Transplantation and Immunology, Shanghai, China.
| |
Collapse
|
6
|
Bruschi M, Granata S, Leone F, Barberio L, Candiano G, Pontrelli P, Petretto A, Bartolucci M, Spinelli S, Gesualdo L, Zaza G. Omics data integration analysis identified new biological insights into chronic antibody-mediated rejection (CAMR). J Transl Med 2025; 23:209. [PMID: 39979925 PMCID: PMC11844005 DOI: 10.1186/s12967-025-06203-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 02/03/2025] [Indexed: 02/22/2025] Open
Abstract
BACKGROUND In the last two decades, many studies based on omics technologies have contributed to defining the clinical, immunological, and histological fingerprints of chronic antibody-mediated rejection (CAMR), the leading cause of long-term kidney allograft failure. However, the full biological machinery underlying CAMR has only been partially defined, likely due to the fact thatsingle-omics technologies capture only specific aspects of the biological system and fail to provide a comprehensive understanding of this clinical complication. METHODS This study integrated mass spectrometry-based proteomic profiling of serum samples from 19 patients with clinical and histological evidence of CAMR and 26 kidney transplant recipients with normal graft function and histology (CTR) with transcriptomic analysis of peripheral blood mononuclear cells (PBMCs) from an independent cohort of 10 CAMR and 8 CTR patients. Data analysis was conducted using unsupervised hierarchical clustering (multidimensional scaling with k-means) and Spearman's correlation test. Partial least squares discriminant analysis (PLS-DA) with the importance in projection (VIP) score identified key proteins differentiating CAMR from CTR. ELISA was used to validate the omics results. RESULTS Proteomic analysis identified 18 proteins that significantly differentiated CAMR from CTR (p < 0.01): five were more abundant (CHI3L1, LYZ, PRSS2, CPQ, IGLV3-32), while 13 were less abundant (SERPINA5, SERPING1, KNG1, CAMP, VNN1, BTD, WDR1, PON3, AHNAK2, MELTF, CA1, CD44, CUL1). Transcriptomic profiling revealed 6 downregulated and 33 upregulated genes in CAMR versus CTR (p < 0.01). Notably, only 2 biological elements were significantly deregulated in both omics analyses: chitinase-3-like protein 1 (CHI3L1) and plasma protease inhibitor C1 (SERPING1). CHI3L1, previously associated with the severity of tissue damage in kidney diseases, was up-regulated in CAMR in both transcriptomics and proteomics, while SERPING1, a serine esterase inhibitor that blocks the classical and lectin pathway of complement, was up-regulated in CAMR in transcriptomics but down-regulated in proteomics. ELISA validated the omics results, and the ROC curve showed that CHI3L1 has good discrimination power between CAMR and CTR (AUC of ROC curve of 0.81). CONCLUSIONS Our multi-omics data, although performed in a relatively small cohort of patients, revealed new systemic biological elements involved in the pathogenesis of CAMR and identified CHI3L1 as a new potential biomarker and/or therapeutic target for this important clinical complication. Future validation of these findings in larger patient cohorts should be conducted to better evaluate their clinical utility.
Collapse
Affiliation(s)
- Maurizio Bruschi
- Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
- Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy
| | - Simona Granata
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036, Rende, Italy
| | - Francesca Leone
- Division of Nephrology, Dialysis and Transplantation, Annunziata Hospital, Cosenza, Italy
| | - Laura Barberio
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036, Rende, Italy
| | - Giovanni Candiano
- Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Paola Pontrelli
- Nephrology, Dialysis and Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DIMEPRE-J), University of Bari Aldo Moro, Bari, Italy
| | - Andrea Petretto
- Proteomics and Clinical Metabolomics Unit at the Core Facilities, IRCCS Istituto Giannina Gaslini, 16147, Genoa, Italy
| | - Martina Bartolucci
- Proteomics and Clinical Metabolomics Unit at the Core Facilities, IRCCS Istituto Giannina Gaslini, 16147, Genoa, Italy
| | - Sonia Spinelli
- Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Loreto Gesualdo
- Nephrology, Dialysis and Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DIMEPRE-J), University of Bari Aldo Moro, Bari, Italy
| | - Gianluigi Zaza
- Division of Nephrology, Dialysis and Transplantation, Annunziata Hospital, Cosenza, Italy.
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy.
| |
Collapse
|
7
|
Wang C, Li K, Huang R, Wan S, Chen S, Liu S, Yang L. Urine proteomics-based analysis identifies CHI3L1 as an immune marker and potential therapeutic target for bladder cancer. BMC Cancer 2025; 25:271. [PMID: 39955518 PMCID: PMC11830209 DOI: 10.1186/s12885-025-13668-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 02/06/2025] [Indexed: 02/17/2025] Open
Abstract
BACKGROUND Bladder cancer (BCa) is a prevalent malignancy characterized by a poor prognosis. Numerous studies have increasingly recognized the role of M2 macrophages in cancer progression. Consequently, our objective is to investigate hub genes in BCa associated with M2 macrophages, assessing their prognostic significance and exploring potential regulatory mechanisms. METHODS We performed a comprehensive bioinformatics analysis using data from urine proteomics, the Gene Expression Omnibus (GEO) database, and The Cancer Genome Atlas (TCGA) database, in conjunction with machine learning methods such as LASSO and SVM to identify intersections of differentially expressed genes (DEGs). Subsequently, the role of hub genes in BCa was validated in vitro and in vivo using CCK-8 assay, wound healing assay, immunofluorescence assay, transwell assay, immunohistochemistry, and xenograft tumor model. Finally, we investigated the correlation between hub genes and M2 macrophage immune infiltration using the TIMER database. RESULTS Chitinase 3 like 1 (CHI3L1) emerged as a pivotal gene linked to M2 macrophages in BCa. Notably, CHI3L1 was associated with a poor prognosis for BCa, with elevated expression correlating to more advanced histologic and pathologic stages in BCa patients. The findings suggest that inhibiting CHI3L1 can effectively impede the proliferation, migration, and invasion of BCa cells and synergistically increase the inhibitory effect of gemcitabine (GEM) on cell activity. Meanwhile, the downregulation of CHI3L1 was accompanied by inhibition of the PI3K-AKT signaling pathway. Additionally, CHI3L1 demonstrated a significant association with M2 macrophage infiltration in the BCa tumor microenvironment (TME). CONCLUSIONS The present study suggests that CHI3L1 may promote bladder cancer progression through the PI3K-Akt signaling pathway and is associated with M2 macrophage infiltration.
Collapse
Affiliation(s)
- Chenyang Wang
- Gansu Province Clinical Research Center for Urology, Lanzhou University Second Hospital, Lanzhou, China
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, China
| | - Kunpeng Li
- Gansu Province Clinical Research Center for Urology, Lanzhou University Second Hospital, Lanzhou, China
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, China
| | - Runchun Huang
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Shun Wan
- Gansu Province Clinical Research Center for Urology, Lanzhou University Second Hospital, Lanzhou, China
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, China
| | - Siyu Chen
- Gansu Province Clinical Research Center for Urology, Lanzhou University Second Hospital, Lanzhou, China
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, China
| | - Shanhui Liu
- Gansu Province Clinical Research Center for Urology, Lanzhou University Second Hospital, Lanzhou, China.
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, China.
| | - Li Yang
- Gansu Province Clinical Research Center for Urology, Lanzhou University Second Hospital, Lanzhou, China.
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, China.
| |
Collapse
|
8
|
Liu D, Hu X, Ding X, Li M, Ding L. Inflammatory Effects and Regulatory Mechanisms of Chitinase-3-like-1 in Multiple Human Body Systems: A Comprehensive Review. Int J Mol Sci 2024; 25:13437. [PMID: 39769202 PMCID: PMC11678640 DOI: 10.3390/ijms252413437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/29/2024] [Accepted: 12/13/2024] [Indexed: 01/03/2025] Open
Abstract
Chitinase-3-like-1 (Chi3l1), also known as YKL-40 or BRP-39, is a highly conserved mammalian chitinase with a chitin-binding ability but no chitinase enzymatic activity. Chi3l1 is secreted by various cell types and induced by several inflammatory cytokines. It can mediate a series of cell biological processes, such as proliferation, apoptosis, migration, differentiation, and polarization. Accumulating evidence has verified that Chi3l1 is involved in diverse inflammatory conditions; however, a systematic and comprehensive understanding of the roles and mechanisms of Chi3l1 in almost all human body system-related inflammatory diseases is still lacking. The human body consists of ten organ systems, which are combinations of multiple organs that perform one or more physiological functions. Abnormalities in these human systems can trigger a series of inflammatory environments, posing serious threats to the quality of life and lifespan of humans. Therefore, exploring novel and reliable biomarkers for these diseases is highly important, with Chi3l1 being one such parameter because of its physiological and pathophysiological roles in the development of multiple inflammatory diseases. Reportedly, Chi3l1 plays an important role in diagnosing and determining disease activity/severity/prognosis related to multiple human body system inflammation disorders. Additionally, many studies have revealed the influencing factors and regulatory mechanisms (e.g., the ERK and MAPK pathways) of Chi3l1 in these inflammatory conditions, identifying potential novel therapeutic targets for these diseases. In this review, we comprehensively summarize the potential roles and underlying mechanisms of Chi3l1 in inflammatory disorders of the respiratory, digestive, circulatory, nervous, urinary, endocrine, skeletal, muscular, and reproductive systems, which provides a more systematic understanding of Chi3l1 in multiple human body system-related inflammatory diseases. Moreover, this article summarizes potential therapeutic strategies for inflammatory diseases in these systems on the basis of the revealed roles and mechanisms mediated by Chi3l1.
Collapse
Affiliation(s)
- Dong Liu
- School of Life Sciences, Yunnan University, Kunming 650500, China;
| | - Xin Hu
- Yunnan Key Laboratory of Soil Erosion Prevention and Green Development, Institute of International Rivers and Ecosecurity, Yunnan University, Kunming 650500, China;
| | - Xiao Ding
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China;
| | - Ming Li
- School of Life Sciences, Yunnan University, Kunming 650500, China;
| | - Lei Ding
- School of Life Sciences, Yunnan University, Kunming 650500, China;
| |
Collapse
|
9
|
He C, Hu Z, Lin Z, Chen H, Cao C, Chen J, Yang X, Li H, Shen W, Wei X, Zhuang L, Zheng S, Xu X, Lu D. Chitinase-3 like-protein-1, a prognostic biomarker in patients with hepatocellular carcinoma and concomitant myosteatosis. BMC Cancer 2024; 24:1042. [PMID: 39179959 PMCID: PMC11342564 DOI: 10.1186/s12885-024-12808-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 08/14/2024] [Indexed: 08/26/2024] Open
Abstract
BACKGROUND Chitinase-3 like-protein-1 (CHI3L1) is a member of the mammalian chitinase-like proteins and elevated serum CHI3L1 level has been proved to be associated with poor prognosis in hepatocellular carcinoma (HCC). This study aimed to investigate the relationship between serum CHI3L1 levels and body composition parameters in patients with HCC after liver transplantation (LT). METHODS This retrospective study enrolled 200 patients after LT for HCC. Blood samples were collected and serum concentrations of CHI3L1 were measured by enzyme-linked immunosorbent assay. Computer tomography (CT) were used to estimate skeletal muscle and adipose tissue mass. Spearman's rank correlation test was performed to assess associations between serum CHI3L1 levels and these body composition parameters. A Cox proportional-hazards regression model was performed to identify independent prognostic factors. Overall survival (OS) and recurrence-free survival (RFS) curves were constructed using the Kaplan-Meier method and compared by the log-rank test. RESULTS Total 71 patients (35.5%) were diagnosed with myosteatosis according to skeletal muscle radiation attenuation (SMRA). The 5-year OS rates were 66.9% in non-myosteatosis group, significantly higher than 49.5% in myosteatosis group (p = 0.025), while the RFS of myosteatosis group (5-year RFS: 52.6%) or non-myosteatosis group (5-year RFS: 42.0%) shown no significant difference (p = 0.068). The serum CHI3L1 level were significantly negative correlated with SMRA (r = -0.3, p < 0.001). Interestingly, in patients with myosteatosis, Kaplan-Meier analysis revealed that elevated serum CHI3L1 levels were associated with worse OS (p < 0.001) and RFS (p = 0.047). However, in patients without myosteatosis, Kaplan-Meier analysis found elevated serum CHI3L1 levels were not associated with OS (p = 0.070) or RFS (p = 0.104). CONCLUSIONS Elevated CHI3L1 was negatively correlated with SMRA, and predicted poorer prognosis in Chinese population after LT for HCC, especially in those patients with concomitant myosteatosis. Monitoring serum CHI3L1 can predict prognosis and effectively guide individual nutrition intervention.
Collapse
Affiliation(s)
- Chiyu He
- Zhejiang University School of Medicine, Hangzhou, China
- Department of Hepatobiliary and Pancreatic Surgery, Shulan (Hangzhou) Hospital, Hangzhou, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China
| | - Zhihang Hu
- Zhejiang University School of Medicine, Hangzhou, China
| | - Zuyuan Lin
- Zhejiang University School of Medicine, Hangzhou, China
- Hangzhou First People's Hospital, Hangzhou, China
| | - Hao Chen
- Zhejiang University School of Medicine, Hangzhou, China
| | - Chenghao Cao
- Zhejiang University School of Medicine, Hangzhou, China
| | - Jinyan Chen
- Zhejiang University School of Medicine, Hangzhou, China
| | | | - Huigang Li
- Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Shen
- Zhejiang University School of Medicine, Hangzhou, China
| | - Xuyong Wei
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China
- Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Li Zhuang
- Department of Hepatobiliary and Pancreatic Surgery, Shulan (Hangzhou) Hospital, Hangzhou, China
| | - Shusen Zheng
- Department of Hepatobiliary and Pancreatic Surgery, Shulan (Hangzhou) Hospital, Hangzhou, China.
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China.
| | - Xiao Xu
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China.
- School of Clinical Medicine, Hangzhou Medical College, Hangzhou, China.
- Institute of Translational Medicine, Zhejiang University, Hangzhou, China.
| | - Di Lu
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China.
- Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China.
| |
Collapse
|
10
|
Zhang F, Han Y, Zheng L, Bao Z, Liu L, Li W. Association between chitinase-3-like protein 1 and metabolic-associated fatty liver disease in patients with type 2 diabetes mellitus. Ir J Med Sci 2024; 193:1843-1853. [PMID: 38520612 DOI: 10.1007/s11845-024-03671-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 03/15/2024] [Indexed: 03/25/2024]
Abstract
BACKGROUND AND AIM Early identification of liver fibrosis is essential for the prognosis of metabolic-associated fatty liver disease (MAFLD), particularly in type 2 diabetes mellitus (T2DM) patients. Here, we explored the association of chitinase-3-like protein 1 (CHI3L1) and liver fibrosis in T2DM-MAFLD patients. METHODS Liver fibrosis was staged in T2DM-MAFLD patients, and a liver stiffness measurement (LSM) of ≥ 8 kPa was used to differentiate between non-significant (NSLF) and significant liver fibrosis (SLF) subgroups. The two subgroups were compared for serum CHI3L1 and other parameters. Linear correlation, logistic regression, and restricted cubic spline (RCS) analyses were performed to evaluate the association between CHI3L1 and liver fibrosis. Receiver operating characteristic (ROC) curve analysis was performed to assess the diagnostic accuracy of CHI3L1. RESULTS Among T2DM-MAFLD, SLF patients had higher CHI3L1 compared to NSLF patients. CHI3L1 was found to be positively correlated with LSM. Multivariate logistic regression analysis suggested that CHI3L1 may be a potential independent risk factor for SLF. Further stratified analysis indicated that the odds ratios of SLF in the high CHI3L1 group were higher than in the low CHI3L1 group in the subgroups. RCS analysis suggested an increasing trend in the incidence of significant fibrosis with the rising level of CHI3L1. The area under the ROC curve for detecting significant fibrosis was 0.749 (95% CI: 0.668-0.829). CONCLUSIONS Serum CHI3L1 demonstrates an association with significant liver fibrosis. High serum levels of CHI3L1 may indicate the existence of significant liver fibrosis in T2DM-MAFLD patients.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Endocrinology, Changzhou Third People's Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, China
- Department of Clinical Nutrition, Changzhou Third People's Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, China
| | - Yan Han
- Department of Endocrinology, Changzhou Third People's Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, China
- Department of Clinical Nutrition, Changzhou Third People's Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, China
| | - Liming Zheng
- Clinical Laboratory, Changzhou Third People's Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, China
| | - Zuowei Bao
- Department of Ultrasonography, Changzhou Third People's Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, China
| | - Longgen Liu
- Department of Liver Diseases, Changzhou Third People's Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, China.
| | - Wenjian Li
- Department of Urology, Changzhou Third People's Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, China.
| |
Collapse
|
11
|
Tagliaferro M, Marino M, Basile V, Pocino K, Rapaccini GL, Ciasca G, Basile U, Carnazzo V. New Biomarkers in Liver Fibrosis: A Pass through the Quicksand? J Pers Med 2024; 14:798. [PMID: 39201990 PMCID: PMC11355846 DOI: 10.3390/jpm14080798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/12/2024] [Accepted: 07/27/2024] [Indexed: 09/03/2024] Open
Abstract
Chronic liver diseases (CLD) stem from various causes and lead to a gradual progression that ultimately may result in fibrosis and eventually cirrhosis. This process is typically prolonged and asymptomatic, characterized by the complex interplay among various cell types, signaling pathways, extracellular matrix components, and immune responses. With the prevalence of CLD increasing, diagnoses are often delayed, which leads to poor prognoses and in some cases, the need for liver transplants. Consequently, there is an urgent need for the development of novel, non-invasive methods for the diagnosis and monitoring of CLD. In this context, serum biomarkers-safer, repeatable, and more acceptable alternatives to tissue biopsies-are attracting significant research interest, although their clinical implementation is not yet widespread. This review summarizes the latest advancements in serum biomarkers for detecting hepatic fibrogenesis and advocates for concerted efforts to consolidate current knowledge, thereby providing patients with early, effective, and accessible diagnoses that facilitate personalized therapeutic strategies.
Collapse
Affiliation(s)
- Marzia Tagliaferro
- Dipartimento di Patologia Clinica, Ospedale Santa Maria Goretti, A.U.S.L. Latina, 04100 Latina, Italy; (M.T.); (V.C.)
| | - Mariapaola Marino
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (M.M.); (G.L.R.)
- Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| | - Valerio Basile
- Clinical Pathology Unit and Cancer Biobank, Department of Research and Advanced Technologies, I.R.C.C.S. Regina Elena National Cancer Institute, 00144 Rome, Italy;
| | - Krizia Pocino
- Clinical Pathology Unit, San Pietro Fatebenefratelli Hospital, 00189 Rome, Italy;
| | - Gian Ludovico Rapaccini
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (M.M.); (G.L.R.)
| | - Gabriele Ciasca
- Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Umberto Basile
- Dipartimento di Patologia Clinica, Ospedale Santa Maria Goretti, A.U.S.L. Latina, 04100 Latina, Italy; (M.T.); (V.C.)
| | - Valeria Carnazzo
- Dipartimento di Patologia Clinica, Ospedale Santa Maria Goretti, A.U.S.L. Latina, 04100 Latina, Italy; (M.T.); (V.C.)
| |
Collapse
|
12
|
Sivakumar P, Saul M, Robinson D, King LE, Amin NB. SomaLogic proteomics reveals new biomarkers and provides mechanistic, clinical insights into Acetyl coA Carboxylase (ACC) inhibition in Non-alcoholic Steatohepatitis (NASH). Sci Rep 2024; 14:17072. [PMID: 39048608 PMCID: PMC11269579 DOI: 10.1038/s41598-024-67843-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/16/2024] [Indexed: 07/27/2024] Open
Abstract
Non-alcoholic Fatty Liver Disease (NAFLD) and Non-alcoholic Steatohepatitis (NASH) are major metabolic diseases with increasing global prevalence and no approved therapies. There is a mounting need to develop biomarkers of diagnosis, prognosis and treatment response that can effectively replace current requirements for liver biopsies, which are invasive, error-prone and expensive. We performed SomaLogic serum proteome profiling with baseline (n = 231) and on-treatment (n = 72, Weeks 12 and 16, Placebo and 25 mg PF-05221304) samples from a Phase 2a trial (NCT03248882) with Clesacostat (PF-05221304), an acetyl coA carboxylase inhibitor (ACCi) in patients with NAFLD/NASH. SomaSignal NASH probability scores and expression data for 7000+ analytes were analyzed to identify potential biomarkers associated with baseline clinical measures of NAFLD/NASH [Magnetic Resonance Imaging-Proton Density Fat Fraction (MRI-PDFF), alanine aminotransferase (ALT) and aspartate aminotransferase (AST)] as well as biomarkers of treatment response to ACCi. SomaSignal NASH probability scores identified biopsy-proven/clinically defined NIT-based (Presumed) NASH classification of the cohort with > 70% agreement. Clesacostat-induced reduction in steatosis probability scores aligned with observed clinical reduction in hepatic steatosis based on MRI-PDFF. We identify a set of 69 analytes that robustly correlate with clinical measures of hepatic inflammation and steatosis (MRI-PDFF, ALT and AST), 27 of which were significantly reversed with ACC inhibition. Clesacostat treatment dramatically upregulated Wnt5a protein and Apolipoproteins C3 and E, with drug-induced changes significantly correlating to changes on MRI-PDFF. Our data demonstrate the utility of SomaLogic- analyte panel for diagnosis and treatment response in NAFLD/NASH and provide potential new mechanistic insights into liver steatosis reduction, inflammation and serum triglyceride elevation with ACC inhibition. (Clinical Trial Identifier: NCT03248882).
Collapse
Affiliation(s)
- Pitchumani Sivakumar
- Translational Clinical Sciences, Pfizer Research and Development, 500 Arcola Road, Collegeville, PA, 19426, USA.
| | - Michelle Saul
- Translational Biomarker Statistics, Pfizer Research and Development, San Diego, USA
| | - Douglas Robinson
- Translational Biomarker Statistics, Pfizer Research and Development, San Diego, USA
| | - Lindsay E King
- Clinical Bioanalytics, Pfizer Research and Development, Cambridge, USA
| | - Neeta B Amin
- Internal Medicine, Pfizer Research and Development, Cambridge, USA
| |
Collapse
|
13
|
Hu X, Liu W, Liu J, Wang B, Qin X. Research advances in serum chitinase-3-like protein 1 in liver fibrosis. Front Med (Lausanne) 2024; 11:1372434. [PMID: 38962736 PMCID: PMC11219575 DOI: 10.3389/fmed.2024.1372434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 05/31/2024] [Indexed: 07/05/2024] Open
Abstract
While liver fibrosis remains a serious, progressive, chronic liver disease, and factors causing damage persist, liver fibrosis may develop into cirrhosis and liver cancer. However, short-term liver fibrosis is reversible. Therefore, an early diagnosis of liver fibrosis in the reversible transition phase is important for effective treatment of liver diseases. Chitinase-3-like protein 1 (CHI3L1), an inflammatory response factor that participates in various biological processes and is abundant in liver tissue, holds promise as a potential biomarker for liver diseases. Here, we aimed to review research developments regarding serum CHI3L1 in relation to the pathophysiology and diagnosis of liver fibrosis of various etiologies, providing a reference for the diagnosis, treatment, and prognosis of liver diseases.
Collapse
Affiliation(s)
- Xingwei Hu
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
- Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, Liaoning, China
| | - Wenhan Liu
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
- Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, Liaoning, China
| | - Jianhua Liu
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
- Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, Liaoning, China
| | - Bojian Wang
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
- Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, Liaoning, China
| | - Xiaosong Qin
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
- Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, Liaoning, China
| |
Collapse
|
14
|
Maroto-García J, Moreno Álvarez A, Sanz de Pedro MP, Buño-Soto A, González Á. Serum biomarkers for liver fibrosis assessment. ADVANCES IN LABORATORY MEDICINE 2024; 5:115-130. [PMID: 38939201 PMCID: PMC11206202 DOI: 10.1515/almed-2023-0081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/12/2023] [Indexed: 06/29/2024]
Abstract
Liver fibrosis is the result of chronic liver injury of different etiologies produced by an imbalance between the synthesis and degeneration of the extracellular matrix and dysregulation of physiological mechanisms. Liver has a high regenerative capacity in the early stage of chronic diseases so a prompt liver fibrosis detection is important. Consequently, an easy and economic tool that could identify patients with liver fibrosis at the initial stages is needed. To achieve this, many non-invasive serum direct, such as hyaluronic acid or metalloproteases, and indirect biomarkers have been proposed to evaluate liver fibrosis. Also, there have been developed formulas that combine these biomarkers, some of them also introduce clinical and/or demographic parameters, like FIB-4, non-alcoholic fatty liver disease fibrosis score (NFS), enhance liver fibrosis (ELF) or Hepamet fibrosis score (HFS). In this manuscript we critically reviewed different serum biomarkers and formulas for their utility in the diagnosis and progression of liver fibrosis.
Collapse
Affiliation(s)
| | - Ana Moreno Álvarez
- Biochemistry Department, Clínica Universidad de Navarra, Pamplona, Spain
| | | | - Antonio Buño-Soto
- Laboratory Medicine Department, Hospital Universitario La Paz, Madrid, Spain
- Hospital La Paz Institute for Health Research (IdiPaz), Madrid, Spain
| | - Álvaro González
- Biochemistry Department, Clínica Universidad de Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| |
Collapse
|
15
|
Maroto-García J, Moreno-Álvarez A, Sanz de Pedro MP, Buño-Soto A, González Á. Biomarcadores séricos para la evaluación de la fibrosis hepática. ADVANCES IN LABORATORY MEDICINE 2024; 5:131-147. [PMID: 38939202 PMCID: PMC11206201 DOI: 10.1515/almed-2023-0172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/12/2023] [Indexed: 06/29/2024]
Abstract
La fibrosis hepática se desarrolla como respuesta a la presencia de daño hepático crónico de diferentes etiologías, provocando un desequilibrio entre la síntesis y degeneración de la matriz extracelular y la desregulación de diversos mecanismos fisiológicos. En los estadios iniciales de las patologías crónicas, el hígado posee una elevada capacidad de regeneración, por lo que la detección temprana de la fibrosis hepática resulta esencial. En este contexto, es preciso contar con herramientas sencillas y económicas que permitan detectar la fibrosis hepática en sus fases iniciales. Para evaluar la fibrosis hepática, se han propuesto multitud de biomarcadores séricos no invasivos, tanto directos, como el ácido hialurónico o las metaloproteasas, como indirectos. Así mismo, se han desarrollado diversas fórmulas que combinan dichos biomarcadores junto con parámetros demográficos, como el índice FIB-4, el índice de fibrosis en la enfermedad de hígado graso no alcohólico (NFS, por sus siglas en inglés), la prueba ELF o el score de fibrosis Hepamet (HFS, por sus siglas en inglés). En el presente manuscrito, realizamos una revisión crítica del valor diagnóstico y pronóstico de los diferentes biomarcadores séricos y fórmulas actualmente existentes.
Collapse
Affiliation(s)
- Julia Maroto-García
- Departamento de Bioquímica, Clínica Universidad de Navarra, Pamplona, España
| | - Ana Moreno-Álvarez
- Departamento de Bioquímica, Clínica Universidad de Navarra, Pamplona, España
| | | | - Antonio Buño-Soto
- Departamento de Análisis Clínicos, Hospital Universitario La Paz, Madrid, España
- Instituto de investigación en salud del Hospital La (IdiPaz), Madrid, España
| | - Álvaro González
- Departamento de Bioquímica, Clínica Universidad de Navarra, Pamplona, España
- Instituto Navarro de investigación en salud (IdiSNA), Pamplona, España
| |
Collapse
|
16
|
Liebold I, Al Jawazneh A, Casar C, Lanzloth C, Leyk S, Hamley M, Wong MN, Kylies D, Gräfe SK, Edenhofer I, Aranda-Pardos I, Kriwet M, Haas H, Krause J, Hadjilaou A, Schromm AB, Richardt U, Eggert P, Tappe D, Weidemann SA, Ghosh S, Krebs CF, A-Gonzalez N, Worthmann A, Lohse AW, Huber S, Rothlin CV, Puelles VG, Jacobs T, Gagliani N, Bosurgi L. Apoptotic cell identity induces distinct functional responses to IL-4 in efferocytic macrophages. Science 2024; 384:eabo7027. [PMID: 38574142 DOI: 10.1126/science.abo7027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 02/26/2024] [Indexed: 04/06/2024]
Abstract
Macrophages are functionally heterogeneous cells essential for apoptotic cell clearance. Apoptotic cells are defined by homogeneous characteristics, ignoring their original cell lineage identity. We found that in an interleukin-4 (IL-4)-enriched environment, the sensing of apoptotic neutrophils by macrophages triggered their tissue remodeling signature. Engulfment of apoptotic hepatocytes promoted a tolerogenic phenotype, whereas phagocytosis of T cells had little effect on IL-4-induced gene expression. In a mouse model of parasite-induced pathology, the transfer of macrophages conditioned with IL-4 and apoptotic neutrophils promoted parasitic egg clearance. Knockout of phagocytic receptors required for the uptake of apoptotic neutrophils and partially T cells, but not hepatocytes, exacerbated helminth infection. These findings suggest that the identity of apoptotic cells may contribute to the development of distinct IL-4-driven immune programs in macrophages.
