1
|
Shcherbakov DN, Isaeva AA, Mustaev EA. Treatment of Ebola Virus Disease: From Serotherapy to the Use of Monoclonal Antibodies. Antibodies (Basel) 2025; 14:22. [PMID: 40136471 PMCID: PMC11939263 DOI: 10.3390/antib14010022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 02/14/2025] [Accepted: 02/19/2025] [Indexed: 03/27/2025] Open
Abstract
Ebola virus disease (EVD) is an acute illness with a high-case fatality rate (CFR) caused by an RNA virus belonging to the Filoviridae family. Over the past 50 years, regular EVD outbreaks have been reported. The West African EVD outbreak of 2013-2016 proved to be significantly more widespread and complex than previous ones, resulting in approximately 11,000 deaths. A coordinated international effort was required to bring the outbreak under control. One of the main challenges faced by clinicians and researchers combating EVD was the absence of vaccines and preventive treatments. Only recently have efforts led to the development of effective therapeutic options. Among these, monoclonal antibody-based drugs have emerged as the most promising agents for the urgent treatment of EVD. This article aims to review the key milestones in the development of antibody-based therapies for EVD, tracing the journey from the use of convalescent serum to the creation of effective monoclonal antibody-based drugs and their combinations.
Collapse
Affiliation(s)
- Dmitriy N. Shcherbakov
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, Koltsovo 630559, Russia;
| | - Anastasiya A. Isaeva
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, Koltsovo 630559, Russia;
| | - Egor A. Mustaev
- Department of Natural Sciences, Novosibirsk State University, Pirogova st., 2, Novosibirsk 630090, Russia;
- Synchrotron Radiation Facility—Siberian Circular Photon Source “SKlF” Boreskov Institute of Catalysis of Siberian Branch of the Russian Academy of Sciences, Nikolskiy pr-t, 1, Koltsovo 630559, Russia
| |
Collapse
|
2
|
Cao J, Gan M, Zhang Z, Lin X, Ouyang Q, Fu H, Xu X, Wang Z, Li X, Wang Y, Cai H, Lei Q, Liu L, Wang H, Fan X. A Hidden Guardian: The Stability and Spectrum of Antibody-Dependent Cell-Mediated Cytotoxicity in COVID-19 Response in Chinese Adults. Vaccines (Basel) 2025; 13:262. [PMID: 40266151 PMCID: PMC11945335 DOI: 10.3390/vaccines13030262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 02/20/2025] [Accepted: 02/26/2025] [Indexed: 04/24/2025] Open
Abstract
OBJECTIVES Identifying immune-protective biomarkers is crucial for the effective management and mitigation of current and future COVID-19 outbreaks, particularly in preventing or counteracting the immune evasion exhibited by the Omicron variants. The emergence of SARS-CoV-2 variants, especially those within the Omicron lineage, has highlighted their capacity to evade neutralizing antibodies, emphasizing the need to understand the role of antibody-dependent cell-mediated cytotoxicity (ADCC) in combating these infections. METHODS This study, conducted in Qichun City, Hubei province, from December 2021 to March 2023, involved 50 healthy Chinese adults who had received two doses of inactivated vaccines and had subsequently experienced mild infections with the Omicron BA.5 variant. Blood samples from these 50 healthy Chinese adults were collected at six distinct time points: at baseline and at the 1st, 3rd, 6th, and 9th months following the third dose of the inactivated vaccine, as well as 3 months post-breakthrough infection. Their sera were analyzed to assess ADCC and neutralization effects. RESULTS The results indicated that the antibodies elicited by the inactivated SARS-CoV-2 vaccine targeted the spike protein, exhibiting both pre-existing neutralizing and ADCC activities against Omicron variants BA.5 and XBB.1.5. Notably, the ADCC activity demonstrated greater stability compared to that of the neutralizing effects, persisting for at least 15 months post-vaccination, and could be augmented by additional vaccine doses and breakthrough infections. The ADCC effect associated with hybrid immunity effectively targets a spectrum of prospective Omicron variants, including BA.2.86, CH.1.1, EG.5.1, and JN.1. CONCLUSIONS In light of its stability and broad-spectrum efficacy, we recommend the use of the ADCC effect as a biomarker for assessing protective immunity and guiding the development of vaccines and monoclonal antibodies.
Collapse
Affiliation(s)
- Jinge Cao
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan 430030, China; (J.C.); (M.G.); (X.L.); (Q.O.); (H.F.); (X.X.)
| | - Mengze Gan
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan 430030, China; (J.C.); (M.G.); (X.L.); (Q.O.); (H.F.); (X.X.)
| | - Zhihao Zhang
- Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Huazhong University of Science and Technology, Wuhan 430030, China; (Z.Z.); (Z.W.); (X.L.); (Y.W.); (H.C.); (L.L.)
| | - Xiaosong Lin
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan 430030, China; (J.C.); (M.G.); (X.L.); (Q.O.); (H.F.); (X.X.)
| | - Qi Ouyang
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan 430030, China; (J.C.); (M.G.); (X.L.); (Q.O.); (H.F.); (X.X.)
| | - Hui Fu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan 430030, China; (J.C.); (M.G.); (X.L.); (Q.O.); (H.F.); (X.X.)
| | - Xinyue Xu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan 430030, China; (J.C.); (M.G.); (X.L.); (Q.O.); (H.F.); (X.X.)
| | - Zhen Wang
- Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Huazhong University of Science and Technology, Wuhan 430030, China; (Z.Z.); (Z.W.); (X.L.); (Y.W.); (H.C.); (L.L.)
| | - Xinlian Li
- Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Huazhong University of Science and Technology, Wuhan 430030, China; (Z.Z.); (Z.W.); (X.L.); (Y.W.); (H.C.); (L.L.)
| | - Yaxin Wang
- Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Huazhong University of Science and Technology, Wuhan 430030, China; (Z.Z.); (Z.W.); (X.L.); (Y.W.); (H.C.); (L.L.)
| | - Hao Cai
- Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Huazhong University of Science and Technology, Wuhan 430030, China; (Z.Z.); (Z.W.); (X.L.); (Y.W.); (H.C.); (L.L.)
| | - Qing Lei
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China;
| | - Li Liu
- Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Huazhong University of Science and Technology, Wuhan 430030, China; (Z.Z.); (Z.W.); (X.L.); (Y.W.); (H.C.); (L.L.)
| | - Hao Wang
- Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Huazhong University of Science and Technology, Wuhan 430030, China; (Z.Z.); (Z.W.); (X.L.); (Y.W.); (H.C.); (L.L.)
| | - Xionglin Fan
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan 430030, China; (J.C.); (M.G.); (X.L.); (Q.O.); (H.F.); (X.X.)
| |
Collapse
|
3
|
Dunagan MM, Dábilla N, McNinch C, Brenchley JM, Dolan PT, Fox JM. Interaction of the endogenous antibody response with activating FcγRs enhance control of Mayaro virus through monocytes. PLoS Pathog 2025; 21:e1012944. [PMID: 39993025 PMCID: PMC11884725 DOI: 10.1371/journal.ppat.1012944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 03/06/2025] [Accepted: 01/30/2025] [Indexed: 02/26/2025] Open
Abstract
Mayaro virus (MAYV) is an emerging arbovirus. Previous studies have shown antibody Fc effector functions are critical for optimal monoclonal antibody-mediated protection against alphaviruses; however, the requirement of Fc gamma receptors (FcγRs) for protection during natural infection has not been evaluated. Here, we showed mice lacking activating FcγRs (FcRγ-/-) developed prolonged clinical disease with increased MAYV in joint-associated tissues. Viral reduction was associated with anti-MAYV cell surface binding antibodies rather than neutralizing antibodies. Lack of Fc-FcγR engagement increased the number of monocytes present in the joint-associated tissue through chronic timepoints. Single-cell RNA sequencing showed elevated levels of pro-inflammatory monocytes in joint-associated tissue with increased MAYV RNA present in FcRγ-/- monocytes and macrophages. Transfer of FcRγ-/- monocytes into wild type animals was sufficient to increase virus in joint-associated tissue. Overall, this study suggests that engagement of antibody Fc with activating FcγRs promotes protective responses during MAYV infection and prevents a pro-viral role for monocytes.
Collapse
Affiliation(s)
- Megan M. Dunagan
- Emerging Virus Immunity Unit, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Nathânia Dábilla
- Quantitative Virology and Evolution Unit, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Colton McNinch
- Bioinformatics and Computational Bioscience Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Jason M. Brenchley
- Barrier Immunity Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Patrick T. Dolan
- Quantitative Virology and Evolution Unit, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Julie M. Fox
- Emerging Virus Immunity Unit, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
4
|
Fan P, Sun B, Liu Z, Fang T, Ren Y, Zhao X, Song Z, Yang Y, Li J, Yu C, Chen W. A pan-orthoebolavirus neutralizing antibody encoded by mRNA effectively prevents virus infection. Emerg Microbes Infect 2024; 13:2432366. [PMID: 39560055 PMCID: PMC11590195 DOI: 10.1080/22221751.2024.2432366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/24/2024] [Accepted: 11/17/2024] [Indexed: 11/20/2024]
Abstract
Orthoebolavirus is a genus of hazardous pathogens that has caused over 30 outbreaks. However, currently approved therapies are limited in scope, as they are only effective against the Ebola virus and lack cross-protection against other orthoebolaviruses. Here, we demonstrate that a previously isolated human-derived antibody, 2G1, can recognize the glycoprotein (GP) of every orthoebolavirus species. The cryo-electron microscopy structure of 2G1 Fab in complex with the GPΔMucin trimer reveals that 2G1 binds a quaternary pocket formed by three subunits from two GP protomers. 2G1 recognizes highly conserved epitopes among filoviruses and achieves neutralization by blocking GP proteolysis. We designed an efficient mRNA module capable of producing test antibodies at expression levels exceeding 1500 ng/mL in vitro. The lipid nanoparticle (LNP)-encapsulated mRNA-2G1 exhibited potent neutralizing activities against the HIV-pseudotyped Ebola and Sudan viruses that were 19.8 and 12.5 times that of IgG format, respectively. In mice, the antibodies encoded by the mRNA-2G1-LNP peaked within 24 h, effectively blocking the invasion of pseudoviruses with no apparent liver toxicity. This study suggests that the 2G1 antibody and its mRNA formulation represent promising candidate interventions for orthoebolavirus disease, and it provides an efficient mRNA framework applicable to antibody-based therapies.
Collapse
Affiliation(s)
- Pengfei Fan
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, People’s Republic of China
| | - Bingjie Sun
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, People’s Republic of China
| | - Zixuan Liu
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, People’s Republic of China
| | - Ting Fang
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, People’s Republic of China
| | - Yi Ren
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, People’s Republic of China
| | - Xiaofan Zhao
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, People’s Republic of China
| | - Zhenwei Song
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, People’s Republic of China
| | - Yilong Yang
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, People’s Republic of China
| | - Jianmin Li
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, People’s Republic of China
| | - Changming Yu
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, People’s Republic of China
| | - Wei Chen
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, People’s Republic of China
| |
Collapse
|
5
|
Mwesigwa B, Sawe F, Oyieko J, Mwakisisile J, Viegas E, Akintunde GA, Kosgei J, Kokogho A, Ntinginya N, Jani I, Shukarev G, Hooper JW, Kwilas SA, Ward LA, Rusnak J, Bounds C, Overman R, Badorrek CS, Eller LA, Eller MA, Polyak CS, Moodley A, Tran CL, Costanzo MC, Leggat DJ, Paquin-Proulx D, Naluyima P, Anumendem DN, Gaddah A, Luhn K, Hendriks J, McLean C, Douoguih M, Kibuuka H, Robb ML, Robinson C, Ake JA. Safety and Immunogenicity of Accelerated Heterologous 2-Dose Ebola Vaccine Regimens in Adults With and Without HIV in Africa. Clin Infect Dis 2024; 79:888-900. [PMID: 38657084 DOI: 10.1093/cid/ciae215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 04/05/2024] [Accepted: 04/17/2024] [Indexed: 04/26/2024] Open
Abstract
BACKGROUND Shorter prophylactic vaccine schedules may offer more rapid protection against Ebola in resource-limited settings. METHODS This randomized, observer-blind, placebo-controlled, phase 2 trial conducted in 5 sub-Saharan African countries included people without human immunodeficiency virus (HIV) (PWOH, n = 249) and people with HIV (PWH, n = 250). Adult participants received 1 of 2 accelerated Ebola vaccine regimens (MVA-BN-Filo, Ad26.ZEBOV administered 14 days apart [n = 79] or Ad26.ZEBOV, MVA-BN-Filo administered 28 days apart [n = 322]) or saline/placebo (n = 98). The primary endpoints were safety (adverse events [AEs]) and immunogenicity (Ebola virus [EBOV] glycoprotein-specific binding antibody responses). Binding antibody responders were defined as participants with a >2.5-fold increase from baseline or the lower limit of quantification if negative at baseline. RESULTS The mean age was 33.4 years, 52% of participants were female, and among PWH, the median CD4+ cell count was 560.0 (interquartile range, 418.0-752.0) cells/μL. AEs were generally mild/moderate with no vaccine-related serious AEs or remarkable safety profile differences by HIV status. At 21 days post-dose 2, EBOV glycoprotein-specific binding antibody response rates in vaccine recipients were 99% for the 14-day regimen (geometric mean concentrations [GMCs]: 5168 enzyme-linked immunosorbent assay units [EU]/mL in PWOH; 2509 EU/mL in PWH) and 98% for the 28-day regimen (GMCs: 6037 EU/mL in PWOH; 2939 EU/mL in PWH). At 12 months post-dose 2, GMCs in PWOH and PWH were 635 and 514 EU/mL, respectively, for the 14-day regimen and 331 and 360 EU/mL, respectively, for the 28-day regimen. CONCLUSIONS Accelerated 14- and 28-day Ebola vaccine regimens were safe and immunogenic in PWOH and PWH in Africa. Clinical Trials Registration. NCT02598388.
Collapse
Affiliation(s)
- Betty Mwesigwa
- Makerere University Walter Reed Project, Kampala, Uganda
| | - Fredrick Sawe
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- HJF Medical Research International, Kisumu, Kenya
| | - Janet Oyieko
- HJF Medical Research International, Kisumu, Kenya
- Kenya Medical Research Institute/US Army Medical Research Directorate-Africa, Kisumu, Kenya
| | - Joel Mwakisisile
- National Institute for Medical Research-Mbeya Medical Research Center, Mbeya, Tanzania
| | - Edna Viegas
- Instituto Nacional de Saúde, Maputo, Mozambique
| | - Gideon Akindiran Akintunde
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- HJF Medical Research International, Abuja, Nigeria
- US Army Medical Research Directorate-Africa, Abuja, Nigeria
| | - Josphat Kosgei
- HJF Medical Research International, Kisumu, Kenya
- Kenya Medical Research Institute/US Army Medical Research Directorate-Africa, Kisumu, Kenya
| | - Afoke Kokogho
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- HJF Medical Research International, Abuja, Nigeria
- US Army Medical Research Directorate-Africa, Abuja, Nigeria
| | - Nyanda Ntinginya
- National Institute for Medical Research-Mbeya Medical Research Center, Mbeya, Tanzania
| | - Ilesh Jani
- Instituto Nacional de Saúde, Maputo, Mozambique
| | | | - Jay W Hooper
- Virology Division, US Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, USA
| | - Steven A Kwilas
- Virology Division, US Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, USA
| | - Lucy A Ward
- US Department of Defense (DOD) Joint Program Executive Office for Chemical, Biological, Radiological and Nuclear Defense (JPEO-CBRND), Joint Project Manager for Chemical, Biological, Radiological, and Nuclear Medical (JPM CBRN Medical), Fort Detrick, Maryland, USA
| | - Janice Rusnak
- Contract Support for DOD JPEO-CBRND, JPM CBRN Medical, Fort Detrick, Maryland, USA
| | - Callie Bounds
- US Department of Defense (DOD) Joint Program Executive Office for Chemical, Biological, Radiological and Nuclear Defense (JPEO-CBRND), Joint Project Manager for Chemical, Biological, Radiological, and Nuclear Medical (JPM CBRN Medical), Fort Detrick, Maryland, USA
| | - Rachel Overman
- US Department of Defense (DOD) Joint Program Executive Office for Chemical, Biological, Radiological and Nuclear Defense (JPEO-CBRND), Joint Project Manager for Chemical, Biological, Radiological, and Nuclear Medical (JPM CBRN Medical), Fort Detrick, Maryland, USA
| | | | - Leigh Anne Eller
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Michael A Eller
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Christina S Polyak
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Amber Moodley
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Chi L Tran
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Margaret C Costanzo
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - David J Leggat
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Dominic Paquin-Proulx
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | | | | | | | - Kerstin Luhn
- Janssen Vaccines and Prevention, Leiden, The Netherlands
| | - Jenny Hendriks
- Janssen Vaccines and Prevention, Leiden, The Netherlands
| | - Chelsea McLean
- Janssen Vaccines and Prevention, Leiden, The Netherlands
| | | | - Hannah Kibuuka
- Makerere University Walter Reed Project, Kampala, Uganda
| | - Merlin L Robb
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | | | - Julie A Ake
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| |
Collapse
|
6
|
Zhang Y, Zhang M, Wu H, Wu X, Zheng H, Feng J, Wang M, Wang J, Luo L, Xiao H, Qiao C, Li X, Zheng Y, Huang W, Wang Y, Wang Y, Feng J, Chen G. Afucosylated anti-EBOV antibody MIL77-3 engages sGP to elicit NK cytotoxicity. J Virol 2024; 98:e0068524. [PMID: 39162435 PMCID: PMC11406966 DOI: 10.1128/jvi.00685-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 06/24/2024] [Indexed: 08/21/2024] Open
Abstract
MIL77-3 is one component of antibody cocktail that is produced in our lab and represents an effective regimen for animals suffering from Zaire Ebolavirus (EBOV) infection. MIL77-3 is engineered to increase its affinity for the FcγRIIIa (CD16a) by deleting the fucose in the framework region. The potential effects of this modification on host immune responses, however, remain largely unknown. Herein, we demonstrated that MIL77-3 recognized secreted glycoproptein (sGP), produced by EBOV, and formed the immunocomplex to potently augment antibody-dependent cytotoxicity of human peripheral blood-derived natural killer cells (pNKs), including CD56dim and CD56bright subpopulations, in contrast to the counterparts (Mab114, rEBOV548, fucosylated MIL77-3). Intriguingly, this effect was not observed when NK92-CD16a cell line was utilized and restored by the addition of beads-coupled or membrane-anchored sGP in combination with MIL77-3. Furthermore, sGP bound to unrecognized receptors on T cells contaminated in pNKs rather than NK92-CD16a cells. Administration of beads-coupled sGP/MIL77-3 complex in mice elicited NK activation. Overall, this work reveals an immune-stimulating function of sGP/MIL77-3 complex by triggering cytotoxic activity of NK cells, highlighting the necessity to evaluate the potential impact of MIL77-3 on host immune reaction in clinical trials. IMPORTANCE Zaire Ebolavirus (EBOV) is highly lethal and causes sporadic outbreaks. The passive administration of monoclonal antibodies (mAbs) represents a promising treatment regimen against EBOV. Mounting evidence has shown that the efficacy of a subset of therapeutic mAbs in vivo is intimately associated with its capacity to trigger NK activity, supporting glycomodification of Fc region of anti-EBOV mAbs as a putative strategy to enhance Fc-mediated immune effector function as well as protection in vivo. Our work here uncovers the potential harmful influence of this modification on host immune responses, especially for mAbs with cross-reactivity to secreted glycoproptein (sGP) (e.g., MIL77-3), and highlights it is necessary to evaluate the NK-stimulating activity of a fucosylated mAb engaged with sGP when a new candidate is developed.
