1
|
Chu CP, Nabity MB. Technical considerations and review of urinary microRNAs as biomarkers for chronic kidney disease in dogs and cats. Vet Clin Pathol 2025. [PMID: 39865558 DOI: 10.1111/vcp.13412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 10/11/2024] [Accepted: 12/28/2024] [Indexed: 01/28/2025]
Abstract
MicroRNAs (miRNAs or miRs) are small, non-coding RNAs that play a crucial role in gene regulation, making them potential biomarkers for various diseases. In the field of veterinary medicine, there is a growing interest in exploring the diagnostic and therapeutic potential of miRNAs in kidney diseases affecting dogs and cats. This review focuses on the use of urinary miRNAs as biomarkers for chronic kidney disease (CKD) in these companion animals. We introduce miRNAs, their biogenesis, and their presence in biofluids, particularly within exosomes, and discuss studies investigating miRNAs in kidney tissue and urine. We acknowledge the challenges associated with miRNA studies, including preanalytical factors such as biological variation, sample collection/processing, storage conditions, and experimental design. We highlight the importance of technical considerations, such as sample pooling, sequencing depth, multiplexing, and the various steps of the miRNA experimental workflow. Furthermore, we discuss RNA isolation methods, small RNA sequencing data analysis, and the use of quantitative reverse transcription PCR (qRT-PCR) and droplet digital PCR for verification. We emphasize the importance of internal controls, spike-ins, and normalization methods to minimize technical variation and ensure reliable results in qRT-PCR analysis. This review concludes that while urinary miRNAs hold promise as non-invasive biomarkers for CKD in dogs and cats, addressing the challenges and standardization of protocols is vital for the successful translation of this research into clinical practice.
Collapse
Affiliation(s)
- Candice P Chu
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Mary B Nabity
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
2
|
Lawson JS, Williams TL. Extracellular vesicles in kidney disease - A veterinary perspective. Vet J 2024; 308:106247. [PMID: 39276847 DOI: 10.1016/j.tvjl.2024.106247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/21/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
Extracellular vesicles (EVs) are membrane bound vesicles secreted from cells into the extracellular space which have an emerging role in both normal kidney physiology and the pathophysiology of kidney injury, predominantly as mediators of intercellular communication. EVs contain proteins and RNA cargo which reflect their cell of origin and can be isolated from the urine of cats and dogs. The majority of urinary EVs (uEVs) originate from the kidney, and both the uEV proteome and transcriptome have been investigated as sources of biomarkers of kidney disease. In addition to their possible diagnostic role, EVs may also have therapeutic potential, and veterinary species have been used as models to demonstrate the efficacy of exogenous EVs derived from mesenchymal stromal cells in the treatment of acute kidney injury. Furthermore, bioengineered EVs may represent a novel vehicle for the administration of drugs or therapeutic nucleic acids in kidney disease. This article reviews the biological functions of EVs within the kidney, techniques for their isolation, and their potential use as biomarkers and therapeutic agents, with particular focus on the potential significance to veterinary patients.
Collapse
Affiliation(s)
- Jack S Lawson
- The Royal Veterinary College, Hawkshead Ln, Brookmans Park, Hatfield AL9 7TA, UK.
| | - Timothy L Williams
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
| |
Collapse
|
3
|
Shi L, Zeng H, An Z, Chen W, Shan Y, Ji C, Qian H. Extracellular vesicles: Illuminating renal pathophysiology and therapeutic frontiers. Eur J Pharmacol 2024; 978:176720. [PMID: 38880217 DOI: 10.1016/j.ejphar.2024.176720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/21/2024] [Accepted: 06/05/2024] [Indexed: 06/18/2024]
Abstract
Extracellular vesicles (EVs) are minute sacs released by cells into the extracellular milieu, harboring an array of biomolecules including proteins, nucleic acids, and lipids. Notably, a large number of studies have demonstrated the important involvement of EVs in both physiological and pathological aspects of renal function. EVs can facilitate communication between different renal cells, but it is important to recognize their dual role: they can either transmit beneficial information or lead to renal damage and worsening of existing conditions. The composition of EVs in the context of the kidneys offers valuable insights into the intricate mechanisms underlying specific renal functions or disease states. In addition, mesenchymal stem cell-derived EVs have the potential to alleviate acute and chronic kidney diseases. More importantly, the innate nanoparticle properties of EVs, coupled with their engineering potential, make them effective tools for drug delivery and therapeutic intervention. In this review, we focus on the intricate biological functions of EVs in the kidney. In addition, we explore the emerging role of EVs as diagnostic tools and innovative therapeutic agents in a range of renal diseases.
Collapse
Affiliation(s)
- Linru Shi
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Houcheng Zeng
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Zhongwu An
- Department of Laboratory, Lianyungang Oriental Hospital, Lianyungang, 222042, Jiangsu, China
| | - Wenya Chen
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Yunjie Shan
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Cheng Ji
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| | - Hui Qian
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| |
Collapse
|
4
|
Tu W, Hu X, Wan R, Xiao X, Shen Y, Srikaram P, Avvaru SN, Yang F, Pi F, Zhou Y, Wan M, Gao P. Effective delivery of miR-511-3p with mannose-decorated exosomes with RNA nanoparticles confers protection against asthma. J Control Release 2024; 365:602-616. [PMID: 37996055 PMCID: PMC10872989 DOI: 10.1016/j.jconrel.2023.11.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/14/2023] [Accepted: 11/17/2023] [Indexed: 11/25/2023]
Abstract
Our previous studies have shown that miR-511-3p treatment has a beneficial effect in alleviating allergic airway inflammation. Here, we sought to explore its therapeutic potential in animal models and gain a deeper understanding of its therapeutic value for asthma. miR-511-3p knockout mice (miR-511-3p-/-) were generated by CRISPR/Cas and showed exacerbated airway hyper-responsiveness and Th2-associated allergic airway inflammation compared with wild-type (WT) mice after exposed to cockroach allergen. RNA nanoparticles with mannose decorated EV-miR-511-3p were also created by loading miR-511-3p mimics into the mannose decorated EVs with engineered RNA nanoparticle PRNA-3WJ (Man-EV-miR-511-3p). Intra-tracheal inhalation of Man-EV-miR-511-3p, which could effectively penetrate the airway mucus barrier and deliver functional miR-511-3p to lung macrophages, successfully reversed the increased airway inflammation observed in miR-511-3p-/- mice. Through microarray analysis, complement C3 (C3) was identified as one of the major targets of miR-511-3p. C3 was increased in LPS-treated macrophages but decreased after miR-511-3p treatment. Consistent with these findings, C3 expression was elevated in the lung macrophages of an asthma mouse model but decreased in mice treated with miR-511-3p. Further experiments, including miRNA-mRNA pulldown and luciferase reporter assays, confirmed that miR-511-3p directly binds to C3 and activates the C3 gene. Thus, miR-511-3p represents a promising therapeutic target for asthma, and RNA nanotechnology reprogrammed EVs are efficient carriers for miRNA delivery for disease treatment.
Collapse
Affiliation(s)
- Wei Tu
- Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA; Department of Respirology & Allergy, Third Affiliated Hospital of Shenzhen University, Shenzhen 518020, China; The State Key Laboratory of Respiratory Disease for Allergy, Shenzhen Key Laboratory of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Xinyue Hu
- Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA; Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Rongjun Wan
- Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA; Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Xiaojun Xiao
- The State Key Laboratory of Respiratory Disease for Allergy, Shenzhen Key Laboratory of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Yingchun Shen
- Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| | - Prakhyath Srikaram
- Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| | - Sai Nithin Avvaru
- Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| | - Fuhan Yang
- Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| | | | - Yufeng Zhou
- Children's Hospital and Institute of Biomedical Sciences, Fudan University, Key Laboratory of Neonatal Disease, Ministry of Health, Shanghai, China
| | - Mei Wan
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Peisong Gao
- Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA.
| |
Collapse
|
5
|
Erdbrügger U, Hoorn EJ, Le TH, Blijdorp CJ, Burger D. Extracellular Vesicles in Kidney Diseases: Moving Forward. KIDNEY360 2023; 4:245-257. [PMID: 36821616 PMCID: PMC10103258 DOI: 10.34067/kid.0001892022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/18/2022] [Indexed: 12/23/2022]
Abstract
Extracellular vesicles (EVs) are evolving as novel cell mediators, biomarkers, and therapeutic targets in kidney health and disease. They are naturally derived from cells both within and outside the kidney and carry cargo which mirrors the state of the parent cell. Thus, they are potentially more sensitive and disease-specific as biomarkers and messengers in various kidney diseases. Beside their role as novel communicators within the nephron, they likely communicate between different organs affected by various kidney diseases. Study of urinary EVs (uEVs) can help to fill current knowledge gaps in kidney diseases. However, separation and characterization are challenged by their heterogeneity in size, shape, and cargo. Fortunately, more sensitive and direct EV measuring tools are in development. Many clinical syndromes in nephrology from acute to chronic kidney and glomerular to tubular diseases have been studied. Yet, validation of biomarkers in larger cohorts is warranted and simpler tools are needed. Translation from in vitro to in vivo studies is also urgently needed. The therapeutic role of uEVs in kidney diseases has been studied extensively in rodent models of AKI. On the basis of the current exponential growth of EV research, the field of EV diagnostics and therapeutics is moving forward.
Collapse
Affiliation(s)
- Uta Erdbrügger
- Division of Nephrology, Department of Medicine, University of Virginia Health System, Charlottesville, Virginia
| | - Ewout J. Hoorn
- Division of Nephrology and Transplantation, Department of Internal Medicine, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Thu H. Le
- Division of Nephrology, Department of Medicine, University of Rochester Medical Center, Rochester, New York
| | - Charles J. Blijdorp
- Division of Nephrology and Transplantation, Department of Internal Medicine, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Dylan Burger
- Kidney Research Centre, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
6
|
Gong X, Chi H, Strohmer DF, Teichmann AT, Xia Z, Wang Q. Exosomes: A potential tool for immunotherapy of ovarian cancer. Front Immunol 2023; 13:1089410. [PMID: 36741380 PMCID: PMC9889675 DOI: 10.3389/fimmu.2022.1089410] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/30/2022] [Indexed: 01/19/2023] Open
Abstract
Ovarian cancer is a malignant tumor of the female reproductive system, with a very poor prognosis and high mortality rates. Chemotherapy and radiotherapy are the most common treatments for ovarian cancer, with unsatisfactory results. Exosomes are a subpopulation of extracellular vesicles, which have a diameter of approximately 30-100 nm and are secreted by many different types of cells in various body fluids. Exosomes are highly stable and are effective carriers of immunotherapeutic drugs. Recent studies have shown that exosomes are involved in various cellular responses in the tumor microenvironment, influencing the development and therapeutic efficacy of ovarian cancer, and exhibiting dual roles in inhibiting and promoting tumor development. Exosomes also contain a variety of genes related to ovarian cancer immunotherapy that could be potential biomarkers for ovarian cancer diagnosis and prognosis. Undoubtedly, exosomes have great therapeutic potential in the field of ovarian cancer immunotherapy. However, translation of this idea to the clinic has not occurred. Therefore, it is important to understand how exosomes could be used in ovarian cancer immunotherapy to regulate tumor progression. In this review, we summarize the biomarkers of exosomes in different body fluids related to immunotherapy in ovarian cancer and the potential mechanisms by which exosomes influence immunotherapeutic response. We also discuss the prospects for clinical application of exosome-based immunotherapy in ovarian cancer.
Collapse
Affiliation(s)
| | - Hao Chi
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Dorothee Franziska Strohmer
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Alexander Tobias Teichmann
- Sichuan Provincial Center for Gynecology and Breast Diseases (Gynecology), Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Zhijia Xia
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Qin Wang
- Sichuan Provincial Center for Gynecology and Breast Diseases (Gynecology), Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
7
|
Tang H, Hu Y, Deng J. Extracellular Vesicles and Hypertension. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1418:69-80. [PMID: 37603273 DOI: 10.1007/978-981-99-1443-2_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Hypertension implicates multiple organs and systems, accounting for the majority of cardiovascular diseases and cardiac death worldwide. Extracellular vesicles derived from various types of cells could transfer a variety of substances such as proteins, lipids, and nucleic acids from cells to cells, playing essential roles in both physiological and pathological processes. Extracellular vesicles are demonstrated to be closely associated with the development of essential hypertension by mediating the renin-angiotensin-aldosterone system and crosstalk between multiple vascular cells. Extracellular vesicles also participate in various kinds of pathogenesis of secondary hypertensions including acute kidney injury, renal parenchymal diseases, kidney transplantation, secretory diseases (primary aldosteronism, pheochromocytoma and paraganglioma, Cushing's syndrome), and obstructive sleep apnea. Extracellular vesicles have been proved to have the potential to be served as new biomarkers in the diagnosis, treatment, and prognosis assessment of hypertension. In the future, large multicenter cohorts are highly in demand for further verifying the sensitivity and specificity of extracellular vesicles as biomarkers.
Collapse
Affiliation(s)
- Heng Tang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yuxue Hu
- Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, China
| | - Jiali Deng
- Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, China.
| |
Collapse
|
8
|
Xiang H, Zhang C, Xiong J. Emerging role of extracellular vesicles in kidney diseases. Front Pharmacol 2022; 13:985030. [PMID: 36172178 PMCID: PMC9510773 DOI: 10.3389/fphar.2022.985030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 08/24/2022] [Indexed: 11/17/2022] Open
Abstract
Many types of renal disease eventually progress to end-stage renal disease, which can only be maintained by renal replacement therapy. Therefore, kidney diseases now contribute significantly to the health care burden in many countries. Many new advances and strategies have been found in the research involving kidney diseases; however, there is still no efficient treatment. Extracellular vesicles (EVs) are cell-derived membrane structures, which contains proteins, lipids, and nucleic acids. After internalization by downstream cells, these components can still maintain functional activity and regulate the phenotype of downstream cells. EVs drive the information exchange between cells and tissues. Majority of the cells can produce EVs; however, its production, contents, and transportation may be affected by various factors. EVs have been proved to play an important role in the occurrence, development, and treatment of renal diseases. However, the mechanism and potential applications of EVs in kidney diseases remain unclear. This review summarizes the latest research of EVs in renal diseases, and provides new therapeutic targets and strategies for renal diseases.
