1
|
Bazarian JJ, Zetterberg H, Buki A, Dengler BA, Diaz-Arrastia R, Korley FK, Lazarus R, Meier TB, Mondello S, Moritz K, Okonkwo DO, Papa L, Phillips JB, Posti JP, Puccio AM, Sloley S, Steyerberg E, Wang KK, Awwad HO, Dams-O'Connor K, Doperalski A, Maas AIR, McCrea MA, Umoh N, Manley GT. Blood-Based Biomarkers for Improved Characterization of Traumatic Brain Injury: Recommendations from the 2024 National Institute for Neurological Disorders and Stroke Traumatic Brain Injury Classification and Nomenclature Initiative Blood-Based Biomarkers Working Group. J Neurotrauma 2025. [PMID: 40393505 DOI: 10.1089/neu.2024.0581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2025] Open
Abstract
A 2022 report by the National Academies of Sciences, Engineering, and Medicine called for a Traumatic Brain Injury (TBI) Classification Workshop by the National Institutes of Health (NIH) to develop a more precise, evidence-based classification system. The workshop aimed to revise the Glasgow Coma Scale-based system by incorporating neuroimaging and validated blood biomarker tests. In December 2022, the National Institute for Neurological Disorders and Stroke formed six working groups of TBI experts to make recommendations for this revision. This report presents the findings and recommendations from the blood-based biomarker (BBM) working group, including feedback from the workshop and subsequent public review. The application of BBMs in a TBI classification system has potential to allow for a more adaptable and nuanced approach to triage, diagnosis, prognosis, and treatment. Current evidence supports the use of glial fibrillary acidic protein (GFAP), ubiquitin C-terminal hydrolase L1, and S100B calcium-binding protein (S100B) to assist in reclassification of TBI at acute time points (0-24 h) primarily in emergency department settings, while neurofilament light chain (NfL), GFAP, and S100B have utility at subacute time points (1-30 days) in-hospital and intensive care unit settings. Blood levels of these biomarkers reflect the extent of structural brain injury in TBI and may be useful for describing the extent of structural brain injury in a classification system. While there is insufficient evidence to support a role for BBMs at chronic time points (>30 days), emerging evidence suggests that NfL and phosphorylated tau may have a potential future role in this regard. For inclusion in a revised TBI classification system, BBM assays must have appropriate age- and sex-specific reference ranges, be harmonized across platforms, and achieve high analytical precision, including accuracy, linearity, detection limits, selectivity, recovery, reproducibility, and stability. Improving transparency in BBM assay development can be achieved through large-scale data sharing of methods and results. Future research should focus on methods for promoting clinical adoption of BBM results, correlating BBMs with advanced neuroimaging, and on discovering new biomarkers for improved diagnosis and prognosis.
Collapse
Affiliation(s)
- Jeffrey J Bazarian
- Departments of Emergency Medicine and Neurology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | | | | | - Bradley A Dengler
- Military Traumatic Brain Injury Initiative, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Ramon Diaz-Arrastia
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Frederick K Korley
- Department of Emergency Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Rachel Lazarus
- American Association of Retired Persons, Washington District of Columbia, USA
| | - Timothy B Meier
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | | | - Kasey Moritz
- U.S. Army Medical Research and Development Command, Combat Casualty Care Research Program, Fort Detrick, Maryland, USA
| | - David O Okonkwo
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Linda Papa
- Orlando Health Orlando Regional Medical Center, Orlando, Florida, USA
| | - James B Phillips
- U.S. Army Medical Research and Development Command, Combat Casualty Care Research Program, Fort Detrick, Maryland, USA
| | - Jussi P Posti
- Neurocenter, Department of Neurosurgery and Turku Brain Injury Center, Turku University Hospital and University of Turku, Turku, Finland
| | - Ava M Puccio
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Stephanie Sloley
- TBI Center of Excellence, Defense Health Agency, Silver Spring, Maryland, USA
| | | | - Kevin K Wang
- Center for Neurotrauma, Multiomics & Biomarkers, Neuroscience institute, Morehouse School of Medicine, Atlanta, Georgia, USA
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Health Care System, Decatur, Georgia, USA
| | - Hibah O Awwad
- Division of Neuroscience, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland, USA
| | - Kristen Dams-O'Connor
- Department of Rehabilitation and Human Performance, Icahn School of Medicine, Mount Sinai, New York, New York, USA
- Department of Neurology, Icahn School of Medicine, Mount Sinai, New York, New York, USA
| | - Adele Doperalski
- Department of Neurology, Icahn School of Medicine, Mount Sinai, New York, New York, USA
| | - Andrew I R Maas
- Department of Neurosurgery, Antwerp University Hospital, Edegem, Belgium
- Department of Translational Neuroscience, Faculty of Medicine and Health Science, University of Antwerp, Antwerp, Belgium
| | - Michael A McCrea
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Nsini Umoh
- Department of Neurology, Icahn School of Medicine, Mount Sinai, New York, New York, USA
| | - Geoffrey T Manley
- Neurological Surgery, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
2
|
Axelsson T, Zetterberg H, Blennow K, Arslan B, Ashton NJ, Axelsson M, Svensson MK, Saeed A, Guron G. Plasma concentrations of neurofilament light, p-Tau231 and glial fibrillary acidic protein are elevated in patients with chronic kidney disease and correlate with measured glomerular filtration rate. BMC Nephrol 2025; 26:231. [PMID: 40346521 PMCID: PMC12065258 DOI: 10.1186/s12882-025-04130-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Accepted: 04/16/2025] [Indexed: 05/11/2025] Open
Abstract
BACKGROUND Patients with chronic kidney disease (CKD) have a high prevalence of cerebrovascular disease and cognitive impairment. The objective was to analyse whether plasma concentrations of neurofilament light chain (NfL), glial fibrillary acidic protein (GFAP) and phosphorylated Tau231 (p-Tau231) are elevated in patients with CKD and to identify independent predictors of these biomarkers, with an emphasis on the role of measured glomerular filtration rate (mGFR). METHODS In this cross-sectional cohort study, we included 110 patients with CKD stages 3 and 4 (estimated GFR 15-59 ml/min/1.73 m2) without manifest cerebrovascular disease or dementia, and 55 healthy controls. Biomarkers of neurological disorders were measured with ultrasensitive single molecule array methods. RESULTS Plasma concentrations (median [IQR]) of NfL (37.5 [22.1-47.5] vs. 13.4 [10.5-16.7] ng/L, p < 0.001), p-Tau231 (25.7 [19.1-38.7] vs. 13.9 [10.5-16.3] ng/L, p < 0.001) and GFAP (190 [140-281] vs. 153 [116-211] ng/L, p < 0.001) were elevated in patients with CKD vs. controls. Measured GFR was negatively correlated with NfL (r = - 0.706, p < 0.001), p-Tau231 (r = - 0.561, p < 0.001), and GFAP (r = - 0.385, p < 0.001). In multivariable linear regression models, mGFR was an independent predictor of log-transformed plasma concentrations of NfL (standardized beta coefficient [β] = - 0.439, p < 0.001) and GFAP (β = - 0.321, p < 0.001). CONCLUSION Patients with CKD had elevated plasma concentrations of NfL, p-Tau231 and GFAP compared with controls, and these biomarkers were inversely correlated with mGFR. Measured GFR was a significant, independent predictor of plasma concentrations of NfL and GFAP in patients with CKD. The mechanisms underlying this association need further investigation. Plasma levels of NfL and GFAP should be interpreted cautiously in patients with marked reductions in GFR.
Collapse
Affiliation(s)
- Torunn Axelsson
- Department of Molecular and Clinical Medicine/Nephrology, Institute of Medicine, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Diseases, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Paris Brain Institute, ICM, Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France
- Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, and Department of Neurology, Institute on Aging and Brain Disorders, University of Science and Technology of China and First Affiliated Hospital of USTC, Hefei, P.R. China
| | - Burak Arslan
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Nicholas J Ashton
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Markus Axelsson
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Maria K Svensson
- Department of Medical Sciences, Renal Medicine, Uppsala University, Uppsala, Sweden
- Uppsala Clinical Research Centre, Uppsala, Sweden
| | - Aso Saeed
- Department of Molecular and Clinical Medicine/Nephrology, Institute of Medicine, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Gregor Guron
- Department of Molecular and Clinical Medicine/Nephrology, Institute of Medicine, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
3
|
Hicks AJ, Carrington H, Bura L, Yang A, Pesce R, Yew B, Dams-O'Connor K. Blood-Based Protein Biomarkers in the Chronic Phase of Traumatic Brain Injury: A Systematic Review. J Neurotrauma 2025; 42:759-797. [PMID: 40176450 DOI: 10.1089/neu.2024.0294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2025] Open
Abstract
There has been limited exploration of blood-based biomarkers in the chronic period following traumatic brain injury (TBI). Our objective was to conduct a systematic review of studies examining blood-based protein biomarkers with at least one sample collected 12 months post-TBI in adults (≥16 years). Database searches were conducted in Embase, MEDLINE, and Science Citation Index-Expanded on July 24, 2023. Risk of bias was assessed using modified Joanna Briggs Institute critical appraisal tools. Only 30 of 12,523 articles met inclusion criteria, with samples drawn from 12 months to 48 years. Higher quality evidence (low risk of bias; large samples) identified promising inflammatory biomarkers at 12 months post-injury in both moderate-severe TBI (GFAP) and mild TBI (eotaxin-1, IFN-y, IL-8, IL-9, IL-17A, MCP-1, MIP-1β, FGF-basic, and TNF-α). Studies with low risk of bias but smaller samples also suggest NSE, MME, and CRP may be informative, alongside protein variants for α-syn (10H, D5), amyloid-β (A4, C6T), TDP-43 (AD-TDP 1;2;3;9;11), and tau (D11C). Findings for NfL were inconclusive. Longitudinal data were mostly available for acute samples followed until 12 months post-injury, with limited evaluation of changes beyond 12 months. Associations of some blood-based biomarkers with cognitive, sleep, and functional outcomes were reported. The overall strength of the evidence in this review was limited by the risk of bias and small sample sizes. Replication is required within prospective longitudinal studies that move beyond 12 months post-injury. Novel efforts should be guided by promising neurodegenerative-disease markers and use panels to model polypathology.
Collapse
Affiliation(s)
- Amelia J Hicks
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Holly Carrington
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Lisa Bura
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Alicia Yang
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Rico Pesce
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Belinda Yew
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | |
Collapse
|
4
|
Xu P, Yang J, Zhao X, Liu F, Liu Q, Wang H. Association of plasma neurofilament light protein concentration with sleep disturbance after intracerebral hemorrhage. Front Neurol 2025; 16:1482808. [PMID: 40371084 PMCID: PMC12077819 DOI: 10.3389/fneur.2025.1482808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 04/11/2025] [Indexed: 05/16/2025] Open
Abstract
Background Intracerebral hemorrhage (ICH) represents a critical subtype of stroke characterized by substantial morbidity and mortality. Emerging research indicates that neurofilament light protein (NfL), a biomarker indicative of neuronal damage, may offer valuable prognostic information regarding outcomes and recovery trajectories post-ICH. This study seeks to elucidate the relationship between plasma NfL (pNfL) concentrations and long-term patient outcomes, with a particular focus on sleep disturbances following ICH. Methods We conducted a cohort study comprising 26 healthy controls and 49 patients who had experienced ICH. The Glasgow Coma Scale (GCS) was assessed upon admission. Plasma samples were collected at admission and on 3, 7, and 14 days post-ICH. Then pNfL levels were quantified using Enzyme-Linked Immunosorbent Assay (ELISA). Clinical outcomes were evaluated at 6 months post-ICH using the Glasgow Outcome Scale-Extended (GOSE) and the Pittsburgh Sleep Quality Index (PSQI). Receiver operating characteristic (ROC) curves and the areas under the ROC curves (AUC) were utilized to determine the accuracy of hemorrhage volume and pNfL levels in identifying sleep disturbances. Results pNfL levels were elevated in patients with ICH compared to healthy controls. Longitudinal analysis indicated an increasing trend in pNfL levels over the initial 7 days post-admission. pNfL levels demonstrated an AUC for distinguishing ICH patients from controls (admission for 0.92, post-ICH 3d for 0.98). In ICH patients, pNfL levels showed a positive correlation with hemorrhage volume and PSQI, and a negative correlation with GCS and GOSE. The AUCs for pNfL levels and hemorrhage volume, which were indicative of sleep disturbances, were 0.82 and 0.75, respectively. Furthermore, the combined assessment of pNfL levels and hemorrhage volume exhibited superior predictive performance compared to the evaluation of each factor individually. Conclusion pNfL represents a promising biomarker for predicting functional outcomes and evaluating sleep disturbances in patients following ICH. Elevated levels of NfL at admission are associated with poorer prognoses and increased sleep-related issues, indicating that monitoring pNfL could be valuable for prognostication and the implementation of targeted interventions.
Collapse
Affiliation(s)
- Peng Xu
- Department of Neurosurgery, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, China
| | - Jinlei Yang
- Department of Neurosurgery, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, China
| | - Xin Zhao
- Department of Neurosurgery, Affiliated Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, China
| | - Fang Liu
- Department of Neurosurgery, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, China
| | - Qiang Liu
- Department of Cardiothoracic Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Handong Wang
- Department of Neurosurgery, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
5
|
Ludwig R, Rippee M, D’Silva L, Radel J, Eakman AM, Morris J, Beltramo A, Drerup M, Siengsukon C. The Impact of Cognitive Behavioral Therapy for Insomnia on Neurofilament Light and Phosphorylated Tau in Individuals with a Concussion. Arch Clin Neuropsychol 2025; 40:437-444. [PMID: 39504933 PMCID: PMC12034518 DOI: 10.1093/arclin/acae096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/27/2024] [Accepted: 10/08/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND Concussions damage neurologic tissue, increasing release of intercellular proteins including phosphorylated Tau (pTau) and neurofilament light (NfL). Disrupted sleep from a concussion negatively impacts the ability of the glymphatic system to remove cellular waste from the brain. OBJECTIVE The purpose of this study was to determine if enhancing sleep using Cognitive Behavioral Therapy for Insomnia (CBT-I) impacts pTau and NFL levels following a concussion. METHODS This is pre/post intervention analysis of a larger wait-list control study. Participants had their blood sampled pre/post the CBT-I intervention which was analyzed using SIMOA analytics. Paired sampling statistics and linear regression models were used to examine how insomnia severity impacts pTau181 and NfL. RESULTS Twenty-eight participants were enrolled in this study. Age and baseline protein level were significantly associated with post-intervention protein levels, but post-intervention insomnia severity was not associated with post-intervention protein levels. About 50% of participants that had clinically meaningful change in insomnia and had a reduction in their NfL and pTau181 values. CONCLUSIONS Post-intervention insomnia was not associated with post-intervention NfL or pTau. Yet, on an individual level, ~50% of participants had a clinically meaningful change in insomnia and reduced level of NfL and pTau 18.1. CLINICAL TRIAL REGISTRATION NCT04885205 https://clinicaltrials.gov.
Collapse
Affiliation(s)
- Rebecca Ludwig
- Department of Physical Therapy, Rehabilitation Science, and Athletic Training, University of Kansas Medical Center, 3901 Rainbow Blvd. Mail Stop 2002, Kansas City, KS 66160, USA
| | - Michael Rippee
- Department of Neurology, University of Kansas Medical Center, 3901 Rainbow Blvd, Mailstop 2012, Kansas City, KS 66160, USA
| | - Linda D’Silva
- Department of Physical Therapy, Rehabilitation Science, and Athletic Training, University of Kansas Medical Center, 3901 Rainbow Blvd. Mail Stop 2002, Kansas City, KS 66160, USA
| | - Jeff Radel
- Department of Occupational Therapy and Therapeutic Science, University of Kansas Medical Center, 3901 Rainbow Blvd Mail Stop 2003 Kansas City, KS 66160, USA
| | - Aaron M Eakman
- Department of Occupational Therapy, Colorado State University, 850 Oval Drive Mail Stop 1501, Fort Collins, CO 80523, USA
| | - Jill Morris
- Department of Neurology, University of Kansas Medical Center, 3901 Rainbow Blvd, Mailstop 2012, Kansas City, KS 66160, USA
| | - Alvin Beltramo
- Department of Biostatistics and Data Science, University of Kansas Medical Center, 3901 Rainbow Blvd, Mailstop 1026, Kansas City, KS 66160, USA
| | - Michelle Drerup
- Sleep Disorders Center, Cleveland Clinic, Neurological Institute, 9500 Euclid Ave Cleveland, OH 44195, USA
| | - Catherine Siengsukon
- Department of Physical Therapy, Rehabilitation Science, and Athletic Training, University of Kansas Medical Center, 3901 Rainbow Blvd. Mail Stop 2002, Kansas City, KS 66160, USA
| |
Collapse
|
6
|
Ionescu C, Ghidersa M, Ciobica A, Mavroudis I, Kazis D, Petridis FE, Gorgan DL, Balmus IM. Potential Correlation Between Molecular Biomarkers and Oxidative Stress in Traumatic Brain Injury. Int J Mol Sci 2025; 26:3858. [PMID: 40332547 PMCID: PMC12027598 DOI: 10.3390/ijms26083858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 04/14/2025] [Accepted: 04/16/2025] [Indexed: 05/08/2025] Open
Abstract
Diagnosing traumatic brain injury (TBI) remains challenging due to an incomplete understanding of its neuropathological mechanisms. TBI is recognised as a complex condition involving both primary and secondary injuries. Although oxidative stress is a non-specific molecular phenomenon observed in various neuropathological conditions, it plays a crucial role in brain injury response and recovery. Due to these aspects, we aimed to evaluate the interaction between some known TBI molecular biomarkers and oxidative stress in providing evidence for its possible relevance in clinical diagnosis and outcome prediction. We found that while many of the currently validated molecular biomarkers interact with oxidative pathways, their patterns of variation could assist the diagnosis, prognosis, and outcomes prediction in TBI cases.
Collapse
Affiliation(s)
- Cătălina Ionescu
- Department of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iasi, 700505 Iasi, Romania; (C.I.); (M.G.); (A.C.); (D.L.G.)
| | - Madalina Ghidersa
- Department of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iasi, 700505 Iasi, Romania; (C.I.); (M.G.); (A.C.); (D.L.G.)
| | - Alin Ciobica
- Department of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iasi, 700505 Iasi, Romania; (C.I.); (M.G.); (A.C.); (D.L.G.)
