1
|
Van der Hoek KH, Jankovic-Karasoulos T, McCullough D, Coldbeck-Shackley RC, Eyre NS, Roberts CT, Beard MR. The first trimester human placenta responds to Zika virus infection inducing an interferon (IFN) and antiviral interferon stimulated gene (ISG) response. Virol J 2025; 22:108. [PMID: 40253335 PMCID: PMC12008946 DOI: 10.1186/s12985-025-02729-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Accepted: 04/07/2025] [Indexed: 04/21/2025] Open
Abstract
BACKGROUND Zika virus (ZIKV) is a positive-strand RNA virus of the Flaviviridae family. Maternal ZIKV infection during pregnancy can spread to the placenta and fetus causing severe neurological defects and infants born with microcephaly. Here, we investigated ZIKV infection and the cellular innate antiviral immune response in first trimester human placental explant cultures and isolated primary villus cytotrophoblasts (CTBs). METHODS Placentas were obtained with informed consent from women undergoing elective pregnancy termination and either cultured as placental explants or used to isolate primary CTBs. Explants and CTBs were both infected with ZIKV (PRVABC59), and samples evaluated for infection by qRT-PCR, viral plaque and ELISA assays, and immunohistochemical or immunocytochemical staining. RESULTS We demonstrate robust infection and production of ZIKV in placental explant and CTB cultures. Both displayed delayed upregulation of interferons (IFN), most notably IFNβ and IFNλ2/3, and a panel of interferon stimulated genes (ISG) (IFI6, IFIT1, IFIT2, IFITM1, ISG15, MX1, RSAD). Stimulation of explants and CTBs with the dsRNA mimic poly(I: C), caused immediate IFN and ISG upregulation, demonstrating the first trimester placenta is innate immune competent. This suggests that either ZIKV blocks the early innate response, or the placental response is inherently hindered. CONCLUSION Together these data show that first trimester placenta is susceptible to ZIKV infection which induces a delayed type III IFN antiviral response. This delay likely creates an environment favourable to ZIKV replication and dissemination across the early gestation placenta to fetal tissue, causing pathologies associated with congenital ZIKV syndrome.
Collapse
Affiliation(s)
- Kylie H Van der Hoek
- Research Centre for Infectious Diseases, The University of Adelaide, Adelaide, SA, 5005, Australia.
- School of Biological Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia.
- Department of Molecular and Biomedical Science and Research Centre for Infectious Diseases, University of Adelaide, Adelaide, SA, 5005, Australia.
| | - Tanja Jankovic-Karasoulos
- University of Adelaide, The Robinson Research Institute, Adelaide, SA, 5005, Australia
- Flinders University, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Adelaide, SA, 5005, Australia
| | - Dylan McCullough
- University of Adelaide, The Robinson Research Institute, Adelaide, SA, 5005, Australia
- Flinders University, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Adelaide, SA, 5005, Australia
| | - Rosa C Coldbeck-Shackley
- Research Centre for Infectious Diseases, The University of Adelaide, Adelaide, SA, 5005, Australia
- School of Biological Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Nicholas S Eyre
- Flinders University, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Adelaide, SA, 5005, Australia
| | - Claire T Roberts
- University of Adelaide, The Robinson Research Institute, Adelaide, SA, 5005, Australia
- Flinders University, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Adelaide, SA, 5005, Australia
| | - Michael R Beard
- Research Centre for Infectious Diseases, The University of Adelaide, Adelaide, SA, 5005, Australia
- School of Biological Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
| |
Collapse
|
2
|
Imagawa T, Tanaka K, Ito M, Matsuda M, Suzuki T, Ando T, Yaguchi C, Miyamoto K, Takabayashi S, Suzuki R, Takasaki T, Itoh H, Kosugi I, Suzuki T. Pathological characterization of female reproductive organs prior to miscarriage induced by Zika virus infection in the pregnant common marmoset. Microbiol Spectr 2025; 13:e0228224. [PMID: 39998269 PMCID: PMC11960083 DOI: 10.1128/spectrum.02282-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 01/27/2025] [Indexed: 02/26/2025] Open
Abstract
While Zika virus (ZIKV) infection in pregnant women is known to increase the risk of miscarriage and stillbirth, the mechanism by which ZIKV infection leads to the inability to continue a pregnancy is not clear. In our common marmoset models of ZIKV infection in pregnant individuals, miscarriage was observed in dams infected in the first or second trimester, and preterm delivery was observed in a dam infected in the third trimester. Serum progesterone levels were significantly lower prior to miscarriage or preterm delivery in the infected marmosets. To elucidate the pathology of the placental region just before the onset of ZIKV-induced miscarriage, we newly prepared an infected marmoset in the first trimester of pregnancy and euthanized it when the serum progesterone concentration was markedly reduced. Pathological analysis revealed significant degeneration in cells at the maternal-fetal interface, presumably trophoblasts. Cleaved-caspase was widely observed in the endometrial to placental region, and TNFα at 200 pg/mL was detected in the amniotic fluid, suggesting that apoptosis may progress in the endometrium and placenta, leading to decreased trophoblast function and miscarriage. ZIKV NS1 protein was found sporadically in the cellular degeneration area and widely in the basal layer of the endometrium. Furthermore, the viral protein was frequently detected in the follicles and corpus luteum of the ovary. The developed ZIKV infection model in pregnant marmosets would be useful not only to better understand the mechanism of ZIKV-induced miscarriage but also to analyze the effects of the viral infection on female reproductive tissues. IMPORTANCE Although several viruses, including Zika virus (ZIKV), are known to increase the risk of miscarriage upon viral infection, the mechanism by which miscarriage is induced by viral infection is largely unknown. This is partly due to the difficulty of pathological analysis of maternal tissues in the period following viral infection and prior to miscarriage. In this study, we predicted the occurrence of miscarriage by monitoring serum progesterone levels and performed pathological analysis of peri-placental tissues at a time point assumed to be just before miscarriage. This is the first report of trophoblast degeneration prior to miscarriage, suggesting that the experimental method used here is useful for analyzing the pathogenesis of virus infection-related miscarriage. Further immunostaining revealed that ZIKV NS1 was distributed not only in the uterus but also in the ovaries, with particularly pronounced staining of oocytes. Whether ZIKV infection affects female reproductive function should be clarified in the future.
Collapse
Affiliation(s)
- Toshifumi Imagawa
- Department of Medical Virology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
- Department of Microbiology and Immunology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kazuo Tanaka
- Laboratory Animal Facilities and Services, Preeminent Medical Photonics Education and Research Center, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Masahiko Ito
- Department of Microbiology and Immunology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Mami Matsuda
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tadaki Suzuki
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tsuyoshi Ando
- Research and Development Division, FUJIREBIO INC., Tokyo, Japan
| | - Chizuko Yaguchi
- Department of Obstetrics and Gynecology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | | | - Shuji Takabayashi
- Laboratory Animal Facilities and Services, Preeminent Medical Photonics Education and Research Center, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Ryosuke Suzuki
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tomohiko Takasaki
- Advanced Technology and Development Division, BML, INC., Kawagoe, Japan
| | - Hiroaki Itoh
- Department of Obstetrics and Gynecology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Isao Kosugi
- Department of Regenerative and Infectious Pathology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Tetsuro Suzuki
- Department of Microbiology and Immunology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
3
|
Li A, Coffey LL, Mohr EL, Raper J, Chahroudi A, Ausderau KK, Aliota MT, Friedrich TC, Mitzey AM, Koenig MR, Golos TG, Jaeger HK, Roberts VHJ, Lo JO, Smith JL, Hirsch AJ, Streblow DN, Newman CM, O'Connor DH, Lackritz EM, Van Rompay KKA, Adams Waldorf KM. Role of non-human primate models in accelerating research and developing countermeasures against Zika virus infection. THE LANCET. MICROBE 2025:101030. [PMID: 40024258 DOI: 10.1016/j.lanmic.2024.101030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 09/19/2024] [Accepted: 10/21/2024] [Indexed: 03/04/2025]
Abstract
Zika virus, a mosquito-transmitted orthoflavivirus, has become a pathogen of global health concern ever since the virus caused an epidemic in Brazil in 2015 associated with approximately 700 000 laboratory-confirmed cases of congenital microcephaly. The subsequent spread of the epidemic in 2016 resulted in a wide spectrum of congenital neurological, ophthalmological, and developmental abnormalities across the Americas, Africa, and Asia. In this context, non-human primate models have become essential tools for Zika virus research to understand the pathogenesis of congenital brain injury and perinatal complications and for developing and testing medical countermeasures such as vaccines, diagnostics, and therapeutics. Fetal brain injury has been observed across various non-human primate species and is influenced by factors such as the Zika virus strain, gestational age at inoculation, and inoculation dose and route. Miscarriages are also seen as common outcomes of first trimester Zika virus infections. This Series paper reviews the diverse non-human primate models currently used for Zika virus research to mitigate the public health effects of future Zika virus epidemics.
Collapse
Affiliation(s)
- Amanda Li
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, USA
| | - Lark L Coffey
- Department of Pathology, Microbiology, and Immunology, University of California, Davis, Davis, CA, USA
| | - Emma L Mohr
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI, USA; Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA
| | - Jessica Raper
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA; Emory National Primate Research Center, Atlanta, GA, USA
| | - Ann Chahroudi
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA; Emory National Primate Research Center, Atlanta, GA, USA
| | - Karla K Ausderau
- Department of Kinesiology, University of Wisconsin-Madison, Madison, WI, USA; Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Matthew T Aliota
- Department of Veterinary and Biomedical Sciences, University of Minnesota Twin Cities, St Paul, MN, USA
| | - Thomas C Friedrich
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA; Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Ann M Mitzey
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Michelle R Koenig
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Thaddeus G Golos
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, USA; Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Hannah K Jaeger
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, OR, USA
| | - Victoria H J Roberts
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Beaverton, OR, USA
| | - Jamie O Lo
- Department of Obstetrics and Gynecology, Oregon Health and Science University, Portland, OR, USA; Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Beaverton, OR, USA
| | - Jessica L Smith
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, OR, USA
| | - Alec J Hirsch
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, OR, USA
| | - Daniel N Streblow
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, OR, USA
| | - Christina M Newman
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - David H O'Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA; Wisconsin National Primate Research Center, Madison, WI, USA
| | - Eve M Lackritz
- Center for Infectious Disease Research and Policy (CIDRAP), University of Minnesota, Minneapolis, MN, USA
| | - Koen K A Van Rompay
- Department of Pathology, Microbiology, and Immunology, University of California, Davis, Davis, CA, USA; California National Primate Research Center, Davis, CA, USA
| | - Kristina M Adams Waldorf
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, USA; Department of Global Health, University of Washington, Seattle, WA, USA; Washington National Primate Research Center, Seattle, WA, USA.
| |
Collapse
|
4
|
Michita RT, Tran LB, Bark SJ, Kumar D, Toner SA, Jose J, Mysorekar IU, Narayanan A. Zika virus NS1 drives tunneling nanotube formation for mitochondrial transfer and stealth transmission in trophoblasts. Nat Commun 2025; 16:1803. [PMID: 39979240 PMCID: PMC11842757 DOI: 10.1038/s41467-025-56927-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/05/2025] [Indexed: 02/22/2025] Open
Abstract
Zika virus (ZIKV) is unique among orthoflaviviruses in its vertical transmission capacity in humans, yet the underlying mechanisms remain incompletely understood. Here, we show that ZIKV induces tunneling nanotubes (TNTs) in placental trophoblasts which facilitate transfer of viral particles, proteins, mitochondria, and RNA to neighboring uninfected cells. TNT formation is driven exclusively via ZIKV non-structural protein 1 (NS1). Specifically, the N-terminal 1-50 amino acids of membrane-bound ZIKV NS1 are necessary for triggering TNT formation in host cells. Trophoblasts infected with TNT-deficient ZIKVΔTNT mutant virus elicited a robust antiviral IFN-λ 1/2/3 response relative to WT ZIKV, suggesting TNT-mediated trafficking allows ZIKV cell-to-cell transmission camouflaged from host defenses. Using affinity purification-mass spectrometry of cells expressing wild-type NS1 or non-TNT forming NS1, we found mitochondrial proteins are dominant NS1-interacting partners. We demonstrate that ZIKV infection or NS1 expression induces elevated mitochondria levels in trophoblasts and that mitochondria are siphoned via TNTs from healthy to ZIKV-infected cells. Together our findings identify a stealth mechanism that ZIKV employs for intercellular spread among placental trophoblasts, evasion of antiviral interferon response, and the hijacking of mitochondria to augment its propagation and survival and offers a basis for novel therapeutic developments targeting these interactions to limit ZIKV dissemination.
Collapse
Affiliation(s)
- Rafael T Michita
- Department of Medicine, Section of Infectious Diseases, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Long B Tran
- Department of Medicine, Section of Infectious Diseases, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Steven J Bark
- Department of Medicine, Section of Infectious Diseases, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Deepak Kumar
- Department of Medicine, Section of Infectious Diseases, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Shay A Toner
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, PA, 16802, USA
| | - Joyce Jose
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, PA, 16802, USA
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, PA, 16802, USA
| | - Indira U Mysorekar
- Department of Medicine, Section of Infectious Diseases, Baylor College of Medicine, Houston, TX, 77030, USA.
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA.
- Huffington Centre on Aging, Baylor College of Medicine, Houston, TX, 77030, USA.
| | - Anoop Narayanan
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, PA, 16802, USA.
| |
Collapse
|
5
|
Cong H, Wang J, Du N, Song L, Wang R, Yang Y, Lei R, Tang TS, Liu CM, Zhu S, Han X. ITGB4/CD104 mediates zika virus attachment and infection. Nat Commun 2024; 15:10729. [PMID: 39737945 PMCID: PMC11685869 DOI: 10.1038/s41467-024-54479-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 11/13/2024] [Indexed: 01/01/2025] Open
Abstract
Zika virus (ZIKV) infection can result in a birth defect of the brain called microcephaly and other severe fetal brain defects. ZIKV enters the susceptible host cells by endocytosis, which is mediated by the interaction of the envelope (E) glycoprotein with cellular surface receptor molecules. However, the cellular factors that used by the ZIKV to gain access to host cells remains elusive. Here, we report that the extracellular domain of integrin beta 4 (ITGB4) is an entry factor of ZIKV. ITGB4 mediates ZIKV infection by directly interacting with the E glycoprotein of ZIKV, and ITGB4 knockout hampers the binding and replication of ZIKV to host cells. A functional monoclonal antibody against ITGB4 or the soluble forms of ITGB4 could decrease the binding and infection of ZIKV to permissive cell lines. Importantly, the ITGB4 antibody blocks the infection of ZIKV to mouse placenta, thus protecting the fetuses from ZIKV infection. Together, our study has demonstrated that ZIKV infection involves ITGB4 dependent binding.
Collapse
Affiliation(s)
- Haolong Cong
- Chinese Academy of Inspection and Quarantine, Beijing, P. R. China
- Center for Molecular Virology, CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, P. R. China
| | - Jiuqiang Wang
- Peninsular Cancer Research Center, Binzhou Medical University, Yantai, Shandong, P. R. China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, P. R. China
| | - Ning Du
- Center for Molecular Virology, CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, P. R. China
- Sinovac Life Sciences Co., Ltd., Beijing, P. R. China
| | - Lei Song
- Center for Molecular Virology, CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, P. R. China
| | - Ruigang Wang
- College of Life Sciences, Inner Mongolia Agriculture University, Hohhot, Inner Mongolia, P. R. China
| | - Yang Yang
- Center for Molecular Virology, CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, P. R. China
| | - Rong Lei
- Chinese Academy of Inspection and Quarantine, Beijing, P. R. China
| | - Tie-Shan Tang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, P. R. China.
- University of Chinese Academy of Sciences, Beijing, P. R. China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, P. R. China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, P. R. China.
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, P. R. China.
| | - Chang-Mei Liu
- University of Chinese Academy of Sciences, Beijing, P. R. China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, P. R. China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, P. R. China.