Collapse
|
9
|
Abstract
PURPOSE OF REVIEW The current review aims to present the most recent achievements on the role of microRNAs (miRNAs) on the kidney function to stimulate research in the field and to expand new emerging concepts. RECENT FINDINGS The focus is on the role of miRNAs in intercellular communication along the segments of the nephron and on the epi-miRNAs, namely the possibility of some miRNAs to modulate the epigenetic machinery and so gene expression. Indeed, recent evidence showed that miRNAs included in exosomes and released by proximal tubule cells can modulate ENaC activity on cells of collecting duct. These data, although, from in-vitro models open to a novel role for miRNAs to participate in paracrine signaling pathways. In addition, the role of miRNAs as epigenetic modulators is expanding not only in the cancer field, but also in the other kidney diseases. Recent evidence identified three miRNAs able to modulate the AQP2 promoter metilation and showing an additional level of regulation for the AQP2. SUMMARY These evidence can inspire novel area of research both for renal physiology and drug discovery. The diseases involving the collecting duct are still missing disease modifying agents and the expanding miRNAs field could represent an opportunity.
Collapse
|
10
|
Carberry CK, Koval LE, Payton A, Hartwell H, Ho Kim Y, Smith GJ, Reif DM, Jaspers I, Ian Gilmour M, Rager JE. Wildfires and extracellular vesicles: Exosomal MicroRNAs as mediators of cross-tissue cardiopulmonary responses to biomass smoke. ENVIRONMENT INTERNATIONAL 2022; 167:107419. [PMID: 35863239 PMCID: PMC9389917 DOI: 10.1016/j.envint.2022.107419] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 06/23/2022] [Accepted: 07/13/2022] [Indexed: 05/25/2023]
Abstract
INTRODUCTION Wildfires are a threat to public health world-wide that are growing in intensity and prevalence. The biological mechanisms that elicit wildfire-associated toxicity remain largely unknown. The potential involvement of cross-tissue communication via extracellular vesicles (EVs) is a new mechanism that has yet to be evaluated. METHODS Female CD-1 mice were exposed to smoke condensate samples collected from the following biomass burn scenarios: flaming peat; smoldering peat; flaming red oak; and smoldering red oak, representing lab-based simulations of wildfire scenarios. Lung tissue, bronchoalveolar lavage fluid (BALF) samples, peripheral blood, and heart tissues were collected 4 and 24 h post-exposure. Exosome-enriched EVs were isolated from plasma, physically characterized, and profiled for microRNA (miRNA) expression. Pathway-level responses in the lung and heart were evaluated through RNA sequencing and pathway analyses. RESULTS Markers of cardiopulmonary tissue injury and inflammation from BALF samples were significantly altered in response to exposures, with the greatest changes occurring from flaming biomass conditions. Plasma EV miRNAs relevant to cardiovascular disease showed exposure-induced expression alterations, including miR-150, miR-183, miR-223-3p, miR-30b, and miR-378a. Lung and heart mRNAs were identified with differential expression enriched for hypoxia and cell stress-related pathways. Flaming red oak exposure induced the greatest transcriptional response in the heart, a large portion of which were predicted as regulated by plasma EV miRNAs, including miRNAs known to regulate hypoxia-induced cardiovascular injury. Many of these miRNAs had published evidence supporting their transfer across tissues. A follow-up analysis of miR-30b showed that it was increased in expression in the heart of exposed mice in the absence of changes to its precursor molecular, pri-miR-30b, suggesting potential transfer from external sources (e.g., plasma). DISCUSSION This study posits a potential mechanism through which wildfire exposures induce cardiopulmonary responses, highlighting the role of circulating plasma EVs in intercellular and systems-level communication between tissues.
Collapse
Affiliation(s)
- Celeste K Carberry
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; The Institute for Environmental Health Solutions, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Lauren E Koval
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; The Institute for Environmental Health Solutions, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alexis Payton
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; The Institute for Environmental Health Solutions, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Hadley Hartwell
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; The Institute for Environmental Health Solutions, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yong Ho Kim
- The Center for Environmental Medicine, Asthma and Lung Biology, School of Medicine, The University of North Carolina, Chapel Hill, NC, USA
| | - Gregory J Smith
- Curriculum in Toxicology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA; Department of Genetics, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - David M Reif
- Bioinformatics Research Center, Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Ilona Jaspers
- The Institute for Environmental Health Solutions, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; The Center for Environmental Medicine, Asthma and Lung Biology, School of Medicine, The University of North Carolina, Chapel Hill, NC, USA; Curriculum in Toxicology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA; Department of Pediatrics, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - M Ian Gilmour
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Julia E Rager
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; The Institute for Environmental Health Solutions, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; The Center for Environmental Medicine, Asthma and Lung Biology, School of Medicine, The University of North Carolina, Chapel Hill, NC, USA; Curriculum in Toxicology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
11
|
Urinary extracellular vesicle mRNA analysis of sodium chloride cotransporter in hypertensive patients under different conditions. J Hum Hypertens 2022:10.1038/s41371-022-00744-3. [PMID: 35978099 DOI: 10.1038/s41371-022-00744-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 07/19/2022] [Accepted: 07/27/2022] [Indexed: 11/09/2022]
Abstract
Urinary extracellular vesicles (UEV) mainly derive from cells of the urogenital tract and their cargo (proteins, nucleic acids, lipids, etc.) reflects their cells of origin. Na chloride cotransporter (NCC) is expressed at the kidney level in the distal convoluted tubule, is involved in salt reabsorption, and is the target of the diuretic thiazides. NCC protein has been recognized and quantified in UEV in previous studies; however, UEV NCC mRNA has never been studied. This study aimed to identify and analyze NCC mRNA levels in primary aldosteronism (PA). The rationale for this investigation stems from previous observations regarding NCC (protein) as a possible biomarker for the diagnosis of PA. To evaluate modulations in the expression of NCC, we analyzed NCC mRNA levels in UEV in PA and essential hypertensive (EH) patients under different conditions, that is, before and after saline infusion, anti-aldosterone pharmacological treatment, and adrenal surgery. NCC mRNA was measured by RT-qPCR in all the samples and was regulated by volume expansion. Its response to mineralocorticoid receptor antagonist was correlated with renin, and it was increased in PA patients after adrenalectomy. NCC mRNA is evaluable in UEV and it can provide insights into the pathophysiology of distal convolute tubule in different clinical conditions including PA.
Collapse
|
12
|
Rudolphi CF, Blijdorp CJ, van Willigenburg H, Salih M, Hoorn EJ. Urinary extracellular vesicles and tubular transport. Nephrol Dial Transplant 2022:6659197. [PMID: 35945648 DOI: 10.1093/ndt/gfac235] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Tubular transport is a key function of the kidney to maintain electrolyte and acid-base homeostasis. Urinary extracellular vesicles (uEVs) harbor water, electrolyte, and acid-base transporters expressed at the apical plasma membrane of tubular epithelial cells. Within the uEV proteome, the correlations between kidney and uEV protein abundances are strongest for tubular transporters. Therefore, uEVs offer a non-invasive approach to probe tubular transport in health and disease. Here, we will review how kidney tubular physiology is reflected in uEVs and, conversely, how uEVs may modify tubular transport. Clinically, uEV tubular transporter profiling has been applied to rare diseases such as inherited tubulopathies, but also to more common conditions such as hypertension and kidney disease. Although uEVs hold the promise to advance the diagnosis of kidney disease to the molecular level, several biological and technical complexities still need to be addressed. The future will tell if uEV analysis will mainly be a powerful tool to study tubular physiology in humans or if it will move forward to become a diagnostic bedside test.
Collapse
Affiliation(s)
- Crissy F Rudolphi
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Charles J Blijdorp
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Hester van Willigenburg
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Mahdi Salih
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Ewout J Hoorn
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
13
|
Urinary microRNAs and Their Significance in Prostate Cancer Diagnosis: A 5-Year Update. Cancers (Basel) 2022; 14:cancers14133157. [PMID: 35804929 PMCID: PMC9265126 DOI: 10.3390/cancers14133157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/15/2022] [Accepted: 06/24/2022] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Current diagnostics of prostate cancer often show unsatisfactory results, leading to delayed detection or overtreatment. Urinary microRNAs are a class of promising non-invasive biomarkers. Although many studies have been conducted on this topic in the last five years, there is little agreement on the data obtained. This review aims to discuss new knowledge but also focuses on technical aspects affecting urinary miRNA analysis. Abstract Current routine screening methods for the diagnosis of prostate cancer (PCa) have significantly increased early detection of the disease but often show unsatisfactory analytical parameters. A class of promising markers represents urinary microRNAs (miRNAs). In the last five years, there has been an extensive increase in the number of studies on this topic. Thus, this review aims to update knowledge and point out technical aspects affecting urinary miRNA analysis. The review of relevant literature was carried out by searching the PubMed database for the keywords: microRNA, miRNA, urine, urinary, prostate cancer, and diagnosis. Papers discussed in this review were retrieved using PubMed, and the search strategy was as follows: (urine OR urinary) WITH (microRNA OR miRNA) AND prostate cancer. The search was limited to the last 5 years, January 2017 to December 2021. Based on the defined search strategy, 31 original publications corresponding to the research topic were identified, read and reviewed to present the latest findings and to assess possible translation of urinary miRNAs into clinical practice. Reviews or older publications were read and cited if they valuably extended the context and contributed to a better understanding. Urinary miRNAs are potentially valuable markers for the diagnosis of prostate cancer. Despite promising results, there is still a need for independent validation of exploratory data, which follows a strict widely accepted methodology taking into account the shortcomings and factors influencing the analysis.
Collapse
|
14
|
Durur DY, Tastan B, Ugur Tufekci K, Olcum M, Uzuner H, Karakülah G, Yener G, Genc S. Alteration of miRNAs in Small Neuron-Derived Extracellular Vesicles of Alzheimer's Disease Patients and the Effect of Extracellular Vesicles on Microglial Immune Responses. J Mol Neurosci 2022; 72:1182-1194. [PMID: 35488079 DOI: 10.1007/s12031-022-02012-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 04/16/2022] [Indexed: 01/02/2023]
Abstract
Alzheimer's disease (AD) is one of the most severe neurodegenerative diseases observed in the elderly population. Although the hallmarks of AD have been identified, the methods for its definitive diagnosis and treatment are still lacking. Extracellular vesicles (EVs) have become a promising source for biomarkers since the identification of their content. EVs are released from multiple cell types and, when released from neurons, they pass from the brain to the blood with their cargo molecules. Hence, neuron-specific EV-resident microRNAs (miRNAs) are promising biomarkers for diagnosis of AD. This study aimed to identify altered miRNA content in small neuron-derived extracellular vesicles (sNDEVs) isolated from AD patients and healthy individuals. Furthermore, we examined the role of sNDEV-resident miRNAs in neuron-glia cellular interaction to understand their role in AD propagation. We identified 10 differentially expressed miRNAs in the sNDEVs of patients via next-generation sequencing and validated the most dysregulated miRNA, let-7e, with qRT-PCR. Let-7e was significantly increased in the sNDEVs of AD patients compared with those of healthy controls in a larger cohort. First, we evaluated the diagnostic utility of let-7e via ROC curve analysis, which revealed an AUC value of 0.9214. We found that IL-6 gene expression was increased in human microglia after treatment with sNDEVs of AD patients with a high amount of let-7e. Our study suggests that sNDEV-resident let-7e is a potential biomarker for AD diagnosis, and that AD patient-derived sNDEVs induce a neuroinflammatory response in microglia.
Collapse
Affiliation(s)
- Devrim Yagmur Durur
- Biomedicine and Genome Center, Izmir, Turkey.,Izmir International Biomedicine and Genome Institute, Dokuz Eylul University Health Campus, Izmir, Turkey
| | - Bora Tastan
- Biomedicine and Genome Center, Izmir, Turkey.,Izmir International Biomedicine and Genome Institute, Dokuz Eylul University Health Campus, Izmir, Turkey
| | - Kemal Ugur Tufekci
- Vocational School of Health Services, Izmir Democracy University, Izmir, Turkey
| | - Melis Olcum
- Biomedicine and Genome Center, Izmir, Turkey
| | - Hamdiye Uzuner
- Biomedicine and Genome Center, Izmir, Turkey.,Izmir International Biomedicine and Genome Institute, Dokuz Eylul University Health Campus, Izmir, Turkey
| | - Gökhan Karakülah
- Biomedicine and Genome Center, Izmir, Turkey.,Izmir International Biomedicine and Genome Institute, Dokuz Eylul University Health Campus, Izmir, Turkey
| | - Gorsev Yener
- Department of Neuroscience, Health Science Institute, Dokuz Eylul University, Izmir, Turkey.,Department of Neurology, Faculty of Medicine, Izmir University of Economics, Izmir, Turkey
| | - Sermin Genc
- Biomedicine and Genome Center, Izmir, Turkey. .,Izmir International Biomedicine and Genome Institute, Dokuz Eylul University Health Campus, Izmir, Turkey. .,Department of Neuroscience, Health Science Institute, Dokuz Eylul University, Izmir, Turkey.
| |
Collapse
|
15
|
Frydlova J, Zednikova I, Satrapova V, Pazourkova E, Santorova S, Hruskova Z, Tesar V, Vokurka M, Prikryl P, Korabecna M. Analysis of microRNAs in Small Urinary Extracellular Vesicles and Their Potential Roles in Pathogenesis of Renal ANCA-Associated Vasculitis. Int J Mol Sci 2022; 23:ijms23084344. [PMID: 35457163 PMCID: PMC9028884 DOI: 10.3390/ijms23084344] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/06/2022] [Accepted: 04/12/2022] [Indexed: 11/16/2022] Open
Abstract
Antineutrophil cytoplasmic antibodies (ANCA)-associated vasculitis (AAV) represents an autoimmunity disease characterized by high mortality. For successful treatment, the detailed knowledge of its complex pathogenesis and the set of biomarkers for differential diagnostics are desired. Analysis of molecular content of small urinary extracellular vesicles (uEV) offers the possibility to find markers in the form of microRNAs (miRNAs) and study the pathways involved in pathogenesis. We used next-generation sequencing in the first preliminary study to detect the miRNAs with altered expression in uEVs of patients with AAV in comparison with age-matched controls. We confirmed the results using single-target quantitative polymerase chain reaction tests on different sets of samples and found five miRNAs (miR-30a-5p, miR-31-3p, miR-99a-5p, miR-106b-5p, miR-182-5p) with highly elevated levels in uEVs of patients. We performed the comparison of their targets with the differentially expressed proteins in uEVs of patients included in the first phase. We realized that upregulated miRNAs and proteins in uEVs in AAV patients target different biological pathways. The only overlap was detected in pathways regulating the actin cytoskeleton assembly and thus potentially affecting the glomerular functions. The associations of upregulated miRNAs with pathways that were neglected as components of complex AAV pathogenesis, e.g., the epidermal growth factor receptor signaling pathway, were found.
