1
|
Baikara B, Karamendin K, Kassymbekov Y, Daulbayeva K, Sabyrzhan T, Nuralibekov S, Khan Y, Sandybayev N, Fereidouni S, Kydyrmanov A. Genetic Characterization of Kazakhstan Isolates: Avian Influenza H9N2 Viruses Demonstrate Their Potential to Infect Mammals. Viruses 2025; 17:685. [PMID: 40431696 PMCID: PMC12115836 DOI: 10.3390/v17050685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 04/29/2025] [Accepted: 04/30/2025] [Indexed: 05/29/2025] Open
Abstract
Low pathogenic H9N2 avian influenza viruses have become widespread in wild birds and poultry worldwide, raising concerns about their potential to spark pandemics or their role in enhancing the virulence and infectivity of H5Nx viruses through genetic reassortment. Therefore, influenza monitoring studies, including those of H9N2 viruses, are crucial for understanding, evaluating, and mitigating the risks associated with avian infections, and have broader implications for global public health. Although H9N2 viruses are not considered enzootic in Kazakhstan, they have been repeatedly detected in wild waterfowls and domestic poultry. In this study, all eight gene segments of influenza A/H9N2 viruses isolated in various regions of Kazakhstan between 2014 and 2020 were sequenced and analyzed. Molecular characterization revealed the presence of genetic markers associated with mammalian infectivity and disease potential. Furthermore, their predicted receptor binding site sequences indicate their potential capacity to attach to human-type receptors. These findings highlight the importance of continued surveillance and molecular investigation to better understand the evolution and zoonotic potential of H9N2 viruses in Kazakhstan.
Collapse
Affiliation(s)
- Barshagul Baikara
- Research and Production Center for Microbiology and Virology, Almaty A26T6C0, Kazakhstan
| | - Kobey Karamendin
- Research and Production Center for Microbiology and Virology, Almaty A26T6C0, Kazakhstan
| | | | - Klara Daulbayeva
- Research and Production Center for Microbiology and Virology, Almaty A26T6C0, Kazakhstan
| | - Temirlan Sabyrzhan
- Research and Production Center for Microbiology and Virology, Almaty A26T6C0, Kazakhstan
| | - Sardor Nuralibekov
- Research and Production Center for Microbiology and Virology, Almaty A26T6C0, Kazakhstan
| | - Yelizaveta Khan
- Research and Production Center for Microbiology and Virology, Almaty A26T6C0, Kazakhstan
| | - Nurlan Sandybayev
- Kazakhstan-Japan Innovation Centre, Kazakh National Agrarian Research University (KazNARU), Almaty 050000, Kazakhstan
| | - Sasan Fereidouni
- Research Institute of Wildlife Ecology, University of Veterinary Medicine Vienna, 1160 Vienna, Austria
| | - Aidyn Kydyrmanov
- Research and Production Center for Microbiology and Virology, Almaty A26T6C0, Kazakhstan
| |
Collapse
|
2
|
Kim J, Kim J, Heo S, Yeom CH, Duong BT, Sung HW, Yeo SJ, Park H, Poo H, Yang J. A low pathogenic avian influenza A/Mallard/South Korea/KNU2019-34/2019 (H1N1) virus has the potential to increase the mammalian pathogenicity. Virol Sin 2025; 40:24-34. [PMID: 39736322 PMCID: PMC11963063 DOI: 10.1016/j.virs.2024.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 12/25/2024] [Indexed: 01/01/2025] Open
Abstract
Influenza, a highly contagious respiratory infectious disease caused by an influenza virus, is a threat to public health worldwide. Avian influenza viruses (AIVs) have the potential to cause the next pandemic by crossing the species barrier through mutation of viral genome. Here, we investigated the pathogenicity of AIVs obtained from South Korea and Mongolia during 2018-2019 by measuring viral titers in the lungs and extrapulmonary organs of mouse models. In addition, we assessed the pathogenicity of AIVs in ferret models. Moreover, we compared the ability of viruses to replicate in mammalian cells, as well as the receptor-binding preferences of AIV isolates. Genetic analyses were finally performed to identify the genetic relationships and amino acid substitutions between viral proteins during mammalian adaptation. Of the 24 AIV isolates tested, A/Mallard/South Korea/KNU2019-34/2019 (KNU19-34; H1N1) caused severe bodyweight loss and high mortality in mice. The virus replicated in the lungs, kidneys, and heart. Importantly, KNU19-34-infected ferrets showed high viral loads in both nasal washes and lungs. KNU19-34 replicated rapidly in A549 and bound preferentially to human like α2,6-linked sialic acids rather than to avian-like α2,3-linked sialic acids, similar to the pandemic A/California/04/2009 (H1N1) strain. Gene segments of KNU19-34 were distributed in Egypt and Asia lineages from 2015 to 2018, and the virus had several amino acid substitutions compared to H1N1 AIV isolates that were non-pathogenic in mice. Collectively, the data suggest that KNU19-34 has zoonotic potential and the possibility of new mutations responsible for mammalian adaptation.
Collapse
Affiliation(s)
- Jaemoo Kim
- Center for Study of Emerging and Re-emerging Viruses, Korea Virus Research Institute, Institute for Basic Science (IBS), Daejeon 34126, Republic of Korea
| | - Jungho Kim
- Department of Biomedical Science and Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Suhyeon Heo
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Chang-Hun Yeom
- Department of Biomedical Science and Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Bao Tuan Duong
- Zoonosis Research Center, Department of Infection Biology, School of Medicine, Wonkwang University, Iksan 54651, Republic of Korea
| | - Haan Woo Sung
- College of Veterinary Medicine, Kangwon National University, Chuncheon 200-701 24341, Republic of Korea
| | - Seon-Ju Yeo
- Department of Tropical Medicine and Parasitology, Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 08826, Republic of Korea; Institute of Endemic Diseases, Medical Research Center, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyun Park
- Zoonosis Research Center, Department of Infection Biology, School of Medicine, Wonkwang University, Iksan 54651, Republic of Korea
| | - Haryoung Poo
- Department of Biomedical Science and Engineering, Konkuk University, Seoul 05029, Republic of Korea.
| | - Jihyun Yang
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea.
| |
Collapse
|
3
|
Kydyrmanov A, Karamendin K, Kassymbekov Y, Daulbayeva K, Sabyrzhan T, Khan Y, Nuralibekov S, Baikara B, Fereidouni S. Mass Mortality in Terns and Gulls Associated with Highly Pathogenic Avian Influenza Viruses in Caspian Sea, Kazakhstan. Viruses 2024; 16:1661. [PMID: 39599776 PMCID: PMC11599136 DOI: 10.3390/v16111661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/11/2024] [Accepted: 10/15/2024] [Indexed: 11/29/2024] Open
Abstract
Mass mortality in Caspian terns (Hydroprogne caspia), Pallas's gulls (Ichthyaetus ichthyaetus), and Caspian gulls (Larus cachinnans) was recorded on the northeastern shores of the Caspian Sea in June 2022. More than 5000 gulls and terns died due to the outbreak. The outbreak was investigated in the field, and representative numbers of samples were collected and analyzed using pathological, virological, and molecular methods. Highly pathogenic avian influenza A (H5N1) viruses were detected and isolated from samples collected from dead birds. Genetic and phylogenetic analyses indicated that the hemagglutinin (HA) genes belonged to the clade 2.3.4.4.b of the H5Nx HPAI viruses, B2 sub-lineage, and were closely related to the highly pathogenic influenza viruses, caused an outbreak in wild birds with a high mortality rate in the western part of the Caspian Sea.
Collapse
Affiliation(s)
- Aidyn Kydyrmanov
- Research and Production Center for Microbiology and Virology, Almaty A26T6C0, Kazakhstan
| | - Kobey Karamendin
- Research and Production Center for Microbiology and Virology, Almaty A26T6C0, Kazakhstan
| | | | - Klara Daulbayeva
- Research and Production Center for Microbiology and Virology, Almaty A26T6C0, Kazakhstan
| | - Temirlan Sabyrzhan
- Research and Production Center for Microbiology and Virology, Almaty A26T6C0, Kazakhstan
| | - Yelizaveta Khan
- Research and Production Center for Microbiology and Virology, Almaty A26T6C0, Kazakhstan
| | - Sardor Nuralibekov
- Research and Production Center for Microbiology and Virology, Almaty A26T6C0, Kazakhstan
| | - Barshagul Baikara
- Research and Production Center for Microbiology and Virology, Almaty A26T6C0, Kazakhstan
| | - Sasan Fereidouni
- Research Institute of Wildlife Ecology, University of Veterinary Medicine Vienna, 1160 Vienna, Austria
| |
Collapse
|
4
|
Yang Y, Xu C, Zhang N, Wan Y, Wu Y, Meng F, Chen Y, Yang H, Liu L, Qiao C, Chen H. Two amino acid residues in the N-terminal region of the polymerase acidic protein determine the virulence of Eurasian avian-like H1N1 swine influenza viruses in mice. J Virol 2024; 98:e0129324. [PMID: 39212447 PMCID: PMC11495010 DOI: 10.1128/jvi.01293-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
Reassortant Eurasian avian-like H1N1 (rEA H1N1) viruses carrying the internal genes of H1N1/2009 virus have been circulating in pigs for more than 10 years and have caused sporadic human infections. The enhanced virulence phenotype of the rEA H1N1 viruses highlights potential risks to public health. However, the molecular mechanism underlying the viral pathogenicity of the currently circulating rEA H1N1 viruses remains unclear. In this study, we found that two naturally isolated rEA H1N1 swine influenza viruses, A/swine/Liaoning/FX38/2017 (FX38) and A/swine/Liaoning/SY72/2018 (SY72), possessed similar genetic characteristics but exhibited significantly different pathogenicity in a mouse model. Using reverse genetics, we demonstrated that amino acid mutations at positions 100 and 122 in the polymerase acidic (PA) protein had individual and synergistic effects on the polymerase activity and viral replication capacity in vitro, as well as the viral pathogenicity in mice. Furthermore, we revealed that amino acid residue 100 in PA influenced the transcription of viral RNA (vRNA) by altering the endonuclease activity, and amino acid residue 122 affected the synthesis of complementary RNA and messenger RNA by altering the RNA-binding ability and endonuclease activity of the PA protein. Taken together, we identified that two naturally occurring amino acid mutations in PA derived from H1N1/2009 virus are crucial determinants of the virulence of rEA H1N1 viruses and revealed the differential mechanism by which these two mutations affect the transcription and replication of vRNA. These findings will extend our understanding of the roles of PA in the virulence of influenza A viruses.IMPORTANCEMultiple genetic determinants are involved in the virulence of influenza A viruses. In this study, we identified two naturally occurring amino acid mutations, located at residues 100 and 122 in the polymerase acidic (PA) protein, which are associated with viral polymerase activity, replication competence, and pathogenicity in mice. In particular, we clarified the specific mechanism by which the two residues play an important role in viral transcription and replication. These findings will help to improve understanding the functions of amino acid residues in the N-terminal region of the PA protein involved in the pathogenicity of influenza A viruses.