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, P. R. China.
| | - Shuifang Zhu
- Chinese Academy of Inspection and Quarantine, Beijing, P. R. China.
| | - Xiaodong Han
- College of Life Sciences, Inner Mongolia Agriculture University, Hohhot, Inner Mongolia, P. R. China.
| |
Collapse
|
6
|
Wu Z, He Y, Wang T, Wang M, Cheng A, Chen S. DENV and ZIKV infection: Species specificity and broad cell tropism. Virology 2024; 600:110276. [PMID: 39467358 DOI: 10.1016/j.virol.2024.110276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/14/2024] [Accepted: 10/22/2024] [Indexed: 10/30/2024]
Abstract
Nearly one-third of countries worldwide have reported cases of Dengue virus (DENV) and Zika virus (ZIKV) infections, highlighting the significant threat these viruses pose to global public health. As members of the Flavivirus genus within the Flaviviridae family, DENV and ZIKV have demonstrated the ability to infect a wide range of cell lines from multiple species in vitro. However, the range of susceptible animal models is notably limited, and field studies indicate that their capacity to infect host organisms is highly restricted, with a very narrow range of target cells in vivo. The virus's ability to hijack host cellular machinery plays a crucial role in determining its cellular and species specificity. In this review, we examine how DENV and ZIKV exploit host cells to facilitate their replication, offering new insights that could inform the development of antiviral drugs and therapeutic targets.
Collapse
Affiliation(s)
- Zhen Wu
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Key Laboratory of Agricultural Bioinformatics of Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Yu He
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Key Laboratory of Agricultural Bioinformatics of Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Tao Wang
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Mingshu Wang
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Anchun Cheng
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Shun Chen
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Key Laboratory of Agricultural Bioinformatics of Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| |
Collapse
|
7
|
M R B, J A S, J R, B G SV, M A W, J A C, J R C. Application of mPEG-PCL-mPEG Micelles for Anti-Zika Ribavirin Delivery. J Med Virol 2024; 96:e29952. [PMID: 39530464 DOI: 10.1002/jmv.29952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 09/12/2024] [Accepted: 09/24/2024] [Indexed: 11/16/2024]
Abstract
Nanoparticles are rapidly becoming the method of choice for a number of nanomedicine applications, especially drug delivery. Many current nanoparticle models for drug delivery include a metal base with a drug conjugated to its surface. However, this raises concerns regarding toxicity since the conjugated drug and metal-based center of the nanoparticle are generally not biocompatible. A novel approach to solve this dilemma is the development of nanosized biocompatible polymer-based micellar nanoparticles (MNPs), created from methoxy poly(ethylene-glycol) poly(ɛ-caprolactone)-methoxy poly(ethylene glycol) (i.e., mPEG-PCL-mPEG) triblock polymers formed around an antiviral drug of choice, ribavirin. The goal is to create a drug carrier triblock nanoparticle system that is labile at a specific intercellular pH resulting in drug release, leading to the suppression of viral pathogens, and without undue toxicity to the cell. Through this approach we created a drug-loaded nanoparticle that dissociates when exposed to pH of 5.49 (endosomal pH), releasing ribavirin intercellularly, resulting in effective suppression of the mosquito-borne virus, Zika, in JEG-3 cells (gestational choriocarcinoma cells), in comparison to untreated and unencapsulated ribavirin controls as shown by plaque reduction assays and confirmation by RT-PCR. The level of suppression observed by ribavirin-loaded MNPs was achieved while requiring approximately 90% less ribavirin than in experiments utilizing unencapsulated ribavirin. The drug delivery system that is described here has shown significant suppression of Zika virus and suggests a role for this drug delivery system as an antiviral platform against additional viral pathogens.
Collapse
Affiliation(s)
- Blahove M R
- Department of Chemistry and Biochemistry, Georgia Southern University, Statesboro, Georgia, USA
| | - Saviskas J A
- Department of Chemistry and Biochemistry, Georgia Southern University, Statesboro, Georgia, USA
| | - Rodriguez J
- Department of Chemistry and Biochemistry, Georgia Southern University, Statesboro, Georgia, USA
| | - Santos-Villalobos B G
- Department of Chemistry and Biochemistry, Georgia Southern University, Statesboro, Georgia, USA
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Wallace M A
- Department of Chemistry and Biochemistry, Georgia Southern University, Statesboro, Georgia, USA
| | - Culmer J A
- Department of Chemistry and Biochemistry, Georgia Southern University, Statesboro, Georgia, USA
| | - Carter J R
- Department of Chemistry and Biochemistry, Georgia Southern University, Statesboro, Georgia, USA
| |
Collapse
|
8
|
Al Beloushi M, Saleh H, Ahmed B, Konje JC. Congenital and Perinatal Viral Infections: Consequences for the Mother and Fetus. Viruses 2024; 16:1698. [PMID: 39599813 PMCID: PMC11599085 DOI: 10.3390/v16111698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 10/13/2024] [Accepted: 10/26/2024] [Indexed: 11/29/2024] Open
Abstract
Viruses are the most common congenital infections in humans and an important cause of foetal malformations, neonatal morbidity, and mortality. The effects of these infections, which are transmitted in utero (transplacentally), during childbirth or in the puerperium depend on the timing of the infections. These vary from miscarriages (usually with infections in very early pregnancy), congenital malformations (when the infections occur during organogenesis) and morbidity (with infections occurring late in pregnancy, during childbirth or after delivery). The most common of these viruses are cytomegalovirus, hepatitis, herpes simplex type-2, parvovirus B19, rubella, varicella zoster and zika viruses. There are currently very few efficacious antiviral agents licensed for use in pregnancy. For most of these infections, therefore, prevention is mainly by vaccination (where there is a vaccine). The administration of immunoglobulins to those exposed to the virus to offer passive immunity or appropriate measures to avoid being infected would be options to minimise the infections and their consequences. In this review, we discuss some of the congenital and perinatal infections and their consequences on both the mother and fetus and their management focusing mainly on prevention.
Collapse
Affiliation(s)
- Mariam Al Beloushi
- Women’s Wellness and Research Centre Hamad Medical Corporation, Doha P.O. Box 3050, Qatar; (M.A.B.); (H.S.)
- Department of Obstetrics and Gynaecology, Qatar University, Doha P.O. Box 2713, Qatar;
| | - Huda Saleh
- Women’s Wellness and Research Centre Hamad Medical Corporation, Doha P.O. Box 3050, Qatar; (M.A.B.); (H.S.)
- Department of Obstetrics and Gynaecology, Qatar University, Doha P.O. Box 2713, Qatar;
| | - Badreldeen Ahmed
- Department of Obstetrics and Gynaecology, Qatar University, Doha P.O. Box 2713, Qatar;
- Feto Maternal Centre, Al Markhiya Doha, Doha P.O. Box 34181, Qatar
- Department of Obstetrics and Gynaecology Weill Cornell Medicine, Doha P.O. Box 24144, Qatar
| | - Justin C. Konje
- Feto Maternal Centre, Al Markhiya Doha, Doha P.O. Box 34181, Qatar
- Department of Obstetrics and Gynaecology Weill Cornell Medicine, Doha P.O. Box 24144, Qatar
- Department of Health Sciences, University of Leicester, P.O. Box 7717, Leicester LE2 7LX, UK
| |
Collapse
|
9
|
Azamor T, Cunha DP, Nobre Pires KS, Lira Tanabe EL, Melgaço JG, Vieira da Silva AM, Ribeiro-Alves M, Calvo TL, Tubarão LN, da Silva J, Fernandes CB, Fonseca de Souza A, Torrentes de Carvalho A, Avvad-Portari E, da Cunha Guida L, Gomes L, Lopes Moreira ME, Dinis Ano Bom AP, Cristina da Costa Neves P, Missailidis S, Vasconcelos Z, Borbely AU, Moraes MO. Decidual production of interferon lambda in response to ZIKV persistence: Clinical evidence and in vitro modelling. Heliyon 2024; 10:e30613. [PMID: 38737240 PMCID: PMC11087979 DOI: 10.1016/j.heliyon.2024.e30613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/30/2024] [Accepted: 04/30/2024] [Indexed: 05/14/2024] Open
Abstract
Zika virus (ZIKV) infections during pregnancy can result in Congenital Zika Syndrome (CZS), a range of severe neurological outcomes in fetuses that primarily occur during early gestational stages possibly due to placental damage. Although some placentas can maintain ZIKV persistence for weeks or months after the initial infection and diagnosis, the impact of this viral persistence is still unknown. Here, we aimed to investigate the immunological repercussion of ZIKV persistence in term placentas. As such, term placentas from 64 pregnant women diagnosed with Zika in different gestational periods were analyzed by ZIKV RT-qPCR, examination of decidua and placental villous histopathology, and expression of inflammation-related genes and IFNL1-4. Subsequently, we explored primary cultures of term decidual Extravillous Trophoblasts (EVTs) and Term Chorionic Villi (TCV) explants, as in vitro models to access the immunological consequences of placental ZIKV infection. Placenta from CZS cases presented low IFNL1-4 expression, evidencing the critical protective role of theses cytokines in the clinical outcome. Term placentas cleared for ZIKV showed increased levels of IFNL1, 3, and 4, whether viral persistence was related with a proinflammatory profile. Conversely, upon ZIKV persistence placentas with decidual inflammation showed high IFNL1-4 levels. In vitro experiments showed that term EVTs are more permissive, and secreted higher levels of IFN-α2 and IFN-λ1 compared to TCV explants. The results suggest that, upon ZIKV persistence, the maternal-skewed decidua contributes to placental inflammatory and antiviral signature, through chronic deciduitis and IFNL upregulation. Although further studies are needed to elucidate the mechanisms underlying the decidual responses against ZIKV. Hence, this study presents unique insights and valuable in vitro models for evaluating the immunological landscape of placentas upon ZIKV persistence.
Collapse
|
10
|
Sosa-Acosta P, Quiñones-Vega M, Guedes JDS, Rocha D, Guida L, Vasconcelos Z, Nogueira FCS, Domont GB. Multiomics Approach Reveals Serum Biomarker Candidates for Congenital Zika Syndrome. J Proteome Res 2024; 23:1200-1220. [PMID: 38390744 DOI: 10.1021/acs.jproteome.3c00677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
The Zika virus (ZIKV) can be vertically transmitted, causing congenital Zika syndrome (CZS) in fetuses. ZIKV infection in early gestational trimesters increases the chances of developing CZS. This syndrome involves several pathologies with a complex diagnosis. In this work, we aim to identify biological processes and molecular pathways related to CZS and propose a series of putative protein and metabolite biomarkers for CZS prognosis in early pregnancy trimesters. We analyzed serum samples of healthy pregnant women and ZIKV-infected pregnant women bearing nonmicrocephalic and microcephalic fetuses. A total of 1090 proteins and 512 metabolites were identified by bottom-up proteomics and untargeted metabolomics, respectively. Univariate and multivariate statistical approaches were applied to find CZS differentially abundant proteins (DAP) and metabolites (DAM). Enrichment analysis (i.e., biological processes and molecular pathways) of the DAP and the DAM allowed us to identify the ECM organization and proteoglycans, amino acid metabolism, and arachidonic acid metabolism as CZS signatures. Five proteins and four metabolites were selected as CZS biomarker candidates. Serum multiomics analysis led us to propose nine putative biomarkers for CZS prognosis with high sensitivity and specificity.
Collapse
Affiliation(s)
- Patricia Sosa-Acosta
- Proteomics Unit, Department of Biochemistry, Institute of Chemistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, Brazil
- Laboratory of Proteomics (LabProt), LADETEC, Institute of Chemistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-598, Brazil
- Precision Medicine Research Center, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Mauricio Quiñones-Vega
- Proteomics Unit, Department of Biochemistry, Institute of Chemistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, Brazil
- Laboratory of Proteomics (LabProt), LADETEC, Institute of Chemistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-598, Brazil
- Precision Medicine Research Center, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Jéssica de S Guedes
- Proteomics Unit, Department of Biochemistry, Institute of Chemistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, Brazil
- Laboratory of Proteomics (LabProt), LADETEC, Institute of Chemistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-598, Brazil
- Precision Medicine Research Center, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Danielle Rocha
- Fernandes Figueira Institute, Fiocruz, Rio de Janeiro 22250-020, Brazil
| | - Letícia Guida
- Fernandes Figueira Institute, Fiocruz, Rio de Janeiro 22250-020, Brazil
| | | | - Fábio C S Nogueira
- Proteomics Unit, Department of Biochemistry, Institute of Chemistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, Brazil
- Laboratory of Proteomics (LabProt), LADETEC, Institute of Chemistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-598, Brazil
- Precision Medicine Research Center, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Gilberto B Domont
- Proteomics Unit, Department of Biochemistry, Institute of Chemistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, Brazil
- Precision Medicine Research Center, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| |
Collapse
|
11
|
Motomura K, Morita H, Naruse K, Saito H, Matsumoto K. Implication of viruses in the etiology of preeclampsia. Am J Reprod Immunol 2024; 91:e13844. [PMID: 38627916 DOI: 10.1111/aji.13844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/12/2024] [Accepted: 04/02/2024] [Indexed: 04/19/2024] Open
Abstract
Preeclampsia is one of the most common disorders that poses threat to both mothers and neonates and a major contributor to perinatal morbidity and mortality worldwide. Viral infection during pregnancy is not typically considered to cause preeclampsia; however, syndromic nature of preeclampsia etiology and the immunomodulatory effects of viral infections suggest that microbes could trigger a subset of preeclampsia. Notably, SARS-CoV-2 infection is associated with an increased risk of preeclampsia. Herein, we review the potential role of viral infections in this great obstetrical syndrome. According to in vitro and in vivo experimental studies, viral infections can cause preeclampsia by introducing poor placentation, syncytiotrophoblast stress, and/or maternal systemic inflammation, which are all known to play a critical role in the development of preeclampsia. Moreover, clinical and experimental investigations have suggested a link between several viruses and the onset of preeclampsia via multiple pathways. However, the results of experimental and clinical research are not always consistent. Therefore, future studies should investigate the causal link between viral infections and preeclampsia to elucidate the mechanism behind this relationship and the etiology of preeclampsia itself.
Collapse
Affiliation(s)
- Kenichiro Motomura
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
- Center for Maternal-Fetal, Neonatal and Reproductive Medicine, National Center for Child Health and Development, Tokyo, Japan
| | - Hideaki Morita
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
- Allergy Center, National Center for Child Health and Development, Tokyo, Japan
| | - Katsuhiko Naruse
- Department of Obstetrics and Gynecology, Dokkyo Medical University, Tochigi, Japan
| | - Hirohisa Saito
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Kenji Matsumoto
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| |
Collapse
|
12
|
Koenig MR, Vazquez J, Leyva Jaimes FB, Mitzey AM, Stanic AK, Golos TG. Decidual leukocytes respond to African lineage Zika virus infection with mild anti-inflammatory changes during acute infection in rhesus macaques. Front Immunol 2024; 15:1363169. [PMID: 38515747 PMCID: PMC10954895 DOI: 10.3389/fimmu.2024.1363169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 02/23/2024] [Indexed: 03/23/2024] Open
Abstract
Zika virus (ZIKV) can be vertically transmitted during pregnancy resulting in a range of adverse pregnancy outcomes. The decidua is commonly found to be infected by ZIKV, yet the acute immune response to infection remains understudied in vivo. We hypothesized that in vivo African-lineage ZIKV infection induces a pro-inflammatory response in the decidua. To test this hypothesis, we evaluated the decidua in pregnant rhesus macaques within the first two weeks following infection with an African-lineage ZIKV and compared our findings to gestationally aged-matched controls. Decidual leukocytes were phenotypically evaluated using spectral flow cytometry, and cytokines and chemokines were measured in tissue homogenates from the decidua, placenta, and fetal membranes. The results of this study did not support our hypothesis. Although ZIKV RNA was detected in the decidual tissue samples from all ZIKV infected dams, phenotypic changes in decidual leukocytes and differences in cytokine profiles suggest that the decidua undergoes mild anti-inflammatory changes in response to that infection. Our findings emphasize the immunological state of the gravid uterus as a relatively immune privileged site that prioritizes tolerance of the fetus over mounting a pro-inflammatory response to clear infection.
