1
|
Ren H, Amjad Z, Saleem A, Usman M, Dina K, Haris M, Guo J. Scalable interlinked hierarchical porous biochar-nanosheets for efficient removal of thallium from aquatic environment. JOURNAL OF HAZARDOUS MATERIALS 2025; 491:137879. [PMID: 40073576 DOI: 10.1016/j.jhazmat.2025.137879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 02/24/2025] [Accepted: 03/06/2025] [Indexed: 03/14/2025]
Abstract
The scalable development of engineeredcarbonaceous materials for commercialization at industrial scale is a formidable issue. Herein, a scalable and innovative chemical exfoliation approach was introduced to develop interlinkedhierarchical biocharnanosheets (BCNs) framework form agricultural wastes. The developed BCNs exhibited higher surface area (1048.63 m2 g-1) and rational pore structure with average pore size of 2.051 nm. The resulted BCNs showed superior Tl(I) adsorption performance with a maximum adsorption capacity of 448.21 mg g-1. BCNs maintained its removal potential > 80 % in presence of higher concentration (0.2 mmol L-1) of coexisting ions (Na+, Ca2+, Mg2+, Zn2+ and Ni2+) and organic acids (humic and fluvic acid). Importantly, the BCNs manifested remarkable recyclability (81.3 %) after 18 adsorptiondesorption cycles. Furthermore, a fixed bed column trial exhibited that ∼929 bed volumes of the feedstock stream (1.0 mg L-1) could be efficiently treated, highlighting the potential of BCNs to treat toxic metals polluted water matrices in continuous flow mode at pilot scale. Overall, the present work has significant potential to produce engineered carbon materials at higher scale, paving the way for commercialization of more costeffective products from biomass for various water treatment technology.
Collapse
Affiliation(s)
- Haitao Ren
- Xi'an Key Laboratory of Advanced Photo-Electronics Materials and Energy Conversion Device, Technological Institute of Materials & Energy Science (TIMES), Xijing University, Xi'an 710123, China
| | - Zainab Amjad
- College of Earth and Environmental Sciences, University of the Punjab, Lahore 54590, Pakistan
| | - Atif Saleem
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Muhammad Usman
- Université de Rennes, École Nationale Supérieure de Chimie de Rennes, CNRS, UMR 6226, Rennes F-35000, France
| | - Kukybayeva Dina
- Faculty of Tourism and Languages, Yessenov University, Aktau 130000, Kazakhstan
| | - Muhammad Haris
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China.
| | - Junkang Guo
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China.
| |
Collapse
|
2
|
Huang YH, Chen YH, Darius E, Shi HF, Yeh CH, Hsu JY, Liu KK. Two-Dimensional MoS 2 Field-Effect Biosensor for Highly Sensitive Detection of Cardiac Troponin I. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 40377210 DOI: 10.1021/acsami.5c05963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2025]
Abstract
Two-dimensional (2D) materials, particularly transition metal dichalcogenides (TMDs), have gained considerable research attention in electronics and biosensing due to their exceptional electrical and physical properties. In this work, we report a molybdenum disulfide (MoS2) field-effect-based biosensor for sensitive, selective, and label-free detection of cardiac troponin I (cTnI), a key biomarker for acute myocardial infarction (AMI). To enhance biorecognition efficiency, yolk-shell-structured plasmonic nanoparticles were synthesized and conjugated with anti-cTnI antibodies before being immobilized on the MoS2 channel surface. The resulting biosensor demonstrated high sensitivity with a limit of detection as low as 2.66 pg/mL. Selectivity tests confirmed its excellent specificity, effectively distinguishing cTnI from other interfering biomarkers. The integration of 2D MoS2 with yolk-shell nanomaterials provides a highly promising platform for rapid and precise AMI diagnostics.