- “Ioan Haulica” Institute, Apollonia University, 700511 Iasi, Romania
- Center of Biomedical Research, Romanian Academy, Iasi Branch, 2 Teodor Codrescu Street, 700481 Iasi, Romania
| | - Ioannis Mavroudis
- Academy of Romanian Scientists, 050094 Bucharest, Romania
- Department of Neurosciences, Leeds Teaching Hospitals, Leeds LS9 7TF, UK
| | - Dimitrios Kazis
- Third Department of Neurology, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece; (D.K.); (F.E.P.)
| | - Foivos E. Petridis
- Third Department of Neurology, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece; (D.K.); (F.E.P.)
| | - Dragoș Lucian Gorgan
- Department of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iasi, 700505 Iasi, Romania; (C.I.); (M.G.); (A.C.); (D.L.G.)
| | - Ioana-Miruna Balmus
- Department of Exact Sciences and Natural Sciences, Institute of Interdisciplinary Research, “Alexandru Ioan Cuza” University of Iasi, 700057 Iasi, Romania;
| |
Collapse
|
7
|
Sigström R, Göteson A, Joas E, Pålsson E, Liberg B, Nordenskjöld A, Blennow K, Zetterberg H, Landén M. Blood biomarkers of neuronal injury and astrocytic reactivity in electroconvulsive therapy. Mol Psychiatry 2025; 30:1601-1609. [PMID: 39363047 PMCID: PMC11919754 DOI: 10.1038/s41380-024-02774-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/05/2024]
Abstract
Despite electroconvulsive therapy (ECT) being recognized as an effective treatment for major depressive episodes (MDE), its application is subject to controversy due to concerns over cognitive side effects. The pathophysiology of these side effects is not well understood. Here, we examined the effects of ECT on blood-based biomarkers of neuronal injury and astrocytic reactivity. Participants with a major depressive episode (N = 99) underwent acute ECT. Blood was sampled just before (T0) and 30 min after (T1) the first ECT session, as well as just before the sixth session (T2; 48-72 h after the fifth session). Age- and sex-matched controls (N = 99) were recruited from the general population. Serum concentrations of neurofilament light chain (NfL), total tau protein, and glial fibrillary acidic protein (GFAP) were measured with ultrasensitive single-molecule array assays. Utilizing generalized least squares regression, we compared baseline (T0) biomarker concentrations against those of our control group, and calculated the shifts in serum biomarker concentrations from baseline to immediately post-first ECT session (T1), and prior to the sixth session (T2). Baseline analysis revealed that serum levels of NfL (p < 0.001) and tau (p = 0.036) were significantly elevated in ECT recipients compared with controls, whereas GFAP levels showed no significant difference. Relative to T0, serum NfL concentration neither changed at T1 (mean change 3.1%, 95%CI -0.5% to 6.7%, p = 0.088) nor at T2 (mean change -3.2%, 95%CI -7.6% to 1.5%, p = 0.18). Similarly, no change in total tau was observed (mean change 3.7%, 95%CI -11.6% to 21.7%, p = 0.65). GFAP increased from T0 to T1 (mean change 20.3%, 95%CI 14.6 to 26.3%, p < 0.001), but not from T0 to T2 (mean change -0.7%, 95%CI -5.8% to 4.8%, p = 0.82). In conclusion, our findings suggest that ECT induces a temporary increase in serum GFAP, possibly reflecting transient astrocytic activation. Importantly, we observed no indicators of neuronal damage or long-term elevation in any assessed biomarker.
Collapse
Affiliation(s)
- Robert Sigström
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.
- Department of Affective Disorders, Sahlgrenska University Hospital, Gothenburg, Sweden.
| | - Andreas Göteson
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Erik Joas
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Erik Pålsson
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Benny Liberg
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Axel Nordenskjöld
- University Health Care Research Centre, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Mikael Landén
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
8
|
Ahmad SA, Kapoor S, Muquit S, Gusdon A, Khanduja S, Ziai W, Everett AD, Whitman G, Cho SM, on behalf of HERALD investigators. Brain injury plasma biomarkers in patients on veno-arterial extracorporeal membrane oxygenation: A pilot prospective observational study. Perfusion 2025; 40:657-667. [PMID: 38757156 PMCID: PMC11569265 DOI: 10.1177/02676591241256006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
IntroductionEarly diagnosis of acute brain injury (ABI) is critical for patients on veno-arterial extracorporeal membrane oxygenation (V-A ECMO) to guide anticoagulation strategy; however, neurological assessment in ECMO is often limited by patient sedation.MethodsIn this pilot study of adults from June 2018 to May 2019, plasma samples of glial fibrillary acidic protein (GFAP), neurofilament light chain (NFL), and tubulin associated unit (Tau) were collected daily after V-A ECMO cannulation and measured using a multiplex platform. Primary outcomes were occurrence of ABI, assessed clinically, and neurologic outcome, assessed by modified Rankin Scale (mRS).ResultsOf 20 consented patients (median age = 48.5°years; 55% female), 8 (40%) had ABI and 15 (75%) had unfavorable neurologic outcome at discharge. 10 (50%) patients were centrally cannulated. Median duration on ECMO was 4.5°days (IQR: 2.5-9.5). Peak GFAP, NFL, and Tau levels were higher in patients with ABI vs. without (AUC = 0.77; 0.85; 0.57, respectively) and in patients with unfavorable vs. favorable neurologic outcomes (AUC = 0.64; 0.59; 0.73, respectively). GFAP elevated first, NFL elevated to the highest degree, and Tau showed limited change regardless of ABI.ConclusionFurther studies are warranted to determine how plasma biomarkers may facilitate early detection of ABIs in V-A ECMO to assist timely clinical decision-making.
Collapse
Affiliation(s)
- Syed Ameen Ahmad
- Division of Neurosciences Critical Care and Cardiac Surgery, Departments of Neurology, Surgery, Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Shrey Kapoor
- Division of Neurosciences Critical Care and Cardiac Surgery, Departments of Neurology, Surgery, Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Siam Muquit
- Division of Neurosciences Critical Care and Cardiac Surgery, Departments of Neurology, Surgery, Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Aaron Gusdon
- Division of Neurocritical Care, Department of Neurosurgery, McGovern School of Medicine, University of Texas Health Science Center, Houston, TX, United States
| | - Shivalika Khanduja
- Division of Cardiac Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Wendy Ziai
- Division of Neurosciences Critical Care and Cardiac Surgery, Departments of Neurology, Surgery, Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Allen D. Everett
- Department of Pediatrics, Blalock-Taussig-Thomas Congenital Heart Center, Johns Hopkins University, Baltimore, Maryland USA
| | - Glenn Whitman
- Division of Neurosciences Critical Care and Cardiac Surgery, Departments of Neurology, Surgery, Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Sung-Min Cho
- Division of Neurosciences Critical Care and Cardiac Surgery, Departments of Neurology, Surgery, Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | |
Collapse
|
9
|
Uzgiris AJ, Ladic LA, Pfister SX. Advances in neurofilament light chain analysis. Adv Clin Chem 2025; 126:31-71. [PMID: 40185536 DOI: 10.1016/bs.acc.2025.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2025]
Abstract
This chapter provides a comprehensive summary of clinical laboratory testing for neurofilament light chain (NfL) in neurologic disease. A primer on the NfL structure and function is presented with its potential use as a biomarker. The most widely utilized methods for NfL in biologic samples are highlighted and examined. Limitations of current knowledge are considered, as are outstanding questions related to dissemination and standardization of testing. Herein we focus on methods available today and those in development for clinical use. In the final section, a broad vision is presented of how NfL may be utilized in the future to improve diagnosis and treatment of neurologic diseases as well as for maintaining health.
Collapse
Affiliation(s)
- Arejas J Uzgiris
- Siemens Healthcare Diagnostics Inc., Tarrytown, NY, United States.
| | - Lance A Ladic
- Siemens Healthcare Diagnostics Inc., Tarrytown, NY, United States
| | - Sophia X Pfister
- Siemens Healthcare Diagnostics Inc., Tarrytown, NY, United States
| |
Collapse
|
10
|
Tybirk L, Knudsen CS, Parkner T. Neurofilament light chain - Can it be measured in urine? Clin Chim Acta 2025; 569:120163. [PMID: 39870294 DOI: 10.1016/j.cca.2025.120163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/10/2025] [Accepted: 01/23/2025] [Indexed: 01/29/2025]
Abstract
OBJECTIVE This exploratory study investigates if neurofilament light chain (NfL) is excreted in the urine and whether this depends on plasma NfL (pNfL) levels and kidney function in terms of eGFR and urine albumin-creatinine ratio (uACR). METHODS Using a computer algorithm, we identified excess urine and plasma from routine testing of uACR and eGFR in patients 45-50 years old. Up to 17 paired urine-plasma samples in each of six categories of kidney function defined by uACR and eGFR were analysed for NfL, and the urinary NfL-creatinine ratio (uNCR) was calculated to correct for urine dilution. RESULTS In the 35 subjects with normal eGFR (>90 ml/min/1.73 m2) and varying degrees of albuminuria, uNfL was only above the lower limit of quantification in one subject with microalbuminuria (uACR 30-300 mg/g), and in none of the subjects with uACR < 30 mg/g. In the 47 subjects with impaired eGFR (15-60 ml/min/1.73 m2), the percentage of subjects with detectable uNfL and the average level of uNCR increased with increasing albuminuria. However, multiple regression analysis revealed that uNCR only significantly correlated with pNfL, not eGFR and uACR. pNfL correlated inversely with eGFR, but not uACR. CONCLUSIONS Our results show that the urinary NfL excretion in subjects with normal kidney function and normal pNfL levels is very low. Thus, the increased pNfL often observed in patients with low eGFR seems not to be explained by impaired urinary NfL excretion, and urine is generally not a suitable matrix for NfL measurements.
Collapse
Affiliation(s)
- Lea Tybirk
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark.
| | | | - Tina Parkner
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
11
|
Butler T, Chen K, Patchell A, Mao X, Shungu D, Calderon DP, Paz JT, Shah SA. Elevated Plasma Complement C1Q Measured Subacutely after Traumatic Brain Injury Is Associated with Poor Functional Outcome Independent of Initial Injury Severity. Neurotrauma Rep 2025; 6:190-194. [PMID: 40129892 PMCID: PMC11931099 DOI: 10.1089/neur.2024.0152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025] Open
Abstract
Following traumatic brain injury (TBI), secondary processes, including inflammation, contribute significantly to long-term cognitive and functional impairments. Targeting these secondary processes during the subacute period after TBI represents a feasible therapeutic target. This study investigates the role of complement factor 1q (C1Q) in TBI recovery. Motivated by our rodent studies showing that thalamic inflammation post-TBI is dependent on C1Q and that blocking C1Q during the subacute period can prevent thalamic inflammation and improve aspects of TBI outcome, particularly sleep, we measured plasma C1Q levels 3-6 months post-injury in 27 patients with TBI ranging from complicated mild to severe, as well as 30 controls. TBI patients had significantly higher plasma C1Q levels (p = 0.031). We assessed the correlation between plasma C1Q and functional outcomes using the Glasgow Outcome Scale-Extended (GOSE), controlling for initial injury severity. Higher plasma C1Q levels were associated with worse functional outcomes (rho = -0.395, p = 0.046), independent of initial injury severity. These findings suggest that subacute plasma C1Q may be a novel prognostic biomarker for TBI outcomes. More importantly, subacute plasma C1Q may provide a window into ongoing, C1Q-mediated maladaptive neuroinflammatory processes after TBI that we have shown to be remediable in rodents using a safe-in-human drug that blocks C1Q. Since the initial injury cannot be changed, the ability to intervene subacutely could provide critical therapeutic benefits to the millions affected by TBI each year.
Collapse
Affiliation(s)
- Tracy Butler
- Department of Radiology, Weill Cornell Medicine, New York, New York, USA
| | - Kewei Chen
- College of Health Solutions, Arizona State University, Phoenix, Arizona, USA
| | - Abigail Patchell
- Department of Radiology, Weill Cornell Medicine, New York, New York, USA
| | - Xiangling Mao
- Department of Radiology, Weill Cornell Medicine, New York, New York, USA
| | - Dikoma Shungu
- Department of Radiology, Weill Cornell Medicine, New York, New York, USA
| | | | - Jeanne T. Paz
- Gladstone Institute of Neurological Disease, San Francisco, California, USA
- Department of Neurology, Kavli Institute for Fundamental Neuroscience, UCSF, San Francisco, California, USA
| | - Sudhin A. Shah
- Department of Radiology, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
12
|
Di Muro G, Tessarolo C, Cagnotti G, Favole A, Ferrini S, Ala U, Bellino C, Borriello G, Gallo M, Iamone G, Iulini B, Pezzolato M, Casalone C, Caramelli M, Capucci L, Cavadini P, Corona C, D'Angelo A. Neurofilament light chain (Nf-L) in cerebrospinal fluid and serum as a potential biomarker in the differential diagnosis of neurological diseases in cattle. Vet Res 2025; 56:6. [PMID: 39794836 PMCID: PMC11724550 DOI: 10.1186/s13567-024-01441-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 11/19/2024] [Indexed: 01/13/2025] Open
Abstract
Neurofilament light chain (Nf-L) is a biomarker for axonal damage in human neurology but is understudied in cattle. With this study we wanted to determine Nf-L stability at two different storage temperatures and Nf-L levels in healthy cattle and the relationship with age, evaluate whether Nf-L holds diagnostic potential for neurological disorders, and whether an association exists between Nf-L in serum and in cerebrospinal fluid (CSF). To do this, we measured Nf-L levels in CSF and serum samples from 49 healthy and 75 sick cattle. Storage at -80 °C or -20 °C had no impact on Nf-L concentration. Physiological median Nf-L levels were 6.3 pg/mL (serum) and 414 pg/mL (CSF) in calves and 5.5 pg/mL (serum) and 828 pg/mL (CSF) in adult cattle. There was no association between Nf-L levels in CSF and calf age (r2 0.07, p = 0.13), while a weak association was found for Nf-L in serum (r2 0.26, p = 0.01), and a significant association in adult cattle (CSF, r2 0.69, p = 0.0001; serum, r2 0.68, p = 0.0003). CSF Nf-L levels were higher in samples from animals with degenerative (median Nf-L 49971 pg/mL) and infectious central nervous system (CNS) disorders (median Nf-L, age < 2 months 8863 pg/mL; age 2-12 months 17474 pg/mL; age 1-6 years 3546 pg/mL), CNS anomalies and metabolic/toxic disorders. There was a significant association between CSF Nf-L and serum Nf-L in cattle with neurological disorders (r2 0.2, p = 0.009). Taken together, these findings suggest the potential of Nf-L as a diagnostic tool in cattle neurology.
Collapse
Affiliation(s)
- Giorgia Di Muro
- Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2-5, 10095, Grugliasco, TO, Italy
| | - Carlotta Tessarolo
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Via Bologna 148, 10154, Turin, TO, Italy
| | - Giulia Cagnotti
- Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2-5, 10095, Grugliasco, TO, Italy.
| | - Alessandra Favole
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Via Bologna 148, 10154, Turin, TO, Italy
| | - Sara Ferrini
- Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2-5, 10095, Grugliasco, TO, Italy
| | - Ugo Ala
- Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2-5, 10095, Grugliasco, TO, Italy
| | - Claudio Bellino
- Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2-5, 10095, Grugliasco, TO, Italy
| | - Giuliano Borriello
- Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2-5, 10095, Grugliasco, TO, Italy
| | - Marina Gallo
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Via Bologna 148, 10154, Turin, TO, Italy
| | - Giulia Iamone
- Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2-5, 10095, Grugliasco, TO, Italy
| | - Barbara Iulini
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Via Bologna 148, 10154, Turin, TO, Italy
| | - Marzia Pezzolato
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Via Bologna 148, 10154, Turin, TO, Italy
| | - Cristina Casalone
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Via Bologna 148, 10154, Turin, TO, Italy
| | - Maria Caramelli
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Via Bologna 148, 10154, Turin, TO, Italy
| | - Lorenzo Capucci
- Istituto Zooprofilattico Sperimentale della Lombardia ed Emilia Romagna, Via Bianchi 9, 25124, Brescia, BS, Italy
| | - Patrizia Cavadini
- Istituto Zooprofilattico Sperimentale della Lombardia ed Emilia Romagna, Via Bianchi 9, 25124, Brescia, BS, Italy
| | - Cristiano Corona
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Via Bologna 148, 10154, Turin, TO, Italy
| | - Antonio D'Angelo
- Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2-5, 10095, Grugliasco, TO, Italy
| |
Collapse
|
13
|
Turner MR, Thompson AG, Teunissen CE. Blood level of neurofilament light chain as a biomarker for neurological disorders. BMJ MEDICINE 2025; 4:e000958. [PMID: 39845125 PMCID: PMC11749884 DOI: 10.1136/bmjmed-2024-000958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 12/11/2024] [Indexed: 01/24/2025]
Affiliation(s)
- Martin R Turner
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | | | - Charlotte E Teunissen
- Laboratory Medicine - Neurochemistry, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
14
|
Squitti R, Fiorenza A, Martinelli A, Brembati V, Crescenti D, Rongioletti M, Ghidoni R. Neurofilament Light Protein as a Biomarker in Severe Mental Disorders: A Systematic Review. Int J Mol Sci 2024; 26:61. [PMID: 39795920 PMCID: PMC11719531 DOI: 10.3390/ijms26010061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/17/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025] Open
Abstract
Severe mental disorders (SMDs), such as schizophrenia (SZ), bipolar disorder (BD), and major depressive disorder (MDD), are heterogeneous psychiatric diseases that impose a significant societal burden due to their chronic disabling nature. There are no objective and reliable diagnostic tests for SMDs; thus, there is an urgent need for specific biomarkers to improve diagnosis, treatment, and resource allocation. Neurofilaments, found in cerebrospinal fluid and blood, offer reliable diagnostic and prognostic potential. This review discusses the link between neurofilament light chain (NfL) involvement in psychiatric and neurodegenerative diseases and gives insights into the diagnostic and prognostic value of NfL in SMDs. This systematic review searched PubMed, Scopus, and Web of Science databases to answer the research question "Are NfL levels higher in individuals with SMDs compared to healthy controls?" using terms related to neurofilament, SMDs, SZ, BD, and depression. Of 8577 initial papers, 115 were relevant. After exclusions and manual additions, 17 articles were included. Studies indicate elevated NfL levels in SMDs compared to healthy controls, suggesting its potential as a biomarker for SMDs and for distinguishing neurodegenerative diseases from psychiatric disorders. However, further longitudinal research is needed to confirm its reliability for differential diagnosis, disease prediction, and treatment assessment in psychiatry.
Collapse
Affiliation(s)
- Rosanna Squitti
- Department of Laboratory Science, Research and Development Division, Ospedale Isola Tiberina—Gemelli Isola, 00186 Rome, Italy;
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy; (V.B.); (R.G.)
| | - Antonio Fiorenza
- Department of Psychology, Uninettuno University, 00186 Rome, Italy;
| | - Alessandra Martinelli
- Unit of Epidemiological and Evaluation Psychiatry, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy;
| | - Viviana Brembati
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy; (V.B.); (R.G.)
| | - Daniela Crescenti
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy; (V.B.); (R.G.)
| | - Mauro Rongioletti
- Department of Laboratory Science, Research and Development Division, Ospedale Isola Tiberina—Gemelli Isola, 00186 Rome, Italy;
| | - Roberta Ghidoni
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy; (V.B.); (R.G.)
| |
Collapse
|
15
|
Liang S, Hu Z. Unveiling the predictive power of biomarkers in traumatic brain injury: A narrative review focused on clinical outcomes. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2024. [PMID: 39687991 DOI: 10.5507/bp.2024.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024] Open
Abstract
Traumatic brain injury (TBI) has long-term consequences, including neurodegenerative disease risk. Current diagnostic tools are limited in detecting subtle brain damage. This review explores emerging biomarkers for TBI, including those related to neuronal injury, inflammation, EVs, and ncRNAs, evaluating their potential to predict clinical outcomes like mortality, recovery, and cognitive impairment. It addresses challenges and opportunities for implementing biomarkers in clinical practice, aiming to improve TBI diagnosis, prognosis, and treatment.