Collapse
Affiliation(s)
- Jana Frydlova
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, U Nemocnice 5, 128 53 Prague, Czech Republic; (J.F.); (M.V.)
| | - Iveta Zednikova
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital, Albertov 4, 128 00 Prague, Czech Republic; (I.Z.); (E.P.); (S.S.)
| | - Veronika Satrapova
- Department of Nephrology, First Faculty of Medicine, Charles University and General University Hospital, U Nemocnice 2, 128 08 Prague, Czech Republic; (V.S.); (Z.H.); (V.T.)
| | - Eva Pazourkova
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital, Albertov 4, 128 00 Prague, Czech Republic; (I.Z.); (E.P.); (S.S.)
- Department of Nephrology, First Faculty of Medicine, Charles University and General University Hospital, U Nemocnice 2, 128 08 Prague, Czech Republic; (V.S.); (Z.H.); (V.T.)
| | - Sarka Santorova
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital, Albertov 4, 128 00 Prague, Czech Republic; (I.Z.); (E.P.); (S.S.)
| | - Zdenka Hruskova
- Department of Nephrology, First Faculty of Medicine, Charles University and General University Hospital, U Nemocnice 2, 128 08 Prague, Czech Republic; (V.S.); (Z.H.); (V.T.)
| | - Vladimir Tesar
- Department of Nephrology, First Faculty of Medicine, Charles University and General University Hospital, U Nemocnice 2, 128 08 Prague, Czech Republic; (V.S.); (Z.H.); (V.T.)
| | - Martin Vokurka
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, U Nemocnice 5, 128 53 Prague, Czech Republic; (J.F.); (M.V.)
| | - Petr Prikryl
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, U Nemocnice 5, 128 53 Prague, Czech Republic; (J.F.); (M.V.)
- Correspondence: (P.P.); (M.K.)
| | - Marie Korabecna
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital, Albertov 4, 128 00 Prague, Czech Republic; (I.Z.); (E.P.); (S.S.)
- Correspondence: (P.P.); (M.K.)
| |
Collapse
|
16
|
Kosanović M, Milutinovic B, Glamočlija S, Morlans IM, Ortiz A, Bozic M. Extracellular Vesicles and Acute Kidney Injury: Potential Therapeutic Avenue for Renal Repair and Regeneration. Int J Mol Sci 2022; 23:ijms23073792. [PMID: 35409151 PMCID: PMC8998560 DOI: 10.3390/ijms23073792] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/27/2022] [Accepted: 03/28/2022] [Indexed: 12/10/2022] Open
Abstract
Acute kidney injury (AKI) is a sudden decline of renal function and represents a global clinical problem due to an elevated morbidity and mortality. Despite many efforts, currently there are no treatments to halt this devastating condition. Extracellular vesicles (EVs) are nanoparticles secreted by various cell types in both physiological and pathological conditions. EVs can arise from distinct parts of the kidney and can mediate intercellular communication between various cell types along the nephron. Besides their potential as diagnostic tools, EVs have been proposed as powerful new tools for regenerative medicine and have been broadly studied as therapeutic mediators in different models of experimental AKI. In this review, we present an overview of the basic features and biological relevance of EVs, with an emphasis on their functional role in cell-to-cell communication in the kidney. We explore versatile roles of EVs in crucial pathophysiological mechanisms contributing to AKI and give a detailed description of the renoprotective effects of EVs from different origins in AKI. Finally, we explain known mechanisms of action of EVs in AKI and provide an outlook on the potential clinical translation of EVs in the setting of AKI.
Collapse
Affiliation(s)
- Maja Kosanović
- Institute for the Application of Nuclear Energy, INEP, University of Belgrade, 11080 Belgrade, Serbia; (M.K.); (S.G.)
| | - Bojana Milutinovic
- Department of Neurosurgery, MD Anderson Cancer Center, University of Texas, Houston, TX 77030, USA;
| | - Sofija Glamočlija
- Institute for the Application of Nuclear Energy, INEP, University of Belgrade, 11080 Belgrade, Serbia; (M.K.); (S.G.)
| | - Ingrid Mena Morlans
- Vascular and Renal Translational Research Group, Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRBLleida), 25196 Lleida, Spain;
| | - Alberto Ortiz
- Department of Nephrology and Hypertension, IIS-Fundación Jiménez Díaz, Universidad Autónoma Madrid, 28040 Madrid, Spain;
| | - Milica Bozic
- Vascular and Renal Translational Research Group, Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRBLleida), 25196 Lleida, Spain;
- Correspondence:
| |
Collapse
|
17
|
Puhka M, Thierens L, Nicorici D, Forsman T, Mirtti T, af Hällström T, Serkkola E, Rannikko A. Exploration of Extracellular Vesicle miRNAs, Targeted mRNAs and Pathways in Prostate Cancer: Relation to Disease Status and Progression. Cancers (Basel) 2022; 14:cancers14030532. [PMID: 35158801 PMCID: PMC8833493 DOI: 10.3390/cancers14030532] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/10/2022] [Accepted: 01/17/2022] [Indexed: 02/08/2023] Open
Abstract
Simple Summary Prostate cancer lacks non-invasive specific biomarkers for aggressive disease. Urinary extracellular vesicles (uEV) could provide such markers; however, due to technical challenges, little is known regarding the pathogenesis pathways reflected in uEV. We performed a miRNA, target mRNA and pathway study focused on uEV, exploring the differences between cancer (1) status groups (Gleason score) and (2) progression groups. The uEV provided a surprisingly comprehensive presentation of differentially expressed miRNAs, target mRNAs and pathogenesis pathways. The miRNAs associated with prostate cancer status or progression were mostly unique, but still targeted overlapping sets of signalling, resistance, hormonal and immune pathways. Interestingly, mRNA targets of the key miRNAs (miR-892a, miR-223-3p, miR-146a-5p) were widely expressed in both uEV and plasma EV from PCa patients. The study thus suggests that uEV carry a vast presentation of PCa status and progression-linked RNAs that are worth further exploration in large personalized medicine trials. Abstract Background: Prostate cancer (PCa) lacks non-invasive specific biomarkers for aggressive disease. We studied the potential of urinary extracellular vesicles (uEV) as a liquid PCa biopsy by focusing on the micro RNA (miRNA) cargo, target messenger RNA (mRNA) and pathway analysis. Methods: We subjected uEV samples from 31 PCa patients (pre-prostatectomy) to miRNA sequencing and matched uEV and plasma EV (pEV) from three PCa patients to mRNA sequencing. EV quality control was performed by electron microscopy, Western blotting and particle and RNA analysis. We compared miRNA expression based on PCa status (Gleason Score) and progression (post-prostatectomy follow-up) and confirmed selected miRNAs by quantitative PCR. Expression of target mRNAs was mapped in matched EV. Results: Quality control showed typical small uEV, pEV, RNA and EV-protein marker enriched samples. Comparisons between PCa groups revealed mostly unique differentially expressed miRNAs. However, they targeted comprehensive and largely overlapping sets of cancer and progression-associated signalling, resistance, hormonal and immune pathways. Quantitative PCR confirmed changes in miR-892a (Gleason Score 7 vs. ≥8), miR-223-3p (progression vs. no progression) and miR-146a-5p (both comparisons). Their target mRNAs were expressed widely in PCa EV. Conclusions: PCa status and progression-linked RNAs in uEV are worth exploration in large personalized medicine trials.
Collapse
Affiliation(s)
- Maija Puhka
- HiPrep and EV Core, Institute for Molecular Medicine Finland FIMM, University of Helsinki, 00290 Helsinki, Finland;
- Correspondence: (M.P.); (A.R.)
| | - Lisse Thierens
- HiPrep and EV Core, Institute for Molecular Medicine Finland FIMM, University of Helsinki, 00290 Helsinki, Finland;
| | - Daniel Nicorici
- Orion Pharma, Orion Corporation, 02200 Espoo, Finland; (D.N.); (T.F.); (E.S.)
| | - Tarja Forsman
- Orion Pharma, Orion Corporation, 02200 Espoo, Finland; (D.N.); (T.F.); (E.S.)
| | - Tuomas Mirtti
- Department of Pathology, HUS Diagnostic Centre, Helsinki University Hospital, 00290 Helsinki, Finland;
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| | | | - Elina Serkkola
- Orion Pharma, Orion Corporation, 02200 Espoo, Finland; (D.N.); (T.F.); (E.S.)
| | - Antti Rannikko
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
- Department of Urology, University of Helsinki and Helsinki University Hospital, 00290 Helsinki, Finland
- Correspondence: (M.P.); (A.R.)
| |
Collapse
|
18
|
Riffo-Campos AL, Perez-Hernandez J, Ortega A, Martinez-Arroyo O, Flores-Chova A, Redon J, Cortes R. Exosomal and Plasma Non-Coding RNA Signature Associated with Urinary Albumin Excretion in Hypertension. Int J Mol Sci 2022; 23:ijms23020823. [PMID: 35055008 PMCID: PMC8775608 DOI: 10.3390/ijms23020823] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/03/2022] [Accepted: 01/11/2022] [Indexed: 12/13/2022] Open
Abstract
Non-coding RNA (ncRNA), released into circulation or packaged into exosomes, plays important roles in many biological processes in the kidney. The purpose of the present study is to identify a common ncRNA signature associated with early renal damage and its related molecular pathways. Three individual libraries (plasma and urinary exosomes, and total plasma) were prepared from each hypertensive patient (with or without albuminuria) for ncRNA sequencing analysis. Next, an RNA-based transcriptional regulatory network was constructed. The three RNA biotypes with the greatest number of differentially expressed transcripts were long-ncRNA (lncRNA), microRNA (miRNA) and piwi-interacting RNA (piRNAs). We identified a common 24 ncRNA molecular signature related to hypertension-associated urinary albumin excretion, of which lncRNAs were the most representative. In addition, the transcriptional regulatory network showed five lncRNAs (LINC02614, BAALC-AS1, FAM230B, LOC100505824 and LINC01484) and the miR-301a-3p to play a significant role in network organization and targeting critical pathways regulating filtration barrier integrity and tubule reabsorption. Our study found an ncRNA profile associated with albuminuria, independent of biofluid origin (urine or plasma, circulating or in exosomes) that identifies a handful of potential targets, which may be utilized to study mechanisms of albuminuria and cardiovascular damage.
Collapse
Affiliation(s)
- Angela L. Riffo-Campos
- Millennium Nucleus on Sociomedicine (SocioMed) and Vicerrectoría Académica, Universidad de La Frontera, Temuco 4780000, Chile;
- Department of Computer Science, ETSE, University of Valencia, 46010 Valencia, Spain
| | - Javier Perez-Hernandez
- Cardiometabolic and Renal Risk Research Group, INCLIVA Biomedical Research Institute, 46010 Valencia, Spain; (J.P.-H.); (A.O.); (O.M.-A.); (A.F.-C.); (J.R.)
- Departament of Nutrition and Health, Valencian International University (VIU), 46010 Valencia, Spain
- T-Cell Tolerance, Biomarkers and Therapies in Type 1 Diabetes Team, Institut Cochin, CNRS, INSERM, Université de Paris, 75014 Paris, France
| | - Ana Ortega
- Cardiometabolic and Renal Risk Research Group, INCLIVA Biomedical Research Institute, 46010 Valencia, Spain; (J.P.-H.); (A.O.); (O.M.-A.); (A.F.-C.); (J.R.)
| | - Olga Martinez-Arroyo
- Cardiometabolic and Renal Risk Research Group, INCLIVA Biomedical Research Institute, 46010 Valencia, Spain; (J.P.-H.); (A.O.); (O.M.-A.); (A.F.-C.); (J.R.)
| | - Ana Flores-Chova
- Cardiometabolic and Renal Risk Research Group, INCLIVA Biomedical Research Institute, 46010 Valencia, Spain; (J.P.-H.); (A.O.); (O.M.-A.); (A.F.-C.); (J.R.)
| | - Josep Redon
- Cardiometabolic and Renal Risk Research Group, INCLIVA Biomedical Research Institute, 46010 Valencia, Spain; (J.P.-H.); (A.O.); (O.M.-A.); (A.F.-C.); (J.R.)
- Internal Medicine Unit, Hospital Clinico Universitario, 46010 Valencia, Spain
- CIBER of Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, Minister of Health, 28029 Madrid, Spain
| | - Raquel Cortes
- Cardiometabolic and Renal Risk Research Group, INCLIVA Biomedical Research Institute, 46010 Valencia, Spain; (J.P.-H.); (A.O.); (O.M.-A.); (A.F.-C.); (J.R.)
- Correspondence: ; Tel.: +34-961973517
| |
Collapse
|
19
|
Carvajal CA, Tapia-Castillo A, Pérez JA, Fardella CE. Primary Aldosteronism, Aldosterone, and Extracellular Vesicles. Endocrinology 2022; 163:6433012. [PMID: 34918071 DOI: 10.1210/endocr/bqab240] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Indexed: 01/02/2023]
Abstract
Primary aldosteronism (PA) is an endocrine related condition leading to arterial hypertension due to inappropriately high and unregulated aldosterone concentration. Recently, a broad spectrum of PA has been recognized, which brings new challenges associated with early identification of this condition that affect renal epithelial and extrarenal tissues. Reports have shown the potential role of extracellular vesicles (EVs) and EV cargo as novel and complementary biomarkers in diagnosis and prognosis of PA. In vivo and in vitro studies have identified specific EV surface antigens, EV-proteins, and EV microRNAs that can be useful to develop novel diagnostic algorithms to detect, confirm, or follow up the PA. Moreover, the study of EVs in the field of PA provides further insight in the pathophysiological mechanism of the PA disease.