Collapse
Affiliation(s)
- Imke Liebold
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Protozoa Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Amirah Al Jawazneh
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Protozoa Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Christian Casar
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Bioinformatics Core, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Clarissa Lanzloth
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Protozoa Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Stephanie Leyk
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Protozoa Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Madeleine Hamley
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Protozoa Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Milagros N Wong
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Pathology, Aarhus University Hospital, Aarhus, Denmark
| | - Dominik Kylies
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefanie K Gräfe
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ilka Edenhofer
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Marie Kriwet
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Jenny Krause
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alexandros Hadjilaou
- Protozoa Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andra B Schromm
- Division of Immunobiophysics, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Ulricke Richardt
- Protozoa Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Petra Eggert
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Dennis Tappe
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Sören A Weidemann
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sourav Ghosh
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, USA
| | - Christian F Krebs
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Anna Worthmann
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ansgar W Lohse
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- European Reference Network on Hepatological Diseases (ERN-RARE LIVER), Hamburg, Germany
| | - Samuel Huber
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Carla V Rothlin
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, USA
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Victor G Puelles
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Pathology, Aarhus University Hospital, Aarhus, Denmark
| | - Thomas Jacobs
- Protozoa Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Nicola Gagliani
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lidia Bosurgi
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Protozoa Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
17
|
Czestkowski W, Krzemiński Ł, Piotrowicz MC, Mazur M, Pluta E, Andryianau G, Koralewski R, Matyszewski K, Olejniczak S, Kowalski M, Lisiecka K, Kozieł R, Piwowar K, Papiernik D, Nowotny M, Napiórkowska-Gromadzka A, Nowak E, Niedziałek D, Wieczorek G, Siwińska A, Rejczak T, Jędrzejczak K, Mulewski K, Olczak J, Zasłona Z, Gołębiowski A, Drzewicka K, Bartoszewicz A. Structure-Based Discovery of High-Affinity Small Molecule Ligands and Development of Tool Probes to Study the Role of Chitinase-3-Like Protein 1. J Med Chem 2024; 67:3959-3985. [PMID: 38427954 DOI: 10.1021/acs.jmedchem.3c02255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
Chitinase-3-like-1 (CHI3L1), also known as YKL-40, is a glycoprotein linked to inflammation, fibrosis, and cancer. This study explored CHI3L1's interactions with various oligosaccharides using microscale thermophoresis (MST) and AlphaScreen (AS). These investigations guided the development of high-throughput screening assays to assess interference of small molecules in binding between CHI3L1 and biotinylated small molecules or heparan sulfate-based probes. Small molecule binders of YKL-40 were identified in our chitotriosidase inhibitors library with MST and confirmed through X-ray crystallography. Based on cocrystal structures of potent hit compounds with CHI3L1, small molecule probes 19 and 20 were designed for an AS assay. Structure-based optimization led to compounds 30 and 31 with nanomolar activities and drug-like properties. Additionally, an orthogonal AS assay using biotinylated heparan sulfate as a probe was developed. The compounds' affinity showed a significant correlation in both assays. These screening tools and compounds offer novel avenues for investigating the role of CHI3L1.
Collapse
Affiliation(s)
| | | | | | - Marzena Mazur
- Molecure S.A., Żwirki I Wigury 101, Warsaw 02-089, Poland
| | - Elżbieta Pluta
- Molecure S.A., Żwirki I Wigury 101, Warsaw 02-089, Poland
| | | | | | | | | | | | | | - Rafał Kozieł
- Molecure S.A., Żwirki I Wigury 101, Warsaw 02-089, Poland
| | | | | | - Marcin Nowotny
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology in Warsaw, Ks. Trojdena 4, Warsaw 02-109, Poland
| | - Agnieszka Napiórkowska-Gromadzka
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology in Warsaw, Ks. Trojdena 4, Warsaw 02-109, Poland
| | - Elżbieta Nowak
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology in Warsaw, Ks. Trojdena 4, Warsaw 02-109, Poland
| | | | | | - Anna Siwińska
- Molecure S.A., Żwirki I Wigury 101, Warsaw 02-089, Poland
| | - Tomasz Rejczak
- Molecure S.A., Żwirki I Wigury 101, Warsaw 02-089, Poland
| | | | | | - Jacek Olczak
- Molecure S.A., Żwirki I Wigury 101, Warsaw 02-089, Poland
| | | | | | | | | |
Collapse
|
18
|
Yu JE, Yeo IJ, Han SB, Yun J, Kim B, Yong YJ, Lim YS, Kim TH, Son DJ, Hong JT. Significance of chitinase-3-like protein 1 in the pathogenesis of inflammatory diseases and cancer. Exp Mol Med 2024; 56:1-18. [PMID: 38177294 PMCID: PMC10834487 DOI: 10.1038/s12276-023-01131-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 08/06/2023] [Accepted: 08/28/2023] [Indexed: 01/06/2024] Open
Abstract
Chitinase-3-like protein 1 (CHI3L1) is a secreted glycoprotein that mediates inflammation, macrophage polarization, apoptosis, and carcinogenesis. The expression of CHI3L1 is strongly upregulated by various inflammatory and immunological diseases, including several cancers, Alzheimer's disease, and atherosclerosis. Several studies have shown that CHI3L1 can be considered as a marker of disease diagnosis, prognosis, disease activity, and severity. In addition, the proinflammatory action of CHI3L1 may be mediated via responses to various proinflammatory cytokines, including tumor necrosis factor-α, interleukin-1β, interleukin-6, and interferon-γ. Therefore, CHI3L1 may contribute to a vast array of inflammatory diseases. However, its pathophysiological and pharmacological roles in the development of inflammatory diseases remain unclear. In this article, we review recent findings regarding the roles of CHI3L1 in the development of inflammatory diseases and suggest therapeutic approaches that target CHI3L1.
Collapse
Affiliation(s)
- Ji Eun Yu
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31, Osongsaengmyeong 1-ro, Osong-eup, Cheongju-si, Chungbuk, 28160, Republic of Korea
| | - In Jun Yeo
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31, Osongsaengmyeong 1-ro, Osong-eup, Cheongju-si, Chungbuk, 28160, Republic of Korea
- College of Pharmacy, Kyungpook National University, 80 Daehakro, Bukgu, Daegu, 41566, Republic of Korea
| | - Sang-Bae Han
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31, Osongsaengmyeong 1-ro, Osong-eup, Cheongju-si, Chungbuk, 28160, Republic of Korea
| | - Jaesuk Yun
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31, Osongsaengmyeong 1-ro, Osong-eup, Cheongju-si, Chungbuk, 28160, Republic of Korea
| | - Bongcheol Kim
- Senelix Co. Ltd., 25, Beobwon-ro 11-gil, Songpa-gu, Seoul, 05836, Republic of Korea
| | - Yoon Ji Yong
- PRESTI GEBIOLOGICS Co. Ltd., Osongsaengmyeong 1-ro, Osong-eup, Cheongju-si, Chungbuk, 28161, Republic of Korea
| | - Young-Soo Lim
- PRESTI GEBIOLOGICS Co. Ltd., Osongsaengmyeong 1-ro, Osong-eup, Cheongju-si, Chungbuk, 28161, Republic of Korea
| | - Tae Hun Kim
- Autotelic Bio Inc., Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungbuk, 28160, Republic of Korea
| | - Dong Ju Son
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31, Osongsaengmyeong 1-ro, Osong-eup, Cheongju-si, Chungbuk, 28160, Republic of Korea.
| | - Jin Tae Hong
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31, Osongsaengmyeong 1-ro, Osong-eup, Cheongju-si, Chungbuk, 28160, Republic of Korea.
| |
Collapse
|
19
|
Kui L, Kim AD, Onyuru J, Hoffman HM, Feldstein AE. BRP39 Regulates Neutrophil Recruitment in NLRP3 Inflammasome-Induced Liver Inflammation. Cell Mol Gastroenterol Hepatol 2023; 17:481-497. [PMID: 38092312 PMCID: PMC10837621 DOI: 10.1016/j.jcmgh.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 12/04/2023] [Accepted: 12/06/2023] [Indexed: 01/09/2024]
Abstract
BACKGROUND & AIMS Breast regression protein 39 (BRP39) (Chi3L1) and its human homolog YKL-40, is an established biomarker of liver fibrosis in nonalcoholic steatohepatitis (NASH) patients, but its role in NASH pathogenesis remains unclear. We recently identified Chi3L1 as one of the top up-regulated genes in mice with inducible gain-of-function NOD-like receptor protein 3 (NLRP3) activation that mimics several liver features of NASH. This study aimed to investigate the effects of BRP39 deficiency on NLRP3-induced liver inflammation using tamoxifen-inducible Nlrp3 knockin mice sufficient (Nlrp3A350V CRT) and deficient for BRP39 (Nlrp3A350V/BRP-/- CRT). METHODS Using Nlrp3A350V CRT mice and Nlrp3A350V BRP-/- CRT, we investigated the consequences of BRP39 deficiency influencing NLRP3-induced liver inflammation. RESULTS Our results showed that BRP39 deficiency in NLRP3-induced inflammation improved body weight and liver weight. Moreover, liver inflammation, fibrosis, and hepatic stellate cell activation were reduced significantly, corresponding to significantly decreased Ly6C+ infiltrating macrophages, CD68+ osteopontin-positive hepatic lipid-associated macrophages, and activated Lymphocyte antigen 6 complex locus G6D positive (Ly6G+) and citrullinated histone H3 postivie (H3Cit+) neutrophil accumulation in the liver. Further investigation showed that circulatory neutrophils from NLRP3-induced BRP39-deficient mice have impaired chemotaxis and migration ability, and this was confirmed by RNA bulk sequencing showing reduced immune activation, migration, and signaling responses in neutrophils. CONCLUSIONS These data showcase the importance of BRP39 in regulating the NLRP3 inflammasome during liver inflammation and fibrotic NASH by altering cellular activation, recruitment, and infiltration during disease progression, and revealing BRP39 to be a potential therapeutic target for future treatment of inflammatory NASH and its associated diseases.
Collapse
Affiliation(s)
- Lin Kui
- Department of Pediatrics, University of California San Diego, San Diego, California
| | - Andrea D Kim
- Department of Pediatrics, University of California San Diego, San Diego, California; Department of Surgery, Johns Hopkins University, Baltimore, Maryland
| | - Janset Onyuru
- Department of Pediatrics, University of California San Diego, San Diego, California
| | - Hal M Hoffman
- Department of Pediatrics, University of California San Diego, San Diego, California
| | - Ariel E Feldstein
- Department of Pediatrics, University of California San Diego, San Diego, California; Global Drug Discovery, Novo Nordisk, Denmark.
| |
Collapse
|
20
|
Zhao H, Huang M, Jiang L. Potential Roles and Future Perspectives of Chitinase 3-like 1 in Macrophage Polarization and the Development of Diseases. Int J Mol Sci 2023; 24:16149. [PMID: 38003338 PMCID: PMC10671302 DOI: 10.3390/ijms242216149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/03/2023] [Accepted: 11/05/2023] [Indexed: 11/26/2023] Open
Abstract
Chitinase-3-like protein 1 (CHI3L1), a chitinase-like protein family member, is a secreted glycoprotein that mediates macrophage polarization, inflammation, apoptosis, angiogenesis, and carcinogenesis. Abnormal CHI3L1 expression has been associated with multiple metabolic and neurological disorders, including diabetes, atherosclerosis, and Alzheimer's disease. Aberrant CHI3L1 expression is also reportedly associated with tumor migration and metastasis, as well as contributions to immune escape, playing important roles in tumor progression. However, the physiological and pathophysiological roles of CHI3L1 in the development of metabolic and neurodegenerative diseases and cancer remain unclear. Understanding the polarization relationship between CHI3L1 and macrophages is crucial for disease progression. Recent research has uncovered the complex mechanisms of CHI3L1 in different diseases, highlighting its close association with macrophage functional polarization. In this article, we review recent findings regarding the various disease types and summarize the relationship between macrophages and CHI3L1. Furthermore, this article also provides a brief overview of the various mechanisms and inhibitors employed to inhibit CHI3L1 and disrupt its interaction with receptors. These endeavors highlight the pivotal roles of CHI3L1 and suggest therapeutic approaches targeting CHI3L1 in the development of metabolic diseases, neurodegenerative diseases, and cancers.
Collapse
Affiliation(s)
| | - Mingdong Huang
- College of Chemistry, Fuzhou University, Fuzhou 350116, China;
| | - Longguang Jiang
- College of Chemistry, Fuzhou University, Fuzhou 350116, China;
| |
Collapse
|
21
|
Gîlcă-Blanariu GE, Budur DS, Mitrică DE, Gologan E, Timofte O, Bălan GG, Olteanu VA, Ștefănescu G. Advances in Noninvasive Biomarkers for Nonalcoholic Fatty Liver Disease. Metabolites 2023; 13:1115. [PMID: 37999211 PMCID: PMC10672868 DOI: 10.3390/metabo13111115] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/15/2023] [Accepted: 10/24/2023] [Indexed: 11/25/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) currently represents one of the most common liver diseases worldwide. Early diagnosis and disease staging is crucial, since it is mainly asymptomatic, but can progress to nonalcoholic steatohepatitis (NASH) or cirrhosis or even lead to the development of hepatocellular carcinoma. Over time, efforts have been put into developing noninvasive diagnostic and staging methods in order to replace the use of a liver biopsy. The noninvasive methods used include imaging techniques that measure liver stiffness and biological markers, with a focus on serum biomarkers. Due to the impressive complexity of the NAFLD's pathophysiology, biomarkers are able to assay different processes involved, such as apoptosis, fibrogenesis, and inflammation, or even address the genetic background and "omics" technologies. This article reviews not only the currently validated noninvasive methods to investigate NAFLD but also the promising results regarding recently discovered biomarkers, including biomarker panels and the combination of the currently validated evaluation methods and serum markers.
Collapse
Affiliation(s)
- Georgiana-Emmanuela Gîlcă-Blanariu
- Gastroenterology Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania; (G.-E.G.-B.); (D.E.M.); (E.G.); (O.T.); (G.G.B.); (V.A.O.)
- Department of Gastroenterology, “Sf Spiridon” County Clinical Emergency Hospital, 100115 Iași, Romania
| | - Daniela Simona Budur
- Gastroenterology Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania; (G.-E.G.-B.); (D.E.M.); (E.G.); (O.T.); (G.G.B.); (V.A.O.)
| | - Dana Elena Mitrică
- Gastroenterology Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania; (G.-E.G.-B.); (D.E.M.); (E.G.); (O.T.); (G.G.B.); (V.A.O.)
- Department of Gastroenterology, “Sf Spiridon” County Clinical Emergency Hospital, 100115 Iași, Romania
| | - Elena Gologan
- Gastroenterology Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania; (G.-E.G.-B.); (D.E.M.); (E.G.); (O.T.); (G.G.B.); (V.A.O.)
| | - Oana Timofte
- Gastroenterology Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania; (G.-E.G.-B.); (D.E.M.); (E.G.); (O.T.); (G.G.B.); (V.A.O.)
- Department of Gastroenterology, “Sf Spiridon” County Clinical Emergency Hospital, 100115 Iași, Romania
| | - Gheorghe Gh Bălan
- Gastroenterology Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania; (G.-E.G.-B.); (D.E.M.); (E.G.); (O.T.); (G.G.B.); (V.A.O.)
- Department of Gastroenterology, “Sf Spiridon” County Clinical Emergency Hospital, 100115 Iași, Romania
| | - Vasile Andrei Olteanu
- Gastroenterology Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania; (G.-E.G.-B.); (D.E.M.); (E.G.); (O.T.); (G.G.B.); (V.A.O.)
- Department of Gastroenterology, “Sf Spiridon” County Clinical Emergency Hospital, 100115 Iași, Romania
| | - Gabriela Ștefănescu
- Gastroenterology Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania; (G.-E.G.-B.); (D.E.M.); (E.G.); (O.T.); (G.G.B.); (V.A.O.)