Collapse
Affiliation(s)
- Michelle R. Koenig
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, United States
| | - Jessica Vazquez
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI, United States
| | - Fernanda B. Leyva Jaimes
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI, United States
| | - Ann M. Mitzey
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, United States
| | - Aleksandar K. Stanic
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI, United States
| | - Thaddeus G. Golos
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, United States
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI, United States
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
13
|
Barrozo ER, Seferovic MD, Hamilton MP, Moorshead DN, Jochum MD, Do T, O'Neil DS, Suter MA, Aagaard KM. Zika virus co-opts microRNA networks to persist in placental niches detected by spatial transcriptomics. Am J Obstet Gynecol 2024; 230:251.e1-251.e17. [PMID: 37598997 PMCID: PMC10840961 DOI: 10.1016/j.ajog.2023.08.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/10/2023] [Accepted: 08/12/2023] [Indexed: 08/22/2023]
Abstract
BACKGROUND Zika virus congenital infection evades double-stranded RNA detection and may persist in the placenta for the duration of pregnancy without accompanying overt histopathologic inflammation. Understanding how viruses can persist and replicate in the placenta without causing overt cellular or tissue damage is fundamental to deciphering mechanisms of maternal-fetal vertical transmission. OBJECTIVE Placenta-specific microRNAs are believed to be a tenet of viral resistance at the maternal-fetal interface. We aimed to test the hypothesis that the Zika virus functionally disrupts placental microRNAs, enabling viral persistence and fetal pathogenesis. STUDY DESIGN To test this hypothesis, we used orthogonal approaches in human and murine experimental models. In primary human trophoblast cultures (n=5 donor placentae), we performed Argonaute high-throughput sequencing ultraviolet-crosslinking and immunoprecipitation to identify any significant alterations in the functional loading of microRNAs and their targets onto the RNA-induced silencing complex. Trophoblasts from same-donors were split and infected with a contemporary first-passage Zika virus strain HN16 (multiplicity of infection=1 plaque forming unit per cell) or mock infected. To functionally cross-validate microRNA-messenger RNA interactions, we compared our Argonaute high-throughput sequencing ultraviolet-crosslinking and immunoprecipitation results with an independent analysis of published bulk RNA-sequencing data from human placental disk specimens (n=3 subjects; Zika virus positive in first, second, or third trimester, CD45- cells sorted by flow cytometry) and compared it with uninfected controls (n=2 subjects). To investigate the importance of these microRNA and RNA interference networks in Zika virus pathogenesis, we used a gnotobiotic mouse model uniquely susceptible to the Zika virus. We evaluated if small-molecule enhancement of microRNA and RNA interference pathways with enoxacin influenced Zika virus pathogenesis (n=20 dams total yielding 187 fetal specimens). Lastly, placentae (n=14 total) from this mouse model were analyzed with Visium spatial transcriptomics (9743 spatial transcriptomes) to identify potential Zika virus-associated alterations in immune microenvironments. RESULTS We found that Zika virus infection of primary human trophoblast cells led to an unexpected disruption of placental microRNA regulation networks. When compared with uninfected controls, Zika virus-infected placentae had significantly altered SLC12A8, SDK1, and VLDLR RNA-induced silencing complex loading and transcript levels (-22; adjusted P value <.05; Wald-test with false discovery rate correction q<0.05). In silico microRNA target analyses revealed that 26 of 119 transcripts (22%) in the transforming growth factor-β signaling pathway were targeted by microRNAs that were found to be dysregulated following Zika virus infection in trophoblasts. In gnotobiotic mice, relative to mock controls, Zika virus-associated fetal pathogenesis included fetal growth restriction (P=.036) and viral persistence in placental tissue (P=.011). Moreover, spatial transcriptomics of murine placentae revealed that Zika virus-specific placental niches were defined by significant up-regulation of complement cascade components and coordinated changes in transforming growth factor-β gene expression. Finally, treatment of Zika virus-infected mice with enoxacin abolished placental Zika virus persistence, rescued the associated fetal growth restriction, and the Zika virus-associated transcriptional changes in placental immune microenvironments were no longer observed. CONCLUSION These results collectively suggest that (1) Zika virus infection and persistence is associated with functionally perturbed microRNA and RNA interference pathways specifically related to immune regulation in placental microenvironments and (2) enhancement of placental microRNA and RNA interference pathways in mice rescued Zika virus-associated pathogenesis, specifically persistence of viral transcripts in placental microenvironments and fetal growth restriction.
Collapse
Affiliation(s)
- Enrico R Barrozo
- Division of Maternal-Fetal Medicine, Department of Obstetrics & Gynecology, Baylor College of Medicine & Texas Children's Hospital, Houston, TX
| | - Maxim D Seferovic
- Division of Maternal-Fetal Medicine, Department of Obstetrics & Gynecology, Baylor College of Medicine & Texas Children's Hospital, Houston, TX
| | - Mark P Hamilton
- Division of Maternal-Fetal Medicine, Department of Obstetrics & Gynecology, Baylor College of Medicine & Texas Children's Hospital, Houston, TX; Hematology & Medical Oncology, Stanford School of Medicine, Stanford University, Palo Alto, CA
| | - David N Moorshead
- Division of Maternal-Fetal Medicine, Department of Obstetrics & Gynecology, Baylor College of Medicine & Texas Children's Hospital, Houston, TX; Medical Scientist Training Program, Baylor College of Medicine, Houston, TX; Immunology & Microbiology Graduate Program, Baylor College of Medicine, Houston, TX
| | - Michael D Jochum
- Division of Maternal-Fetal Medicine, Department of Obstetrics & Gynecology, Baylor College of Medicine & Texas Children's Hospital, Houston, TX
| | - Trang Do
- Division of Maternal-Fetal Medicine, Department of Obstetrics & Gynecology, Baylor College of Medicine & Texas Children's Hospital, Houston, TX
| | - Derek S O'Neil
- Division of Maternal-Fetal Medicine, Department of Obstetrics & Gynecology, Baylor College of Medicine & Texas Children's Hospital, Houston, TX
| | - Melissa A Suter
- Division of Maternal-Fetal Medicine, Department of Obstetrics & Gynecology, Baylor College of Medicine & Texas Children's Hospital, Houston, TX
| | - Kjersti M Aagaard
- Division of Maternal-Fetal Medicine, Department of Obstetrics & Gynecology, Baylor College of Medicine & Texas Children's Hospital, Houston, TX.
| |
Collapse
|
14
|
Calado AM, Seixas F, Dos Anjos Pires M. Virus as Teratogenic Agents. Methods Mol Biol 2024; 2753:105-142. [PMID: 38285335 DOI: 10.1007/978-1-0716-3625-1_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Viral infectious diseases are important causes of reproductive disorders, as abortion, fetal mummification, embryonic mortality, stillbirth, and congenital abnormalities in animals and in humans. In this chapter, we provide an overview of some virus, as important agents in teratology.We begin by describing the Zika virus, whose infection in humans had a very significant impact in recent years and has been associated with major health problems worldwide. This virus is a teratogenic agent in humans and has been classified as a public health emergency of international concern (PHEIC).Then, some viruses associated with reproductive abnormalities on animals, which have a significant economic impact on livestock, are described, as bovine herpesvirus, bovine viral diarrhea virus, Schmallenberg virus, Akabane virus, and Aino virus.For all viruses mentioned in this chapter, the teratogenic effects and the congenital malformations associated with fetus and newborn are described, according to the most recent scientific publications.
Collapse
Affiliation(s)
- Ana Margarida Calado
- Animal and Veterinary Research Centre (CECAV), UTAD, and Associate Laboratory for Animal and Veterinary Science (AL4Animals), Department of Veterinary Sciences, School of Agrarian and Veterinary Sciences (ECAV), University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal
| | - Fernanda Seixas
- Animal and Veterinary Research Centre (CECAV), UTAD, and Associate Laboratory for Animal and Veterinary Science (AL4Animals), Department of Veterinary Sciences, School of Agrarian and Veterinary Sciences (ECAV), University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal
| | - Maria Dos Anjos Pires
- Animal and Veterinary Research Centre (CECAV), UTAD, and Associate Laboratory for Animal and Veterinary Science (AL4Animals), Department of Veterinary Sciences, School of Agrarian and Veterinary Sciences (ECAV), University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal.
| |
Collapse
|
15
|
Mysorekar I, Michita R, Tran L, Bark S, Kumar D, Toner S, Jose J, Narayanan A. Zika Virus NS1 Drives Tunneling Nanotube Formation for Mitochondrial Transfer, Enhanced Survival, Interferon Evasion, and Stealth Transmission in Trophoblasts. RESEARCH SQUARE 2023:rs.3.rs-3674059. [PMID: 38106210 PMCID: PMC10723532 DOI: 10.21203/rs.3.rs-3674059/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Zika virus (ZIKV) infection continues to pose a significant public health concern due to limited available preventive measures and treatments. ZIKV is unique among flaviviruses in its vertical transmission capacity (i.e., transmission from mother to fetus) yet the underlying mechanisms remain incompletely understood. Here, we show that both African and Asian lineages of ZIKV induce tunneling nanotubes (TNTs) in placental trophoblasts and multiple other mammalian cell types. Amongst investigated flaviviruses, only ZIKV strains trigger TNTs. We show that ZIKV-induced TNTs facilitate transfer of viral particles, proteins, and RNA to neighboring uninfected cells. ZIKV TNT formation is driven exclusively via its non-structural protein 1 (NS1); specifically, the N-terminal region (50 aa) of membrane-bound NS1 is necessary and sufficient for triggering TNT formation in host cells. Using affinity purification-mass spectrometry of cells infected with wild-type NS1 or non-TNT forming NS1 (pNS1ΔTNT) proteins, we found mitochondrial proteins are dominant NS1-interacting partners, consistent with the elevated mitochondrial mass we observed in infected trophoblasts. We demonstrate that mitochondria are siphoned via TNTs from healthy to ZIKV-infected cells, both homotypically and heterotypically, and inhibition of mitochondrial respiration reduced viral replication in trophoblast cells. Finally, ZIKV strains lacking TNT capabilities due to mutant NS1 elicited a robust antiviral IFN-λ 1/2/3 response, indicating ZIKV's TNT-mediated trafficking also allows ZIKV cell-cell transmission that is camouflaged from host defenses. Together, our findings identify a new stealth mechanism that ZIKV employs for intercellular spread among placental trophoblasts, evasion of antiviral interferon response, and the hijacking of mitochondria to augment its propagation and survival. Discerning the mechanisms of ZIKV intercellular strategies offers a basis for novel therapeutic developments targeting these interactions to limit its dissemination.
Collapse
|
16
|
Bhat EA, Ali T, Sajjad N, Kumar R, Bron P. Insights into the structure, functional perspective, and pathogenesis of ZIKV: an updated review. Biomed Pharmacother 2023; 165:115175. [PMID: 37473686 DOI: 10.1016/j.biopha.2023.115175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/04/2023] [Accepted: 07/12/2023] [Indexed: 07/22/2023] Open
Abstract
Zika virus (ZIKV) poses a serious threat to the entire world. The rapid spread of ZIKV and recent outbreaks since 2007 have caused worldwide concern about the virus. Diagnosis is complicated because of the cross-reactivity of the virus with other viral antibodies. Currently, the virus is diagnosed by molecular techniques such as RT-PCR and IgM-linked enzyme immunoassays (MAC-ELISA). Recently, outbreaks and epidemics have been caused by ZIKV, and severe clinical symptoms and congenital malformations have also been associated with the virus. Although most ZIKV infections present with a subclinical or moderate flu-like course of illness, severe symptoms such as Guillain-Barre syndrome in adults and microcephaly in children of infected mothers have also been reported. Because there is no reliable cure for ZIKV and no vaccine is available, the public health response has focused primarily on preventing infection, particularly in pregnant women. A comprehensive approach is urgently needed to combat this infection and stop its spread and imminent threat. In view of this, this review aims to present the current structural and functional viewpoints, structure, etiology, clinical prognosis, and measures to prevent this transmission based on the literature and current knowledge. Moreover, we provide thorough description of the current understanding about ZIKV interaction with receptors, and a comparative examination of its similarities and differences with other viruses.
Collapse
Affiliation(s)
- Eijaz Ahmed Bhat
- CBS (Centre de Biologie Structurale), Univ. Montpellier, CNRS, INSERM, 29 rue de Navacelles, 34090 Montpellier, France.
| | - Tufail Ali
- Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Nasreena Sajjad
- Department of Biochemistry, University of Kashmir, Hazratbal, Jammu and Kashmir 190006, India
| | - Rohit Kumar
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India
| | - Patrick Bron
- CBS (Centre de Biologie Structurale), Univ. Montpellier, CNRS, INSERM, 29 rue de Navacelles, 34090 Montpellier, France.
| |
Collapse
|
17
|
Koenig MR, Mitzey AM, Zeng X, Reyes L, Simmons HA, Morgan TK, Bohm EK, Pritchard JC, Schmidt JA, Ren E, Leyva Jaimes FB, Winston E, Basu P, Weiler AM, Friedrich TC, Aliota MT, Mohr EL, Golos TG. Vertical transmission of African-lineage Zika virus through the fetal membranes in a rhesus macaque (Macaca mulatta) model. PLoS Pathog 2023; 19:e1011274. [PMID: 37549143 PMCID: PMC10434957 DOI: 10.1371/journal.ppat.1011274] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 08/17/2023] [Accepted: 07/14/2023] [Indexed: 08/09/2023] Open
Abstract
Zika virus (ZIKV) can be transmitted vertically from mother to fetus during pregnancy, resulting in a range of outcomes including severe birth defects and fetal/infant death. Potential pathways of vertical transmission in utero have been proposed but remain undefined. Identifying the timing and routes of vertical transmission of ZIKV may help us identify when interventions would be most effective. Furthermore, understanding what barriers ZIKV overcomes to effect vertical transmission may help improve models for evaluating infection by other pathogens during pregnancy. To determine the pathways of vertical transmission, we inoculated 12 pregnant rhesus macaques with an African-lineage ZIKV at gestational day 30 (term is 165 days). Eight pregnancies were surgically terminated at either seven or 14 days post-maternal infection. Maternal-fetal interface and fetal tissues and fluids were collected and evaluated for ZIKV using RT-qPCR, in situ hybridization, immunohistochemistry, and plaque assays. Four additional pregnant macaques were inoculated and terminally perfused with 4% paraformaldehyde at three, six, nine, or ten days post-maternal inoculation. For these four cases, the entire fixed pregnant uterus was evaluated with in situ hybridization for ZIKV RNA. We determined that ZIKV can reach the MFI by six days after infection and infect the fetus by ten days. Infection of the chorionic membrane and the extraembryonic coelomic fluid preceded infection of the fetus and the mesenchymal tissue of the placental villi. We did not find evidence to support a transplacental route of ZIKV vertical transmission via infection of syncytiotrophoblasts or villous cytotrophoblasts. The pattern of infection observed in the maternal-fetal interface provides evidence of paraplacental vertical ZIKV transmission through the chorionic membrane, the outer layer of the fetal membranes.
Collapse
Affiliation(s)
- Michelle R. Koenig
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Ann M. Mitzey
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Xiankun Zeng
- Pathology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - Leticia Reyes
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Heather A. Simmons
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Terry K. Morgan
- Department of Obstetrics and Gynecology, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Ellie K. Bohm
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Twin Cities, St. Paul, Minnesota, United States of America
| | - Julia C. Pritchard
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Twin Cities, St. Paul, Minnesota, United States of America
| | - Jenna A. Schmidt
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Emily Ren
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Fernanda B. Leyva Jaimes
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Eva Winston
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Puja Basu
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Andrea M. Weiler
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Thomas C. Friedrich
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Matthew T. Aliota
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Twin Cities, St. Paul, Minnesota, United States of America
| | - Emma L. Mohr
- Department of Pediatrics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Thaddeus G. Golos
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
18
|
Kim H. Visualization of maternal IL-17a across the placental membrane. Sci Prog 2023; 106:368504231195500. [PMID: 37643019 PMCID: PMC10467380 DOI: 10.1177/00368504231195500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
IL-17a is a pro-inflammatory cytokine produced primarily by T helper-17 cells. Several studies have shown that maternal IL-17a, associated with maternal immune activation (MIA), affects the developing brain. However, the mechanisms underlying maternal IL-17a signaling remain partially unknown. This study detected trans-placental IL-17a passage using luminescent activity studies and an in vitro transfer assay. First, the luminescent activity was observed using LiCoR dye-conjugated IL-17a injected into pregnant mice. IL-17a luminescent activity was highly detected in the placenta and isolated fetus, but positive control IgG and negative control IgM showed low or no luminescence in the placenta and fetus, respectively. Next, IL-17a transmission across the placenta was investigated using a transwell experiment with trophoblast BeWo cells and primary trophoblast cells. Significant amounts of IL-17a were detected in the lower compartment. And in various placenta cell lines, IL-17a treatment significantly increased IL-17RA mRNA expression. However, it did not affect IL-17RC mRNA expression.This study showed that elevated IL-17a increased the IL-17RA expression in the trophoblast and may accumulate in the placenta. Furthermore, these results indicate the molecular basis of an important role in IL-17a/IL-17RA in the maternal placenta.