Collapse
Affiliation(s)
- Yuting Zhang
- Institute of Pharmacology and Toxicology, Beijing, China
| | - Min Zhang
- Institute of Pharmacology and Toxicology, Beijing, China
| | - Haiyan Wu
- Institute of Pharmacology and Toxicology, Beijing, China
| | - Xiaonan Wu
- Joint National Laboratory for Antibody Drug Engineering, Henan University, Kaifeng, China
| | - Hang Zheng
- Institute of Pharmacology and Toxicology, Beijing, China
- Inner Mongolia Key Lab of Molecular Biology, School of Basic Medical Sciences, Inner Mongolia Medical University, Hohhot, China
| | - Junjuan Feng
- Institute of Pharmacology and Toxicology, Beijing, China
- Inner Mongolia Key Lab of Molecular Biology, School of Basic Medical Sciences, Inner Mongolia Medical University, Hohhot, China
| | - Mianjing Wang
- Institute of Pharmacology and Toxicology, Beijing, China
- Inner Mongolia Key Lab of Molecular Biology, School of Basic Medical Sciences, Inner Mongolia Medical University, Hohhot, China
| | - Jing Wang
- Institute of Pharmacology and Toxicology, Beijing, China
| | - Longlong Luo
- Institute of Pharmacology and Toxicology, Beijing, China
| | - He Xiao
- Institute of Pharmacology and Toxicology, Beijing, China
| | - Chunxia Qiao
- Institute of Pharmacology and Toxicology, Beijing, China
| | - Xinying Li
- Institute of Pharmacology and Toxicology, Beijing, China
| | - Yuanqiang Zheng
- Inner Mongolia Key Lab of Molecular Biology, School of Basic Medical Sciences, Inner Mongolia Medical University, Hohhot, China
| | - Weijin Huang
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, National Institutes for Food and Drug Control, Beijing, China
| | - Youchun Wang
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, National Institutes for Food and Drug Control, Beijing, China
| | - Yi Wang
- Department of Hematology, The Fifth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Jiannan Feng
- Institute of Pharmacology and Toxicology, Beijing, China
| | - Guojiang Chen
- Institute of Pharmacology and Toxicology, Beijing, China
| |
Collapse
|
7
|
Dunagan MM, Dábilla N, McNinch C, Brenchley JM, Dolan PT, Fox JM. Activating FcγRs on monocytes are necessary for optimal Mayaro virus clearance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.23.604823. [PMID: 39149309 PMCID: PMC11326306 DOI: 10.1101/2024.07.23.604823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Mayaro virus (MAYV) is an emerging arbovirus. Previous studies have shown antibody Fc effector functions are critical for optimal monoclonal antibody-mediated protection against alphaviruses; however, the requirement of Fc gamma receptors (FcγRs) for protection during natural infection has not been evaluated. Here, we showed mice lacking activating FcγRs (FcRγ-/-) developed prolonged clinical disease with more virus in joint-associated tissues. Viral clearance was associated with anti-MAYV cell surface binding rather than neutralizing antibodies. Lack of Fc-FcγR engagement increased the number of monocytes through chronic timepoints. Single cell RNA sequencing showed elevated levels of pro-inflammatory monocytes in joint-associated tissue with increased MAYV RNA present in FcRγ-/- monocytes and macrophages. Transfer of FcRγ-/- monocytes into wild type animals was sufficient to increase virus in joint-associated tissue. Overall, this study suggests that engagement of antibody Fc with activating FcγRs promotes protective responses during MAYV infection and prevents monocytes from being potential targets of infection.
Collapse
Affiliation(s)
- Megan M. Dunagan
- Emerging Virus Immunity Unit, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Nathânia Dábilla
- Quantitative Virology and Evolution Unit, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Colton McNinch
- Bioinformatics and Computational Bioscience Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Jason M. Brenchley
- Barrier Immunity Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Patrick T. Dolan
- Quantitative Virology and Evolution Unit, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Julie M. Fox
- Emerging Virus Immunity Unit, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| |
Collapse
|
8
|
Sorvillo TE, Karaaslan E, Scholte FEM, Welch SR, Coleman-McCray JD, Genzer SC, Ritter JM, Hayes HM, Jain S, Pegan SD, Bergeron É, Montgomery JM, Spiropoulou CF, Spengler JR. Replicon particle vaccination induces non-neutralizing anti-nucleoprotein antibody-mediated control of Crimean-Congo hemorrhagic fever virus. NPJ Vaccines 2024; 9:88. [PMID: 38782933 PMCID: PMC11116556 DOI: 10.1038/s41541-024-00877-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 04/17/2024] [Indexed: 05/25/2024] Open
Abstract
Crimean-Congo hemorrhagic fever virus (CCHFV) can cause severe human disease and is considered a WHO priority pathogen due to the lack of efficacious vaccines and antivirals. A CCHF virus replicon particle (VRP) has previously shown protective efficacy in a lethal Ifnar-/- mouse model when administered as a single dose at least 3 days prior to challenge. Here, we determine that non-specific immune responses are not sufficient to confer short-term protection, since Lassa virus VRP vaccination 3 days prior to CCHFV challenge was not protective. We also investigate how CCHF VRP vaccination confers protective efficacy by examining viral kinetics, histopathology, clinical analytes and immunity early after challenge (3 and 6 days post infection) and compare to unvaccinated controls. We characterize how these effects differ based on vaccination period and correspond to previously reported CCHF VRP-mediated protection. Vaccinating Ifnar-/- mice with CCHF VRP 28, 14, 7, or 3 days prior to challenge, all known to confer complete protection, significantly reduced CCHFV viral load, mucosal shedding, and markers of clinical disease, with greater reductions associated with longer vaccination periods. Interestingly, there were no significant differences in innate immune responses, T cell activation, or antibody titers after challenge between groups of mice vaccinated a week or more before challenge, but higher anti-NP antibody avidity and effector function (ADCD) were positively associated with longer vaccination periods. These findings support the importance of antibody-mediated responses in VRP vaccine-mediated protection against CCHFV infection.
Collapse
Affiliation(s)
- Teresa E Sorvillo
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, USA
- Infectious Disease Department, CDC Foundation, Atlanta, GA, USA
| | - Elif Karaaslan
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, USA
- Division of Biomedical Sciences, University of California Riverside, Riverside, CA, USA
| | - Florine E M Scholte
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Stephen R Welch
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - JoAnn D Coleman-McCray
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Sarah C Genzer
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Jana M Ritter
- Infectious Diseases Pathology Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Heather M Hayes
- Infectious Diseases Pathology Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Shilpi Jain
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Scott D Pegan
- Division of Biomedical Sciences, University of California Riverside, Riverside, CA, USA
| | - Éric Bergeron
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Joel M Montgomery
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Christina F Spiropoulou
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Jessica R Spengler
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| |
Collapse
|
9
|
Ake JA, Paolino K, Hutter JN, Cicatelli SB, Eller LA, Eller MA, Costanzo MC, Paquin-Proulx D, Robb ML, Tran CL, Anova L, Jagodzinski LL, Ward LA, Kilgore N, Rusnak J, Bounds C, Badorrek CS, Hooper JW, Kwilas SA, Ilsbroux I, Anumendem DN, Gaddah A, Shukarev G, Bockstal V, Luhn K, Douoguih M, Robinson C. Safety and Immunogenicity of an Accelerated Ebola Vaccination Schedule in People with and without Human Immunodeficiency Virus: A Randomized Clinical Trial. Vaccines (Basel) 2024; 12:497. [PMID: 38793748 PMCID: PMC11125575 DOI: 10.3390/vaccines12050497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/26/2024] Open
Abstract
The safety and immunogenicity of the two-dose Ebola vaccine regimen MVA-BN-Filo, Ad26.ZEBOV, 14 days apart, was evaluated in people without HIV (PWOH) and living with HIV (PLWH). In this observer-blind, placebo-controlled, phase 2 trial, healthy adults were randomized (4:1) to receive MVA-BN-Filo (dose 1) and Ad26.ZEBOV (dose 2), or two doses of saline/placebo, administered intramuscularly 14 days apart. The primary endpoints were safety (adverse events (AEs)) and immunogenicity (Ebola virus (EBOV) glycoprotein-specific binding antibody responses). Among 75 participants (n = 50 PWOH; n = 25 PLWH), 37% were female, the mean age was 44 years, and 56% were Black/African American. AEs were generally mild/moderate, with no vaccine-related serious AEs. At 21 days post-dose 2, EBOV glycoprotein-specific binding antibody responder rates were 100% among PWOH and 95% among PLWH; geometric mean antibody concentrations were 6286 EU/mL (n = 36) and 2005 EU/mL (n = 19), respectively. A total of 45 neutralizing and other functional antibody responses were frequently observed. Ebola-specific CD4+ and CD8+ T-cell responses were polyfunctional and durable to at least 12 months post-dose 2. The regimen was well tolerated and generated robust, durable immune responses in PWOH and PLWH. Findings support continued evaluation of accelerated vaccine schedules for rapid deployment in populations at immediate risk. Trial registration: NCT02598388 (submitted 14 November 2015).
Collapse
Affiliation(s)
- Julie A. Ake
- U.S. Military HIV Research Program, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Kristopher Paolino
- Clinical Trials Center, Center for Enabling Capabilities, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Jack N. Hutter
- Clinical Trials Center, Center for Enabling Capabilities, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | | | - Leigh Anne Eller
- U.S. Military HIV Research Program, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Michael A. Eller
- U.S. Military HIV Research Program, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Margaret C. Costanzo
- U.S. Military HIV Research Program, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Dominic Paquin-Proulx
- U.S. Military HIV Research Program, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Merlin L. Robb
- U.S. Military HIV Research Program, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Chi L. Tran
- U.S. Military HIV Research Program, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Lalaine Anova
- U.S. Military HIV Research Program, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Linda L. Jagodzinski
- Diagnostics and Countermeasures Branch, Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Lucy A. Ward
- Joint Project Manager for Chemical, Biological, Radiological, and Nuclear Medical, U.S. Department of Defense Joint Program Executive Office for Chemical, Biological, Radiological and Nuclear Defense, Fort Detrick, MD 21702, USA
| | - Nicole Kilgore
- Joint Project Manager for Chemical, Biological, Radiological, and Nuclear Medical, U.S. Department of Defense Joint Program Executive Office for Chemical, Biological, Radiological and Nuclear Defense, Fort Detrick, MD 21702, USA
| | - Janice Rusnak
- Joint Project Manager for Chemical, Biological, Radiological, and Nuclear Medical, U.S. Department of Defense Joint Program Executive Office for Chemical, Biological, Radiological and Nuclear Defense, Fort Detrick, MD 21702, USA
| | - Callie Bounds
- Joint Project Manager for Chemical, Biological, Radiological, and Nuclear Medical, U.S. Department of Defense Joint Program Executive Office for Chemical, Biological, Radiological and Nuclear Defense, Fort Detrick, MD 21702, USA
| | - Christopher S. Badorrek
- Joint Project Manager for Chemical, Biological, Radiological, and Nuclear Medical, U.S. Department of Defense Joint Program Executive Office for Chemical, Biological, Radiological and Nuclear Defense, Fort Detrick, MD 21702, USA
| | - Jay W. Hooper
- Virology Division, U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, MD 21702, USA
| | - Steven A. Kwilas
- Virology Division, U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, MD 21702, USA
| | - Ine Ilsbroux
- Janssen Research & Development, 2340 Beerse, Belgium
| | | | | | - Georgi Shukarev
- Janssen Vaccines & Prevention B.V., 2333 Leiden, The Netherlands
| | - Viki Bockstal
- Janssen Vaccines & Prevention B.V., 2333 Leiden, The Netherlands
| | - Kerstin Luhn
- Janssen Vaccines & Prevention B.V., 2333 Leiden, The Netherlands
| | - Macaya Douoguih
- Janssen Vaccines & Prevention B.V., 2333 Leiden, The Netherlands
| | - Cynthia Robinson
- Janssen Vaccines & Prevention B.V., 2333 Leiden, The Netherlands
| |
Collapse
|
10
|
Szabó D, Crowe A, Mamotte C, Strappe P. Natural products as a source of Coronavirus entry inhibitors. Front Cell Infect Microbiol 2024; 14:1353971. [PMID: 38449827 PMCID: PMC10915212 DOI: 10.3389/fcimb.2024.1353971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/01/2024] [Indexed: 03/08/2024] Open
Abstract
The COVID-19 pandemic has had a significant and lasting impact on the world. Four years on, despite the existence of effective vaccines, the continuous emergence of new SARS-CoV-2 variants remains a challenge for long-term immunity. Additionally, there remain few purpose-built antivirals to protect individuals at risk of severe disease in the event of future coronavirus outbreaks. A promising mechanism of action for novel coronavirus antivirals is the inhibition of viral entry. To facilitate entry, the coronavirus spike glycoprotein interacts with angiotensin converting enzyme 2 (ACE2) on respiratory epithelial cells. Blocking this interaction and consequently viral replication may be an effective strategy for treating infection, however further research is needed to better characterize candidate molecules with antiviral activity before progressing to animal studies and clinical trials. In general, antiviral drugs are developed from purely synthetic compounds or synthetic derivatives of natural products such as plant secondary metabolites. While the former is often favored due to the higher specificity afforded by rational drug design, natural products offer several unique advantages that make them worthy of further study including diverse bioactivity and the ability to work synergistically with other drugs. Accordingly, there has recently been a renewed interest in natural product-derived antivirals in the wake of the COVID-19 pandemic. This review provides a summary of recent research into coronavirus entry inhibitors, with a focus on natural compounds derived from plants, honey, and marine sponges.
Collapse
Affiliation(s)
- Dávid Szabó
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia
- Curtin Medical School, Curtin University, Bentley, WA, Australia
| | - Andrew Crowe
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia
- Curtin Medical School, Curtin University, Bentley, WA, Australia
| | - Cyril Mamotte
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia
- Curtin Medical School, Curtin University, Bentley, WA, Australia
| | - Padraig Strappe
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia
- Curtin Medical School, Curtin University, Bentley, WA, Australia
| |
Collapse
|
11
|
Li Z, Zhu Y, Yan F, Jin H, Wang Q, Zhao Y, Feng N, Wang T, Li N, Yang S, Xia X, Cong Y. Inactivated Recombinant Rabies Virus Displaying the Nipah Virus Envelope Glycoproteins Induces Systemic Immune Responses in Mice. Vaccines (Basel) 2023; 11:1758. [PMID: 38140162 PMCID: PMC10747385 DOI: 10.3390/vaccines11121758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/07/2023] [Accepted: 11/11/2023] [Indexed: 12/24/2023] Open
Abstract
Nipah virus (NiV) causes severe, lethal encephalitis in humans and pigs. However, there is no licensed vaccine available to prevent NiV infection. In this study, we used the reverse genetic system based on the attenuated rabies virus strain SRV9 to construct two recombinant viruses, rSRV9-NiV-F and rSRV9-NiV-G, which displayed the NiV envelope glycoproteins F and G, respectively. Following three immunizations in BALB/c mice, the inactivated rSRV9-NiV-F and rSRV9-NiV-G alone or in combination, mixed with the adjuvants ISA 201 VG and poly (I:C), were able to induce the antigen-specific cellular and Th1-biased humoral immune responses. The specific antibodies against rSRV9-NiV-F and rSRV9-NiV-G had reactivity with two constructed bacterial-like particles displaying the F and G antigens of NiV. These data demonstrate that rSRV9-NiV-F or rSRV9-NiV-G has the potential to be developed into a promising vaccine candidate against NiV infection.