- Department of Gastroenterology, “Sf Spiridon” County Clinical Emergency Hospital, 100115 Iași, Romania
| |
Collapse
|
22
|
Zhang F, Han Y, Zheng L, Liu J, Wu Y, Bao Z, Liu L, Li W. Association of Non-Invasive Markers with Significant Fibrosis in Patients with Nonalcoholic Fatty Liver Disease: A Cross-Sectional Study. Diabetes Metab Syndr Obes 2023; 16:2255-2268. [PMID: 37545743 PMCID: PMC10403050 DOI: 10.2147/dmso.s417754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/25/2023] [Indexed: 08/08/2023] Open
Abstract
Purpose The identification of significant fibrosis is critical for predicting the prognosis of non-alcoholic fatty liver disease (NAFLD). This study aimed to compare the predictive value of chitinase-3-like protein 1 (CHl3L1) and other non-invasive biomarkers, as well as to establish a novel non-invasive diagnostic model for assessing the risk of significant fibrosis in NAFLD. Patients and Methods A total of 71 patients with confirmed NAFLD based on liver biopsy were included in this study. Serum CHI3L1 levels and other non-invasive fibrosis assessment measures were determined. The aspartate aminotransferase-to-platelet ratio index (APRI) and Fibrosis-4 Index (FIB-4) were calculated to assess the diagnostic superiority of serum CHI3L1 compared to other non-invasive fibrosis assessment measures. Multivariate logistic regression analysis was conducted to identify relevant variables for constructing a diagnostic model. Receiver operating characteristic (ROC) curve analysis was performed to evaluate the diagnostic accuracy of each index, including the area under ROC curve (AUC), sensitivity, and specificity. A nomogram was established based on the logistic regression model. Results Serum CHI3LI levels were found to be higher in NAFLD patients with significant fibrosis compared to those without significant fibrosis. Multivariate logistic regression analysis revealed that aspartate aminotransferase (AST), type IV collagen (IV-C), CHI3L1, and liver stiffness measurement (LSM) were identified as potential independent risk factors associated with significant fibrosis in patients. The AUC of CHI3L1 for diagnosing significant liver fibrosis was 0.716 (0.596,0.836), with the optimal cut-off point of 125.315. The nomogram incorporating CHI3LI, AST, IV-C, and LSM further improved the potential predictive value, with an AUC for diagnosing significant fibrosis of 0.864 (0.766,0.962). This was superior to IV-C, CHI3L1, LSM, and APRI (all p < 0.05). Conclusion The diagnostic model constructed by CHI3L1 combined with the existing non-invasive markers AST, IV-C, and LSM can help assess the risk of significant liver fibrosis in NAFLD.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Endocrinology, Changzhou Third People’s Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, Jiangsu, People’s Republic of China
- Department of Clinical Nutrition, Changzhou Third People’s Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, Jiangsu, People’s Republic of China
| | - Yan Han
- Department of Endocrinology, Changzhou Third People’s Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, Jiangsu, People’s Republic of China
- Department of Clinical Nutrition, Changzhou Third People’s Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, Jiangsu, People’s Republic of China
| | - Liming Zheng
- Clinical Laboratory, Changzhou Third People’s Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, Jiangsu, People’s Republic of China
| | - Jianhong Liu
- Department of Pathology, Changzhou Third People’s Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, Jiangsu, People’s Republic of China
| | - Yunfei Wu
- Department of Pathology, Changzhou Third People’s Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, Jiangsu, People’s Republic of China
| | - Zuowei Bao
- Department of Ultrasonography, Changzhou Third People’s Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, Jiangsu, People’s Republic of China
| | - Longgen Liu
- Department of Liver Diseases, Changzhou Third People’s Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, Jiangsu, People’s Republic of China
| | - Wenjian Li
- Department of Urology, Changzhou Third People’s Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, Jiangsu, People’s Republic of China
| |
Collapse
|
23
|
Kim AD, Kui L, Kaufmann B, Kim SE, Leszczynska A, Feldstein AE. Myeloid-specific deletion of chitinase-3-like 1 protein ameliorates murine diet-induced steatohepatitis progression. J Mol Med (Berl) 2023; 101:813-828. [PMID: 37166517 PMCID: PMC10300183 DOI: 10.1007/s00109-023-02325-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 05/12/2023]
Abstract
Chitinase-3-like 1 protein (CHI3L1) is a secreted glycoprotein, strongly correlated with fibrosis severity in chronic liver diseases including non-alcoholic steatohepatitis (NASH). However, the mechanisms by which CHI3L1 contributes to fibrogenesis remain undefined. Here, we showed that infiltrating monocyte-derived liver macrophages represent the main source of CHI3L1 in murine NASH. We developed a floxed CHI3L1 knock-out (KO) mouse to further study the cell-specific role of CHI3L1 ablation. Wildtype (WT) and myeloid cell-specific CHI3L1 KO mice (CreLyz) were challenged with a highly inflammatory and fibrotic dietary model of NASH by administering choline-deficient high-fat diet for 10 weeks. Macrophage accumulation and inflammatory cell recruitment were significantly ameliorated in the CreLyz group compared to WT (F4/80 IHC p < 0.0001, CD11b IHC p < 0.0001). Additionally, hepatic stellate cell (HSC) activation and fibrosis were strongly decreased in this group (α-SMA IHC p < 0.0001, picrosirius red staining p < 0.0001). In vitro studies were performed stimulating bone marrow derived macrophages, THP-1 (human monocytes) and LX2 (human HSCs) cells with recombinant CHI3L1 to dissect its relationship with fibrosis development. Results showed an important role of CHI3L1 regulating fibrosis-promoting factors by macrophages (TGFB1 p < 0.05, CTGF p < 0.01) while directly activating HSCs (ACTA2 p < 0.01, COL1A1 p < 0.01), involving IL13Rα2 as the potential mediator. Our findings uncovered a novel role of CHI3L1 derived from liver macrophages in NASH progression and identifies this protein as a potential anti-fibrotic therapeutic target. KEY MESSAGES: We showed that CHI3L1 expression is increased in murine CDAA-HFAT diet NASH model, and that infiltrating macrophages are a key source of CHI3L1 production. Myeloid cell-specific CreLyz CHI3L1 knock-out in mice fed with CDAA-HFAT diet improved the NASH phenotype, with significantly reduced accumulation of pro-inflammatory macrophages and neutrophils compared with WT group. DEG and qPCR analysis of genes in CreLyz CHI3L1 knock-out mouse liver showed the mechanistic role of CHI3L1 in cellular chemotaxis. HSC is directly activated by CHI3L1 via receptor IL13Rα2, leading to upregulation of collagen deposition and pro-fibrotic gene, TIMP-1 and TIMP-2 release in whole liver. Direct stimulation of macrophages with CHI3L1 leads to upregulated expression of HSC-activation factors, suggesting its role in modulating macrophage-HSC crosstalk.
Collapse
Affiliation(s)
- Andrea D Kim
- Department of Pediatrics, University of California San Diego, 3020 Children's Way, MC 5030, La Jolla, San Diego, CA, 92103-8450, USA
| | - Lin Kui
- Department of Pediatrics, University of California San Diego, 3020 Children's Way, MC 5030, La Jolla, San Diego, CA, 92103-8450, USA
| | - Benedikt Kaufmann
- Department of Pediatrics, University of California San Diego, 3020 Children's Way, MC 5030, La Jolla, San Diego, CA, 92103-8450, USA
- Department of Surgery, TUM School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Sung Eun Kim
- Department of Pediatrics, University of California San Diego, 3020 Children's Way, MC 5030, La Jolla, San Diego, CA, 92103-8450, USA
- Department of Internal Medicine, Hallym University College of Medicine, Chuncheon, Republic of Korea
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Republic of Korea
| | - Aleksandra Leszczynska
- Department of Pediatrics, University of California San Diego, 3020 Children's Way, MC 5030, La Jolla, San Diego, CA, 92103-8450, USA
| | - Ariel E Feldstein
- Department of Pediatrics, University of California San Diego, 3020 Children's Way, MC 5030, La Jolla, San Diego, CA, 92103-8450, USA.
| |
Collapse
|
24
|
Kim M, Chang JY, Lee DW, Kim YR, Son DJ, Yun J, Jung YS, Lee DH, Han S, Hong JT. Chitinase 3 like 1 deficiency ameliorates lipopolysaccharide-induced acute liver injury by inhibition of M2 macrophage polarization. Mol Immunol 2023; 156:98-110. [PMID: 36921490 DOI: 10.1016/j.molimm.2023.02.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/15/2023] [Accepted: 02/26/2023] [Indexed: 03/17/2023]
Abstract
Chitinase 3-like-1 protein (CHI3L1) is involved in various infectious diseases, especially sepsis. Aberrant CHI3L1 expression potentially plays a critical role in chronic inflammation because a considerable number of macrophages are associated with immune/inflammatory diseases. In this study, we examined the effect of CHI3L1 on hepatic sepsis injury using a lipopolysaccharide (LPS)-induced model. LPS-treated CHI3L1 knockout (KO) mice exhibited a higher survival rate than LPS-treated CHI3L1 wild-type (WT) mice. In addition, hepatic injury-related enzyme levels (aspartate transaminase, alanine transaminase, and lactate dehydrogenase) decreased in CHI3L1 KO mice sera, suggesting attenuated LPS-induced septic liver damage in CHI3L1 KO mice. A greater reduction in the mRNA and protein expressions of M2 polarization markers, such as MRC1, ARG1, IL-10, and IL-4, was observed in LPS-induced CHI3L1 KO mice livers than in LPS-induced WT mice livers. Nonetheless, no change in the mRNA and protein expressions of M1 polarization markers, such as INOS, CD86, TNF-α, and IL6, was noted in LPS-induced CHI3L1 KO mice livers compared with those in LPS-induced WT and KO mice. Similar to the in vivo scenario, liver CHI3L1 depletion in LPS-treated HEP3B cells significantly decreased M2 polarization marker protein expression. However, M1 polarization marker protein expression did not differ significantly. These results suggest that CHI3L1 depletion decreases M2 macrophage polarization, and this effect is potentially associated with the alleviation of liver sepsis in CHI3L1 KO mice.
Collapse
Affiliation(s)
- Minji Kim
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro 194-31, Osong-eup, Heungduk-gu, Cheongju, Chungbuk 361-951, Republic of Korea
| | - Ju Young Chang
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro 194-31, Osong-eup, Heungduk-gu, Cheongju, Chungbuk 361-951, Republic of Korea
| | - Dong Won Lee
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro 194-31, Osong-eup, Heungduk-gu, Cheongju, Chungbuk 361-951, Republic of Korea
| | - Yu Ri Kim
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro 194-31, Osong-eup, Heungduk-gu, Cheongju, Chungbuk 361-951, Republic of Korea
| | - Dong Ju Son
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro 194-31, Osong-eup, Heungduk-gu, Cheongju, Chungbuk 361-951, Republic of Korea
| | - Jaesuk Yun
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro 194-31, Osong-eup, Heungduk-gu, Cheongju, Chungbuk 361-951, Republic of Korea
| | - Young Suk Jung
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Dong Hun Lee
- Department of Biological Sciences, College of Natural Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Sangbae Han
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro 194-31, Osong-eup, Heungduk-gu, Cheongju, Chungbuk 361-951, Republic of Korea
| | - Jin Tae Hong
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro 194-31, Osong-eup, Heungduk-gu, Cheongju, Chungbuk 361-951, Republic of Korea.
| |
Collapse
|
25
|
Ozdogan E, Arikan C. Liver fibrosis in children: a comprehensive review of mechanisms, diagnosis, and therapy. Clin Exp Pediatr 2023; 66:110-124. [PMID: 36550776 PMCID: PMC9989719 DOI: 10.3345/cep.2022.00367] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 09/14/2022] [Indexed: 12/23/2022] Open
Abstract
Chronic liver disease incidence is increasing among children worldwide due to a multitude of epidemiological changes. Most of these chronic insults to the pediatric liver progress to fibrosis and cirrhosis to different degrees. Liver and immune physiology differs significantly in children from adults. Because most of pediatric liver diseases have no definitive therapy, a better understanding of population and disease-specific fibrogenesis is mandatory. Furthermore, fibrosis development has prognostic significance and often guide treatment. Evaluation of liver fibrosis continues to rely on the gold-standard liver biopsy. However, many high-quality studies put forward the high diagnostic accuracy of numerous diagnostic modalities in this setting. Herein, we summarize and discuss the recent literature on fibrogenesis with an emphasis on pediatric physiology along with a detailed outline of disease-specific signatures, noninvasive diagnostic modalities, and the potential for antifibrotic therapies.
Collapse
Affiliation(s)
- Elif Ozdogan
- Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Cigdem Arikan
- Department of Pediatric Gastroenterology, Hepatology and Nutrition, Koc University School of Medicine, Istanbul, Turkey
| |
Collapse
|
26
|
Inhibition of Chitinase-3-like-1 expression by K284 ameliorates lipopolysaccharide-induced acute liver injury through down regulation of CXCL3. Int Immunopharmacol 2023. [DOI: 10.1016/j.intimp.2023.109877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
27
|
Kaufmann B, Leszczynska A, Reca A, Booshehri LM, Onyuru J, Tan Z, Wree A, Friess H, Hartmann D, Papouchado B, Broderick L, Hoffman HM, Croker BA, Zhu YP, Feldstein AE. NLRP3 activation in neutrophils induces lethal autoinflammation, liver inflammation, and fibrosis. EMBO Rep 2022; 23:e54446. [PMID: 36194627 PMCID: PMC9638850 DOI: 10.15252/embr.202154446] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 08/17/2022] [Accepted: 09/06/2022] [Indexed: 11/05/2022] Open
Abstract
Sterile inflammation is a central element in liver diseases. The immune response following injurious stimuli involves hepatic infiltration of neutrophils and monocytes. Neutrophils are major effectors of liver inflammation, rapidly recruited to sites of inflammation, and can augment the recruitment of other leukocytes. The NLRP3 inflammasome has been increasingly implicated in severe liver inflammation, fibrosis, and cell death. In this study, the role of NLRP3 activation in neutrophils during liver inflammation and fibrosis was investigated. Mouse models with neutrophil-specific expression of mutant NLRP3 were developed. Mutant mice develop severe liver inflammation and lethal autoinflammation phenocopying mice with a systemic expression of mutant NLRP3. NLRP3 activation in neutrophils leads to a pro-inflammatory cytokine and chemokine profile in the liver, infiltration by neutrophils and macrophages, and an increase in cell death. Furthermore, mutant mice develop liver fibrosis associated with increased expression of pro-fibrogenic genes. Taken together, the present work demonstrates how neutrophils, driven by the NLRP3 inflammasome, coordinate other inflammatory myeloid cells in the liver, and propagate the inflammatory response in the context of inflammation-driven fibrosis.