Collapse
Affiliation(s)
- Cristian A Carvajal
- Department of Endocrinology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Millennium Institute of Immunology and Immunotherapy (IMII-ICM), Santiago, Chile
- Centro Traslacional de Endocrinología UC (CETREN-UC), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alejandra Tapia-Castillo
- Department of Endocrinology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Millennium Institute of Immunology and Immunotherapy (IMII-ICM), Santiago, Chile
- Centro Traslacional de Endocrinología UC (CETREN-UC), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jorge A Pérez
- Department of Endocrinology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Millennium Institute of Immunology and Immunotherapy (IMII-ICM), Santiago, Chile
- Centro Traslacional de Endocrinología UC (CETREN-UC), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Carlos E Fardella
- Department of Endocrinology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Millennium Institute of Immunology and Immunotherapy (IMII-ICM), Santiago, Chile
- Centro Traslacional de Endocrinología UC (CETREN-UC), Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
20
|
Ma M, Luo Q, Fan L, Li W, Li Q, Meng Y, Yun C, Wu H, Lu Y, Cui S, Liu F, Hu B, Guan B, Liu H, Huang S, Liang W, Morgera S, Krämer B, Luan S, Yin L, Hocher B. The urinary exosomes derived from premature infants attenuate cisplatin-induced acute kidney injury in mice via microRNA-30a-5p/ mitogen-activated protein kinase 8 (MAPK8). Bioengineered 2022; 13:1650-1665. [PMID: 35001794 PMCID: PMC8805886 DOI: 10.1080/21655979.2021.2021686] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 12/03/2021] [Indexed: 11/24/2022] Open
Abstract
Acute kidney injury (AKI) is a susceptible factor for chronic kidney disease (CKD). There is still a lack of effective prevention methods in clinical practice. This study investigated the protective effect of the urinary exosomes from premature infants on cisplatin-induced acute kidney injury. Here we isolated exosomes from the fresh urine of premature infants. A C57BL/6 mice model of cisplatin-induced acute kidney injury was given 100 ug urinary exosomes 24 hours after model establishment. The kidneys were collected for pathological examination and the evaluation of renal tubular damage and apoptosis. In the in vitro experiment, human renal cortex/proximal tubular cells (HK-2) were induced by cisplatin to assess the effect of the urine exosomes from premature infants. Exosome microRNA (miRNA) sequencing technology was applied to investigate the miRNAs enriched in exosomes and the dual-luciferase gene reporter system to examine the targeting relationship of the miRNA with target genes. The results indicated that the urinary exosomes could decrease the serum creatinine level and the apoptosis of renal tubular cells, and reduce mice mortality. In addition, miR-30a-5p was the most abundant miRNA in the exosomes. It protected HK-2 cells from cisplatin-induced apoptosis by targeting and down-regulating the mitogen-activated protein kinase 8 (MAPK8). Together, our findings identified that the urinary exosomes derived from premature infants alleviated cisplatin-induced acute kidney injury and inhibited the apoptosis of HK-2 via miR-30a-5p, which could target MAPK8. These findings implied that urinary exosomes from premature infants riched in miR-30a-5p might become a potential treatment for AKI.
Collapse
Affiliation(s)
- Mingming Ma
- Institute of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Qiao Luo
- Institute of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Lijing Fan
- Institute of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Weilong Li
- Institute of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
- Department of Nephrology, Shenzhen Longhua District Central Hospital, Guangdong, China
| | - Qiang Li
- Department of Nephrology, Dongguan Hospital of Traditional Chinese Medicine, Dongguan, China
| | - Yu Meng
- Institute of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Chen Yun
- Charité -Universitätsmedizin Berlin, Campus Mitte, Berlin, Germany
| | - Hongwei Wu
- Institute of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
- Charité -Universitätsmedizin Berlin, Campus Mitte, Berlin, Germany
| | - Yongping Lu
- Institute of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
- Charité -Universitätsmedizin Berlin, Campus Mitte, Berlin, Germany
| | - Shuang Cui
- Institute of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Fanna Liu
- Institute of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Bo Hu
- Institute of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Baozhang Guan
- Institute of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Huanhuan Liu
- Institute of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Shengling Huang
- Institute of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Wenxue Liang
- Institute of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | | | - Bernhard Krämer
- Fifth Department of Medicine (Nephrology/endocrinology/rheumatology), University Medical Centre Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Shaodong Luan
- Department of Nephrology, Shenzhen Longhua District Central Hospital, Guangdong, China
| | - Lianghong Yin
- Institute of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Berthold Hocher
- Institute of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
- Charité -Universitätsmedizin Berlin, Campus Mitte, Berlin, Germany
- Fifth Department of Medicine (Nephrology/endocrinology/rheumatology), University Medical Centre Mannheim, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
21
|
Xu L, Liu J, Li D, Yang H, Zhou Y, Yang J. Association between metabolic syndrome components and chronic kidney disease among 37,533 old Chinese individuals. Int Urol Nephrol 2021; 54:1445-1454. [PMID: 34671893 PMCID: PMC9085695 DOI: 10.1007/s11255-021-03013-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 10/04/2021] [Indexed: 01/19/2023]
Abstract
Background Chronic kidney disease (CKD) has become a worldwide health problem among aging populations. However, epidemiological information on Chinese elderly people with CKD is still lacking. This study aimed to investigate the epidemiological features and associated risk factors of CKD in aging population in China. Methods In this cross-sectional study, a total of 37,533 individuals aged ≥ 65 years were enrolled in Binhai from January to December 2018. The crude and standardized prevalence of CKD were calculated. Associations of metabolism-related indicators with CKD were examined using univariate and multivariate analyses. Results The overall prevalence of CKD was 17.7% (95% confidence interval 17.3–18.1%) in this Chinese elderly population. The prevalence was 17.5% among men (95% CI 17.0–18.1%) and 17.8% among women (95% CI 17.3–18.4%). The mean eGFR was 84.22 (SD ± 12.87) mL/min/1.73 m2, with the median value higher for women than for men. Conclusion Our study shows a high prevalence of CKD among Chinese elderly population. Aging, pre-HTN, HTN, elevated triglyceride, and FBG were associated with the risk of CKD. More attention should be paid to metabolic diseases to prevent CKD in the elderly.
Collapse
Affiliation(s)
- Lingling Xu
- Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, 262N Zhongshan Road, Nanjing, 210003, Jiangsu, China
| | - Jin Liu
- Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, 262N Zhongshan Road, Nanjing, 210003, Jiangsu, China
| | - Dongling Li
- Department of Nephrology, People's Hospital of Binhai County, Yancheng, 224500, Jiangsu, China
| | - Hua Yang
- Department of Nephrology, People's Hospital of Binhai County, Yancheng, 224500, Jiangsu, China
| | - Yang Zhou
- Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, 262N Zhongshan Road, Nanjing, 210003, Jiangsu, China.
| | - Junwei Yang
- Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, 262N Zhongshan Road, Nanjing, 210003, Jiangsu, China.
| |
Collapse
|
22
|
Carmona‐Pérez L, Rojas M, Muñoz‐Vahos C, Vanegas‐García A, Vásquez G. Plasma microparticles from patients with systemic lupus erythematosus modulate the content of miRNAs in U937 cells. Immunology 2021; 164:253-265. [PMID: 34003488 PMCID: PMC8442235 DOI: 10.1111/imm.13366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 04/26/2021] [Accepted: 05/11/2021] [Indexed: 11/29/2022] Open
Abstract
In systemic lupus erythematosus (SLE), the clearance of apoptotic cells and microparticles (MPs) is reduced. Some MPs contain molecules that can modulate immune responses. This study aimed to evaluate the presence of miR-126 and miR-146a in plasma MPs of patients with SLE (SLE MPs) and analyse the ability of MPs to modulate some events in the promonocytic U937 cell line. Circulating MPs were isolated from plasma samples of healthy controls (HCs), patients with SLE and other autoimmune diseases (OAD). MPs were analysed for size and cell origin by flow cytometry and content of miR-126 and miR-146a by RT-qPCR. MPs were then added to U937 cell cultures to evaluate changes in cell phenotype, cytokine expression, content of miR-126 and miR-146a, and levels of IRF5. Patients with active SLE (aSLE) showed an increase in concentration of plasma MPs that positively correlated with the SLEDAI (SLE Disease Activity Index) score. CD14+ MPs were significantly more abundant in patients with SLE than HCs. SLE MPs contained decreased levels of miR-146a, but the miR-126 content in aSLE MPs was increased. The miR-126 content in SLE MPs correlated positively with the SLEDAI score. The treatment of U937 cells with MPs from HCs and patients induced reduced expression of HLA-DR, CD18 and CD119, increased frequency of IL-6+ and TNF-α+ cells, accumulation of IL-8 in culture supernatants, increased miR-126 levels and decreased miR-146a content, but no change in the expression of IRF5. These findings suggest that plasma MPs, especially SLE MPs, could modulate some biological events in U937 cells.
Collapse
Affiliation(s)
- Liseth Carmona‐Pérez
- Grupo de Inmunología Celular e Inmunogenética (GICIG)Facultad de MedicinaInstituto de Investigaciones MédicasUniversidad de Antioquia (UDEA)MedellínColombia
| | - Mauricio Rojas
- Grupo de Inmunología Celular e Inmunogenética (GICIG)Facultad de MedicinaInstituto de Investigaciones MédicasUniversidad de Antioquia (UDEA)MedellínColombia
- Unidad de Citometría de FlujoSede de Investigación UniversitariaUniversidad de Antioquia (UDEA)MedellínColombia
| | - Carlos Muñoz‐Vahos
- Sección de ReumatologíaHospital San Vicente FundaciónMedellínColombia
- Grupo de Reumatología de la Universidad de Antioquia (GRUA)MedellínColombia
| | - Adiana Vanegas‐García
- Sección de ReumatologíaHospital San Vicente FundaciónMedellínColombia
- Grupo de Reumatología de la Universidad de Antioquia (GRUA)MedellínColombia
| | - Gloria Vásquez
- Grupo de Inmunología Celular e Inmunogenética (GICIG)Facultad de MedicinaInstituto de Investigaciones MédicasUniversidad de Antioquia (UDEA)MedellínColombia
- Grupo de Reumatología de la Universidad de Antioquia (GRUA)MedellínColombia
| |
Collapse
|
23
|
Karpman D, Tontanahal A. Extracellular vesicles in renal inflammatory and infectious diseases. Free Radic Biol Med 2021; 171:42-54. [PMID: 33933600 DOI: 10.1016/j.freeradbiomed.2021.04.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/21/2021] [Accepted: 04/26/2021] [Indexed: 11/29/2022]
Abstract
Extracellular vesicles can mediate cell-to-cell communication, or relieve the parent cell of harmful substances, in order to maintain cellular integrity. The content of extracellular vesicles includes miRNAs, mRNAs, growth factors, complement factors, cytokines, chemokines and receptors. These may contribute to inflammatory and infectious diseases by the exposure or transfer of potent effectors that induce vascular inflammation by leukocyte recruitment and thrombosis. Furthermore, vesicles release cytokines and induce their release from cells. Extracellular vesicles possess immune modulatory and anti-microbial properties, and induce receptor signaling in the recipient cell, not least by the transfer of pro-inflammatory receptors. Additionally, the vesicles may carry virulence factors systemically. Extracellular vesicles in blood and urine can contribute to the development of kidney diseases or exhibit protective effects. In this review we will describe the role of EVs in inflammation, thrombosis, immune modulation, angiogenesis, oxidative stress, renal tubular regeneration and infection. Furthermore, we will delineate their contribution to renal ischemia/reperfusion, vasculitis, glomerulonephritis, lupus nephritis, thrombotic microangiopathies, IgA nephropathy, acute kidney injury, urinary tract infections and renal transplantation. Due to their content of miRNAs and growth factors, or when loaded with nephroprotective modulators, extracellular vesicles have the potential to be used as therapeutics for renal regeneration.
Collapse
Affiliation(s)
- Diana Karpman
- Department of Pediatrics, Clinical Sciences Lund, Lund University, 22185, Lund, Sweden.
| | - Ashmita Tontanahal
- Department of Pediatrics, Clinical Sciences Lund, Lund University, 22185, Lund, Sweden
| |
Collapse
|
24
|
Barros Lamus ER, Carotti V, de Vries CRS, Witsel F, Arntz OJ, van de Loo FAJ, Carvajal CA, Bindels RJM, Hoenderop JGJ, Rigalli JP. Extracellular vesicles regulate purinergic signaling and epithelial sodium channel expression in renal collecting duct cells. FASEB J 2021; 35:e21506. [PMID: 33811695 DOI: 10.1096/fj.202002559r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/04/2021] [Accepted: 02/22/2021] [Indexed: 12/12/2022]
Abstract
Purinergic signaling regulates several renal physiological and pathophysiological processes. Extracellular vesicles (EVs) are nanoparticles released by most cell types, which, in non-renal tissues, modulate purinergic signaling. The aim of this study was to investigate the effect of EVs from renal proximal tubule (HK2) and collecting duct cells (HCD) on intra- and intersegment modulation of extracellular ATP levels, the underlying molecular mechanisms, and the impact on the expression of the alpha subunit of the epithelial sodium channel (αENaC). HK2 cells were exposed to HK2 EVs, while HCD cells were exposed to HK2 and HCD EVs. Extracellular ATP levels and αENaC expression were measured by chemiluminescence and qRT-PCR, respectively. ATPases in EV populations were identified by mass spectrometry. The effect of aldosterone was assessed using EVs from aldosterone-treated cells and urinary EVs (uEVs) from primary aldosteronism (PA) patients. HK2 EVs downregulated ectonucleoside-triphosphate-diphosphohydrolase-1 (ENTPD1) expression, increased extracellular ATP and downregulated αENaC expression in HCD cells. ENTPD1 downregulation could be attributed to increased miR-205-3p and miR-505 levels. Conversely, HCD EVs decreased extracellular ATP levels and upregulated αENaC expression in HCD cells, probably due to enrichment of 14-3-3 isoforms with ATPase activity. Pretreatment of donor cells with aldosterone or exposure to uEVs from PA patients enhanced the effects on extracellular ATP and αENaC expression. We demonstrated inter- and intrasegment modulation of renal purinergic signaling by EVs. Our findings postulate EVs as carriers of information along the renal tubules, whereby processes affecting EV release and/or cargo may impact on purinergically regulated processes.