Collapse
Affiliation(s)
- Zhengrong Li
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun 130122, China
| | - Yanting Zhu
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun 130122, China
| | - Feihu Yan
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| | - Hongli Jin
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun 130122, China
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| | - Qi Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| | - Yongkun Zhao
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| | - Na Feng
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| | - Tiecheng Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| | - Nan Li
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| | - Songtao Yang
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun 130122, China
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| | - Xianzhu Xia
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun 130122, China
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| | - Yanlong Cong
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun 130122, China
| |
Collapse
|
12
|
Ouyang MJ, Ao Z, Olukitibi TA, Lawrynuik P, Shieh C, Kung SKP, Fowke KR, Kobasa D, Yao X. Oral Immunization with rVSV Bivalent Vaccine Elicits Protective Immune Responses, Including ADCC, against Both SARS-CoV-2 and Influenza A Viruses. Vaccines (Basel) 2023; 11:1404. [PMID: 37766083 PMCID: PMC10534613 DOI: 10.3390/vaccines11091404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/14/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
COVID-19 and influenza both cause enormous disease burdens, and vaccines are the primary measures for their control. Since these viral diseases are transmitted through the mucosal surface of the respiratory tract, developing an effective and convenient mucosal vaccine should be a high priority. We previously reported a recombinant vesicular stomatitis virus (rVSV)-based bivalent vaccine (v-EM2/SPΔC1Delta) that protects animals from both SARS-CoV-2 and influenza viruses via intramuscular and intranasal immunization. Here, we further investigated the immune response induced by oral immunization with this vaccine and its protective efficacy in mice. The results demonstrated that the oral delivery, like the intranasal route, elicited strong and protective systemic immune responses against SARS-CoV-2 and influenza A virus. This included high levels of neutralizing antibodies (NAbs) against SARS-CoV-2, as well as strong anti-SARS-CoV-2 spike protein (SP) antibody-dependent cellular cytotoxicity (ADCC) and anti-influenza M2 ADCC responses in mice sera. Furthermore, it provided efficient protection against challenge with influenza H1N1 virus in a mouse model, with a 100% survival rate and a significantly low lung viral load of influenza virus. All these findings provide substantial evidence for the effectiveness of oral immunization with the rVSV bivalent vaccine.
Collapse
Affiliation(s)
- Maggie Jing Ouyang
- Laboratory of Molecular Human Retrovirology, Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, 508-745 Bannatyne Ave, Winnipeg, MB R3E 0J9, Canada; (M.J.O.); (Z.A.); (T.A.O.); (P.L.); (C.S.)
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, 745 Bannatyne Ave, Winnipeg, MB R3E 0J9, Canada; (K.R.F.); (D.K.)
| | - Zhujun Ao
- Laboratory of Molecular Human Retrovirology, Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, 508-745 Bannatyne Ave, Winnipeg, MB R3E 0J9, Canada; (M.J.O.); (Z.A.); (T.A.O.); (P.L.); (C.S.)
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, 745 Bannatyne Ave, Winnipeg, MB R3E 0J9, Canada; (K.R.F.); (D.K.)
| | - Titus A. Olukitibi
- Laboratory of Molecular Human Retrovirology, Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, 508-745 Bannatyne Ave, Winnipeg, MB R3E 0J9, Canada; (M.J.O.); (Z.A.); (T.A.O.); (P.L.); (C.S.)
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, 745 Bannatyne Ave, Winnipeg, MB R3E 0J9, Canada; (K.R.F.); (D.K.)
| | - Peter Lawrynuik
- Laboratory of Molecular Human Retrovirology, Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, 508-745 Bannatyne Ave, Winnipeg, MB R3E 0J9, Canada; (M.J.O.); (Z.A.); (T.A.O.); (P.L.); (C.S.)
| | - Christopher Shieh
- Laboratory of Molecular Human Retrovirology, Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, 508-745 Bannatyne Ave, Winnipeg, MB R3E 0J9, Canada; (M.J.O.); (Z.A.); (T.A.O.); (P.L.); (C.S.)
| | - Sam K. P. Kung
- Department of Immunology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0W3, Canada;
| | - Keith R. Fowke
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, 745 Bannatyne Ave, Winnipeg, MB R3E 0J9, Canada; (K.R.F.); (D.K.)
| | - Darwyn Kobasa
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, 745 Bannatyne Ave, Winnipeg, MB R3E 0J9, Canada; (K.R.F.); (D.K.)
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3L5, Canada
| | - Xiaojian Yao
- Laboratory of Molecular Human Retrovirology, Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, 508-745 Bannatyne Ave, Winnipeg, MB R3E 0J9, Canada; (M.J.O.); (Z.A.); (T.A.O.); (P.L.); (C.S.)
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, 745 Bannatyne Ave, Winnipeg, MB R3E 0J9, Canada; (K.R.F.); (D.K.)
| |
Collapse
|
13
|
Hu L, Jiang J, Tang Y, Mei L, Wu L, Li L, Chen H, Long F, Xiao J, Peng T. A Pseudovirus-Based Entry Assay to Evaluate Neutralizing Activity against Respiratory Syncytial Virus. Viruses 2023; 15:1548. [PMID: 37515234 PMCID: PMC10386507 DOI: 10.3390/v15071548] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/09/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Respiratory syncytial virus (RSV) infection can cause life-threatening pneumonia and bronchiolitis, posing a significant threat to human health worldwide, especially to children and the elderly. Currently, there is no specific treatment for RSV infection. The most effective measures for preventing RSV infection are vaccines and prophylactic medications. However, not all population groups are eligible for the approved vaccines or antibody-based preventive medications. Therefore, there is an urgent need to develop novel vaccines and prophylactic drugs available for people of all ages. High-throughput assays that evaluate the efficacy of viral entry inhibitors or vaccine-induced neutralizing antibodies in blocking RSV entry are crucial for evaluating vaccine and prophylactic drug candidates. We developed an efficient entry assay using a lentiviral pseudovirus carrying the fusion (F) protein of type A or B RSV. In addition, the essential parameters were systematically optimized, including the number of transfected plasmids, storage conditions of the pseudovirus, cell types, cell numbers, virus inoculum, and time point of detection. Furthermore, the convalescent sera exhibited comparable inhibitory activity in this assay as in the authentic RSV virus neutralization assay. We established a robust pseudovirus-based entry assay for RSV, which holds excellent promise for studying entry mechanisms, evaluating viral entry inhibitors, and assessing vaccine-elicited neutralizing antibodies against RSV.
Collapse
Affiliation(s)
- Longbo Hu
- State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou 511436, China
| | - Jiajing Jiang
- State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou 511436, China
| | - Yongjie Tang
- State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou 511436, China
| | - Lingling Mei
- State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou 511436, China
| | - Liping Wu
- State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou 511436, China
| | - Leyi Li
- State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou 511436, China
| | - Hongzhou Chen
- State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou 511436, China
| | - Fei Long
- State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou 511436, China
| | - Jing Xiao
- State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou 511436, China
| | - Tao Peng
- State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou 511436, China
- Guangdong South China Vaccine Co., Ltd., Guangzhou 510663, China
- Greater Bay Area Innovative Vaccine Technology Development Center, Guangzhou International Bio Island Laboratory, Guangzhou 510005, China
| |
Collapse
|
14
|
Purcell RA, Theisen RM, Arnold KB, Chung AW, Selva KJ. Polyfunctional antibodies: a path towards precision vaccines for vulnerable populations. Front Immunol 2023; 14:1183727. [PMID: 37600816 PMCID: PMC10433199 DOI: 10.3389/fimmu.2023.1183727] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/30/2023] [Indexed: 08/22/2023] Open
Abstract
Vaccine efficacy determined within the controlled environment of a clinical trial is usually substantially greater than real-world vaccine effectiveness. Typically, this results from reduced protection of immunologically vulnerable populations, such as children, elderly individuals and people with chronic comorbidities. Consequently, these high-risk groups are frequently recommended tailored immunisation schedules to boost responses. In addition, diverse groups of healthy adults may also be variably protected by the same vaccine regimen. Current population-based vaccination strategies that consider basic clinical parameters offer a glimpse into what may be achievable if more nuanced aspects of the immune response are considered in vaccine design. To date, vaccine development has been largely empirical. However, next-generation approaches require more rational strategies. We foresee a generation of precision vaccines that consider the mechanistic basis of vaccine response variations associated with both immunogenetic and baseline health differences. Recent efforts have highlighted the importance of balanced and diverse extra-neutralising antibody functions for vaccine-induced protection. However, in immunologically vulnerable populations, significant modulation of polyfunctional antibody responses that mediate both neutralisation and effector functions has been observed. Here, we review the current understanding of key genetic and inflammatory modulators of antibody polyfunctionality that affect vaccination outcomes and consider how this knowledge may be harnessed to tailor vaccine design for improved public health.
Collapse
Affiliation(s)
- Ruth A. Purcell
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Robert M. Theisen
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Kelly B. Arnold
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Amy W. Chung
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Kevin J. Selva
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
15
|
Wang W, Yu C, Cui Y, Liu C, Yang Y, Xu G, Wu G, Du J, Fu Z, Guo L, Long C, Xia X, Li Y, Wang L, Wang Y. Development of a reporter gene assay for antibody dependent cellular cytotoxicity activity determination of anti-rabies virus glycoprotein antibodies. Microbiol Immunol 2023; 67:69-78. [PMID: 36346082 DOI: 10.1111/1348-0421.13036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/09/2022] [Accepted: 11/06/2022] [Indexed: 11/11/2022]
Abstract
Rabies is a viral disease that is nearly 100% fatal once clinical signs and symptoms develop. Post-exposure prophylaxis can efficiently prevent rabies, and antibody (Ab) induction by vaccination or passive immunization of human rabies immunoglobulin (HRIG) or monoclonal antibodies (mAbs) play an integral role in prevention against rabies. In addition to their capacity to neutralize viruses, antibodies exert their antiviral effects by antibody-dependent cellular cytotoxicity (ADCC), which plays an important role in antiviral immunity and clearance of viral infections. For antibodies against rabies virus (RABV), evaluation of ADCC activity was neglected. Here, we developed a robust cell-based reporter gene assay (RGA) for the determination of the ADCC activity of anti-RABV antibodies using CVS-N2c-293 cells, which stably express the glycoprotein (G) of RABV strain CVS-N2c as target cells, and Jurkat cells, which stably express FcγRⅢa and nuclear factor of activated T cells (NFAT) reporter gene as effector cells (Jurkat/NFAT-luc/FcγRⅢa cells). The experimental parameters were carefully optimized, and the established ADCC assay was systematically validated according to the International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use (ICH) Q2 guideline. We also evaluated the ADCC activity of anti-RABV antibodies, including mAbs, HRIG, and vaccine induced antisera, and found that all test antibodies exhibited ADCC activity with varied strengths. The established RGA provides a novel method for evaluating the ADCC of anti-RABV antibodies.
Collapse
Affiliation(s)
- Wenbo Wang
- Division of Monoclonal Antibody Products, National Institutes for Food and Drug Control (NIFDC), Beijing, China
| | - Chuanfei Yu
- Division of Monoclonal Antibody Products, National Institutes for Food and Drug Control (NIFDC), Beijing, China
| | - Yongfei Cui
- Division of Monoclonal Antibody Products, National Institutes for Food and Drug Control (NIFDC), Beijing, China
| | - Chunyu Liu
- Division of Monoclonal Antibody Products, National Institutes for Food and Drug Control (NIFDC), Beijing, China
| | - Yalan Yang
- Division of Monoclonal Antibody Products, National Institutes for Food and Drug Control (NIFDC), Beijing, China
| | - Gangling Xu
- Division of Monoclonal Antibody Products, National Institutes for Food and Drug Control (NIFDC), Beijing, China
| | - Gang Wu
- Division of Monoclonal Antibody Products, National Institutes for Food and Drug Control (NIFDC), Beijing, China
| | - Jialiang Du
- Division of Monoclonal Antibody Products, National Institutes for Food and Drug Control (NIFDC), Beijing, China
| | - Zhihao Fu
- Division of Monoclonal Antibody Products, National Institutes for Food and Drug Control (NIFDC), Beijing, China
| | - Luyong Guo
- Division of Monoclonal Antibody Products, National Institutes for Food and Drug Control (NIFDC), Beijing, China
| | - Caifeng Long
- Division of Monoclonal Antibody Products, National Institutes for Food and Drug Control (NIFDC), Beijing, China
| | - Xijie Xia
- China Pharmaceutical University, Nanjing, China
| | - Yuhua Li
- Division of Arboviral Vaccine, National Institutes for Food and Drug Control (NIFDC), Beijing, China
| | - Lan Wang
- Division of Monoclonal Antibody Products, National Institutes for Food and Drug Control (NIFDC), Beijing, China
| | - Youchun Wang
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, National Institutes for Food and Drug Control (NIFDC), Beijing, China
| |
Collapse
|
16
|
Pseudotyped Viruses for Marburgvirus and Ebolavirus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1407:105-132. [PMID: 36920694 DOI: 10.1007/978-981-99-0113-5_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Marburg virus (MARV) and Ebola virus (EBOV) of the Filoviridae family are the most lethal viruses in terms of mortality rate. However, the development of antiviral treatment is hampered by the requirement for biosafety level-4 (BSL-4) containment. The establishment of BSL-2 pseudotyped viruses can provide important tools for the study of filoviruses. This chapter summarizes general information on the filoviruses and then focuses on the construction of replication-deficient pseudotyped MARV and EBOV (e.g., lentivirus system and vesicular stomatitis virus system). It also details the potential applications of the pseudotyped viruses, including neutralization antibody detection, the study of infection mechanisms, the evaluation of antibody-dependent enhancement, virus entry inhibitor screening, and glycoprotein mutation analysis.
Collapse
|
17
|
Assays Based on Pseudotyped Viruses. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1407:29-44. [PMID: 36920690 DOI: 10.1007/978-981-99-0113-5_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Pseudotyped viruses are more and more widely used in virus research and the evaluation of antiviral products because of their high safety, simple operation, high accessibility, ease in achieving standardization, and high throughput. The development of measures based on pseudotyped virus is closely related to the characteristics of viruses, and it is also necessary to follow the principles of assay development. Only in the process of method development, where the key parameters that affect the results are systematically optimized and the preliminary established method is fully validated, can the accuracy, reliability, and repeatability of the test results be ensured. Only the method established on this basis can be transferred to different laboratories and make the results of different laboratories comparable. This paper summarizes the specific aspects and general principles in the development of assays based on pseudotyped virus, which is of reference value for the development of similar methods.
Collapse
|
18
|
Application of Pseudotyped Viruses. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1407:45-60. [PMID: 36920691 DOI: 10.1007/978-981-99-0113-5_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Highly pathogenic emerging and reemerging viruses have serious public health and socioeconomic implications. Although conventional live virus research methods can more reliably investigate disease pathogenicity and evaluate antiviral products, they usually depend on high-level biosafety laboratories and skilled researchers; these requirements hinder in vitro assessments of efficacy, as well as efforts to test vaccines and antibody drugs. In contrast, pseudotyped viruses (i.e., single-round infectious viruses that mimic the membrane structures of various live viruses) are widely used in studies of highly pathogenic viruses because they can be handled in biosafety level 2 facilities. This chapter provides a concise overview of various aspects of pseudotyped virus technologies, including (1) exploration of the mechanisms of viral infection; (2) evaluation of the efficacies of vaccines and monoclonal antibodies based on pseudovirion-based neutralization assay; (3) assessment of antiviral agents (i.e., antibody-based drugs and inhibitors); (4) establishment of animal models of pseudotyped virus infection in vivo; (5) investigation of the evolution, infectivity, and antigenicity of viral variants and viral glycosylation; and (6) prediction of antibody-dependent cell-mediated cytotoxic activity.
Collapse
|
19
|
Wang Y, Zhou Z, Wu X, Li T, Wu J, Cai M, Nie J, Wang W, Cui Z. Pseudotyped Viruses. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1407:1-27. [PMID: 36920689 DOI: 10.1007/978-981-99-0113-5_1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Pseudotyped viruses have been constructed for many viruses. They can mimic the authentic virus and have many advantages compared to authentic viruses. Thus, they have been widely used as a surrogate of authentic virus for viral function analysis, detection of neutralizing antibodies, screening viral entry inhibitors, and others. This chapter reviewed the progress in the field of pseudotyped viruses in general, including the definition and the advantages of pseudotyped viruses, their potential usage, different strategies or vectors used for the construction of pseudotyped viruses, and factors that affect the construction of pseudotyped viruses.
Collapse
Affiliation(s)
- Youchun Wang
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
- Institute of Medical Biology, Chinese Academy of Medicine Sciences & Peking Union Medical College, Kunming, China.
| | - Zehua Zhou
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing, China
| | - Xi Wu
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing, China
| | - Tao Li
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing, China
| | - Jiajing Wu
- Beijing Yunling Biotechnology Co., Ltd., Beijing, China
| | - Meina Cai
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing, China
| | - Jianhui Nie
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing, China
| | - Wenbo Wang
- Division of Monoclonal Antibody Products, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing, China
| | - Zhimin Cui
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing, China
| |
Collapse
|
20
|
Qian Z, Zhang Z, Ma H, Shao S, Kang H, Tong Z. The efficiency of convalescent plasma in COVID-19 patients: A systematic review and meta-analysis of randomized controlled clinical trials. Front Immunol 2022; 13:964398. [PMID: 35967398 PMCID: PMC9366612 DOI: 10.3389/fimmu.2022.964398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 06/29/2022] [Indexed: 11/13/2022] Open
Abstract
The objective of this study was to assess whether convalescent plasma therapy could offer survival advantages for patients with novel coronavirus disease 2019 (COVID-19). An electronic search of Pubmed, Web of Science, Embase, Cochrane library and MedRxiv was performed from January 1st, 2020 to April 1st, 2022. We included studies containing patients with COVID-19 and treated with CCP. Data were independently extracted by two reviewers and synthesized with a random-effect analysis model. The primary outcome was 28-d mortality. Secondary outcomes included length of hospital stay, ventilation-free days, 14-d mortality, improvements of symptoms, progression of diseases and requirements of mechanical ventilation. Safety outcomes included the incidence of all adverse events (AEs) and serious adverse events (SAEs). The Cochrane risk-of-bias assessment tool 2.0 was used to assess the potential risk of bias in eligible studies. The heterogeneity of results was assessed by I^2 test and Q statistic test. The possibility of publication bias was assessed by conducting Begg and Egger test. GRADE (Grading of Recommendations Assessment, Development and Evaluation) method were used for quality of evidence. This study had been registered on PROSPERO, CRD42021273608. 32 RCTs comprising 21478 patients with Covid-19 were included. Compared to the control group, COVID-19 patients receiving CCP were not associated with significantly reduced 28-d mortality (CCP 20.0% vs control 20.8%; risk ratio 0.94; 95% CI 0.87-1.02; p = 0.16; I² = 8%). For all secondary outcomes, there were no significant differences between CCP group and control group. The incidence of AEs (26.9% vs 19.4%,; risk ratio 1.14; 95% CI 0.99-01.31; p = 0.06; I² = 38%) and SAEs (16.3% vs 13.5%; risk ratio 1.03; 95% CI 0.87-1.20; p = 0.76; I² = 42%) tended to be higher in the CCP group compared to the control group, while the differences did not reach statistical significance. In all, CCP therapy was not related to significantly improved 28-d mortality or symptoms recovery, and should not be viewed as a routine treatment for COVID-19 patients. Trial registration number CRD42021273608. Registration on February 28, 2022. Systematic review registration https://www.crd.york.ac.uk/prospero/, Identifier CRD42022313265.