Collapse
Affiliation(s)
- Benedikt Kaufmann
- Department of PediatricsUniversity of California San DiegoLa JollaCaliforniaUSA
- Department of Surgery, TUM School of Medicine, Klinikum rechts der Isar, TechnicalUniversity of MunichMunichGermany
| | | | - Agustina Reca
- Department of PediatricsUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Laela M Booshehri
- Department of PediatricsUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Janset Onyuru
- Department of PediatricsUniversity of California San DiegoLa JollaCaliforniaUSA
| | - ZheHao Tan
- Department of PediatricsUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Alexander Wree
- Department of Hepatology and GastroenterologyCharité, Universitätsmedizin BerlinBerlinGermany
| | - Helmut Friess
- Department of Surgery, TUM School of Medicine, Klinikum rechts der Isar, TechnicalUniversity of MunichMunichGermany
| | - Daniel Hartmann
- Department of Surgery, TUM School of Medicine, Klinikum rechts der Isar, TechnicalUniversity of MunichMunichGermany
| | - Bettina Papouchado
- Department of PathologyUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Lori Broderick
- Department of PediatricsUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Hal M Hoffman
- Department of PediatricsUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Ben A Croker
- Department of PediatricsUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Yanfang Peipei Zhu
- Department of PediatricsUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Ariel E Feldstein
- Department of PediatricsUniversity of California San DiegoLa JollaCaliforniaUSA
| |
Collapse
|
28
|
Khurana A, Navik U, Allawadhi P, Yadav P, Weiskirchen R. Spotlight on liver macrophages for halting liver disease progression and injury. Expert Opin Ther Targets 2022; 26:707-719. [PMID: 36202756 DOI: 10.1080/14728222.2022.2133699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
Abstract
INTRODUCTION Over the past two decades, understanding of hepatic macrophage biology has provided astounding details of their role in the progression and regression of liver diseases. The hepatic macrophages constitute resident macrophages, Kupffer cells, and circulating bone marrow monocyte-derived macrophages, which play a diverse role in liver injury and repair. Imbalance in the macrophage population leads to pathological consequences and is responsible for the initiation and progression of acute and chronic liver injuries. Further, distinct populations of hepatic macrophages and their high heterogeneity make their complex role enigmatic. The unique features of distinct phenotypes of macrophages have provided novel biomarkers for defining the stages of liver diseases. The distinct mechanisms of hepatic macrophages polarization and recruitment have been at the fore front of research. In addition, the secretome of hepatic macrophages and their immune regulation has provided clinically relevant therapeutic targets. AREAS COVERED Herein we have highlighted the current understanding in the area of hepatic macrophages, and their role in the progression of liver injury. EXPERT OPINION It is essential to ascertain the physiological and pathological role of evolutionarily conserved distinct macrophage phenotypes in different liver diseases before viable approaches may see a clinical translation.
Collapse
Affiliation(s)
- Amit Khurana
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH Aachen University Hospital, Pauwelsstr. 30, D-52074, Aachen, Germany
| | - Umashanker Navik
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda - 151401, Punjab, India
| | - Prince Allawadhi
- Department of Pharmacy, Vaish Institute of Pharmaceutical Education and Research (VIPER), Pandit Bhagwat Dayal Sharma University of Health Sciences (Pt. B. D. S. UHS), Rohtak - 124001, Haryana, India
| | - Poonam Yadav
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda - 151401, Punjab, India
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH Aachen University Hospital, Pauwelsstr. 30, D-52074, Aachen, Germany
| |
Collapse
|
29
|
Calcagno D, Chu A, Gaul S, Taghdiri N, Toomu A, Leszczynska A, Kaufmann B, Papouchado B, Wree A, Geisler L, Hoffman HM, Feldstein AE, King KR. NOD-like receptor protein 3 activation causes spontaneous inflammation and fibrosis that mimics human NASH. Hepatology 2022; 76:727-741. [PMID: 34997987 PMCID: PMC10176600 DOI: 10.1002/hep.32320] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 12/08/2021] [Accepted: 12/12/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND AND AIMS The NOD-like receptor protein 3 (NLRP3) inflammasome is a central contributor to human acute and chronic liver disease, yet the molecular and cellular mechanisms by which its activation precipitates injury remain incompletely understood. Here, we present single cell transcriptomic profiling of livers from a global transgenic tamoxifen-inducible constitutively activated Nlrp3A350V mutant mouse, and we investigate the changes in parenchymal and nonparenchymal liver cell gene expression that accompany inflammation and fibrosis. APPROACH AND RESULTS Our results demonstrate that NLRP3 activation causes chronic extramedullary myelopoiesis marked by myeloid progenitors that differentiate into proinflammatory neutrophils, monocytes, and monocyte-derived macrophages. We observed prominent neutrophil infiltrates with increased Ly6gHI and Ly6gINT cells exhibiting transcriptomic signatures of granulopoiesis typically found in the bone marrow. This was accompanied by a marked increase in Ly6cHI monocytes differentiating into monocyte-derived macrophages that express transcriptional programs similar to macrophages of NASH models. NLRP3 activation also down-regulated metabolic pathways in hepatocytes and shifted hepatic stellate cells toward an activated profibrotic state based on expression of collagen and extracellular matrix regulatory genes. CONCLUSIONS These results define the single cell transcriptomes underlying hepatic inflammation and fibrosis precipitated by NLRP3 activation. Clinically, our data support the notion that NLRP3-induced mechanisms should be explored as therapeutic target in NASH-like inflammation.
Collapse
Affiliation(s)
- David Calcagno
- University of California San Diego, Department of Bioengineering, San Diego, United States
| | - Angela Chu
- University of California San Diego, Department of Pediatrics, San Diego, United States
| | - Susanne Gaul
- University of California San Diego, Department of Pediatrics, San Diego, United States
- Leipzig University, Clinic and Polyclinic of Cardiology, Leipzig, Germany
| | - Nika Taghdiri
- University of California San Diego, Department of Bioengineering, San Diego, United States
| | - Avinash Toomu
- University of California San Diego, Department of Bioengineering, San Diego, United States
| | | | - Benedikt Kaufmann
- University of California San Diego, Department of Pediatrics, San Diego, United States
| | - Bettina Papouchado
- Department of Pathology, University of California San Diego, La Jolla, USA
| | - Alexander Wree
- Charité University Medicine, Department of Hepatology and Gastroenterology, Berlin, Germany
| | - Lukas Geisler
- Charité University Medicine, Department of Hepatology and Gastroenterology, Berlin, Germany
| | - Hal M. Hoffman
- University of California San Diego, Department of Pediatrics, San Diego, United States
| | - Ariel E. Feldstein
- University of California San Diego, Department of Pediatrics, San Diego, United States
| | - Kevin R. King
- University of California San Diego, Department of Bioengineering, San Diego, United States
- University of California San Diego, School of Medicine, San Diego, United States
| |
Collapse
|
30
|
Identification of Shared Gene Signatures in Different Stages of Nonalcoholic Fatty Liver Disease Using Integrated Microarray Datasets. HEPATITIS MONTHLY 2022. [DOI: 10.5812/hepatmon-122362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
Background: Nonalcoholic fatty liver disease (NAFLD) is the most common type of chronic liver disease worldwide. Left untreated, it can be a risk factor for developing cirrhosis or hepatocellular carcinoma (HCC). Although experts have made many efforts to find the underlying mechanisms of NAFLD, they remain a mystery. Objectives: This study aimed to distinguish common gene signatures and pathways in the human liver during NAFLD progression through systems biology. Methods: In this study, the researchers selected three microarray datasets, GSE48452, GSE63067, and GSE89632, from the NCBI GEO database to explore differentially expressed genes (DEGs) among healthy controls, simple steatosis, and nonalcoholic steatohepatitis (NASH) patients. Furthermore, protein-protein interaction (PPI) networks and pathway enrichment analyses were used to detect common genes and biological pathways in different stages of NAFLD. Results: The current study included 45 healthy participants, 36 simple steatosis patients, and 46 NASH patients. Common genes for NAFLD progression were Chi3L1, ICAM1, MT1A, MT1H, ABCB11, ACOT1, CYP2C9, HSP90B1, and CPB2, which are involved in inflammation and oxidative stress pathways. Conclusions: The present study investigated the shared vital genes and pathways between different stages of NAFLD, which may facilitate understanding NAFLD mechanisms and identifying potential therapeutic targets in this disease.
Collapse
|
31
|
Qiu H, Zhang X. The Value of Serum CHI3L1 for the Diagnosis of Chronic Liver Diseases. Int J Gen Med 2022; 15:5835-5841. [PMID: 35789773 PMCID: PMC9250326 DOI: 10.2147/ijgm.s364602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/11/2022] [Indexed: 12/24/2022] Open
Abstract
Objective To explore the value of chitinase-3-like protein 1 (CHI3L1) for the diagnosis of patients with chronic liver diseases such as chronic viral hepatitis B, liver cirrhosis and hepatocellular carcinoma (HCC), and analyze the correlation between serum CHI3L1 level and Child-Pugh grading of chronic liver diseases. Methods The serum CHI3L1 levels of 154 cases of chronic viral hepatitis B, 132 cases of liver cirrhosis and 88 cases of HCC were detected by ELISA, and 92 healthy subjects were taken as the control. Results The -serum CHI3L1 levels in HCC group, liver cirrhosis group and chronic viral hepatitis B group were higher than in healthy control group (P < 0.001). Serum CHI3L1 level showed a trend of increase in patients with chronic hepatitis to liver cirrhosis and to HCC. The diagnostic efficacy of serum CHI3L1 level on liver cirrhosis showed the sensitivity of 64.4% and the specificity of 96.7%. The diagnostic efficacy of serum CHI3L1 level on HCC showed the sensitivity of 86.8% and the specificity of 97.8%. Serum CHI3L1 level was higher in Child-Pugh grade B and C patients than in Child-Pugh grade A patients, and was positively correlated with Child-Pugh grading of liver function (rs = 0.301, P < 0.001). Conclusion Serum CHI3L1 level increased in chronic liver diseases and showed an increase trend with the progression of liver diseases. Serum CHI3L1 could be a biomarker for the auxiliary diagnosis of chronic liver diseases.
Collapse
Affiliation(s)
- Hanyu Qiu
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People’s Republic of China
| | - Xiaomei Zhang
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People’s Republic of China
| |
Collapse
|
32
|
Yamada K, Hyodo T, Urabe S, Haga S, Hosaka T. Serum YKL-40 Level is Associated with Geriatric Nutritional Risk Index (GNRI) and γ-GTP in Hemodialysis Patients. THE JOURNAL OF MEDICAL INVESTIGATION 2022; 69:101-106. [PMID: 35466129 DOI: 10.2152/jmi.69.101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Chitinase-3-like protein 1 (YKL-40) is a glycoprotein associated with inflammation and tissue remodeling that has recently been used as a marker of inflammation in hemodialysis (HD) patients. In this study, we aimed to determine whether YKL-40 has potential to serve as a nutritional parameter in Japanese HD patients. The serum YKL-40 concentration, hematological parameters, inflammatory marker levels, anthropometric measurements, and laboratory values were measured in 88 patients receiving HD. The geriatric nutritional risk index (GNRI) was used as a nutritional assessment tool. 45.4% of patients were malnourished. YKL-40 correlated positively with age, alkaline phosphatase, alanine transaminase and γ-glutamyl transpeptidase (γ-GTP) levels, but not with nutritional status, and correlated inversely with ankle brachial index score, a predictor of atherosclerosis. Furthermore, multiple regression analysis confirmed that γ-GTP, GNRI and age correlated with YKL-40. YKL-40 elevation was associated with γ-GTP, GNRI and age in HD patients. J. Med. Invest. 69 : 101-106, February, 2022.
Collapse
Affiliation(s)
- Kohsuke Yamada
- Department of Nutrition and Dietetics, Kamakura Women's University, Kamakura City, Japan.,Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka City, Japan
| | - Toru Hyodo
- Dialysis Center, Eijin Clinic, Hiratsuka City, Japan
| | | | - Satomi Haga
- Dialysis Center, Eijin Clinic, Hiratsuka City, Japan
| | - Toshio Hosaka
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka City, Japan
| |
Collapse
|
33
|
Diagnostic Value of Serum Chitinase-3-Like Protein 1 for Liver Fibrosis: A Meta-analysis. BIOMED RESEARCH INTERNATIONAL 2022; 2022:3227957. [PMID: 35360517 PMCID: PMC8961437 DOI: 10.1155/2022/3227957] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/08/2021] [Accepted: 01/03/2022] [Indexed: 02/07/2023]
Abstract
Background Serum chitinase-3-like protein 1 (CHI3L1) is a promising marker for diagnosing liver fibrosis. This meta-analysis was carried out to assess the diagnostic performance of serum CHI3L1 for the estimation of liver fibrosis. Methods Systematic searches were performed on PubMed, Embase, Web of Science, Scopus, the Cochrane Library, Google Scholar, Sinomed, the China National Knowledge Infrastructure (CNKI), the Chinese Medical Journal Database, and the Wanfang databases for available studies. The primary studies were screened strictly according to inclusion and exclusion criteria, and sensitivity, specificity, and other measures of accuracy of serum CHI3L1 for evaluating liver fibrosis were pooled with 95% confidence intervals. I2 was calculated to assess heterogeneity, and sources of heterogeneity were explored by subgroup analysis. Deeks' test was used to assess for publication bias, and likelihood ratio was used to determine posttest probability. Results Our research integrated 11 articles, accounting for 1897 patients older than 18 years old. The pooled sensitivity and specificity for significant fibrosis, advanced fibrosis, and cirrhosis were 0.79 and 0.82 with an area under the receiver operating characteristic curve (AUC) of 0.85, 0.81 and 0.83 with an AUC of 0.91, and 0.72 and 0.74 with an AUC of 0.85, respectively. Random-effects models were used to assess for significant heterogeneity, and subgroup analysis showed that age and aetiology of included patients were likely sources of heterogeneity. No potential publication bias was found for serum CHI3L1 in the diagnosis of significant fibrosis, advanced fibrosis, or cirrhosis, and posttest probability was moderate. Conclusion Measurement of serum CHI3L1 is a feasible diagnostic tool for liver fibrosis.
Collapse
|
34
|
Martinou E, Pericleous M, Stefanova I, Kaur V, Angelidi AM. Diagnostic Modalities of Non-Alcoholic Fatty Liver Disease: From Biochemical Biomarkers to Multi-Omics Non-Invasive Approaches. Diagnostics (Basel) 2022; 12:407. [PMID: 35204498 PMCID: PMC8871470 DOI: 10.3390/diagnostics12020407] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/31/2022] [Accepted: 02/02/2022] [Indexed: 02/05/2023] Open
Abstract
Non-Alcoholic Fatty Liver Disease (NAFLD) is currently the most common cause of chronic liver disease worldwide, and its prevalence is increasing globally. NAFLD is a multifaceted disorder, and its spectrum includes steatosis to steatohepatitis, which may evolve to advanced fibrosis and cirrhosis. In addition, the presence of NAFLD is independently associated with a higher cardiometabolic risk and increased mortality rates. Considering that the vast majority of individuals with NAFLD are mainly asymptomatic, early diagnosis of non-alcoholic steatohepatitis (NASH) and accurate staging of fibrosis risk is crucial for better stratification, monitoring and targeted management of patients at risk. To date, liver biopsy remains the gold standard procedure for the diagnosis of NASH and staging of NAFLD. However, due to its invasive nature, research on non-invasive tests is rapidly increasing with significant advances having been achieved during the last decades in the diagnostic field. New promising non-invasive biomarkers and techniques have been developed, evaluated and assessed, including biochemical markers, imaging modalities and the most recent multi-omics approaches. Our article provides a comprehensive review of the currently available and emerging non-invasive diagnostic tools used in assessing NAFLD, also highlighting the importance of accurate and validated diagnostic tools.