Collapse
Affiliation(s)
- Yung-Hsin Huang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Yung-Hsuan Chen
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Evan Darius
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Hui-Fang Shi
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Chao-Hui Yeh
- Department of Electrical Engineering, National Tsing Hua University, Hsinchu 300044, Taiwan
- Institute of Electronics Engineering, National Tsing Hua University, Hsinchu 300044, Taiwan
- Center for Nanotechnology, Materials Science and Microsystem, National Tsing Hua University, Hsinchu 300044, Taiwan
- College of Semiconductor Research, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Ju-Yin Hsu
- National Taiwan University Hospital Hsinchu Branch, Hsinchu 300001, Taiwan
| | - Keng-Ku Liu
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 300044, Taiwan
| |
Collapse
|
3
|
Wang Q, Yan Z, Hu Y, Zhang Q, Kong XY, Qian Y, Ling H, Zhang ZH, Li T, Li X, Kang L, Yang L, Jiang L, Zhang Z, Wen L. Light-Boosted Osmotic Energy Conversion and Ion Pumping through a Graphdiyne Oxide-Based Membrane. J Am Chem Soc 2025; 147:14595-14604. [PMID: 40108124 DOI: 10.1021/jacs.5c01960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Two-dimensional (2D) membranes with engineered light-responsive ion transport dynamics have been explored to construct efficient nanofluidic platforms that show great potential in osmotic and solar-osmotic energy conversion. However, the power density is still limited by poor responsivity and the inevitable trade-off effect between ion selectivity and flux. Here, we observed light-pumping ion transport behavior in graphdiyne oxide (GDYO) with a unique carbon hybrid skeleton that provides sensitive photoelectric responsivity and high-speed cation pathways. Molecular dynamics simulations verify that the coexistent interaction effects between cations and the negatively charged sites in GDYO (i.e., oxygen-containing groups and electron-rich acetylenic bonds) could significantly promote cation transmembrane transport via an absorption-acceleration mechanism. Furthermore, the GDYO-based system, possessing a coupled photon-electron-ion transport behavior due to its inherent semiconductor properties, could subtly realize unidirectional ion movement, consuming luminous energy either from low concentration to high concentration or vice versa, flexibly promoting the osmotic power density by ∼195% to 11.91 W m-2.
Collapse
Affiliation(s)
- Qingchen Wang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
- State Key Laboratory of Bioinspired Interfacial Materials Science, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zidi Yan
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yuhao Hu
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
- State Key Laboratory of Bioinspired Interfacial Materials Science, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Qixiang Zhang
- Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
- State Key Laboratory of Bioinspired Interfacial Materials Science, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
| | - Xiang-Yu Kong
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
- State Key Laboratory of Bioinspired Interfacial Materials Science, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yongchao Qian
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Haoyang Ling
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zhe-Hua Zhang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
- State Key Laboratory of Bioinspired Interfacial Materials Science, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Tingyang Li
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
- State Key Laboratory of Bioinspired Interfacial Materials Science, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xin Li
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Lei Kang
- Functional Crystals Lab, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Linsen Yang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
- State Key Laboratory of Bioinspired Interfacial Materials Science, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
| | - Lei Jiang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
- State Key Laboratory of Bioinspired Interfacial Materials Science, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zhen Zhang
- Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
- State Key Laboratory of Bioinspired Interfacial Materials Science, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
| | - Liping Wen
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
- State Key Laboratory of Bioinspired Interfacial Materials Science, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
4
|
Jiang H, Zhang S, Li B, Wu L. Advances in Multifunctional Nanoagents and SERS-Based Multimodal Sensing for Biotoxin in Foods. Foods 2025; 14:1393. [PMID: 40282794 PMCID: PMC12026551 DOI: 10.3390/foods14081393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 04/13/2025] [Accepted: 04/15/2025] [Indexed: 04/29/2025] Open
Abstract
Biotoxins, toxic substances produced by living organisms, are widely present in food and pose a major threat to human health. Traditional detection methods, such as gas chromatography-mass spectrometry (GC-MS) and enzyme-linked immunosorbent assay (ELISA), often suffer from limitations including complex sample preparation, high costs, and lengthy analysis times. In response, surface-enhanced Raman spectroscopy (SERS) has emerged as a highly sensitive and specific analytical tool for the detection of biotoxins. This review highlights the recent progress in multimodal detection technologies based on SERS, focusing on the design and classification of multimodal materials to optimize the construction of SERS substrates. The integration of SERS with other detection modalities, such as fluorescence, colorimetry, and electrochemistry, is discussed to enhance the accuracy and diversity of biotoxin detection. Finally, the review critically assesses the current challenges and future prospects of SERS multimodal detection technology, particularly in real-time food safety monitoring and on-site diagnostics, offering critical insights to guide future research directions.