Collapse
Affiliation(s)
- Zhenbei Qian
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Zhijin Zhang
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Haomiao Ma
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Shuai Shao
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Hanyujie Kang
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Zhaohui Tong
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
21
|
Golay J, Andrea AE, Cattaneo I. Role of Fc Core Fucosylation in the Effector Function of IgG1 Antibodies. Front Immunol 2022; 13:929895. [PMID: 35844552 PMCID: PMC9279668 DOI: 10.3389/fimmu.2022.929895] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/03/2022] [Indexed: 11/13/2022] Open
Abstract
The presence of fucose on IgG1 Asn-297 N-linked glycan is the modification of the human IgG1 Fc structure with the most significant impact on FcɣRIII affinity. It also significantly enhances the efficacy of antibody dependent cellular cytotoxicity (ADCC) by natural killer (NK) cells in vitro, induced by IgG1 therapeutic monoclonal antibodies (mAbs). The effect of afucosylation on ADCC or antibody dependent phagocytosis (ADCP) mediated by macrophages or polymorphonuclear neutrophils (PMN) is less clear. Evidence for enhanced efficacy of afucosylated therapeutic mAbs in vivo has also been reported. This has led to the development of several therapeutic antibodies with low Fc core fucose to treat cancer and inflammatory diseases, seven of which have already been approved for clinical use. More recently, the regulation of IgG Fc core fucosylation has been shown to take place naturally during the B-cell immune response: A decrease in α-1,6 fucose has been observed in polyclonal, antigen-specific IgG1 antibodies which are generated during alloimmunization of pregnant women by fetal erythrocyte or platelet antigens and following infection by some enveloped viruses and parasites. Low IgG1 Fc core fucose on antigen-specific polyclonal IgG1 has been linked to disease severity in several cases, such as SARS-CoV 2 and Dengue virus infection and during alloimmunization, highlighting the in vivo significance of this phenomenon. This review aims to summarize the current knowledge about human IgG1 Fc core fucosylation and its regulation and function in vivo, in the context of both therapeutic antibodies and the natural immune response. The parallels in these two areas are informative about the mechanisms and in vivo effects of Fc core fucosylation, and may allow to further exploit the desired properties of this modification in different clinical contexts.
Collapse
Affiliation(s)
- Josée Golay
- Center of Cellular Therapy "G. Lanzani", Division of Hematology, Azienda Socio Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy
- *Correspondence: Josée Golay,
| | - Alain E. Andrea
- Laboratoire de Biochimie et Thérapies Moléculaires, Faculté de Pharmacie, Université Saint Joseph de Beyrouth, Beirut, Lebanon
| | - Irene Cattaneo
- Center of Cellular Therapy "G. Lanzani", Division of Hematology, Azienda Socio Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy
| |
Collapse
|
22
|
Zhang M, Wang X, Hu L, Zhang Y, Zheng H, Wu H, Wang J, Luo L, Xiao H, Qiao C, Li X, Huang W, Wang Y, Feng J, Chen G. TIM-1 Augments Cellular Entry of Ebola Virus Species and Mutants, Which Is Blocked by Recombinant TIM-1 Protein. Microbiol Spectr 2022; 10:e0221221. [PMID: 35384693 PMCID: PMC9241846 DOI: 10.1128/spectrum.02212-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/07/2022] [Indexed: 01/12/2023] Open
Abstract
Ebola virus, a member of the Filoviridae family, utilizes the attachment factors on host cells to support its entry and cause severe tissue damage. TIM-1 has been identified as a predominant attachment factor via interaction with phosphatidylserine (PS) localized on the viral envelope and glycoprotein (GP). In this study, we give the first demonstration that TIM-1 enhances the cellular entry of three species of Ebola virus, as well as those harboring GP mutations (A82V, T544I, and A82V T544I). Furthermore, two TIM-1 variants (i.e., TIM-1-359aa and TIM-1-364aa) had comparable effects on promoting Zaire Ebola virus (EBOV) attachment, internalization, and infection. Importantly, recombinant TIM-1 ectodomain (ECD) protein could decrease the infectivity of Ebola virus and display synergistic inhibitory effects with ADI-15946, a monoclonal antibody with broad neutralizing activity to Ebola virus. Of note, EBOV strains harboring GP mutations (K510E and D552N), which were refractory to antibody treatment, were still sensitive to TIM-1 protein-mediated impairment of infectivity, indicating that TIM-1 protein may represent an alternative therapeutic regimen when antibody evasion occurs. IMPORTANCE The viral genome has acquired numerous mutations with the potential to increase transmission during the 2013-to-2016 outbreak of Ebola virus. EBOV strains harboring GP mutations (A82V, T544I, and A82V T544I), which have been identified to increase viral infectivity in humans, have attracted our attention. Herein, we give the first report that polymorphic TIM-1 enhances the infectivity of three species of Ebola virus, as well as those harboring GP mutations (A82V, T544I, and A82V T544I). We show that recombinant TIM-1 ECD protein could decrease the infectivity of Ebola virus with or without a point mutation and displays synergistic inhibitory effects with ADI-15946. Furthermore, TIM-1 protein potently blocked cell entry of antibody-evading Ebola virus species. These findings highlight the role of TIM-1 in Ebola virus infection and indicate that TIM-1 protein represents a potential therapeutic avenue for Ebola virus and its mutated species.
Collapse
Affiliation(s)
- Min Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China
| | - Xinwei Wang
- Inner Mongolia Key Lab of Molecular Biology, School of Basic Medical Sciences, Inner Mongolia Medical University, Hohhot, China
| | - Linhan Hu
- Inner Mongolia Key Lab of Molecular Biology, School of Basic Medical Sciences, Inner Mongolia Medical University, Hohhot, China
| | - Yuting Zhang
- Inner Mongolia Key Lab of Molecular Biology, School of Basic Medical Sciences, Inner Mongolia Medical University, Hohhot, China
| | - Hang Zheng
- Inner Mongolia Key Lab of Molecular Biology, School of Basic Medical Sciences, Inner Mongolia Medical University, Hohhot, China
| | - Haiyan Wu
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China
| | - Jing Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China
| | - Longlong Luo
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China
| | - He Xiao
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China
| | - Chunxia Qiao
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China
| | - Xinying Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China
| | - Weijin Huang
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, National Institutes for Food and Drug Control, Beijing, China
| | - Youchun Wang
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, National Institutes for Food and Drug Control, Beijing, China
| | - Jiannan Feng
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China
| | - Guojiang Chen
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China
| |
Collapse
|
23
|
Wagstaffe HR, Anzala O, Kibuuka H, Anywaine Z, Sirima SB, Thiébaut R, Richert L, Levy Y, Lacabaratz C, Bockstal V, Luhn K, Douoguih M, Goodier MR. NK Cell Subset Redistribution and Antibody Dependent Activation after Ebola Vaccination in Africans. Vaccines (Basel) 2022; 10:vaccines10060884. [PMID: 35746491 PMCID: PMC9230153 DOI: 10.3390/vaccines10060884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 11/21/2022] Open
Abstract
Natural killer cells play an important role in the control of viral infections both by regulating acquired immune responses and as potent innate or antibody-mediated cytotoxic effector cells. NK cells have been implicated in control of Ebola virus infections and our previous studies in European trial participants have demonstrated durable activation, proliferation and antibody-dependent NK cell activation after heterologous two-dose Ebola vaccination with adenovirus type 26.ZEBOV followed by modified vaccinia Ankara-BN-Filo. Regional variation in immunity and environmental exposure to pathogens, in particular human cytomegalovirus, have profound impacts on NK cell functional capacity. We therefore assessed the NK cell phenotype and function in African trial participants with universal exposure to HCMV. We demonstrate a significant redistribution of NK cell subsets after vaccine dose two, involving the enrichment of less differentiated CD56dimCD57− and CD56dimFcεR1γ+ (canonical) cells and the increased proliferation of these subsets. Sera taken after vaccine dose two support robust antibody-dependent NK cell activation in a standard NK cell readout; these responses correlate strongly with the concentration of anti-Ebola glycoprotein specific antibodies. These sera also promote comparable IFN-γ production in autologous NK cells taken at baseline and post-vaccine dose two. However, degranulation responses of post-vaccination NK cells were reduced compared to baseline NK cells and these effects could not be directly attributed to alterations in NK cell phenotype after vaccination. These studies demonstrate consistent changes in NK cell phenotypic composition and robust antibody-dependent NK cell function and reveal novel characteristics of these responses after heterologous two dose Ebola vaccination in African individuals.
Collapse
Affiliation(s)
- Helen R. Wagstaffe
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK;
- Department of Infectious Disease, Imperial College London, London W2 1PG, UK
| | - Omu Anzala
- KAVI—Institute of Clinical Research University of Nairobi, Nairobi 19676, Kenya;
| | - Hannah Kibuuka
- Makerere University—Walter Reed Project, Kampala 16524, Uganda;
| | - Zacchaeus Anywaine
- Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine Uganda Research Unit, Entebbe P.O. Box 49, Uganda;
| | - Sodiomon B. Sirima
- Centre National de Recherche et de Formation sur le Paludisme (CNRFP), Unité de Recherche Clinique de Banfora, 1487 Avenue Kumda Yonré, Ouagadougou 01 BP 2208, Burkina Faso;
| | - Rodolphe Thiébaut
- Bordeaux Population Health Research Center, University Bordeaux, Inserm, UMR 1219, 33000 Bordeaux, France; (R.T.); (L.R.)
- CIC 1401, EUCLID/F-CRIN Clinical Trials Platform, F-33000 Bordeaux, France
- Inria SISTM Team, F-33405 Talence, France
| | - Laura Richert
- Bordeaux Population Health Research Center, University Bordeaux, Inserm, UMR 1219, 33000 Bordeaux, France; (R.T.); (L.R.)
- CIC 1401, EUCLID/F-CRIN Clinical Trials Platform, F-33000 Bordeaux, France
- Inria SISTM Team, F-33405 Talence, France
| | - Yves Levy
- Inserm U955, Vaccine Research Institute, Université Paris-Est Créteil, Hôpital Henri Mondor, 94010 Creteil, France; (Y.L.); (C.L.)
| | - Christine Lacabaratz
- Inserm U955, Vaccine Research Institute, Université Paris-Est Créteil, Hôpital Henri Mondor, 94010 Creteil, France; (Y.L.); (C.L.)
| | - Viki Bockstal
- Janssen Vaccines and Prevention, 2333 CP Leiden, The Netherlands; (V.B.); (K.L.); (M.D.)
| | - Kerstin Luhn
- Janssen Vaccines and Prevention, 2333 CP Leiden, The Netherlands; (V.B.); (K.L.); (M.D.)
| | - Macaya Douoguih
- Janssen Vaccines and Prevention, 2333 CP Leiden, The Netherlands; (V.B.); (K.L.); (M.D.)
| | - Martin R. Goodier
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK;
- Flow Cytometry and Immunology Platform, MRC Unit the Gambia at London School of Hygiene and Tropical Medicine, Banjul P.O. Box 273, The Gambia
- Correspondence:
| |
Collapse
|
24
|
Mellors J, Tipton T, Fehling SK, Akoi Bore J, Koundouno FR, Hall Y, Hudson J, Alexander F, Longet S, Taylor S, Gorringe A, Magassouba N, Konde MK, Hiscox J, Strecker T, Carroll M. Complement-Mediated Neutralisation Identified in Ebola Virus Disease Survivor Plasma: Implications for Protection and Pathogenesis. Front Immunol 2022; 13:857481. [PMID: 35493467 PMCID: PMC9039621 DOI: 10.3389/fimmu.2022.857481] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
The 2013-2016 Ebola virus (EBOV) epidemic in West Africa was unprecedented in case numbers and fatalities, and sporadic outbreaks continue to arise. Antibodies to the EBOV glycoprotein (GP) are strongly associated with survival and their use in immunotherapy is often initially based on their performance in neutralisation assays. Other immune effector functions also contribute to EBOV protection but are more complex to measure. Their interactions with the complement system in particular are comparatively under-researched and commonly excluded from cellular immunoassays. Using EBOV convalescent plasma samples from the 2013-2016 epidemic, we investigated antibody and complement-mediated neutralisation and how these interactions can influence immunity in response to EBOV-GP and its secreted form (EBOV-sGP). We defined two cohorts: one with low-neutralising titres in relation to EBOV-GP IgG titres (LN cohort) and the other with a direct linear relationship between neutralisation and EBOV-GP IgG titres (N cohort). Using flow cytometry antibody-dependent complement deposition (ADCD) assays, we found that the LN cohort was equally efficient at mediating ADCD in response to the EBOV-GP but was significantly lower in response to the EBOV-sGP, compared to the N cohort. Using wild-type EBOV neutralisation assays with a cohort of the LN plasma, we observed a significant increase in neutralisation associated with the addition of pooled human plasma as a source of complement. Flow cytometry ADCD was also applied using the GP of the highly virulent Sudan virus (SUDV) of the Sudan ebolavirus species. There are no licensed vaccines or therapeutics against SUDV and it overlaps in endemicity with EBOV. We found that the LN plasma was significantly less efficient at cross-reacting and mediating ADCD. Overall, we found a differential response in ADCD between LN and N plasma in response to various Ebolavirus glycoproteins, and that these interactions could significantly improve EBOV neutralisation for selected LN plasma samples. Preservation of the complement system in immunoassays could augment our understanding of neutralisation and thus protection against infection.
Collapse
Affiliation(s)
- Jack Mellors
- Department of Research and Evaluation, United Kingdom (UK) Health Security Agency, Salisbury, United Kingdom.,Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom.,Wellcome Centre for Human Genetics and the Pandemic Sciences Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Tom Tipton
- Wellcome Centre for Human Genetics and the Pandemic Sciences Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | | | - Joseph Akoi Bore
- Center for Training and Research on Priority Diseases including Malaria in Guinea, Conakry, Guinea.,Department of Research, Ministry of Health Guinea, Conakry, Guinea
| | - Fara Raymond Koundouno
- Department of Research, Ministry of Health Guinea, Conakry, Guinea.,Department of Virology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Yper Hall
- Department of Research and Evaluation, United Kingdom (UK) Health Security Agency, Salisbury, United Kingdom
| | - Jacob Hudson
- Department of Research and Evaluation, United Kingdom (UK) Health Security Agency, Salisbury, United Kingdom.,School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, United Kingdom.,Department of Biochemical Sciences, School of Biosciences and Medicine, University of Surrey, Surrey, United Kingdom
| | - Frances Alexander
- Department of Research and Evaluation, United Kingdom (UK) Health Security Agency, Salisbury, United Kingdom
| | - Stephanie Longet
- Wellcome Centre for Human Genetics and the Pandemic Sciences Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Stephen Taylor
- Department of Research and Evaluation, United Kingdom (UK) Health Security Agency, Salisbury, United Kingdom
| | - Andrew Gorringe
- Department of Research and Evaluation, United Kingdom (UK) Health Security Agency, Salisbury, United Kingdom
| | - N'Faly Magassouba
- Viral Haemorrhagic Fever Reference Department, Projet Laboratoire Fièvres Hémorragiques, Conakry, Guinea
| | - Mandy Kader Konde
- Center for Training and Research on Priority Diseases including Malaria in Guinea, Conakry, Guinea
| | - Julian Hiscox
- Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Thomas Strecker
- Institute of Virology, Philipps University Marburg, Marburg, Germany
| | - Miles Carroll
- Wellcome Centre for Human Genetics and the Pandemic Sciences Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
25
|
Xiang Q, Li L, Wu J, Tian M, Fu Y. Application of pseudovirus system in the development of vaccine, antiviral-drugs, and neutralizing antibodies. Microbiol Res 2022; 258:126993. [PMID: 35240544 PMCID: PMC8848573 DOI: 10.1016/j.micres.2022.126993] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 02/12/2022] [Accepted: 02/13/2022] [Indexed: 12/16/2022]
Abstract
Pseudoviruses are viral particles coated with a heterologous envelope protein, which mediates the entry of pseudoviruses as efficiently as that of the live viruses possessing high pathogenicity and infectivity. Due to the deletion of the envelope protein gene and the absence of pathogenic genes, pseudoviruses have no autonomous replication ability and can infect host cells for only a single cycle. In addition, pseudoviruses have the desired characteristics of high safety, strong operability, and can be easily used to perform rapid throughput detection. Therefore, pseudoviruses are widely employed in the mechanistic investigation of viral infection, the screening and evaluation of monoclonal antibodies and antiviral drugs, and the detection of neutralizing antibody titers in serum after vaccination. In this review, we will discuss the construction of pseudoviruses based on different packaging systems, their current applications especially in the research of SARS-CoV-2, limitations, and further directions.