Collapse
Affiliation(s)
- Eirini Martinou
- Hepatobiliary and Pancreatic Surgery Department, Royal Surrey County Hospital, Guildford GU2 7XX, UK
- Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK;
| | - Marinos Pericleous
- Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK;
- Department of Gastroenterology and Hepatology, Royal Surrey County Hospital, Guildford GU2 7XX, UK
| | - Irena Stefanova
- Department of General Surgery, Frimley Health NHS Foundation Trust, Camberley GU16 7UJ, UK;
| | - Vasha Kaur
- Department of Upper Gastrointestinal and Bariatric Surgery, St George’s Hospital, London SW17 0QT, UK;
| | - Angeliki M. Angelidi
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
35
|
Toson ESA, Saad EA, Omar HAER. Occupational exposure to gasoline in gasoline station male attendants promotes M1 polarization in macrophages. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:6399-6413. [PMID: 34449021 DOI: 10.1007/s11356-021-16019-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 08/14/2021] [Indexed: 06/13/2023]
Abstract
Several studies have reported the toxicological implications of exposure to petroleum hydrocarbon fumes in animal models. There is little documentation on the effect of such exposure on oxidative stress levels and immune response. To our knowledge, no documentation of M1 polarization in macrophages in gasoline station male attendants. Therefore, this study aimed to evaluate the harmful effects of gasoline vapors in 62 male attendants (16-70 years) compared to 29 age- and sex-matched-unexposed controls. The attendants were recruited from Damietta governorate gasoline stations. Gasoline exposure induced a significant increase in tumor necrosis factor-α (TNF-α) level (p < 0.05) as well as a slight but non-significant increase in the activity of acidic mammalian chitinase (AMCase) (p > 0.05). Further TNF-α/AMCase ratio was significantly increased (p < 0.01) in sera of the attendants when compared to those of the healthy controls. Also, the total leucocytic and lymphocytic counts were significantly increased (p < 0.01 and p < 0.001, respectively). On contrary, neutrophils to lymphocytes ratio (NLR) and platelets to lymphocytes ratio (PLR) were significantly decreased (p < 0.05 and p < 0.001, respectively). In addition, significant reduction in hemoglobin (Hb) concentration, plasma glutathione reduced form (GSH), and catalase, as well as superoxide dismutase (SOD) activities in red blood cells were observed in the exposed attendants. As a result, malondialdehyde (MDA), nitric oxide (NO) levels, and NO/AMCase ratio were significantly increased (p < 0.05). In conclusion, this study inferred that prolonged gasoline exposure can mediate immune activation, especially M1 macrophages polarization, possibly via oxidative stress-mediated mechanism.
Collapse
Affiliation(s)
- El-Shahat A Toson
- Chemistry Department, Faculty of Science, Damietta University, New Damietta, Damietta, 34517, Egypt
| | - Entsar A Saad
- Chemistry Department, Faculty of Science, Damietta University, New Damietta, Damietta, 34517, Egypt
| | - Hadeer Abd El-Raouf Omar
- Chemistry Department, Faculty of Science, Damietta University, New Damietta, Damietta, 34517, Egypt.
| |
Collapse
|
36
|
Duan X, Yang L, Wen R, Cao H, Wen H, Liu W, Yuan H. Sound touch elastography for assessing cirrhosis preoperatively in infants with biliary atresia: Comparison with serum fibrosis biomarkers. Front Pediatr 2022; 10:989293. [PMID: 36245721 PMCID: PMC9556848 DOI: 10.3389/fped.2022.989293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 09/08/2022] [Indexed: 12/02/2022] Open
Abstract
INTRODUCTION The accurate assessment of the stages of hepatic fibrosis in children with biliary atresia (BA) before performing Kasai portoenterostomy (KPE) is of utmost importance. Some studies demonstrated that ultrasound elastography can be used to assess the stages of hepatic fibrosis by detecting liver stiffness. Therefore, the aim of this work was to explore the usefulness of sound touch elastography (STE) for preoperatively assessing liver cirrhosis in infants with BA. METHODS A total of 189 children from the Hunan Children's Hospital with highly suspected BA were selected for this study, and their preoperative liver STE values and related clinical data were collected. The pathological results of the liver stages were considered as the gold standard. Spearman correlation was used to analyze the correlation between each parameter and the stage of hepatic fibrosis, and the receiver operator characteristic (ROC) curve was used to analyze the diagnostic performance for cirrhosis of each parameter. RESULTS Among the selected 189 patients with suspected BA, 159 were included in this study and were composed of 3 at hepatic fibrosis stage F1, 45 at stage F2, 41 at stage F3, and 70 at stage F4, while no patients at stage F0 were present. Spearman correlation analysis showed that the liver STE value had the highest correlation with the stage of hepatic fibrosis, with a correlation coefficient of 0.813 (P < 0.001). The liver STE value had the highest diagnostic performance for hepatic cirrhosis compared to other biomarkers of serum fibrosis; the area under the ROC curve was 0.899 when the best cut-off value was 14.57 kPa. The sensitivity, specificity, positive predictive value, negative predictive value, and diagnostic accuracy were 78.6, 84.3, 79.7, 83.3, and 81.8%, respectively. CONCLUSION The liver STE value has a high correlation with the stage of hepatic fibrosis in children with BA. STE has a good diagnostic performance in evaluating cirrhosis before KPE in children with BA.
Collapse
Affiliation(s)
- Xingxing Duan
- Department of Ultrasonography, Changsha Hospital for Maternal and Child Health Care, Changsha, China.,Department of Ultrasound, Hunan Children's Hospital, Changsha, China
| | - Liu Yang
- Department of Ultrasound, Hunan Children's Hospital, Changsha, China
| | - Rong Wen
- Department of Pathology, Hunan Children's Hospital, Changsha, China
| | - Hong Cao
- Department of Ultrasonography, Changsha Hospital for Maternal and Child Health Care, Changsha, China
| | - Huan Wen
- Department of Ultrasound, Hunan Children's Hospital, Changsha, China
| | - Wengang Liu
- Department of Ultrasound, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Hongxia Yuan
- Department of Ultrasonography, Changsha Hospital for Maternal and Child Health Care, Changsha, China
| |
Collapse
|
37
|
Kim AD, Kim SE, Leszczynska A, Kaufmann B, Reca A, Kim DJ, Feldstein AE. Dual role of neutrophils in modulating liver injury and fibrosis during development and resolution of diet-induced murine steatohepatitis. Sci Rep 2021; 11:24194. [PMID: 34921208 PMCID: PMC8683497 DOI: 10.1038/s41598-021-03679-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/03/2021] [Indexed: 02/06/2023] Open
Abstract
Inflammatory changes in the liver represent a key feature of non-alcoholic steatohepatitis (NASH), the progressive form of non-alcoholic fatty liver disease (NAFLD). Innate immune activation including hepatic neutrophilic infiltration acts as an important inflammatory trigger as well as a potential mediator of inflammation resolution. In this study, we dissected the effects of neutrophil depletion via anti-lymphocyte antigen 6 complex locus G6D (Ly6G) antibodies administration during ongoing high fat-fructose-cholesterol (FFC) diet-induced murine NASH and during inflammation resolution by switching into a low-fat control diet. During NASH progression, protective effects were shown as HSC activation, cell infiltration and activation of pro-inflammatory macrophages were ameliorated. Furthermore, these changes were contrasted with the effects observed when neutrophil depletion was performed during the resolution phase. Impaired resolving mechanisms, such as a failure to balance the pro and anti-inflammatory cytokines ratio, deficient macrophage phenotypic switch into a pro-restorative profile, and defective repair and remodeling processes were observed when neutrophils were depleted in this scenario. This study described phase-dependent contrasting roles of neutrophils as triggers and pro-resolutive mediators of liver injury and fibrosis associated with diet-induced NASH in mice. These findings have important translational implications at the time of designing NASH therapeutic strategies.
Collapse
Affiliation(s)
- Andrea D Kim
- Department of Pediatrics, University of California San Diego, La Jolla, USA
| | - Sung Eun Kim
- Department of Internal Medicine, Hallym University College of Medicine, Chuncheon, Republic of Korea
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Republic of Korea
| | | | - Benedikt Kaufmann
- Department of Pediatrics, University of California San Diego, La Jolla, USA
- Department of Surgery, TUM School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Agustina Reca
- Department of Pediatrics, University of California San Diego, La Jolla, USA
| | - Dong Joon Kim
- Department of Internal Medicine, Hallym University College of Medicine, Chuncheon, Republic of Korea
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Republic of Korea
| | - Ariel E Feldstein
- Department of Pediatrics, University of California San Diego, La Jolla, USA.
| |
Collapse
|
38
|
Zhu B, Chan SL, Li J, Li K, Wu H, Cui K, Chen H. Non-alcoholic Steatohepatitis Pathogenesis, Diagnosis, and Treatment. Front Cardiovasc Med 2021; 8:742382. [PMID: 34557535 PMCID: PMC8452937 DOI: 10.3389/fcvm.2021.742382] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 08/13/2021] [Indexed: 12/12/2022] Open
Abstract
There has been a rise in the prevalence of non-alcohol fatty liver disease (NAFLD) due to the popularity of western diets and sedentary lifestyles. One quarter of NAFLD patients is diagnosed with non-alcoholic steatohepatitis (NASH), with histological evidence not only of fat accumulation in hepatocytes but also of liver cell injury and death due to long-term inflammation. Severe NASH patients have increased risks of cirrhosis and liver cancer. In this review, we discuss the pathogenesis and current methods of diagnosis for NASH, and current status of drug development for this life-threatening liver disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hong Chen
- Department of Surgery, Vascular Biology Program, Harvard Medical School, Boston Children's Hospital, Boston, MA, United States
| |
Collapse
|
39
|
He W, Huang C, Zhang X, Wang D, Chen Y, Zhao Y, Li X. Identification of transcriptomic signatures and crucial pathways involved in non-alcoholic steatohepatitis. Endocrine 2021; 73:52-64. [PMID: 33837926 DOI: 10.1007/s12020-021-02716-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 03/25/2021] [Indexed: 02/08/2023]
Abstract
PURPOSE Our study aimed to uncover the crucial genes and functional pathways involved in the development of non-alcoholic steatohepatitis (NASH). METHODS Liver transcriptome datasets were integrated with Robust rank aggregation (RRA) method, and transcriptomic signatures for NASH progression and fibrosis severity in NAFLD were developed. The functions of transcriptomic signatures were explored by multiple bioinformatic analyses, and their diagnostic role was also evaluated. RESULTS RRA analyses of 12 transcriptome datasets comparing NASH with non-alcoholic fatty liver (NAFL) identified 116 abnormally up-regulated genes in NASH patients. RRA analyses of five transcriptome datasets focusing fibrosis severity identified 78 abnormally up-regulated genes in NAFLD patients with advanced fibrosis. The functions of those transcriptomic signatures of NASH development or fibrosis progression were similar, and were both characterized by extracellular matrix (ECM)-related pathways (Adjusted P < 0.05). The transcriptomic signatures could effectively differentiate NASH from NAFL, and could help to identify NAFLD patients with advanced fibrosis. Gene set enrichment analysis and weighted gene co-expression network analysis further validated the key role of ECM-related pathways in NASH development. The top 10 up-regulated genes in NASH patients were SPP1, FBLN5, CHI3L1, CCL20, CD24, FABP4, GPNMB, VCAN, EFEMP1, and CXCL10, and their functions were mainly related to either ECM-related pathways or immunity-related pathways. Single cell RNA-sequencing analyses revealed that those crucial genes were expressed by distinct cells such as hepatocytes, macrophages, and hepatic stellate cells. CONCLUSIONS Transcriptomic signatures related to NASH development and fibrosis severity of NAFLD patients are both characterized by ECM-related pathways, and fibrosis is a main player during NASH progression. This study uncovers some novel key genes involved in NASH progression, which may be promising therapeutic targets.
Collapse
Affiliation(s)
- Weiwei He
- School of Medicine, Xiamen University, Xiamen, China
- Xiamen Diabetes Institute, The First Affiliated Hospital of Xiamen University, Xiamen, China
- Fujian Provincial Key Laboratory of Translational Medicine for Diabetes, Xiamen, China
| | - Caoxin Huang
- Xiamen Diabetes Institute, The First Affiliated Hospital of Xiamen University, Xiamen, China
- Fujian Provincial Key Laboratory of Translational Medicine for Diabetes, Xiamen, China
| | - Xiaofang Zhang
- Xiamen Diabetes Institute, The First Affiliated Hospital of Xiamen University, Xiamen, China
- Fujian Provincial Key Laboratory of Translational Medicine for Diabetes, Xiamen, China
| | - Dongmei Wang
- School of Medicine, Xiamen University, Xiamen, China
- Xiamen Diabetes Institute, The First Affiliated Hospital of Xiamen University, Xiamen, China
- Fujian Provincial Key Laboratory of Translational Medicine for Diabetes, Xiamen, China
| | - Yinling Chen
- School of Medicine, Xiamen University, Xiamen, China
- Xiamen Diabetes Institute, The First Affiliated Hospital of Xiamen University, Xiamen, China
- Fujian Provincial Key Laboratory of Translational Medicine for Diabetes, Xiamen, China
| | - Yan Zhao
- Xiamen Diabetes Institute, The First Affiliated Hospital of Xiamen University, Xiamen, China.
- Fujian Provincial Key Laboratory of Translational Medicine for Diabetes, Xiamen, China.
| | - Xuejun Li
- Xiamen Diabetes Institute, The First Affiliated Hospital of Xiamen University, Xiamen, China.
- Fujian Provincial Key Laboratory of Translational Medicine for Diabetes, Xiamen, China.