Collapse
Affiliation(s)
- Huan Jiang
- Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, School of Food Science and Engineering, Hainan University, Haikou 570228, China; (H.J.); (S.Z.)
| | - Sihang Zhang
- Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, School of Food Science and Engineering, Hainan University, Haikou 570228, China; (H.J.); (S.Z.)
| | - Bei Li
- Institute of Food Testing, Hainan Academy of Inspection and Testing, Haikou 570314, China
| | - Long Wu
- Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, School of Food Science and Engineering, Hainan University, Haikou 570228, China; (H.J.); (S.Z.)
| |
Collapse
|
5
|
Sakuma T, Sato R, Yamaguchi A, Imai H, Arai N, Oaki Y. Synthesis of Amorphous Graphene and Graphene Oxide Analogues. J Am Chem Soc 2025; 147:11564-11573. [PMID: 40129414 PMCID: PMC11969549 DOI: 10.1021/jacs.5c00548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 02/24/2025] [Accepted: 03/13/2025] [Indexed: 03/26/2025]
Abstract
Graphene and graphene oxide (GO) are promising two-dimensional nanomaterials. An ultimate goal is to achieve large-scale bottom-up syntheses of perfect graphene and GO. However, controlled syntheses of perfect graphitic structures still remain challenges in chemistry and materials science. Moreover, amorphous types have not received much attention. The present work shows syntheses, structures, and applications of amorphous graphene and GO analogues alternative to the ideal ones. The simultaneous multiple reactions of two conjugated monomers provide amorphous conjugated polymer networks containing low-crystalline graphitic domains and their stacking. The stacked amorphous graphene and GO are exfoliated into thin nanosheets including few-layers and monolayers. Moreover, in situ syntheses of the amorphous GO analogues are applied to obtain a reinforced plastic with high mechanical strength. The present work implies that various functional nanocarbons can be designed and synthesized by tailored combinations of conjugated monomers.
Collapse
Affiliation(s)
- Tomoki Sakuma
- Department
of Applied Chemistry, Faculty of Science
and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Ryoichi Sato
- Department
of Mechanical Engineering, Faculty of Science
and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Akihiro Yamaguchi
- Department
of Mechanical Engineering, Faculty of Science
and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Hiroaki Imai
- Department
of Applied Chemistry, Faculty of Science
and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Noriyoshi Arai
- Department
of Mechanical Engineering, Faculty of Science
and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Yuya Oaki
- Department
of Applied Chemistry, Faculty of Science
and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| |
Collapse
|
6
|
Choudhary MK, Rawat A, Patra L, Pandey R. First-Principles Study of the Interaction of Atomic and Molecular Chlorine with Graphene, Silicene, Phosphorene, and h-BN Monolayer. ACS OMEGA 2025; 10:12710-12716. [PMID: 40191300 PMCID: PMC11966295 DOI: 10.1021/acsomega.5c01346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/10/2025] [Accepted: 03/14/2025] [Indexed: 04/09/2025]
Abstract
The environmental stability of 2D monolayers is critical for their applications across various technology-related fields. These monolayers can degrade when exposed to gaseous components in the environment, so minimizing these degrading effects is essential. In this paper, chlorine exposure to the 2D monolayers, specifically graphene, silicene, phosphorene, and h-BN monolayer, is investigated using van der Waals corrected density functional theory. The results find that atomic chlorine chemisorbs on graphene, h-BN, silicene, and phosphorene with adsorption energies of -1.09, -0.65, -3.10, and -1.74 eV/atom, and bond distances of 3.0, 2.6, 2.2, and 2.1 Å, respectively. In contrast, molecular Cl2 exhibits physisorption with adsorption energies around -0.22 eV and bond distances ranging from 3.3 to 3.6 Å. NEB calculations show that Cl2 dissociative chemisorption is exothermic on buckled monolayers (silicene and phosphorene) and endothermic on planar monolayers (graphene and h-BN). On buckled surfaces, Cl2 dissociates after overcoming energy barriers of 2.0 eV for silicene and 3.2 eV for phosphorene, forming a stable chemisorbed state that is 0.9 eV lower than the physisorbed state. However, on planar monolayers, Cl2 remains in the physisorbed state because the dissociated chemisorbed state is ≈ 1.5 eV higher in energy. These differences are due to the weaker π-bonds in buckled monolayers, which make dissociation easier, while planar monolayers stabilize the molecular form.