Collapse
Affiliation(s)
- Hyunju Kim
- Department of Medicinal Biotechnology, College of Health Science, Dong-A University, Busan, Korea (the Republic of)
| |
Collapse
|
19
|
Beltrami S, Rizzo S, Schiuma G, Speltri G, Di Luca D, Rizzo R, Bortolotti D. Gestational Viral Infections: Role of Host Immune System. Microorganisms 2023; 11:1637. [PMID: 37512810 PMCID: PMC10383666 DOI: 10.3390/microorganisms11071637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/13/2023] [Accepted: 06/19/2023] [Indexed: 07/30/2023] Open
Abstract
Viral infections in pregnancy are major causes of maternal and fetal morbidity and mortality. Infections can develop in the neonate transplacentally, perinatally, or postnatally (from breast milk or other sources) and lead to different clinical manifestations, depending on the viral agent and the gestational age at exposure. Viewing the peculiar tolerogenic status which characterizes pregnancy, viruses could exploit this peculiar immunological status to spread or affect the maternal immune system, adopting several evasion strategies. In fact, both DNA and RNA virus might have a deep impact on both innate and acquired immune systems. For this reason, investigating the interaction with these pathogens and the host's immune system during pregnancy is crucial not only for the development of most effective therapies and diagnosis but mostly for prevention. In this review, we will analyze some of the most important DNA and RNA viruses related to gestational infections.
Collapse
Affiliation(s)
- Silvia Beltrami
- Department of Chemical, Pharmaceutical and Agricultural Science, University of Ferrara, 44121 Ferrara, Italy
| | - Sabrina Rizzo
- Department of Chemical, Pharmaceutical and Agricultural Science, University of Ferrara, 44121 Ferrara, Italy
| | - Giovanna Schiuma
- Department of Chemical, Pharmaceutical and Agricultural Science, University of Ferrara, 44121 Ferrara, Italy
| | - Giorgia Speltri
- Department of Chemical, Pharmaceutical and Agricultural Science, University of Ferrara, 44121 Ferrara, Italy
| | - Dario Di Luca
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Roberta Rizzo
- Department of Chemical, Pharmaceutical and Agricultural Science, University of Ferrara, 44121 Ferrara, Italy
| | - Daria Bortolotti
- Department of Chemical, Pharmaceutical and Agricultural Science, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
20
|
Koenig MR, Mitzey AM, Morgan TK, Zeng X, Simmons HA, Mejia A, Leyva Jaimes F, Keding LT, Crooks CM, Weiler AM, Bohm EK, Aliota MT, Friedrich TC, Mohr EL, Golos TG. Infection of the maternal-fetal interface and vertical transmission following low-dose inoculation of pregnant rhesus macaques (Macaca mulatta) with an African-lineage Zika virus. PLoS One 2023; 18:e0284964. [PMID: 37141276 PMCID: PMC10159132 DOI: 10.1371/journal.pone.0284964] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 04/13/2023] [Indexed: 05/05/2023] Open
Abstract
BACKGROUND Congenital Zika virus (ZIKV) infection can result in birth defects, including malformations in the fetal brain and visual system. There are two distinct genetic lineages of ZIKV: African and Asian. Asian-lineage ZIKVs have been associated with adverse pregnancy outcomes in humans; however, recent evidence from experimental models suggests that African-lineage viruses can also be vertically transmitted and cause fetal harm. METHODOLOGY/PRINCIPAL FINDINGS To evaluate the pathway of vertical transmission of African-lineage ZIKV, we inoculated nine pregnant rhesus macaques (Macaca mulatta) subcutaneously with 44 plaque-forming units of a ZIKV strain from Senegal, (ZIKV-DAK). Dams were inoculated either at gestational day 30 or 45. Following maternal inoculation, pregnancies were surgically terminated seven or 14 days later and fetal and maternal-fetal interface tissues were collected and evaluated. Infection in the dams was evaluated via plasma viremia and neutralizing antibody titers pre- and post- ZIKV inoculation. All dams became productively infected and developed strong neutralizing antibody responses. ZIKV RNA was detected in maternal-fetal interface tissues (placenta, decidua, and fetal membranes) by RT-qPCR and in situ hybridization. In situ hybridization detected ZIKV predominantly in the decidua and revealed that the fetal membranes may play a role in ZIKV vertical transmission. Infectious ZIKV was detected in the amniotic fluid of three pregnancies and one fetus had ZIKV RNA detected in multiple tissues. No significant pathology was observed in any fetus; and ZIKV did not have a substantial effect on the placenta. CONCLUSIONS/SIGNIFICANCE This study demonstrates that a very low dose of African-lineage ZIKV can be vertically transmitted to the macaque fetus during pregnancy. The low inoculating dose used in this study suggests a low minimal infectious dose for rhesus macaques. Vertical transmission with a low dose in macaques further supports the high epidemic potential of African ZIKV strains.
Collapse
Affiliation(s)
- Michelle R. Koenig
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Ann M. Mitzey
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Terry K. Morgan
- Department of Pathology, Oregon Health and Science University, Portland, Oregon, United States of America
- Department of Obstetrics and Gynecology, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Xiankun Zeng
- Pathology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States of America
| | - Heather A. Simmons
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Andres Mejia
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Fernanda Leyva Jaimes
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Logan T. Keding
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Chelsea M. Crooks
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Andrea M. Weiler
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Ellie K. Bohm
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Twin Cities, St. Paul, Minnesota, United States of America
| | - Matthew T. Aliota
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Twin Cities, St. Paul, Minnesota, United States of America
| | - Thomas C. Friedrich
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, United States of America
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Emma L. Mohr
- Department of Pediatrics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Thaddeus G. Golos
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, United States of America
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
21
|
Mascarau R, Woottum M, Fromont L, Gence R, Cantaloube-Ferrieu V, Vahlas Z, Lévêque K, Bertrand F, Beunon T, Métais A, El Costa H, Jabrane-Ferrat N, Gallois Y, Guibert N, Davignon JL, Favre G, Maridonneau-Parini I, Poincloux R, Lagane B, Bénichou S, Raynaud-Messina B, Vérollet C. Productive HIV-1 infection of tissue macrophages by fusion with infected CD4+ T cells. J Cell Biol 2023; 222:213978. [PMID: 36988579 PMCID: PMC10067447 DOI: 10.1083/jcb.202205103] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 12/05/2022] [Accepted: 02/02/2023] [Indexed: 03/30/2023] Open
Abstract
Macrophages are essential for HIV-1 pathogenesis and represent major viral reservoirs. Therefore, it is critical to understand macrophage infection, especially in tissue macrophages, which are widely infected in vivo, but poorly permissive to cell-free infection. Although cell-to-cell transmission of HIV-1 is a determinant mode of macrophage infection in vivo, how HIV-1 transfers toward macrophages remains elusive. Here, we demonstrate that fusion of infected CD4+ T lymphocytes with human macrophages leads to their efficient and productive infection. Importantly, several tissue macrophage populations undergo this heterotypic cell fusion, including synovial, placental, lung alveolar, and tonsil macrophages. We also find that this mode of infection is modulated by the macrophage polarization state. This fusion process engages a specific short-lived adhesion structure and is controlled by the CD81 tetraspanin, which activates RhoA/ROCK-dependent actomyosin contractility in macrophages. Our study provides important insights into the mechanisms underlying infection of tissue-resident macrophages, and establishment of persistent cellular reservoirs in patients.
Collapse
Affiliation(s)
- Rémi Mascarau
- Institut de Pharmacologie et Biologie Structurale (IPBS), Université de Toulouse, Centre National de la Recherche Scientifique, Université Toulouse III - Paul Sabatier (UPS) , Toulouse, France
- International Research Project " MAC-TB/HIV " , Toulouse, France
| | - Marie Woottum
- Institut Cochin, Inserm U1016, Centre National de la Recherche Scientifique UMR8104, Université de Paris , Paris, France
| | - Léa Fromont
- Institut de Pharmacologie et Biologie Structurale (IPBS), Université de Toulouse, Centre National de la Recherche Scientifique, Université Toulouse III - Paul Sabatier (UPS) , Toulouse, France
| | - Rémi Gence
- Centre de Recherches en Cancérologie de Toulouse, Inserm UMR1037 and Institut Universitaire du Cancer de Toulouse - Oncopôle , Toulouse, France
| | - Vincent Cantaloube-Ferrieu
- Institut Toulousain des Maladies Infectieuses et Inflammatoires, Université Toulouse, Centre National de la Recherche Scientifique, Inserm , Toulouse, France
| | - Zoï Vahlas
- Institut de Pharmacologie et Biologie Structurale (IPBS), Université de Toulouse, Centre National de la Recherche Scientifique, Université Toulouse III - Paul Sabatier (UPS) , Toulouse, France
- International Research Project " MAC-TB/HIV " , Toulouse, France
| | - Kevin Lévêque
- Institut de Pharmacologie et Biologie Structurale (IPBS), Université de Toulouse, Centre National de la Recherche Scientifique, Université Toulouse III - Paul Sabatier (UPS) , Toulouse, France
| | - Florent Bertrand
- Institut de Pharmacologie et Biologie Structurale (IPBS), Université de Toulouse, Centre National de la Recherche Scientifique, Université Toulouse III - Paul Sabatier (UPS) , Toulouse, France
| | - Thomas Beunon
- Institut de Pharmacologie et Biologie Structurale (IPBS), Université de Toulouse, Centre National de la Recherche Scientifique, Université Toulouse III - Paul Sabatier (UPS) , Toulouse, France
| | - Arnaud Métais
- Institut de Pharmacologie et Biologie Structurale (IPBS), Université de Toulouse, Centre National de la Recherche Scientifique, Université Toulouse III - Paul Sabatier (UPS) , Toulouse, France
| | - Hicham El Costa
- Institut Toulousain des Maladies Infectieuses et Inflammatoires, Université Toulouse, Centre National de la Recherche Scientifique, Inserm , Toulouse, France
| | - Nabila Jabrane-Ferrat
- Institut Toulousain des Maladies Infectieuses et Inflammatoires, Université Toulouse, Centre National de la Recherche Scientifique, Inserm , Toulouse, France
| | - Yohan Gallois
- ENT, Otoneurology and Pediatric ENT Department, University Hospital of Toulouse , Toulouse, France
| | - Nicolas Guibert
- Thoracic Endoscopy Unit, Pulmonology Department, Larrey University Hospital , Toulouse, France
| | | | - Gilles Favre
- Centre de Recherches en Cancérologie de Toulouse, Inserm UMR1037 and Institut Universitaire du Cancer de Toulouse - Oncopôle , Toulouse, France
| | - Isabelle Maridonneau-Parini
- Institut de Pharmacologie et Biologie Structurale (IPBS), Université de Toulouse, Centre National de la Recherche Scientifique, Université Toulouse III - Paul Sabatier (UPS) , Toulouse, France
- International Research Project " MAC-TB/HIV " , Toulouse, France
| | - Renaud Poincloux
- Institut de Pharmacologie et Biologie Structurale (IPBS), Université de Toulouse, Centre National de la Recherche Scientifique, Université Toulouse III - Paul Sabatier (UPS) , Toulouse, France
- International Research Project " MAC-TB/HIV " , Toulouse, France
| | - Bernard Lagane
- Institut Toulousain des Maladies Infectieuses et Inflammatoires, Université Toulouse, Centre National de la Recherche Scientifique, Inserm , Toulouse, France
| | - Serge Bénichou
- Institut Cochin, Inserm U1016, Centre National de la Recherche Scientifique UMR8104, Université de Paris , Paris, France
| | - Brigitte Raynaud-Messina
- Institut de Pharmacologie et Biologie Structurale (IPBS), Université de Toulouse, Centre National de la Recherche Scientifique, Université Toulouse III - Paul Sabatier (UPS) , Toulouse, France
- International Research Project " MAC-TB/HIV " , Toulouse, France
| | - Christel Vérollet
- Institut de Pharmacologie et Biologie Structurale (IPBS), Université de Toulouse, Centre National de la Recherche Scientifique, Université Toulouse III - Paul Sabatier (UPS) , Toulouse, France
- International Research Project " MAC-TB/HIV " , Toulouse, France
| |
Collapse
|
22
|
Franco EJ, Hanrahan KC, Brown AN. Favipiravir Inhibits Zika Virus (ZIKV) Replication in HeLa Cells by Altering Viral Infectivity. Microorganisms 2023; 11:1097. [PMID: 37317071 PMCID: PMC10223361 DOI: 10.3390/microorganisms11051097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 06/16/2023] Open
Abstract
This study aims to evaluate the antiviral potential of the nucleoside analogue favipiravir (FAV) against ZIKV, an arbovirus for which there are no approved antiviral therapies, in three human-derived cell lines. HeLa (cervical), SK-N-MC (neuronal), and HUH-7 (liver) cells were infected with ZIKV and exposed to different concentrations of FAV. Viral supernatant was sampled daily, and infectious viral burden was quantified by plaque assay. Changes in ZIKV infectivity were quantified by calculating specific infectivity. FAV-related toxicities were also assessed for each cell line in both infected and uninfected cells. Our results demonstrate that FAV activity was most pronounced in HeLa cells, as substantial declines in infectious titers and viral infectivity were observed in this cell type. The decline in infectious virus occurred in an exposure-dependent manner and was more pronounced as FAV exposure times increased. Additionally, toxicity studies showed that FAV was not toxic to any of the three cell lines and, surprisingly, caused substantial improvements in the viability of infected HeLa cells. Although SK-N-MC and HUH-7 cells were susceptible to FAV's anti-ZIKV activity, similar effects on viral infectivity and improvements in cell viability with therapy were not observed. These results indicate that FAV's ability to substantially alter viral infectivity is host cell specific and suggest that the robust antiviral effect observed in HeLa cells is mediated through drug-induced losses of viral infectivity.
Collapse
Affiliation(s)
- Evelyn J. Franco
- Institute for Therapeutic Innovation, Department of Medicine, University of Florida College of Medicine, Orlando, FL 32827, USA; (E.J.F.); (K.C.H.)
- Department of Pharmaceutics, University of Florida College of Pharmacy, Orlando, FL 32827, USA
| | - Kaley C. Hanrahan
- Institute for Therapeutic Innovation, Department of Medicine, University of Florida College of Medicine, Orlando, FL 32827, USA; (E.J.F.); (K.C.H.)
| | - Ashley N. Brown
- Institute for Therapeutic Innovation, Department of Medicine, University of Florida College of Medicine, Orlando, FL 32827, USA; (E.J.F.); (K.C.H.)
- Department of Pharmaceutics, University of Florida College of Pharmacy, Orlando, FL 32827, USA
| |
Collapse
|
23
|
Gilbert-Jaramillo J, Purnama U, Molnár Z, James WS. Zika virus-induces metabolic alterations in fetal neuronal progenitors that could influence in neurodevelopment during early pregnancy. Biol Open 2023; 12:bio059889. [PMID: 37093064 PMCID: PMC10151830 DOI: 10.1242/bio.059889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 03/02/2023] [Indexed: 04/25/2023] Open
Abstract
Cortical development consists of an orchestrated process in which progenitor cells exhibit distinct fate restrictions regulated by time-dependent activation of energetic pathways. Thus, the hijacking of cellular metabolism by Zika virus (ZIKV) to support its replication may contribute to damage in the developing fetal brain. Here, we showed that ZIKV replicates differently in two glycolytically distinct pools of cortical progenitors derived from human induced pluripotent stem cells (hiPSCs), which resemble the metabolic patterns of quiescence (early hi-NPCs) and immature brain cells (late hi-NPCs) in the forebrain. This differential replication alters the transcription of metabolic genes in both pools of cortical progenitors but solely upregulates the glycolytic capacity of early hi-NPCs. Analysis using Imagestream® revealed that, during early stages of ZIKV replication, in early hi-NPCs there is an increase in lipid droplet abundance and size. This stage of ZIKV replication significantly reduced the mitochondrial distribution in both early and late hi-NPCs. During later stages of ZIKV replication, late hi-NPCs show reduced mitochondrial size and abundance. The finding that there are alterations of cellular metabolism during ZIKV infection which are specific to pools of cortical progenitors at different stages of maturation may help to explain the differences in brain damage over each trimester.