Collapse
Affiliation(s)
- Qi Xiang
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Linhao Li
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Jie Wu
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Miao Tian
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Yang Fu
- School of Medicine, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
26
|
Lassaunière R, Tiemessen CT. FcγR Genetic Variation and HIV-1 Vaccine Efficacy: Context And Considerations. Front Immunol 2021; 12:788203. [PMID: 34975881 PMCID: PMC8714752 DOI: 10.3389/fimmu.2021.788203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/29/2021] [Indexed: 12/02/2022] Open
Abstract
Receptors for the crystallisable fragment (Fc) of immunoglobulin (Ig) G, Fcγ receptors (FcγRs), link the humoral and cellular arms of the immune response, providing a diverse armamentarium of antimicrobial effector functions. Findings from HIV-1 vaccine efficacy trials highlight the need for further study of Fc-FcR interactions in understanding what may constitute vaccine-induced protective immunity. These include host genetic correlates identified within the low affinity Fcγ-receptor locus in three HIV-1 efficacy trials – VAX004, RV144, and HVTN 505. This perspective summarizes our present knowledge of FcγR genetics in the context of findings from HIV-1 efficacy trials, and draws on genetic variation described in other contexts, such as mother-to-child HIV-1 transmission and HIV-1 disease progression, to explore the potential contribution of FcγR variability in modulating different HIV-1 vaccine efficacy outcomes. Appreciating the complexity and the importance of the collective contribution of variation within the FCGR gene locus is important for understanding the role of FcγRs in protection against HIV-1 acquisition.
Collapse
Affiliation(s)
- Ria Lassaunière
- Virus and Microbiological Special Diagnostics, Statens Serum Institut, Copenhagen, Denmark
- *Correspondence: Caroline T. Tiemessen, ; Ria Lassaunière,
| | - Caroline T. Tiemessen
- Centre for HIV and STI’s, National Institute for Communicable Diseases, Johannesburg, South Africa
- Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- *Correspondence: Caroline T. Tiemessen, ; Ria Lassaunière,
| |
Collapse
|
27
|
Wang K, Wu JJ, Xin-Zhang, Zeng QX, Zhang N, Huang WJ, Tang S, Wang YX, Kong WJ, Wang YC, Li YH, Song DQ. Discovery and evolution of 12N-substituted aloperine derivatives as anti-SARS-CoV-2 agents through targeting late entry stage. Bioorg Chem 2021; 115:105196. [PMID: 34333425 PMCID: PMC8318836 DOI: 10.1016/j.bioorg.2021.105196] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 07/16/2021] [Accepted: 07/18/2021] [Indexed: 12/17/2022]
Abstract
So far, there is still no specific drug against COVID-19. Taking compound 1 with anti-EBOV activity as the lead, fifty-four 12N-substituted aloperine derivatives were synthesized and evaluated for the anti-SARS-CoV-2 activities using pseudotyped virus model. Among them, 8a exhibited the most potential effects against both pseudotyped and authentic SARS-CoV-2, as well as SARS-CoV and MERS-CoV, indicating a broad-spectrum anti-coronavirus profile. The mechanism study disclosed that 8a might block a late stage of viral entry, mainly via inhibiting host cathepsin B activity rather than directly targeting cathepsin B protein. Also, 8a could significantly reduce the release of multiple inflammatory cytokines in a time- and dose-dependent manner, such as IL-6, IL-1β, IL-8 and MCP-1, the major contributors to cytokine storm. Therefore, 8a is a promising agent with the advantages of broad-spectrum anti-coronavirus and anti-cytokine effects, thus worthy of further investigation.
Collapse
Affiliation(s)
- Kun Wang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Jia-Jing Wu
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing 102629, China
| | - Xin-Zhang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Qing-Xuan Zeng
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Na Zhang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Wei-Jin Huang
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing 102629, China
| | - Sheng Tang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yan-Xiang Wang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Wei-Jia Kong
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - You-Chun Wang
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing 102629, China
| | - Ying-Hong Li
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; State Key Laboratory of Bioactive Substance & Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| | - Dan-Qing Song
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
28
|
Yu Y, Wang M, Zhang X, Li S, Lu Q, Zeng H, Hou H, Li H, Zhang M, Jiang F, Wu J, Ding R, Zhou Z, Liu M, Si W, Zhu T, Li H, Ma J, Gu Y, She G, Li X, Zhang Y, Peng K, Huang W, Liu W, Wang Y. Antibody-dependent cellular cytotoxicity response to SARS-CoV-2 in COVID-19 patients. Signal Transduct Target Ther 2021; 6:346. [PMID: 34561414 PMCID: PMC8463587 DOI: 10.1038/s41392-021-00759-1] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/05/2021] [Accepted: 09/09/2021] [Indexed: 02/08/2023] Open
Abstract
Antibody-dependent cellular cytotoxicity (ADCC) responses to viral infection are a form of antibody regulated immune responses mediated through the Fc fragment. Whether severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) triggered ADCC responses contributes to COVID-19 disease development is currently not well understood. To understand the potential correlation between ADCC responses and COVID-19 disease development, we analyzed the ADCC activity and neutralizing antibody response in 255 individuals ranging from asymptomatic to fatal infections over 1 year post disease. ADCC was elicited by 10 days post-infection, peaked by 11-20 days, and remained detectable until 400 days post-infection. In general, patients with severe disease had higher ADCC activities. Notably, patients who had severe disease and recovered had higher ADCC activities than patients who had severe disease and deceased. Importantly, ADCC activities were mediated by a diversity of epitopes in SARS-COV-2-infected mice and induced to comparable levels against SARS-CoV-2 variants of concern (VOCs) (B.1.1.7, B.1.351, and P.1) as that against the D614G mutant in human patients and vaccinated mice. Our study indicates anti-SARS-CoV-2 ADCC as a major trait of COVID-19 patients with various conditions, which can be applied to estimate the extra-neutralization level against COVID-19, especially lethal COVID-19.
Collapse
Affiliation(s)
- Yuanling Yu
- grid.410749.f0000 0004 0577 6238Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, China
| | - Meiyu Wang
- grid.410749.f0000 0004 0577 6238Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, China ,grid.506261.60000 0001 0706 7839Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Xiaoai Zhang
- grid.410740.60000 0004 1803 4911State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Shufen Li
- grid.9227.e0000000119573309State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei China
| | - Qingbin Lu
- grid.11135.370000 0001 2256 9319Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing, China
| | - Haolong Zeng
- grid.33199.310000 0004 0368 7223Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongyan Hou
- grid.33199.310000 0004 0368 7223Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Li
- grid.410740.60000 0004 1803 4911State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Mengyi Zhang
- grid.410749.f0000 0004 0577 6238Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, China
| | - Fei Jiang
- grid.410749.f0000 0004 0577 6238Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, China
| | - Jiajing Wu
- grid.410749.f0000 0004 0577 6238Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, China
| | - Ruxia Ding
- grid.410749.f0000 0004 0577 6238Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, China
| | - Zehua Zhou
- grid.410749.f0000 0004 0577 6238Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, China
| | - Min Liu
- grid.274690.eSinovac Biotech Co., Ltd, Beijing, China
| | - Weixue Si
- Cansino Biotech Incorporation, Tianjin, China
| | - Tao Zhu
- Cansino Biotech Incorporation, Tianjin, China
| | - Hangwen Li
- Stemirna Therapeutics, Ltd, Shanghai, China
| | - Jie Ma
- Stemirna Therapeutics, Ltd, Shanghai, China
| | | | - Guangbiao She
- Anhui Zhifeilongcom Biopharmaceutical Co., Ltd, Hefei, China
| | - Xiaokun Li
- grid.410740.60000 0004 1803 4911State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yulan Zhang
- grid.9227.e0000000119573309State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei China
| | - Ke Peng
- grid.9227.e0000000119573309State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China
| | - Weijin Huang
- grid.410749.f0000 0004 0577 6238Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, China
| | - Wei Liu
- grid.410740.60000 0004 1803 4911State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Youchun Wang
- grid.410749.f0000 0004 0577 6238Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, China ,grid.506261.60000 0001 0706 7839Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| |
Collapse
|
29
|
Tshiani Mbaya O, Mukumbayi P, Mulangu S. Review: Insights on Current FDA-Approved Monoclonal Antibodies Against Ebola Virus Infection. Front Immunol 2021; 12:721328. [PMID: 34526994 PMCID: PMC8435780 DOI: 10.3389/fimmu.2021.721328] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 08/12/2021] [Indexed: 11/29/2022] Open
Abstract
The unprecedented 2013-2016 West Africa Ebola outbreak accelerated several medical countermeasures (MCMs) against Ebola virus disease (EVD). Several investigational products (IPs) were used throughout the outbreak but were not conclusive for efficacy results. Only the Randomized Controlled Trial (RCT) on ZMapp was promising but inconclusive. More recently, during the second-largest Ebola outbreak in North Kivu and Ituri provinces, Democratic Republic of the Congo (DRC), four IPs, including one small molecule (Remdesivir), two monoclonal antibody (mAb) cocktails (ZMapp and REGN-EB3) and a single mAb (mAb114), were evaluated in an RCT, the Pamoja Tulinde Maisha (PALM) study. Two products (REGN-EB3 and mAb114) demonstrated efficacy as compared to the control arm, ZMapp. There were remarkably few side effects recorded in the trial. The FDA approved both medications in this scientifically sound study, marking a watershed moment in the field of EVD therapy. These products can be produced relatively inexpensively and can be stockpiled. The administration of mAbs in EVD patients appears to be safe and effective, while several critical knowledge gaps remain; the impact of early administration of Ebola-specific mAbs on developing a robust immune response for future Ebola virus exposure is unknown. The viral mutation escape, leading to resistance, presents a potential limitation for single mAb therapy; further improvements need to be explored. Understanding the contribution of Fc-mediated antibody functions such as antibody-dependent cellular cytotoxicity (ADCC) of those approved mAbs is still critical. The potential merit of combination therapy and post-exposure prophylaxis (PEP) need to be demonstrated. Furthermore, the PALM trial has accounted for 30% of mortality despite the administration of specific treatments. The putative role of EBOV soluble Glycoprotein (sGP) as a decoy to the immune system, the virus persistence, and relapses might be investigated for treatment failure. The development of pan-filovirus or pan-species mAbs remains essential for protection. The interaction between FDA-approved mAbs and vaccines remains unclear and needs to be investigated. In this review, we summarize the efficacy and safety results of the PALM study and review current research questions for the further development of mAbs in pre-exposure or emergency post-exposure use.
Collapse
Affiliation(s)
- Olivier Tshiani Mbaya
- Clinical Monitoring Research Program Directorate, Leidos Biomedical Research, Frederick, MD, United States
| | - Philippe Mukumbayi
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Sabue Mulangu
- Global Medical Affairs, Ridgeback Biotherapeutics, Miami, FL, United States
| |
Collapse
|
30
|
Kalkeri R, Cai Z, Lin S, Farmer J, Kuzmichev YV, Koide F. SARS-CoV-2 Spike Pseudoviruses: A Useful Tool to Study Virus Entry and Address Emerging Neutralization Escape Phenotypes. Microorganisms 2021; 9:1744. [PMID: 34442823 PMCID: PMC8398529 DOI: 10.3390/microorganisms9081744] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/06/2021] [Accepted: 08/06/2021] [Indexed: 12/12/2022] Open
Abstract
SARS-CoV-2 genetic variants are emerging around the globe. Unfortunately, several SARS-CoV-2 variants, especially variants of concern (VOCs), are less susceptible to neutralization by the convalescent and post-vaccination sera, raising concerns of increased disease transmissibility and severity. Recent data suggests that SARS-CoV-2 neutralizing antibody levels are a reliable correlate of vaccine-mediated protection. However, currently used BSL3-based virus micro-neutralization (MN) assays are more laborious, time-consuming, and expensive, underscoring the need for BSL2-based, cost-effective neutralization assays against SARS-CoV-2 variants. In light of this unmet need, we have developed a BSL-2 pseudovirus-based neutralization assay (PBNA) in cells expressing the human angiotensin-converting enzyme-2 (hACE2) receptor for SARS-CoV-2. The assay is reproducible (R2 = 0.96), demonstrates a good dynamic range and high sensitivity. Our data suggest that the biological Anti-SARS-CoV-2 research reagents such as NIBSC 20/130 show lower neutralization against B.1.351 SA (South Africa) and B.1.1.7 UK (United Kingdom) VOC, whereas a commercially available monoclonal antibody MM43 retains activity against both these variants. SARS-CoV-2 spike PBNAs for VOCs would be useful tools to measure the neutralization ability of candidate vaccines in both preclinical models and clinical trials and would further help develop effective prophylactic countermeasures against emerging neutralization escape phenotypes.
Collapse
Affiliation(s)
- Raj Kalkeri
- Department of Infectious Disease Research, Drug Development Division, Southern Research, 431 Aviation Way, Frederick, MD 21701, USA; (Z.C.); (S.L.); (Y.V.K.)
| | - Zhaohui Cai
- Department of Infectious Disease Research, Drug Development Division, Southern Research, 431 Aviation Way, Frederick, MD 21701, USA; (Z.C.); (S.L.); (Y.V.K.)
| | - Shuling Lin
- Department of Infectious Disease Research, Drug Development Division, Southern Research, 431 Aviation Way, Frederick, MD 21701, USA; (Z.C.); (S.L.); (Y.V.K.)
| | - John Farmer
- Department of Infectious Disease Research, Drug Development Division, Southern Research, 2000 Ninth Avenue South, Birmingham, AL 35205, USA;
| | - Yury V. Kuzmichev
- Department of Infectious Disease Research, Drug Development Division, Southern Research, 431 Aviation Way, Frederick, MD 21701, USA; (Z.C.); (S.L.); (Y.V.K.)
| | - Fusataka Koide
- Department of Infectious Disease Research, Drug Development Division, Southern Research, 431 Aviation Way, Frederick, MD 21701, USA; (Z.C.); (S.L.); (Y.V.K.)
| |
Collapse
|
31
|
Kirenga B, Byakika-Kibwika P, Muttamba W, Kayongo A, Loryndah NO, Mugenyi L, Kiwanuka N, Lusiba J, Atukunda A, Mugume R, Ssali F, Ddungu H, Katagira W, Sekibira R, Kityo C, Kyeyune D, Acana S, Aanyu-Tukamuhebwa H, Kabweru W, Nakwagala F, Bagaya BS, Kimuli I, Nantanda R, Buregyeya E, Byarugaba B, Olaro C, Mwebesa H, Joloba ML, Siddharthan T, Bazeyo W. Efficacy of convalescent plasma for treatment of COVID-19 in Uganda. BMJ Open Respir Res 2021; 8:e001017. [PMID: 34376401 PMCID: PMC8354811 DOI: 10.1136/bmjresp-2021-001017] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 07/23/2021] [Indexed: 01/15/2023] Open
Abstract
RATIONALE Convalescent plasma (CCP) has been studied as a potential therapy for COVID-19, but data on its efficacy in Africa are limited. OBJECTIVE In this trial we set out to determine the efficacy of CCP for treatment of COVID-19 in Uganda. MEASUREMENTS Patients with a positive SARS-CoV-2 reverse transcriptase (RT)-PCR test irrespective of disease severity were hospitalised and randomised to receive either COVID-19 CCP plus standard of care (SOC) or SOC alone. The primary outcome was time to viral clearance, defined as having two consecutive RT-PCR-negative tests by day 28. Secondary outcomes included time to symptom resolution, clinical status on the modified WHO Ordinal Clinical Scale (≥1-point increase), progression to severe/critical condition (defined as oxygen saturation <93% or needing oxygen), mortality and safety. MAIN RESULTS A total of 136 patients were randomised, 69 to CCP+SOC and 67 to SOC only. The median age was 50 years (IQR: 38.5-62.0), 71.3% were male and the median duration of symptom was 7 days (IQR=4-8). Time to viral clearance was not different between the CCP+SOC and SOC arms (median of 6 days (IQR=4-11) vs 4 (IQR=4-6), p=0.196). There were no statistically significant differences in secondary outcomes in CCP+SOC versus SOC: time to symptom resolution (median=7 (IQR=5-7) vs 7 (IQR=5-10) days, p=0.450), disease progression (9 (22.0%) vs 7 (24.0%) patients, p=0.830) and mortality (10 (14.5%) vs 8 (11.9%) deaths, p=0.476). CONCLUSION In this African trial, CCP therapy did not result in beneficial virological or clinical improvements. Further trials are needed to determine subgroups of patients who may benefit from CCP in Africa.Trial registration number NCT04542941.