Collapse
Affiliation(s)
- Eric R Barros Lamus
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands.,Department of Endocrinology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Valentina Carotti
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Christine R S de Vries
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Femke Witsel
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Onno J Arntz
- Department of Rheumatology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Fons A J van de Loo
- Department of Rheumatology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Cristian A Carvajal
- Department of Endocrinology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - René J M Bindels
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Joost G J Hoenderop
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Juan P Rigalli
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
25
|
Wu Q, Fenton RA. Urinary proteomics for kidney dysfunction: insights and trends. Expert Rev Proteomics 2021; 18:437-452. [PMID: 34187288 DOI: 10.1080/14789450.2021.1950535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Introduction: Kidney dysfunction poses a high burden on patients and health care systems. Early detection and accurate prediction of kidney disease progression remains a major challenge. Compared to existing clinical parameters, urinary proteomics has the potential to reveal molecular alterations within the kidney that may alter its function before the onset of clinical symptoms. Thus, urinary proteomics has greater prognostic potential for assessment of kidney dysfunction progression.Areas covered: Advances in urinary proteomics for major causes of kidney dysfunction are discussed. The application of urinary extracellular vesicles for studying kidney dysfunction are discussed. Technological advances in urinary proteomics are discussed. The literature was identified using a database search for titles containing 'proteom*' and 'urin*' and published within the past 5 years. Retrieved literature was manually filtered to retain kidney dysfunctions-related studies.Expert opinion: Despite major advances, diagnosis by urinary proteomics has not been fully applied in any clinical settings. This could be attributed to the complex nature of kidney diseases, in addition to the constraints on study power and feasibility of incorporating mass spectrometry techniques in daily routine analysis. Nevertheless, we are confident that advances in urinary proteomics will soon provide superior insights into kidney disease beyond existing clinical parameters.
Collapse
Affiliation(s)
- Qi Wu
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Robert A Fenton
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
26
|
Urinary Extracellular Vesicles: Uncovering the Basis of the Pathological Processes in Kidney-Related Diseases. Int J Mol Sci 2021; 22:ijms22126507. [PMID: 34204452 PMCID: PMC8234687 DOI: 10.3390/ijms22126507] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/27/2021] [Accepted: 06/11/2021] [Indexed: 12/29/2022] Open
Abstract
Intercellular communication governs multicellular interactions in complex organisms. A variety of mechanisms exist through which cells can communicate, e.g., cell-cell contact, the release of paracrine/autocrine soluble molecules, or the transfer of extracellular vesicles (EVs). EVs are membrane-surrounded structures released by almost all cell types, acting both nearby and distant from their tissue/organ of origin. In the kidney, EVs are potent intercellular messengers released by all urinary system cells and are involved in cell crosstalk, contributing to physiology and pathogenesis. Moreover, urine is a reservoir of EVs coming from the circulation after crossing the glomerular filtration barrier—or originating in the kidney. Thus, urine represents an alternative source for biomarkers in kidney-related diseases, potentially replacing standard diagnostic techniques, including kidney biopsy. This review will present an overview of EV biogenesis and classification and the leading procedures for isolating EVs from body fluids. Furthermore, their role in intra-nephron communication and their use as a diagnostic tool for precision medicine in kidney-related disorders will be discussed.
Collapse
|
27
|
Rodríguez‐Caro RC, Capdevila P, Graciá E, Barbosa JM, Giménez A, Salguero‐Gómez R. The limits of demographic buffering in coping with environmental variation. OIKOS 2021. [DOI: 10.1111/oik.08343] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Roberto C. Rodríguez‐Caro
- Depto de Biología Aplicada, Univ. Miguel Hernández Elche Alicante Spain
- Dept of Zoology, Oxford Univ. Oxford UK
| | - Pol Capdevila
- Dept of Zoology, Oxford Univ. Oxford UK
- School of Biological Sciences, Univ. of Bristol Bristol UK
| | - Eva Graciá
- Depto de Biología Aplicada, Univ. Miguel Hernández Elche Alicante Spain
- Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO‐UMH), Univ. Miguel Hernández Spain
| | - Jomar M. Barbosa
- Depto de Biología Aplicada, Univ. Miguel Hernández Elche Alicante Spain
- Dept of Conservation Biology, Estación Biológica de Doñana, C.S.I.C. Seville Spain
| | - Andrés Giménez
- Depto de Biología Aplicada, Univ. Miguel Hernández Elche Alicante Spain
- Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO‐UMH), Univ. Miguel Hernández Spain
| | - Rob Salguero‐Gómez
- Dept of Zoology, Oxford Univ. Oxford UK
- Centre for Biodiversity and Conservation Science, Univ. of Queensland St Lucia QLD Australia
| |
Collapse
|
28
|
Dhandapani MC, Venkatesan V, Pricilla C. MicroRNAs in childhood nephrotic syndrome. J Cell Physiol 2021; 236:7186-7210. [PMID: 33819345 DOI: 10.1002/jcp.30374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 02/16/2021] [Accepted: 03/12/2021] [Indexed: 11/11/2022]
Abstract
The discovery of microRNAs (miRNAs) has opened up new avenues of research to understand the molecular basis of a number of diseases. Because of their conservative feature in evolution and important role in the physiological function, microRNAs could be treated as predictors for disease classification and clinical process based on the specific expression. The identification of novel miRNAs and their target genes can be considered as potential targets for novel drugs. Furthermore, currently, the circulatory and urinary exosomal miRNAs are gaining increasing attention as their expression profiles are often associated with specific diseases, and they exhibit great potential as noninvasive or minimally invasive biomarkers for the diagnosis of various diseases. The remarkable stability of these extracellular miRNAs circulating in the blood or excreted in the urine underscored their key importance as biomarkers of certain diseases. There is voluminous literature concerning the role of microRNAs in other diseases, such as cardiovascular diseases, diabetic nephropathy, and so forth. However, little is known about their diagnostic ability for the pediatric nephrotic syndrome (NS). The present review article highlights the recent advances in the role of miRNAs in the pathogenesis and molecular basis of NS with an aim to bring new insights into further research applications for the development of new therapeutic agents for NS.
Collapse
Affiliation(s)
- Mohanapriya C Dhandapani
- Department of Central Research Facility, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | - Vettriselvi Venkatesan
- Department of Human Genetics, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | - Charmine Pricilla
- Department of Central Research Facility, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| |
Collapse
|
29
|
Levin-Schwartz Y, Curtin P, Flores D, Aushev VN, Tamayo-Ortiz M, Svensson K, Pantic I, Estrada-Gutierrez G, Pizano-Zárate ML, Gennings C, Satlin LM, Baccarelli AA, Tellez-Rojo MM, Wright RO, Sanders AP. Exosomal miRNAs in urine associated with children's cardiorenal parameters: a cross-sectional study. Epigenomics 2021; 13:499-512. [PMID: 33635093 PMCID: PMC8033423 DOI: 10.2217/epi-2020-0342] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Aims: The authors sought to examine associations between urinary exosomal miRNAs (exo-miRs), emerging biomarkers of renal health, and cardiorenal outcomes in early childhood. Materials & methods: The authors extracted exo-miRs in urine from 88 healthy Mexican children aged 4–6 years. The authors measured associations between 193 exo-miRs and cardiorenal outcomes: systolic/diastolic blood pressure, estimated glomerular filtration rate and urinary sodium and potassium levels. The authors adjusted for age, sex, BMI, socioeconomic status, indoor tobacco smoke exposure and urine specific gravity. Results: Multiple exo-miRs were identified meeting a false discovery rate threshold of q < 0.1. Specifically, three exo-miRs had increased expression with urinary sodium, 17 with urinary sodium-to-potassium ratio and one with decreased estimated glomerular filtration rate. Conclusions: These results highlight urinary exo-miRs as early-life biomarkers of children's cardiorenal health.
Collapse
Affiliation(s)
- Yuri Levin-Schwartz
- Department of Environmental Medicine & Public Health, Icahn School of Medicine at Mount Sinai, 10029 New York, USA
| | - Paul Curtin
- Department of Environmental Medicine & Public Health, Icahn School of Medicine at Mount Sinai, 10029 New York, USA
| | - Daniel Flores
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, 10029 NY, USA
| | - Vasily N Aushev
- Department of Environmental Medicine & Public Health, Icahn School of Medicine at Mount Sinai, 10029 New York, USA
| | - Marcela Tamayo-Ortiz
- Center for Nutrition & Health Research, National Institute of Public Health, 62100 Cuernavaca, Morelos, Mexico.,National Council for Science & Technology, 03940 Mexico City, Mexico
| | - Katherine Svensson
- Department of Health Sciences, Karlstad University, 65188 Karlstad, Sweden
| | - Ivan Pantic
- Department of Developmental Neurobiology, National Institute of Perinatology, 11000 Mexico City, Mexico
| | | | - María L Pizano-Zárate
- Division of Community Interventions Research, National Institute of Perinatology, 11000 Mexico City, Mexico
| | - Chris Gennings
- Department of Environmental Medicine & Public Health, Icahn School of Medicine at Mount Sinai, 10029 New York, USA
| | - Lisa M Satlin
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, 10029 NY, USA
| | - Andrea A Baccarelli
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, 10027 New York, USA
| | - Martha M Tellez-Rojo
- Center for Nutrition & Health Research, National Institute of Public Health, 62100 Cuernavaca, Morelos, Mexico
| | - Robert O Wright
- Department of Environmental Medicine & Public Health, Icahn School of Medicine at Mount Sinai, 10029 New York, USA.,Department of Pediatrics, Icahn School of Medicine at Mount Sinai, 10029 NY, USA
| | - Alison P Sanders
- Department of Environmental Medicine & Public Health, Icahn School of Medicine at Mount Sinai, 10029 New York, USA.,Department of Pediatrics, Icahn School of Medicine at Mount Sinai, 10029 NY, USA
| |
Collapse
|
30
|
Extracellular vesicles (EVs): What we know of the mesmerizing roles of these tiny vesicles in hematological malignancies? Life Sci 2021; 271:119177. [PMID: 33577843 DOI: 10.1016/j.lfs.2021.119177] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 01/29/2021] [Accepted: 01/29/2021] [Indexed: 02/07/2023]
Abstract
Cancer is a complex disease in which a bidirectional collaboration between malignant cells and surrounding microenvironment creates an appropriate platform which ultimately facilitates the progression of the disease. The discovery of extracellular vesicles (EVs) was a turning point in the modern era of cancer biology, as their importance in human malignancies has set the stage to widen research interest in the field of cell-to-cell communication. The implication in short- and long-distance interaction via horizontally transfer of cellular components, ranging from non-coding RNAs to functional proteins, as well as stimulating target cells receptors by the means of ligands anchored on their membrane endows these "tiny vesicles with giant impacts" with incredible potential to re-educate normal tissues, and thus, to re-shape the surrounding niche. In this review, we highlight the pathogenic roles of EVs in human cancers, with an extensive focus on the recent advances in hematological malignancies.
Collapse
|
31
|
Liu ZZ, Jose PA, Yang J, Zeng C. Importance of extracellular vesicles in hypertension. Exp Biol Med (Maywood) 2021; 246:342-353. [PMID: 33517775 DOI: 10.1177/1535370220974600] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Hypertension affects approximately 1.13 billion adults worldwide and is the leading global risk factor for cardiovascular, cerebrovascular, and kidney diseases. There is emerging evidence that extracellular vesicles participate in the development and progression of hypertension. Extracellular vesicles are membrane-enclosed structures released from nearly all types of eukaryotic cells. During their formation, extracellular vesicles incorporate various parent cell components, including proteins, lipids, and nucleic acids that can be transferred to recipient cells. Extracellular vesicles mediate cell-to-cell communication in a variety of physiological and pathophysiological processes. Therefore, studying the role of circulating and urinary extracellular vesicles in hypertension has the potential to identify novel noninvasive biomarkers and therapeutic targets of different hypertension phenotypes. This review discusses the classification and biogenesis of three EV subcategories (exosomes, microvesicles, and apoptotic bodies) and provides a summary of recent discoveries in the potential impact of extracellular vesicles on hypertension with a specific focus on their role in the blood pressure regulation by organs-artery and kidney, as well as renin-angiotensin-system.
Collapse
Affiliation(s)
- Zhi Z Liu
- Cardiovascular Research Center of Chongqing College, Department of Cardiology of Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing 400714, P.R. China.,Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing 400042, P. R. China
| | - Pedro A Jose
- Division of Renal Diseases & Hypertension, The George Washington University School of Medicine and Health Sciences, Washington, DC 20052, USA
| | - Jian Yang
- Department of Clinical Nutrition, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, P.R. China
| | - Chunyu Zeng
- Cardiovascular Research Center of Chongqing College, Department of Cardiology of Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing 400714, P.R. China.,Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing 400042, P. R. China.,Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing 400042, P.R. China
| |
Collapse
|
32
|
Perez-Hernandez J, Riffo-Campos AL, Ortega A, Martinez-Arroyo O, Perez-Gil D, Olivares D, Solaz E, Martinez F, Martínez-Hervás S, Chaves FJ, Redon J, Cortes R. Urinary- and Plasma-Derived Exosomes Reveal a Distinct MicroRNA Signature Associated With Albuminuria in Hypertension. Hypertension 2021; 77:960-971. [PMID: 33486986 DOI: 10.1161/hypertensionaha.120.16598] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Urinary albumin excretion (UAE) is a marker of cardiovascular risk and renal damage in hypertension. MicroRNAs (miRNAs) packaged into exosomes function as paracrine effectors in cell communication and the kidney is not exempt. This study aimed to state an exosomal miRNA profile/signature associated to hypertension with increased UAE and the impact of profibrotic TGF-β1 (transforming growth factor β1) on exosomes miRNA release. Therefore, exosomes samples from patients with hypertension with/without UAE were isolated and characterized. Three individual and unique small RNA libraries from each subject were prepared (total plasma, urinary, and plasma-derived exosomes) for next-generation sequencing profiling. Differentially expressed miRNAs were over-represented in Kyoto Encyclopedia of Genes and Genomes pathways, and selected miRNAs were validated by real-time quantitative polymerase chain reaction in a confirmation cohort. Thus, a signature of 29 dysregulated circulating miRNAs was identified in UAE hypertensive subjects, regulating 21 pathways. Moreover, changes in the levels of 4 exosomes-miRNAs were validated in a confirmation cohort and found associated with albuminuria. In particular miR-26a, major regulator of TGF-β signaling, was found downregulated in both type of exosomes when compared with healthy controls and to hypertension normoalbuminurics (P<0.01). Similarly, decreased miR-26a levels were found in podocyte-derived exosomes after TGF-β stress. Our results revealed an exosomes miRNA signature associated to albuminuria in hypertension. In particular, exosomes miR-26a seemed to play a key role in the regulation of TGF-β, a relevant effector in podocyte damage. These findings support the use of exosomes miRNAs as biomarkers of cardiovascular risk progression and therapeutic tools in early kidney damage.