Collapse
Affiliation(s)
- Javier Gilbert-Jaramillo
- James & Lillian Martin Centre, Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
- Department of Physiology, Anatomy and Genetics, Sherrington Building, University of Oxford, Parks Road, Oxford OX1 3PT, UK
- ESPOL Polytechnic University, Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ciencias de la Vida, Campus Gustavo Galindo Km. 30.5 Vía Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador
| | - Ujang Purnama
- Department of Physiology, Anatomy and Genetics, Sherrington Building, University of Oxford, Parks Road, Oxford OX1 3PT, UK
| | - Zoltán Molnár
- Department of Physiology, Anatomy and Genetics, Sherrington Building, University of Oxford, Parks Road, Oxford OX1 3PT, UK
| | - William S. James
- James & Lillian Martin Centre, Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| |
Collapse
|
24
|
Trinh QD, Pham NTK, Takada K, Ushijima H, Komine-Aizawa S, Hayakawa S. Roles of TGF-β1 in Viral Infection during Pregnancy: Research Update and Perspectives. Int J Mol Sci 2023; 24:ijms24076489. [PMID: 37047462 PMCID: PMC10095195 DOI: 10.3390/ijms24076489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 03/25/2023] [Accepted: 03/28/2023] [Indexed: 04/14/2023] Open
Abstract
Transforming growth factor-beta 1 (TGF-β1) is a pleiotropic growth factor playing various roles in the human body including cell growth and development. More functions of TGF-β1 have been discovered, especially its roles in viral infection. TGF-β1 is abundant at the maternal-fetal interface during pregnancy and plays an important function in immune tolerance, an essential key factor for pregnancy success. It plays some critical roles in viral infection in pregnancy, such as its effects on the infection and replication of human cytomegalovirus in syncytiotrophoblasts. Interestingly, its role in the enhancement of Zika virus (ZIKV) infection and replication in first-trimester trophoblasts has recently been reported. The above up-to-date findings have opened one of the promising approaches to studying the mechanisms of viral infection during pregnancy with links to corresponding congenital syndromes. In this article, we review our current and recent advances in understanding the roles of TGF-β1 in viral infection. Our discussion focuses on viral infection during pregnancy, especially in the first trimester. We highlight the mutual roles of viral infection and TGF-β1 in specific contexts and possible functions of the Smad pathway in viral infection, with a special note on ZIKV infection. In addition, we discuss promising approaches to performing further studies on this topic.
Collapse
Affiliation(s)
- Quang Duy Trinh
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo 173-8610, Japan
| | - Ngan Thi Kim Pham
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo 173-8610, Japan
| | - Kazuhide Takada
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo 173-8610, Japan
| | - Hiroshi Ushijima
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo 173-8610, Japan
| | - Shihoko Komine-Aizawa
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo 173-8610, Japan
| | - Satoshi Hayakawa
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo 173-8610, Japan
| |
Collapse
|
25
|
Dias SSG, Cunha-Fernandes T, Souza-Moreira L, Soares VC, Lima GB, Azevedo-Quintanilha IG, Santos J, Pereira-Dutra F, Freitas C, Reis PA, Rehen SK, Bozza FA, Souza TML, de Almeida CJG, Bozza PT. Metabolic reprogramming and lipid droplets are involved in Zika virus replication in neural cells. J Neuroinflammation 2023; 20:61. [PMID: 36882750 PMCID: PMC9992922 DOI: 10.1186/s12974-023-02736-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 02/16/2023] [Indexed: 03/09/2023] Open
Abstract
Zika virus (ZIKV) infection is a global public health concern linked to adult neurological disorders and congenital diseases in newborns. Host lipid metabolism, including lipid droplet (LD) biogenesis, has been associated with viral replication and pathogenesis of different viruses. However, the mechanisms of LD formation and their roles in ZIKV infection in neural cells are still unclear. Here, we demonstrate that ZIKV regulates the expression of pathways associated with lipid metabolism, including the upregulation and activation of lipogenesis-associated transcription factors and decreased expression of lipolysis-associated proteins, leading to significant LD accumulation in human neuroblastoma SH-SY5Y cells and in neural stem cells (NSCs). Pharmacological inhibition of DGAT-1 decreased LD accumulation and ZIKV replication in vitro in human cells and in an in vivo mouse model of infection. In accordance with the role of LDs in the regulation of inflammation and innate immunity, we show that blocking LD formation has major roles in inflammatory cytokine production in the brain. Moreover, we observed that inhibition of DGAT-1 inhibited the weight loss and mortality induced by ZIKV infection in vivo. Our results reveal that LD biogenesis triggered by ZIKV infection is a crucial step for ZIKV replication and pathogenesis in neural cells. Therefore, targeting lipid metabolism and LD biogenesis may represent potential strategies for anti-ZIKV treatment development.
Collapse
Affiliation(s)
- Suelen Silva Gomes Dias
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - Tamires Cunha-Fernandes
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - Luciana Souza-Moreira
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - Vinicius Cardoso Soares
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil.,Programa de Imunologia e Inflamação, Universidade Federal do Rio de Janeiro, UFRJ, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Giselle Barbosa Lima
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | | | - Julia Santos
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - Filipe Pereira-Dutra
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - Caroline Freitas
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - Patricia A Reis
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil.,Departamento de Bioquímica, Instituto de Biologia Roberto Alcântara Gomes, Universidade Estadual do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Stevens Kastrup Rehen
- Instituto D'Or de Pesquisa e Ensino (IDOR), Rio de Janeiro, Brazil.,Instituto de Biologia, Universidade Federal do Rio de Janeiro, UFRJ, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernando A Bozza
- Instituto D'Or de Pesquisa e Ensino (IDOR), Rio de Janeiro, Brazil.,Instituto Nacional de Infectologia Evandro Chagas (INI), FIOCRUZ, Rio de Janeiro, Brazil
| | - Thiago M Lopes Souza
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Inovação em Doenças de Populações Negligenciadas (INCT/IDPN), Centro de Desenvolvimento Tecnológico em Saúde, (CDTS), FIOCRUZ, Rio de Janeiro, Brazil
| | - Cecilia J G de Almeida
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - Patricia T Bozza
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil.
| |
Collapse
|
26
|
Cable J, Denison MR, Kielian M, Jackson WT, Bartenschlager R, Ahola T, Mukhopadhyay S, Fremont DH, Kuhn RJ, Shannon A, Frazier MN, Yuen KY, Coyne CB, Wolthers KC, Ming GL, Guenther CS, Moshiri J, Best SM, Schoggins JW, Jurado KA, Ebel GD, Schäfer A, Ng LFP, Kikkert M, Sette A, Harris E, Wing PAC, Eggenberger J, Krishnamurthy SR, Mah MG, Meganck RM, Chung D, Maurer-Stroh S, Andino R, Korber B, Perlman S, Shi PY, Bárcena M, Aicher SM, Vu MN, Kenney DJ, Lindenbach BD, Nishida Y, Rénia L, Williams EP. Positive-strand RNA viruses-a Keystone Symposia report. Ann N Y Acad Sci 2023; 1521:46-66. [PMID: 36697369 PMCID: PMC10347887 DOI: 10.1111/nyas.14957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Positive-strand RNA viruses have been the cause of several recent outbreaks and epidemics, including the Zika virus epidemic in 2015, the SARS outbreak in 2003, and the ongoing SARS-CoV-2 pandemic. On June 18-22, 2022, researchers focusing on positive-strand RNA viruses met for the Keystone Symposium "Positive-Strand RNA Viruses" to share the latest research in molecular and cell biology, virology, immunology, vaccinology, and antiviral drug development. This report presents concise summaries of the scientific discussions at the symposium.
Collapse
Affiliation(s)
| | - Mark R Denison
- Department of Pediatrics and Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center; and Vanderbilt Institute for Infection, Immunology, and Inflammation, Nashville, Tennessee, USA
| | - Margaret Kielian
- Department of Cell Biology, Albert Einstein College of Medicine, New York, New York, USA
| | - William T Jackson
- Department of Microbiology and Immunology and Center for Pathogen Research, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, Heidelberg University and German Cancer Research Center (DKFZ), Research Division Virus-associated Carcinogenesis, Heidelberg, Germany
| | - Tero Ahola
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| | | | - Daved H Fremont
- Department of Pathology & Immunology; Department of Molecular Microbiology; and Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Richard J Kuhn
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Ashleigh Shannon
- Architecture et Fonction des Macromolécules Biologiques, CNRS and Aix Marseille Université, Marseille, France
| | - Meredith N Frazier
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Kwok-Yung Yuen
- Department of Microbiology, Li Ka Shing Faculty of Medicine and State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, People's Republic of China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong, People's Republic of China
| | - Carolyn B Coyne
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, USA
| | - Katja C Wolthers
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam and Amsterdam Institute for Infection and Immunity, OrganoVIR Labs, Amsterdam, The Netherlands
| | - Guo-Li Ming
- Department of Neuroscience and Mahoney Institute for Neurosciences, Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | - Jasmine Moshiri
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
| | - Sonja M Best
- Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - John W Schoggins
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Kellie Ann Jurado
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Gregory D Ebel
- Center for Vector-borne Infectious Diseases, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Alexandra Schäfer
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Lisa F P Ng
- ASTAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science Technology and Research (A*STAR), Singapore City, Singapore
- National Institute of Health Research, Health Protection Research Unit in Emerging and Zoonotic Infections; Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Marjolein Kikkert
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, California, USA
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, California, USA
| | - Peter A C Wing
- Nuffield Department of Medicine and Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, UK
| | - Julie Eggenberger
- Department of Immunology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Siddharth R Krishnamurthy
- Metaorganism Immunity Section, Laboratory of Immune System Biology and NIAID Microbiome Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Marcus G Mah
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore City, Singapore
| | - Rita M Meganck
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Donghoon Chung
- Department of Experimental Therapeutics, MD Anderson Cancer Center, Houston, Texas, USA
| | - Sebastian Maurer-Stroh
- Yong Loo Lin School of Medicine and Department of Biological Sciences, National University of Singapore, Singapore City, Singapore
- Bioinformatics Institute, Agency for Science, Technology and Research, Singapore City, Singapore
| | - Raul Andino
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, California, USA
| | - Bette Korber
- Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | - Stanley Perlman
- Department of Microbiology and Immunology, and Department of Pediatrics, University of Iowa, Iowa City, Iowa, USA
| | - Pei-Yong Shi
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Montserrat Bárcena
- Section Electron Microscopy, Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Sophie-Marie Aicher
- Institut Pasteurgrid, Université de Paris Cité, Virus Sensing and Signaling Unit, Paris, France
| | - Michelle N Vu
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Devin J Kenney
- Department of Microbiology and National Emerging Infectious Diseases Laboratories, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Brett D Lindenbach
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Yukiko Nishida
- Chugai Pharmaceutical, Co., Tokyo, Japan
- Lee Kong Chian School of Medicine and School of Biological Sciences, Nanyang Technological University, Singapore City, Singapore
| | - Laurent Rénia
- ASTAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science Technology and Research (A*STAR), Singapore City, Singapore
| | - Evan P Williams
- Department of Microbiology, Immunology, and Biochemistry, The University of Tennessee Health Science Center, Memphis, Tennessee, USA
| |
Collapse
|
27
|
Oliveira G, Vogels CBF, Zolfaghari A, Saraf S, Klitting R, Weger-Lucarelli J, P. Leon K, Ontiveros CO, Agarwal R, Tsetsarkin KA, Harris E, Ebel GD, Wohl S, Grubaugh ND, Andersen KG. Genomic and phenotypic analyses suggest moderate fitness differences among Zika virus lineages. PLoS Negl Trop Dis 2023; 17:e0011055. [PMID: 36753510 PMCID: PMC9907835 DOI: 10.1371/journal.pntd.0011055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 12/22/2022] [Indexed: 02/09/2023] Open
Abstract
RNA viruses have short generation times and high mutation rates, allowing them to undergo rapid molecular evolution during epidemics. However, the extent of RNA virus phenotypic evolution within epidemics and the resulting effects on fitness and virulence remain mostly unknown. Here, we screened the 2015-2016 Zika epidemic in the Americas for lineage-specific fitness differences. We engineered a library of recombinant viruses representing twelve major Zika virus lineages and used them to measure replicative fitness within disease-relevant human primary cells and live mosquitoes. We found that two of these lineages conferred significant in vitro replicative fitness changes among human primary cells, but we did not find fitness changes in Aedes aegypti mosquitoes. Additionally, we found evidence for elevated levels of positive selection among five amino acid sites that define major Zika virus lineages. While our work suggests that Zika virus may have acquired several phenotypic changes during a short time scale, these changes were relatively moderate and do not appear to have enhanced transmission during the epidemic.
Collapse
Affiliation(s)
- Glenn Oliveira
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Chantal B. F. Vogels
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Ashley Zolfaghari
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Sharada Saraf
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Raphaelle Klitting
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - James Weger-Lucarelli
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Karla P. Leon
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Carlos O. Ontiveros
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Rimjhim Agarwal
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Konstantin A. Tsetsarkin
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, California, United States of America
| | - Gregory D. Ebel
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Shirlee Wohl
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Nathan D. Grubaugh
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Kristian G. Andersen
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, United States of America
| |
Collapse
|
28
|
Eder J, Zijlstra-Willems E, Koen G, Kootstra NA, Wolthers KC, Geijtenbeek TB. Transmission of Zika virus by dendritic cell subsets in skin and vaginal mucosa. Front Immunol 2023; 14:1125565. [PMID: 36949942 PMCID: PMC10025456 DOI: 10.3389/fimmu.2023.1125565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/23/2023] [Indexed: 03/08/2023] Open
Abstract
Zika virus is a member of the Flaviviridae family that has caused recent outbreaks associated with neurological malformations. Transmission of Zika virus occurs primarily via mosquito bite but also via sexual contact. Dendritic cells (DCs) and Langerhans cells (LCs) are important antigen presenting cells in skin and vaginal mucosa and paramount to induce antiviral immunity. To date, little is known about the first cells targeted by Zika virus in these tissues as well as subsequent dissemination of the virus to other target cells. We therefore investigated the role of DCs and LCs in Zika virus infection. Human monocyte derived DCs (moDCs) were isolated from blood and primary immature LCs were obtained from human skin and vaginal explants. Zika virus exposure to moDCs but not skin and vaginal LCs induced Type I Interferon responses. Zika virus efficiently infected moDCs but neither epidermal nor vaginal LCs became infected. Infection of a human full skin model showed that DC-SIGN expressing dermal DCs are preferentially infected over langerin+ LCs. Notably, not only moDCs but also skin and vaginal LCs efficiently transmitted Zika virus to target cells. Transmission by LCs was independent of direct infection of LCs. These data suggest that DCs and LCs are among the first target cells for Zika virus not only in the skin but also the genital tract. The role of vaginal LCs in dissemination of Zika virus from the vaginal mucosa further emphasizes the threat of sexual transmission and supports the investigation of prophylaxes that go beyond mosquito control.
Collapse
Affiliation(s)
- Julia Eder
- Department of Experimental Immunology, Amsterdam UMC location University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Esther Zijlstra-Willems
- Department of Experimental Immunology, Amsterdam UMC location University of Amsterdam, Amsterdam, Netherlands
| | - Gerrit Koen
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC location University of Amsterdam, Amsterdam, Netherlands
| | - Neeltje A. Kootstra
- Department of Experimental Immunology, Amsterdam UMC location University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Katja C. Wolthers
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC location University of Amsterdam, Amsterdam, Netherlands
| | - Teunis B. Geijtenbeek
- Department of Experimental Immunology, Amsterdam UMC location University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
- *Correspondence: Teunis B. Geijtenbeek,
| |
Collapse
|
29
|
Wikan N, Potikanond S, Hankittichai P, Thaklaewphan P, Monkaew S, Smith DR, Nimlamool W. Alpinetin Suppresses Zika Virus-Induced Interleukin-1β Production and Secretion in Human Macrophages. Pharmaceutics 2022; 14:pharmaceutics14122800. [PMID: 36559293 PMCID: PMC9782830 DOI: 10.3390/pharmaceutics14122800] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/08/2022] [Accepted: 12/11/2022] [Indexed: 12/16/2022] Open
Abstract
Zika virus (ZIKV) infection has been recognized to cause adverse sequelae in the developing fetus. Specially, this virus activates the excessive release of IL-1β causing inflammation and altered physiological functions in multiple organs. Although many attempts have been invested to develop vaccine, antiviral, and antibody therapies, development of agents focusing on limiting ZIKV-induced IL-1β release have not gained much attention. We aimed to study the effects of alpinetin (AP) on IL-1β production in human macrophage upon exposure to ZIKV. Our study demonstrated that ZIKV stimulated IL-1β release in the culture supernatant of ZIKV-infected cells, and AP could effectively reduce the level of this cytokine. AP exhibited no virucidal activities against ZIKV nor caused alteration in viral production. Instead, AP greatly inhibited intracellular IL-1β synthesis. Surprisingly, this compound did not inhibit ZIKV-induced activation of NF-κB and its nuclear translocation. However, AP could significantly inhibit ZIKV-induced p38 MAPK activation without affecting the phosphorylation status of ERK1/2 and JNK. These observations suggest the possibility that AP may reduce IL-1β production, in part, through suppressing p38 MAPK signaling. Our current study sheds light on the possibility of using AP as an alternative agent for treating complications caused by ZIKV infection-induced IL-1β secretion.