Collapse
Affiliation(s)
- Bruce Kirenga
- Makerere University Lung Institute, Makerere University College of Health Sciences, Kampala, Uganda, Uganda
- Department of Internal Medicine, Makerere University College of Health Sciences, Kampala, Uganda
| | - Pauline Byakika-Kibwika
- Department of Internal Medicine, Makerere University College of Health Sciences, Kampala, Uganda
| | - Winters Muttamba
- Makerere University Lung Institute, Makerere University College of Health Sciences, Kampala, Uganda
| | - Alex Kayongo
- Immunology and Molecular Biology, Makerere University College of Health Sciences, Kampala, Uganda, Uganda
| | - Namakula Olive Loryndah
- Makerere University Lung Institute, Makerere University College of Health Sciences, Kampala, Uganda
| | - Levicatus Mugenyi
- Biostatistics Department, The AIDS Support Organisation (TASO), Kampala, Uganda, Uganda
| | - Noah Kiwanuka
- Department of research, School of Public Health, College of Health Sciences, Makerere University, Kampala, Uganda, Uganda
| | - John Lusiba
- Clinical services, Uganda Peoples Defense Forces Medical Services, Kampala, Uganda, Uganda
- Clinical services, Uganda Heart Institute, Kampala, Uganda, Uganda
| | - Angella Atukunda
- Clinical services, Mulago National Referral Hospital, Kampala, Uganda, Kampala, Uganda, Uganda
| | - Raymond Mugume
- Makerere University Lung Institute, Makerere University College of Health Sciences, Kampala, Uganda
| | | | - Henry Ddungu
- Research Department, Uganda Cancer Institute, Kampala, Uganda, Uganda
| | - Winceslaus Katagira
- Makerere University Lung Institute, Makerere University College of Health Sciences, Kampala, Uganda
| | - Rogers Sekibira
- Makerere University Lung Institute, Makerere University College of Health Sciences, Kampala, Uganda
| | - Cissy Kityo
- Joint Clinical Research Centre, Kampala, Uganda
| | - Dorothy Kyeyune
- Clinical services, Uganda Blood Transfusion Services, Kampala, Uganda, Uganda
| | - Susan Acana
- Clinical services, Uganda Blood Transfusion Services, Kampala, Uganda, Uganda
| | | | | | - Fred Nakwagala
- Clinical services, Mulago National Referral Hospital, Kampala, Uganda, Kampala, Uganda, Uganda
| | - Bernard Sentalo Bagaya
- Immunology and Molecular Biology, Makerere University College of Health Sciences, Kampala, Uganda, Uganda
| | - Ivan Kimuli
- Makerere University Lung Institute, Makerere University College of Health Sciences, Kampala, Uganda, Uganda
| | - Rebecca Nantanda
- Makerere University Lung Institute, Makerere University College of Health Sciences, Kampala, Uganda, Uganda
| | - Esther Buregyeya
- Department of research, School of Public Health, College of Health Sciences, Makerere University, Kampala, Uganda, Uganda
| | - Baterana Byarugaba
- Clinical services, Mulago National Referral Hospital, Kampala, Uganda, Kampala, Uganda, Uganda
| | - Charles Olaro
- Clinical services, Ministry of Health, Kampala, Uganda, Uganda
| | - Henry Mwebesa
- Clinical services, Ministry of Health, Kampala, Uganda, Uganda
| | - Moses Lutaakome Joloba
- Immunology and Molecular Biology, Makerere University College of Health Sciences, Kampala, Uganda, Uganda
| | - Trishul Siddharthan
- Division of Respiratory and Critical Care Medicine, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - William Bazeyo
- Department of research, School of Public Health, College of Health Sciences, Makerere University, Kampala, Uganda, Uganda
| |
Collapse
|
32
|
Wang C, Wang S, Li D, Chen P, Han S, Zhao G, Chen Y, Zhao J, Xiong J, Qiu J, Wei DQ, Zhao J, Wang J. Human Cathelicidin Inhibits SARS-CoV-2 Infection: Killing Two Birds with One Stone. ACS Infect Dis 2021; 7:1545-1554. [PMID: 33849267 PMCID: PMC8056948 DOI: 10.1021/acsinfecdis.1c00096] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Indexed: 02/06/2023]
Abstract
SARS-CoV-2 infection begins with the association of its spike 1 (S1) protein with host angiotensin-converting enzyme-2 (ACE2). Targeting the interaction between S1 and ACE2 is a practical strategy against SARS-CoV-2 infection. Herein, we show encouraging results indicating that human cathelicidin LL37 can simultaneously block viral S1 and cloak ACE2. LL37 binds to the receptor-binding domain (RBD) of S1 with high affinity (11.2 nM) and decreases subsequent recruitment of ACE2. Owing to the RBD blockade, LL37 inhibits SARS-CoV-2 S pseudovirion infection, with a half-maximal inhibitory concentration of 4.74 μg/mL. Interestingly, LL37 also binds to ACE2 with an affinity of 25.5 nM and cloaks the ligand-binding domain (LBD), thereby decreasing S1 adherence and protecting cells against pseudovirion infection in vitro. Intranasal administration of LL37 to C57 mice infected with adenovirus expressing human ACE2 either before or after pseudovirion invasion decreased lung infection. The study identified a versatile antimicrobial peptide in humans as an inhibitor of SARS-CoV-2 attachment using dual mechanisms, thus providing a potential candidate for coronavirus disease 2019 (COVID-19) prevention and treatment.
Collapse
Affiliation(s)
- Cheng Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury of PLA, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Shaobo Wang
- Department of Nephrology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Daixi Li
- Institute of Biothermal Science and Technology, University of Shanghai for Science and Technology, Shanghai 20093, China
| | - Peiqin Chen
- Institute of Biothermal Science and Technology, University of Shanghai for Science and Technology, Shanghai 20093, China
| | - Songling Han
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury of PLA, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Gaomei Zhao
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury of PLA, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Yin Chen
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury of PLA, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Jianqi Zhao
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury of PLA, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Jiachuan Xiong
- Department of Nephrology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Jingfei Qiu
- AI Research Center, Peng Cheng Laboratory, Shenzhen, Guangdong 518055, China
| | - Dong-Qing Wei
- AI Research Center, Peng Cheng Laboratory, Shenzhen, Guangdong 518055, China
- State Key Laboratory of Microbial Metabolism, Shanghai-Islamabad-Belgrade Joint Innovation Center on Antibacterial Resistances, Joint Laboratory of International Cooperation in Metabolic and Developmental Sciences, Ministry of Education and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Jinghong Zhao
- Department of Nephrology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Junping Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury of PLA, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| |
Collapse
|
33
|
Paquin-Proulx D, Gunn BM, Alrubayyi A, Clark DV, Creegan M, Kim D, Kibuuka H, Millard M, Wakabi S, Eller LA, Michael NL, Schoepp RJ, Hepburn MJ, Hensley LE, Robb ML, Alter G, Eller MA. Associations Between Antibody Fc-Mediated Effector Functions and Long-Term Sequelae in Ebola Virus Survivors. Front Immunol 2021; 12:682120. [PMID: 34093585 PMCID: PMC8173169 DOI: 10.3389/fimmu.2021.682120] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 05/05/2021] [Indexed: 11/13/2022] Open
Abstract
Antibodies that mediate non-neutralizing functions play an important role in the immune response to Ebola virus (EBOV) and are thought to impact disease outcome. EBOV has also been associated with long term sequelae in survivors, however, the extent to which antibodies that mediate non-neutralizing functions are associated with the development of these sequelae is unknown. Here, the presence of antibodies mediating different effector functions and how they relate to long-term sequelae two years after the 2007 Bundibugyo Ebola virus (BDBV) outbreak was investigated. The majority of survivors demonstrated robust antibody effector functional activity and demonstrated persistent polyfunctional antibody profiles to the EBOV glycoprotein (GP) two years after infection. These functions were strongly associated with the levels of GP-specific IgG1. The odds of developing hearing loss, one of the more common sequelae to BDBV was reduced when antibodies mediating antibody dependent cellular phagocytosis (ADCP), antibody dependent complement deposition (ADCD), or activating NK cells (ADNKA) were observed. In addition, hearing loss was associated with increased levels of several pro-inflammatory cytokines and levels of these pro-inflammatory cytokines were associated with lower ADCP. These results are indicating that a skewed antibody profile and persistent inflammation may contribute to long term outcome in survivors of BDBV infection.
Collapse
Affiliation(s)
- Dominic Paquin-Proulx
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Bronwyn M Gunn
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, United States
| | - Aljawharah Alrubayyi
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Danielle V Clark
- Austere environments Consortium for Enhanced Sepsis Outcomes (ACESO), Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Matthew Creegan
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Dohoon Kim
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Hannah Kibuuka
- Makerere University Walter Reed Project, Kampala, Uganda
| | - Monica Millard
- Makerere University Walter Reed Project, Kampala, Uganda
| | - Salim Wakabi
- Makerere University Walter Reed Project, Kampala, Uganda
| | - Leigh Anne Eller
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Nelson L Michael
- Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Randal J Schoepp
- Diagnostic Systems Division, US Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, United States
| | - Matthew J Hepburn
- Medical Division, US Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, United States
| | - Lisa E Hensley
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD, United States
| | - Merlin L Robb
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, United States
| | - Michael A Eller
- Vaccine Research Program, Division of AIDS, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
34
|
Case JB, Winkler ES, Errico JM, Diamond MS. On the road to ending the COVID-19 pandemic: Are we there yet? Virology 2021; 557:70-85. [PMID: 33676349 PMCID: PMC7908885 DOI: 10.1016/j.virol.2021.02.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/12/2021] [Accepted: 02/12/2021] [Indexed: 02/08/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged into the human population in late 2019 and caused the global COVID-19 pandemic. SARS-CoV-2 has spread to more than 215 countries and infected many millions of people. Despite the introduction of numerous governmental and public health measures to control disease spread, infections continue at an unabated pace, suggesting that effective vaccines and antiviral drugs will be required to curtail disease, end the pandemic, and restore societal norms. Here, we review the current developments in antibody and vaccine countermeasures to limit or prevent disease.
Collapse
MESH Headings
- Animals
- Antibodies, Viral/biosynthesis
- COVID-19/epidemiology
- COVID-19/immunology
- COVID-19/prevention & control
- COVID-19/therapy
- COVID-19/virology
- COVID-19 Vaccines/administration & dosage
- COVID-19 Vaccines/biosynthesis
- COVID-19 Vaccines/immunology
- Clinical Trials as Topic
- Disease Models, Animal
- Genetic Vectors/chemistry
- Genetic Vectors/immunology
- Humans
- Immunity, Innate/drug effects
- Immunization, Passive/methods
- Immunogenicity, Vaccine
- Pandemics
- Patient Safety
- SARS-CoV-2/drug effects
- SARS-CoV-2/immunology
- SARS-CoV-2/pathogenicity
- Vaccines, Attenuated
- Vaccines, DNA
- Vaccines, Subunit
- Vaccines, Virus-Like Particle/administration & dosage
- Vaccines, Virus-Like Particle/biosynthesis
- Vaccines, Virus-Like Particle/immunology
- COVID-19 Serotherapy
Collapse
Affiliation(s)
- James Brett Case
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Emma S Winkler
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA; Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - John M Errico
- Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA; Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA; Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, 63110, USA; The Andrew M. and Jane M. Bursky Center for Human Immunology & Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
35
|
Wang C, Wang S, Chen Y, Zhao J, Han S, Zhao G, Kang J, Liu Y, Wang L, Wang X, Xu Y, Wang S, Huang Y, Wang J, Zhao J. Membrane Nanoparticles Derived from ACE2-Rich Cells Block SARS-CoV-2 Infection. ACS NANO 2021; 15:6340-6351. [PMID: 33734675 PMCID: PMC8009101 DOI: 10.1021/acsnano.0c06836] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 03/15/2021] [Indexed: 05/02/2023]
Abstract
The ongoing COVID-19 pandemic worldwide necessitates the development of therapeutics against SARS-CoV-2. ACE2 is the main receptor of SARS-CoV-2 S1 and mediates viral entry into host cells. Herein, membrane nanoparticles (NPs) prepared from ACE2-rich cells were discovered to have potent capacity to block SARS-CoV-2 infection. The membranes of human embryonic kidney-239T cells highly expressing ACE2 were applied to prepare NPs using an extrusion method. The nanomaterials, termed ACE2-NPs, contained 265.1 ng mg-1 ACE2 on the surface and acted as baits to trap S1 in a dose-dependent manner, resulting in reduced recruitment of the viral ligand to HK-2 human renal tubular epithelial cells. Aside from affecting receptor recongnition, S1 translocated to the cytoplasm and induced apoptosis by reducing optic atrophy 1 expression and increasing cytochrome c release, which was also inhibited by ACE2-NPs. Further investigations revealed that ACE2-NPs efficiently suppressed SARS-CoV-2 S pseudovirions entry into host cells and blocked viral infection in vitro and in vivo. This study characterizes easy-to-produce memrbane nanoantagonists of SARS-CoV-2 that enrich the existing antiviral arsenal and provide possibilities for COVID-19 treatment.
Collapse
Affiliation(s)
- Cheng Wang
- State Key Laboratory of Trauma, Burns and Combined
Injury, Institute of Combined Injury of PLA, Chongqing Engineering Research Center for
Nanomedicine, College of Preventive Medicine, Third Military Medical
University, Chongqing, 400038, China
| | - Shaobo Wang
- Department of Nephrology, The Key Laboratory for The
Prevention and Treatment of Chronic Kidney Disease of Chongqing, Xinqiao Hospital,
Third Military Medical University, Chongqing, 400037,
China
| | - Yin Chen
- State Key Laboratory of Trauma, Burns and Combined
Injury, Institute of Combined Injury of PLA, Chongqing Engineering Research Center for
Nanomedicine, College of Preventive Medicine, Third Military Medical
University, Chongqing, 400038, China
| | - Jianqi Zhao
- State Key Laboratory of Trauma, Burns and Combined
Injury, Institute of Combined Injury of PLA, Chongqing Engineering Research Center for
Nanomedicine, College of Preventive Medicine, Third Military Medical
University, Chongqing, 400038, China
| | - Songling Han
- State Key Laboratory of Trauma, Burns and Combined
Injury, Institute of Combined Injury of PLA, Chongqing Engineering Research Center for
Nanomedicine, College of Preventive Medicine, Third Military Medical
University, Chongqing, 400038, China
| | - Gaomei Zhao
- State Key Laboratory of Trauma, Burns and Combined
Injury, Institute of Combined Injury of PLA, Chongqing Engineering Research Center for
Nanomedicine, College of Preventive Medicine, Third Military Medical
University, Chongqing, 400038, China
| | - Jing Kang
- State Key Laboratory of Trauma, Burns and Combined
Injury, Institute of Combined Injury of PLA, Chongqing Engineering Research Center for
Nanomedicine, College of Preventive Medicine, Third Military Medical
University, Chongqing, 400038, China
| | - Yong Liu
- Department of Nephrology, The Key Laboratory for The
Prevention and Treatment of Chronic Kidney Disease of Chongqing, Xinqiao Hospital,
Third Military Medical University, Chongqing, 400037,
China
| | - Liting Wang
- Biomedical Analysis Center, Third Military
Medical University, Chongqing, 400038, China
| | - Xiaoyang Wang
- Biomedical Analysis Center, Third Military
Medical University, Chongqing, 400038, China
| | - Yang Xu
- State Key Laboratory of Trauma, Burns and Combined
Injury, Institute of Combined Injury of PLA, Chongqing Engineering Research Center for
Nanomedicine, College of Preventive Medicine, Third Military Medical
University, Chongqing, 400038, China
| | - Song Wang
- State Key Laboratory of Trauma, Burns and Combined
Injury, Institute of Combined Injury of PLA, Chongqing Engineering Research Center for
Nanomedicine, College of Preventive Medicine, Third Military Medical
University, Chongqing, 400038, China
| | - Yi Huang
- Biomedical Analysis Center, Third Military
Medical University, Chongqing, 400038, China
| | - Junping Wang
- State Key Laboratory of Trauma, Burns and Combined
Injury, Institute of Combined Injury of PLA, Chongqing Engineering Research Center for
Nanomedicine, College of Preventive Medicine, Third Military Medical
University, Chongqing, 400038, China
| | - Jinghong Zhao
- Department of Nephrology, The Key Laboratory for The
Prevention and Treatment of Chronic Kidney Disease of Chongqing, Xinqiao Hospital,
Third Military Medical University, Chongqing, 400037,
China
| |
Collapse
|
36
|
Wang C, Wang S, Chen Y, Zhao J, Han S, Zhao G, Kang J, Liu Y, Wang L, Wang X, Xu Y, Wang S, Huang Y, Wang J, Zhao J. Membrane Nanoparticles Derived from ACE2-Rich Cells Block SARS-CoV-2 Infection. ACS NANO 2021. [PMID: 33734675 DOI: 10.1021/acsnano.0c0683610.1021/acsnano.0c06836.s00110.1021/acsnano.0c06836.s002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The ongoing COVID-19 pandemic worldwide necessitates the development of therapeutics against SARS-CoV-2. ACE2 is the main receptor of SARS-CoV-2 S1 and mediates viral entry into host cells. Herein, membrane nanoparticles (NPs) prepared from ACE2-rich cells were discovered to have potent capacity to block SARS-CoV-2 infection. The membranes of human embryonic kidney-239T cells highly expressing ACE2 were applied to prepare NPs using an extrusion method. The nanomaterials, termed ACE2-NPs, contained 265.1 ng mg-1 ACE2 on the surface and acted as baits to trap S1 in a dose-dependent manner, resulting in reduced recruitment of the viral ligand to HK-2 human renal tubular epithelial cells. Aside from affecting receptor recongnition, S1 translocated to the cytoplasm and induced apoptosis by reducing optic atrophy 1 expression and increasing cytochrome c release, which was also inhibited by ACE2-NPs. Further investigations revealed that ACE2-NPs efficiently suppressed SARS-CoV-2 S pseudovirions entry into host cells and blocked viral infection in vitro and in vivo. This study characterizes easy-to-produce memrbane nanoantagonists of SARS-CoV-2 that enrich the existing antiviral arsenal and provide possibilities for COVID-19 treatment.