Collapse
Affiliation(s)
- Sitao Liang
- Neurosurgery Department, Zhongshan City People's Hospital, Zhongshan, 528400, China
| | - Zihui Hu
- Neurosurgery Department, Zhongshan City People's Hospital, Zhongshan, 528400, China
| |
Collapse
|
16
|
Arena JD, Smith DH, Diaz Arrastia R, Cullen DK, Xiao R, Fan J, Harris DC, Lynch CE, Johnson VE. The neuropathological basis of elevated serum neurofilament light following experimental concussion. Acta Neuropathol Commun 2024; 12:189. [PMID: 39633506 PMCID: PMC11619522 DOI: 10.1186/s40478-024-01883-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 10/31/2024] [Indexed: 12/07/2024] Open
Abstract
Mild traumatic brain injury (mTBI) or concussion is a substantial health problem globally, with up to 15% of patients experiencing persisting symptoms that can significantly impact quality of life. Currently, the diagnosis of mTBI relies on clinical presentation with ancillary neuroimaging to exclude more severe forms of injury. However, identifying patients at risk for a poor outcome or protracted recovery is challenging, in part due to the lack of early objective tests that reflect the relevant underlying pathology. While the pathophysiology of mTBI is poorly understood, axonal damage caused by rotational forces is now recognized as an important consequence of injury. Moreover, serum measurement of the neurofilament light (NfL) protein has emerged as a potentially promising biomarker of injury. Understanding the pathological processes that determine serum NfL dynamics over time, and the ability of NfL to reflect underlying pathology will be critical for future clinical research aimed at reducing the burden of disability after mild TBI. Using a gyrencephalic model of head rotational acceleration scaled to human concussion, we demonstrate significant elevations in serum NfL, with a peak at 3 days post-injury. Moreover, increased serum NfL was detectable out to 2 weeks post-injury, with some evidence it follows a biphasic course. Subsequent quantitative histological examinations demonstrate that axonal pathology, including in the absence of neuronal somatic degeneration, was the likely source of elevated serum NfL. However, the extent of axonal pathology quantified via multiple markers did not correlate strongly with the extent of serum NfL. Interestingly, the extent of blood-brain barrier (BBB) permeability offered more robust correlations with serum NfL measured at multiple time points, suggesting BBB disruption is an important determinant of serum biomarker dynamics after mTBI. These data provide novel insights to the temporal course and pathological basis of serum NfL measurements that inform its utility as a biomarker in mTBI.
Collapse
Affiliation(s)
- John D Arena
- Department of Neurosurgery, Penn Center for Brain Injury and Repair, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Douglas H Smith
- Department of Neurosurgery, Penn Center for Brain Injury and Repair, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ramon Diaz Arrastia
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - D Kacy Cullen
- Department of Neurosurgery, Penn Center for Brain Injury and Repair, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Rui Xiao
- The Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jiaxin Fan
- The Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Danielle C Harris
- Department of Neurosurgery, Penn Center for Brain Injury and Repair, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Cillian E Lynch
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Victoria E Johnson
- Department of Neurosurgery, Penn Center for Brain Injury and Repair, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
17
|
Andersson E, Öst M, Dalla K, Zetterberg H, Blennow K, Nellgård B. Acute-Phase Neurofilament Light and Glial Fibrillary Acidic Proteins in Cerebrospinal Fluid Predict Long-Term Outcome After Severe Traumatic Brain Injury. Neurocrit Care 2024; 41:813-827. [PMID: 38769253 PMCID: PMC11599393 DOI: 10.1007/s12028-024-01998-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 04/10/2024] [Indexed: 05/22/2024]
Abstract
BACKGROUND This study investigated trajectory profiles and the association of concentrations of the biomarkers neurofilament light (NfL) and glial fibrillary acidic protein (GFAP) in ventricular cerebrospinal fluid (CSF) with clinical outcome at 1 year and 10-15 years after a severe traumatic brain injury (sTBI). METHODS This study included patients with sTBI at the Neurointensive Care Unit at Sahlgrenska University Hospital, Gothenburg, Sweden. The injury was regarded as severe if patients had a Glasgow Coma Scale ≤ 8 corresponding to Reaction Level Scale ≥ 4. CSF was collected from a ventricular catheter during a 2-week period. Concentrations of NfL and GFAP in CSF were analyzed with enzyme-linked immunosorbent assay. The Glasgow Outcome Scale (GOS) was used to assess the 1-year and 10-15-year outcomes. After adjustment for age and previous neurological diseases, logistic regression was performed for the outcomes GOS 1 (dead) or GOS 2-5 (alive) and GOS 1-3 (poor) or GOS 4-5 (good) versus the independent continuous variables (NfL and GFAP). RESULTS Fifty-three patients with sTBI were investigated; forty-seven adults are presented in the article, and six children (aged 7-18 years) are described in Supplement 1. The CSF concentrations of NfL gradually increased over 2 weeks post trauma, whereas GFAP concentrations peaked on days 3-4. Increasing NfL and GFAP CSF concentrations increased the odds of GOS 1-3 outcome 1 year after trauma (odds ratio [OR] 1.73, 95% confidence interval [CI] 1.07-2.80, p = 0.025; and OR 1.61, 95% CI 1.09-2.37, p = 0.016, respectively). Similarly, increasing CSF concentrations of NfL and GFAP increased the odds for GOS 1-3 outcome 10-15 years after trauma (OR 2.04, 95% CI 1.05-3.96, p = 0.035; and OR 1.60, 95% CI 1.02-2.00, p = 0.040). CONCLUSIONS This study shows that initial high concentrations of NfL and GFAP in CSF are both associated with higher odds for GOS 1-3 outcome 1 year and 10-15 years after an sTBI, implicating its potential usage as a prognostic marker in the future.
Collapse
Affiliation(s)
- Emma Andersson
- Department of Anesthesiology and Intensive Care Medicine, Institution of Clinical Sciences, Gothenburg University, Gothenburg, Sweden.
| | - Martin Öst
- Department of Anesthesiology and Intensive Care Medicine, Institution of Clinical Sciences, Gothenburg University, Gothenburg, Sweden
| | - Keti Dalla
- Department of Anesthesiology and Intensive Care Medicine, Institution of Clinical Sciences, Gothenburg University, Gothenburg, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hongkong Center for Neurodegenerative Diseases, Science Park, Hongkong, China
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Bengt Nellgård
- Department of Anesthesiology and Intensive Care Medicine, Institution of Clinical Sciences, Gothenburg University, Gothenburg, Sweden
| |
Collapse
|
18
|
Spitz G, Hicks AJ, McDonald SJ, Dore V, Krishnadas N, O’Brien TJ, O’Brien WT, Vivash L, Law M, Ponsford JL, Rowe C, Shultz SR. Plasma biomarkers in chronic single moderate-severe traumatic brain injury. Brain 2024; 147:3690-3701. [PMID: 39315931 PMCID: PMC11531850 DOI: 10.1093/brain/awae255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 06/06/2024] [Accepted: 07/04/2024] [Indexed: 09/25/2024] Open
Abstract
Blood biomarkers are an emerging diagnostic and prognostic tool that reflect a range of neuropathological processes following traumatic brain injury (TBI). Their effectiveness in identifying long-term neuropathological processes after TBI is unclear. Studying biomarkers in the chronic phase is vital because elevated levels in TBI might result from distinct neuropathological mechanisms during acute and chronic phases. Here, we examine plasma biomarkers in the chronic period following TBI and their association with amyloid and tau PET, white matter microarchitecture, brain age and cognition. We recruited participants ≥40 years of age who had suffered a single moderate-severe TBI ≥10 years previously between January 2018 and March 2021. We measured plasma biomarkers using single molecule array technology [ubiquitin C-terminal hydrolase L1 (UCH-L1), neurofilament light (NfL), tau, glial fibrillary acidic protein (GFAP) and phosphorylated tau (P-tau181)]; PET tracers to measure amyloid-β (18F-NAV4694) and tau neurofibrillary tangles (18F-MK6240); MRI to assess white matter microstructure and brain age; and the Rey Auditory Verbal Learning Test to measure verbal-episodic memory. A total of 90 post-TBI participants (73% male; mean = 58.2 years) were recruited on average 22 years (range = 10-33 years) post-injury, and 32 non-TBI control participants (66% male; mean = 57.9 years) were recruited. Plasma UCH-L1 levels were 67% higher {exp(b) = 1.67, P = 0.018, adjusted P = 0.044, 95% confidence interval (CI) [10% to 155%], area under the curve = 0.616} and P-tau181 were 27% higher {exp(b) = 1.24, P = 0.011, adjusted P = 0.044, 95% CI [5% to 46%], area under the curve = 0.632} in TBI participants compared with controls. Amyloid and tau PET were not elevated in TBI participants. Higher concentrations of plasma P-tau181, UCH-L1, GFAP and NfL were significantly associated with worse white matter microstructure but not brain age in TBI participants. For TBI participants, poorer verbal-episodic memory was associated with higher concentration of P-tau181 {short delay: b = -2.17, SE = 1.06, P = 0.043, 95% CI [-4.28, -0.07]; long delay: bP-tau = -2.56, SE = 1.08, P = 0.020, 95% CI [-4.71, -0.41]}, tau {immediate memory: bTau = -6.22, SE = 2.47, P = 0.014, 95% CI [-11.14, -1.30]} and UCH-L1 {immediate memory: bUCH-L1 = -2.14, SE = 1.07, P = 0.048, 95% CI [-4.26, -0.01]}, but was not associated with functional outcome. Elevated plasma markers related to neuronal damage and accumulation of phosphorylated tau suggest the presence of ongoing neuropathology in the chronic phase following a single moderate-severe TBI. Plasma biomarkers were associated with measures of microstructural brain disruption on MRI and disordered cognition, further highlighting their utility as potential objective tools to monitor evolving neuropathology post-TBI.
Collapse
Affiliation(s)
- Gershon Spitz
- Monash-Epworth Rehabilitation Research Centre, School of Psychological Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3800, Australia
- Department of Neuroscience, School of Translational Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3004, Australia
| | - Amelia J Hicks
- Monash-Epworth Rehabilitation Research Centre, School of Psychological Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3800, Australia
| | - Stuart J McDonald
- Department of Neuroscience, School of Translational Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3004, Australia
- Department of Neurology, The Alfred, Melbourne, VIC 3004, Australia
| | - Vincent Dore
- Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3010, Australia
- Department of Molecular Imaging and Therapy, Austin Health, Heidelberg, VIC 3084, Australia
| | - Natasha Krishnadas
- Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3010, Australia
- Department of Molecular Imaging and Therapy, Austin Health, Heidelberg, VIC 3084, Australia
| | - Terence J O’Brien
- Department of Neuroscience, School of Translational Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3004, Australia
- Department of Neurology, The Alfred, Melbourne, VIC 3004, Australia
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC 3010, Australia
| | - William T O’Brien
- Department of Neuroscience, School of Translational Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3004, Australia
| | - Lucy Vivash
- Department of Neuroscience, School of Translational Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3004, Australia
- Department of Neurology, The Alfred, Melbourne, VIC 3004, Australia
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Meng Law
- Department of Neuroscience, School of Translational Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3004, Australia
- Department of Radiology, Alfred Health, Melbourne, VIC 3004, Australia
| | - Jennie L Ponsford
- Monash-Epworth Rehabilitation Research Centre, School of Psychological Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3800, Australia
| | - Christopher Rowe
- Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3010, Australia
- Department of Molecular Imaging and Therapy, Austin Health, Heidelberg, VIC 3084, Australia
| | - Sandy R Shultz
- Department of Neuroscience, School of Translational Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3004, Australia
- Department of Neurology, The Alfred, Melbourne, VIC 3004, Australia
- The Centre for Trauma and Mental Health Research, Health Sciences and Human Services, Vancouver Island University, Nanaimo, BC V9R 5S5, Canada
| |
Collapse
|
19
|
Berek K, Lindner A, Pauli FD, Bsteh G, Treml B, Ponleitner M, Engler C, Kleinsasser A, Berger T, Wille M, Burtscher M, Deisenhammer F, Hegen H. Neurofilament Light Chain Is Associated With Acute Mountain Sickness. Brain Behav 2024; 14:e70165. [PMID: 39552103 PMCID: PMC11570677 DOI: 10.1002/brb3.70165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 10/18/2024] [Accepted: 10/31/2024] [Indexed: 11/19/2024] Open
Abstract
BACKGROUND Neurological symptoms are common in acute mountain sickness (AMS); however, the extent of neuroaxonal damage remains unclear. Neurofilament light chain (NfL) is an established blood biomarker for neuroaxonal damage. OBJECTIVE To investigate whether plasma (p) NfL levels increase after simulated altitude exposure, correlate with the occurrence of AMS, and might be mitigated by preacclimatization. METHODS Healthy subjects were exposed to simulated high altitude (4500 m) by the use of a normobaric hypoxic chamber at the University of Innsbruck two times, that is, within Cycle 1 (C1) over 12 h, and within Cycle 2 (C2) for another 12 h but with a random assignment to prior acclimatization or sham acclimatization. Before each cycle (measurement [M] 1 and 3) and after each cycle (M2 and M4), clinical data (arterial oxygen saturation [SaO2], heart rate, and Lake Louise AMS score [LLS]) and plasma samples were collected. pNfL was measured using single-molecule array (Simoa) technique. RESULTS pNfL levels did not significantly change within each study cycle, but increased over the total study period (M1: 4.57 [3.34-6.39], M2: 4.58 [3.74-6.0], M3: 5.64, and M4: 6.53 [4.65-7.92] pg/mL, p < 0.001). Subjects suffering from AMS during the study procedures showed higher pNfL levels at M4 (6.80 [6.19-8.13] vs. 5.75 [4.17-7.35], p = 0.048), a higher total pNfL increase (2.88 [1.21-3.48] vs. 0.91 [0.53-1.48], p = 0.022) compared to subjects without AMS. An effect of preacclimatization on pNfL levels could not be observed. CONCLUSIONS pNfL increases alongside exposure to simulated altitude and is associated with AMS.
Collapse
Affiliation(s)
- Klaus Berek
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Anna Lindner
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Franziska Di Pauli
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Gabriel Bsteh
- Department of Neurology, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Benedikt Treml
- Department of Anaesthesiology and Critical Care Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Markus Ponleitner
- Department of Neurology, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Clemens Engler
- Department of Surgery, University Hospital for Cardiac Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Axel Kleinsasser
- Department of Anaesthesiology and Critical Care Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Thomas Berger
- Department of Neurology, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Maria Wille
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Martin Burtscher
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | | | - Harald Hegen
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
20
|
Caron NS, Byrne LM, Lemarié FL, Bone JN, Aly AEE, Ko S, Anderson C, Casal LL, Hill AM, Hawellek DJ, McColgan P, Wild EJ, Leavitt BR, Hayden MR. Elevated plasma and CSF neurofilament light chain concentrations are stabilized in response to mutant huntingtin lowering in the brains of Huntington's disease mice. Transl Neurodegener 2024; 13:50. [PMID: 39380076 PMCID: PMC11460072 DOI: 10.1186/s40035-024-00443-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 09/11/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND Therapeutic approaches aimed at lowering toxic mutant huntingtin (mHTT) levels in the brain can reverse disease phenotypes in animal models of Huntington's disease (HD) and are currently being evaluated in clinical trials. Sensitive and dynamic response biomarkers are needed to assess the efficacy of such candidate therapies. Neurofilament light chain (NfL) is a biomarker of neurodegeneration that increases in cerebrospinal fluid (CSF) and blood with progression of HD. However, it remains unknown whether NfL in biofluids could serve as a response biomarker for assessing the efficacy of disease-modifying therapies for HD. METHODS Longitudinal plasma and cross-sectional CSF samples were collected from the YAC128 transgenic mouse model of HD and wild-type (WT) littermate control mice throughout the natural history of disease. Additionally, biofluids were collected from YAC128 mice following intracerebroventricular administration of an antisense oligonucleotide (ASO) targeting the mutant HTT transgene (HTT ASO), at ages both before and after the onset of disease phenotypes. NfL concentrations in plasma and CSF were quantified using ultrasensitive single-molecule array technology. RESULTS Plasma and CSF NfL concentrations were significantly elevated in YAC128 compared to WT littermate control mice from 9 months of age. Treatment of YAC128 mice with either 15 or 50 µg HTT ASO resulted in a dose-dependent, allele-selective reduction of mHTT throughout the brain at a 3-month interval, which was sustained with high-dose HTT ASO treatment for up to 6 months. Lowering of brain mHTT prior to the onset of regional brain atrophy and HD-like motor deficits in this model had minimal effect on plasma NfL at either dose, but led to a dose-dependent reduction of CSF NfL. In contrast, initiating mHTT lowering in the brain after the onset of neuropathological and behavioural phenotypes in YAC128 mice resulted in a dose-dependent stabilization of NfL increases in both plasma and CSF. CONCLUSIONS Our data provide evidence that the response of NfL in biofluids is influenced by the magnitude of mHTT lowering in the brain and the timing of intervention, suggesting that NfL may serve as a promising exploratory response biomarker for HD.
Collapse
Affiliation(s)
- Nicholas S Caron
- Centre for Molecular Medicine and Therapeutics, Vancouver, BC, V5Z 4H4, Canada
- BC Children's Hospital Research Institute, Vancouver, BC, V5Z 4H4, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Lauren M Byrne
- UCL Huntington's Disease Centre, University College London Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Fanny L Lemarié
- Centre for Molecular Medicine and Therapeutics, Vancouver, BC, V5Z 4H4, Canada
- BC Children's Hospital Research Institute, Vancouver, BC, V5Z 4H4, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Jeffrey N Bone
- BC Children's Hospital Research Institute, Vancouver, BC, V5Z 4H4, Canada
- Department of Statistics, University of British Columbia, Vancouver, BC, V6T 1Z2, Canada
| | - Amirah E-E Aly
- Centre for Molecular Medicine and Therapeutics, Vancouver, BC, V5Z 4H4, Canada
- BC Children's Hospital Research Institute, Vancouver, BC, V5Z 4H4, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Seunghyun Ko
- Centre for Molecular Medicine and Therapeutics, Vancouver, BC, V5Z 4H4, Canada
| | - Christine Anderson
- Centre for Molecular Medicine and Therapeutics, Vancouver, BC, V5Z 4H4, Canada
| | - Lorenzo L Casal
- Centre for Molecular Medicine and Therapeutics, Vancouver, BC, V5Z 4H4, Canada
| | - Austin M Hill
- Centre for Molecular Medicine and Therapeutics, Vancouver, BC, V5Z 4H4, Canada
| | - David J Hawellek
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Peter McColgan
- Roche Products Ltd., Welwyn Garden City, AL7 1TW, United Kingdom
| | - Edward J Wild
- UCL Huntington's Disease Centre, University College London Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Blair R Leavitt
- Centre for Molecular Medicine and Therapeutics, Vancouver, BC, V5Z 4H4, Canada
- BC Children's Hospital Research Institute, Vancouver, BC, V5Z 4H4, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Michael R Hayden
- Centre for Molecular Medicine and Therapeutics, Vancouver, BC, V5Z 4H4, Canada.
- BC Children's Hospital Research Institute, Vancouver, BC, V5Z 4H4, Canada.