Collapse
Affiliation(s)
- Mukesh K. Choudhary
- Department
of Physics, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Ashima Rawat
- Department
of Physics, University of Colorado Boulder Boulder, Colorado 80309-0133, United
States
| | - Lokanath Patra
- George
W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Ravindra Pandey
- Department
of Physics, Michigan Technological University, Houghton, Michigan 49931, United States
| |
Collapse
|
7
|
Buruiana AT, Mihai C, Kuncser V, Velea A. Advances in 2D Group IV Monochalcogenides: Synthesis, Properties, and Applications. MATERIALS (BASEL, SWITZERLAND) 2025; 18:1530. [PMID: 40271742 PMCID: PMC11989776 DOI: 10.3390/ma18071530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 03/07/2025] [Accepted: 03/19/2025] [Indexed: 04/25/2025]
Abstract
The field of newly developed two-dimensional (2D) materials with low symmetry and structural in-plane anisotropic properties has grown rapidly in recent years. The phosphorene analog of group IV monochalcogenides is a prominent subset of this group that has attracted a lot of attention because of its unique in-plane anisotropic electronic and optical properties, crystalline symmetries, abundance in the earth's crust, and environmental friendliness. This article presents a review of the latest research advancements concerning 2D group IV monochalcogenides. It begins with an exploration of the crystal structures of these materials, alongside their optical and electronic properties. The review continues by discussing the various techniques employed for the synthesis of layered group IV monochalcogenides, including both bottom-up methods such as vapor-phase deposition and top-down techniques like mechanical and/or liquid-phase exfoliation. In the final part, the article emphasizes the application of 2D group IV monochalcogenides, particularly in the fields of photocatalysis, photodetectors, nonlinear optics, sensors, batteries, and photovoltaic cells.
Collapse
Affiliation(s)
- Angel-Theodor Buruiana
- National Institute of Materials Physics, Atomistilor 405A, 077125 Magurele, Romania; (A.-T.B.); (C.M.); (V.K.)
- Faculty of Physics, University of Bucharest, Atomistilor 405, 077125 Magurele, Romania
| | - Claudia Mihai
- National Institute of Materials Physics, Atomistilor 405A, 077125 Magurele, Romania; (A.-T.B.); (C.M.); (V.K.)
| | - Victor Kuncser
- National Institute of Materials Physics, Atomistilor 405A, 077125 Magurele, Romania; (A.-T.B.); (C.M.); (V.K.)
| | - Alin Velea
- National Institute of Materials Physics, Atomistilor 405A, 077125 Magurele, Romania; (A.-T.B.); (C.M.); (V.K.)
| |
Collapse
|
8
|
Ravikiran N, Singh S. Ti 3C 2T Xderived layered MXenes as friction and wear reducing additives in lubricating oils: a detailed review. NANOTECHNOLOGY 2025; 36:172001. [PMID: 40020246 DOI: 10.1088/1361-6528/adbb73] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 02/28/2025] [Indexed: 03/21/2025]
Abstract
Friction and wear are critical aspects that significantly impact the efficiency and durability of mechanical systems. The demand for improved lubricating oils capable of reducing friction and wear has spurred the exploration of advanced additives. Two-dimensional (2D) transition metal carbides, nitrides, and carbonitrides (MXene), a new class of materials, have emerged as promising additives with exceptional tribological properties. This review paper aims to understand the usability of MXene, specifically the ones derived from Ti3C2TXas anti-friction and antiwear additives in lubricating oils. An elaborate discussion is presented about the synthesis and characterization techniques employed in the synthesis of Ti3C2TX(MXene), emphasizing their unique structural and surface properties that could contribute to their tribological performance, followed by their influence on the lubricant's tribological properties is thoroughly discussed. The underlying anti-friction and anti-wear mechanisms, their ability to form tribofilms on sliding surfaces, reduce direct metal-to-metal contact, and minimize wear are also highlighted. Additionally, the role of MXene in modifying the lubricant's chemical and physical interactions with sliding surfaces is analyzed. This review also attempts to identify and address the roadblocks hindering the use of Ti3C2TXMXene in lubricating oils, such as their aggregation tendencies, stability under extreme conditions, and potential side effects on lubricant properties along with the tentative strategies to overcome these hurdles. Relevant experimental findings in which Ti3C2TXderived 2D nano-sheets have been explored as friction and wear-reducing additives in different lubricating oils are critically assessed. Although these MXene are claimed to be highly effective as lubricant additives in lubricating oils owing to their unique properties and versatile chemistry, further research is urgently needed to address the challenges and optimize the formulation and integration of MXene into lubricating oils for practical implementation. This article comprehensively discusses Ti3C2TXMXene as friction and wear-reducing additives in lubricating oils, highlighting the pressing need for further research and the potential for future developments in this field.