Collapse
Affiliation(s)
- Yuying Yang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academic Agricultural Sciences, Harbin, China
| | - Chengzhi Xu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academic Agricultural Sciences, Harbin, China
| | - Naixin Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academic Agricultural Sciences, Harbin, China
| | - Yunfei Wan
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academic Agricultural Sciences, Harbin, China
| | - Yunpu Wu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academic Agricultural Sciences, Harbin, China
| | - Fei Meng
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academic Agricultural Sciences, Harbin, China
| | - Yan Chen
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academic Agricultural Sciences, Harbin, China
| | - Huanliang Yang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academic Agricultural Sciences, Harbin, China
| | - Liling Liu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academic Agricultural Sciences, Harbin, China
| | - Chuanling Qiao
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academic Agricultural Sciences, Harbin, China
| | - Hualan Chen
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academic Agricultural Sciences, Harbin, China
| |
Collapse
|
5
|
Fusaro A, Zecchin B, Giussani E, Palumbo E, Agüero-García M, Bachofen C, Bálint Á, Banihashem F, Banyard AC, Beerens N, Bourg M, Briand FX, Bröjer C, Brown IH, Brugger B, Byrne AMP, Cana A, Christodoulou V, Dirbakova Z, Fagulha T, Fouchier RAM, Garza-Cuartero L, Georgiades G, Gjerset B, Grasland B, Groza O, Harder T, Henriques AM, Hjulsager CK, Ivanova E, Janeliunas Z, Krivko L, Lemon K, Liang Y, Lika A, Malik P, McMenamy MJ, Nagy A, Nurmoja I, Onita I, Pohlmann A, Revilla-Fernández S, Sánchez-Sánchez A, Savic V, Slavec B, Smietanka K, Snoeck CJ, Steensels M, Svansson V, Swieton E, Tammiranta N, Tinak M, Van Borm S, Zohari S, Adlhoch C, Baldinelli F, Terregino C, Monne I. High pathogenic avian influenza A(H5) viruses of clade 2.3.4.4b in Europe-Why trends of virus evolution are more difficult to predict. Virus Evol 2024; 10:veae027. [PMID: 38699215 PMCID: PMC11065109 DOI: 10.1093/ve/veae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/01/2024] [Accepted: 03/26/2024] [Indexed: 05/05/2024] Open
Abstract
Since 2016, A(H5Nx) high pathogenic avian influenza (HPAI) virus of clade 2.3.4.4b has become one of the most serious global threats not only to wild and domestic birds, but also to public health. In recent years, important changes in the ecology, epidemiology, and evolution of this virus have been reported, with an unprecedented global diffusion and variety of affected birds and mammalian species. After the two consecutive and devastating epidemic waves in Europe in 2020-2021 and 2021-2022, with the second one recognized as one of the largest epidemics recorded so far, this clade has begun to circulate endemically in European wild bird populations. This study used the complete genomes of 1,956 European HPAI A(H5Nx) viruses to investigate the virus evolution during this varying epidemiological outline. We investigated the spatiotemporal patterns of A(H5Nx) virus diffusion to/from and within Europe during the 2020-2021 and 2021-2022 epidemic waves, providing evidence of ongoing changes in transmission dynamics and disease epidemiology. We demonstrated the high genetic diversity of the circulating viruses, which have undergone frequent reassortment events, providing for the first time a complete overview and a proposed nomenclature of the multiple genotypes circulating in Europe in 2020-2022. We described the emergence of a new genotype with gull adapted genes, which offered the virus the opportunity to occupy new ecological niches, driving the disease endemicity in the European wild bird population. The high propensity of the virus for reassortment, its jumps to a progressively wider number of host species, including mammals, and the rapid acquisition of adaptive mutations make the trend of virus evolution and spread difficult to predict in this unfailing evolving scenario.
Collapse
Affiliation(s)
- Alice Fusaro
- European Reference Laboratory (EURL) for Avian Influenza and Newcastle Disease, Istituto Zooprofilattico Sperimentale delle Venezie, viale dell'universita 10, Legnaro, Padua 35020, Italy
| | - Bianca Zecchin
- European Reference Laboratory (EURL) for Avian Influenza and Newcastle Disease, Istituto Zooprofilattico Sperimentale delle Venezie, viale dell'universita 10, Legnaro, Padua 35020, Italy
| | - Edoardo Giussani
- European Reference Laboratory (EURL) for Avian Influenza and Newcastle Disease, Istituto Zooprofilattico Sperimentale delle Venezie, viale dell'universita 10, Legnaro, Padua 35020, Italy
| | - Elisa Palumbo
- European Reference Laboratory (EURL) for Avian Influenza and Newcastle Disease, Istituto Zooprofilattico Sperimentale delle Venezie, viale dell'universita 10, Legnaro, Padua 35020, Italy
| | - Montserrat Agüero-García
- Ministry of Agriculture, Fisheries and Food, Laboratorio Central de Veterinaria (LCV), Ctra. M-106, Km 1,4 Algete, Madrid 28110, Spain
| | - Claudia Bachofen
- Federal Department of Home Affairs FDHA Institute of Virology and Immunology IVI, Sensemattstrasse 293, Mittelhäusern 3147, Switzerland
| | - Ádám Bálint
- Veterinary Diagnostic Directorate (NEBIH), Laboratory of Virology, National Food Chain Safety Office, Tábornok utca 2, Budapest 1143, Hungary
| | - Fereshteh Banihashem
- Department of Microbiology, National Veterinary Institute (SVA), Travvägen 20, Uppsala 75189, Sweden
| | - Ashley C Banyard
- WOAH/FAO international reference laboratory for Avian Influenza and Newcastle Disease, Virology Department, Animal and Plant Health Agency-Weybridge, Woodham Lane, New Haw, Addlestone KT15 3NB, United Kingdom
| | - Nancy Beerens
- Department of Virology Wageningen Bioveterinary Research, Houtribweg 39, Lelystad 8221 RA, The Netherlands
| | - Manon Bourg
- Luxembourgish Veterinary and Food Administration (ALVA), State Veterinary Laboratory, 1 Rue Louis Rech, Dudelange 3555, Luxembourg
| | - Francois-Xavier Briand
- Agence Nationale de Sécurité Sanitaire, de l’Alimentation, de l’Environnement et du Travail, Laboratoire de Ploufragan-Plouzané-Niort, Unité de Virologie, Immunologie, Parasitologie Avaires et Cunicoles, 41 Rue de Beaucemaine – BP 53, Ploufragan 22440, France
| | - Caroline Bröjer
- Department of Pathology and Wildlife Disease, National Veterinary Institute (SVA), Travvägen 20, Uppsala 75189, Sweden
| | - Ian H Brown
- WOAH/FAO international reference laboratory for Avian Influenza and Newcastle Disease, Virology Department, Animal and Plant Health Agency-Weybridge, Woodham Lane, New Haw, Addlestone KT15 3NB, United Kingdom
| | - Brigitte Brugger
- Icelandic Food and Veterinary Authority, Austurvegur 64, Selfoss 800, Iceland
| | - Alexander M P Byrne
- WOAH/FAO international reference laboratory for Avian Influenza and Newcastle Disease, Virology Department, Animal and Plant Health Agency-Weybridge, Woodham Lane, New Haw, Addlestone KT15 3NB, United Kingdom
| | - Armend Cana
- Kosovo Food and Veterinary Agency, Sector of Serology and Molecular Diagnostics, Kosovo Food and Veterinary Laboratory, Str Lidhja e Pejes, Prishtina 10000, Kosovo
| | - Vasiliki Christodoulou
- Laboratory for Animal Health Virology Section Veterinary Services (1417), 79, Athalassa Avenue Aglantzia, Nicosia 2109, Cyprus
| | - Zuzana Dirbakova
- Department of Animal Health, State Veterinary Institute, Pod Dráhami 918, Zvolen 96086, Slovakia
| | - Teresa Fagulha
- I.P. (INIAV, I.P.), Avenida da República, Instituto Nacional de Investigação Agrária e Veterinária, Quinta do Marquês, Oeiras 2780 – 157, Portugal
| | - Ron A M Fouchier
- Department of Viroscience, Erasmus MC, Dr. Molewaterplein 40, Rotterdam 3015 GD, The Netherlands
| | - Laura Garza-Cuartero
- Department of Agriculture, Food and the Marine, Central Veterinary Research Laboratory (CVRL), Backweston Campus, Stacumny Lane, Celbridge, Co. Kildare W23 X3PH, Ireland
| | - George Georgiades
- Thessaloniki Veterinary Centre (TVC), Department of Avian Diseases, 26th October Street 80, Thessaloniki 54627, Greece
| | - Britt Gjerset
- Immunology & Virology department, Norwegian Veterinary Institute, Arboretveien 57, Oslo Pb 64, N-1431 Ås, Norway
| | - Beatrice Grasland
- Agence Nationale de Sécurité Sanitaire, de l’Alimentation, de l’Environnement et du Travail, Laboratoire de Ploufragan-Plouzané-Niort, Unité de Virologie, Immunologie, Parasitologie Avaires et Cunicoles, 41 Rue de Beaucemaine – BP 53, Ploufragan 22440, France
| | - Oxana Groza
- Republican Center for Veterinary Diagnostics (NRL), 3 street Murelor, Chisinau 2051, Republic of Moldova
| | - Timm Harder
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, Greifswald-Insel Riems 17493, Germany
| | - Ana Margarida Henriques
- I.P. (INIAV, I.P.), Avenida da República, Instituto Nacional de Investigação Agrária e Veterinária, Quinta do Marquês, Oeiras 2780 – 157, Portugal
| | - Charlotte Kristiane Hjulsager
- Department for Virus and Microbiological Special Diagnostics, Statens Serum Institut, 5 Artillerivej, Copenhagen DK-2300, Denmark
| | - Emiliya Ivanova
- National Reference Laboratory for Avian Influenza and Newcastle Disease, National Diagnostic and Research Veterinary Medical Institute (NDRVMI), 190 Lomsko Shose Blvd., Sofia 1231, Bulgaria
| | - Zygimantas Janeliunas
- National Food and Veterinary Risk Assessment Institute (NFVRAI), Kairiukscio str. 10, Vilnius 08409, Lithuania
| | - Laura Krivko
- Institute of Food Safety, Animal Health and Environment (BIOR), Laboratory of Microbilogy and Pathology, 3 Lejupes Street, Riga 1076, Latvia
| | - Ken Lemon