Collapse
Affiliation(s)
- Javier Perez-Hernandez
- From the Cardiometabolic and Renal Risk Research Group, INCLIVA Biomedical Research Institute, Valencia, Spain (J.P.-H., A.O., O.M.-A., D.P.-G., D.O., E.S., F.M., J.R., R.C.)
| | - Angela L Riffo-Campos
- Departamento de Anatomía Patológica, Facultad de Medicina, Universidad de La Frontera, Temuco, Chile (A.L.R.-C.)
| | - Ana Ortega
- From the Cardiometabolic and Renal Risk Research Group, INCLIVA Biomedical Research Institute, Valencia, Spain (J.P.-H., A.O., O.M.-A., D.P.-G., D.O., E.S., F.M., J.R., R.C.)
| | - Olga Martinez-Arroyo
- From the Cardiometabolic and Renal Risk Research Group, INCLIVA Biomedical Research Institute, Valencia, Spain (J.P.-H., A.O., O.M.-A., D.P.-G., D.O., E.S., F.M., J.R., R.C.)
| | - Daniel Perez-Gil
- From the Cardiometabolic and Renal Risk Research Group, INCLIVA Biomedical Research Institute, Valencia, Spain (J.P.-H., A.O., O.M.-A., D.P.-G., D.O., E.S., F.M., J.R., R.C.)
| | - Dolores Olivares
- From the Cardiometabolic and Renal Risk Research Group, INCLIVA Biomedical Research Institute, Valencia, Spain (J.P.-H., A.O., O.M.-A., D.P.-G., D.O., E.S., F.M., J.R., R.C.)
| | - Elena Solaz
- From the Cardiometabolic and Renal Risk Research Group, INCLIVA Biomedical Research Institute, Valencia, Spain (J.P.-H., A.O., O.M.-A., D.P.-G., D.O., E.S., F.M., J.R., R.C.).,Internal Medicine Unit, Hospital Clínico Universitario, Valencia, Spain (E.S., F.M., J.R.)
| | - Fernando Martinez
- From the Cardiometabolic and Renal Risk Research Group, INCLIVA Biomedical Research Institute, Valencia, Spain (J.P.-H., A.O., O.M.-A., D.P.-G., D.O., E.S., F.M., J.R., R.C.).,Internal Medicine Unit, Hospital Clínico Universitario, Valencia, Spain (E.S., F.M., J.R.)
| | - Sergio Martínez-Hervás
- Endocrinology and Nutrition Department Clinic Hospital, Spain (S.M.-H.).,CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM), Institute of Health Carlos III, Minister of Health, Barcelona, Spain (S.M.-H., F.J.C.).,Department of Medicine, Faculty of Medicine and Odontology, University of Valencia, Spain (S.M.-H.)
| | - Felipe J Chaves
- CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM), Institute of Health Carlos III, Minister of Health, Barcelona, Spain (S.M.-H., F.J.C.).,Genomics and Diabetes Unit, INCLIVA Biomedical Research Institute, Valencia, Spain (F.J.C.)
| | - Josep Redon
- From the Cardiometabolic and Renal Risk Research Group, INCLIVA Biomedical Research Institute, Valencia, Spain (J.P.-H., A.O., O.M.-A., D.P.-G., D.O., E.S., F.M., J.R., R.C.).,Internal Medicine Unit, Hospital Clínico Universitario, Valencia, Spain (E.S., F.M., J.R.).,CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, Minister of Health, Madrid, Spain (J.R.)
| | - Raquel Cortes
- From the Cardiometabolic and Renal Risk Research Group, INCLIVA Biomedical Research Institute, Valencia, Spain (J.P.-H., A.O., O.M.-A., D.P.-G., D.O., E.S., F.M., J.R., R.C.)
| |
Collapse
|
33
|
Panfoli I, Granata S, Candiano G, Verlato A, Lombardi G, Bruschi M, Zaza G. Analysis of urinary exosomes applications for rare kidney disorders. Expert Rev Proteomics 2021; 17:735-749. [PMID: 33395324 DOI: 10.1080/14789450.2020.1866993] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: Exosomes are nanovesicles that play important functions in a variety of physiological and pathological conditions. They are powerful cell-to-cell communication tool thanks to the protein, mRNA, miRNA, and lipid cargoes they carry. They are also emerging as valuable diagnostic and prognostic biomarker sources. Urinary exosomes carry information from all the cells of the urinary tract, downstream of the podocyte. Rare kidney diseases are a subset of an inherited diseases whose genetic diagnosis can be unclear, and presentation can vary due to genetic, epigenetic, and environmental factors. Areas covered: In this review, we focus on a group of rare and often neglected kidney diseases, for which we have sufficient available literature data on urinary exosomes. The analysis of their content can help to comprehend pathological mechanisms and to identify biomarkers for diagnosis, prognosis, and therapeutic targets. Expert opinion: The foreseeable large-scale application of system biology approach to the profiling of exosomal proteins as a source of renal disease biomarkers will be also useful to stratify patients with rare kidney diseases whose penetrance, phenotypic presentation, and age of onset vary sensibly. This can ameliorate the clinical management.
Collapse
Affiliation(s)
- Isabella Panfoli
- Department of Pharmacy-DIFAR, University of Genoa , Genoa, Italy
| | - Simona Granata
- Renal Unit, Department of Medicine, University-Hospital of Verona , Verona, Italy
| | - Giovanni Candiano
- Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini , Genoa, Italy
| | - Alberto Verlato
- Renal Unit, Department of Medicine, University-Hospital of Verona , Verona, Italy
| | - Gianmarco Lombardi
- Renal Unit, Department of Medicine, University-Hospital of Verona , Verona, Italy
| | - Maurizio Bruschi
- Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini , Genoa, Italy
| | - Gianluigi Zaza
- Renal Unit, Department of Medicine, University-Hospital of Verona , Verona, Italy
| |
Collapse
|
34
|
Gebeyehu A, Kommineni N, Bagde A, Meckes DG, Sachdeva MS. Role of Exosomes for Delivery of Chemotherapeutic Drugs. Crit Rev Ther Drug Carrier Syst 2021; 38:53-97. [PMID: 34375513 PMCID: PMC8691065 DOI: 10.1615/critrevtherdrugcarriersyst.2021036301] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Exosomes are endogenous extracellular vesicles (30-100 nm) composed with membrane lipid bilayer which carry vesicular proteins, enzymes, mRNA, miRNA and nucleic acids. They act as messengers for intra- and inter-cellular communication. In addition to their physiological roles, exosomes have the potential to encapsulate and deliver small chemotherapeutic drugs and biological molecules such as proteins and nucleic acid-based drugs to the recipient tissue or organs. Due to their biological properties, exosomes have better organotropism, homing capacity, cellular uptake and cargo release ability than other synthetic nano-drug carriers such as liposomes, micelles and nanogels. The secretion of tumor-derived exosomes is increased in the hypoxic and acidic tumor microenvironment, which can be used as a target for nontoxic and nonimmunogenic drug delivery vehicles for various cancers. Moreover, exosomes have the potential to carry both hydrophilic and hydrophobic chemotherapeutic drugs, bypass RES effect and bypass BBB. Exosomes can be isolated from other types of EVs and cell debris based on their size, density and specific surface proteins through ultracentrifugation, density gradient separation, precipitation, immunoaffinity interaction and gel filtration. Drugs can be loaded into exosomes at the biogenesis stage or with the isolated exosomes by incubation, electroporation, extrusion or sonication methods. Finally, exosomal cargo vehicles can be characterized by ultrastructural microscopic analysis. In this review we intend to summarize the inception, structure and function of the exosomes, role of exosomes in immunological regulation and cancer, methods of isolation and characterization of exosomes and products under clinical trials. This review will provide an inclusive insight of exosomes in drug delivery.
Collapse
Affiliation(s)
- Aragaw Gebeyehu
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - Nagavendra Kommineni
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - Arvind Bagde
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - David G. Meckes
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306, USA
| | - Mandip Singh Sachdeva
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| |
Collapse
|
35
|
Extracellular vesicles carrying miRNAs in kidney diseases: a systemic review. Clin Exp Nephrol 2020; 24:1103-1121. [DOI: 10.1007/s10157-020-01947-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 07/27/2020] [Indexed: 01/26/2023]
|
36
|
Sinha N, Kumar V, Puri V, Nada R, Rastogi A, Jha V, Puri S. Urinary exosomes: Potential biomarkers for diabetic nephropathy. Nephrology (Carlton) 2020; 25:881-887. [PMID: 32323449 DOI: 10.1111/nep.13720] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 03/04/2020] [Accepted: 04/02/2020] [Indexed: 12/22/2022]
Abstract
Diabetic nephropathy is the most common diabetic complication culminating often into end-stage renal disease. Classically, it is defined by the presence of albuminuria which has limited ability to be detected at early stages but deterioration in kidney function generally precedes albuminuria. This necessitates the development of newer diagnostic assays for diabetic nephropathy to determine the progression of the disease. Kidney associated diseases with non-albuminuria further complicates a timely diagnosis and thus demands an early biomarker. Urinary exosomes, the nanovesicular entities are released by every epithelial cells of the nephron. Their protein or molecular cargo varies in the diseased state which may provide the pathophysiology of the kidney associated diseases. This drives them to be exploited as non-invasive biomarker. This review thus integrates the recent findings on the significance of the urinary exosomes as diagnostic biomarker in kidney-associated diseases, primarily in diabetic nephropathy.
Collapse
Affiliation(s)
- Nisha Sinha
- Centre for Stem Cell & Tissue Engineering and Excellence in Biomedical Sciences, Punjab University, Chandigarh, India.,Department of Nephrology, Post Graduate Institute of Medical Education & Research, Chandigarh, India
| | - Vivek Kumar
- Department of Nephrology, Post Graduate Institute of Medical Education & Research, Chandigarh, India
| | - Veena Puri
- Centre for Systems Biology & Bioinformatics, Punjab University, Chandigarh, India
| | - Ritambhra Nada
- Department of Histopathology, Post Graduate Institute of Medical Education & Research, Chandigarh, India
| | - Ashu Rastogi
- Department of Endocrinology and Metabolism, Post Graduate Institute of Medical Education & Research, Chandigarh, India
| | - Vivekanand Jha
- George Institute for Global Health, UNSW, India. George Institute for Global Health, University of Oxford, Oxford, UK. Manipal Academy of Higher Education, Manipal, India
| | - Sanjeev Puri
- Department of Biotechnology, University Institute of Engineering & Technology (UIET), Punjab University, Chandigarh, India
| |
Collapse
|
37
|
Rigalli JP, Barros ER, Sommers V, Bindels RJM, Hoenderop JGJ. Novel Aspects of Extracellular Vesicles in the Regulation of Renal Physiological and Pathophysiological Processes. Front Cell Dev Biol 2020; 8:244. [PMID: 32351960 PMCID: PMC7174565 DOI: 10.3389/fcell.2020.00244] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 03/23/2020] [Indexed: 12/17/2022] Open
Abstract
Extracellular vesicles (EV) are nanosized particles released by a large variety of cells. They carry molecules such as proteins, RNA and lipids. While urinary EVs have been longer studied as a source of biomarkers for renal and non-renal disorders, research on EVs as regulatory players of renal physiological and pathological processes has experienced an outbreak recently in the past decade. In general, the microenvironment and (patho)physiological state of the donor cells affect the cargo of the EVs released, which then determines the effect of these EVs once they reach a target cell. For instance, EVs released by renal epithelial cells modulate the expression and function of water and solute transporting proteins in other cells. Also, EVs have been demonstrated to regulate renal organogenesis and blood flow. Furthermore, a dual role of EVs promoting, but also counteracting, disease has also been reported. EVs released by renal tubular cells can reach fibroblasts, monocytes, macrophages, T cells and natural killer cells, thus influencing the pathogenesis and progression of renal disorders like acute kidney injury and fibrosis, nephrolithiasis, renal transplant rejection and renal cancer, among others. On the contrary, EVs may also exert a cytoprotective role upon renal damage and promote recovery of renal function. In the current review, a systematic summary of the key studies from the past 5 years addressing the role of EVs in the modulation of renal physiological and pathophysiological processes is provided, highlighting open questions and discussing the potential of future research.
Collapse
Affiliation(s)
- Juan Pablo Rigalli
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Eric Raul Barros
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands.,Department of Endocrinology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Vera Sommers
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - René J M Bindels
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Joost G J Hoenderop
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
38
|
Williams TL, Bastos C, Faria N, Karet Frankl FE. Making urinary extracellular vesicles a clinically tractable source of biomarkers for inherited tubulopathies using a small volume precipitation method: proof of concept. J Nephrol 2020; 33:383-386. [PMID: 31586298 PMCID: PMC7118034 DOI: 10.1007/s40620-019-00653-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 09/24/2019] [Indexed: 11/25/2022]
Abstract
Biomarkers of inherited tubulopathies would be useful for clarifying diagnoses in patients where genetic screening is not readily available or where disease-attributable mutations are not found. Urinary extracellular vesicles (uEVs) obtained by ultracentrifugation can be used as a source of biomarkers for inherited tubulopathies such as Gitelman Syndrome (GS), however, ultracentrifugation requires costly equipment and is thus not usually accessible. In contrast, precipitation methods can extract uEVs using standard laboratory centrifuges, thus making uEVs extracted by this method clinically tractable as a source of biomarkers for GS and other inherited tubulopathies. Here we optimise a precipitation method for extracting urinary extracellular vesicles (uEVs) and provide proof of concept that these uEVs are a source of biomarkers using GS an exemplar tubulopathy. For method optimisation, uEVs were precipitated from fresh and frozen (for up to 6 years), small volume (1-2 mL) urine samples from healthy volunteers and GS patients. Nanoparticle tracking analysis was used to calculate the concentration of uEVs. Thiazide sensitive sodium-chloride cotransporter (NCC) content was determined by densitometry of Western blots. NCC content of uEVs was lower in GS patients (n = 11) than healthy volunteers (n = 12; P = 0.001). Three of four patients clinically suspected for GS, in whom only a single SLC12A3 mutation was identified, had lower uEV NCC content than all healthy volunteers tested. In the clinical setting, sufficient uEVs can be extracted from frozen, small volume urine samples using precipitation methods to distinguish patients with GS from healthy volunteers, and thus this source of uEVs could be utilised as an additional diagnostic test for GS and similar disorders.