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
21
|
Hsu JC, Saenkham-Huntsinger P, Huang P, Octaviani CP, Drelich AK, Peng BH, Tseng CTK. Characterizing neuroinvasion and neuropathology of SARS-CoV-2 by using AC70 human ACE2 transgenic mice. Front Microbiol 2024; 15:1455462. [PMID: 39380676 PMCID: PMC11458418 DOI: 10.3389/fmicb.2024.1455462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/13/2024] [Indexed: 10/10/2024] Open
Abstract
COVID-19 presents with a plethora of neurological signs and symptoms despite being characterized as a respiratory disease, including seizures, anxiety, depression, amnesia, attention deficits, and alterations in consciousness. The olfactory nerve is widely accepted as the neuroinvasive route by which the etiological agent SARS-CoV-2 enters the brain, but the trigeminal nerve is an often-overlooked additional route. Based on this consensus, we initially conducted a pilot experiment investigating the olfactory nerve route of SARS-CoV-2 neuroinvasion via intranasal inoculation in AC70 human ACE2 transgenic mice. Notably, we found that the trigeminal ganglion is an early and highly efficient site of viral replication, which then rapidly spread widely throughout the brain where neurons were primarily targeted. Despite the extensive viral infection across the brain, obvious evidence of tissue pathology including inflammatory infiltration, glial activation, and apoptotic cell deaths were not consistently observed, albeit inflammatory cytokines were significantly induced. However, the expression levels of different genes related to neuronal function, including the neurotransmitter dopamine pathway as well as synaptic function, and markers of neuronal damage were altered as compared to mock-infected mice. Our findings suggest that the trigeminal nerve may serve as a neuroinvasive route complementary to the olfactory nerve and that the ensuing neuroinvasion presented a unique neuropathological profile. This study provides insights into potential neuropathogenic mechanisms utilized by coronaviruses.
Collapse
Affiliation(s)
- Jason C. Hsu
- Department of Biochemistry, Cell & Molecular Biology, The University of Texas Medical Branch, Galveston, TX, United States
| | - Panatda Saenkham-Huntsinger
- Department of Microbiology & Immunology, The University of Texas Medical Branch, Galveston, TX, United States
| | - Pinghan Huang
- Department of Microbiology & Immunology, The University of Texas Medical Branch, Galveston, TX, United States
| | - Cassio Pontes Octaviani
- Department of Microbiology & Immunology, The University of Texas Medical Branch, Galveston, TX, United States
| | - Aleksandra K. Drelich
- Department of Microbiology & Immunology, The University of Texas Medical Branch, Galveston, TX, United States
| | - Bi-Hung Peng
- Department of Neuroscience, Cell Biology, & Anatomy, The University of Texas Medical Branch, Galveston, TX, United States
| | - Chien-Te K. Tseng
- Department of Biochemistry, Cell & Molecular Biology, The University of Texas Medical Branch, Galveston, TX, United States
- Department of Microbiology & Immunology, The University of Texas Medical Branch, Galveston, TX, United States
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
22
|
Oris C, Kahouadji S, Bouvier D, Sapin V. Blood Biomarkers for the Management of Mild Traumatic Brain Injury in Clinical Practice. Clin Chem 2024; 70:1023-1036. [PMID: 38656380 DOI: 10.1093/clinchem/hvae049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/15/2024] [Indexed: 04/26/2024]
Abstract
BACKGROUND Despite the use of validated guidelines in the management of mild traumatic brain injury (mTBI), processes to limit unnecessary brain scans are still not sufficient and need to be improved. The use of blood biomarkers represents a relevant adjunct to identify patients at risk for intracranial injury requiring computed tomography (CT) scan. CONTENT Biomarkers currently recommended in the management of mTBI in adults and children are discussed in this review. Protein S100 beta (S100B) is the best-documented blood biomarker due to its validation in large observational and interventional studies. Glial fibrillary acidic protein (GFAP) and ubiquitin carboxyterminal hydrolase L-1 (UCH-L1) have also recently demonstrated their usefulness in patients with mTBI. Preanalytical, analytical, and postanalytical performance are presented to aid in their interpretation in clinical practice. Finally, new perspectives on biomarkers and mTBI are discussed. SUMMARY In adults, the inclusion of S100B in Scandinavian and French guidelines has reduced the need for CT scans by at least 30%. S100B has significant potential as a diagnostic biomarker, but limitations include its rapid half-life, which requires blood collection within 3 h of trauma, and its lack of neurospecificity. In 2018, the FDA approved the use of combined determination of GFAP and UCH-L1 to aid in the assessment of mTBI. Since 2022, new French guidelines also recommend the determination of GFAP and UCH-L1 in order to target a larger number of patients (sampling within 12 h post-injury) and optimize the reduction of CT scans. In the future, new cut-offs related to age and promising new biomarkers are expected for both diagnostic and prognostic applications.
Collapse
Affiliation(s)
- Charlotte Oris
- Biochemistry and Molecular Genetics Department, CHU Clermont-Ferrand, 63000 Clermont-Ferrand, France
- CNRS, INSERM, iGReD, Clermont Auvergne University, Clermont-Ferrand, France
| | - Samy Kahouadji
- Biochemistry and Molecular Genetics Department, CHU Clermont-Ferrand, 63000 Clermont-Ferrand, France
- CNRS, INSERM, iGReD, Clermont Auvergne University, Clermont-Ferrand, France
| | - Damien Bouvier
- Biochemistry and Molecular Genetics Department, CHU Clermont-Ferrand, 63000 Clermont-Ferrand, France
- CNRS, INSERM, iGReD, Clermont Auvergne University, Clermont-Ferrand, France
| | - Vincent Sapin
- Biochemistry and Molecular Genetics Department, CHU Clermont-Ferrand, 63000 Clermont-Ferrand, France
- CNRS, INSERM, iGReD, Clermont Auvergne University, Clermont-Ferrand, France
| |
Collapse
|
23
|
Thiara S, Stukas S, Hoiland R, Wellington C, Tymko M, Isac G, Finlayson G, Kanji H, Romano K, Hirsch-Reinshagen V, Sekhon M, Griesdale D. Characterizing the Relationship Between Arterial Carbon Dioxide Trajectory and Serial Brain Biomarkers with Central Nervous System Injury During Veno-Venous Extracorporeal Membrane Oxygenation: A Prospective Cohort Study. Neurocrit Care 2024; 41:20-28. [PMID: 38302643 PMCID: PMC11335840 DOI: 10.1007/s12028-023-01923-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 12/13/2023] [Indexed: 02/03/2024]
Abstract
BACKGROUND Central nervous system (CNS) injury following initiation of veno-venous extracorporeal membrane oxygenation (VV-ECMO) is common. An acute decrease in partial pressure of arterial carbon dioxide (PaCO2) following VV-ECMO initiation has been suggested as an etiological factor, but the challenges of diagnosing CNS injuries has made discerning a relationship between PaCO2 and CNS injury difficult. METHODS We conducted a prospective cohort study of adult patients undergoing VV-ECMO for acute respiratory failure. Arterial blood gas measurements were obtained prior to initiation of VV-ECMO, and at every 2-4 h for the first 24 h. Neuroimaging was conducted within the first 7-14 days in patients who were suspected of having neurological injury or unable to be examined because of sedation. We collected blood biospecimens to measure brain biomarkers [neurofilament light (NF-L); glial fibrillary acidic protein (GFAP); and phosphorylated-tau 181] in the first 7 days following initiation of VV-ECMO. We assessed the relationship between both PaCO2 over the first 24 h and brain biomarkers with CNS injury using mixed methods linear regression. Finally, we explored the effects of absolute change of PaCO2 on serum levels of neurological biomarkers by separate mixed methods linear regression for each biomarker using three PaCO2 exposures hypothesized to result in CNS injury. RESULTS In our cohort, 12 of 59 (20%) patients had overt CNS injury identified on head computed tomography. The PaCO2 decrease with VV-ECMO initiation was steeper in patients who developed a CNS injury (- 0.32%, 95% confidence interval - 0.25 to - 0.39) compared with those without (- 0.18%, 95% confidence interval - 0.14 to - 0.21, P interaction < 0.001). The mean concentration of NF-L increased over time and was higher in those with a CNS injury (464 [739]) compared with those without (127 [257]; P = 0.001). GFAP was higher in those with a CNS injury (4278 [11,653] pg/ml) compared with those without (116 [108] pg/ml; P < 0.001). The mean NF-L, GFAP, and tau over time in patients stratified by the three thresholds of absolute change of PaCO2 showed no differences and had no significant interaction for time. CONCLUSIONS Although rapid decreases in PaCO2 following initiation of VV-ECMO were slightly greater in patients who had CNS injuries versus those without, data overlap and absence of relationships between PaCO2 and brain biomarkers suggests other pathophysiologic variables are likely at play.
Collapse
Affiliation(s)
- Sonny Thiara
- Division of Critical Care Medicine, Department of Medicine, Faculty of Medicine, Vancouver General Hospital, University of British Columbia, Room 2438, Jim Pattison Pavilion, 2nd Floor 855 West 12th Avenue, Vancouver, BC, V5Z 1M9, Canada.
| | - Sophie Stukas
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Ryan Hoiland
- Department of Anesthesiology, Pharmacology and Therapeutics, Faculty of Medicine, Vancouver General Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Cheryl Wellington
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Mike Tymko
- Division of Critical Care Medicine, Department of Medicine, Faculty of Medicine, Vancouver General Hospital, University of British Columbia, Room 2438, Jim Pattison Pavilion, 2nd Floor 855 West 12th Avenue, Vancouver, BC, V5Z 1M9, Canada
| | - George Isac
- Department of Anesthesiology, Pharmacology and Therapeutics, Faculty of Medicine, Vancouver General Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Gordon Finlayson
- Department of Anesthesiology, Pharmacology and Therapeutics, Faculty of Medicine, Vancouver General Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Hussein Kanji
- Department of Emergency Medicine, Faculty of Medicine, Vancouver General Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Kali Romano
- Department of Anesthesiology, Pharmacology and Therapeutics, Faculty of Medicine, Vancouver General Hospital, University of British Columbia, Vancouver, BC, Canada
| | | | - Mypinder Sekhon
- Division of Critical Care Medicine, Department of Medicine, Faculty of Medicine, Vancouver General Hospital, University of British Columbia, Room 2438, Jim Pattison Pavilion, 2nd Floor 855 West 12th Avenue, Vancouver, BC, V5Z 1M9, Canada
| | - Donald Griesdale
- Department of Anesthesiology, Pharmacology and Therapeutics, Faculty of Medicine, Vancouver General Hospital, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
24
|
Besse M, Belz M, Bartels C, Herzig B, Wiltfang J, Zilles-Wegner D. The myth of brain damage: no change of neurofilament light chain during transient cognitive side-effects of ECT. Eur Arch Psychiatry Clin Neurosci 2024; 274:1187-1195. [PMID: 37656172 PMCID: PMC11226499 DOI: 10.1007/s00406-023-01686-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 08/14/2023] [Indexed: 09/02/2023]
Abstract
Electroconvulsive therapy (ECT) is an effective, safe, and mostly well-tolerated treatment for patients with severe or difficult to treat depression or psychotic disorders. However, a relevant number of patients experience subjective and/or objective cognitive side-effects. The mechanism of these transient deficits is not yet clear. Thus, our study prospectively investigated neurofilament light chain (NfL) concentrations as a highly sensitive biomarker for neuroaxonal damage along with cognitive performance during a course of ECT. Serum NfL concentrations from 15 patients with major depressive disorder receiving ECT were analyzed (1) 24 h before the first ECT, (2) 24 h and (3) 7 days after the last ECT (45 measurements in total). Neuropsychological testing including memory, executive functions and attention was performed at each time-point. NfL concentrations did not change between the three time-points, while a temporary cognitive impairment was found. Even in the subset of patients with the strongest impairment, NfL concentrations remained unchanged. Neuropsychological testing revealed the common pattern of transient cognitive side-effects with reduced performance 24 h post-ECT (global cognition score: p < 0.001; memory: p = 0.043; executive functions: p = 0.002) and return to baseline after 7 days (all p < 0.001). Our study adds to the evidence that neither ECT per se nor the transient cognitive side-effects seem to be associated with an increase of NfL as a marker of neuroaxonal damage. In contrast, we discuss cognitive side effects to be potentially interpreted as a byproduct of ECT's neuroplastic effects.
Collapse
Affiliation(s)
- Matthias Besse
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Von-Siebold-Strasse 5, 37075, Göttingen, Germany.
| | - Michael Belz
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Von-Siebold-Strasse 5, 37075, Göttingen, Germany
| | - Claudia Bartels
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Von-Siebold-Strasse 5, 37075, Göttingen, Germany
| | - Bettina Herzig
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Von-Siebold-Strasse 5, 37075, Göttingen, Germany
| | - Jens Wiltfang
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Von-Siebold-Strasse 5, 37075, Göttingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Goettingen, Germany
- Neurosciences and Signaling Group, Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - David Zilles-Wegner
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Von-Siebold-Strasse 5, 37075, Göttingen, Germany
| |
Collapse
|
25
|
Shahim P, Pham DL, van der Merwe AJ, Moore B, Chou Y, Lippa SM, Kenney K, Diaz‐Arrastia R, Chan L. Serum NfL and GFAP as biomarkers of progressive neurodegeneration in TBI. Alzheimers Dement 2024; 20:4663-4676. [PMID: 38805359 PMCID: PMC11247683 DOI: 10.1002/alz.13898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 04/01/2024] [Accepted: 04/12/2024] [Indexed: 05/30/2024]
Abstract
BACKGROUND We examined spatial patterns of brain atrophy after mild, moderate, and severe traumatic brain injury (TBI), the relationship between progression of brain atrophy with initial traumatic axonal injury (TAI), cognitive outcome, and with serum biomarkers of brain injury. METHODS A total of 143 patients with TBI and 43 controls were studied cross-sectionally and longitudinally up to 5 years with multiple assessments, which included brain magnetic resonance imaging, cognitive testing, and serum biomarkers. RESULTS TBI patients showed progressive volume loss regardless of injury severity over several years, and TAI was independently associated with accelerated brain atrophy. Cognitive performance improved over time. Higher baseline serum neurofilament light (NfL) and glial fibrillary acidic protein (GFAP) were associated with greater rate of brain atrophy over 5 years. DISCUSSSION Spatial patterns of atrophy differ by injury severity and TAI is associated with the progression of brain atrophy. Serum NfL and GFAP show promise as non-invasive prognostic biomarkers of progressive neurodegeneration in TBI. HIGHLIGHTS In this longitudinal study of patient with mild, moderate, and severe traumatic brain injury (TBI) who were assessed with paired magnetic resonance imaging (MRI), blood biomarkers, and cognitive assessments, we found that brain atrophy after TBI is progressive and continues for many years even after a mild head trauma without signs of brain injury on conventional MRI. We found that spatial pattern of brain atrophy differs between mild, moderate, and severe TBI, where in patients with mild TBI , atrophy is mainly seen in the gray matter, while in those with moderate to severe brain injury atrophy is predominantly seen in the subcortical gray matter and whiter matter. Cognitive performance improves over time after a TBI. Serum measures of neurofilament light or glial fibrillary acidic protein are associated with progression of brain atrophy after TBI.
Collapse
Affiliation(s)
- Pashtun Shahim
- Rehabilitation Medicine DepartmentNational Institutes of Health (NIH) Clinical CenterBethesdaMarylandUSA
- National Institutes of Neurological Disorders and Stroke, NIHBethesdaMarylandUSA
- Department of NeurologyMedStar Georgetown University Hospital, Pasquerilla Healthcare CenterWashingtonDistrict of ColumbiaUSA
- The Military Traumatic Brain Injury Initiative (MTBI2)BethesdaMarylandUSA
- The Henry M. Jackson Foundation for the Advancement of Military MedicineBethesdaMarylandUSA
| | - Dzung L. Pham
- The Military Traumatic Brain Injury Initiative (MTBI2)BethesdaMarylandUSA
- Uniformed Services University of the Health SciencesBethesdaMarylandUSA
| | - Andre J. van der Merwe
- Rehabilitation Medicine DepartmentNational Institutes of Health (NIH) Clinical CenterBethesdaMarylandUSA
- The Military Traumatic Brain Injury Initiative (MTBI2)BethesdaMarylandUSA
- The Henry M. Jackson Foundation for the Advancement of Military MedicineBethesdaMarylandUSA
| | - Brian Moore
- Rehabilitation Medicine DepartmentNational Institutes of Health (NIH) Clinical CenterBethesdaMarylandUSA
- The Military Traumatic Brain Injury Initiative (MTBI2)BethesdaMarylandUSA
- The Henry M. Jackson Foundation for the Advancement of Military MedicineBethesdaMarylandUSA
| | - Yi‐Yu Chou
- The Military Traumatic Brain Injury Initiative (MTBI2)BethesdaMarylandUSA
- The Henry M. Jackson Foundation for the Advancement of Military MedicineBethesdaMarylandUSA
| | - Sara M. Lippa
- Uniformed Services University of the Health SciencesBethesdaMarylandUSA
- National Intrepid Center of Excellence, Walter Reed National Military Medical CenterBethesdaMarylandUSA
| | - Kimbra Kenney
- Uniformed Services University of the Health SciencesBethesdaMarylandUSA
- National Intrepid Center of Excellence, Walter Reed National Military Medical CenterBethesdaMarylandUSA
| | - Ramon Diaz‐Arrastia
- Department of NeurologyUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
| | - Leighton Chan
- Rehabilitation Medicine DepartmentNational Institutes of Health (NIH) Clinical CenterBethesdaMarylandUSA
| |
Collapse
|
26
|
Beydoun MA, Noren Hooten N, Georgescu MF, Beydoun HA, Eid SM, Fanelli-Kuczmarski MT, Evans MK, Zonderman AB. Serum neurofilament light chain as a prognostic marker of all-cause mortality in a national sample of US adults. Eur J Epidemiol 2024; 39:795-809. [PMID: 38771439 PMCID: PMC11343803 DOI: 10.1007/s10654-024-01131-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 05/01/2024] [Indexed: 05/22/2024]
Abstract
Neurofilament light chain (NfL) is a neuron-specific structural protein released into the extracellular space, including body fluids, upon neuroaxonal damage. Despite evidence of a link in neurological disorders, few studies have examined the association of serum NfL with mortality in population-based studies. Data from the National Health and Nutrition Survey were utilized including 2,071 Non-Hispanic White, Non-Hispanic Black and Hispanic adult participants and adult participants of other ethnic groups (20-85 years) with serum NfL measurements who were followed for ≤ 6 years till 2019. We tested the association of serum NfL with mortality in the overall population and stratified by sex with the addition of potential interactive and mediating effects of cardio-metabolic risk factors and nutritional biomarkers. Elevated serum NfL levels (above median group) were associated with mortality risk compared to the below median NfL group in the overall sample (P = 0.010), with trends observed within each sex group (P < 0.10). When examining Loge NfL as a continuum, one standard deviation of Loge NfL was associated with an increased mortality risk (HR = 1.88, 95% CI 1.60-2.20, P < 0.001) in the reduced model adjusted for age, sex, race, and poverty income ratio; a finding only slightly attenuated with the adjustment of lifestyle and health-related factors. Four-way decomposition indicated that there was, among others, mediated interaction between NfL and HbA1c and a pure inconsistent mediation with 25(OH)D3 in predicting all-cause mortality, in models adjusted for all other covariates. Furthermore, urinary albumin-to-creatinine ratio interacted synergistically with NfL in relation to mortality risk both on the additive and multiplicative scales. These data indicate that elevated serum NfL levels were associated with all-cause mortality in a nationally representative sample of US adults.
Collapse
Affiliation(s)
- May A Beydoun
- Laboratory of Epidemiology and Population Sciences, NIA/NIH/IRP, Baltimore, MD, USA.