- Virological Molecular Diagnostic Laboratory, Veterinary Sciences Division, Department of Virology, Agri-Food and Bioscience Institute (AFBI), Stoney Road, Belfast BT4 3SD, Northern Ireland
| | - Yuan Liang
- Department of Veterinary and Animal Sciences, University of Copenhagen, Grønnegårdsvej 15, Frederiksberg 1870, Denmark
| | - Aldin Lika
- Animal Health Department, Food Safety and Veterinary Institute, Rruga Aleksandër Moisiu 10, Tirana 1001, Albania
| | - Péter Malik
- Veterinary Diagnostic Directorate (NEBIH), Laboratory of Virology, National Food Chain Safety Office, Tábornok utca 2, Budapest 1143, Hungary
| | - Michael J McMenamy
- Virological Molecular Diagnostic Laboratory, Veterinary Sciences Division, Department of Virology, Agri-Food and Bioscience Institute (AFBI), Stoney Road, Belfast BT4 3SD, Northern Ireland
| | - Alexander Nagy
- Department of Molecular Biology, State Veterinary Institute Prague, Sídlištní 136/24, Praha 6-Lysolaje 16503, Czech Republic
| | - Imbi Nurmoja
- National Centre for Laboratory Research and Risk Assessment (LABRIS), Kreutzwaldi 30, Tartu 51006, Estonia
| | - Iuliana Onita
- Institute for Diagnosis and Animal Health (IDAH), Str. Dr. Staicovici 63, Bucharest 050557, Romania
| | - Anne Pohlmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, Greifswald-Insel Riems 17493, Germany
| | - Sandra Revilla-Fernández
- Austrian Agency for Health and Food Safety (AGES), Institute for Veterinary Disease Control, Robert Koch Gasse 17, Mödling 2340, Austria
| | - Azucena Sánchez-Sánchez
- Ministry of Agriculture, Fisheries and Food, Laboratorio Central de Veterinaria (LCV), Ctra. M-106, Km 1,4 Algete, Madrid 28110, Spain
| | - Vladimir Savic
- Croatian Veterinary Institute, Poultry Centre, Heinzelova 55, Zagreb 10000, Croatia
| | - Brigita Slavec
- University of Ljubljana – Veterinary Faculty/National Veterinary Institute, Gerbičeva 60, Ljubljana 1000, Slovenia
| | - Krzysztof Smietanka
- Department of Poultry Diseases, National Veterinary Research Institute, Al. Partyzantow 57, Puławy 24-100, Poland
| | - Chantal J Snoeck
- Luxembourg Institute of Health (LIH), Department of Infection and Immunity, 29 Rue Henri Koch, Esch-sur-Alzette 4354, Luxembourg
| | - Mieke Steensels
- Avian Virology and Immunology, Sciensano, Rue Groeselenberg 99, Ukkel 1180, Ukkel, Belgium
| | - Vilhjálmur Svansson
- Biomedical Center, Institute for Experimental Pathology, University of Iceland, Keldnavegi 3 112 Reykjavík Ssn. 650269 4549, Keldur 851, Iceland
| | - Edyta Swieton
- Department of Poultry Diseases, National Veterinary Research Institute, Al. Partyzantow 57, Puławy 24-100, Poland
| | - Niina Tammiranta
- Finnish Food Authority, Animal Health Diagnostic Unit, Veterinary Virology, Mustialankatu 3, Helsinki FI-00790, Finland
| | - Martin Tinak
- Department of Animal Health, State Veterinary Institute, Pod Dráhami 918, Zvolen 96086, Slovakia
| | - Steven Van Borm
- Avian Virology and Immunology, Sciensano, Rue Groeselenberg 99, Ukkel 1180, Ukkel, Belgium
| | - Siamak Zohari
- Department of Microbiology, National Veterinary Institute (SVA), Travvägen 20, Uppsala 75189, Sweden
| | - Cornelia Adlhoch
- European Centre for Disease Prevention and Control, Gustav III:s boulevard 40, Solna 169 73, Sweden
| | | | - Calogero Terregino
- European Reference Laboratory (EURL) for Avian Influenza and Newcastle Disease, Istituto Zooprofilattico Sperimentale delle Venezie, viale dell'universita 10, Legnaro, Padua 35020, Italy
| | - Isabella Monne
- European Reference Laboratory (EURL) for Avian Influenza and Newcastle Disease, Istituto Zooprofilattico Sperimentale delle Venezie, viale dell'universita 10, Legnaro, Padua 35020, Italy
| |
Collapse
|
6
|
Liang Y. Pathogenicity and virulence of influenza. Virulence 2023; 14:2223057. [PMID: 37339323 DOI: 10.1080/21505594.2023.2223057] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/03/2023] [Accepted: 06/05/2023] [Indexed: 06/22/2023] Open
Abstract
Influenza viruses, including four major types (A, B, C, and D), can cause mild-to-severe and lethal diseases in humans and animals. Influenza viruses evolve rapidly through antigenic drift (mutation) and shift (reassortment of the segmented viral genome). New variants, strains, and subtypes have emerged frequently, causing epidemic, zoonotic, and pandemic infections, despite currently available vaccines and antiviral drugs. In recent years, avian influenza viruses, such as H5 and H7 subtypes, have caused hundreds to thousands of zoonotic infections in humans with high case fatality rates. The likelihood of these animal influenza viruses acquiring airborne transmission in humans through viral evolution poses great concern for the next pandemic. Severe influenza viral disease is caused by both direct viral cytopathic effects and exacerbated host immune response against high viral loads. Studies have identified various mutations in viral genes that increase viral replication and transmission, alter tissue tropism or species specificity, and evade antivirals or pre-existing immunity. Significant progress has also been made in identifying and characterizing the host components that mediate antiviral responses, pro-viral functions, or immunopathogenesis following influenza viral infections. This review summarizes the current knowledge on viral determinants of influenza virulence and pathogenicity, protective and immunopathogenic aspects of host innate and adaptive immune responses, and antiviral and pro-viral roles of host factors and cellular signalling pathways. Understanding the molecular mechanisms of viral virulence factors and virus-host interactions is critical for the development of preventive and therapeutic measures against influenza diseases.
Collapse
Affiliation(s)
- Yuying Liang
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA
| |
Collapse
|
7
|
Alasiri A, Soltane R, Hegazy A, Khalil AM, Mahmoud SH, Khalil AA, Martinez-Sobrido L, Mostafa A. Vaccination and Antiviral Treatment against Avian Influenza H5Nx Viruses: A Harbinger of Virus Control or Evolution. Vaccines (Basel) 2023; 11:1628. [PMID: 38005960 PMCID: PMC10675773 DOI: 10.3390/vaccines11111628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/11/2023] [Accepted: 10/20/2023] [Indexed: 11/26/2023] Open
Abstract
Despite the panzootic nature of emergent highly pathogenic avian influenza H5Nx viruses in wild migratory birds and domestic poultry, only a limited number of human infections with H5Nx viruses have been identified since its emergence in 1996. Few countries with endemic avian influenza viruses (AIVs) have implemented vaccination as a control strategy, while most of the countries have adopted a culling strategy for the infected flocks. To date, China and Egypt are the two major sites where vaccination has been adopted to control avian influenza H5Nx infections, especially with the widespread circulation of clade 2.3.4.4b H5N1 viruses. This virus is currently circulating among birds and poultry, with occasional spillovers to mammals, including humans. Herein, we will discuss the history of AIVs in Egypt as one of the hotspots for infections and the improper implementation of prophylactic and therapeutic control strategies, leading to continuous flock outbreaks with remarkable virus evolution scenarios. Along with current pre-pandemic preparedness efforts, comprehensive surveillance of H5Nx viruses in wild birds, domestic poultry, and mammals, including humans, in endemic areas is critical to explore the public health risk of the newly emerging immune-evasive or drug-resistant H5Nx variants.
Collapse
Affiliation(s)
- Ahlam Alasiri
- Department of Basic Sciences, Adham University College, Umm Al-Qura University, Makkah 21955, Saudi Arabia; (A.A.); (R.S.)
| | - Raya Soltane
- Department of Basic Sciences, Adham University College, Umm Al-Qura University, Makkah 21955, Saudi Arabia; (A.A.); (R.S.)
| | - Akram Hegazy
- Department of Agricultural Microbiology, Faculty of Agriculture, Cairo University, Giza District, Giza 12613, Egypt;
| | - Ahmed Magdy Khalil
- Texas Biomedical Research Institute, San Antonio, TX 78227, USA;
- Department of Zoonotic Diseases, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Sara H. Mahmoud
- Center of Scientific Excellence for Influenza Viruses, National Research Center, Giza 12622, Egypt;
| | - Ahmed A. Khalil
- Veterinary Sera and Vaccines Research Institute (VSVRI), Agriculture Research Center (ARC), Cairo 11435, Egypt;
| | | | - Ahmed Mostafa
- Texas Biomedical Research Institute, San Antonio, TX 78227, USA;
- Center of Scientific Excellence for Influenza Viruses, National Research Center, Giza 12622, Egypt;
| |
Collapse
|
8
|
Gilbertson B, Duncan M, Subbarao K. Role of the viral polymerase during adaptation of influenza A viruses to new hosts. Curr Opin Virol 2023; 62:101363. [PMID: 37672875 DOI: 10.1016/j.coviro.2023.101363] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 08/15/2023] [Accepted: 08/15/2023] [Indexed: 09/08/2023]
Abstract
As a group, influenza-A viruses (IAV) infect a wide range of animal hosts, however, they are constrained to infecting selected host species by species-specific interactions between the host and virus, that are required for efficient replication of the viral RNA genome. When IAV cross the species barrier, they acquire mutations in the viral genome to enable interactions with the new host factors, or to compensate for their loss. The viral polymerase genes polymerase basic 1, polymerase basic 2, and polymerase-acidic are important sites of host adaptation. In this review, we discuss why the viral polymerase is so vital to the process of host adaptation, look at some of the known viral mutations, and host factors involved in adaptation, particularly of avian IAV to mammalian hosts.