Collapse
Affiliation(s)
- Timothy Lee Williams
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, UK.
| | - Carlos Bastos
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, UK
| | - Nuno Faria
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, UK
| | - Fiona Eve Karet Frankl
- Department of Medical Genetics and Division of Renal Medicine, University of Cambridge and Cambridge University Hospitals Foundation Trust, Cambridge, UK
| |
Collapse
|
39
|
Grange C, Papadimitriou E, Dimuccio V, Pastorino C, Molina J, O'Kelly R, Niedernhofer LJ, Robbins PD, Camussi G, Bussolati B. Urinary Extracellular Vesicles Carrying Klotho Improve the Recovery of Renal Function in an Acute Tubular Injury Model. Mol Ther 2020; 28:490-502. [PMID: 31818691 PMCID: PMC7000999 DOI: 10.1016/j.ymthe.2019.11.013] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 11/04/2019] [Accepted: 11/07/2019] [Indexed: 02/08/2023] Open
Abstract
Acute kidney injury, defined by a rapid deterioration of renal function, is a common complication in hospitalized patients. Among the recent therapeutic options, the use of extracellular vesicles (EVs) is considered a promising strategy. Here we propose a possible therapeutic use of renal-derived EVs isolated from normal urine (urine-derived EVs [uEVs]) in a murine model of acute injury generated by glycerol injection. uEVs accelerated renal recovery, stimulating tubular cell proliferation, reducing the expression of inflammatory and injury markers, and restoring endogenous Klotho loss. When intravenously injected, labeled uEVs localized within injured kidneys and transferred their microRNA cargo. Moreover, uEVs contained the reno-protective Klotho molecule. Murine uEVs derived from Klotho null mice lost the reno-protective effect observed using murine EVs from wild-type mice. This was regained when Klotho-negative murine uEVs were reconstituted with recombinant Klotho. Similarly, ineffective fibroblast EVs acquired reno-protection when engineered with human recombinant Klotho. Our results reveal a novel potential use of uEVs as a new therapeutic strategy for acute kidney injury, highlighting the presence and role of the reno-protective factor Klotho.
Collapse
Affiliation(s)
- Cristina Grange
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Elli Papadimitriou
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Veronica Dimuccio
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Cecilia Pastorino
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Jordi Molina
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Ryan O'Kelly
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Laura J Niedernhofer
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Paul D Robbins
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Giovanni Camussi
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Benedetta Bussolati
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy.
| |
Collapse
|
40
|
Abstract
MicroRNAs (miRNAs) are endogenous noncoding RNAs, which regulate gene expression on the post-transcriptional level. Since miRNAs are involved in the regulation of apoptosis, cellular proliferation, differentiation, and other important cellular processes, their deregulation is important for the development of a wide range of diseases including cancer. Apart from tissue, specific disease-related miRNA signatures can be found in body fluids as well. Especially for urologic diseases or injuries, urine miRNAs represent a promising group of biomarkers. Despite a large number of studies describing the importance of urinary miRNAs, there is a lack of recommendations for urine management and subsequent miRNA analysis. Thus, in this chapter, we aim to describe the origin and functions of urinary miRNAs and discuss the technical aspects of their detection including the pre-analytical phase principles and new directions in quantification, which could forward urine miRNA into clinical practice.
Collapse
Affiliation(s)
- Jaroslav Juracek
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Ondrej Slaby
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
41
|
Tapia-Castillo A, Guanzon D, Palma C, Lai A, Barros E, Allende F, Vecchiola A, Fardella CE, Salomón C, Carvajal CA. Downregulation of exosomal miR-192-5p and miR-204-5p in subjects with nonclassic apparent mineralocorticoid excess. J Transl Med 2019; 17:392. [PMID: 31775784 PMCID: PMC6880399 DOI: 10.1186/s12967-019-02143-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 11/15/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The "nonclassic" apparent mineralocorticoid excess (NC-AME) has been identified in approximately 7% of general population. This phenotype is characterized by low plasma renin activity (PRA), high serum cortisol (F) to cortisone (E) ratio, low cortisone, high Fractional Excretion of potassium (FEK) and normal-elevated systolic blood pressure (SBP). An early detection and/or identification of novel biomarkers of this phenotype could avoid the progression or future complications leading to arterial hypertension. Isolation of extracellular vesicles, such as exosomes, in specific biofluids support the identification of tissue-specific RNA and miRNA, which may be useful as novel biomarkers. Our aim was to identify miRNAs within urinary exosomes associated to the NC-AME phenotype. METHODS We perform a cross-sectional study in a primary care cohort of 127 Chilean subjects. We measured BP, serum cortisol, cortisone, aldosterone, PRA. According to the previous reported, a subgroup of subjects was classified as NC-AME (n = 10). Urinary exosomes were isolated and miRNA cargo was sequenced by Illumina-NextSeq-500. RESULTS We found that NC-AME subjects had lower cortisone (p < 0.0001), higher F/E ratio (p < 0.0001), lower serum potassium (p = 0.009) and higher FEK 24 h (p = 0.03) than controls. We found miR-204-5p (fold-change = 0.115; p 0.001) and miR-192-5p (fold-change = 0.246; p 0.03) are both significantly downregulated in NC-AME. miR-192-5p expression was correlated with PRA (r = 0.45; p 0.028) and miR-204-5p expression with SBP (r = - 0.48, p 0.027) and F/E ratio (r = - 0.48; p 0.026). CONCLUSIONS These findings could support a potential role of these miRNAs as regulators and novel biomarkers of the NC-AME phenotype.
Collapse
Affiliation(s)
- Alejandra Tapia-Castillo
- Department of Endocrinology, School of Medicine, Pontificia Universidad Católica de Chile, Diagonal Paraguay 362, piso 4, Santiago, 8330077, Chile
- Centro Traslacional de Endocrinología (CETREN-UC), Pontificia Universidad Católica de Chile, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy (IMII-ICM), Santiago, Chile
| | - Dominic Guanzon
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, The University of Queensland, Brisbane, QLD, 4029, Australia
| | - Carlos Palma
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, The University of Queensland, Brisbane, QLD, 4029, Australia
| | - Andrew Lai
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, The University of Queensland, Brisbane, QLD, 4029, Australia
| | - Eric Barros
- Department of Endocrinology, School of Medicine, Pontificia Universidad Católica de Chile, Diagonal Paraguay 362, piso 4, Santiago, 8330077, Chile
- Millennium Institute on Immunology and Immunotherapy (IMII-ICM), Santiago, Chile
| | - Fidel Allende
- Centro Traslacional de Endocrinología (CETREN-UC), Pontificia Universidad Católica de Chile, Santiago, Chile
- Department of Clinical Laboratories, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Andrea Vecchiola
- Department of Endocrinology, School of Medicine, Pontificia Universidad Católica de Chile, Diagonal Paraguay 362, piso 4, Santiago, 8330077, Chile
- Centro Traslacional de Endocrinología (CETREN-UC), Pontificia Universidad Católica de Chile, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy (IMII-ICM), Santiago, Chile
| | - Carlos E Fardella
- Department of Endocrinology, School of Medicine, Pontificia Universidad Católica de Chile, Diagonal Paraguay 362, piso 4, Santiago, 8330077, Chile
- Centro Traslacional de Endocrinología (CETREN-UC), Pontificia Universidad Católica de Chile, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy (IMII-ICM), Santiago, Chile
| | - Carlos Salomón
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, The University of Queensland, Brisbane, QLD, 4029, Australia
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, University of Concepción, Concepción, Chile
| | - Cristian A Carvajal
- Department of Endocrinology, School of Medicine, Pontificia Universidad Católica de Chile, Diagonal Paraguay 362, piso 4, Santiago, 8330077, Chile.
- Centro Traslacional de Endocrinología (CETREN-UC), Pontificia Universidad Católica de Chile, Santiago, Chile.
- Millennium Institute on Immunology and Immunotherapy (IMII-ICM), Santiago, Chile.
| |
Collapse
|
42
|
Schuh CMAP, Cuenca J, Alcayaga-Miranda F, Khoury M. Exosomes on the border of species and kingdom intercommunication. Transl Res 2019; 210:80-98. [PMID: 30998903 DOI: 10.1016/j.trsl.2019.03.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 03/25/2019] [Accepted: 03/26/2019] [Indexed: 12/19/2022]
Abstract
Over the last decades exosomes have become increasingly popular in the field of medicine. While until recently they were believed to be involved in the removal of obsolete particles from the cell, it is now known that exosomes are key players in cellular communication, carrying source-specific molecules such as proteins, growth factors, miRNA/mRNA, among others. The discovery that exosomes are not bound to intraspecies interactions, but are also capable of interkingdom communication, has once again revolutionized the field of exosomes research. A rapidly growing body of literature is shedding light at novel sources and participation of exosomes in physiological or regenerative processes, infection and disease. For the purpose of this review we have categorized 6 sources of interest (animal products, body fluids, plants, bacteria, fungus and parasites) and linked their innate roles to the clinics and potential medical applications, such as cell-based therapy, diagnostics or drug delivery.
Collapse
Affiliation(s)
- Christina M A P Schuh
- Consorcio Regenero, Chilean Consortium for Regenerative Medicine, Santiago, Chile; Cells for Cells, Santiago, Chile; Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de los Andes, Santiago, Chile; Centro de Medicina Regenerativa, Facultad de Medicina Clínica Alemana-Universidad del Desarrollo, Santiago, Chile.
| | - Jimena Cuenca
- Consorcio Regenero, Chilean Consortium for Regenerative Medicine, Santiago, Chile; Cells for Cells, Santiago, Chile; Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de los Andes, Santiago, Chile
| | - Francisca Alcayaga-Miranda
- Consorcio Regenero, Chilean Consortium for Regenerative Medicine, Santiago, Chile; Cells for Cells, Santiago, Chile; Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de los Andes, Santiago, Chile
| | - Maroun Khoury
- Consorcio Regenero, Chilean Consortium for Regenerative Medicine, Santiago, Chile; Cells for Cells, Santiago, Chile; Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de los Andes, Santiago, Chile.
| |
Collapse
|
43
|
Zhang Y, Zhang Y, Yin Y, Li S. Detection of circulating exosomal miR-17-5p serves as a novel non-invasive diagnostic marker for non-small cell lung cancer patients. Pathol Res Pract 2019; 215:152466. [PMID: 31146974 DOI: 10.1016/j.prp.2019.152466] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 05/12/2019] [Accepted: 05/21/2019] [Indexed: 02/07/2023]
Abstract
Exosome-shuttled bioactive miRNAs act as novel non-invasive biomarkers for cancer diagnosis have received increasing attention. In this study, we aimed to investigate the expression signatures of exosomal miRNAs and develop a serum exosome-derived miRNA panel for diagnosis of non-small cell lung cancer (NSCLC). The miR-17-92 cluster including 6 miRNAs (miR-17-5p, miR-18a-5p, miR-19a-3p, miR-19b-1-5p, miR-20a-5p and miR-92a-1-5p) was selected as potential diagnostic candidate molecule. Then, expression profiles of the candidate miRNAs were firstly analyzed in 43 pairs of serum samples from the training set by quantitative real-time PCR, and the dysregulated miRNA along with three tumor markers (carcinoembryonic antigen, CEA; cytokeratin 19 fragment, CYFRA21-1; squamous cell carcinoma antigen, SCCA) were further validated in two independent cohorts, which consisted of training set (including 100 NSCLC patients and 90 healthy controls) and validation set (including 72 NSCLC patients and 47 healthy controls). The expression of miR-17-5p was significantly up-regulated in NSCLC patients compared with the healthy controls (P < 0.001), suggesting that miR-17-5p might have considerable clinical value in the diagnosis of NSCLC. Based on the data from the training set, we next used a logistic regression model to construct a 4-molecule panel consisting of miR-17-5p and three tumor markers for NSCLC diagnosis. The performance of such 4-molecule panel was verified with an area under the ROC curve of 0.860 (95% CI = 0.802 to 0.906, sensitivity = 63.0% and specificity = 93.3%) and 0.844 (95% CI = 0.766 to 0.904, sensitivity = 76.4% and specificity = 76.6%) in the training set and validation set, respectively. In conclusion, the newly developed diagnostic panel consisting of exosomal miR-17-5p, CEA, CYFRA21-1 and SCCA may have considerable clinical value in the diagnosis of NSCLC.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Respiratory and Critical Care Medicine, Qilu Hospital of Shandong University, wen hua xi lu 107#, Jinan, 250012, Shandong Province, China
| | - Yingmei Zhang
- Department of Respiratory Medicine, Linyi People's Hospital, jie fang lu dong duan 27#, Linyi, 276000, Shandong Province, China
| | - Yunhong Yin
- Department of Respiratory and Critical Care Medicine, Qilu Hospital of Shandong University, wen hua xi lu 107#, Jinan, 250012, Shandong Province, China
| | - Shuhai Li
- Department of Thoracic Surgery, Qilu Hospital of Shandong University, wen hua xi lu 107(#), Jinan, 250012, Shandong Province, China.
| |
Collapse
|
44
|
Exosomes and microvesicles in normal physiology, pathophysiology, and renal diseases. Pediatr Nephrol 2019; 34:11-30. [PMID: 29181712 PMCID: PMC6244861 DOI: 10.1007/s00467-017-3816-z] [Citation(s) in RCA: 251] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 09/16/2017] [Accepted: 09/19/2017] [Indexed: 12/18/2022]
Abstract
Extracellular vesicles are cell-derived membrane particles ranging from 30 to 5,000 nm in size, including exosomes, microvesicles, and apoptotic bodies. They are released under physiological conditions, but also upon cellular activation, senescence, and apoptosis. They play an important role in intercellular communication. Their release may also maintain cellular integrity by ridding the cell of damaging substances. This review describes the biogenesis, uptake, and detection of extracellular vesicles in addition to the impact that they have on recipient cells, focusing on mechanisms important in the pathophysiology of kidney diseases, such as thrombosis, angiogenesis, tissue regeneration, immune modulation, and inflammation. In kidney diseases, extracellular vesicles may be utilized as biomarkers, as they are detected in both blood and urine. Furthermore, they may contribute to the pathophysiology of renal disease while also having beneficial effects associated with tissue repair. Because of their role in the promotion of thrombosis, inflammation, and immune-mediated disease, they could be the target of drug therapy, whereas their favorable effects could be utilized therapeutically in acute and chronic kidney injury.