- NIH Biomedical Research Center, National Institute on Aging, IRP, 251 Bayview Blvd., Suite 100, Room #: 04B118, Baltimore, MD, 21224, USA.
| | - Nicole Noren Hooten
- Laboratory of Epidemiology and Population Sciences, NIA/NIH/IRP, Baltimore, MD, USA
| | - Michael F Georgescu
- Laboratory of Epidemiology and Population Sciences, NIA/NIH/IRP, Baltimore, MD, USA
| | - Hind A Beydoun
- Department of Research Programs, Fort Belvoir Community Hospital, Fort Belvoir, VA, USA
| | - Shaker M Eid
- Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | | | - Michele K Evans
- Laboratory of Epidemiology and Population Sciences, NIA/NIH/IRP, Baltimore, MD, USA
| | - Alan B Zonderman
- Laboratory of Epidemiology and Population Sciences, NIA/NIH/IRP, Baltimore, MD, USA
| |
Collapse
|
27
|
Bayoumy S, Verberk IMW, Vermunt L, Willemse E, den Dulk B, van der Ploeg AT, Pajkrt D, Nitz E, van den Hout JMP, van der Post J, Wolf NI, Beerepoot S, Groen EJN, Tüngler V, Teunissen CE. Neurofilament light protein as a biomarker for spinal muscular atrophy: a review and reference ranges. Clin Chem Lab Med 2024; 62:1252-1265. [PMID: 38215341 DOI: 10.1515/cclm-2023-1311] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 01/03/2024] [Indexed: 01/14/2024]
Abstract
Spinal muscular atrophy (SMA) is the leading genetic cause of infant mortality, characterized by progressive neuromuscular degeneration resulting from mutations in the survival motor neuron (SMN1) gene. The availability of disease-modifying therapies for SMA therapies highlights the pressing need for easily accessible and cost-effective blood biomarkers to monitor treatment response and for better disease management. Additionally, the wide implementation of newborn genetic screening programs in Western countries enables presymptomatic diagnosis of SMA and immediate treatment administration. However, the absence of monitoring and prognostic blood biomarkers for neurodegeneration in SMA hinders effective disease management. Neurofilament light protein (NfL) is a promising biomarker of neuroaxonal damage in SMA and reflects disease progression in children with SMA undergoing treatment. Recently, the European Medicines Agency issued a letter of support endorsing the potential utilization of NfL as a biomarker of pediatric neurological diseases, including SMA. Within this review, we comprehensively assess the potential applications of NfL as a monitoring biomarker for disease severity and treatment response in pediatric-onset SMA. We provide reference ranges for normal levels of serum based NfL in neurologically healthy children aged 0-18 years. These reference ranges enable accurate interpretation of NfL levels in children and can accelerate the implementation of NfL into clinical practice.
Collapse
Affiliation(s)
- Sherif Bayoumy
- Neurochemistry Laboratory, Department of Laboratory Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Inge M W Verberk
- Neurochemistry Laboratory, Department of Laboratory Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Lisa Vermunt
- Neurochemistry Laboratory, Department of Laboratory Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Eline Willemse
- Neurochemistry Laboratory, Department of Laboratory Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Ben den Dulk
- Neurochemistry Laboratory, Department of Laboratory Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Ans T van der Ploeg
- Center for Lysosomal and Metabolic Diseases, Department of Pediatrics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Dasja Pajkrt
- Organovir Labs, Department of Pediatric Infectious Diseases, Amsterdam University Medical Centers Location Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Elisa Nitz
- Department of Neuropediatrics, Medizinische Fakultät, Technische Universität Dresden, Dresden, Germany
| | - Johanna M P van den Hout
- Center for Lysosomal and Metabolic Diseases, Department of Pediatrics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Julie van der Post
- Organovir Labs, Department of Pediatric Infectious Diseases, Amsterdam University Medical Centers Location Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Nicole I Wolf
- Amsterdam Leukodystrophy Center, Department of Child Neurology, Emma Children's Hospital, Amsterdam University Medical Center, VU University Amsterdam, and Amsterdam Neuroscience, Cellular & Molecular Mechanisms, Amsterdam, The Netherlands
| | - Shanice Beerepoot
- Amsterdam Leukodystrophy Center, Department of Child Neurology, Emma Children's Hospital, Amsterdam University Medical Center, VU University Amsterdam, and Amsterdam Neuroscience, Cellular & Molecular Mechanisms, Amsterdam, The Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Ewout J N Groen
- UMC Utrecht Brain Center, Department of Neurology and Neurosurgery, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Victoria Tüngler
- Department of Neuropediatrics, Medizinische Fakultät, Technische Universität Dresden, Dresden, Germany
- University Center for Rare Diseases, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Charlotte E Teunissen
- Neurochemistry Laboratory, Department of Laboratory Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| |
Collapse
|
28
|
Kaaber IA, Lesbo M, Wichmann TO, Olsen DA, Rasmussen MM, Brink O, Borris LC, Hviid CVB. Admission levels of serum biomarkers have additive and cumulative prognostic value in traumatic brain injury. Sci Rep 2024; 14:14139. [PMID: 38898030 PMCID: PMC11187066 DOI: 10.1038/s41598-024-64125-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 06/05/2024] [Indexed: 06/21/2024] Open
Abstract
Elevated levels of CNS-derived serum proteins are associated with poor outcome in traumatic brain injury (TBI), but the value of adding acute serum biomarker levels to common clinical outcome predictors lacks evaluation. We analyzed admission serum samples for Total-Tau (T-Tau), Neurofilament light chain (Nfl), Glial fibrillary acidic protein (GFAP), and Ubiquitin C-terminal hydrolase L1 (UCHL1) in a cohort of 396 trauma patients including 240 patients with TBI. We assessed the independent association of biomarkers with 1-year mortality and 6-12 months Glasgow Outcome Scale Extended (GOSE) score, as well as the additive and cumulative value of biomarkers on Glasgow Coma Scale (GCS) and Marshall Score for outcome prediction. Nfl and T-Tau levels were independently associated with outcome (OR: Nfl = 1.65, p = 0.01; T-Tau = 1.99, p < 0.01). Nfl or T-Tau improved outcome prediction by GCS (Wald Chi, Nfl = 6.8-8.8, p < 0.01; T-Tau 7.2-11.3, p < 0.01) and the Marshall score (Wald Chi, Nfl = 16.2-17.5, p < 0.01; T-Tau 8.7-12.4, p < 0.01). Adding T-Tau atop Nfl further improved outcome prediction in majority of tested models (Wald Chi range 3.8-9.4, p ≤ 0.05). Our data suggest that acute levels of serum biomarkers are independently associated with outcome after TBI and add outcome predictive value to commonly used clinical scores.
Collapse
Affiliation(s)
- Ida A Kaaber
- Department of Clinical Biochemistry, Aarhus University Hospital, 8200, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Maj Lesbo
- Department of Ortopedic Surgery, Viborg Regional Hospital, Viborg, Denmark
| | - Thea O Wichmann
- Department of Neurosurgery, Aarhus University Hospital, Aarhus, Denmark
| | - Dorte Aa Olsen
- Department of Biochemistry and Immunology, Lillebaelt Hospital, University Hospital of Southern Denmark, Vejle, Denmark
| | - Mikkel M Rasmussen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Neurosurgery, Aarhus University Hospital, Aarhus, Denmark
| | - Ole Brink
- Department of Ortopedic Surgery, Aarhus University Hospital, Aarhus, Denmark
| | - Lars C Borris
- Department of Ortopedic Surgery, Aarhus University Hospital, Aarhus, Denmark
| | - Claus V B Hviid
- Department of Clinical Biochemistry, Aarhus University Hospital, 8200, Aarhus, Denmark.
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark.
- Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg, Denmark.
| |
Collapse
|
29
|
Kocik VI, Dengler BA, Rizzo JA, Ma Moran M, Willis AM, April MD, Schauer SG. A Narrative Review of Existing and Developing Biomarkers in Acute Traumatic Brain Injury for Potential Military Deployed Use. Mil Med 2024; 189:e1374-e1380. [PMID: 37995274 DOI: 10.1093/milmed/usad433] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/31/2023] [Indexed: 11/25/2023] Open
Abstract
INTRODUCTION Traumatic brain injury (TBI) is a leading cause of morbidity and mortality in both adult civilian and military populations. Currently, diagnostic and prognostic methods are limited to imaging and clinical findings. Biomarker measurements offer a potential method to assess head injuries and help predict outcomes, which has a potential benefit to the military, particularly in the deployed setting where imaging modalities are limited. We determine how biomarkers such as ubiquitin C-terminal hydrolase-L1 (UCH-L1), glial fibrillary acidic protein (GFAP), S100B, neurofilament light chain (NFL), and tau proteins can offer important information to guide the diagnosis, acute management, and prognosis of TBI, specifically in military personnel. MATERIALS AND METHODS We performed a narrative review of peer-reviewed literature using online databases of Google Scholar and PubMed. We included articles published between 1988 and 2022. RESULTS We screened a total of 73 sources finding a total of 39 original research studies that met inclusion for this review. We found five studies that focused on GFAP, four studies that focused on UCH-L1, eight studies that focused on tau proteins, six studies that focused on NFL, and eight studies that focused on S100B. The remainder of the studies included more than one of the biomarkers of interest. CONCLUSIONS TBI occurs frequently in the military and civilian settings with limited methods to diagnose and prognosticate outcomes. We highlighted several promising biomarkers for these purposes including S100B, UCH-L1, NFL, GFAP, and tau proteins. S100B and UCH-L1 appear to have the strongest data to date, but further research is necessary. The robust data that explain the optimal timing and, more importantly, trending of these biomarker measurements are necessary before widespread application.
Collapse
Affiliation(s)
| | - Bradley A Dengler
- Walter Reed National Military Medical Center, Bethesda, MD, USA
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Julie A Rizzo
- Brooke Army Medical Center, JBSA Fort Sam Houston, TX, USA
- Department of Military and Emergency Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | | | | | - Michael D April
- Department of Military and Emergency Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- 14th Field Hospital, Fort Stewart, GA 31314, USA
| | - Steven G Schauer
- Department of Military and Emergency Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- Departments of Anesthesiology and Emergency Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
- Center for Combat and Battlefield (COMBAT) Research, University of Colorado School of Medicine, Aurora, CO 80045, USA
| |
Collapse
|
30
|
Foster VS, Saez NJ, Gillespie ER, Jogia T, Reid C, Maljevic S, Jung W, Lao HW, Ruitenberg MJ, King GF. Genetic or Pharmacological Ablation of Acid-Sensing Ion Channel 1a (ASIC1a) Is Not Neuroprotective in a Mouse Model of Spinal Cord Injury. J Neurotrauma 2024; 41:1007-1019. [PMID: 36924276 DOI: 10.1089/neu.2022.0295] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
Abstract
Acid-sensing ion channel 1a (ASIC1a) is a proton-activated channel that is expressed ubiquitously throughout the central nervous system and in various types of immune cells. Its role in spinal cord injury (SCI) is controversial; inhibition of ASIC1a has been reported to improve SCI pathology in vivo, but conversely, gene ablation increased kainite-mediated excitotoxic cell death in vitro. Here, we re-examined the role of ASIC1a in a mouse model of SCI. First, we observed functional outcomes up to 42 days post-operation (DPO) in SCI mice with a selective genetic ablation of ASIC1a. Mice lacking ASIC1a had significantly worsened locomotor ability and increased lesion size compared with mice possessing the ASIC1a gene. Next, we explored pharmacological antagonism of this ion channel by administering the potent ASIC1a inhibitor, Hi1a. Consistent with a role for ASIC1a to attenuate excitotoxicity, accelerated neuronal cell loss was found at the lesion site in SCI mice treated with Hi1a, but there were no differences in locomotor recovery. Moreover, ASIC1a inhibition did not cause significant alterations to neutrophil migration, microglial density, or blood-spinal cord barrier integrity.
Collapse
Affiliation(s)
- Victoria S Foster
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, Australia
| | - Natalie J Saez
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, Australia
| | - Ellen R Gillespie
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, Queensland, Australia
| | - Trisha Jogia
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, Queensland, Australia
| | - Chantelle Reid
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, Queensland, Australia
| | - Snezana Maljevic
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Woncheol Jung
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, Queensland, Australia
| | - Hong W Lao
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, Queensland, Australia
| | - Marc J Ruitenberg
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, Queensland, Australia
- Trauma, Critical Care, and Recovery, Brisbane Diamantina Health Partners, Brisbane, Queensland, Australia
| | - Glenn F King
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, Australia
- Australian Research Council Center of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, St Lucia, Queensland, Australia
| |
Collapse
|
31
|
Khalil M, Teunissen CE, Lehmann S, Otto M, Piehl F, Ziemssen T, Bittner S, Sormani MP, Gattringer T, Abu-Rumeileh S, Thebault S, Abdelhak A, Green A, Benkert P, Kappos L, Comabella M, Tumani H, Freedman MS, Petzold A, Blennow K, Zetterberg H, Leppert D, Kuhle J. Neurofilaments as biomarkers in neurological disorders - towards clinical application. Nat Rev Neurol 2024; 20:269-287. [PMID: 38609644 DOI: 10.1038/s41582-024-00955-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2024] [Indexed: 04/14/2024]
Abstract
Neurofilament proteins have been validated as specific body fluid biomarkers of neuro-axonal injury. The advent of highly sensitive analytical platforms that enable reliable quantification of neurofilaments in blood samples and simplify longitudinal follow-up has paved the way for the development of neurofilaments as a biomarker in clinical practice. Potential applications include assessment of disease activity, monitoring of treatment responses, and determining prognosis in many acute and chronic neurological disorders as well as their use as an outcome measure in trials of novel therapies. Progress has now moved the measurement of neurofilaments to the doorstep of routine clinical practice for the evaluation of individuals. In this Review, we first outline current knowledge on the structure and function of neurofilaments. We then discuss analytical and statistical approaches and challenges in determining neurofilament levels in different clinical contexts and assess the implications of neurofilament light chain (NfL) levels in normal ageing and the confounding factors that need to be considered when interpreting NfL measures. In addition, we summarize the current value and potential clinical applications of neurofilaments as a biomarker of neuro-axonal damage in a range of neurological disorders, including multiple sclerosis, Alzheimer disease, frontotemporal dementia, amyotrophic lateral sclerosis, stroke and cerebrovascular disease, traumatic brain injury, and Parkinson disease. We also consider the steps needed to complete the translation of neurofilaments from the laboratory to the management of neurological diseases in clinical practice.
Collapse
Affiliation(s)
- Michael Khalil
- Department of Neurology, Medical University of Graz, Graz, Austria.
| | - Charlotte E Teunissen
- Neurochemistry Laboratory Department of Laboratory Medicine, Amsterdam Neuroscience, Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam, Netherlands
| | - Sylvain Lehmann
- LBPC-PPC, Université de Montpellier, INM INSERM, IRMB CHU de Montpellier, Montpellier, France
| | - Markus Otto
- Department of Neurology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Fredrik Piehl
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Tjalf Ziemssen
- Center of Clinical Neuroscience, Department of Neurology, Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Stefan Bittner
- Department of Neurology, Focus Program Translational Neuroscience (FTN), and Immunotherapy (FZI), Rhine-Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Maria Pia Sormani
- Department of Health Sciences, University of Genova, Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Thomas Gattringer
- Department of Neurology, Medical University of Graz, Graz, Austria
- Division of Neuroradiology, Vascular and Interventional Radiology, Department of Radiology, Medical University of Graz, Graz, Austria
| | - Samir Abu-Rumeileh
- Department of Neurology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Simon Thebault
- Multiple Sclerosis Division, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ahmed Abdelhak
- Weill Institute for Neurosciences, Department of Neurology, University of California at San Francisco, San Francisco, CA, USA
| | - Ari Green
- Weill Institute for Neurosciences, Department of Neurology, University of California at San Francisco, San Francisco, CA, USA
| | - Pascal Benkert
- Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Basel, Switzerland
- Department of Neurology, University Hospital and University of Basel, Basel, Switzerland
| | - Ludwig Kappos
- Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Basel, Switzerland
- Department of Neurology, University Hospital and University of Basel, Basel, Switzerland
| | - Manuel Comabella
- Neurology Department, Multiple Sclerosis Centre of Catalonia, Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Hayrettin Tumani
- Department of Neurology, CSF Laboratory, Ulm University Hospital, Ulm, Germany
| | - Mark S Freedman
- Department of Medicine, University of Ottawa, The Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Axel Petzold
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Neurology, MS Centre and Neuro-ophthalmology Expertise Centre Amsterdam, Amsterdam Neuroscience, Amsterdam, Netherlands
- Moorfields Eye Hospital, The National Hospital for Neurology and Neurosurgery and the Queen Square Institute of Neurology, UCL, London, UK
| | - Kaj Blennow
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Paris Brain Institute, ICM, Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France
- Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, and Department of Neurology, Institute on Aging and Brain Disorders, University of Science and Technology of China and First Affiliated Hospital of USTC, Hefei, P. R. China
| | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - David Leppert
- Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Basel, Switzerland
- Department of Neurology, University Hospital and University of Basel, Basel, Switzerland
| | - Jens Kuhle
- Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Basel, Switzerland.
- Department of Neurology, University Hospital and University of Basel, Basel, Switzerland.
| |
Collapse
|
32
|
Lange RT, Gill JM, Lippa SM, Hungerford L, Walker T, Kennedy J, Brickell TA, French LM. Elevated Serum Tau and UCHL-1 Concentrations Within 12 Months of Injury Predict Neurobehavioral Functioning 2 or More Years Following Traumatic Brain Injury: A Longitudinal Study. J Head Trauma Rehabil 2024; 39:196-206. [PMID: 37335195 DOI: 10.1097/htr.0000000000000877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
OBJECTIVE Blood-based biomarkers have received considerable attention for their diagnostic and prognostic value in the acute and postacute period following traumatic brain injury (TBI). The purpose of this study was to examine whether blood-based biomarker concentrations within the first 12 months of TBI can predict neurobehavioral outcome in the chronic phase of the recovery trajectory. SETTING Inpatient and outpatient wards from 3 military medical treatment facilities. PARTICIPANTS A total of 161 service members and veterans classified into 3 groups: ( a ) uncomplicated mild TBI (MTBI; n = 37), ( b ) complicated mild, moderate, severe, penetrating TBI combined (STBI; n = 46), and ( c ) controls (CTRL; n = 78). DESIGN Prospective longitudinal. MAIN MEASURES Participants completed 6 scales from the Traumatic Brain Injury Quality of Life (ie, Anger, Anxiety, Depression, Fatigue, Headaches, and Cognitive Concerns) within 12 months (baseline) and at 2 or more years (follow-up) post-injury. Serum concentrations of tau, neurofilament light, glial fibrillary acidic protein, and UCHL-1 at baseline were measured using SIMOA. RESULTS Baseline tau was associated with worse anger, anxiety, and depression in the STBI group at follow-up ( R2 = 0.101-0.127), and worse anxiety in the MTBI group ( R2 = 0.210). Baseline ubiquitin carboxyl-terminal hydrolase L1 (UCHL-1) was associated with worse anxiety and depression at follow-up in both the MTBI and STBI groups ( R2 Δ = 0.143-0.207), and worse cognitive concerns in the MTBI group ( R2 Δ = 0.223). CONCLUSIONS A blood-based panel including these biomarkers could be a useful tool for identifying individuals at risk of poor outcome following TBI.