Collapse
Affiliation(s)
- Nitwara Wikan
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhon Pathom 73170, Thailand
| | - Saranyapin Potikanond
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Center for Development of Local Lanna Rice and Rice Products, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Phateep Hankittichai
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Phatarawat Thaklaewphan
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sathit Monkaew
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Duncan R. Smith
- Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhon Pathom 73170, Thailand
- Correspondence: (D.R.S.); (W.N.); Tel.: +66-53-934597 (W.N.)
| | - Wutigri Nimlamool
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Center for Development of Local Lanna Rice and Rice Products, Chiang Mai University, Chiang Mai 50200, Thailand
- Correspondence: (D.R.S.); (W.N.); Tel.: +66-53-934597 (W.N.)
| |
Collapse
|
30
|
The Innate Defense in the Zika-Infected Placenta. Pathogens 2022; 11:pathogens11121410. [PMID: 36558744 PMCID: PMC9787577 DOI: 10.3390/pathogens11121410] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 11/25/2022] Open
Abstract
Zika virus (ZIKV) is an arthropod-borne virus that belongs to the Flaviviridae family, genus Flavivirus and was first isolated 1947 in Uganda, Africa, from the serum of a sentinel Rhesus monkey. Since its discovery, the virus was responsible for major outbreaks in several different countries, being linked to severe complications in pregnant women, neonatal birth defects and the congenital zika syndrome. Maternal-fetal transmission of ZIKV can occur in all trimesters of pregnancy, and the role of the placenta and its cells in these cases is yet to be fully understood. The decidua basalis and chorionic villi, maternal-fetal components of the placenta, contain a rich immunological infiltrate composed by Hofbauer cells, mastocytes, dendritic cells and macrophages, primary cells of the innate immune response that have a role that still needs to be better investigated in ZIKV infection. Recent studies have already described several histopathological features and the susceptibility and permissiveness of placenta cells to infection by the Zika virus. In this review, we address some of the current knowledge on the innate immune responses against ZIKV, especially in the placenta.
Collapse
|
31
|
Espino A, Gouilly J, Chen Q, Colin P, Guerby P, Izopet J, Amara A, Tabiasco J, Al-Daccak R, El Costa H, Jabrane-Ferrat N. The mechanisms underlying the immune control of Zika virus infection at the maternal-fetal interface. Front Immunol 2022; 13:1000861. [PMID: 36483552 PMCID: PMC9723234 DOI: 10.3389/fimmu.2022.1000861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/28/2022] [Indexed: 11/23/2022] Open
Abstract
Unlike other Flaviviruses, Zika virus (ZIKV) infection during the first trimester of pregnancy causes severe pregnancy outcomes including the devastating microcephaly and diseases associated with placental dysfunctions. We have previously reported that the maternal decidua basalis, the major maternal-fetal interface, serves as a replication platform enabling virus amplification before dissemination to the fetal compartment. However, the rate of congenital infection is quite low, suggesting the presence of a natural barrier against viral infection. Using primary cells from first-trimester pregnancy samples, we investigated in this study how the maternal decidua can interfere with ZIKV infection. Our study reveals that whether through their interactions with dNK cells, the main immune cell population of the first-trimester decidua, or their production of proinflammatory cytokines, decidual stromal cells (DSCs) are the main regulators of ZIKV infection during pregnancy. We also validate the functional role of AXL as a crucial receptor for ZIKV entry in DSCs and demonstrate that targeted inhibition of ligand-receptor interaction at the early stage of the infection is effective in drastically reducing virus pathogenesis at the maternal-fetal interface. Collectively, our results provide insights into the mechanisms through which ZIKV infection and spreading can be limited. The strategy of circumventing viral entry at the maternal-fetus interface limits virus dissemination to fetal tissues, thereby preventing congenital abnormalities.
Collapse
Affiliation(s)
- Ana Espino
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), CNRS UMR5051, INSERM UMR1291, University of Toulouse III, Toulouse, France
| | - Jordi Gouilly
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), CNRS UMR5051, INSERM UMR1291, University of Toulouse III, Toulouse, France
| | - Qian Chen
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), CNRS UMR5051, INSERM UMR1291, University of Toulouse III, Toulouse, France
| | - Philippe Colin
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), CNRS UMR5051, INSERM UMR1291, University of Toulouse III, Toulouse, France
| | - Paul Guerby
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), CNRS UMR5051, INSERM UMR1291, University of Toulouse III, Toulouse, France,Department of Obstetrics and Gynecology, Paule de Viguier Hospital, Toulouse, France
| | - Jacques Izopet
- Department of Virology, Institut Fédératif de Biologie, Toulouse, France
| | - Ali Amara
- CNRS 7212, INSERM U944, University Paris Cité, Hôpital Saint-Louis, Paris, France
| | - Julie Tabiasco
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), CNRS UMR5051, INSERM UMR1291, University of Toulouse III, Toulouse, France
| | - Reem Al-Daccak
- INSERM UMRS976, University Paris Cité, Hôpital Saint-Louis, Paris, France
| | - Hicham El Costa
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), CNRS UMR5051, INSERM UMR1291, University of Toulouse III, Toulouse, France
| | - Nabila Jabrane-Ferrat
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), CNRS UMR5051, INSERM UMR1291, University of Toulouse III, Toulouse, France,*Correspondence: Nabila Jabrane-Ferrat,
| |
Collapse
|
32
|
Martin H, Barthelemy J, Chin Y, Bergamelli M, Moinard N, Cartron G, Tanguy Le Gac Y, Malnou CE, Simonin Y. Usutu Virus Infects Human Placental Explants and Induces Congenital Defects in Mice. Viruses 2022; 14:v14081619. [PMID: 35893684 PMCID: PMC9330037 DOI: 10.3390/v14081619] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/21/2022] [Accepted: 07/21/2022] [Indexed: 11/16/2022] Open
Abstract
Usutu virus (USUV) is a neurotropic mosquito-borne flavivirus that has dispersed quickly in Europe these past years. This arbovirus mainly follows an enzootic cycle involving mosquitoes and birds, but can also infect other mammals, causing notably sporadic cases in humans. Although it is mainly asymptomatic or responsible for mild clinical symptoms, USUV has been associated with neurological disorders, such as encephalitis and meningoencephalitis, highlighting the potential health threat of this virus. Among the different transmission routes described for other flaviviruses, the capacity for some of them to be transmitted vertically has been demonstrated, notably for Zika virus or West Nile virus, which are closely related to USUV. To evaluate the ability of USUV to replicate in the placenta and gain access to the fetus, we combined the use of several trophoblast model cell lines, ex vivo human placental explant cultures from first and third trimester of pregnancy, and in vivo USUV-infected pregnant mice. Our data demonstrate that human placental cells and tissues are permissive to USUV replication, and suggest that viral transmission can occur in mice during gestation. Hence, our observations suggest that USUV could be efficiently transmitted by the vertical route.
Collapse
Affiliation(s)
- Hélène Martin
- Institut Toulousain des Maladies Infectieuses et Inflammatoires (Infinity), Université de Toulouse, INSERM, CNRS, UPS, Toulouse, France; (H.M.); (Y.C.); (M.B.)
| | - Jonathan Barthelemy
- Pathogenesis and Control of Chronic and Emerging Infections, University of Montpellier, INSERM, EFS, Montpellier, France;
| | - Yamileth Chin
- Institut Toulousain des Maladies Infectieuses et Inflammatoires (Infinity), Université de Toulouse, INSERM, CNRS, UPS, Toulouse, France; (H.M.); (Y.C.); (M.B.)
- Instituto Conmemorativo Gorgas de Estudios de la Salud, Ciudad de Panamá, Panamá
| | - Mathilde Bergamelli
- Institut Toulousain des Maladies Infectieuses et Inflammatoires (Infinity), Université de Toulouse, INSERM, CNRS, UPS, Toulouse, France; (H.M.); (Y.C.); (M.B.)
| | - Nathalie Moinard
- Développement Embryonnaire, Fertilité, Environnement (DEFE), INSERM UMR 1203, Université de Toulouse et Université de Montpellier, France;
- CECOS, Groupe d’Activité de Médecine de la Reproduction, CHU Toulouse, Hôpital Paule de Viguier, Toulouse, France
| | - Géraldine Cartron
- CHU Toulouse, Hôpital Paule de Viguier, Service de Gynécologie Obstétrique, Toulouse, France; (G.C.); (Y.T.L.G.)
| | - Yann Tanguy Le Gac
- CHU Toulouse, Hôpital Paule de Viguier, Service de Gynécologie Obstétrique, Toulouse, France; (G.C.); (Y.T.L.G.)
| | - Cécile E. Malnou
- Institut Toulousain des Maladies Infectieuses et Inflammatoires (Infinity), Université de Toulouse, INSERM, CNRS, UPS, Toulouse, France; (H.M.); (Y.C.); (M.B.)
- Correspondence: (C.E.M.); (Y.S.)
| | - Yannick Simonin
- Pathogenesis and Control of Chronic and Emerging Infections, University of Montpellier, INSERM, EFS, Montpellier, France;
- Correspondence: (C.E.M.); (Y.S.)
| |
Collapse
|
33
|
Immunological imbalance in microcephalic children with congenital Zika virus syndrome. Med Microbiol Immunol 2022; 211:219-235. [PMID: 35857104 DOI: 10.1007/s00430-022-00746-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 06/30/2022] [Indexed: 11/25/2022]
Abstract
Microcephalic children due congenital Zika virus syndrome (CZS) present neurological symptoms already well described. However, several other alterations can also be observed. Here, we aimed to evaluate the immune system of microcephaly CZS children. We showed that these patients have enlarged thymus, spleen and cervical lymph nodes, analysed by ultrasound and compared to the reference values for healthy children. In the periphery, they have an increase in eosinophil count and morphological alterations as hypersegmented neutrophils and atypical lymphocytes, even in the absence of urinary tract infections, parasitological infections or other current symptomatic infections. Microcephalic children due CZS also have high levels of IFN-γ, IL-2, IL-4, IL-5 and type I IFNs, compared to healthy controls. In addition, this population showed a deficient cellular immune memory as demonstrated by the low reactivity to the tuberculin skin test even though they had been vaccinated with BCG less than 2 years before the challenge with the PPD. Together, our data demonstrate for the first time that CZS can cause alterations in primary and secondary lymphoid organs and also alters the morphology and functionality of the immune system cells, which broadens the spectrum of CZS symptoms. This knowledge may assist the development of specific therapeutic and more efficient vaccination schemes for this population of patients.
Collapse
|
34
|
Pathogenesis and Manifestations of Zika Virus-Associated Ocular Diseases. Trop Med Infect Dis 2022; 7:tropicalmed7060106. [PMID: 35736984 PMCID: PMC9229560 DOI: 10.3390/tropicalmed7060106] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/02/2022] [Accepted: 06/07/2022] [Indexed: 12/18/2022] Open
Abstract
Zika virus (ZIKV) is mosquito-borne flavivirus that caused a significant public health concern in French Polynesia and South America. The two major complications that gained the most media attention during the ZIKV outbreak were Guillain-Barré syndrome (GBS) and microcephaly in newborn infants. The two modes of ZIKV transmission are the vector-borne and non-vector borne modes of transmission. Aedes aegypti and Aedes albopictus are the most important vectors of ZIKV. ZIKV binds to surface receptors on permissive cells that support infection and replication, such as neural progenitor cells, dendritic cells, dermal fibroblasts, retinal pigment epithelial cells, endothelial cells, macrophages, epidermal keratinocytes, and trophoblasts to cause infection. The innate immune response to ZIKV infection is mediated by interferons and natural killer cells, whereas the adaptive immune response is mediated by CD8+T cells, Th1 cells, and neutralizing antibodies. The non-structural proteins of ZIKV, such as non-structural protein 5, are involved in the evasion of the host's immune defense mechanisms. Ocular manifestations of ZIKV arise from the virus' ability to cross both the blood-brain barrier and blood-retinal barrier, as well as the blood-aqueous barrier. Most notably, this results in the development of GBS, a rare neurological complication in acute ZIKV infection. This can yield ocular symptoms and signs. Additionally, infants to whom ZIKV is transmitted congenitally develop congenital Zika syndrome (CZS). The ocular manifestations are widely variable, and include nonpurulent conjunctivitis, anterior uveitis, keratitis, trabeculitis, congenital glaucoma, microphthalmia, hypoplastic optic disc, and optic nerve pallor. There are currently no FDA approved therapeutic agents for treating ZIKV infections and, as such, a meticulous ocular examination is an important aspect of the diagnosis. This review utilized several published articles regarding the ocular findings of ZIKV, antiviral immune responses to ZIKV infection, and the pathogenesis of ocular manifestations in individuals with ZIKV infection. This review summarizes the current knowledge on the viral immunology of ZIKV, interactions between ZIKV and the host's immune defense mechanism, pathological mechanisms, as well as anterior and posterior segment findings associated with ZIKV infection.
Collapse
|
35
|
Block LN, Schmidt JK, Keuler NS, McKeon MC, Bowman BD, Wiepz GJ, Golos TG. Zika virus impacts extracellular vesicle composition and cellular gene expression in macaque early gestation trophoblasts. Sci Rep 2022; 12:7348. [PMID: 35513694 PMCID: PMC9072346 DOI: 10.1038/s41598-022-11275-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 04/13/2022] [Indexed: 11/26/2022] Open
Abstract
Zika virus (ZIKV) infection at the maternal-placental interface is associated with adverse pregnancy outcomes including fetal demise and pregnancy loss. To determine how infection impacts placental trophoblasts, we utilized rhesus macaque trophoblast stem cells (TSC) that can be differentiated into early gestation syncytiotrophoblasts (ST) and extravillous trophoblasts (EVT). TSCs and STs, but not EVTs, were highly permissive to productive infection with ZIKV strain DAK AR 41524. The impact of ZIKV on the cellular transcriptome showed that infection of TSCs and STs increased expression of immune related genes, including those involved in type I and type III interferon responses. ZIKV exposure altered extracellular vesicle (EV) mRNA, miRNA and protein cargo, including ZIKV proteins, regardless of productive infection. These findings suggest that early gestation macaque TSCs and STs are permissive to ZIKV infection, and that EV analysis may provide a foundation for identifying non-invasive biomarkers of placental infection in a highly translational model.