Collapse
|
45
|
Ichii O, Ohta H, Horino T, Nakamura T, Hosotani M, Mizoguchi T, Morishita K, Nakamura K, Sasaki N, Takiguchi M, Sato R, Oyamada K, Elewa YHA, Kon Y. Urinary Exosome-Derived microRNAs Reflecting the Changes in Renal Function in Cats. Front Vet Sci 2018; 5:289. [PMID: 30525049 PMCID: PMC6262179 DOI: 10.3389/fvets.2018.00289] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 10/31/2018] [Indexed: 12/22/2022] Open
Abstract
Increased incidence of kidney disease (KD) is a common concern in human and companion animals. Cats, in particular, are highly susceptible to KD. Novel KD biomarkers would help to address these problems. Therefore, we are focusing on microRNA, a highly conserved nucleic acid, as a KD biomarker for various animals. We previously reported that altered levels of urinary exosome (UExo)-derived microRNAs indicate renal pathologies in dogs. This study comprehensively examined UExo-derived microRNAs, which reflected the KD status in cats. The examined cats were divided into two groups: normal renal function (NR) and KD. Based on our previous data in dogs and cats, as well as the present data on UExo-derived microRNAs in cats by next-generation sequencing, let-7b, let-7f, miR-10a, miR-10b, miR-21a, miR-22, miR-26a, miR-27b, miR-146a, miR-181a, miR-191, and miR-486a were identified as biomarker candidates. In summary, the levels of UExo-derived let-7b, miR-22, and miR-26a significantly decreased in cats with KD from the early stages of the disease. UExo-derived miRNA levels normalized to urinary creatinine or total RNA of miR-21a was significantly higher in the KD group. Importantly, the ratio of UExo-derived miR-21a to let-7b showed a significant and strongest correlation with serum creatinine (ρ = 0.751), blood urea nitrogen (ρ = 0.754), and urinary creatinine (ρ = −0.421) among all examined indices. Further, the ratio of miR-181a to let-7b or miR-10b significantly correlated with the progression of renal dysfunction in the KD group. Thus, we identified that UExo-derived microRNAs in cats, and their raw and normalized levels could indicate altered renal function.
Collapse
Affiliation(s)
- Osamu Ichii
- Laboratory of Anatomy, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Hiroshi Ohta
- Laboratory of Veterinary Internal Medicine, Department of Veterinary Clinical Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Taro Horino
- Department of Endocrinology, Metabolism and Nephrology, Kochi Medical School, Kochi University, Nankoku, Japan
| | - Teppei Nakamura
- Laboratory of Anatomy, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan.,Section of Biological Safety Research, Chitose Laboratory, Japan Food Research Laboratories, Chitose, Japan
| | - Marina Hosotani
- Laboratory of Anatomy, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Tatsuya Mizoguchi
- Laboratory of Anatomy, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Keitaro Morishita
- Veterinary Teaching Hospital, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Kensuke Nakamura
- Organization for Promotion of Tenure Track, University of Miyazaki, Miyazaki, Japan
| | - Noboru Sasaki
- Laboratory of Veterinary Internal Medicine, Department of Veterinary Clinical Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Mitsuyoshi Takiguchi
- Laboratory of Veterinary Internal Medicine, Department of Veterinary Clinical Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Ryo Sato
- Matsubara Animal Hospital, Matsubara, Japan
| | | | - Yaser Hosny Ali Elewa
- Laboratory of Anatomy, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan.,Department of Histology and Cytology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Yasuhiro Kon
- Laboratory of Anatomy, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
46
|
Chen T, Wang C, Yu H, Ding M, Zhang C, Lu X, Zhang CY, Zhang C. Increased urinary exosomal microRNAs in children with idiopathic nephrotic syndrome. EBioMedicine 2018; 39:552-561. [PMID: 30467011 PMCID: PMC6355644 DOI: 10.1016/j.ebiom.2018.11.018] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 11/07/2018] [Accepted: 11/10/2018] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Urinary exosomal miRNAs are gaining increasing attention for their potential as ideal non-invasive biomarkers for kidney diseases; however, little is known about their diagnostic ability for paediatric nephrotic syndrome (NS). This study explored the clinical value of urinary exosomal miRNAs for paediatric idiopathic NS. METHODS Urine samples were collected from 129 NS children and 126 age-/sex-matched healthy controls. The miRNA profile of urinary exosomes was analysed by high-throughput Illumina sequencing via synthesis (SBS) technology followed by verification with a quantitative reverse-transcription polymerase chain reaction (RT-qPCR) assay arranged in two independent cohorts. Additionally, paired urine samples from 65 of these patients were collected before and after treatment. FINDINGS The Illumina SBS identified 30 markedly increased urinary exosomal miRNAs in NS children compared with controls (≥ 5-fold, P < .05). Fifteen miRNAs were selected for further investigation, of which 5 (miR-194-5p, miR-146b-5p, miR-378a-3p, miR-23b-3p and miR-30a-5p) were verified by RT-qPCR to be significantly and steadily increased in NS (> 3-fold, P < .01) and markedly reduced during the clinical remission period (P < .001). Moreover, the concentrations of miR-194-5p and miR-23b-3p were significantly positively correlated with the urine protein content and were markedly higher in the high urine protein group than in the low urine protein group (P < .001 and P < .01, respectively). INTERPRETATIONS We identified 5 altered urinary exosomal miRNAs in NS children with disease progression and treatment. These urinary exosomal miRNAs could be promising and non-invasive potential biomarker candidates for diagnosing, monitoring and stratifying paediatric NS. FUND: National Natural Science Foundation of China; Fund of State Key Laboratory of Analytical Chemistry for Life Science; National Basic Research Programme of China; Foundation of Jiangsu Provincial Medical Youth Talent.
Collapse
Affiliation(s)
- Tingting Chen
- Department of Clinical Laboratory, Jinling Hospital, Nanjing School of Clinical Medicine, Southern Medical University, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing, China; State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advance Research Institute of Life Sciences, Nanjing University, School of Life Sciences, Nanjing, China
| | - Cheng Wang
- Department of Clinical Laboratory, Jinling Hospital, Nanjing School of Clinical Medicine, Southern Medical University, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing, China; State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advance Research Institute of Life Sciences, Nanjing University, School of Life Sciences, Nanjing, China
| | - Hanqing Yu
- Department of Clinical Laboratory, Nanjing Children's Hospital, Nanjing, China
| | - Meng Ding
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advance Research Institute of Life Sciences, Nanjing University, School of Life Sciences, Nanjing, China
| | - Cuiping Zhang
- Department of Clinical Laboratory, Jinling Hospital, Nanjing School of Clinical Medicine, Southern Medical University, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing, China
| | - Xiaolan Lu
- Department of Clinical Laboratory, Jinling Hospital, Nanjing School of Clinical Medicine, Southern Medical University, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing, China; State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advance Research Institute of Life Sciences, Nanjing University, School of Life Sciences, Nanjing, China
| | - Chen-Yu Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advance Research Institute of Life Sciences, Nanjing University, School of Life Sciences, Nanjing, China.
| | - Chunni Zhang
- Department of Clinical Laboratory, Jinling Hospital, Nanjing School of Clinical Medicine, Southern Medical University, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing, China; State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advance Research Institute of Life Sciences, Nanjing University, School of Life Sciences, Nanjing, China.
| |
Collapse
|
47
|
Jo A, Lee HE, Kim HS. Identification and expression analysis of a novel miRNA derived from ERV-E1 LTR in Equus caballus. Gene 2018; 687:238-245. [PMID: 30453070 DOI: 10.1016/j.gene.2018.11.043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 11/09/2018] [Accepted: 11/15/2018] [Indexed: 12/12/2022]
Abstract
Horses (Equus caballus) have been domesticated and bred to enhance speed, strength, and agility. Members of the Equus caballus Endogenous Retrovirus (EqERV) family affect several of these abilities in horses. EqERV elements have been integrated in the horse genome during evolution and generate repeat elements such as long terminal repeats (LTRs). LTR sequences are involved in retrovirus replication and play an essential function in post-transcriptional control mechanisms, such as by providing binding sites for microRNAs (miRNAs) or generating miRNA precursors. In this study, we identified a novel miRNA derived from EqERV-E1 LTR using various bioinformatics tools. To examine the relationship between EqERV-E1 LTR and similar elements, we used BLAST2seq and phylogenetic analysis. LTR sequences were located in the untranslated region (UTR) of mRNAs and also formed the stem-loop secondary structure. The sequence was registered in the DDBJ database as LTR derived miRNA under the accession number corresponding to LC383797 (referred to eca-miR-1804). Quantitative polymerase chain reaction (qPCR) to confirm the expression of eca-miR-1804 and the similar miR-1255a, showed an almost identical expression pattern in eight different equine tissues. Therefore, these data imply that the LTR could function as an miRNA, which is expressed in the examined equine tissues. In addition, the current study provides inputs for additional functional studies concerning the LTR of other EqERV families.
Collapse
Affiliation(s)
- Ara Jo
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea; Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea
| | - Hee-Eun Lee
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea; Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea
| | - Heui-Soo Kim
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea; Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea.
| |
Collapse
|
48
|
Biogenesis, Stabilization, and Transport of microRNAs in Kidney Health and Disease. Noncoding RNA 2018; 4:ncrna4040030. [PMID: 30400314 PMCID: PMC6315559 DOI: 10.3390/ncrna4040030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 10/23/2018] [Accepted: 10/25/2018] [Indexed: 01/04/2023] Open
Abstract
The kidneys play key roles in the maintenance of homeostasis, including fluid balance, blood filtration, erythropoiesis and hormone production. Disease-driven perturbation of renal function therefore has profound pathological effects, and chronic kidney disease is a leading cause of morbidity and mortality worldwide. Successive annual increases in global chronic kidney disease patient numbers in part reflect upward trends for predisposing factors, including diabetes, obesity, hypertension, cardiovascular disease and population age. Each kidney typically possesses more than one million functional units called nephrons, and each nephron is divided into several discrete domains with distinct cellular and functional characteristics. A number of recent analyses have suggested that signaling between these nephron regions may be mediated by microRNAs. For this to be the case, several conditions must be fulfilled: (i) microRNAs must be released by upstream cells into the ultrafiltrate; (ii) these microRNAs must be packaged protectively to reach downstream cells intact; (iii) these packaged microRNAs must be taken up by downstream recipient cells without functional inhibition. This review will examine the evidence for each of these hypotheses and discuss the possibility that this signaling process might mediate pathological effects.
Collapse
|
49
|
Improved isolation strategies to increase the yield and purity of human urinary exosomes for biomarker discovery. Sci Rep 2018; 8:3945. [PMID: 29500443 PMCID: PMC5834546 DOI: 10.1038/s41598-018-22142-x] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 02/12/2018] [Indexed: 12/13/2022] Open
Abstract
Circulating miRNAs are detected in extracellular space and body fluids such as urine. Circulating RNAs can be packaged in secreted urinary extracellular vesicles (uEVs) and thus protected from degradation. Urinary exosome preparations might contain specific miRNAs, relevant as biomarkers in renal and bladder diseases. Major difficulties in application of uEVs into the clinical environment are the high variability and low reproducibility of uEV isolation methods. Here we used five different methods to isolate uEVs and compared the size distribution, morphology, yield, presence of exosomal protein markers and RNA content of uEVs. We present an optimized ultracentrifugation and size exclusion chromatography approach for highly reproducible isolation for 50-150 nm uEVs, corresponding to the exosomes, from 50 ml urine. We profiled the miRNA content of uEVs and total urine from the same samples with the NanoString platform and validated the data using qPCR. Our results indicate that 18 miRNAs, robustly detected in uEVs were always present in the total urine. However, 15 miRNAs could be detected only in the total urine preparations and might represent naked circulating miRNA species. This is a novel unbiased and reproducible strategy for uEVs isolation, content normalization and miRNA cargo analysis, suitable for biomarker discovery studies.
Collapse
|
50
|
Isolation and characterization of urinary extracellular vesicles: implications for biomarker discovery. Nat Rev Nephrol 2017. [PMID: 29081510 DOI: 10.1038/nrneph.2017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Urine is a valuable diagnostic medium and, with the discovery of urinary extracellular vesicles, is viewed as a dynamic bioactive fluid. Extracellular vesicles are lipid-enclosed structures that can be classified into three categories: exosomes, microvesicles (or ectosomes) and apoptotic bodies. This classification is based on the mechanisms by which membrane vesicles are formed: fusion of multivesicular bodies with the plasma membranes (exosomes), budding of vesicles directly from the plasma membrane (microvesicles) or those shed from dying cells (apoptotic bodies). During their formation, urinary extracellular vesicles incorporate various cell-specific components (proteins, lipids and nucleic acids) that can be transferred to target cells. The rigour needed for comparative studies has fueled the search for optimal approaches for their isolation, purification, and characterization. RNA, the newest extracellular vesicle component to be discovered, has received substantial attention as an extracellular vesicle therapeutic, and compelling evidence suggests that ex vivo manipulation of microRNA composition may have uses in the treatment of kidney disorders. The results of these studies are building the case that urinary extracellular vesicles act as mediators of renal pathophysiology. As the field of extracellular vesicle studies is burgeoning, this Review focuses on primary data obtained from studies of human urine rather than on data from studies of laboratory animals or cultured immortalized cells.
Collapse
|