Collapse
Affiliation(s)
- Brad Gilbertson
- Department of Microbiology and Immunology, University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Melanie Duncan
- WHO Collaborating Centre for Reference and Research on Influenza, Victorian Infectious Diseases Reference Laboratory at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Kanta Subbarao
- Department of Microbiology and Immunology, University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia; WHO Collaborating Centre for Reference and Research on Influenza, Victorian Infectious Diseases Reference Laboratory at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia.
| |
Collapse
|
9
|
Hu M, Kackos C, Banoth B, Ojha CR, Jones JC, Lei S, Li L, Kercher L, Webby RJ, Russell CJ. Hemagglutinin destabilization in H3N2 vaccine reference viruses skews antigenicity and prevents airborne transmission in ferrets. SCIENCE ADVANCES 2023; 9:eadf5182. [PMID: 36989367 PMCID: PMC10058244 DOI: 10.1126/sciadv.adf5182] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 02/28/2023] [Indexed: 06/14/2023]
Abstract
During influenza virus entry, the hemagglutinin (HA) protein binds receptors and causes membrane fusion after endosomal acid activation. To improve vaccine efficiency and pandemic risk assessment for currently-dominant H3N2 influenza viruses, we investigated HA stability of 6 vaccine reference viruses and 42 circulating viruses. Recent vaccine reference viruses had destabilized HA proteins due to egg-adaptive mutation HA1-L194P. Virus growth in cell culture was independent of HA stability. In ferrets, the vaccine reference viruses and circulating viruses required a relatively stable HA (activation and inactivation pH < 5.5) for airborne transmissibility. The recent vaccine reference viruses with destabilized HA proteins had reduced infectivity, had no airborne transmissibility unless reversion to HA1-P194L occurred, and had skewed antigenicity away from the studied viruses and circulating H3N2 viruses. Other vaccine reference viruses with stabilized HAs retained infectivity, transmissibility, and antigenicity. Therefore, HA stabilization should be prioritized over destabilization in vaccine reference virus selection to reduce mismatches between vaccine and circulating viruses.
Collapse
Affiliation(s)
- Meng Hu
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105-3678, USA
| | - Christina Kackos
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105-3678, USA
- St. Jude Children’s Research Hospital Graduate School of Biomedical Sciences, 262 Danny Thomas Place, Memphis, TN 38105-3678, USA
| | - Balaji Banoth
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105-3678, USA
| | - Chet Raj Ojha
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105-3678, USA
| | - Jeremy C. Jones
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105-3678, USA
| | - Shaohua Lei
- Center for Applied Bioinformatics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105-3678, USA
- Center of Excellence for Leukemia Studies, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105-3678, USA
| | - Lei Li
- Drukier Institute for Children’s Health, Department of Pediatrics, Weill Cornell Medicine, New York, NY 10021, USA
| | - Lisa Kercher
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105-3678, USA
| | - Richard J. Webby
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105-3678, USA
- Department of Microbiology, Immunology and Biochemistry, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Charles J. Russell
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105-3678, USA
- Department of Microbiology, Immunology and Biochemistry, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
10
|
Yin Y, Liu Y, Fen J, Liu K, Qin T, Chen S, Peng D, Liu X. Characterization of an H7N9 Influenza Virus Isolated from Camels in Inner Mongolia, China. Microbiol Spectr 2023; 11:e0179822. [PMID: 36809036 PMCID: PMC10100662 DOI: 10.1128/spectrum.01798-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 01/13/2023] [Indexed: 02/23/2023] Open
Abstract
The H7N9 subtype of influenza virus can infect birds and humans, causing great losses in the poultry industry and threatening public health worldwide. However, H7N9 infection in other mammals has not been reported yet. In the present study, one H7N9 subtype influenza virus, A/camel/Inner Mongolia/XL/2020 (XL), was isolated from the nasal swabs of camels in Inner Mongolia, China, in 2020. Sequence analyses revealed that the hemagglutinin cleavage site of the XL virus was ELPKGR/GLF, which is a low-pathogenicity molecular characteristic. The XL virus had similar mammalian adaptations to human-originated H7N9 viruses, such as the polymerase basic protein 2 (PB2) Glu-to-Lys mutation at position 627 (E627K) mutation, but differed from avian-originated H7N9 viruses. The XL virus showed a higher SA-α2,6-Gal receptor-binding affinity and better mammalian cell replication than the avian H7N9 virus. Moreover, the XL virus had weak pathogenicity in chickens, with an intravenous pathogenicity index of 0.01, and intermediate virulence in mice, with a median lethal dose of 4.8. The XL virus replicated well and caused clear infiltration of inflammatory cells and increased inflammatory cytokines in the lungs of mice. Our data constitute the first evidence that the low-pathogenicity H7N9 influenza virus can infect camels and therefore poses a high risk to public health. IMPORTANCE H5 subtype avian influenza viruses can cause serious diseases in poultry and wild birds. On rare occasions, viruses can cause cross-species transmission to mammalian species, including humans, pigs, horses, canines, seals, and minks. The H7N9 subtype of the influenza virus can also infect both birds and humans. However, viral infection in other mammalian species has not been reported yet. In this study, we found that the H7N9 virus could infect camels. Notably, the H7N9 virus from camels had mammalian adaption molecular markers, including altered receptor-binding activity on the hemagglutinin protein and an E627K mutation on the polymerase basic protein 2 protein. Our findings indicated that the potential risk of camel-origin H7N9 virus to public health is of great concern.
Collapse
Affiliation(s)
- Yuncong Yin
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, China
- International Joint Laboratory for Cooperation in Agriculture and Agricultural Product Safety, Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yuan Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, China
- International Joint Laboratory for Cooperation in Agriculture and Agricultural Product Safety, Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, China
| | - Juan Fen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, China
- International Joint Laboratory for Cooperation in Agriculture and Agricultural Product Safety, Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, China
| | - Kaituo Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, China
- International Joint Laboratory for Cooperation in Agriculture and Agricultural Product Safety, Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, China
| | - Tao Qin
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, China
- International Joint Laboratory for Cooperation in Agriculture and Agricultural Product Safety, Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, China
| | - Sujuan Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, China
- International Joint Laboratory for Cooperation in Agriculture and Agricultural Product Safety, Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, China
| | - Daxin Peng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, China
- International Joint Laboratory for Cooperation in Agriculture and Agricultural Product Safety, Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, Jiangsu, China
| | - Xiufan Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, China
- International Joint Laboratory for Cooperation in Agriculture and Agricultural Product Safety, Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
11
|
Cui P, Shi J, Wang C, Zhang Y, Xing X, Kong H, Yan C, Zeng X, Liu L, Tian G, Li C, Deng G, Chen H. Global dissemination of H5N1 influenza viruses bearing the clade 2.3.4.4b HA gene and biologic analysis of the ones detected in China. Emerg Microbes Infect 2022; 11:1693-1704. [PMID: 35699072 PMCID: PMC9246030 DOI: 10.1080/22221751.2022.2088407] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
H5N1 avian influenza viruses bearing the clade 2.3.4.4b hemagglutinin gene have been widely circulating in wild birds and are responsible for the loss of over 70 million domestic poultry in Europe, Africa, Asia, and North America since October 2020. During our routine surveillance, 13 H5N1 viruses were isolated from 26,767 wild bird and poultry samples that were collected between September 2021 and March 2022 in China. To investigate the origin of these Chinese isolates and understand their genetic relationship with the globally circulating H5N1 viruses, we performed a detailed phylogenic analysis of 233 representative H5N1 strains that were isolated from 28 countries. We found that, after they emerged in the Netherlands, the H5N1 viruses encountered complicated gene exchange with different viruses circulating in wild birds and formed 16 genotypes. Genotype one (G1) was predominant, being detected in 22 countries, whereas all other genotypes were only detected in one or two continents. H5N1 viruses of four genotypes (G1, G7, G9, and G10) were detected in China; three of these genotypes have been previously reported in other countries. The H5N1 viruses detected in China replicated in mice, with pathogenicity varying among strains; the G1 virus was highly lethal in mice. Moreover, we found that these viruses were antigenically similar to and well matched with the H5-Re14 vaccine strain currently used in China. Our study reveals the overall picture of H5N1 virus evolution and provides insights for the control of these viruses.