- Department of Endocrinology and Diabetes, The First Affiliated Hospital of Xiamen University, Xiamen, China.
| |
Collapse
|
40
|
Shan Z, Li L, Atkins CL, Wang M, Wen Y, Jeong J, Moreno NF, Feng D, Gui X, Zhang N, Lee CG, Elias JA, Lee WM, Gao B, Lam FW, An Z, Ju C. Chitinase 3-like-1 contributes to acetaminophen-induced liver injury by promoting hepatic platelet recruitment. eLife 2021; 10:e68571. [PMID: 34110284 PMCID: PMC8233036 DOI: 10.7554/elife.68571] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 06/02/2021] [Indexed: 01/04/2023] Open
Abstract
Background Hepatic platelet accumulation contributes to acetaminophen (APAP)-induced liver injury (AILI). However, little is known about the molecular pathways involved in platelet recruitment to the liver and whether targeting such pathways could attenuate AILI. Methods Mice were fasted overnight before intraperitoneally (i.p.) injected with APAP at a dose of 210 mg/kg for male mice and 325 mg/kg for female mice. Platelets adherent to Kupffer cells were determined in both mice and patients overdosed with APAP. The impact of α-chitinase 3-like-1 (α-Chi3l1) on alleviation of AILI was determined in a therapeutic setting, and liver injury was analyzed. Results The present study unveiled a critical role of Chi3l1 in hepatic platelet recruitment during AILI. Increased Chi3l1 and platelets in the liver were observed in patients and mice overdosed with APAP. Compared to wild-type (WT) mice, Chil1-/- mice developed attenuated AILI with markedly reduced hepatic platelet accumulation. Mechanistic studies revealed that Chi3l1 signaled through CD44 on macrophages to induce podoplanin expression, which mediated platelet recruitment through C-type lectin-like receptor 2. Moreover, APAP treatment of Cd44-/- mice resulted in much lower numbers of hepatic platelets and liver injury than WT mice, a phenotype similar to that in Chil1-/- mice. Recombinant Chi3l1 could restore hepatic platelet accumulation and AILI in Chil1-/- mice, but not in Cd44-/- mice. Importantly, we generated anti-Chi3l1 monoclonal antibodies and demonstrated that they could effectively inhibit hepatic platelet accumulation and AILI. Conclusions We uncovered the Chi3l1/CD44 axis as a critical pathway mediating APAP-induced hepatic platelet recruitment and tissue injury. We demonstrated the feasibility and potential of targeting Chi3l1 to treat AILI. Funding ZS received funding from NSFC (32071129). FWL received funding from NIH (GM123261). ALFSG received funding from NIDDK (DK 058369). ZA received funding from CPRIT (RP150551 and RP190561) and the Welch Foundation (AU-0042-20030616). CJ received funding from NIH (DK122708, DK109574, DK121330, and DK122796) and support from a University of Texas System Translational STARs award. Portions of this work were supported with resources and the use of facilities of the Michael E. DeBakey VA Medical Center and funding from Department of Veterans Affairs I01 BX002551 (Equipment, Personnel, Supplies). The contents do not represent the views of the US Department of Veterans Affairs or the US Government.
Collapse
Affiliation(s)
- Zhao Shan
- Department of Anesthesiology, UTHealth McGovern Medical SchoolHoustonUnited States
- Center for Life Sciences, School of Life Sciences, Yunnan UniversityKunmingChina
| | - Leike Li
- Texas Therapeutics Institute, UTHealth McGovern Medical SchoolHoustonUnited States
| | | | - Meng Wang
- Department of Anesthesiology, UTHealth McGovern Medical SchoolHoustonUnited States
| | - Yankai Wen
- Department of Anesthesiology, UTHealth McGovern Medical SchoolHoustonUnited States
| | - Jongmin Jeong
- Department of Anesthesiology, UTHealth McGovern Medical SchoolHoustonUnited States
| | - Nicolas F Moreno
- Department of Anesthesiology, UTHealth McGovern Medical SchoolHoustonUnited States
| | - Dechun Feng
- Laboratory of Liver Disease, National Institute on Alcohol Abuse and Alcoholism, NIHBethesdaUnited States
| | - Xun Gui
- Texas Therapeutics Institute, UTHealth McGovern Medical SchoolHoustonUnited States
| | - Ningyan Zhang
- Texas Therapeutics Institute, UTHealth McGovern Medical SchoolHoustonUnited States
| | - Chun Geun Lee
- Molecular Microbiology and Immunology, Brown UniversityProvidenceUnited States
| | - Jack A Elias
- Molecular Microbiology and Immunology, Brown UniversityProvidenceUnited States
- Division of Medicine and Biological Sciences, Warren Alpert School of Medicine, Brown UniversityProvidenceUnited States
| | - William M Lee
- Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Med SchoolDallasUnited States
| | - Bin Gao
- Laboratory of Liver Disease, National Institute on Alcohol Abuse and Alcoholism, NIHBethesdaUnited States
| | - Fong Wilson Lam
- Division of Pediatric Critical Care Medicine, Baylor College of MedicineHoustonUnited States
- Center for Translation Research on Inflammatory Diseases, Michael E. DeBakey Veterans Affairs Medical CenterHoustonUnited States
| | - Zhiqiang An
- Texas Therapeutics Institute, UTHealth McGovern Medical SchoolHoustonUnited States
| | - Cynthia Ju
- Department of Anesthesiology, UTHealth McGovern Medical SchoolHoustonUnited States
| |
Collapse
|
41
|
Li L, Wei K, Ding Y, Ahati P, Xu H, Fang H, Wang H. M2a Macrophage-Secreted CHI3L1 Promotes Extracellular Matrix Metabolic Imbalances via Activation of IL-13Rα2/MAPK Pathway in Rat Intervertebral Disc Degeneration. Front Immunol 2021; 12:666361. [PMID: 34168643 PMCID: PMC8217759 DOI: 10.3389/fimmu.2021.666361] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/24/2021] [Indexed: 12/17/2022] Open
Abstract
The accumulation of macrophages in degenerated discs is a common phenomenon. However, the roles and mechanisms of M2a macrophages in intervertebral disc degeneration (IDD) have not been illuminated. This study investigated the expression of the M2a macrophage marker (CD206) in human and rat intervertebral disc tissues by immunohistochemistry. To explore the roles of M2a macrophages in IDD, nucleus pulposus (NP) cells were co-cultured with M2a macrophages in vitro. To clarify whether the CHI3L1 protein mediates the effect of M2a macrophages on NP cells, siRNA was used to knock down CHI3L1 transcription. To elucidate the underlying mechanisms, NP cells were incubated with recombinant CHI3L1 proteins, then subjected to western blotting analysis of the IL-13Rα2 receptor and MAPK pathway. CD206-positive cells were detected in degenerated human and rat intervertebral disc tissues. Notably, M2a macrophages promoted the expression of catabolism genes (MMP-3 and MMP-9) and suppressed the expression of anabolism genes (aggrecan and collagen II) in NP cells. These effects were abrogated by CHI3L1 knockdown in M2a macrophages. Exposure to recombinant CHI3L1 promoted an extracellular matrix metabolic imbalance in NP cells via the IL-13Rα2 receptor, along with activation of the ERK and JNK MAPK signaling pathways. This study elucidated the roles of M2a macrophages in IDD and identified potential mechanisms for these effects.
Collapse
Affiliation(s)
- Long Li
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kang Wei
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yifan Ding
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Paerxiati Ahati
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haoran Xu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huang Fang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huan Wang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
42
|
Morris JS, Hassan MM, Zohner YE, Wang Z, Xiao L, Rashid A, Haque A, Abdel-Wahab R, Mohamed YI, Ballard KL, Wolff RA, George B, Li L, Allen G, Weylandt M, Li D, Wang W, Raghav K, Yao J, Amin HM, Kaseb AO. HepatoScore-14: Measures of Biological Heterogeneity Significantly Improve Prediction of Hepatocellular Carcinoma Risk. Hepatology 2021; 73:2278-2292. [PMID: 32931023 PMCID: PMC7956911 DOI: 10.1002/hep.31555] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 06/02/2020] [Accepted: 07/02/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND AND AIMS Therapeutic, clinical trial entry and stratification decisions for hepatocellular carcinoma (HCC) are made based on prognostic assessments, using clinical staging systems based on small numbers of empirically selected variables that insufficiently account for differences in biological characteristics of individual patients' disease. APPROACH AND RESULTS We propose an approach for constructing risk scores from circulating biomarkers that produce a global biological characterization of individual patient's disease. Plasma samples were collected prospectively from 767 patients with HCC and 200 controls, and 317 proteins were quantified in a Clinical Laboratory Improvement Amendments-certified biomarker testing laboratory. We constructed a circulating biomarker aberration score for each patient, a score between 0 and 1 that measures the degree of aberration of his or her biomarker panel relative to normal, which we call HepatoScore. We used log-rank tests to assess its ability to substratify patients within existing staging systems/prognostic factors. To enhance clinical application, we constructed a single-sample score, HepatoScore-14, which requires only a subset of 14 representative proteins encompassing the global biological effects. Patients with HCC were split into three distinct groups (low, medium, and high HepatoScore) with vastly different prognoses (medial overall survival 38.2/18.3/7.1 months; P < 0.0001). Furthermore, HepatoScore accurately substratified patients within levels of existing prognostic factors and staging systems (P < 0.0001 for nearly all), providing substantial and sometimes dramatic refinement of expected patient outcomes with strong therapeutic implications. These results were recapitulated by HepatoScore-14, rigorously validated in repeated training/test splits, concordant across Myriad RBM (Austin, TX) and enzyme-linked immunosorbent assay kits, and established as an independent prognostic factor. CONCLUSIONS HepatoScore-14 augments existing HCC staging systems, dramatically refining patient prognostic assessments and therapeutic decision making and enrollment in clinical trials. The underlying strategy provides a global biological characterization of disease, and can be applied broadly to other disease settings and biological media.
Collapse
Affiliation(s)
- Jeffrey S Morris
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Manal M Hassan
- Department of Epidemiology, the University of Texas MD Anderson Cancer Center, Houston, TX
| | | | - Zeya Wang
- Department of Statistics, Rice University, Houston, TX
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Lianchun Xiao
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Asif Rashid
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Abedul Haque
- Department of Hematopathology, the University of Texas MD Anderson Cancer Center, Houston, TX
| | - Reham Abdel-Wahab
- Department of Gastrointestinal Medical Oncology, the University of Texas MD Anderson Cancer Center, Houston, TX
| | - Yehia I Mohamed
- Department of Gastrointestinal Medical Oncology, the University of Texas MD Anderson Cancer Center, Houston, TX
| | | | - Robert A Wolff
- Department of Gastrointestinal Medical Oncology, the University of Texas MD Anderson Cancer Center, Houston, TX
| | - Bhawana George
- Department of Hematopathology, the University of Texas MD Anderson Cancer Center, Houston, TX
| | - Liang Li
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Genevera Allen
- Department of Statistics, Rice University, Houston, TX
- Department of Computer Science, Rice University, Houston and Jan and Dan Duncan Neurological Institute, Baylor College of Medicine, Houston, TX
| | | | - Donghui Li
- Department of Gastrointestinal Medical Oncology, the University of Texas MD Anderson Cancer Center, Houston, TX
| | - Wenyi Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Kanwal Raghav
- Department of Gastrointestinal Medical Oncology, the University of Texas MD Anderson Cancer Center, Houston, TX
| | - James Yao
- Department of Gastrointestinal Medical Oncology, the University of Texas MD Anderson Cancer Center, Houston, TX
| | - Hesham M Amin
- Department of Hematopathology, the University of Texas MD Anderson Cancer Center, Houston, TX
| | - Ahmed Omar Kaseb
- Department of Gastrointestinal Medical Oncology, the University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
43
|
Comparison between galectin-3 and YKL-40 levels for the assessment of liver fibrosis in cirrhotic patients. Arab J Gastroenterol 2021; 22:187-192. [PMID: 34088622 DOI: 10.1016/j.ajg.2021.03.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 02/22/2021] [Accepted: 03/29/2021] [Indexed: 12/18/2022]
Abstract
BACKGROUND AND STUDY AIMS The circulatory levels of Galectin-3 and YKL-40 are considered as candidate biomarkers for the noninvasive assessment of liver fibrosis. This study aimed to evaluate the plasma protein profiles of Galectin-3 and YKL-40 in patients with cirrhosis (with and without hepatocellular carcinoma [HCC]) who underwent deceased-donor liver transplantation (LT), before and after surgery. PATIENTS AND METHODS The plasma levels of Galectin-3 and YKL-40 were assessed in 46 subjects, including 24 liver graft recipients (before, 1 day after, and 1 month after LT) and 22 healthy controls using enzyme-linked immunosorbent assays. RESULTS The levels of Galectin-3 and YKL-40 in the LT recipients before the transplant were significantly higher than those in the healthy controls (p < 0.001 and p < 0.01, respectively). YKL-40 levels returned to normal within 1 day after LT, whereas those of Galectin-3 decreased 1 day after LT and returned to normal levels after 1 month. The levels of both proteins did not differ between patients with and without HCC. Unlike YKL-40, the pre-transplant levels of Galectin-3 were directly correlated to that of aspartate aminotransferase (AST; r = 0.473, p = 0.01), alanine aminotransferase (r = 0.395, p = 0.04), total bilirubin (r = 0.545, p = 0.003), and lactate dehydrogenase (r = 0.452, p = 0.02) and to the AST to platelet ratio index (APRI; r = 0.411, p = 0.03) and Child-Pugh score (r = 0.601, p < 0.001). Galectin-3 levels increased significantly according to the severity of cirrhosis (25.9 ± 2.7; 57.4 ± 29.6; and 81 ± 27 ng/mL in Class A, B, and C cirrhosis, respectively), whereas those of YKL-40 tended to be higher in the Class C patients compared to the Class A patients (8.9 ± 2.6 vs. 7.4 ± 0.8 ng/mL). CONCLUSION Circulating levels of Galectin-3 could be an indicator of liver damage and inflammation that are correlated with fibrosis.
Collapse
|
44
|
Chitinase-Like Protein Ym2 (Chil4) Regulates Regeneration of the Olfactory Epithelium via Interaction with Inflammation. J Neurosci 2021; 41:5620-5637. [PMID: 34016714 DOI: 10.1523/jneurosci.1601-20.2021] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 04/14/2021] [Accepted: 05/06/2021] [Indexed: 11/21/2022] Open
Abstract
The adult olfactory epithelium (OE) regenerates sensory neurons and nonsensory supporting cells from resident stem cells after injury. How supporting cells contribute to OE regeneration remains largely unknown. In this study, we elucidated a novel role of Ym2 (also known as Chil4 or Chi3l4), a chitinase-like protein expressed in supporting cells, in regulating regeneration of the injured OE in vivo in both male and female mice and cell proliferation/differentiation in OE colonies in vitro We found that Ym2 expression was enhanced in supporting cells after OE injury. Genetic knockdown of Ym2 in supporting cells attenuated recovery of the injured OE, while Ym2 overexpression by lentiviral infection accelerated OE regeneration. Similarly, Ym2 bidirectionally regulated cell proliferation and differentiation in OE colonies. Furthermore, anti-inflammatory treatment reduced Ym2 expression and delayed OE regeneration in vivo and cell proliferation/differentiation in vitro, which were counteracted by Ym2 overexpression. Collectively, this study revealed a novel role of Ym2 in OE regeneration and cell proliferation/differentiation of OE colonies via interaction with inflammatory responses, providing new clues to the function of supporting cells in these processes.SIGNIFICANCE STATEMENT The mammalian olfactory epithelium (OE) is a unique neural tissue that regenerates sensory neurons and nonsensory supporting cells throughout life and postinjury. How supporting cells contribute to this process is not entirely understood. Here we report that OE injury causes upregulation of a chitinase-like protein, Ym2, in supporting cells, which facilitates OE regeneration. Moreover, anti-inflammatory treatment reduces Ym2 expression and delays OE regeneration, which are counteracted by Ym2 overexpression. This study reveals an important role of supporting cells in OE regeneration and provides a critical link between Ym2 and inflammation in this process.