Collapse
Affiliation(s)
- Rael T Lange
- Traumatic Brain Injury Center of Excellence, Silver Spring, Maryland (Drs Lange, Hungerford, Kennedy, Brickell, and French and Mr Walker); Walter Reed National Military Medical Center, Bethesda, Maryland (Drs Lange, Lippa, Brickell, and French); National Intrepid Center of Excellence, Bethesda, Maryland (Drs Lange, Lippa, Brickell, and French); General Dynamics Information Technology, Falls Church, Virginia (Drs Lange, Hungerford, Kennedy, and Brickell); Department of Psychiatry, University of British Columbia, Vancouver, Canada (Dr Lange); Department of Physical Medicine and Rehabilitation, University of the Health Sciences, Bethesda, Maryland (Drs Lange, Brickell, and French); Department of Neuroscience, University of the Health Sciences, Bethesda, Maryland (Dr Lippa); San Antonio Military Medical Center, San Antonio, Texas (Dr Kennedy); Naval Medical Center San Diego, San Diego, California (Dr Hungerford and Mr Walker); and Johns Hopkins University, Baltimore, Maryland (Dr Gill)
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Leckey CA, Coulton JB, Giovannucci TA, He Y, Aslanyan A, Laban R, Heslegrave A, Doykov I, Ammoscato F, Chataway J, De Angelis F, Gnanapavan S, Byrne LM, Schott JM, Wild EJ, Barthelémy NR, Zetterberg H, Wray S, Bateman RJ, Mills K, Paterson RW. CSF neurofilament light chain profiling and quantitation in neurological diseases. Brain Commun 2024; 6:fcae132. [PMID: 38707707 PMCID: PMC11069115 DOI: 10.1093/braincomms/fcae132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 04/02/2024] [Accepted: 04/12/2024] [Indexed: 05/07/2024] Open
Abstract
Neurofilament light chain is an established marker of neuroaxonal injury that is elevated in CSF and blood across various neurological diseases. It is increasingly used in clinical practice to aid diagnosis and monitor progression and as an outcome measure to assess safety and efficacy of disease-modifying therapies across the clinical translational neuroscience field. Quantitative methods for neurofilament light chain in human biofluids have relied on immunoassays, which have limited capacity to describe the structure of the protein in CSF and how this might vary in different neurodegenerative diseases. In this study, we characterized and quantified neurofilament light chain species in CSF across neurodegenerative and neuroinflammatory diseases and healthy controls using targeted mass spectrometry. We show that the quantitative immunoprecipitation-tandem mass spectrometry method developed in this study strongly correlates to single-molecule array measurements in CSF across the broad spectrum of neurodegenerative diseases and was replicable across mass spectrometry methods and centres. In summary, we have created an accurate and cost-effective assay for measuring a key biomarker in translational neuroscience research and clinical practice, which can be easily multiplexed and translated into clinical laboratories for the screening and monitoring of neurodegenerative disease or acute brain injury.
Collapse
Affiliation(s)
- Claire A Leckey
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
- Translational Mass Spectrometry Research Group, UCL Great Ormond Street Hospital Institute of Child Health, University College London, London, WC1N 1EH, UK
- UK Dementia Research Institute at UCL, University College London, London, WC1E 6BT, UK
| | - John B Coulton
- Department of Neurology, Washington University School of Medicine, Washington University in St Louis, St Louis, MO 63110, USA
- Tracy Family SILQ Center, Washington University School of Medicine, Washington University in St Louis, St Louis, MO 63110, USA
| | - Tatiana A Giovannucci
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
- UK Dementia Research Institute at UCL, University College London, London, WC1E 6BT, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Yingxin He
- Department of Neurology, Washington University School of Medicine, Washington University in St Louis, St Louis, MO 63110, USA
- Tracy Family SILQ Center, Washington University School of Medicine, Washington University in St Louis, St Louis, MO 63110, USA
| | - Aram Aslanyan
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Rhiannon Laban
- UK Dementia Research Institute at UCL, University College London, London, WC1E 6BT, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Amanda Heslegrave
- UK Dementia Research Institute at UCL, University College London, London, WC1E 6BT, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Ivan Doykov
- Translational Mass Spectrometry Research Group, UCL Great Ormond Street Hospital Institute of Child Health, University College London, London, WC1N 1EH, UK
| | - Francesca Ammoscato
- Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Blizard Institute, Centre for Neuroscience, London, E1 2AT, UK
| | - Jeremy Chataway
- Department of Neuroinflammation, Faculty of Brain Sciences, Queen Square Multiple Sclerosis Centre, UCL Queen Square Institute of Neurology, University College London, London, WC1B 5EH, UK
- National Institute for Health and Care Research, University College London Hospitals, Biomedical Research Centre, London, W1T 7DN, UK
| | - Floriana De Angelis
- Department of Neuroinflammation, Faculty of Brain Sciences, Queen Square Multiple Sclerosis Centre, UCL Queen Square Institute of Neurology, University College London, London, WC1B 5EH, UK
- National Institute for Health and Care Research, University College London Hospitals, Biomedical Research Centre, London, W1T 7DN, UK
| | | | - Lauren M Byrne
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Jonathan M Schott
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Edward J Wild
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Nicolas R Barthelémy
- Department of Neurology, Washington University School of Medicine, Washington University in St Louis, St Louis, MO 63110, USA
- Tracy Family SILQ Center, Washington University School of Medicine, Washington University in St Louis, St Louis, MO 63110, USA
| | - Henrik Zetterberg
- UK Dementia Research Institute at UCL, University College London, London, WC1E 6BT, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, 43180, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, 43180, Sweden
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI53792, USA
| | - Selina Wray
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Randall J Bateman
- Department of Neurology, Washington University School of Medicine, Washington University in St Louis, St Louis, MO 63110, USA
- Tracy Family SILQ Center, Washington University School of Medicine, Washington University in St Louis, St Louis, MO 63110, USA
| | - Kevin Mills
- Translational Mass Spectrometry Research Group, UCL Great Ormond Street Hospital Institute of Child Health, University College London, London, WC1N 1EH, UK
| | - Ross W Paterson
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
- UK Dementia Research Institute at UCL, University College London, London, WC1E 6BT, UK
- Department of Neurology, Darent Valley Hospital, Dartford, Kent, DA2 8DA, UK
| |
Collapse
|
34
|
Shahim P, Norato G, Sinaii N, Zetterberg H, Blennow K, Chan L, Grunseich C. Neurofilaments in Sporadic and Familial Amyotrophic Lateral Sclerosis: A Systematic Review and Meta-Analysis. Genes (Basel) 2024; 15:496. [PMID: 38674431 PMCID: PMC11050235 DOI: 10.3390/genes15040496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 03/30/2024] [Accepted: 04/02/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Neurofilament proteins have been implicated to be altered in amyotrophic lateral sclerosis (ALS). The objectives of this study were to assess the diagnostic and prognostic utility of neurofilaments in ALS. METHODS Studies were conducted in electronic databases (PubMed/MEDLINE, Embase, Web of Science, and Cochrane CENTRAL) from inception to 17 August 2023, and investigated neurofilament light (NfL) or phosphorylated neurofilament heavy chain (pNfH) in ALS. The study design, enrolment criteria, neurofilament concentrations, test accuracy, relationship between neurofilaments in cerebrospinal fluid (CSF) and blood, and clinical outcome were recorded. The protocol was registered with PROSPERO, CRD42022376939. RESULTS Sixty studies with 8801 participants were included. Both NfL and pNfH measured in CSF showed high sensitivity and specificity in distinguishing ALS from disease mimics. Both NfL and pNfH measured in CSF correlated with their corresponding levels in blood (plasma or serum); however, there were stronger correlations between CSF NfL and blood NfL. NfL measured in blood exhibited high sensitivity and specificity in distinguishing ALS from controls. Both higher levels of NfL and pNfH either measured in blood or CSF were correlated with more severe symptoms as assessed by the ALS Functional Rating Scale Revised score and with a faster disease progression rate; however, only blood NfL levels were associated with shorter survival. DISCUSSION Both NfL and pNfH measured in CSF or blood show high diagnostic utility and association with ALS functional scores and disease progression, while CSF NfL correlates strongly with blood (either plasma or serum) and is also associated with survival, supporting its use in clinical diagnostics and prognosis. Future work must be conducted in a prospective manner with standardized bio-specimen collection methods and analytical platforms, further improvement in immunoassays for quantification of pNfH in blood, and the identification of cut-offs across the ALS spectrum and controls.
Collapse
Affiliation(s)
- Pashtun Shahim
- Rehabilitation Medicine Department, National Institutes of Health (NIH) Clinical Center, Bethesda, MD 20892, USA;
- National Institutes of Neurological Disorders and Stroke, NIH, Bethesda, MD 20892, USA; (G.N.); (C.G.)
- Department of Neurology, MedStar Georgetown University Hospital, Washington, DC 20007, USA
- The Military Traumatic Brain Injury Initiative (MTBI2), Bethesda, MD 20814, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Gina Norato
- National Institutes of Neurological Disorders and Stroke, NIH, Bethesda, MD 20892, USA; (G.N.); (C.G.)
| | - Ninet Sinaii
- Biostatistics and Clinical Epidemiology Service, NIH, Bethesda, MD 20892, USA;
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 431 41 Molndal, Sweden; (H.Z.); (K.B.)
- Clinical Neurochemistry Laboratory, Sahglrenska University Hospital, 431 41 Molndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
- UK Dementia Research Institute at UCL, London WC1E 6BT, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong 518172, China
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 431 41 Molndal, Sweden; (H.Z.); (K.B.)
- Clinical Neurochemistry Laboratory, Sahglrenska University Hospital, 431 41 Molndal, Sweden
| | - Leighton Chan
- Rehabilitation Medicine Department, National Institutes of Health (NIH) Clinical Center, Bethesda, MD 20892, USA;
| | - Christopher Grunseich
- National Institutes of Neurological Disorders and Stroke, NIH, Bethesda, MD 20892, USA; (G.N.); (C.G.)
| |
Collapse
|
35
|
Chakithandy S, Nazzal H, Matoug-Elwerfelli M, Narasimhan S, Uddin S, Prabhu KS, Zarif L, Mumtaz N, Sharma A, Al-Khelaifi M. Plasma neurological biomarkers as a measure of neurotoxicity in pediatric dental general anesthesia: a prospective observational feasibility study. Eur Arch Paediatr Dent 2024; 25:267-275. [PMID: 38649631 PMCID: PMC11058848 DOI: 10.1007/s40368-024-00884-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 03/04/2024] [Indexed: 04/25/2024]
Abstract
PURPOSE Neurotoxicity concerns have been raised over general anesthesia and sedation medication use in children. Such concerns are largely based on animal studies, historical anesthetic agents, and assessment tools, thus warranting further investigations. Blood biomarkers in detecting neuronal inflammation and apoptosis are novel methods for detecting neuronal damage. Therefore, the aim of this feasibility study was to assess the usefulness of the levels of four plasma biomarkers in dental general anesthesia (DGA) as surrogate markers of neurotoxicity in children. The secondary aim was to compare changes in motor manipulative skills pre- and post-anesthetic exposure. METHODS This single-center prospective observational study included 22 healthy children aged between 3 and 6 years old who underwent DGA. Subclinical neurotoxicity was measured with a panel of four plasma biomarkers: Caspase-3, neuron-specific enolase (NSE), neurofilament light chain, and S100B at three time points (1; at start, 2; end and 3; on recovery from DGA). The Skillings-Mack test was used to identify the difference in the biomarker levels at three time points. Motor manipulative score assessment, prior and two weeks after DGA was also performed. RESULTS A total of 22 study participants (mean age = 5 ± 1 years) were included with a median DGA duration of 106 ± 28 min. A reduction in Caspase-3 levels was recorded, with pairwise comparison over three time points, reporting a statistical significance between time point 2 vs. 1 and time point 3 vs. 1. Although fluctuations in NSE levels were recorded, no significant changes were found following pairwise comparison analysis. Among other biomarkers, no significant changes over the three periods were recorded. Furthermore, no significant changes in manipulative motor scores were reported. CONCLUSION Caspase-3 reduced significantly in the short time frames during day-care DGA; this might be due to the relatively short anesthesia duration associated with dental treatment as compared with more extensive medical-related treatments. Therefore, further studies on Caspase-3 as a potential biomarker in pediatric DGA neurotoxicity are required to further ascertain results of this study.
Collapse
Affiliation(s)
- S Chakithandy
- Pediatric Anaesthesiology Department, Sidra Medicine, Doha, Qatar
| | - H Nazzal
- Hamad Dental Centre, Hamad Medical Corporation (HMC), Doha, Qatar.
- College of Dental Medicine, QU Health, Qatar University, Doha, Qatar.
| | | | - S Narasimhan
- Hamad Dental Centre, Hamad Medical Corporation (HMC), Doha, Qatar
| | - S Uddin
- Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - K S Prabhu
- Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - L Zarif
- Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - N Mumtaz
- Pediatric Anaesthesiology Department, Hamad Medical Corporation, Doha, Qatar
| | - A Sharma
- Anaesthesiology Department, Weill Cornell Medicine, NewYork-Presbyterian Hospital, New York, USA
| | - M Al-Khelaifi
- Pediatric Anaesthesiology Department, Hamad Medical Corporation, Doha, Qatar
| |
Collapse
|
36
|
van Tilburg SJ, Teunissen CE, Maas CCHM, Thomma RCM, Walgaard C, Heijst H, Huizinga R, van Doorn PA, Jacobs BC. Dynamics and prognostic value of serum neurofilament light chain in Guillain-Barré syndrome. EBioMedicine 2024; 102:105072. [PMID: 38518653 PMCID: PMC10980997 DOI: 10.1016/j.ebiom.2024.105072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 03/01/2024] [Accepted: 03/06/2024] [Indexed: 03/24/2024] Open
Abstract
BACKGROUND Neurofilament light chain (NfL) is a biomarker for axonal damage in several neurological disorders. We studied the longitudinal changes in serum NfL in patients with Guillain-Barré syndrome (GBS) in relation to disease severity, electrophysiological subtype, treatment response, and prognosis. METHODS We included patients with GBS who participated in a double-blind, randomised, placebo-controlled trial that evaluated the effects of a second course of intravenous immunoglobulin (IVIg) on clinical outcomes. Serum NfL levels were measured before initiation of treatment and at one, two, four, and twelve weeks using a Simoa HD-X Analyzer. Serum NfL dynamics were analysed using linear mixed-effects models. Logistic regression was employed to determine the associations of serum NfL with clinical outcome and the prognostic value of serum NfL after correcting for known prognostic markers included in the modified Erasmus GBS Outcome Score (mEGOS). FINDINGS NfL levels were tested in serum from 281 patients. Serum NfL dynamics were associated with disease severity and electrophysiological subtype. Strong associations were found between high levels of serum NfL at two weeks and inability to walk unaided at four weeks (OR = 1.74, 95% CI = 1.27-2.45), and high serum NfL levels at four weeks and inability to walk unaided at 26 weeks (OR = 2.79, 95% CI = 1.72-4.90). Baseline serum NfL had the most significant prognostic value for ability to walk, independent of predictors included in the mEGOS. The time to regain ability to walk unaided was significantly longer for patients with highest serum NfL levels at baseline (p = 0.0048) and week 2 (p < 0.0001). No differences in serum NfL were observed between patients that received a second IVIg course vs. IVIg and placebo. INTERPRETATION Serum NfL levels are associated with disease severity, axonal involvement, and poor outcome in GBS. Serum NfL potentially represents a biomarker to monitor neuronal damage in GBS and an intermediate endpoint to evaluate the effects of treatment. FUNDING Prinses Beatrix Spierfonds W.OR19-24.
Collapse
Affiliation(s)
- Sander J van Tilburg
- Department of Immunology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Charlotte E Teunissen
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Carolien C H M Maas
- Department of Public Health, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Robin C M Thomma
- Department of Immunology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands; Department of Neurology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Christa Walgaard
- Department of Neurology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Hans Heijst
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Ruth Huizinga
- Department of Immunology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Pieter A van Doorn
- Department of Neurology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Bart C Jacobs
- Department of Immunology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands; Department of Neurology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands.
| |
Collapse
|
37
|
Fischer D, Edlow BL. Coma Prognostication After Acute Brain Injury: A Review. JAMA Neurol 2024; 81:2815829. [PMID: 38436946 DOI: 10.1001/jamaneurol.2023.5634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
Importance Among the most impactful neurologic assessments is that of neuroprognostication, defined here as the prediction of neurologic recovery from disorders of consciousness caused by severe, acute brain injury. Across a range of brain injury etiologies, these determinations often dictate whether life-sustaining treatment is continued or withdrawn; thus, they have major implications for morbidity, mortality, and health care costs. Neuroprognostication relies on a diverse array of tests, including behavioral, radiologic, physiological, and serologic markers, that evaluate the brain's functional and structural integrity. Observations Prognostic markers, such as the neurologic examination, electroencephalography, and conventional computed tomography and magnetic resonance imaging (MRI), have been foundational in assessing a patient's current level of consciousness and capacity for recovery. Emerging techniques, such as functional MRI, diffusion MRI, and advanced forms of electroencephalography, provide new ways of evaluating the brain, leading to evolving schemes for characterizing neurologic function and novel methods for predicting recovery. Conclusions and Relevance Neuroprognostic markers are rapidly evolving as new ways of assessing the brain's structural and functional integrity after brain injury are discovered. Many of these techniques remain in development, and further research is needed to optimize their prognostic utility. However, even as such efforts are underway, a series of promising findings coupled with the imperfect predictive value of conventional prognostic markers and the high stakes of these assessments have prompted clinical guidelines to endorse emerging techniques for neuroprognostication. Thus, clinicians have been thrust into an uncertain predicament in which emerging techniques are not yet perfected but too promising to ignore. This review illustrates the current, and likely future, landscapes of prognostic markers. No matter how much prognostic markers evolve and improve, these assessments must be approached with humility and individualized to reflect each patient's values.
Collapse
Affiliation(s)
- David Fischer
- Division of Neurocritical Care, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Brian L Edlow
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown
| |
Collapse
|
38
|
Tuure J, Mohammadian M, Tenovuo O, Blennow K, Hossain I, Hutchinson P, Maanpää HR, Menon DK, Newcombe VF, Takala RS, Tallus J, van Gils M, Zetterberg H, Posti JP. Late Blood Levels of Neurofilament Light Correlate With Outcome in Patients With Traumatic Brain Injury. J Neurotrauma 2024; 41:359-368. [PMID: 37698882 PMCID: PMC11071082 DOI: 10.1089/neu.2023.0207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023] Open
Abstract
Neurofilament light (NF-L) is an axonal protein that has shown promise as a traumatic brain injury (TBI) biomarker. Serum NF-L shows a rather slow rise after injury, peaking after 1-2 weeks, although some studies suggest that it may remain elevated for months after TBI. The aim of this study was to examine if plasma NF-L levels several months after the injury correlate with functional outcome in patients who have sustained TBIs of variable initial severity. In this prospective study of 178 patients with TBI and 40 orthopedic injury controls, we measured plasma NF-L levels in blood samples taken at the follow-up appointment on average 9 months after injury. Patients with TBI were divided into two groups (mild [mTBI] vs. moderate-to-severe [mo/sTBI]) according to the severity of injury assessed with the Glasgow Coma Scale upon admission. Recovery and functional outcome were assessed using the Extended Glasgow Outcome Scale (GOSE). Higher levels of NF-L at the follow-up correlated with worse outcome in patients with moderate-to-severe TBI (Spearman's rho = -0.18; p < 0.001). In addition, in computed tomography-positive mTBI group, the levels of NF-L were significantly lower in patients with GOSE 7-8 (median 18.14; interquartile range [IQR] 9.82, 32.15) when compared with patients with GOSE <7 (median 73.87; IQR 32.17, 110.54; p = 0.002). In patients with mTBI, late NF-L levels do not seem to provide clinical benefit for late-stage assessment, but in patients with initially mo/sTBI, persistently elevated NF-L levels are associated with worse outcome after TBI and may reflect ongoing brain injury.