Collapse
Affiliation(s)
- Pengfei Cui
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, People's Republic of China
| | - Jianzhong Shi
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, People's Republic of China
| | - Congcong Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, People's Republic of China
| | - Yuancheng Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, People's Republic of China
| | - Xin Xing
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, People's Republic of China
| | - Huihui Kong
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, People's Republic of China
| | - Cheng Yan
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, People's Republic of China
| | - Xianying Zeng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, People's Republic of China
| | - Liling Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, People's Republic of China
| | - Guobin Tian
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, People's Republic of China
| | - Chengjun Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, People's Republic of China
| | - Guohua Deng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, People's Republic of China
| | - Hualan Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, People's Republic of China.,National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, CAAS, Harbin, People's Republic of China
| |
Collapse
|
12
|
Navarro-Lopez R, Xu W, Gomez-Romero N, Velazquez-Salinas L, Berhane Y. Phylogenetic Inference of the 2022 Highly Pathogenic H7N3 Avian Influenza Outbreak in Northern Mexico. Pathogens 2022; 11:1284. [PMID: 36365034 PMCID: PMC9692817 DOI: 10.3390/pathogens11111284] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/20/2022] [Accepted: 10/25/2022] [Indexed: 02/06/2024] Open
Abstract
The Mexican lineage H7N3 highly pathogenic avian influenza virus (HPAIV) has persisted in Mexican poultry since its first isolation in 2012. To date, the detection of this virus has gradually expanded from the initial one state to 18 states in Mexico. Despite the HPAIV H7N3 outbreak occurring yearly, the transmission pathways have never been studied, disallowing the establishment of effective control measures. We used a phylogenetic approach to unravel the transmission pathways of 2022 H7N3 HPAIVs in the new outbreak areas in Northern Mexico. We present genetic data of H7N3 viruses produced from 18 poultry farms infected in the spring of 2022. Our results indicate that the virus responsible for the current outbreak in Northern Mexico evolved from the Mexican lineage H7N3 HPAIV discovered in 2012. In the current outbreak, we identified five clusters of infection with four noticeably different genetic backgrounds. It is a cluster IV-like virus that was transmitted into one northern state causing an outbreak, then spreading to another neighboring northern state, possibly via a human-mediated mechanical transmission mechanism. The long-distance transmission event highlights the necessity for the more rigorous enforcement of biosafety measures in outbreaks. Additionally, we examined the evolutionary processes shaping the viral genetic and antigenic diversities. It is imperative to enhance active surveillance to include birds, the environment, and humans to detect HPAI in domestic poultry at an earlier point and eliminate it.
Collapse
Affiliation(s)
- Roberto Navarro-Lopez
- United States-Mexico Commission for the Prevention of Foot-and-Mouth Disease and Other Exotic Disease Animals, Mexico City 64590, Mexico
| | - Wanhong Xu
- National Centre for Foreign Animal Disease, Winnipeg, MB R3E 3M4, Canada
| | - Ninnet Gomez-Romero
- United States-Mexico Commission for the Prevention of Foot-and-Mouth Disease and Other Exotic Disease Animals, Mexico City 64590, Mexico
| | - Lauro Velazquez-Salinas
- Plum Island Animal Disease Center, Agriculture Research Service, USDA, Orient, NY 11944, USA
| | - Yohannes Berhane
- National Centre for Foreign Animal Disease, Winnipeg, MB R3E 3M4, Canada
- Department of Animal Science, University of Manitoba, Winnipeg, MB R3T 2S2, Canada
| |
Collapse
|
13
|
Murakami J, Shibata A, Neumann G, Imai M, Watanabe T, Kawaoka Y. Characterization of H9N2 Avian Influenza Viruses Isolated from Poultry Products in a Mouse Model. Viruses 2022; 14:v14040728. [PMID: 35458458 PMCID: PMC9032349 DOI: 10.3390/v14040728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/28/2022] [Accepted: 03/28/2022] [Indexed: 11/16/2022] Open
Abstract
Low pathogenic H9N2 avian influenza viruses have spread in wild birds and poultry worldwide. Recently, the number of human cases of H9N2 virus infection has increased in China and other countries, heightening pandemic concerns. In Japan, H9N2 viruses are not yet enzootic; however, avian influenza viruses, including H5N1, H7N9, H5N6, and H9N2, have been repeatedly detected in raw poultry meat carried by international flight passengers from Asian countries to Japan. Although H9N2 virus-contaminated poultry products intercepted by the animal quarantine service at the Japan border have been characterized in chickens and ducks, the biological properties of those H9N2 viruses in mammals remain unclear. Here, we characterized the biological features of two H9N2 virus isolates [A/chicken/Japan/AQ-HE28-50/2016 (Ck/HE28-50) and A/chicken/Japan/AQ-HE28-57/2016 (Ck/HE28-57)] in a mouse model. We found that these H9N2 viruses replicate well in the respiratory tract of infected mice without adaptation, and that Ck/HE28-57 caused body weight loss in the infected mice. Our results indicate that H9N2 avian influenza viruses isolated from raw chicken meat products illegally brought to Japan can potentially infect and cause disease in mammals.
Collapse
Affiliation(s)
- Jurika Murakami
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan; (J.M.); (M.I.)
| | - Akihiro Shibata
- Exotic Disease Inspection Division, Laboratory Department, Animal Quarantine Service, Ministry of Agriculture, Forestry and Fisheries, Tokoname 479-0881, Japan;
| | - Gabriele Neumann
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin–Madison, Madison, WI 53706, USA;
| | - Masaki Imai
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan; (J.M.); (M.I.)
- The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo 162-8655, Japan
| | - Tokiko Watanabe
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan; (J.M.); (M.I.)
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Suita 565-0871, Japan
- Center for Infectious Disease and Education and Research (CiDER), Osaka University, Suita 565-0871, Japan
- Correspondence: (T.W.); (Y.K.)
| | - Yoshihiro Kawaoka
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan; (J.M.); (M.I.)
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin–Madison, Madison, WI 53706, USA;
- The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo 162-8655, Japan
- Correspondence: (T.W.); (Y.K.)
| |
Collapse
|
14
|
Swine H1N1 Influenza Virus Variants with Enhanced Polymerase Activity and HA Stability Promote Airborne Transmission in Ferrets. J Virol 2022; 96:e0010022. [DOI: 10.1128/jvi.00100-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Diverse IAVs circulate in animals, yet few acquire the viral traits needed to start a human pandemic. A stabilized HA and mammalian-adapted polymerase have been shown to promote the adaptation of IAVs to humans and ferrets (the gold-standard model for IAV replication, pathogenicity, and transmissibility).
Collapse
|
15
|
Bu L, Chen B, Xing L, Cai X, Liang S, Zhang L, Wang X, Song W. Generation of a pdmH1N1 2018 Influenza A Reporter Virus Carrying a mCherry Fluorescent Protein in the PA Segment. Front Cell Infect Microbiol 2022; 11:827790. [PMID: 35127568 PMCID: PMC8811159 DOI: 10.3389/fcimb.2021.827790] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 12/31/2021] [Indexed: 11/13/2022] Open
Abstract
Influenza A virus (IAV) is a major human pathogen associated with significant morbidity and mortality worldwide. Through serial passage in mice, we generated a recombinant pdmH1N1 2009 IAV, A/Guangdong/GLW/2018 (GLW/18-MA), which encodes an mCherry gene fused to the C-terminal of a polymerase acidic (PA) segment and demonstrated comparable growth kinetics to the wild-type. Nine mutations were identified in the GLW/18-MA genome: PA (I61M, E351G, and G631S), NP (E292G), HA1 (T164I), HA2 (N117S and P160S), NA (W61R), and NEP (K44R). The recombinant IAV reporter expresses mCherry, a red fluorescent protein, at a high level and maintains its genetic integrity after five generations of serial passages in Madin-Darby Canine Kidney cells (MDCK) cells. Moreover, the imaging is noninvasive and permits the monitoring of infection in living mice. Treatment with oseltamivir or baicalin followed by infection with the reporter IAV led to a decrease in fluorescent protein signal in living mice. This result demonstrates that the IAV reporter virus is a powerful tool to study viral pathogenicity and transmission and to develop and evaluate novel anti-viral drugs, inhibitors, and vaccines in the future.
Collapse
Affiliation(s)
- Ling Bu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Institute of Integration of Traditional and Western Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Boqian Chen
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lei Xing
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Institute of Integration of Traditional and Western Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xuejun Cai
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Institute of Integration of Traditional and Western Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shuhua Liang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Institute of Integration of Traditional and Western Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Liying Zhang
- KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, China
| | - Xinhua Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Institute of Integration of Traditional and Western Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenjun Song
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Institute of Integration of Traditional and Western Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- State Key Laboratory for Emerging Infectious Diseases, Department of Microbiology, and the Research Center of Infection and Immunology, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
16
|
Bisset AT, Hoyne GF. An Outbreak of Highly Pathogenic Avian Influenza (H7N7) in Australia and the Potential for Novel Influenza A Viruses to Emerge. Microorganisms 2021; 9:microorganisms9081639. [PMID: 34442718 PMCID: PMC8401172 DOI: 10.3390/microorganisms9081639] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 11/23/2022] Open
Abstract
In 2020, several geographically isolated farms in Victoria, Australia, experienced an outbreak of highly pathogenic avian influenza (HPAI) virus H7N7 and low pathogenic avian influenza (LPAI) viruses H5N2 and H7N6. Effective containment and control measures ensured the eradication of these viruses but the event culminated in substantial loss of livestock and significant economic impact. The avian HPAI H7N7 virus generally does not infect humans; however, evidence shows the ocular pathway presents a favourable tissue tropism for human infection. Through antigenic drift, mutations in the H7N7 viral genome may increase virulence and pathogenicity in humans. The Victorian outbreak also detected LPAI H7N6 in emus at a commercial farm. Novel influenza A viruses can emerge by mixing different viral strains in a host susceptible to avian and human influenza strains. Studies show that emus are susceptible to infections from a wide range of influenza viral subtypes, including H5N1 and the pandemic H1N1. The emu’s internal organs and tissues express abundant cell surface sialic acid receptors that favour the attachment of avian and human influenza viruses, increasing the potential for internal genetic reassortment and the emergence of novel influenza A viruses. This review summarises the historical context of H7N7 in Australia, considers the potential for increased virulence and pathogenesis through mutations and draws attention to the emu as potentially an unrecognised viral mixing vessel.