Collapse
|
45
|
Luo Y, Brigham D, Bednarek J, Torres R, Wang D, Ahmad S, Mack CL. Unique Cholangiocyte-Targeted IgM Autoantibodies Correlate With Poor Outcome in Biliary Atresia. Hepatology 2021; 73:1855-1867. [PMID: 32767570 PMCID: PMC7867668 DOI: 10.1002/hep.31504] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 06/27/2020] [Accepted: 07/12/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND AIMS The etiology of biliary atresia (BA) is not known and is likely multifactorial, including a genetic predisposition, a viral or environmental trigger, an aberrant autoimmune response targeting cholangiocytes, and unique susceptibilities of the neonatal bile ducts to injury. Damaged cholangiocytes may express neo self-antigens and elicit autoreactive T-cell-mediated inflammation and B-cell production of autoantibodies. The aim of this study was to discover autoantibodies in BA that correlated with outcomes. APPROACH AND RESULTS An autoantigen microarray encompassing approximately 9,500 autoantigens was used to screen for serum immunoglobulin M (IgM) and immunoglobulin G (IgG) autoantibodies in patients with BA or other liver disease controls. Validation of candidate autoantibodies by enzyme-linked immunosorbent assay on a second cohort of subjects (6-12 months following Kasai portoenterostomy) and correlations of autoantibodies with outcomes were performed (serum bilirubin levels and need for liver transplant in first 2 years of life). Mean anti-chitinase 3-like 1 (CHI3L1), anti-delta-like ligand (DLL-4), and antisurfactant protein D (SFTPD) IgM autoantibodies in BA were significantly higher compared with controls, and IgM autoantibody levels positively correlated with worse outcomes. Immunofluorescence revealed cholangiocyte-predominant expression of CHI3L1, DLL-4, and SFTPD. The humoral autoantibody response was associated with C3d complement activation and T-cell autoimmunity, based on detection of cholangiocyte-predominant C3d co-staining and peripheral blood autoreactive T cells specific to CHI3L1, DLL-4 and SFTPD, respectively. CONCLUSIONS BA is associated with cholangiocyte-predominant IgM autoantibodies in the first year after Kasai portoenterostomy. Anti-CHI3L1, anti-DLL-4, and anti-SFTPD IgM autoantibody correlations with worse outcomes and the detection of C3d on cholangioctyes and antigen-specific autoreactive T cells suggest that autoimmunity plays a role in the ongoing bile duct injury and progression of disease.
Collapse
Affiliation(s)
- Yuhuan Luo
- University of Colorado School of Medicine
| | | | - Joseph Bednarek
- University of Colorado School of Medicine and University of Utah
| | | | - Dong Wang
- University of Colorado School of Medicine
| | - Sara Ahmad
- University of Colorado School of Medicine
| | - Cara L. Mack
- University of Colorado School of Medicine, Children’s Hospital Colorado
| | | |
Collapse
|
46
|
Chitinase 3-like 1 is a profibrogenic factor overexpressed in the aging liver and in patients with liver cirrhosis. Proc Natl Acad Sci U S A 2021; 118:2019633118. [PMID: 33888584 DOI: 10.1073/pnas.2019633118] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Older age at the time of infection with hepatitis viruses is associated with an increased risk of liver fibrosis progression. We hypothesized that the pace of fibrosis progression may reflect changes in gene expression within the aging liver. We compared gene expression in liver specimens from 54 adult donors without evidence of fibrosis, including 36 over 40 y old and 18 between 18 and 40 y old. Chitinase 3-like 1 (CHI3L1), which encodes chitinase-like protein YKL-40/CHI3L1, was identified as the gene with the greatest age-dependent increase in expression in liver tissue. We investigated the cellular source of CHI3L1 in the liver and its function using liver tissue specimens and in vitro models. CHI3L1 expression was significantly higher in livers of patients with cirrhosis of diverse etiologies compared with controls represented by patients who underwent liver resection for hemangioma. The highest intrahepatic CHI3L1 expression was observed in cirrhosis due to hepatitis D virus, followed by hepatitis C virus, hepatitis B virus, and alcohol-induced cirrhosis. In situ hybridization of CHI3L1 messenger RNA (mRNA) identified hepatocytes as the major producers of CHI3L1 in normal liver and in cirrhotic tissue, wherein hepatocytes adjacent to fibrous septa showed higher CHI3L1 expression than did those in more distal areas. In vitro studies showed that recombinant CHI3L1 promotes proliferation and activation of primary human hepatic stellate cells (HSCs), the major drivers of liver fibrosis. These findings collectively demonstrate that CHI3L1 promotes liver fibrogenesis through a direct effect on HSCs and support a role for CHI3L1 in the increased susceptibility of aging livers to fibrosis progression.
Collapse
|
47
|
Das A, Kamrul-Hasan ABM, Kabir MR, Das S, Zaki KMJ, Al Mahtab M. Evaluation of Chitinase 3-like 1 (CHI3L1) as a noninvasive biomarker of hepatic fibrosis in patients with Hepatitis B virus-related compensated chronic liver disease. J Family Med Prim Care 2021; 10:1694-1698. [PMID: 34123914 PMCID: PMC8144771 DOI: 10.4103/jfmpc.jfmpc_1922_20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 12/24/2020] [Accepted: 02/02/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Liver biopsy is the gold-standard method for diagnosing and staging liver fibrosis, but the procedure is invasive, not available in the primary health care facilities, and not free from complications. Noninvasive serum biomarkers of hepatic fibrosis are the current research focus. OBJECTIVES To assess the correlation between serum Chitinase 3-like 1 (CHI3L1) levels and histological severity in patients with Hepatitis B Virus (HBV)-related compensated chronic liver disease (CLD). MATERIAL AND METHODS This cross-sectional study evaluated 50 treatment-naïve patients with chronic hepatitis B with compensated CLD. Liver biopsy was done, and hepatic fibrosis was categorized using the METAVIR scoring system; we divided the study subjects into three groups; group 1 included subjects with F0 and F1, group 2 having F2 group 3 having F3 and F4. Serum CHI3L1 was measured in all by immunoassay. RESULT Among 50 patients, only one had METAVIR score F0, seven had F1, 33 had F2, nine had F3, and none had METAVIR score F4. The median value of CHI3L1 was 460.8 (IQR 340.1-570.3) in all study subjects; 359.5 (IQR 272.8-526.9) in group 1, 450.0 (IQR 307.75-5332.0) in group 2, and 1355.5 (IQR 530.75-1580.5) in the group 3. The difference in median CHI3L1 across the groups was statistically significant. Serum aspartate aminotransferase (AST) and the AST to Platelet Ratio Index (APRI) score had significant positive correlations with CHI3L1 levels. CHI3L1 also had significant positive correlations with METAVIR scores. CONCLUSION This study found a positive correlation between serum CHI3L1 level and hepatic histological severity in patients with HBV-related compensated CLD. Further larger-scale research is needed to establish the fact.
Collapse
Affiliation(s)
- Amit Das
- Department of Medicine, Sylhet MAG Osmani Medical College Hospital, Sylhet, Bangladesh
| | - ABM Kamrul-Hasan
- Department of Endocrinology, Mymensingh Medical College, Mymensingh, Bangladesh
| | - Mohammed Ruhul Kabir
- Department of Medicine, Sylhet MAG Osmani Medical College Hospital, Sylhet, Bangladesh
| | - Shantanu Das
- Department of Microbiology, Sylhet MAG Osmani Medical College Hospital, Sylhet, Bangladesh
| | - KMJ Zaki
- Department of Hepatology, Sylhet MAG Osmani Medical College, Sylhet, Bangladesh
| | - Mamun Al Mahtab
- Department of Hepatology, Bangabandhu Sheikh Mujib Medical University, Dhaka, Bangladesh
| |
Collapse
|
48
|
Geier A, Tiniakos D, Denk H, Trauner M. From the origin of NASH to the future of metabolic fatty liver disease. Gut 2021; 70:gutjnl-2020-323202. [PMID: 33632710 PMCID: PMC8292567 DOI: 10.1136/gutjnl-2020-323202] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 01/13/2021] [Accepted: 02/05/2021] [Indexed: 02/06/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) has become the most common cause of chronic liver disease worldwide. Understanding the pathological and molecular hallmarks from its first description to definitions of disease entities, classifications and molecular phenotypes is crucial for both appropriate clinical management and research in this complex disease. We provide an overview through almost two hundred years of clinical research from the beginnings as a nebulous disease entity of unknown origin in the 19th century to the most frequent and vigorously investigated liver disease today. The clinical discrimination between alcohol-related liver disease and NAFLD was uncommon until the 1950s and likely contributed to the late acceptance of NAFLD as a metabolic disease entity for long time. Although the term 'fatty liver hepatitis' first appeared in 1962, it was in 1980 that the term 'non-alcoholic steatohepatitis' (NASH) was coined and the histopathological hallmarks that are still valid today were defined. The 2005 NASH Clinical Research Network scoring was the first globally accepted grading and staging system for the full spectrum of NAFLD and is still used to semiquantify main histological features. In 2021, liver biopsy remains the only diagnostic procedure that can reliably assess the presence of NASH and early fibrosis but increasing efforts are made towards non-invasive testing and molecular classification of NAFLD subtypes.
Collapse
Affiliation(s)
- Andreas Geier
- Division of Hepatology, Department of Medicine II, University Hospital Würzburg, Würzburg, Bayern, Germany
| | - Dina Tiniakos
- Department of Pathology, Aretaieion Hospital, Medical School, National & Kapodistrian University of Athens, Athens, Greece & Translational & Clinical Research Institute; Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Helmut Denk
- Institute of Pathology, Medical University of Graz, Graz, Steiermark, Austria
| | - Michael Trauner
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Wien, Wien, Austria
| |
Collapse
|
49
|
Zhang S, Sousa A, Lin M, Iwano A, Jain R, Ma B, Lee CM, Park JW, Kamle S, Carlson R, Lee GG, Elias JA, Wands JR. Role of Chitinase 3-Like 1 Protein in the Pathogenesis of Hepatic Insulin Resistance in Nonalcoholic Fatty Liver Disease. Cells 2021; 10:201. [PMID: 33498326 PMCID: PMC7909438 DOI: 10.3390/cells10020201] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/15/2021] [Accepted: 01/17/2021] [Indexed: 02/08/2023] Open
Abstract
A recently discovered human glycoprotein, chitinase 3-like 1 (Chi3L1), may play a role in inflammation, tissue remodeling, and visceral fat accumulation. We hypothesize that Chi3L1 gene expression is important in the development of hepatic insulin resistance characterized by the generation of pAKT, pGSK, and pERK in wild type and Chi3L1 knockout (KO) murine liver following insulin stimulation. The Chi3L1 gene and protein expression was evaluated by Real Time PCR and ELISA; lipid accumulation in hepatocytes was also assessed. To alter Chi3L1 function, three different anti-Chi3L1 monoclonal antibodies (mAbs) were administered in vivo and effects on the insulin signaling cascade and hepatic lipid deposition were determined. Transmission of the hepatic insulin signal was substantially improved following KO of the CHi3L1 gene and there was reduced lipid deposition produced by a HFD. The HFD-fed mice exhibited increased Chi3L1 expression in the liver and there was impaired insulin signal transduction. All three anti-Chi3L1 mAbs partially restored hepatic insulin sensitivity which was associated with reduced lipid accumulation in hepatocytes as well. A KO of the Chi3L1 gene reduced lipid accumulation and improved insulin signaling. Therefore, Chi3L1 gene upregulation may be an important factor in the generation of NAFLD/NASH phenotype.
Collapse
Affiliation(s)
- Songhua Zhang
- Liver Research Center, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI 02903, USA; (S.Z.); (A.S.); (M.L.); (A.I.); (R.J.); (R.C.)
| | - Aryanna Sousa
- Liver Research Center, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI 02903, USA; (S.Z.); (A.S.); (M.L.); (A.I.); (R.J.); (R.C.)
| | - Mengqui Lin
- Liver Research Center, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI 02903, USA; (S.Z.); (A.S.); (M.L.); (A.I.); (R.J.); (R.C.)
| | - Ayako Iwano
- Liver Research Center, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI 02903, USA; (S.Z.); (A.S.); (M.L.); (A.I.); (R.J.); (R.C.)
| | - Rishubh Jain
- Liver Research Center, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI 02903, USA; (S.Z.); (A.S.); (M.L.); (A.I.); (R.J.); (R.C.)
| | - Bing Ma
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912, USA; (B.M.); (C.M.L.); (J.W.P.); (S.K.); (G.G.L.); (J.A.E.)
| | - Chang Min Lee
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912, USA; (B.M.); (C.M.L.); (J.W.P.); (S.K.); (G.G.L.); (J.A.E.)
| | - Jin Wook Park
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912, USA; (B.M.); (C.M.L.); (J.W.P.); (S.K.); (G.G.L.); (J.A.E.)
| | - Suchitra Kamle
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912, USA; (B.M.); (C.M.L.); (J.W.P.); (S.K.); (G.G.L.); (J.A.E.)
| | - Rolf Carlson
- Liver Research Center, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI 02903, USA; (S.Z.); (A.S.); (M.L.); (A.I.); (R.J.); (R.C.)
| | - Ghun Geun Lee
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912, USA; (B.M.); (C.M.L.); (J.W.P.); (S.K.); (G.G.L.); (J.A.E.)
| | - Jack A. Elias
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912, USA; (B.M.); (C.M.L.); (J.W.P.); (S.K.); (G.G.L.); (J.A.E.)
- Department of Medicine, Warren Alpert Medical School of Brown University, Providence, RI 02912, USA
| | - Jack R. Wands
- Liver Research Center, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI 02903, USA; (S.Z.); (A.S.); (M.L.); (A.I.); (R.J.); (R.C.)
| |
Collapse
|
50
|
Yoshio S, Kanto T. Macrophages as a source of fibrosis biomarkers for non-alcoholic fatty liver disease. Immunol Med 2021; 44:175-186. [PMID: 33444517 DOI: 10.1080/25785826.2020.1868664] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Non-alcoholic fatty liver disease/steatohepatitis (NAFLD/NASH) are becoming major liver diseases worldwide. Liver fibrosis and cirrhosis are among the most significant risk factors of hepatocellular carcinoma (HCC) and associated with the long-term prognosis of NAFLD patients. To stratify the risk of HCC in NAFLD patients clinically, the discovery of non-invasive fibrosis markers is needed urgently. Liver macrophages play critical roles in the regulation of inflammation and fibrosis by interacting with hepatic stellate cells (HSCs) and other immune cells. Thus, it is rational to explore feasible biomarkers for liver fibrosis by focusing on macrophage-related factors. We examined serum factors comprehensively in multiple cohorts of NAFLD/NASH patients to determine whether they were correlated with the biopsy-proven fibrosis stage. We found that the serum levels of interleukin (IL)-34, YKL-40 and soluble Siglec-7 (sSiglec7) were closely associated with liver fibrosis and served as diagnostic biomarkers in patients with NAFLD/NASH. In the NAFLD liver, IL-34 was produced by activated fibroblasts, and YKL-40 and sSiglec-7 were secreted from macrophages. The sensitivity and specificity of these markers to detect advanced liver fibrosis varied, supporting the notion that the combination of these markers with other modalities is an option for clinical application.
Collapse
Affiliation(s)
- Sachiyo Yoshio
- The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Ichikawa, Japan
| | - Tatsuya Kanto
- The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Ichikawa, Japan
| |
Collapse
|