Collapse
Affiliation(s)
- Nowduru Ravikiran
- School of Engineering Sciences and Technology, University of Hyderabad, Hyderabad 500046, India
| | - Swati Singh
- School of Engineering Sciences and Technology, University of Hyderabad, Hyderabad 500046, India
| |
Collapse
|
9
|
Zhang H, Yang M, Wu Q, Xue J, Liu H. Engineering Two-Dimensional Nanomaterials for Photothermal Therapy. Angew Chem Int Ed Engl 2025; 64:e202424768. [PMID: 39936912 DOI: 10.1002/anie.202424768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/09/2025] [Accepted: 02/10/2025] [Indexed: 02/13/2025]
Abstract
Two-dimensional (2D) nanomaterials offer a transformative platform for photothermal therapy (PTT) due to their unique physicochemical properties and exceptional photothermal conversion efficiencies. This Minireview summarizes the photothermal mechanisms of common 2D nanomaterials and details their synthesis, surface modification, and optimization strategies. Recent advances leveraging 2D nanomaterials for enhanced PTT are highlighted, with particular emphasis on synergistic therapeutic modalities. Despite the significant potential of 2D nanomaterials in PTT, challenges persist, including scalable and reproducible manufacturing, precise targeted delivery, understanding of the underlying biological interactions, and comprehensive assessment of long-term biocompatibility and toxicity. Looking forward, emerging technologies such as machine learning are expected to play a crucial role in accelerating the design and optimization of 2D nanomaterials for PTT, enabling the prediction of optimal structures, properties, and therapeutic efficacy, and ultimately paving the way for personalized nanomedicine.
Collapse
Affiliation(s)
- Haoyuan Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, No. 15, East of North Third Ring Road, Chaoyang District, Beijing, 100029, China
| | - Min Yang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, No. 15, East of North Third Ring Road, Chaoyang District, Beijing, 100029, China
| | - Qingyuan Wu
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, No. 30, Shuangqing Road, Haidian District, Beijing, 100084, China
| | - Jiajia Xue
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, No. 15, East of North Third Ring Road, Chaoyang District, Beijing, 100029, China
| | - Huiyu Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, No. 15, East of North Third Ring Road, Chaoyang District, Beijing, 100029, China
| |
Collapse
|
10
|
Lin N, Xie R, Jia H, Chen Y. One-Pot Synthesis of Tridentate Bicyclocalixarene Cage Molecules. Org Lett 2025; 27:1853-1857. [PMID: 39967262 DOI: 10.1021/acs.orglett.5c00037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
Efficient one-pot synthesis of tridentate bicyclocalixarenes was developed by condensing phloroglucinol with dechlorinated pyrimidine or triazine with a yield up to 58%. These cage-like molecules adopt a symmetric three-blade propeller structure with different terminal function groups and arm spans ranging from 7.5 to 15.8 Å. Due to the 1,3-alternate configuration of intermediate heterocalixarenes, the cage molecules can be prepared only with benzene rings as the upper and lower caps. They will be an ideal scaffold for the preparation of ultrathin two-dimensional materials.
Collapse
Affiliation(s)
- Na Lin
- College Chemistry & Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Ruize Xie
- College Chemistry & Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Haoqing Jia
- College Chemistry & Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Yin Chen
- College Chemistry & Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| |
Collapse
|
11
|
Kong L, Wang S, Su Q, Liu Z, Liao G, Sun B, Shi T. Printed Two-Dimensional Materials for Flexible Photodetectors: Materials, Processes, and Applications. SENSORS (BASEL, SWITZERLAND) 2025; 25:1042. [PMID: 40006272 PMCID: PMC11860032 DOI: 10.3390/s25041042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/06/2025] [Accepted: 02/07/2025] [Indexed: 02/27/2025]
Abstract
With the rapid development of micro-nano technology and wearable devices, flexible photodetectors (PDs) have drawn widespread interest in areas such as healthcare, consumer electronics, and intelligence interfaces. Two-dimensional (2D) materials with layered structures have excellent optoelectronic properties and mechanical flexibility, which attract a great deal of attention in flexible applications. Although photodetectors based on mechanically exfoliated 2D materials have demonstrated superior performance compared to traditional Si-based PDs, large-scale manufacturing and flexible integration remain significant challenges for achieving industrial production. The emerging various printing technology provides a low-cost and highly effective method for integrated manufacturing. In this review, we comprehensively introduce the most recent progress on printed flexible 2D material PDs. We first reviewed the most recent research on flexible photodetectors, in which the discussion is focused on substrate materials, functional materials, and performance figures of merits. Furthermore, the solution processing for 2D materials coupled with printing functional film strategies to produce PDs are summarized. Subsequently, the various applications of flexible PDs, such as image sensors, healthcare, and wearable electronics, are also summarized. Finally, we point out the potential challenges of the printed flexible 2D material PDs and expect this work to inspire the development of flexible PDs and promote the mass manufacturing process.