Collapse
Affiliation(s)
- Lindsey N. Block
- grid.14003.360000 0001 2167 3675Wisconsin National Primate Research Center, University of Wisconsin-Madison, 1223 Capitol Ct., Madison, WI 53715-1299 USA ,grid.14003.360000 0001 2167 3675Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI USA ,grid.25879.310000 0004 1936 8972Present Address: University of Pennsylvania, Philadelphia, PA USA
| | - Jenna Kropp Schmidt
- grid.14003.360000 0001 2167 3675Wisconsin National Primate Research Center, University of Wisconsin-Madison, 1223 Capitol Ct., Madison, WI 53715-1299 USA
| | - Nicholas S. Keuler
- grid.14003.360000 0001 2167 3675Department of Statistics, University of Wisconsin-Madison, Madison, WI USA
| | - Megan C. McKeon
- grid.14003.360000 0001 2167 3675Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI USA
| | - Brittany D. Bowman
- grid.14003.360000 0001 2167 3675Wisconsin National Primate Research Center, University of Wisconsin-Madison, 1223 Capitol Ct., Madison, WI 53715-1299 USA ,grid.266813.80000 0001 0666 4105Present Address: University of Nebraska Medical Center, Omaha, NE USA
| | - Gregory J. Wiepz
- grid.14003.360000 0001 2167 3675Wisconsin National Primate Research Center, University of Wisconsin-Madison, 1223 Capitol Ct., Madison, WI 53715-1299 USA
| | - Thaddeus G. Golos
- grid.14003.360000 0001 2167 3675Wisconsin National Primate Research Center, University of Wisconsin-Madison, 1223 Capitol Ct., Madison, WI 53715-1299 USA ,grid.14003.360000 0001 2167 3675Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI USA ,grid.14003.360000 0001 2167 3675Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI USA
| |
Collapse
|
36
|
Catala A, Stone M, Busch MP, D’Alessandro A. Reprogramming of red blood cell metabolism in Zika virus-infected donors. Transfusion 2022; 62:1045-1064. [PMID: 35285520 PMCID: PMC9086146 DOI: 10.1111/trf.16851] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/24/2022] [Accepted: 02/24/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Diseases caused by arthropod-borne viruses remain a burden to global health; in particular, Zika virus (ZIKV) has been reported in 87 countries and territories. In healthy blood donors, ZIKV RNA can be detected in red blood cells (RBCs) months after infection, clearance of detectable nucleic acid in plasma, and seroconversion. However, little information is available on the impact of ZIKV infection to metabolism. STUDY DESIGN AND METHODS We applied mass spectrometry-based metabolomics and lipidomics approaches to investigate the impact of ZIKV infection on RBCs over the course of infection. ZIKV-infected blood donors (n = 25) were identified through molecular and serologic methods, which included nucleic acid amplification testing and real-time polymerase chain reaction (PCR) for detection of ZIKV RNA and enzyme-linked immunosorbent assay (ELISA) for detection of flavivirus-specific IgM and IgG. RESULTS In ZIKV RNA-positive donors, we observed lower glucose and lactate levels, and higher levels of ribose phosphate, suggestive of the activation of the pentose phosphate pathway. The top pathways altered in RBCs from ZIKV-IgM-positive donors include amino acid metabolism and biosynthesis, fatty acid metabolism and biosynthesis, linoleic acid and arachidonate metabolism and glutathione metabolism. RBCs from ZIKV-infected donors had increased levels of early glycolytic metabolites, and higher levels of metabolites of the pentose phosphate pathway. Alterations in acyl-carnitine and fatty acid metabolism are consistent with impaired membrane lipid homeostasis in RBCs from ZIKV IgM positive donors. CONCLUSION RBC from healthy blood donors who had been infected by ZIKV are characterized by long-lasting metabolic alterations even months after infection has resolved.
Collapse
Affiliation(s)
- Alexis Catala
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Program in Structural Biology and Biochemistry, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Mars Stone
- Vitalant Research Institute, San Francisco, CA, USA
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Michael P. Busch
- Vitalant Research Institute, San Francisco, CA, USA
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Angelo D’Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Program in Structural Biology and Biochemistry, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
37
|
ZIKV replication is differential in explants and cells of human placental which is suppressed by HSV-2 coinfection. Virology 2022; 570:45-56. [DOI: 10.1016/j.virol.2022.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 02/25/2022] [Accepted: 03/17/2022] [Indexed: 11/19/2022]
|
38
|
Fakonti G, Pantazi P, Bokun V, Holder B. Placental Macrophage (Hofbauer Cell) Responses to Infection During Pregnancy: A Systematic Scoping Review. Front Immunol 2022; 12:756035. [PMID: 35250964 PMCID: PMC8895398 DOI: 10.3389/fimmu.2021.756035] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/30/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Congenital infection of the fetus via trans-placental passage of pathogens can result in severe morbidity and mortality. Even without transmission to the fetus, infection of the placenta itself is associated with pregnancy complications including pregnancy loss and preterm birth. Placental macrophages, also termed Hofbauer cells (HBCs), are fetal-origin macrophages residing in the placenta that are likely involved in responding to placental infection and protection of the developing fetus. As HBCs are the only immune cell present in the villous placenta, they represent one of the final opportunities for control of infection and prevention of passage to the developing fetus. OBJECTIVE AND RATIONALE The objective of this review was to provide a systematic overview of the literature regarding HBC responses during infection in pregnancy, including responses to viral, bacterial, and parasitic pathogens. METHODS PubMed and Scopus were searched on May 20th, 2021, with no limit on publication date, to identify all papers that have studied placental macrophages/Hofbauer cells in the context of infection. The following search strategy was utilized: (hofbauer* OR "hofbauer cells" OR "hofbauer cell" OR "placental macrophage" OR "placental macrophages") AND [infect* OR virus OR viral OR bacteri* OR parasite* OR pathogen* OR LPS OR "poly(i:c)" OR toxoplasm* OR microb* OR HIV)]. OUTCOMES 86 studies were identified for review. This included those that investigated HBCs in placentas from pregnancies complicated by maternal infection and in vitro studies investigating HBC responses to pathogens or Pathogen-Associated Molecular Patterns (PAMPs). HBCs can be infected by a variety of pathogens, and HBC hyperplasia was a common observation. HBCs respond to pathogen infection and PAMPs by altering their transcriptional, translational and secretion profiles. Co-culture investigations demonstrate that they can replicate and transmit pathogens to other cells. In other cases, they may eliminate the pathogen through a variety of mechanisms including phagocytosis, cytokine-mediated pathogen elimination, release of macrophage extracellular traps and HBC-antibody-mediated neutralization. HBC responses differ across gestation and may be influenced by pre-existing immunity. Clinical information, including gestational age at infection, gestational age of the samples, mode of sample collection and pregnancy outcome were missing for the majority of studies.
Collapse
Affiliation(s)
| | | | | | - Beth Holder
- Institute of Reproductive and Developmental Biology, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| |
Collapse
|
39
|
Carrera J, Trenerry AM, Simmons CP, Mackenzie JM. Flavivirus replication kinetics in early-term placental cell lines with different differentiation pathways. Virol J 2021; 18:251. [PMID: 34906166 PMCID: PMC8670020 DOI: 10.1186/s12985-021-01720-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 11/29/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The uncontrollable spread of Zika virus (ZIKV) in the Americas during 2015-2017, and its causal link to microcephaly in newborns and Guillain-Barré syndrome in adults, led the World Health Organisation to declare it a global public health emergency. One of the most notable features of ZIKV pathogenesis was the ability of the virus to pass the placental barrier to infect the growing foetus. This pathogenic trait had not been observed previously for medically important flaviviruses, including dengue and yellow fever viruses. METHODS In this study we evaluated the replication kinetics of ZIKV and the related encephalitic flavivirus West Nile strain Kunjin virus (WNVKUN) in early-term placental cell lines. RESULTS We have observed that WNVKUN in fact replicates with a greater rate and to higher titres that ZIKV in these cell lines. CONCLUSIONS These results would indicate the potential for all flaviviruses to replicate in placental tissue but it is the ability to cross the placenta itself that is the restrictive factor in the clinical progression and presentation of congenital Zika syndrome.
Collapse
Affiliation(s)
- Julio Carrera
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty for Infection and Immunity, Parkville, Melbourne, VIC, 3010, Australia.,Institute of Vector-Borne Diseases, Monash University, Clayton, VIC, 3800, Australia
| | - Alice M Trenerry
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty for Infection and Immunity, Parkville, Melbourne, VIC, 3010, Australia
| | - Cameron P Simmons
- Institute of Vector-Borne Diseases, Monash University, Clayton, VIC, 3800, Australia
| | - Jason M Mackenzie
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty for Infection and Immunity, Parkville, Melbourne, VIC, 3010, Australia.
| |
Collapse
|
40
|
Azamor T, Cunha DP, da Silva AMV, Bezerra OCDL, Ribeiro-Alves M, Calvo TL, Kehdy FDSG, Manta FDN, Pinto TGDT, Ferreira LP, Portari EA, Guida LDC, Gomes L, Moreira MEL, de Carvalho EF, Cardoso CC, Muller M, Ano Bom APD, Neves PCDC, Vasconcelos Z, Moraes MO. Congenital Zika Syndrome Is Associated With Interferon Alfa Receptor 1. Front Immunol 2021; 12:764746. [PMID: 34899713 PMCID: PMC8657619 DOI: 10.3389/fimmu.2021.764746] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 11/08/2021] [Indexed: 11/13/2022] Open
Abstract
Host factors that influence Congenital Zika Syndrome (CZS) outcome remain elusive. Interferons have been reported as the main antiviral factor in Zika and other flavivirus infections. Here, we accessed samples from 153 pregnant women (77 without and 76 with CZS) and 143 newborns (77 without and 66 with CZS) exposed to ZIKV conducted a case-control study to verify whether interferon alfa receptor 1 (IFNAR1) and interferon lambda 2 and 4 (IFNL2/4) single nucleotide polymorphisms (SNPs) contribute to CZS outcome, and characterized placenta gene expression profile at term. Newborns carrying CG/CC genotypes of rs2257167 in IFNAR1 presented higher risk of developing CZS (OR=3.41; IC=1.35-8.60; Pcorrected=0.032). No association between IFNL SNPs and CZS was observed. Placenta from CZS cases displayed lower levels of IFNL2 and ISG15 along with higher IFIT5. The rs2257167 CG/CC placentas also demonstrated high levels of IFIT5 and inflammation-related genes. We found CZS to be related with exacerbated type I IFN and insufficient type III IFN in placenta at term, forming an unbalanced response modulated by the IFNAR1 rs2257167 genotype. Despite of the low sample size se findings shed light on the host-pathogen interaction focusing on the genetically regulated type I/type III IFN axis that could lead to better management of Zika and other TORCH (Toxoplasma, Others, Rubella, Cytomegalovirus, Herpes) congenital infections.
Collapse
Affiliation(s)
- Tamiris Azamor
- Laboratório de Hanseníase, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
- Vice-Diretoria de Desenvolvimento Tecnológico, Instituto de Tecnologia em Imunobiológicos, Fiocruz, Rio de Janeiro, Brazil
| | - Daniela Prado Cunha
- Unidade de Pesquisa Clínica, Instituto Nacional de Saúde da Mulher, da Criança e do Adolescente Fernandes Figueira, Fiocruz, Rio de Janeiro, Brazil
| | - Andréa Marques Vieira da Silva
- Vice-Diretoria de Desenvolvimento Tecnológico, Instituto de Tecnologia em Imunobiológicos, Fiocruz, Rio de Janeiro, Brazil
| | | | - Marcelo Ribeiro-Alves
- Laboratório de Pesquisa Clínica em DST/AIDS, Instituto Nacional de Infectologia, Fiocruz, Rio de Janeiro, Brazil
| | - Thyago Leal Calvo
- Laboratório de Hanseníase, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | | | | | | | | | - Elyzabeth Avvad Portari
- Unidade de Pesquisa Clínica, Instituto Nacional de Saúde da Mulher, da Criança e do Adolescente Fernandes Figueira, Fiocruz, Rio de Janeiro, Brazil
| | - Letícia da Cunha Guida
- Unidade de Pesquisa Clínica, Instituto Nacional de Saúde da Mulher, da Criança e do Adolescente Fernandes Figueira, Fiocruz, Rio de Janeiro, Brazil
| | - Leonardo Gomes
- Unidade de Pesquisa Clínica, Instituto Nacional de Saúde da Mulher, da Criança e do Adolescente Fernandes Figueira, Fiocruz, Rio de Janeiro, Brazil
| | - Maria Elisabeth Lopes Moreira
- Unidade de Pesquisa Clínica, Instituto Nacional de Saúde da Mulher, da Criança e do Adolescente Fernandes Figueira, Fiocruz, Rio de Janeiro, Brazil
| | | | - Cynthia Chester Cardoso
- Laboratório de Virologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcelo Muller
- Vice-Diretoria de Desenvolvimento Tecnológico, Instituto de Tecnologia em Imunobiológicos, Fiocruz, Rio de Janeiro, Brazil
| | - Ana Paula Dinis Ano Bom
- Vice-Diretoria de Desenvolvimento Tecnológico, Instituto de Tecnologia em Imunobiológicos, Fiocruz, Rio de Janeiro, Brazil
| | | | - Zilton Vasconcelos
- Unidade de Pesquisa Clínica, Instituto Nacional de Saúde da Mulher, da Criança e do Adolescente Fernandes Figueira, Fiocruz, Rio de Janeiro, Brazil
| | - Milton Ozório Moraes
- Laboratório de Hanseníase, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| |
Collapse
|
41
|
Haese NN, Roberts VHJ, Chen A, Streblow DN, Morgan TK, Hirsch AJ. Nonhuman Primate Models of Zika Virus Infection and Disease during Pregnancy. Viruses 2021; 13:2088. [PMID: 34696518 PMCID: PMC8539636 DOI: 10.3390/v13102088] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/12/2021] [Accepted: 10/14/2021] [Indexed: 02/07/2023] Open
Abstract
Since the explosive outbreak of Zika virus in Brazil and South/Central America in 2015-2016, the frequency of infections has subsided, but Zika virus remains present in this region as well as other tropical and sub-tropical areas of the globe. The most alarming aspect of Zika virus infection is its association with severe birth defects when infection occurs in pregnant women. Understanding the mechanism of Zika virus pathogenesis, which comprises features unique to Zika virus as well as shared with other teratogenic pathogens, is key to future prophylactic or therapeutic interventions. Nonhuman primate-based research has played a significant role in advancing our knowledge of Zika virus pathogenesis, especially with regard to fetal infection. This review summarizes what we have learned from these models and potential future research directions.
Collapse
Affiliation(s)
- Nicole N. Haese
- The Vaccine & Gene Institute, Oregon Health and Science University, 505 NW 185th Ave, Beaverton, OR 97006, USA; (N.N.H.); (D.N.S.)
| | - Victoria H. J. Roberts
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, 505 NW 185th Ave, Beaverton, OR 97006, USA;
| | - Athena Chen
- Department of Pathology, Oregon Health and Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA; (A.C.); (T.K.M.)
| | - Daniel N. Streblow
- The Vaccine & Gene Institute, Oregon Health and Science University, 505 NW 185th Ave, Beaverton, OR 97006, USA; (N.N.H.); (D.N.S.)
- Division of Pathobiology & Immunology, Oregon National Primate Research Center, 505 NW 185th Ave, Beaverton, OR 97006, USA
| | - Terry K. Morgan
- Department of Pathology, Oregon Health and Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA; (A.C.); (T.K.M.)
- Department of Obstetrics and Gynecology, Oregon Health and Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA
| | - Alec J. Hirsch
- The Vaccine & Gene Institute, Oregon Health and Science University, 505 NW 185th Ave, Beaverton, OR 97006, USA; (N.N.H.); (D.N.S.)
- Division of Pathobiology & Immunology, Oregon National Primate Research Center, 505 NW 185th Ave, Beaverton, OR 97006, USA
| |
Collapse
|
42
|
Are the Organoid Models an Invaluable Contribution to ZIKA Virus Research? Pathogens 2021; 10:pathogens10101233. [PMID: 34684182 PMCID: PMC8537471 DOI: 10.3390/pathogens10101233] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/15/2021] [Accepted: 09/20/2021] [Indexed: 12/16/2022] Open
Abstract
In order to prevent new pathogen outbreaks and avoid possible new global health threats, it is important to study the mechanisms of microbial pathogenesis, screen new antiviral agents and test new vaccines using the best methods. In the last decade, organoids have provided a groundbreaking opportunity for modeling pathogen infections in human brains, including Zika virus (ZIKV) infection. ZIKV is a member of the Flavivirus genus, and it is recognized as an emerging infectious agent and a serious threat to global health. Organoids are 3D complex cellular models that offer an in-scale organ that is physiologically alike to the original one, useful for exploring the mechanisms behind pathogens infection; additionally, organoids integrate data generated in vitro with traditional tools and often support those obtained in vivo with animal model. In this mini-review the value of organoids for ZIKV research is examined and sustained by the most recent literature. Within a 3D viewpoint, tissue engineered models are proposed as future biological systems to help in deciphering pathogenic processes and evaluate preventive and therapeutic strategies against ZIKV. The next steps in this field constitute a challenge that may protect people and future generations from severe brain defects.