Collapse
Affiliation(s)
- Cheng Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury of PLA, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Shaobo Wang
- Department of Nephrology, The Key Laboratory for The Prevention and Treatment of Chronic Kidney Disease of Chongqing, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Yin Chen
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury of PLA, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Jianqi Zhao
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury of PLA, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Songling Han
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury of PLA, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Gaomei Zhao
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury of PLA, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Jing Kang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury of PLA, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Yong Liu
- Department of Nephrology, The Key Laboratory for The Prevention and Treatment of Chronic Kidney Disease of Chongqing, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Liting Wang
- Biomedical Analysis Center, Third Military Medical University, Chongqing, 400038, China
| | - Xiaoyang Wang
- Biomedical Analysis Center, Third Military Medical University, Chongqing, 400038, China
| | - Yang Xu
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury of PLA, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Song Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury of PLA, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Yi Huang
- Biomedical Analysis Center, Third Military Medical University, Chongqing, 400038, China
| | - Junping Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury of PLA, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Jinghong Zhao
- Department of Nephrology, The Key Laboratory for The Prevention and Treatment of Chronic Kidney Disease of Chongqing, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| |
Collapse
|
37
|
Murray LP, Govindan R, Mora AC, Munro JB, Mace CR. Antibody affinity as a driver of signal generation in a paper-based immunoassay for Ebola virus surveillance. Anal Bioanal Chem 2021; 413:3695-3706. [PMID: 33852053 PMCID: PMC8044655 DOI: 10.1007/s00216-021-03317-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/09/2021] [Accepted: 03/30/2021] [Indexed: 11/24/2022]
Abstract
During epidemics, such as the frequent and devastating Ebola virus outbreaks that have historically plagued regions of Africa, serological surveillance efforts are critical for viral containment and the development of effective antiviral therapeutics. Antibody serology can also be used retrospectively for population-level surveillance to provide a more complete estimate of total infections. Ebola surveillance efforts rely on enzyme-linked immunosorbent assays (ELISAs), which restrict testing to laboratories and are not adaptable for use in resource-limited settings. In this manuscript, we describe a paper-based immunoassay capable of detecting anti-Ebola IgG using Ebola virus envelope glycoprotein ectodomain (GP) as the affinity reagent. We evaluated seven monoclonal antibodies (mAbs) against GP—KZ52, 13C6, 4G7, 2G4, c6D8, 13F6, and 4F3—to elucidate the impact of binding affinity and binding epitope on assay performance and, ultimately, result interpretation. We used biolayer interferometry to characterize the binding of each antibody to GP before assessing their performance in our paper-based device. Binding affinity (KD) and on rate (kon) were major factors influencing the sensitivity of the paper-based immunoassay. mAbs with the best KD (3–25 nM) exhibited the lowest limits of detection (ca. μg mL−1), while mAbs with KD > 25 nM were undetectable in our device. Additionally, and most surprisingly, we determined that observed signals in paper devices were directly proportional to kon. These results highlight the importance of ensuring that the quality of recognition reagents is sufficient to support desired assay performance and suggest that the strength of an individual’s immune response can impact the interpretation of assay results.
Collapse
Affiliation(s)
- Lara P Murray
- Department of Chemistry, Tufts University, Medford, MA, 02155, USA
| | - Ramesh Govindan
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, 01605, USA.,Department of Molecular Biology and Microbiology, Tufts University School of Medicine and Graduate School of Biomedical Sciences, Boston, MA, 02111, USA
| | - Andrea C Mora
- Department of Chemistry, Tufts University, Medford, MA, 02155, USA
| | - James B Munro
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, 01605, USA.,Department of Molecular Biology and Microbiology, Tufts University School of Medicine and Graduate School of Biomedical Sciences, Boston, MA, 02111, USA
| | - Charles R Mace
- Department of Chemistry, Tufts University, Medford, MA, 02155, USA.
| |
Collapse
|
38
|
Winkler ES, Gilchuk P, Yu J, Bailey AL, Chen RE, Chong Z, Zost SJ, Jang H, Huang Y, Allen JD, Case JB, Sutton RE, Carnahan RH, Darling TL, Boon ACM, Mack M, Head RD, Ross TM, Crowe JE, Diamond MS. Human neutralizing antibodies against SARS-CoV-2 require intact Fc effector functions for optimal therapeutic protection. Cell 2021; 184:1804-1820.e16. [PMID: 33691139 PMCID: PMC7879018 DOI: 10.1016/j.cell.2021.02.026] [Citation(s) in RCA: 294] [Impact Index Per Article: 73.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/17/2020] [Accepted: 02/05/2021] [Indexed: 02/06/2023]
Abstract
SARS-CoV-2 has caused the global COVID-19 pandemic. Although passively delivered neutralizing antibodies against SARS-CoV-2 show promise in clinical trials, their mechanism of action in vivo is incompletely understood. Here, we define correlates of protection of neutralizing human monoclonal antibodies (mAbs) in SARS-CoV-2-infected animals. Whereas Fc effector functions are dispensable when representative neutralizing mAbs are administered as prophylaxis, they are required for optimal protection as therapy. When given after infection, intact mAbs reduce SARS-CoV-2 burden and lung disease in mice and hamsters better than loss-of-function Fc variant mAbs. Fc engagement of neutralizing antibodies mitigates inflammation and improves respiratory mechanics, and transcriptional profiling suggests these phenotypes are associated with diminished innate immune signaling and preserved tissue repair. Immune cell depletions establish that neutralizing mAbs require monocytes and CD8+ T cells for optimal clinical and virological benefit. Thus, potently neutralizing mAbs utilize Fc effector functions during therapy to mitigate lung infection and disease.
Collapse
Affiliation(s)
- Emma S Winkler
- Department of Medicine, Washington University School of Medicine, St. Louis, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, St. Louis, MO 63110, USA
| | - Pavlo Gilchuk
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jinsheng Yu
- Department of Genetics, Washington University School of Medicine, St. Louis, St. Louis, MO 63110, USA
| | - Adam L Bailey
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, St. Louis, MO 63110, USA
| | - Rita E Chen
- Department of Medicine, Washington University School of Medicine, St. Louis, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, St. Louis, MO 63110, USA
| | - Zhenlu Chong
- Department of Medicine, Washington University School of Medicine, St. Louis, St. Louis, MO 63110, USA
| | - Seth J Zost
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Hyesun Jang
- Center for Vaccines and Immunology, University of Georgia, Athens, GA 30605, USA
| | - Ying Huang
- Center for Vaccines and Immunology, University of Georgia, Athens, GA 30605, USA
| | - James D Allen
- Center for Vaccines and Immunology, University of Georgia, Athens, GA 30605, USA
| | - James Brett Case
- Department of Medicine, Washington University School of Medicine, St. Louis, St. Louis, MO 63110, USA
| | - Rachel E Sutton
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Robert H Carnahan
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Tamarand L Darling
- Department of Medicine, Washington University School of Medicine, St. Louis, St. Louis, MO 63110, USA
| | - Adrianus C M Boon
- Department of Medicine, Washington University School of Medicine, St. Louis, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, St. Louis, MO 63110, USA; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, St. Louis, MO 63110, USA
| | - Matthias Mack
- Department of Internal Medicine II, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Richard D Head
- Department of Genetics, Washington University School of Medicine, St. Louis, St. Louis, MO 63110, USA
| | - Ted M Ross
- Center for Vaccines and Immunology, University of Georgia, Athens, GA 30605, USA
| | - James E Crowe
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, St. Louis, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, St. Louis, MO 63110, USA; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, St. Louis, MO 63110, USA; The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, St. Louis, MO 63110, USA.
| |
Collapse
|
39
|
O'Donnell KL, Marzi A. Immunotherapeutics for Ebola Virus Disease: Hope on the Horizon. Biologics 2021; 15:79-86. [PMID: 33776420 PMCID: PMC7987275 DOI: 10.2147/btt.s259069] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/04/2021] [Indexed: 11/23/2022]
Abstract
Ebola virus disease (EVD) remains among the biggest public health threats in Africa, even though recently a vaccine was approved for human use. However, in outbreak situations treatment strategies are needed in combination with vaccination campaigns to impact and stop the spread of the disease. Here, we discuss the development of the immunotherapeutics against EDV both targeting the virus itself and bolstering the immunological environment of the host at both the pre-clinical and clinical level. The early development of antibody therapy in preclinical settings and the early pitfalls in the implementation of this therapeutic strategy are discussed. We also consider the advancement of the production, modulation, and specificity of the antibody treatment that garnered increased success in preclinical studies to the point that it was warranted to test them in a clinical setting. Initial clinical trials in an outbreak scenario proved difficult to definitively confirm the efficacy of the implemented treatment. Upon further modification and with the experiences from the challenging outbreak conditions in mind, the PALM clinical trial demonstrated efficacy of an antibody cocktail which recently received approval for human use.
Collapse
Affiliation(s)
- Kyle L O'Donnell
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Andrea Marzi
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| |
Collapse
|
40
|
Wagstaffe HR, Clutterbuck EA, Bockstal V, Stoop JN, Luhn K, Douoguih M, Shukarev G, Snape MD, Pollard AJ, Riley EM, Goodier MR. Ebola virus glycoprotein stimulates IL-18-dependent natural killer cell responses. J Clin Invest 2021; 130:3936-3946. [PMID: 32315287 PMCID: PMC7324188 DOI: 10.1172/jci132438] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 04/16/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND NK cells are activated by innate cytokines and viral ligands to kill virus-infected cells. These functions are enhanced during secondary immune responses and after vaccination by synergy with effector T cells and virus-specific antibodies. In human Ebola virus infection, clinical outcome is strongly associated with the initial innate cytokine response, but the role of NK cells has not been thoroughly examined. METHODS The novel 2-dose heterologous Adenovirus type 26.ZEBOV (Ad26.ZEBOV) and modified vaccinia Ankara-BN-Filo (MVA-BN-Filo) vaccine regimen is safe and provides specific immunity against Ebola glycoprotein, and is currently in phase 2 and 3 studies. Here, we analyzed NK cell phenotype and function in response to Ad26.ZEBOV, MVA-BN-Filo vaccination regimen and in response to in vitro Ebola glycoprotein stimulation of PBMCs isolated before and after vaccination. RESULTS We show enhanced NK cell proliferation and activation after vaccination compared with baseline. Ebola glycoprotein–induced activation of NK cells was dependent on accessory cells and TLR-4–dependent innate cytokine secretion (predominantly from CD14+ monocytes) and enriched within less differentiated NK cell subsets. Optimal NK cell responses were dependent on IL-18 and IL-12, whereas IFN-γ secretion was restricted by high concentrations of IL-10. CONCLUSION This study demonstrates the induction of NK cell effector functions early after Ad26.ZEBOV, MVA-BN-Filo vaccination and provides a mechanism for the activation and regulation of NK cells by Ebola glycoprotein. TRIAL REGISTRATION ClinicalTrials.gov NCT02313077. FUNDING United Kingdom Medical Research Council Studentship in Vaccine Research, Innovative Medicines Initiative 2 Joint Undertaking, EBOVAC (grant 115861) and Crucell Holland (now Janssen Vaccines and Prevention B.V.), European Union’s Horizon 2020 research and innovation programme and European Federation of Pharmaceutical Industries and Associations (EFPIA).
Collapse
Affiliation(s)
- Helen R Wagstaffe
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Elizabeth A Clutterbuck
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom.,National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, Oxford University Hospitals and National Health Service (NHS) Foundation Trust, Oxford, United Kingdom
| | - Viki Bockstal
- Janssen Vaccines and Prevention, Leiden, Netherlands
| | | | - Kerstin Luhn
- Janssen Vaccines and Prevention, Leiden, Netherlands
| | | | | | - Matthew D Snape
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom.,National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, Oxford University Hospitals and National Health Service (NHS) Foundation Trust, Oxford, United Kingdom
| | - Andrew J Pollard
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom.,National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, Oxford University Hospitals and National Health Service (NHS) Foundation Trust, Oxford, United Kingdom
| | - Eleanor M Riley
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Martin R Goodier
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
41
|
Durable natural killer cell responses after heterologous two-dose Ebola vaccination. NPJ Vaccines 2021; 6:19. [PMID: 33514756 PMCID: PMC7846750 DOI: 10.1038/s41541-021-00280-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 01/04/2021] [Indexed: 12/24/2022] Open
Abstract
Natural killer (NK) cells are implicated among immune effectors after vaccination against viral pathogens, including Ebola virus. The two-dose heterologous Ebola virus vaccine regimen, adenovirus type 26.ZEBOV followed by modified vaccinia Ankara-BN-Filo (EBOVAC2 consortium, EU Innovative Medicines Initiative), induces NK cell activation and anti-Ebola glycoprotein (GP) antibody-dependent NK cell activation post-dose 1, which is further elevated post-dose 2. Here, in a multicentre, phase 2 clinical trial (EBL2001), we demonstrate durable ex vivo NK cell activation 180 days after dose 2, with responses enriched in CD56bright NK cells. In vitro antibody-dependent responses to immobilised Ebola GP increased after dose 1, and remained elevated compared to pre-vaccination levels in serum collected 180 days later. Peak NK cell responses were observed post-dose 2 and NK cell IFN-γ responses remained significantly elevated at 180 days post-dose 2. Individual variation in NK cell responses were influenced by both anti-Ebola GP antibody concentrations and intrinsic interindividual differences in NK cell functional capacity. In summary, this study demonstrates durable NK cell responses after Ad26.ZEBOV, MVA-BN-Filo Ebola virus vaccination and could inform the immunological evaluation of future iterations of the vaccine regimen and vaccination schedules.
Collapse
|
42
|
Ramamurthy D, Nundalall T, Cingo S, Mungra N, Karaan M, Naran K, Barth S. Recent advances in immunotherapies against infectious diseases. IMMUNOTHERAPY ADVANCES 2021; 1:ltaa007. [PMID: 38626281 PMCID: PMC7717302 DOI: 10.1093/immadv/ltaa007] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/10/2020] [Accepted: 11/19/2020] [Indexed: 12/13/2022] Open
Abstract
Immunotherapies are disease management strategies that target or manipulate components of the immune system. Infectious diseases pose a significant threat to human health as evidenced by countries continuing to grapple with several emerging and re-emerging diseases, the most recent global health threat being the SARS-CoV2 pandemic. As such, various immunotherapeutic approaches are increasingly being investigated as alternative therapies for infectious diseases, resulting in significant advances towards the uncovering of pathogen-host immunity interactions. Novel and innovative therapeutic strategies are necessary to overcome the challenges typically faced by existing infectious disease prevention and control methods such as lack of adequate efficacy, drug toxicity, and the emergence of drug resistance. As evidenced by recent developments and success of pharmaceuticals such as monoclonal antibodies (mAbs), immunotherapies already show abundant promise to overcome such limitations while also advancing the frontiers of medicine. In this review, we summarize some of the most notable inroads made to combat infectious disease, over mainly the last 5 years, through the use of immunotherapies such as vaccines, mAb-based therapies, T-cell-based therapies, manipulation of cytokine levels, and checkpoint inhibition. While its most general applications are founded in cancer treatment, advances made towards the curative treatment of human immunodeficiency virus, tuberculosis, malaria, zika virus and, most recently COVID-19, reinforce the role of immunotherapeutic strategies in the broader field of disease control. Ultimately, the comprehensive specificity, safety, and cost of immunotherapeutics will impact its widespread implementation.
Collapse
Affiliation(s)
- Dharanidharan Ramamurthy
- Medical Biotechnology and Immunotherapy Research Unit, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Trishana Nundalall
- Medical Biotechnology and Immunotherapy Research Unit, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Sanele Cingo
- Medical Biotechnology and Immunotherapy Research Unit, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Neelakshi Mungra
- Medical Biotechnology and Immunotherapy Research Unit, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Maryam Karaan
- Medical Biotechnology and Immunotherapy Research Unit, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Krupa Naran
- Medical Biotechnology and Immunotherapy Research Unit, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Stefan Barth
- Medical Biotechnology and Immunotherapy Research Unit, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Cancer Biotechnology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
43
|
Winkler ES, Gilchuk P, Yu J, Bailey AL, Chen RE, Zost SJ, Jang H, Huang Y, Allen JD, Case JB, Sutton RE, Carnahan RH, Darling TL, Boon ACM, Mack M, Head RD, Ross TM, Crowe JE, Diamond MS. Human neutralizing antibodies against SARS-CoV-2 require intact Fc effector functions and monocytes for optimal therapeutic protection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020. [PMID: 33398272 DOI: 10.1101/2020.12.28.424554] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
SARS-CoV-2 has caused the global COVID-19 pandemic. Although passively delivered neutralizing antibodies against SARS-CoV-2 show promise in clinical trials, their mechanism of action in vivo is incompletely understood. Here, we define correlates of protection of neutralizing human monoclonal antibodies (mAbs) in SARS-CoV-2-infected animals. Whereas Fc effector functions are dispensable when representative neutralizing mAbs are administered as prophylaxis, they are required for optimal protection as therapy. When given after infection, intact mAbs reduce SARS-CoV-2 burden and lung disease in mice and hamsters better than loss-of-function Fc variant mAbs. Fc engagement of neutralizing antibodies mitigates inflammation and improves respiratory mechanics, and transcriptional profiling suggests these phenotypes are associated with diminished innate immune signaling and preserved tissue repair. Immune cell depletions establish that neutralizing mAbs require monocytes for therapeutic efficacy. Thus, potently neutralizing mAbs require Fc effector functions for maximal therapeutic benefit during therapy to modulate protective immune responses and mitigate lung disease.
Collapse
|
44
|
Cao J, Wang L, Yu C, Wang K, Wang W, Yan J, Li Y, Yang Y, Wang X, Wang J. Development of an antibody-dependent cellular cytotoxicity reporter assay for measuring anti-Middle East Respiratory Syndrome antibody bioactivity. Sci Rep 2020; 10:16615. [PMID: 33024203 PMCID: PMC7538987 DOI: 10.1038/s41598-020-73960-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 09/22/2020] [Indexed: 12/17/2022] Open
Abstract
Middle East Respiratory Syndrome coronavirus (MERS-CoV) is a highly virulent pathogen that causes Middle East Respiratory Syndrome (MERS). Anti-MERS-CoV antibodies play an integral role in the prevention and treatment against MERS-CoV infections. Bioactivity is a key quality attribute of therapeutic antibodies, and high accuracy and precision are required. The major methods for evaluating the antiviral effect of antiviral antibodies include neutralization assays using live viruses or pseudoviruses are highly variable. Recent studies have demonstrated that the antibody-dependent cellular cytotoxicity (ADCC) activity of antiviral antibodies is more consistent with the virus clearance effect in vivo than neutralization activity. However, no reports evaluating the ADCC activity of anti-MERS antibodies have been published to date. Here, we describe the development of a robust and reliable cell-based reporter gene assay for the determination of ADCC activity of anti-MERS antibodies using 293T/MERS cells stably expressing the spike protein of MERS-CoV (MERS-S) as target cells and the engineered Jurkat/NFAT-luc/FcγRIIIa stably expressing FcγRIIIA and NFAT reporter gene as effector cells. According to the ICH-Q2 analytical method guidelines, we carefully optimized the experimental conditions and assessed the performance of our assay. In addition, we found that the ADCC activity of afucosylated anti-MERS antibodies is higher than their fucosylated counterparts. The establishment of this ADCC determination system provides a novel method for evaluating the bioactivity of anti-MERS antibodies and improving ADCC activity through modification of N-glycosylation of the Fc segment.