Collapse
Affiliation(s)
- Andrew T. Bisset
- School of Nursing, Midwifery, Health Sciences and Physiotherapy, Faculty of Medicine, Nursing and Health Sciences, University of Notre Dame Australia, Fremantle, WA 6160, Australia;
- Correspondence:
| | - Gerard F. Hoyne
- School of Nursing, Midwifery, Health Sciences and Physiotherapy, Faculty of Medicine, Nursing and Health Sciences, University of Notre Dame Australia, Fremantle, WA 6160, Australia;
- Institute for Health Research, University of Notre Dame Australia, Fremantle, WA 6160, Australia
- Centre for Cell Therapy and Regenerative Medicine, School of Biomedical Sciences, The University of Western Australia, Nedlands, WA 6009, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia
| |
Collapse
|
17
|
Zhang C, Guo K, Cui H, Chen L, Zhang C, Wang X, Li J, Fu Y, Wang Z, Guo Z, Liu J, Dong S. Risk of Environmental Exposure to H7N9 Influenza Virus via Airborne and Surface Routes in a Live Poultry Market in Hebei, China. Front Cell Infect Microbiol 2021; 11:688007. [PMID: 34164347 PMCID: PMC8216215 DOI: 10.3389/fcimb.2021.688007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/20/2021] [Indexed: 11/13/2022] Open
Abstract
Environmental transmission of viruses to humans has become an early warning for potential epidemic outbreaks, such as SARS-CoV-2 and influenza virus outbreaks. Recently, an H7N9 virus, A/environment/Hebei/621/2019 (H7N9), was isolated by environmental swabs from a live poultry market in Hebei, China. We found that this isolate could be transmitted by direct contact and aerosol in mammals. More importantly, after 5 passages in mice, the virus acquired two adaptive mutations, PB1-H115Q and B2-E627K, exhibiting increased virulence and aerosol transmissibility. These results suggest that this H7N9 virus might potentially be transmitted between humans through environmental or airborne routes.
Collapse
Affiliation(s)
- Cheng Zhang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China.,Changchun Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Changchun, China
| | - Kangkang Guo
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China.,Changchun Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Changchun, China
| | - Huan Cui
- Changchun Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Changchun, China.,College of Animal Medicine, Jilin University, Changcchun, China
| | - Ligong Chen
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Chunmao Zhang
- Changchun Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Changchun, China
| | - Xuejing Wang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Jiaming Li
- Beijing Institute of Biotechnology, Beijing, China
| | - Yingying Fu
- Beijing Institute of Biotechnology, Beijing, China
| | - Zhongyi Wang
- Beijing Institute of Biotechnology, Beijing, China
| | - Zhendong Guo
- Changchun Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Changchun, China
| | - Juxiang Liu
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Shishan Dong
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| |
Collapse
|
18
|
Wu XX, Zhao LZ, Tang SJ, Weng TH, Wu WG, Yao SH, Wu HB, Cheng LF, Wang J, Hu FY, Wu NP, Yao HP, Zhang FC, Li LJ. Novel pathogenic characteristics of highly pathogenic avian influenza virus H7N9: viraemia and extrapulmonary infection. Emerg Microbes Infect 2020; 9:962-975. [PMID: 32267217 PMCID: PMC7301721 DOI: 10.1080/22221751.2020.1754135] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/20/2020] [Accepted: 04/03/2020] [Indexed: 12/27/2022]
Abstract
The H7N9 virus mutated in 2017, resulting in new cases of highly pathogenic avian influenza (HPAI) H7N9 virus infection. H7N9 was found in a viraemic patient in Guangdong province, China. The present study aimed to clarify the pathogenic characteristics of HPAI H7N9. Virus was isolated from the plasma and sputum of the patient with HPAI H7N9. Liquid phase chip technology was used to detect the plasma cytokines from the infected patient and healthy controls. Mice were infected with strains A/Guangdong/GZ8H002/2017(H7N9) and A/Zhejiang/DTID-ZJU01/2013(H7N9) to observe the virus's pathogenic characteristics. Serum and brain tissue were collected at 2, 4, and 6 days after infection. The viruses in serum and brain tissue were detected and isolated. The two strains were infected into A549 cells, exosomes were extracted, and virus genes in the exosomes were assessed. Live virus was isolated from the patient's plasma. An acute cytokine storm was detected during the whole course of the disease. In animal experiments, A/Guangdong/GZ8H002/2017(H7N9) was more pathogenic than A/Zhejiang /DTID-ZJU01/2013(H7N9) and resulted in the death of mice. Live virus was isolated from infected mouse serum. Virus infection was also detected in the brain of mice. Under viral stress, A549 cells secreted exosomes containing the entire viral genome. The viraemic patient was confirmed to have an HPAI H7N9 infection. A/Guangdong/GZ8H002/2017(H7N9) showed significantly enhanced toxicity. Patient deaths might result from cytokine storms and brain infections. Extrapulmonary tissue infection might occur via the exosome pathway. The determined pathogenic characteristics of HPAI H7N9 will contribute to its future treatment.
Collapse
Affiliation(s)
- Xiao-Xin Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Ling-Zhai Zhao
- Institute of Infectious Diseases, Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Song-Jia Tang
- Plastic and Aesthetic Surgery Department, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Tian-Hao Weng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Wei-Gen Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Shu-Hao Yao
- Department of Stormotologry, Wenzhou Medical University Renji College, Wenzhou, People’s Republic of China
| | - Hai-Bo Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Lin-Fang Cheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Jian Wang
- Institute of Infectious Diseases, Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Feng-Yu Hu
- Institute of Infectious Diseases, Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Nan-Ping Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Hang-Ping Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Fu-Chun Zhang
- Institute of Infectious Diseases, Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Lan-Juan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| |
Collapse
|
19
|
Barberis A, Boudaoud A, Gorrill A, Loupias J, Ghram A, Lachheb J, Alloui N, Ducatez MF. Full-length genome sequences of the first H9N2 avian influenza viruses isolated in the Northeast of Algeria. Virol J 2020; 17:108. [PMID: 32680533 PMCID: PMC7366561 DOI: 10.1186/s12985-020-01377-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/30/2020] [Indexed: 11/30/2022] Open
Abstract
Background H9N2 avian influenza viruses (AIV) has a worldwide geographic distribution and affects poultry of different types of production. H9N2 AIV was first reported in the Northeast of Algeria in April 2017, following an outbreak associated with high mortality, in broiler flocks. In the present study, we report full-length genome sequences of AIV H9N2, and the detailed phylogeny and molecular genetic analyses. Methods Ten AIV H9N2 strains, collected in broiler flocks, were amplified in 9-day-old embryonated specific pathogen free (SPF) chicken eggs. Their full-length genomes were successfully sequenced and phylogenetic and molecular characterizations were conducted. Results Phylogenetic analysis showed that the isolates were monophyletic, grouped within the G-1 lineage and were very close to Moroccan and Algerian strains identified in 2016 and 2017, respectively. The low pathogenicity of the strains was confirmed by the sequence motif (335RSSR/GLF341) at the hemagglutinin (HA) cleavage site. An exclusive substitution (T197A) that had not been previously reported for H9N2 viruses; but, conserved in some pandemic H1N1 viruses, was observed. When compared to the G1-like H9N2 prototype, the studied strains showed one less glycosylation site in HA, but 2–3 additional ones in the stalk of the neuraminidase (NA). The HA protein harbored the substitution 234 L, suggesting binding preference to human-like receptors. The NA protein harbored S372A and R403W substitutions, previously detected in H9N2 from Asia and the Middle East, and especially in H2N2 and H3N2 strains that caused human pandemics. Different molecular markers associated with virulence and mammalian infections have been detected in the viral internal proteins. The matrix M2 protein possessed the S31N substitution associated with drug resistance. The non-structural 1 (NS1) protein showed the “GSEV” PDZ ligand (PL) C-terminal motif and no 80–84 deletion. Conclusion Characterized Algerian AIV isolates showed mutations that suggest increased zoonotic potential. Additional studies in animal models are required to investigate the pathogenicity of these H9N2 AIV strains. Monitoring their evolution in both migratory and domestic birds is crucial to prevent transmission to humans. Implementation of adequate biosecurity measures that limit the introduction and the propagation of AIV H9N2 in Algerian poultry farm is crucial.
Collapse
Affiliation(s)
- Abdelheq Barberis
- Centre de Recherche en Biotechnologie, Nouvelle Ville Ali Mendjeli, El Khroub, Algeria. .,LESPA, Département vétérinaire, ISVSA, Université de Batna, Batna, Algeria.
| | - Amine Boudaoud
- LESPA, Département vétérinaire, ISVSA, Université de Batna, Batna, Algeria
| | - Angelina Gorrill
- IHAP, Université de Toulouse, INRAE, ENVT, 23 Chemin des Capelles, 31076, Toulouse cedex, France
| | - Josianne Loupias
- IHAP, Université de Toulouse, INRAE, ENVT, 23 Chemin des Capelles, 31076, Toulouse cedex, France
| | - Abdeljelil Ghram
- Laboratoire d'Epidémiologie et de Microbiologie Vétérinaire, Institut Pasteur de Tunis, Université Tunis El Manar, Tunis, Tunisia
| | - Jihene Lachheb
- Laboratoire d'Epidémiologie et de Microbiologie Vétérinaire, Institut Pasteur de Tunis, Université Tunis El Manar, Tunis, Tunisia
| | - Nadir Alloui
- LESPA, Département vétérinaire, ISVSA, Université de Batna, Batna, Algeria
| | - Mariette F Ducatez
- IHAP, Université de Toulouse, INRAE, ENVT, 23 Chemin des Capelles, 31076, Toulouse cedex, France.
| |
Collapse
|
20
|
Hu M, Yang G, DeBeauchamp J, Crumpton JC, Kim H, Li L, Wan XF, Kercher L, Bowman AS, Webster RG, Webby RJ, Russell CJ. HA stabilization promotes replication and transmission of swine H1N1 gamma influenza viruses in ferrets. eLife 2020; 9:56236. [PMID: 32602461 PMCID: PMC7326494 DOI: 10.7554/elife.56236] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 06/13/2020] [Indexed: 01/01/2023] Open
Abstract
Pandemic influenza A viruses can emerge from swine, an intermediate host that supports adaptation of human-preferred receptor-binding specificity by the hemagglutinin (HA) surface antigen. Other HA traits necessary for pandemic potential are poorly understood. For swine influenza viruses isolated in 2009–2016, gamma-clade viruses had less stable HA proteins (activation pH 5.5–5.9) than pandemic clade (pH 5.0–5.5). Gamma-clade viruses replicated to higher levels in mammalian cells than pandemic clade. In ferrets, a model for human adaptation, a relatively stable HA protein (pH 5.5–5.6) was necessary for efficient replication and airborne transmission. The overall airborne transmission frequency in ferrets for four isolates tested was 42%, and isolate G15 airborne transmitted 100% after selection of a variant with a stabilized HA. The results suggest swine influenza viruses containing both a stabilized HA and alpha-2,6 receptor binding in tandem pose greater pandemic risk. Increasing evidence supports adding HA stability to pre-pandemic risk assessment algorithms.