Collapse
Affiliation(s)
- Juho Tuure
- Department of Clinical Neurosciences, University of Turku, Finland
| | - Mehrbod Mohammadian
- Department of Clinical Neurosciences, University of Turku, Finland
- Turku Brain Injury Center, Turku University Hospital, Finland
| | - Olli Tenovuo
- Department of Clinical Neurosciences, University of Turku, Finland
- Turku Brain Injury Center, Turku University Hospital, Finland
| | - Kaj Blennow
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, United Kingdom
- UK Dementia Research Institute at UCL, University College London, London, United Kingdom
| | - Iftakher Hossain
- Department of Clinical Neurosciences, University of Turku, Finland
- Turku Brain Injury Center, Turku University Hospital, Finland
- Neurocenter, Department of Neurosurgery, Turku University Hospital, Finland
- Department of Clinical Neurosciences, Neurosurgery Unit, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Peter Hutchinson
- Department of Clinical Neurosciences, Neurosurgery Unit, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Henna-Riikka Maanpää
- Department of Clinical Neurosciences, University of Turku, Finland
- Turku Brain Injury Center, Turku University Hospital, Finland
- Neurocenter, Department of Neurosurgery, Turku University Hospital, Finland
| | - David K. Menon
- Division of Anaesthesia, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Virginia F. Newcombe
- Division of Anaesthesia, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Riikka S.K. Takala
- Perioperative Services, Intensive Care Medicine and Pain Management, Turku University Hospital and University of Turku, Finland
| | - Jussi Tallus
- Department of Clinical Neurosciences, University of Turku, Finland
- Turku Brain Injury Center, Turku University Hospital, Finland
- Department of Radiology, Turku University Hospital and University of Turku, Finland
| | - Mark van Gils
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, United Kingdom
- UK Dementia Research Institute at UCL, University College London, London, United Kingdom
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
| | - Jussi P. Posti
- Department of Clinical Neurosciences, University of Turku, Finland
- Turku Brain Injury Center, Turku University Hospital, Finland
- Neurocenter, Department of Neurosurgery, Turku University Hospital, Finland
| |
Collapse
|
39
|
Bjursten S, Zhao Z, Al Remawi H, Studahl M, Pandita A, Simrén J, Zetterberg H, Lundell AC, Rudin A, Ny L, Levin M. Concentrations of S100B and neurofilament light chain in blood as biomarkers for checkpoint inhibitor-induced CNS inflammation. EBioMedicine 2024; 100:104955. [PMID: 38171113 PMCID: PMC10796943 DOI: 10.1016/j.ebiom.2023.104955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 12/17/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Cancer treatment with immune checkpoint inhibition (ICI) can cause immune-related adverse events in the central nervous system (CNS irAE). There are no blood biomarkers to detect CNS irAE. We investigated if concentrations of S100-calcium-binding protein B (S100B) and neurofilament light chain (NfL) in blood can be used as biomarkers for CNS irAE and assessed the incidence of CNS irAE in a cohort of ICI-treated patients. METHODS In this single-centre, retrospective cohort study, we examined medical records and laboratory data of 197 consecutive patients treated with combined CTLA-4 and PD-1 inhibition (ipilimumab; ipi + nivolumab; nivo) for metastatic melanoma or renal cell carcinoma. CNS irAE was diagnosed using established criteria. Concentrations of S100B and NfL in blood were measured in patients with CNS irAE and in 84 patients without CNS irAE. FINDINGS Nine of 197 patients (4.6%) fulfilled criteria for CNS irAE. S100B and NfL in blood increased during CNS inflammation and normalized during immunosuppression. CNS irAE was detected with a sensitivity of 100% (S100B) and 79% (NfL) and a specificity of 89% (S100B) and 74% (NfL). Patients with CNS irAE had simultaneous increased concentration of C-reactive protein (CRP) (9/9) and alanine aminotransferase (ALT) and/or aspartate aminotransferase (AST) in blood (8/9). INTERPRETATION Analysis of S100B, NfL and CRP in blood facilitates the diagnosis of CNS irAE. CNS irAE may be more common than previously reported. There may be shared immune mechanisms between CNS and hepatitis irAE. FUNDING Supported by funding from the Swedish Cancer Foundation, the ALF-agreement, and Jubileumsklinikens Cancerfond.
Collapse
Affiliation(s)
- Sara Bjursten
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Sweden; Department of Oncology, Sahlgrenska University Hospital, Gothenburg, Sweden.
| | - Zhiyuan Zhao
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Sweden; Department of Oncology, Sahlgrenska University Hospital, Gothenburg, Sweden; Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Hifaa Al Remawi
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Sweden; Department of Oncology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Marie Studahl
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Infectious Diseases, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Ankur Pandita
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Sweden; Department of Oncology, Sahlgrenska University Hospital, Gothenburg, Sweden; Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Joel Simrén
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK; UK Dementia Research Institute at UCL, London, UK; Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
| | - Anna-Carin Lundell
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anna Rudin
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Lars Ny
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Sweden; Department of Oncology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Max Levin
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Sweden; Department of Oncology, Sahlgrenska University Hospital, Gothenburg, Sweden; Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
40
|
Pulliam A, Gier EC, Gaul DA, Moore SG, Fernández FM, LaPlaca MC. Comparing Brain and Blood Lipidome Changes following Single and Repetitive Mild Traumatic Brain Injury in Rats. ACS Chem Neurosci 2024; 15:300-314. [PMID: 38179922 PMCID: PMC10797623 DOI: 10.1021/acschemneuro.3c00603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 12/07/2023] [Accepted: 12/07/2023] [Indexed: 01/06/2024] Open
Abstract
Traumatic brain injury (TBI) is a major health concern in the United States and globally, contributing to disability and long-term neurological problems. Lipid dysregulation after TBI is underexplored, and a better understanding of lipid turnover and degradation could point to novel biomarker candidates and therapeutic targets. Here, we investigated overlapping lipidome changes in the brain and blood using a data-driven discovery approach to understand lipid alterations in the brain and serum compartments acutely following mild TBI (mTBI) and the potential efflux of brain lipids to peripheral blood. The cortices and sera from male and female Sprague-Dawley rats were analyzed via ultra-high performance liquid chromatography-mass spectrometry (UHPLC-MS) in both positive and negative ion modes following single and repetitive closed head impacts. The overlapping lipids in the data sets were identified with an in-house data dictionary for investigating lipid class changes. MS-based lipid profiling revealed overall increased changes in the serum compartment, while the brain lipids primarily showed decreased changes. Interestingly, there were prominent alterations in the sphingolipid class in the brain and blood compartments after single and repetitive injury, which may suggest efflux of brain sphingolipids into the blood after TBI. Genetic algorithms were used for predictive panel selection to classify injured and control samples with high sensitivity and specificity. These overlapping lipid panels primarily mapped to the glycerophospholipid metabolism pathway with Benjamini-Hochberg adjusted q-values less than 0.05. Collectively, these results detail overlapping lipidome changes following mTBI in the brain and blood compartments, increasing our understanding of TBI-related lipid dysregulation while identifying novel biomarker candidates.
Collapse
Affiliation(s)
- Alexis
N. Pulliam
- Coulter
Department of Biomedical Engineering, Georgia
Institute of Technology/Emory University, Atlanta, GA 30332 USA
- Petit
Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Eric C. Gier
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, GA 30332 USA
- Petit
Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - David A. Gaul
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, GA 30332 USA
- Petit
Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Samuel G. Moore
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, GA 30332 USA
- Petit
Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Facundo M. Fernández
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, GA 30332 USA
- Petit
Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Michelle C. LaPlaca
- Coulter
Department of Biomedical Engineering, Georgia
Institute of Technology/Emory University, Atlanta, GA 30332 USA
- Petit
Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
41
|
Shayota BJ. Biomarkers of mitochondrial disorders. Neurotherapeutics 2024; 21:e00325. [PMID: 38295557 PMCID: PMC10903091 DOI: 10.1016/j.neurot.2024.e00325] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 01/14/2024] [Accepted: 01/16/2024] [Indexed: 02/02/2024] Open
Abstract
Mitochondrial diseases encompass a heterogeneous group of disorders with a wide range of clinical manifestations, most classically resulting in neurological, muscular, and metabolic abnormalities, but having the potential to affect any organ system. Over the years, substantial progress has been made in identifying and characterizing various biomarkers associated with mitochondrial diseases. This review summarizes the current knowledge of mitochondrial biomarkers based on a literature review and discusses the evidence behind their use in clinical practice. A total of 13 biomarkers were thoroughly reviewed including lactate, pyruvate, lactate:pyruvate ratio, creatine kinase, creatine, amino acid profiles, glutathione, malondialdehyde, GDF-15, FGF-21, gelsolin, neurofilament light-chain, and circulating cell-free mtDNA. Most biomarkers had mixed findings depending on the study, especially when considering their utility for specific mitochondrial diseases versus mitochondrial conditions in general. However, in large biomarker comparison studies, GDF-15 followed by FGF-21, seem to have the greatest value though they are still not perfect. As such, additional studies are needed, especially in light of newer biomarkers that have not yet been thoroughly investigated. Understanding the landscape of biomarkers in mitochondrial diseases is crucial for advancing early detection, improving patient management, and developing targeted therapies.
Collapse
Affiliation(s)
- Brian J Shayota
- Division of Medical Genetics, Department of Pediatrics, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
42
|
Korhonen O, Mononen M, Mohammadian M, Tenovuo O, Blennow K, Hossain I, Hutchinson P, Maanpää HR, Menon DK, Newcombe VF, Sanchez JC, Takala RSK, Tallus J, van Gils M, Zetterberg H, Posti JP. Outlier Analysis for Acute Blood Biomarkers of Moderate and Severe Traumatic Brain Injury. J Neurotrauma 2024; 41:91-105. [PMID: 37725575 DOI: 10.1089/neu.2023.0120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023] Open
Abstract
Blood biomarkers have been studied to improve the clinical assessment and prognostication of patients with moderate-severe traumatic brain injury (mo/sTBI). To assess their clinical usability, one needs to know of potential factors that might cause outlier values and affect clinical decision making. In a prospective study, we recruited patients with mo/sTBI (n = 85) and measured the blood levels of eight protein brain pathophysiology biomarkers, including glial fibrillary acidic protein (GFAP), S100 calcium-binding protein B (S100B), neurofilament light (Nf-L), heart-type fatty acid-binding protein (H-FABP), interleukin-10 (IL-10), total tau (T-tau), amyloid β40 (Aβ40) and amyloid β42 (Aβ42), within 24 h of admission. Similar analyses were conducted for controls (n = 40) with an acute orthopedic injury without any head trauma. The patients with TBI were divided into subgroups of normal versus abnormal (n = 9/76) head computed tomography (CT) and favorable (Glasgow Outcome Scale Extended [GOSE] 5-8) versus unfavorable (GOSE <5) (n = 38/42, 5 missing) outcome. Outliers were sought individually from all subgroups from and the whole TBI patient population. Biomarker levels outside Q1 - 1.5 interquartile range (IQR) or Q3 + 1.5 IQR were considered as outliers. The medical records of each outlier patient were reviewed in a team meeting to determine possible reasons for outlier values. A total of 29 patients (34%) combined from all subgroups and 12 patients (30%) among the controls showed outlier values for one or more of the eight biomarkers. Nine patients with TBI and five control patients had outlier values in more than one biomarker (up to 4). All outlier values were > Q3 + 1.5 IQR. A logical explanation was found for almost all cases, except the amyloid proteins. Explanations for outlier values included extremely severe injury, especially for GFAP and S100B. In the case of H-FABP and IL-10, the explanation was extracranial injuries (thoracic injuries for H-FABP and multi-trauma for IL-10), in some cases these also were associated with abnormally high S100B. Timing of sampling and demographic factors such as age and pre-existing neurological conditions (especially for T-tau), explained some of the abnormally high values especially for Nf-L. Similar explanations also emerged in controls, where the outlier values were caused especially by pre-existing neurological diseases. To utilize blood-based biomarkers in clinical assessment of mo/sTBI, very severe or fatal TBIs, various extracranial injuries, timing of sampling, and demographic factors such as age and pre-existing systemic or neurological conditions must be taken into consideration. Very high levels seem to be often associated with poor prognosis and mortality (GFAP and S100B).
Collapse
Affiliation(s)
- Otto Korhonen
- Neurocenter, Department of Neurosurgery, Turku University Hospital and University of Turku, Turko, Finland
- Turku Brain Injury Center, Turku University Hospital and University of Turku, Turko, Finland
- Department of Clinical Neurosciences, Turku University Hospital and University of Turku, Turko, Finland
| | - Malla Mononen
- Neurocenter, Department of Neurosurgery, Turku University Hospital and University of Turku, Turko, Finland
- Turku Brain Injury Center, Turku University Hospital and University of Turku, Turko, Finland
- Department of Clinical Neurosciences, Turku University Hospital and University of Turku, Turko, Finland
| | - Mehrbod Mohammadian
- Turku Brain Injury Center, Turku University Hospital and University of Turku, Turko, Finland
- Department of Clinical Neurosciences, Turku University Hospital and University of Turku, Turko, Finland
| | - Olli Tenovuo
- Turku Brain Injury Center, Turku University Hospital and University of Turku, Turko, Finland
- Department of Clinical Neurosciences, Turku University Hospital and University of Turku, Turko, Finland
| | - Kaj Blennow
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Iftakher Hossain
- Neurocenter, Department of Neurosurgery, Turku University Hospital and University of Turku, Turko, Finland
- Turku Brain Injury Center, Turku University Hospital and University of Turku, Turko, Finland
- Department of Clinical Neurosciences, Turku University Hospital and University of Turku, Turko, Finland
- Department of Clinical Neurosciences, Neurosurgery Unit, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Peter Hutchinson
- Department of Clinical Neurosciences, Neurosurgery Unit, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Henna-Riikka Maanpää
- Neurocenter, Department of Neurosurgery, Turku University Hospital and University of Turku, Turko, Finland
- Turku Brain Injury Center, Turku University Hospital and University of Turku, Turko, Finland
- Department of Clinical Neurosciences, Turku University Hospital and University of Turku, Turko, Finland
| | - David K Menon
- Division of Anaesthesia, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Virginia F Newcombe
- Division of Anaesthesia, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Jean-Charles Sanchez
- Department of Specialities of Internal Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Riikka S K Takala
- Perioperative Services, Intensive Care Medicine and Pain Management, Turku University Hospital and University of Turku, Finland
| | - Jussi Tallus
- Turku Brain Injury Center, Turku University Hospital and University of Turku, Turko, Finland
- Department of Clinical Neurosciences, Turku University Hospital and University of Turku, Turko, Finland
- Department of Radiology, Turku University Hospital and University of Turku, Finland
| | - Mark van Gils
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, United Kingdom
- UK Dementia Research Institute at UCL, University College London, London, United Kingdom
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jussi P Posti
- Neurocenter, Department of Neurosurgery, Turku University Hospital and University of Turku, Turko, Finland
- Turku Brain Injury Center, Turku University Hospital and University of Turku, Turko, Finland
- Department of Clinical Neurosciences, Turku University Hospital and University of Turku, Turko, Finland
| |
Collapse
|
43
|
Fesharaki-Zadeh A. Navigating the Complexities of Traumatic Encephalopathy Syndrome (TES): Current State and Future Challenges. Biomedicines 2023; 11:3158. [PMID: 38137378 PMCID: PMC10740836 DOI: 10.3390/biomedicines11123158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
Chronic traumatic encephalopathy (CTE) is a unique neurodegenerative disease that is associated with repetitive head impacts (RHI) in both civilian and military settings. In 2014, the research criteria for the clinical manifestation of CTE, traumatic encephalopathy syndrome (TES), were proposed to improve the clinical identification and understanding of the complex neuropathological phenomena underlying CTE. This review provides a comprehensive overview of the current understanding of the neuropathological and clinical features of CTE, proposed biomarkers of traumatic brain injury (TBI) in both research and clinical settings, and a range of treatments based on previous preclinical and clinical research studies. Due to the heterogeneity of TBI, there is no universally agreed-upon serum, CSF, or neuroimaging marker for its diagnosis. However, as our understanding of this complex disease continues to evolve, it is likely that there will be more robust, early diagnostic methods and effective clinical treatments. This is especially important given the increasing evidence of a correlation between TBI and neurodegenerative conditions, such as Alzheimer's disease and CTE. As public awareness of these conditions grows, it is imperative to prioritize both basic and clinical research, as well as the implementation of necessary safe and preventative measures.
Collapse
Affiliation(s)
- Arman Fesharaki-Zadeh
- Department of Neurology and Psychiatry, Yale University School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
44
|
Huppke B, Reinert MC, Hummel-Abmeier H, Stark W, Gärtner J, Huppke P. Pretreatment Neurofilament Light Chain Serum Levels, Early Disease Severity, and Treatment Response in Pediatric Multiple Sclerosis. Neurology 2023; 101:e1873-e1883. [PMID: 37748882 PMCID: PMC10663003 DOI: 10.1212/wnl.0000000000207791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/12/2023] [Indexed: 09/27/2023] Open
Abstract
BACKGROUND AND OBJECTIVES High disease activity and frequent therapy failure in pediatric multiple sclerosis (MS) make prognostic biomarkers urgently needed. We investigated whether serum neurofilament light chain (sNfL) levels in treatment-naive pediatric patients with MS are associated with early disease severity and indicate treatment outcomes. METHODS A retrospective cohort study of patients seen in the Göttingen Center for MS in Childhood and Adolescence, Germany. Inclusion criteria were MS diagnosis according to the McDonald criteria, MS onset <18 years, and available pretreatment serum sample. sNfL levels were analyzed using a single-molecule array assay. Associations with clinical and MRI evidence of disease severity at sampling were evaluated using the Spearman correlations and nonparametric tests for group comparisons. Correlations between pretreatment sNfL and annualized relapse and new T2 lesion rate on first-line therapy, and odd ratios for switch to high-efficacy therapy were assessed. RESULTS A total of 178 patients (116 women [65%]) with a mean sampling age of 14.3 years were included in the study. Pretreatment sNfL levels were above the ≥90th percentile reported for healthy controls in 80% of patients (median 21.1 pg/mL) and correlated negatively with age, but no correlation was seen with sex, oligoclonal band status, or body mass index. High pretreatment sNfL levels correlated significantly with a high number of preceding relapses, a shorter first interattack interval, a high T2 lesion count, and recent gadolinium-enhancing lesions. Of interest, sNfL levels reflected more strongly MRI activity rather than clinical activity. Pretreatment sNfL levels also correlated significantly with the relapse rate and occurrence of new/enlarging T2 lesions while on first-line injectable therapy. Odds of future therapy escalation increased from 0.14 for sNfL below 7.5 pg/mL to 6.38 for sNfL above 15 pg/mL. In patients with a recent relapse, higher sNfL levels were associated with poorer recovery 3 months after attack. DISCUSSION The results of this study have 3 important implications: First, pretreatment sNfL levels are a valuable biomarker for underlying disease activity in pediatric patients with MS. Second, pretreatment sNfL levels in pediatric patients with MS have a predictive value for the response to first-line therapy and the necessity of future therapy escalation. Third, high sNfL levels during a relapse are associated with poor recovery in this age group.