Collapse
|
43
|
Shmeleva EV, Colucci F. Maternal natural killer cells at the intersection between reproduction and mucosal immunity. Mucosal Immunol 2021; 14:991-1005. [PMID: 33903735 PMCID: PMC8071844 DOI: 10.1038/s41385-020-00374-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/24/2020] [Accepted: 12/02/2020] [Indexed: 02/07/2023]
Abstract
Many maternal immune cells populate the decidua, which is the mucosal lining of the uterus transformed during pregnancy. Here, abundant natural killer (NK) cells and macrophages help the uterine vasculature adapt to fetal demands for gas and nutrients, thereby supporting fetal growth. Fetal trophoblast cells budding off the forming placenta and invading deep into maternal tissues come into contact with these and other immune cells. Besides their homeostatic functions, decidual NK cells can respond to pathogens during infection, but in doing so, they may become conflicted between destroying the invader and sustaining fetoplacental growth. We review how maternal NK cells balance their double duty both in the local microenvironment of the uterus and systemically, during toxoplasmosis, influenza, cytomegalovirus, malaria and other infections that threat pregnancy. We also discuss recent developments in the understanding of NK-cell responses to SARS-Cov-2 infection and the possible dangers of COVID-19 during pregnancy.
Collapse
Affiliation(s)
- Evgeniya V Shmeleva
- Department of Obstetrics & Gynaecology, University of Cambridge, National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, CB2 0SW, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| | - Francesco Colucci
- Department of Obstetrics & Gynaecology, University of Cambridge, National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, CB2 0SW, UK.
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK.
| |
Collapse
|
44
|
Differences in Placental Histology Between Zika Virus-infected Teenagers and Older Women. Int J Gynecol Pathol 2021; 41:389-396. [PMID: 34347668 DOI: 10.1097/pgp.0000000000000807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In pregnant women, Zika virus (ZIKV) is associated with a congenital syndrome, most frequently involving damage to embryo brain formation and the development of microcephaly. The mechanism(s) by which ZIKV enters the maternal-fetal interface and is transmitted to the fetus remains incompletely determined. We sought to evaluate histologic changes in the placenta of ZIKV-infected pregnant women and to determine if this varied by maternal age. Placental samples were obtained from 66 women, 33 of whom were positive for ZIKV. Histologic evaluations were performed on 4 areas of the placenta: fetal surface, maternal surface, umbilical cord, and membranes. Samples were analyzed by the tissue microarray technique and tested for CD4, CD8, CD20, CD68, FOXP3, and cyclooxygenase-2 expression. Data were evaluated using Fisher exact test. ZIKV infection was more frequent in women less than 18 yr of age (9/11, 81.8%) than in women above 18 yr old (24/55, 43.6%) (P=0.0440). ZIKV detection was associated with neutrophilic chorioamnionitis (P=0.0332) and with septal (P=0.0244) and villous (P=0.0534) calcification. Hofbauer cell hyperplasia (P=0.0260) and cyclooxygenase-2 expression (P=0.0346) were more prevalent in ZIKV-positive women aged 18 yr and below than in the older ZIKV-positive women. ZIKV infection during pregnancy occurs more frequently in adolescents and induces higher rates of damage at the maternal-fetal interface than in older women.
Collapse
|
45
|
Espino A, El Costa H, Tabiasco J, Al-Daccak R, Jabrane-Ferrat N. Innate Immune Response to Viral Infections at the Maternal-Fetal Interface in Human Pregnancy. Front Med (Lausanne) 2021; 8:674645. [PMID: 34368184 PMCID: PMC8339430 DOI: 10.3389/fmed.2021.674645] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 06/25/2021] [Indexed: 12/21/2022] Open
Abstract
The placenta, the first and largest organ to develop after conception, not only nurtures and promotes the development of the conceptus, but, it also functions as a barrier against invading pathogens. Early phases of pregnancy are associated with expansion of specific subsets of Natural Killer cells (dNK) and macrophages (dMφ) at the maternal uterine mucosa, the basal decidua. In concert with cells of fetal origin, dNK cells, and dMφ orchestrate all steps of placenta and fetus development, and provide the first line of defense to limit vertical transmission. However, some pathogens that infect the mother can overcome this protective barrier and jeopardize the fetus health. In this review, we will discuss how members of the classical TORCH family (Toxoplasma, Other, Rubella, Cytomegalovirus, and Herpes simplex virus) and some emerging viruses (Hepatitis E virus, Zika virus, and SARS-CoV2) can afford access to the placental fortress. We will also discuss how changes in the intrauterine environment as a consequence of maternal immune cell activation contribute to placental diseases and devastating pregnancy outcomes.
Collapse
Affiliation(s)
- Ana Espino
- Infinity, Université de Toulouse - CNRS - Inserm, CHU Purpan, Toulouse, France
| | - Hicham El Costa
- Infinity, Université de Toulouse - CNRS - Inserm, CHU Purpan, Toulouse, France
| | - Julie Tabiasco
- Infinity, Université de Toulouse - CNRS - Inserm, CHU Purpan, Toulouse, France
| | - Reem Al-Daccak
- Inserm UMRS976 - Université de Paris - Hôpital Saint-Louis, Paris, France
| | | |
Collapse
|
46
|
Zika virus infection of the placenta alters extracellular matrix proteome. J Mol Histol 2021; 53:199-214. [PMID: 34264436 PMCID: PMC8760362 DOI: 10.1007/s10735-021-09994-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 06/03/2021] [Indexed: 11/22/2022]
Abstract
Zika virus (ZIKV) infection has been associated with fetal abnormalities by compromising placental integrity, but the mechanisms by which this occurs are unknown. Flavivirus can deregulate the host proteome, especially extracellular matrix (ECM) proteins. We hypothesize that a deregulation of specific ECM proteins by ZIKV, affects placental integrity. Using twelve different placental samples collected during the 2016 ZIKV Puerto Rico epidemic, we compared the proteome of five ZIKV infected samples with four uninfected controls followed by validation of most significant proteins by immunohistochemistry. Quantitative proteomics was performed using tandem mass tag TMT10plex™ Isobaric Label Reagent Set followed by Q Exactive™ Hybrid Quadrupole Orbitrap Mass Spectrometry. Identification of proteins was performed using Proteome Discoverer 2.1. Proteins were compared based on the fold change and p value using Limma software. Significant proteins pathways were analyzed using Ingenuity Pathway (IPA). TMT analysis showed that ZIKV infected placentas had 94 reviewed differentially abundant proteins, 32 more abundant, and 62 less abundant. IPA analysis results indicate that 45 of the deregulated proteins are cellular components of the ECM and 16 play a role in its structure and organization. Among the most significant proteins in ZIKV positive placenta were fibronectin, bone marrow proteoglycan, and fibrinogen. Of these, fibrinogen was further validated by immunohistochemistry in 12 additional placenta samples and found significantly increased in ZIKV infected placentas. The upregulation of this protein in the placental tissue suggests that ZIKV infection is promoting the coagulation of placental tissue and restructuration of ECM potentially affecting the integrity of the tissue and facilitating dissemination of the virus from mother to the fetus.
Collapse
|
47
|
Li M, Brokaw A, Furuta AM, Coler B, Obregon-Perko V, Chahroudi A, Wang HY, Permar SR, Hotchkiss CE, Golos TG, Rajagopal L, Adams Waldorf KM. Non-human Primate Models to Investigate Mechanisms of Infection-Associated Fetal and Pediatric Injury, Teratogenesis and Stillbirth. Front Genet 2021; 12:680342. [PMID: 34290739 PMCID: PMC8287178 DOI: 10.3389/fgene.2021.680342] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 05/25/2021] [Indexed: 12/25/2022] Open
Abstract
A wide array of pathogens has the potential to injure the fetus and induce teratogenesis, the process by which mutations in fetal somatic cells lead to congenital malformations. Rubella virus was the first infectious disease to be linked to congenital malformations due to an infection in pregnancy, which can include congenital cataracts, microcephaly, hearing impairment and congenital heart disease. Currently, human cytomegalovirus (HCMV) is the leading infectious cause of congenital malformations globally, affecting 1 in every 200 infants. However, our knowledge of teratogenic viruses and pathogens is far from complete. New emerging infectious diseases may induce teratogenesis, similar to Zika virus (ZIKV) that caused a global pandemic in 2016-2017; thousands of neonates were born with congenital microcephaly due to ZIKV exposure in utero, which also included a spectrum of injuries to the brain, eyes and spinal cord. In addition to congenital anomalies, permanent injury to fetal and neonatal organs, preterm birth, stillbirth and spontaneous abortion are known consequences of a broader group of infectious diseases including group B streptococcus (GBS), Listeria monocytogenes, Influenza A virus (IAV), and Human Immunodeficiency Virus (HIV). Animal models are crucial for determining the mechanism of how these various infectious diseases induce teratogenesis or organ injury, as well as testing novel therapeutics for fetal or neonatal protection. Other mammalian models differ in many respects from human pregnancy including placentation, labor physiology, reproductive tract anatomy, timeline of fetal development and reproductive toxicology. In contrast, non-human primates (NHP) most closely resemble human pregnancy and exhibit key similarities that make them ideal for research to discover the mechanisms of injury and for testing vaccines and therapeutics to prevent teratogenesis, fetal and neonatal injury and adverse pregnancy outcomes (e.g., stillbirth or spontaneous abortion). In this review, we emphasize key contributions of the NHP model pre-clinical research for ZIKV, HCMV, HIV, IAV, L. monocytogenes, Ureaplasma species, and GBS. This work represents the foundation for development and testing of preventative and therapeutic strategies to inhibit infectious injury of human fetuses and neonates.
Collapse
Affiliation(s)
- Miranda Li
- Department of Obstetrics & Gynecology, University of Washington, Seattle, WA, United States
- Department of Biological Sciences, Columbia University, New York, NY, United States
| | - Alyssa Brokaw
- Department of Global Health, University of Washington, Seattle, WA, United States
| | - Anna M. Furuta
- Department of Global Health, University of Washington, Seattle, WA, United States
| | - Brahm Coler
- Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| | - Veronica Obregon-Perko
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
| | - Ann Chahroudi
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States
- Center for Childhood Infections and Vaccines of Children’s Healthcare of Atlanta and Emory University, Atlanta, GA, United States
| | - Hsuan-Yuan Wang
- Department of Pediatrics, Weill Cornell Medicine, New York, NY, United States
| | - Sallie R. Permar
- Department of Pediatrics, Weill Cornell Medicine, New York, NY, United States
| | - Charlotte E. Hotchkiss
- Washington National Primate Research Center, University of Washington, Seattle, WA, United States
| | - Thaddeus G. Golos
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, United States
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI, United States
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, United States
| | - Lakshmi Rajagopal
- Department of Global Health, University of Washington, Seattle, WA, United States
- Department of Pediatrics, University of Washington, Seattle, WA, United States
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, United States
| | - Kristina M. Adams Waldorf
- Department of Obstetrics & Gynecology, University of Washington, Seattle, WA, United States
- Department of Global Health, University of Washington, Seattle, WA, United States
- Department of Obstetrics and Gynecology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
48
|
Seong RK, Lee JK, Cho GJ, Kumar M, Shin OS. mRNA and miRNA profiling of Zika virus-infected human umbilical cord mesenchymal stem cells identifies miR-142-5p as an antiviral factor. Emerg Microbes Infect 2021; 9:2061-2075. [PMID: 32902370 PMCID: PMC7534337 DOI: 10.1080/22221751.2020.1821581] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Zika virus (ZIKV) infection during pregnancy is associated with congenital brain abnormalities, a finding that highlights the urgent need to understand mother-to-fetus transmission mechanisms. Human umbilical cord mesenchymal stem cells (hUCMSCs) are susceptible to ZIKV infection but the underlying mechanisms of viral susceptibility remain largely unexplored. In this study, we have characterized and compared host mRNA and miRNA expression profiles in hUCMSCs after infection with two lineages of ZIKV, African (MR766) and Asian (PRVABC59). RNA sequencing analysis identified differentially expressed genes involved in anti-viral immunity and mitochondrial dynamics following ZIKV infection. In particular, ZIKV-infected hUCMSCs displayed mitochondrial elongation and the treatment of hUCMSCs with mitochondrial fission inhibitor led to a dose-dependent increase in ZIKV gene expression and decrease in anti-viral signalling pathways. Moreover, small RNA sequencing analysis identified several significantly up- or down-regulated microRNAs. Interestingly, miR-142-5p was significantly downregulated upon ZIKV infection, whereas cellular targets of miR-142-5p, IL6ST and ITGAV, were upregulated. Overexpression of miR-142-5p resulted in the suppression of ZIKV replication. Furthermore, blocking ITGAV expression resulted in a significant suppression of ZIKV binding to cells, suggesting a potential role of ITGAV in ZIKV entry. In conclusion, these results demonstrate both common and specific host responses to African and Asian ZIKV lineages and indicate miR-142-5p as a key regulator of ZIKV replication in the umbilical cords.
Collapse
Affiliation(s)
- Rak-Kyun Seong
- Department of Biomedical Sciences, College of Medicine, Korea University Guro Hospital, Seoul, Republic of Korea
| | - Jae Kyung Lee
- Department of Biomedical Sciences, College of Medicine, Korea University Guro Hospital, Seoul, Republic of Korea
| | - Geum Joon Cho
- Department of Obstetrics and Gynaecology, College of Medicine, Korea University Guro Hospital, Seoul, Republic of Korea
| | - Mukesh Kumar
- Department of Biology, Georgia State University, Atlanta, Georgia, USA
| | - Ok Sarah Shin
- Department of Biomedical Sciences, College of Medicine, Korea University Guro Hospital, Seoul, Republic of Korea
| |
Collapse
|
49
|
Zika Virus Pathogenesis: A Battle for Immune Evasion. Vaccines (Basel) 2021; 9:vaccines9030294. [PMID: 33810028 PMCID: PMC8005041 DOI: 10.3390/vaccines9030294] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/12/2021] [Accepted: 03/13/2021] [Indexed: 12/13/2022] Open
Abstract
Zika virus (ZIKV) infection and its associated congenital and other neurological disorders, particularly microcephaly and other fetal developmental abnormalities, constitute a World Health Organization (WHO) Zika Virus Research Agenda within the WHO’s R&D Blueprint for Action to Prevent Epidemics, and continue to be a Public Health Emergency of International Concern (PHEIC) today. ZIKV pathogenicity is initiated by viral infection and propagation across multiple placental and fetal tissue barriers, and is critically strengthened by subverting host immunity. ZIKV immune evasion involves viral non-structural proteins, genomic and non-coding RNA and microRNA (miRNA) to modulate interferon (IFN) signaling and production, interfering with intracellular signal pathways and autophagy, and promoting cellular environment changes together with secretion of cellular components to escape innate and adaptive immunity and further infect privileged immune organs/tissues such as the placenta and eyes. This review includes a description of recent advances in the understanding of the mechanisms underlying ZIKV immune modulation and evasion that strongly condition viral pathogenesis, which would certainly contribute to the development of anti-ZIKV strategies, drugs, and vaccines.
Collapse
|
50
|
Best K, Barouch DH, Guedj J, Ribeiro RM, Perelson AS. Zika virus dynamics: Effects of inoculum dose, the innate immune response and viral interference. PLoS Comput Biol 2021; 17:e1008564. [PMID: 33471814 PMCID: PMC7817008 DOI: 10.1371/journal.pcbi.1008564] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 11/27/2020] [Indexed: 12/11/2022] Open
Abstract
Experimental Zika virus infection in non-human primates results in acute viral load dynamics that can be well-described by mathematical models. The inoculum dose that would be received in a natural infection setting is likely lower than the experimental infections and how this difference affects the viral dynamics and immune response is unclear. Here we study a dataset of experimental infection of non-human primates with a range of doses of Zika virus. We develop new models of infection incorporating both an innate immune response and viral interference with that response. We find that such a model explains the data better than models with no interaction between virus and the immune response. We also find that larger inoculum doses lead to faster dynamics of infection, but approximately the same total amount of viral production. The relationship between the infecting dose of a pathogen and the subsequent viral dynamics is unclear in many disease settings, and this relationship has implications for both the timing and the required efficacy of antiviral therapy. Since experimental challenge studies often employ higher doses of virus than would generally be present in natural infection assessment of this relationship is particularly important for translation of findings. In this study we used mathematical modelling of viral load data from a multi-dose study of Zika virus infection in a macaque model to describe the impact of varying the dose of Zika virus on model parameters, and developed a novel mathematical model incorporating viral interference with the innate immune response.
Collapse
Affiliation(s)
- Katharine Best
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Dan H. Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, United States of America
| | | | - Ruy M. Ribeiro
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
- Laboratório de Biomatemática, Instituto de Saúde Ambiental, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Alan S. Perelson
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
- * E-mail:
| |
Collapse
|