Collapse
Affiliation(s)
- Meng Hu
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, United States
| | - Guohua Yang
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, United States
| | - Jennifer DeBeauchamp
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, United States
| | - Jeri Carol Crumpton
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, United States
| | - Hyunsuh Kim
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, United States
| | - Lei Li
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, United States
| | - Xiu-Feng Wan
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, United States.,Missouri University Center for Research on Influenza Systems Biology (CRISB), University of Missouri, Columbia, United States.,Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, United States.,Bond Life Sciences Center, University of Missouri, Columbia, United States.,Department of Electrical Engineering Computer Science, College of Engineering, University of Missouri, Columbia, United States.,MU Informatics Institute, University of Missouri, Columbia, United States
| | - Lisa Kercher
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, United States
| | - Andrew S Bowman
- Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, United States
| | - Robert G Webster
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, United States
| | - Richard J Webby
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, United States.,Department of Microbiology, Immunology & Biochemistry, College of Medicine, The University of Tennessee Health Science Center, Memphis, United States
| | - Charles J Russell
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, United States.,Department of Microbiology, Immunology & Biochemistry, College of Medicine, The University of Tennessee Health Science Center, Memphis, United States
| |
Collapse
|
21
|
Lutz MM, Dunagan MM, Kurebayashi Y, Takimoto T. Key Role of the Influenza A Virus PA Gene Segment in the Emergence of Pandemic Viruses. Viruses 2020; 12:v12040365. [PMID: 32224899 PMCID: PMC7232137 DOI: 10.3390/v12040365] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 03/24/2020] [Indexed: 12/18/2022] Open
Abstract
Influenza A viruses (IAVs) are a significant human pathogen that cause seasonal epidemics and occasional pandemics. Avian waterfowl are the natural reservoir of IAVs, but a wide range of species can serve as hosts. Most IAV strains are adapted to one host species and avian strains of IAV replicate poorly in most mammalian hosts. Importantly, IAV polymerases from avian strains function poorly in mammalian cells but host adaptive mutations can restore activity. The 2009 pandemic H1N1 (H1N1pdm09) virus acquired multiple mutations in the PA gene that activated polymerase activity in mammalian cells, even in the absence of previously identified host adaptive mutations in other polymerase genes. These mutations in PA localize within different regions of the protein suggesting multiple mechanisms exist to activate polymerase activity. Additionally, an immunomodulatory protein, PA-X, is expressed from the PA gene segment. PA-X expression is conserved amongst many IAV strains but activity varies between viruses specific for different hosts, suggesting that PA-X also plays a role in host adaptation. Here, we review the role of PA in the emergence of currently circulating H1N1pdm09 viruses and the most recent studies of host adaptive mutations in the PA gene that modulate polymerase activity and PA-X function.
Collapse
Affiliation(s)
- Michael M. Lutz
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA (M.M.D.); (Y.K.)
| | - Megan M. Dunagan
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA (M.M.D.); (Y.K.)
| | - Yuki Kurebayashi
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA (M.M.D.); (Y.K.)
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka-shi 422-8526, Japan
| | - Toru Takimoto
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA (M.M.D.); (Y.K.)
- Correspondence: ; Tel.: +1-585-273-2856
| |
Collapse
|
22
|
Wu H, Liu F, Yang F, Xiao Y, Yao H, Wu N. Amino acid substitutions involved in the adaptation of a novel H7N7 avian influenza virus in mice. Res Vet Sci 2020; 130:203-206. [PMID: 32200160 DOI: 10.1016/j.rvsc.2020.03.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 03/08/2020] [Accepted: 03/09/2020] [Indexed: 02/06/2023]
Abstract
The H7N7 avian influenza viruses can infect humans and poses a great threat to human health. To identify the amino acid substitutions that are associated with adaptation of avian-origin H7N7 virus to mammals, adaptation of the H7N7 virus was carried out by serial lung-to-lung passage in mice. Genomic analysis of the mouse-adapted virus revealed amino acid changes in the PB2 (E525G, M645I, and D701N), NP (I475V), HA(D103N), and NA(K142E) proteins. The adapted H7N7 virus was more virulent in mice than the wild-type virus. Our results suggest that continued surveillance of poultry populations for these substitutions in the H7N7 virus is required.
Collapse
Affiliation(s)
- Haibo Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China.
| | - Fumin Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Fan Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Yixin Xiao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Hangping Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Nanping Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China.
| |
Collapse
|
23
|
Suttie A, Tok S, Yann S, Keo P, Horm SV, Roe M, Kaye M, Sorn S, Holl D, Tum S, Barr IG, Hurt AC, Greenhill AR, Karlsson EA, Vijaykrishna D, Deng YM, Dussart P, Horwood PF. The evolution and genetic diversity of avian influenza A(H9N2) viruses in Cambodia, 2015 - 2016. PLoS One 2019; 14:e0225428. [PMID: 31815945 PMCID: PMC6901181 DOI: 10.1371/journal.pone.0225428] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 11/04/2019] [Indexed: 11/18/2022] Open
Abstract
Low pathogenic A(H9N2) subtype avian influenza viruses (AIVs) were originally detected in Cambodian poultry in 2013, and now circulate endemically. We sequenced and characterised 64 A(H9N2) AIVs detected in Cambodian poultry (chickens and ducks) from January 2015 to May 2016. All A(H9) viruses collected in 2015 and 2016 belonged to a new BJ/94-like h9-4.2.5 sub-lineage that emerged in the region during or after 2013, and was distinct to previously detected Cambodian viruses. Overall, there was a reduction of genetic diversity of H9N2 since 2013, however two genotypes were detected in circulation, P and V, with extensive reassortment between the viruses. Phylogenetic analysis showed a close relationship between A(H9N2) AIVs detected in Cambodian and Vietnamese poultry, highlighting cross-border trade/movement of live, domestic poultry between the countries. Wild birds may also play a role in A(H9N2) transmission in the region. Some genes of the Cambodian isolates frequently clustered with zoonotic A(H7N9), A(H9N2) and A(H10N8) viruses, suggesting a common ecology. Molecular analysis showed 100% of viruses contained the hemagglutinin (HA) Q226L substitution, which favours mammalian receptor type binding. All viruses were susceptible to the neuraminidase inhibitor antivirals; however, 41% contained the matrix (M2) S31N substitution associated with resistance to adamantanes. Overall, Cambodian A(H9N2) viruses possessed factors known to increase zoonotic potential, and therefore their evolution should be continually monitored.
Collapse
Affiliation(s)
- Annika Suttie
- Virology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, Phnom Penh, Cambodia
- School of Health and Life Sciences, Federation University, Churchill, Australia
- WHO Collaborating Centre for Reference and Research on Influenza, Victorian Infectious Diseases Reference Laboratory, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Songha Tok
- Virology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, Phnom Penh, Cambodia
| | - Sokhoun Yann
- Virology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, Phnom Penh, Cambodia
| | - Ponnarath Keo
- Virology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, Phnom Penh, Cambodia
| | - Srey Viseth Horm
- Virology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, Phnom Penh, Cambodia
| | - Merryn Roe
- WHO Collaborating Centre for Reference and Research on Influenza, Victorian Infectious Diseases Reference Laboratory, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Matthew Kaye
- WHO Collaborating Centre for Reference and Research on Influenza, Victorian Infectious Diseases Reference Laboratory, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - San Sorn
- National Animal Health and Production Research Institute, General Directorate of Animal Health and Production, Cambodian Ministry of Agriculture, Forestry and Fisheries, Phnom Penh, Cambodia
| | - Davun Holl
- National Animal Health and Production Research Institute, General Directorate of Animal Health and Production, Cambodian Ministry of Agriculture, Forestry and Fisheries, Phnom Penh, Cambodia
| | - Sothyra Tum
- National Animal Health and Production Research Institute, General Directorate of Animal Health and Production, Cambodian Ministry of Agriculture, Forestry and Fisheries, Phnom Penh, Cambodia
| | - Ian G. Barr
- School of Health and Life Sciences, Federation University, Churchill, Australia
- WHO Collaborating Centre for Reference and Research on Influenza, Victorian Infectious Diseases Reference Laboratory, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Department of Microbiology and Immunology, The University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Aeron C. Hurt
- WHO Collaborating Centre for Reference and Research on Influenza, Victorian Infectious Diseases Reference Laboratory, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Andrew R. Greenhill
- School of Health and Life Sciences, Federation University, Churchill, Australia
| | - Erik A. Karlsson
- Virology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, Phnom Penh, Cambodia
| | - Dhanasekaran Vijaykrishna
- WHO Collaborating Centre for Reference and Research on Influenza, Victorian Infectious Diseases Reference Laboratory, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria Australia
| | - Yi-Mo Deng
- WHO Collaborating Centre for Reference and Research on Influenza, Victorian Infectious Diseases Reference Laboratory, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Philippe Dussart
- Virology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, Phnom Penh, Cambodia
- * E-mail: (PH); (PD)
| | - Paul F. Horwood
- Virology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, Phnom Penh, Cambodia
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Australia
- * E-mail: (PH); (PD)
| |
Collapse
|
24
|
Suttie A, Deng YM, Greenhill AR, Dussart P, Horwood PF, Karlsson EA. Inventory of molecular markers affecting biological characteristics of avian influenza A viruses. Virus Genes 2019; 55:739-768. [PMID: 31428925 PMCID: PMC6831541 DOI: 10.1007/s11262-019-01700-z] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 08/09/2019] [Indexed: 12/20/2022]
Abstract
Avian influenza viruses (AIVs) circulate globally, spilling over into domestic poultry and causing zoonotic infections in humans. Fortunately, AIVs are not yet capable of causing sustained human-to-human infection; however, AIVs are still a high risk as future pandemic strains, especially if they acquire further mutations that facilitate human infection and/or increase pathogenesis. Molecular characterization of sequencing data for known genetic markers associated with AIV adaptation, transmission, and antiviral resistance allows for fast, efficient assessment of AIV risk. Here we summarize and update the current knowledge on experimentally verified molecular markers involved in AIV pathogenicity, receptor binding, replicative capacity, and transmission in both poultry and mammals with a broad focus to include data available on other AIV subtypes outside of A/H5N1 and A/H7N9.