Collapse
Affiliation(s)
- Brenda Huppke
- From the Department of Pediatric Neurology (B.H.), University Hospital Jena; Department of Pediatrics and Adolescent Medicine (M.-C.R., H.H.-A., W.S., J.G.), Pediatric Neurology, University Medical Center Göttingen, Georg August University Göttingen; and Department of Neuropediatrics (P.H.), University Hospital Jena, Germany.
| | - Marie-Christine Reinert
- From the Department of Pediatric Neurology (B.H.), University Hospital Jena; Department of Pediatrics and Adolescent Medicine (M.-C.R., H.H.-A., W.S., J.G.), Pediatric Neurology, University Medical Center Göttingen, Georg August University Göttingen; and Department of Neuropediatrics (P.H.), University Hospital Jena, Germany
| | - Hannah Hummel-Abmeier
- From the Department of Pediatric Neurology (B.H.), University Hospital Jena; Department of Pediatrics and Adolescent Medicine (M.-C.R., H.H.-A., W.S., J.G.), Pediatric Neurology, University Medical Center Göttingen, Georg August University Göttingen; and Department of Neuropediatrics (P.H.), University Hospital Jena, Germany
| | - Wiebke Stark
- From the Department of Pediatric Neurology (B.H.), University Hospital Jena; Department of Pediatrics and Adolescent Medicine (M.-C.R., H.H.-A., W.S., J.G.), Pediatric Neurology, University Medical Center Göttingen, Georg August University Göttingen; and Department of Neuropediatrics (P.H.), University Hospital Jena, Germany
| | - Jutta Gärtner
- From the Department of Pediatric Neurology (B.H.), University Hospital Jena; Department of Pediatrics and Adolescent Medicine (M.-C.R., H.H.-A., W.S., J.G.), Pediatric Neurology, University Medical Center Göttingen, Georg August University Göttingen; and Department of Neuropediatrics (P.H.), University Hospital Jena, Germany
| | - Peter Huppke
- From the Department of Pediatric Neurology (B.H.), University Hospital Jena; Department of Pediatrics and Adolescent Medicine (M.-C.R., H.H.-A., W.S., J.G.), Pediatric Neurology, University Medical Center Göttingen, Georg August University Göttingen; and Department of Neuropediatrics (P.H.), University Hospital Jena, Germany.
| |
Collapse
|
45
|
Salvioli S, Basile MS, Bencivenga L, Carrino S, Conte M, Damanti S, De Lorenzo R, Fiorenzato E, Gialluisi A, Ingannato A, Antonini A, Baldini N, Capri M, Cenci S, Iacoviello L, Nacmias B, Olivieri F, Rengo G, Querini PR, Lattanzio F. Biomarkers of aging in frailty and age-associated disorders: State of the art and future perspective. Ageing Res Rev 2023; 91:102044. [PMID: 37647997 DOI: 10.1016/j.arr.2023.102044] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/01/2023]
Abstract
According to the Geroscience concept that organismal aging and age-associated diseases share the same basic molecular mechanisms, the identification of biomarkers of age that can efficiently classify people as biologically older (or younger) than their chronological (i.e. calendar) age is becoming of paramount importance. These people will be in fact at higher (or lower) risk for many different age-associated diseases, including cardiovascular diseases, neurodegeneration, cancer, etc. In turn, patients suffering from these diseases are biologically older than healthy age-matched individuals. Many biomarkers that correlate with age have been described so far. The aim of the present review is to discuss the usefulness of some of these biomarkers (especially soluble, circulating ones) in order to identify frail patients, possibly before the appearance of clinical symptoms, as well as patients at risk for age-associated diseases. An overview of selected biomarkers will be discussed in this regard, in particular we will focus on biomarkers related to metabolic stress response, inflammation, and cell death (in particular in neurodegeneration), all phenomena connected to inflammaging (chronic, low-grade, age-associated inflammation). In the second part of the review, next-generation markers such as extracellular vesicles and their cargos, epigenetic markers and gut microbiota composition, will be discussed. Since recent progresses in omics techniques have allowed an exponential increase in the production of laboratory data also in the field of biomarkers of age, making it difficult to extract biological meaning from the huge mass of available data, Artificial Intelligence (AI) approaches will be discussed as an increasingly important strategy for extracting knowledge from raw data and providing practitioners with actionable information to treat patients.
Collapse
Affiliation(s)
- Stefano Salvioli
- Department of Medical and Surgical Science, University of Bologna, Bologna, Italy; IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.
| | | | - Leonardo Bencivenga
- Department of Translational Medical Sciences, University of Naples Federico II, Napoli, Italy
| | - Sara Carrino
- Department of Medical and Surgical Science, University of Bologna, Bologna, Italy
| | - Maria Conte
- Department of Medical and Surgical Science, University of Bologna, Bologna, Italy
| | - Sarah Damanti
- IRCCS Ospedale San Raffaele and Vita-Salute San Raffaele University, Milano, Italy
| | - Rebecca De Lorenzo
- IRCCS Ospedale San Raffaele and Vita-Salute San Raffaele University, Milano, Italy
| | - Eleonora Fiorenzato
- Parkinson's Disease and Movement Disorders Unit, Center for Rare Neurological Diseases (ERN-RND), Department of Neurosciences, University of Padova, Padova, Italy
| | - Alessandro Gialluisi
- Department of Epidemiology and Prevention, IRCCS NEUROMED, Pozzilli, Italy; EPIMED Research Center, Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Assunta Ingannato
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy; IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Angelo Antonini
- Parkinson's Disease and Movement Disorders Unit, Center for Rare Neurological Diseases (ERN-RND), Department of Neurosciences, University of Padova, Padova, Italy; Center for Neurodegenerative Disease Research (CESNE), Department of Neurosciences, University of Padova, Padova, Italy
| | - Nicola Baldini
- IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy; Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Miriam Capri
- Department of Medical and Surgical Science, University of Bologna, Bologna, Italy
| | - Simone Cenci
- IRCCS Ospedale San Raffaele and Vita-Salute San Raffaele University, Milano, Italy
| | - Licia Iacoviello
- Department of Epidemiology and Prevention, IRCCS NEUROMED, Pozzilli, Italy; EPIMED Research Center, Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Benedetta Nacmias
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy; IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Fabiola Olivieri
- Department of Clinical and Molecular Sciences, Università Politecnica Delle Marche, Ancona, Italy; Clinic of Laboratory and Precision Medicine, IRCCS INRCA, Ancona, Italy
| | - Giuseppe Rengo
- Department of Translational Medical Sciences, University of Naples Federico II, Napoli, Italy; Istituti Clinici Scientifici Maugeri IRCCS, Scientific Institute of Telese Terme, Telese Terme, Italy
| | | | | |
Collapse
|
46
|
Ongphichetmetha T, Thanapornsangsuth P, Luechaipanit W, Loymunkong N, Rattanawong W, Hiransuthikul A, Supharatpariyakorn T, Sriswasdi S, Hemachudha T. Neurofilament light chain for classifying the aetiology of alteration of consciousness. Brain Commun 2023; 5:fcad278. [PMID: 37942089 PMCID: PMC10629465 DOI: 10.1093/braincomms/fcad278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 08/25/2023] [Accepted: 10/18/2023] [Indexed: 11/10/2023] Open
Abstract
Neurofilament light chain has become a promising biomarker for neuroaxonal injury; however, its diagnostic utility is limited to chronic disorders or specific contexts. Alteration of consciousness is a common clinical problem with diverse aetiologies, many of which require timely diagnoses. We evaluated the value of neurofilament light chain alone, as well as creating diagnostic models, in distinguishing causes of alteration of consciousness. Patients presenting with alteration of consciousness were enrolled. Initial clinical data of each participant were evaluated by a neurologist to give a provisional diagnosis. Each participant subsequently received advanced investigations and follow-up to conclude the final diagnosis. All diagnoses were classified into a structural or non-structural cause of alteration of consciousness. Plasma and cerebrospinal fluid levels of neurofilament light chain were measured. Cerebrospinal fluid neurofilament light chain and other clinical parameters were used to develop logistic regression models. The performance of cerebrospinal fluid neurofilament light chain, the neurologist's provisional diagnosis, and the model to predict the final diagnosis were compared. For the results, among 71 participants enrolled, 67.6% and 32.4% of their final diagnoses were classified as structural and non-structural, respectively. Cerebrospinal fluid neurofilament light chain demonstrated an area under the curve of 0.75 (95% confidence interval 0.63-0.88) which was not significantly different from a neurologist's provisional diagnosis 0.85 (95% confidence interval 0.75-0.94) (P = 0.14). The multivariable regression model using cerebrospinal fluid neurofilament light chain and other basic clinical data achieved an area under the curve of 0.90 (95% confidence interval 0.83-0.98). In conclusion, neurofilament light chain classified causes of alteration of consciousness with moderate accuracy. Nevertheless, including other basic clinical data to construct a model improved the performance to a level that was comparable to clinical neurologists.
Collapse
Affiliation(s)
- Tatchaporn Ongphichetmetha
- Division of Neurology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Siriraj Neuroimmunology Center, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Poosanu Thanapornsangsuth
- Division of Neurology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Thai Red Cross Emerging Infectious Diseases Health Science Centre, World Health Organization Collaborating Centre for Research and Training on Viral Zoonoses, King Chulalongkorn Memorial Hospital The Thai Red Cross Society, Bangkok 10330, Thailand
| | - Watayuth Luechaipanit
- Thai Red Cross Emerging Infectious Diseases Health Science Centre, World Health Organization Collaborating Centre for Research and Training on Viral Zoonoses, King Chulalongkorn Memorial Hospital The Thai Red Cross Society, Bangkok 10330, Thailand
| | - Nattawan Loymunkong
- Thai Red Cross Emerging Infectious Diseases Health Science Centre, World Health Organization Collaborating Centre for Research and Training on Viral Zoonoses, King Chulalongkorn Memorial Hospital The Thai Red Cross Society, Bangkok 10330, Thailand
| | - Wanakorn Rattanawong
- Department of Medicine, Faculty of Medicine, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| | - Akarin Hiransuthikul
- Department of Preventive and Social Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Thirawat Supharatpariyakorn
- Thai Red Cross Emerging Infectious Diseases Health Science Centre, World Health Organization Collaborating Centre for Research and Training on Viral Zoonoses, King Chulalongkorn Memorial Hospital The Thai Red Cross Society, Bangkok 10330, Thailand
| | - Sira Sriswasdi
- Center for Artificial Intelligence in Medicine, Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Computational Molecular Biology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Thiravat Hemachudha
- Division of Neurology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Thai Red Cross Emerging Infectious Diseases Health Science Centre, World Health Organization Collaborating Centre for Research and Training on Viral Zoonoses, King Chulalongkorn Memorial Hospital The Thai Red Cross Society, Bangkok 10330, Thailand
| |
Collapse
|
47
|
Nguyen AM, Saini V, Hinson HE. Blood-Based Biomarkers for Neuroprognostication in Acute Brain Injury. Semin Neurol 2023; 43:689-698. [PMID: 37751855 PMCID: PMC10668565 DOI: 10.1055/s-0043-1775764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Acute brain injury causes loss of functionality in patients that often is devastating. Predicting the degree of functional loss and overall prognosis requires a multifaceted approach to help patients, and more so their families, make important decisions regarding plans and goals of care. A variety of blood-based markers have been studied as one aspect of this determination. In this review, we discuss CNS-derived and systemic markers that have been studied for neuroprognostication purposes. We discuss the foundation of each protein, the conditions in which it has been studied, and how the literature has used these markers for interpretation. We also discuss challenges to using each marker in each section as well.
Collapse
Affiliation(s)
- Andrew M. Nguyen
- Neurosciences Critical Care Program, Department of Neurology, Oregon Health & Science University, Portland, Oregon
| | - Vishal Saini
- Neurosciences Critical Care Program, Department of Neurology, Oregon Health & Science University, Portland, Oregon
| | - H. E. Hinson
- Department of Neurology, University of California San Francisco, San Francisco, California
| |
Collapse
|
48
|
Hansson MJ, Elmér E. Cyclosporine as Therapy for Traumatic Brain Injury. Neurotherapeutics 2023; 20:1482-1495. [PMID: 37561274 PMCID: PMC10684836 DOI: 10.1007/s13311-023-01414-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2023] [Indexed: 08/11/2023] Open
Abstract
Drug development in traumatic brain injury (TBI) has been impeded by the complexity and heterogeneity of the disease pathology, as well as limited understanding of the secondary injury cascade that follows the initial trauma. As a result, patients with TBI have an unmet need for effective pharmacological therapies. One promising drug candidate is cyclosporine, a polypeptide traditionally used to achieve immunosuppression in transplant recipients. Cyclosporine inhibits mitochondrial permeability transition, thereby reducing secondary brain injury, and has shown neuroprotective effects in multiple preclinical models of TBI. Moreover, the cyclosporine formulation NeuroSTAT® displayed positive effects on injury biomarker levels in patients with severe TBI enrolled in the Phase Ib/IIa Copenhagen Head Injury Ciclosporin trial (NCT01825044). Future research on neuroprotective compounds such as cyclosporine should take advantage of recent advances in fluid-based biomarkers and neuroimaging to select patients with similar disease pathologies for clinical trials. This would increase statistical power and allow for more accurate assessment of long-term outcomes.
Collapse
Affiliation(s)
- Magnus J Hansson
- Abliva AB, Lund, Sweden.
- Department of Clinical Sciences, Mitochondrial Medicine, Lund University, Lund, Sweden.
| | - Eskil Elmér
- Abliva AB, Lund, Sweden
- Department of Clinical Sciences, Mitochondrial Medicine, Lund University, Lund, Sweden
| |
Collapse
|
49
|
Michaëlsson I, Hallén T, Carstam L, Laesser M, Björkman-Burtscher IM, Sörbo A, Blennow K, Zetterberg H, Jakola AS, Skoglund T. Circulating Brain Injury Biomarkers: A Novel Method for Quantification of the Impact on the Brain After Tumor Surgery. Neurosurgery 2023; 93:847-856. [PMID: 37140203 PMCID: PMC10637403 DOI: 10.1227/neu.0000000000002510] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 03/06/2023] [Indexed: 05/05/2023] Open
Abstract
BACKGROUND Clinical methods to quantify brain injury related to neurosurgery are scarce. Circulating brain injury biomarkers have recently gained increased interest as new ultrasensitive measurement techniques have enabled quantification of brain injury through blood sampling. OBJECTIVE To establish the time profile of the increase in the circulating brain injury biomarkers glial fibrillary acidic protein (GFAP), tau, and neurofilament light (NfL) after glioma surgery and to explore possible relationships between these biomarkers and outcome regarding volume of ischemic injury identified with postoperative MRI and new neurological deficits. METHODS In this prospective study, 34 adult patients scheduled for glioma surgery were included. Plasma concentrations of brain injury biomarkers were measured the day before surgery, immediately after surgery, and on postoperative days 1, 3, 5, and 10. RESULTS Circulating brain injury biomarkers displayed a postoperative increase in the levels of GFAP ( P < .001), tau ( P < .001), and NfL ( P < .001) on Day 1 and a later, even higher, peak of NFL at Day 10 ( P = .028). We found a correlation between the increased levels of GFAP, tau, and NfL on Day 1 after surgery and the volume of ischemic brain tissue on postoperative MRI. Patients with new neurological deficits after surgery had higher levels of GFAP and NfL on Day 1 compared with those without new neurological deficits. CONCLUSION Measuring circulating brain injury biomarkers could be a useful method for quantification of the impact on the brain after tumor surgery or neurosurgery in general.
Collapse
Affiliation(s)
- Isak Michaëlsson
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Neurosurgery, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Tobias Hallén
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Neurosurgery, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Louise Carstam
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Neurosurgery, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Mats Laesser
- Department of Radiology, Institute of Clinical Sciences, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
- Department of Radiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Isabella M. Björkman-Burtscher
- Department of Radiology, Institute of Clinical Sciences, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
- Department of Radiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Ann Sörbo
- Department of Neurology and Rehabilitation and Department of Research, Education and Innovation, Södra Älvsborg Hospital, Borås, Sweden
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
| | - Asgeir S. Jakola
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Neurosurgery, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Thomas Skoglund
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Neurosurgery, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
50
|
de Souza DN, Jarmol M, Bell CA, Marini C, Balcer LJ, Galetta SL, Grossman SN. Precision Concussion Management: Approaches to Quantifying Head Injury Severity and Recovery. Brain Sci 2023; 13:1352. [PMID: 37759953 PMCID: PMC10526525 DOI: 10.3390/brainsci13091352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023] Open
Abstract
Mitigating the substantial public health impact of concussion is a particularly difficult challenge. This is partly because concussion is a highly prevalent condition, and diagnosis is predominantly symptom-based. Much of contemporary concussion management relies on symptom interpretation and accurate reporting by patients. These types of reports may be influenced by a variety of factors for each individual, such as preexisting mental health conditions, headache disorders, and sleep conditions, among other factors. This can all be contributory to non-specific and potentially misleading clinical manifestations in the aftermath of a concussion. This review aimed to conduct an examination of the existing literature on emerging approaches for objectively evaluating potential concussion, as well as to highlight current gaps in understanding where further research is necessary. Objective assessments of visual and ocular motor concussion symptoms, specialized imaging techniques, and tissue-based concentrations of specific biomarkers have all shown promise for specifically characterizing diffuse brain injuries, and will be important to the future of concussion diagnosis and management. The consolidation of these approaches into a comprehensive examination progression will be the next horizon for increased precision in concussion diagnosis and treatment.
Collapse
Affiliation(s)
- Daniel N. de Souza
- Department of Neurology, New York University Grossman School of Medicine, New York, NY 10017, USA; (D.N.d.S.); (M.J.); (C.A.B.); (C.M.); (L.J.B.); (S.L.G.)
| | - Mitchell Jarmol
- Department of Neurology, New York University Grossman School of Medicine, New York, NY 10017, USA; (D.N.d.S.); (M.J.); (C.A.B.); (C.M.); (L.J.B.); (S.L.G.)
| | - Carter A. Bell
- Department of Neurology, New York University Grossman School of Medicine, New York, NY 10017, USA; (D.N.d.S.); (M.J.); (C.A.B.); (C.M.); (L.J.B.); (S.L.G.)
| | - Christina Marini
- Department of Neurology, New York University Grossman School of Medicine, New York, NY 10017, USA; (D.N.d.S.); (M.J.); (C.A.B.); (C.M.); (L.J.B.); (S.L.G.)
| | - Laura J. Balcer
- Department of Neurology, New York University Grossman School of Medicine, New York, NY 10017, USA; (D.N.d.S.); (M.J.); (C.A.B.); (C.M.); (L.J.B.); (S.L.G.)
- Department of Ophthalmology, New York University Grossman School of Medicine, New York, NY 10017, USA
- Department of Population Health, New York University Grossman School of Medicine, New York, NY 10017, USA
| | - Steven L. Galetta
- Department of Neurology, New York University Grossman School of Medicine, New York, NY 10017, USA; (D.N.d.S.); (M.J.); (C.A.B.); (C.M.); (L.J.B.); (S.L.G.)
- Department of Ophthalmology, New York University Grossman School of Medicine, New York, NY 10017, USA
| | - Scott N. Grossman
- Department of Neurology, New York University Grossman School of Medicine, New York, NY 10017, USA; (D.N.d.S.); (M.J.); (C.A.B.); (C.M.); (L.J.B.); (S.L.G.)
- Department of Ophthalmology, New York University Grossman School of Medicine, New York, NY 10017, USA
| |
Collapse
|