Collapse
Affiliation(s)
- Junxia Cao
- Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, No. 31, Huotuo Road, Biomedical Base, Daxing District, Beijing, 102629, China.,Department of Physiology and Pathopysiology, Capital Medical University, Youanmen, Fengtai District, Beijing, 100069, China
| | - Lan Wang
- Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, No. 31, Huotuo Road, Biomedical Base, Daxing District, Beijing, 102629, China
| | - Chuanfei Yu
- Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, No. 31, Huotuo Road, Biomedical Base, Daxing District, Beijing, 102629, China
| | - Kaiqin Wang
- Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, No. 31, Huotuo Road, Biomedical Base, Daxing District, Beijing, 102629, China
| | - Wenbo Wang
- Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, No. 31, Huotuo Road, Biomedical Base, Daxing District, Beijing, 102629, China
| | - Jinghua Yan
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yan Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yalan Yang
- Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, No. 31, Huotuo Road, Biomedical Base, Daxing District, Beijing, 102629, China
| | - Xiaomin Wang
- Department of Physiology and Pathopysiology, Capital Medical University, Youanmen, Fengtai District, Beijing, 100069, China.
| | - Junzhi Wang
- Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, No. 31, Huotuo Road, Biomedical Base, Daxing District, Beijing, 102629, China.
| |
Collapse
|
45
|
Ng TW, Wirchnianski AS, Wec AZ, Fels JM, Johndrow CT, Saunders KO, Liao HX, Chan J, Jacobs WR, Chandran K, Porcelli SA. Exploiting Pre-Existing CD4 + T Cell Help from Bacille Calmette-Guérin Vaccination to Improve Antiviral Antibody Responses. THE JOURNAL OF IMMUNOLOGY 2020; 205:425-437. [PMID: 32513849 DOI: 10.4049/jimmunol.2000191] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 05/12/2020] [Indexed: 12/12/2022]
Abstract
The continuing emergence of viral pathogens and their rapid spread into heavily populated areas around the world underscore the urgency for development of highly effective vaccines to generate protective antiviral Ab responses. Many established and newly emerging viral pathogens, including HIV and Ebola viruses, are most prevalent in regions of the world in which Mycobacterium tuberculosis infection remains endemic and vaccination at birth with M. bovis bacille Calmette-Guérin (BCG) is widely used. We have investigated the potential for using CD4+ T cells arising in response to BCG as a source of help for driving Ab responses against viral vaccines. To test this approach, we designed vaccines comprised of protein immunogens fused to an immunodominant CD4+ T cell epitope of the secreted Ag 85B protein of BCG. Proof-of-concept experiments showed that the presence of BCG-specific Th cells in previously BCG-vaccinated mice had a dose-sparing effect for subsequent vaccination with fusion proteins containing the Ag 85B epitope and consistently induced isotype switching to the IgG2c subclass. Studies using an Ebola virus glycoprotein fused to the Ag 85B epitope showed that prior BCG vaccination promoted high-affinity IgG1 responses that neutralized viral infection. The design of fusion protein vaccines with the ability to recruit BCG-specific CD4+ Th cells may be a useful and broadly applicable approach to generating improved vaccines against a range of established and newly emergent viral pathogens.
Collapse
Affiliation(s)
- Tony W Ng
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Ariel S Wirchnianski
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Anna Z Wec
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461.,Adimab, Lebanon, NH 03766
| | - J Maximilian Fels
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Christopher T Johndrow
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Kevin O Saunders
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710; and
| | - Hua-Xin Liao
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710; and
| | - John Chan
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461.,Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461
| | - William R Jacobs
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Kartik Chandran
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Steven A Porcelli
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461; .,Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461
| |
Collapse
|
46
|
Younes N, Al-Sadeq DW, AL-Jighefee H, Younes S, Al-Jamal O, Daas HI, Yassine HM, Nasrallah GK. Challenges in Laboratory Diagnosis of the Novel Coronavirus SARS-CoV-2. Viruses 2020; 12:582. [PMID: 32466458 PMCID: PMC7354519 DOI: 10.3390/v12060582] [Citation(s) in RCA: 256] [Impact Index Per Article: 51.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 12/13/2022] Open
Abstract
The recent outbreak of the Coronavirus disease 2019 (COVID-19) has quickly spread worldwide since its discovery in Wuhan city, China in December 2019. A comprehensive strategy, including surveillance, diagnostics, research, clinical treatment, and development of vaccines, is urgently needed to win the battle against COVID-19. The past three unprecedented outbreaks of emerging human coronavirus infections at the beginning of the 21st century have highlighted the importance of readily available, accurate, and rapid diagnostic technologies to contain emerging and re-emerging pandemics. Real-time reverse transcriptase-polymerase chain reaction (rRT-PCR) based assays performed on respiratory specimens remain the gold standard for COVID-19 diagnostics. However, point-of-care technologies and serologic immunoassays are rapidly emerging with high sensitivity and specificity as well. Even though excellent techniques are available for the diagnosis of symptomatic patients with COVID-19 in well-equipped laboratories; critical gaps still remain in screening asymptomatic people who are in the incubation phase of the virus, as well as in the accurate determination of live viral shedding during convalescence to inform decisions for ending isolation. This review article aims to discuss the currently available laboratory methods and surveillance technologies available for the detection of COVID-19, their performance characteristics and highlight the gaps in current diagnostic capacity, and finally, propose potential solutions. We also summarize the specifications of the majority of the available commercial kits (PCR, EIA, and POC) for laboratory diagnosis of COVID-19.
Collapse
Affiliation(s)
- Nadin Younes
- Biomedical Research Center, Qatar University, P.O. Box 2713 Doha, Qatar; (N.Y.); (D.W.A.-S.); (H.A.-J.); (O.A.-J.); (H.M.Y.)
| | - Duaa W. Al-Sadeq
- Biomedical Research Center, Qatar University, P.O. Box 2713 Doha, Qatar; (N.Y.); (D.W.A.-S.); (H.A.-J.); (O.A.-J.); (H.M.Y.)
- College of Medicine, Member of QU Health, Qatar University, P.O. Box 2713 Doha, Qatar
| | - Hadeel AL-Jighefee
- Biomedical Research Center, Qatar University, P.O. Box 2713 Doha, Qatar; (N.Y.); (D.W.A.-S.); (H.A.-J.); (O.A.-J.); (H.M.Y.)
| | - Salma Younes
- Department of Biomedical Science, College of Health Sciences, Member of QU Health, Qatar University, P.O. Box 2713 Doha, Qatar;
| | - Ola Al-Jamal
- Biomedical Research Center, Qatar University, P.O. Box 2713 Doha, Qatar; (N.Y.); (D.W.A.-S.); (H.A.-J.); (O.A.-J.); (H.M.Y.)
| | - Hanin I. Daas
- College of Dental Medicine, Member of QU Health, Qatar University, P.O. Box 2713 Doha, Qatar;
| | - Hadi. M. Yassine
- Biomedical Research Center, Qatar University, P.O. Box 2713 Doha, Qatar; (N.Y.); (D.W.A.-S.); (H.A.-J.); (O.A.-J.); (H.M.Y.)
- Department of Biomedical Science, College of Health Sciences, Member of QU Health, Qatar University, P.O. Box 2713 Doha, Qatar;
| | - Gheyath K. Nasrallah
- Biomedical Research Center, Qatar University, P.O. Box 2713 Doha, Qatar; (N.Y.); (D.W.A.-S.); (H.A.-J.); (O.A.-J.); (H.M.Y.)
- Department of Biomedical Science, College of Health Sciences, Member of QU Health, Qatar University, P.O. Box 2713 Doha, Qatar;
| |
Collapse
|
47
|
Lam JH, Smith FL, Baumgarth N. B Cell Activation and Response Regulation During Viral Infections. Viral Immunol 2020; 33:294-306. [PMID: 32326852 DOI: 10.1089/vim.2019.0207] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Acute viral infections are characterized by rapid increases in viral load, leading to cellular damage and the resulting induction of complex innate and adaptive antiviral immune responses that cause local and systemic inflammation. Successful antiviral immunity requires the activation of many immune cells, including T cells, natural killer cells, and macrophages. B cells play a unique part through their production of antibodies that can both neutralize and clear viral particles before virus entry into a cell. Protective antibodies are produced even before the first exposure of a pathogen, through the regulated secretion of so-called natural antibodies that are generated even in the complete absence of prior microbial exposure. An early wave of rapidly secreted antibodies from extrafollicular (EF) responses draws on the preexisting naive or memory repertoire of B cells to induce a strong protective response that in kinetics tightly follows the clearance of acute infections, such as with influenza virus. Finally, the generation of germinal centers (GCs) provides long-term protection through production of long-lived plasma cells and memory B cells, which shape and broaden the B cell repertoire for more effective responses following repeat exposures. In this study, we review B cell responses to acute viral infections, primarily influenza virus, from the earliest nonspecific B-1 cell to early, antigen-specific EF responses and finally to GC responses. Throughout, we address known factors that lead to distinct B cell response outcomes and discuss how their functions effect viral clearance, highlighting the critical contributions of each response type to the induction of highly protective antiviral humoral immunity.
Collapse
Affiliation(s)
- Jonathan H Lam
- Graduate Group in Immunology, Microbiology and Immunology, University of California, Davis, Davis, California, USA.,Center for Comparative Medicine, Microbiology and Immunology, University of California, Davis, Davis, California, USA
| | - Fauna L Smith
- Center for Comparative Medicine, Microbiology and Immunology, University of California, Davis, Davis, California, USA.,Integrated Pathobiology Graduate Group, Microbiology and Immunology, University of California, Davis, Davis, California, USA
| | - Nicole Baumgarth
- Graduate Group in Immunology, Microbiology and Immunology, University of California, Davis, Davis, California, USA.,Center for Comparative Medicine, Microbiology and Immunology, University of California, Davis, Davis, California, USA.,Integrated Pathobiology Graduate Group, Microbiology and Immunology, University of California, Davis, Davis, California, USA.,Department of Pathology, Microbiology and Immunology, University of California, Davis, Davis, California, USA
| |
Collapse
|
48
|
A Bivalent, Spherical Virus-Like Particle Vaccine Enhances Breadth of Immune Responses against Pathogenic Ebola Viruses in Rhesus Macaques. J Virol 2020; 94:JVI.01884-19. [PMID: 32075939 DOI: 10.1128/jvi.01884-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 02/13/2020] [Indexed: 12/16/2022] Open
Abstract
The 2013-2016 Ebola outbreak in West Africa led to accelerated efforts to develop vaccines against these highly virulent viruses. A live, recombinant vesicular stomatitis virus-based vaccine has been deployed in outbreak settings and appears highly effective. Vaccines based on replication-deficient adenovirus vectors either alone or in combination with a multivalent modified vaccinia Ankara (MVA) Ebola vaccine also appear promising and are progressing in clinical evaluation. However, the ability of current live vector-based approaches to protect against multiple pathogenic species of Ebola is not yet established, and eliciting durable responses may require additional booster vaccinations. Here, we report the development of a bivalent, spherical Ebola virus-like particle (VLP) vaccine that incorporates glycoproteins (GPs) from Zaire Ebola virus (EBOV) and Sudan Ebola virus (SUDV) and is designed to extend the breadth of immunity beyond EBOV. Immunization of rabbits with bivalent Ebola VLPs produced antibodies that neutralized all four pathogenic species of Ebola viruses and elicited antibody-dependent cell-mediated cytotoxicity (ADCC) responses against EBOV and SUDV. Vaccination of rhesus macaques with bivalent VLPs generated strong humoral immune responses, including high titers of binding, as well as neutralizing antibodies and ADCC responses. VLP vaccination led to a significant increase in the frequency of Ebola GP-specific CD4 and CD8 T cell responses. These results demonstrate that a novel bivalent Ebola VLP vaccine elicits strong humoral and cellular immune responses against pathogenic Ebola viruses and support further evaluation of this approach as a potential addition to Ebola vaccine development efforts.IMPORTANCE Ebola outbreaks result in significant morbidity and mortality in affected countries. Although several leading candidate Ebola vaccines have been developed and advanced in clinical testing, additional vaccine candidates may be needed to provide protection against different Ebola species and to extend the durability of protection. A novel approach demonstrated here is to express two genetically diverse glycoproteins on a spherical core, generating a vaccine that can broaden immune responses against known pathogenic Ebola viruses. This approach provides a new method to broaden and potentially extend protective immune responses against Ebola viruses.
Collapse
|
49
|
Fox JM, Roy V, Gunn BM, Huang L, Edeling MA, Mack M, Fremont DH, Doranz BJ, Johnson S, Alter G, Diamond MS. Optimal therapeutic activity of monoclonal antibodies against chikungunya virus requires Fc-FcγR interaction on monocytes. Sci Immunol 2020; 4:4/32/eaav5062. [PMID: 30796092 DOI: 10.1126/sciimmunol.aav5062] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 01/11/2019] [Indexed: 01/15/2023]
Abstract
Chikungunya virus (CHIKV) is an emerging mosquito-borne virus that has caused explosive outbreaks worldwide. Although neutralizing monoclonal antibodies (mAbs) against CHIKV inhibit infection in animals, the contribution of Fc effector functions to protection remains unknown. Here, we evaluated the activity of therapeutic mAbs that had or lacked the ability to engage complement and Fcγ receptors (FcγR). When administered as post-exposure therapy in mice, the Fc effector functions of mAbs promoted virus clearance from infected cells and reduced joint swelling-results that were corroborated in antibody-treated transgenic animals lacking activating FcγR. The control of CHIKV infection by antibody-FcγR engagement was associated with an accelerated influx of monocytes. A series of immune cell depletions revealed that therapeutic mAbs required monocytes for efficient clearance of CHIKV infection. Overall, our study suggests that in mice, FcγR expression on monocytes is required for optimal therapeutic activity of antibodies against CHIKV and likely other related viruses.
Collapse
Affiliation(s)
- Julie M Fox
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Vicky Roy
- Ragon Institute of MGH, MIT, and Harvard University, Cambridge, MA 02139, USA
| | - Bronwyn M Gunn
- Ragon Institute of MGH, MIT, and Harvard University, Cambridge, MA 02139, USA
| | | | - Melissa A Edeling
- Department of Pathology & Immunology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Matthias Mack
- Regensburg University Medical Center, Regensburg 93042, Germany
| | - Daved H Fremont
- Department of Pathology & Immunology, Washington University in St. Louis, St. Louis, MO 63110, USA.,Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | | | | | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard University, Cambridge, MA 02139, USA
| | - Michael S Diamond
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA. .,Department of Pathology & Immunology, Washington University in St. Louis, St. Louis, MO 63110, USA.,Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, MO 63110, USA
| |
Collapse
|
50
|
Nie J, Li Q, Wu J, Zhao C, Hao H, Liu H, Zhang L, Nie L, Qin H, Wang M, Lu Q, Li X, Sun Q, Liu J, Fan C, Huang W, Xu M, Wang Y. Establishment and validation of a pseudovirus neutralization assay for SARS-CoV-2. Emerg Microbes Infect 2020; 9:680-686. [PMID: 32207377 PMCID: PMC7144318 DOI: 10.1080/22221751.2020.1743767] [Citation(s) in RCA: 560] [Impact Index Per Article: 112.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Pseudoviruses are useful virological tools because of their safety and versatility, especially for emerging and re-emerging viruses. Due to its high pathogenicity and infectivity and the lack of effective vaccines and therapeutics, live SARS-CoV-2 has to be handled under biosafety level 3 conditions, which has hindered the development of vaccines and therapeutics. Based on a VSV pseudovirus production system, a pseudovirus-based neutralization assay has been developed for evaluating neutralizing antibodies against SARS-CoV-2 in biosafety level 2 facilities. The key parameters for this assay were optimized, including cell types, cell numbers, virus inoculum. When tested against the SARS-CoV-2 pseudovirus, SARS-CoV-2 convalescent patient sera showed high neutralizing potency, which underscore its potential as therapeutics. The limit of detection for this assay was determined as 22.1 and 43.2 for human and mouse serum samples respectively using a panel of 120 negative samples. The cutoff values were set as 30 and 50 for human and mouse serum samples, respectively. This assay showed relatively low coefficient of variations with 15.9% and 16.2% for the intra- and inter-assay analyses respectively. Taken together, we established a robust pseudovirus-based neutralization assay for SARS-CoV-2 and are glad to share pseudoviruses and related protocols with the developers of vaccines or therapeutics to fight against this lethal virus.
Collapse
Affiliation(s)
- Jianhui Nie
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, People's Republic of China
| | - Qianqian Li
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, People's Republic of China.,Graduate School of Peking Union Medical College, Beijing, People's Republic of China
| | - Jiajing Wu
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, People's Republic of China.,Wuhan Institute of Biological Products, Wuhan, People's Republic of China
| | - Chenyan Zhao
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, People's Republic of China
| | - Huan Hao
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, People's Republic of China
| | - Huan Liu
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, People's Republic of China
| | - Li Zhang
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, People's Republic of China
| | - Lingling Nie
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, People's Republic of China
| | - Haiyang Qin
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, People's Republic of China
| | - Meng Wang
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, People's Republic of China
| | - Qiong Lu
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, People's Republic of China
| | - Xiaoyu Li
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, People's Republic of China
| | - Qiyu Sun
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, People's Republic of China
| | - Junkai Liu
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, People's Republic of China
| | - Changfa Fan
- Division of Animal Model Research, Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control, Beijing, People's Republic of China
| | - Weijin Huang
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, People's Republic of China
| | - Miao Xu
- Institute for Biological Product Control, National Institutes for Food and Drug Control, Beijing, People's Republic of China
| | - Youchun Wang
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, People's Republic of China.,Graduate School of Peking Union Medical College, Beijing, People's Republic of China
| |
Collapse
|