Collapse
Affiliation(s)
- Annika Suttie
- Virology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, 5 Monivong Blvd, PO Box #983, Phnom Penh, Cambodia
- School of Health and Life Sciences, Federation University, Churchill, Australia
- World Health Organization Collaborating Centre for Reference and Research on Influenza, Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Yi-Mo Deng
- World Health Organization Collaborating Centre for Reference and Research on Influenza, Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Andrew R Greenhill
- School of Health and Life Sciences, Federation University, Churchill, Australia
| | - Philippe Dussart
- Virology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, 5 Monivong Blvd, PO Box #983, Phnom Penh, Cambodia
| | - Paul F Horwood
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia
| | - Erik A Karlsson
- Virology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, 5 Monivong Blvd, PO Box #983, Phnom Penh, Cambodia.
| |
Collapse
|
25
|
Taniguchi K, Ando Y, Nobori H, Toba S, Noshi T, Kobayashi M, Kawai M, Yoshida R, Sato A, Shishido T, Naito A, Matsuno K, Okamatsu M, Sakoda Y, Kida H. Inhibition of avian-origin influenza A(H7N9) virus by the novel cap-dependent endonuclease inhibitor baloxavir marboxil. Sci Rep 2019; 9:3466. [PMID: 30837531 PMCID: PMC6401108 DOI: 10.1038/s41598-019-39683-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 01/24/2019] [Indexed: 11/09/2022] Open
Abstract
Human infections with avian-origin influenza A(H7N9) virus represent a serious threat to global health; however, treatment options are limited. Here, we show the inhibitory effects of baloxavir acid (BXA) and its prodrug baloxavir marboxil (BXM), a first-in-class cap-dependent endonuclease inhibitor, against A(H7N9), in vitro and in vivo. In cell culture, BXA at four nanomolar concentration achieved a 1.5-2.8 log reduction in virus titers of A(H7N9), including the NA-R292K mutant virus and highly pathogenic avian influenza viruses, whereas NA inhibitors or favipiravir required approximately 20-fold or higher concentrations to achieve the same levels of reduction. A(H7N9)-specific amino acid polymorphism at position 37, implicated in BXA binding to the PA endonuclease domain, did not impact on BXA susceptibility. In mice, oral administration of BXM at 5 and 50 mg/kg twice a day for 5 days completely protected from a lethal A/Anhui/1/2013 (H7N9) challenge, and reduced virus titers more than 2-3 log in the lungs. Furthermore, the potent therapeutic effects of BXM in mice were still observed when a higher virus dose was administered or treatment was delayed up to 48 hours post infection. These findings support further investigation of BXM for A(H7N9) treatment in humans.
Collapse
Affiliation(s)
- Keiichi Taniguchi
- Shionogi & Co., Ltd., Osaka, Japan
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | | | - Haruaki Nobori
- Shionogi & Co., Ltd., Osaka, Japan
- Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Shinsuke Toba
- Shionogi & Co., Ltd., Osaka, Japan
- Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | | | - Masanori Kobayashi
- Shionogi & Co., Ltd., Osaka, Japan
- Organization for Research and Community Development, Gifu University, Gifu, Japan
| | | | | | - Akihiko Sato
- Shionogi & Co., Ltd., Osaka, Japan
- Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | | | | | - Keita Matsuno
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
- Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Japan
| | - Masatoshi Okamatsu
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Yoshihiro Sakoda
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
- Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Japan
| | - Hiroshi Kida
- Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Japan
| |
Collapse
|
26
|
Synergistic effect of PB2 283M and 526R contributes to enhanced virulence of H5N8 influenza viruses in mice. Vet Res 2017; 48:67. [PMID: 29070059 PMCID: PMC5657129 DOI: 10.1186/s13567-017-0471-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 10/09/2017] [Indexed: 12/14/2022] Open
Abstract
Highly pathogenic avian influenza (HPAI) H5N8 virus has caused considerable economic losses to poultry industry and poses a great threat to public health. Our previous study revealed two genetically similar HPAI H5N8 viruses displaying completely different virulence in mice. However, the molecular basis for viral pathogenicity to mammals remains unknown. Herein, we generated a series of reassortants between the two viruses and evaluated their virulence in mice. We demonstrated that 283M in PB2 is a new mammalian virulence marker for H5 viruses and that synergistic effect of amino acid residues 283M and 526R in PB2 is responsible for high virulence of the HPAI H5N8 virus. Analysis of available PB2 sequences showed that PB2 283M is highly conserved among influenza A viruses, while PB2 526R presents in most of human H3N2 and H5N1 isolates. Further study confirmed that the residues 283M and 526R had similar impacts on an HPAI H5N1 virus, suggesting that influenza viruses with both residues may replicate well in mammalian hosts. Together, these results present new insights for synergistic effect of 283M and 526R in PB2 of H5 HPAI virus on virulence to mammalian host, furthering our understanding of the pathogenesis of influenza A virus.
Collapse
|
27
|
Yu Z, Sun W, Zhang X, Cheng K, Zhao C, Xia X, Gao Y. Rapid acquisition adaptive amino acid substitutions involved in the virulence enhancement of an H1N2 avian influenza virus in mice. Vet Microbiol 2017; 207:97-102. [PMID: 28757046 DOI: 10.1016/j.vetmic.2017.06.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 06/07/2017] [Accepted: 06/09/2017] [Indexed: 01/27/2023]
Abstract
Although H1N2 avian influenza virus (AIV) only infect birds, documented cases of swine infection with H1N2 influenza viruses suggest this subtype AIV may pose a potential threat to mammals. Here, we generated mouse-adapted variants of a H1N2 AIV to identify adaptive changes that increased virulence in mammals. MLD50 of the variants were reduced >1000-fold compared to the parental virus. Variants displayed enhanced replication in vitro and in vivo, and replicate in extrapulmonary organs. These data show that enhanced replication capacity and expanded tissue tropism may increase the virulence of H1N2 AIV in mice. Sequence analysis revealed multiple amino acid substitutions in the PB2 (L134H, I647L, and D701N), HA (G228S), and M1 (D231N) proteins. These results indicate that H1N2 AIV can rapidly acquire adaptive amino acid substitutions in mammalian hosts, and these amino acid substitutions collaboratively enhance the ability of H1N2 AIV to replicate and cause severe disease in mammals.
Collapse
Affiliation(s)
- Zhijun Yu
- Institute of Poultry Science, Shandong Academy of Agricultural Sciences, Jinan, 250023, China.
| | - Weiyang Sun
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Research Institute, Academy of Military Medical Sciences, Changchun, 130122, China
| | - Xinghai Zhang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Research Institute, Academy of Military Medical Sciences, Changchun, 130122, China
| | - Kaihui Cheng
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan, 250132, China
| | - Chuqi Zhao
- Department of Animal Science, Agricultural College, Yanbian University, Yanji, 133002, China
| | - Xianzhu Xia
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Research Institute, Academy of Military Medical Sciences, Changchun, 130122, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
| | - Yuwei Gao
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Research Institute, Academy of Military Medical Sciences, Changchun, 130122, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
| |
Collapse
|
28
|
Hu M, Yuan S, Ye ZW, Singh K, Li C, Shuai H, Fai N, Chow BKC, Chu H, Zheng BJ. PAN substitutions A37S, A37S/I61T and A37S/V63I attenuate the replication of H7N7 influenza A virus by impairing the polymerase and endonuclease activities. J Gen Virol 2017; 98:364-373. [PMID: 28113045 DOI: 10.1099/jgv.0.000717] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Substitutions in the PA N-terminus (PAN) of influenza A viruses are associated with viral pathogenicity. During our previous study, which identified PAN-V63I and -A37S/I61T/V63I/V100A substitutions as virulence determinants, we observed a severe decrease in virus growth and transcription/replication capacity posed by PAN-A37S/V100A substitution. To further delineate the significance of substitutions at these positions, we generated mutant H7N7 viruses bearing the substitutions PAN-A37S, -A37S/I61T, -A37S/V63I, -V100A, -I61T/V100A and -V63I/V100A by reverse genetics. Our results showed that all mutant viruses except PAN-V100A showed a significantly reduced growth capability in infected cells. At the same time, the PAN-A37S, -A37S/I61T and -A37S/V63I mutant viruses displayed decreased viral transcription and replication by diminishing virus RNA synthesis activity. Biochemical assays indicated that the substitutions PAN-A37S, -A37S/I61T and -A37S/V63I suppressed the polymerase and endonuclease activities when compared with those of the wild-type. Together, our results demonstrated that the PAN-A37S, -A37S/I61T and -A37S/V63I substitutions contributed to a decreased pathogenicity of avian H7N7 influenza A virus.
Collapse
Affiliation(s)
- Meng Hu
- Department of Microbiology, The University of Hong Kong, Hong Kong SAR, PR China
| | - Shuofeng Yuan
- Department of Microbiology, The University of Hong Kong, Hong Kong SAR, PR China
| | - Zi-Wei Ye
- Department of Microbiology, The University of Hong Kong, Hong Kong SAR, PR China
| | - Kailash Singh
- School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, PR China
| | - Cun Li
- Department of Microbiology, The University of Hong Kong, Hong Kong SAR, PR China
| | - Huiping Shuai
- Department of Microbiology, The University of Hong Kong, Hong Kong SAR, PR China
| | - Ng Fai
- Department of Microbiology, The University of Hong Kong, Hong Kong SAR, PR China
| | - Billy K C Chow
- School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, PR China
| | - Hin Chu
- Department of Microbiology, The University of Hong Kong, Hong Kong SAR, PR China.,State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong SAR, PR China
| | - Bo-Jian Zheng
- Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong SAR, PR China.,Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong SAR, PR China.,Department of Microbiology, The University of Hong Kong, Hong Kong SAR, PR China.,State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong SAR, PR China
| |
Collapse
|