Collapse
Affiliation(s)
- Lingxian Kong
- State Key Laboratory of Intelligent Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (L.K.); (Z.L.); (G.L.)
| | - Shijie Wang
- School of Aerospace Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; (S.W.); (Q.S.)
| | - Qi Su
- School of Aerospace Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; (S.W.); (Q.S.)
| | - Zhiyong Liu
- State Key Laboratory of Intelligent Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (L.K.); (Z.L.); (G.L.)
| | - Guanglan Liao
- State Key Laboratory of Intelligent Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (L.K.); (Z.L.); (G.L.)
| | - Bo Sun
- School of Aerospace Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; (S.W.); (Q.S.)
- Shenzhen Research Institute, Huazhong University of Science and Technology, Shenzhen 518057, China
| | - Tielin Shi
- State Key Laboratory of Intelligent Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (L.K.); (Z.L.); (G.L.)
| |
Collapse
|
12
|
Fadeel B, Baker J, Ballerini L, Bussy C, Candotto Carniel F, Tretiach M, Pelin M, Buerki‐Thurnherr T, Kanerva T, Navas JM, Vázquez E, Rodriguez Unamuno V, Lehtonen P, González M, Rauscher H, Riego Sintes J, Kostarelos K, Bianco A, Prato M. Safety Assessment of Graphene-Based Materials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2404570. [PMID: 39811884 PMCID: PMC11840464 DOI: 10.1002/smll.202404570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 11/28/2024] [Indexed: 01/16/2025]
Abstract
Graphene is the first 2D atomic crystal, and its isolation heralded a new era in materials science with the emergence of several other atomically thin materials displaying multifunctional properties. The safety assessment of new materials is often something of an afterthought, but in the case of graphene, the initial isolation and characterization of the material was soon followed by the assessment of its potential impact on living systems. The Graphene Flagship project addressed the health and environmental aspects of graphene and other 2D materials, providing an instructive lesson in interdisciplinarity - from materials science to biology. Here, the outcomes of the toxicological and ecotoxicological studies performed on graphene and its derivatives, and the key lessons learned from this decade-long journey, are highlighted.
Collapse
Affiliation(s)
- Bengt Fadeel
- Institute of Environmental MedicineKarolinska InstitutetStockholm17177Sweden
| | - James Baker
- TEMAS Solutions (TEMASOL)Hausen5212Switzerland
| | - Laura Ballerini
- International School for Advanced Studies (SISSA)Trieste34136Italy
| | - Cyrill Bussy
- Centre for Nanotechnology in MedicineSchool of Biological SciencesFaculty of BiologyMedicine & Health and National Graphene InstituteManchester M13 9PT, and National Graphene InstituteUniversity of ManchesterManchesterM13 9PLUK
| | | | - Mauro Tretiach
- Department of Life SciencesUniversity of TriesteTrieste34127Italy
| | - Marco Pelin
- Department of Life SciencesUniversity of TriesteTrieste34127Italy
| | - Tina Buerki‐Thurnherr
- Laboratory for Particles‐Biology InteractionsSwiss Federal Laboratories for Materials Science and Technology (EMPA)St. Gallen9014Switzerland
| | - Tomi Kanerva
- Finnish Institute of Occupational Health (FIOH)Helsinki00032Finland
| | - José Maria Navas
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)Consejo Superior de Investigaciones Científicas (CSIC)Madrid28040Spain
| | - Ester Vázquez
- Instituto Regional de Investigación Científica Aplicada (IRICA)and Facultad de Ciencias y Tecnologías QuímicasUniversidad de Castilla‐La ManchaCiudad Real13071Spain
| | | | | | - Mar González
- Organisation for Economic Co‐operation and Development (OECD)Paris75016France
| | - Hubert Rauscher
- European CommissionJoint Research Centre (JRC)Ispra21027Italy
| | | | - Kostas Kostarelos
- Centre for Nanotechnology in MedicineSchool of Biological SciencesFaculty of BiologyMedicine & Health and National Graphene InstituteManchester M13 9PT, and National Graphene InstituteUniversity of ManchesterManchesterM13 9PLUK
- Catalan Institute of Nanoscience and Nanotechnology (ICN2)CSIC and BISTCampus UAB (Universitat Autònoma de Barcelona)Bellaterra08193Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA)Barcelona08010Spain
| | - Alberto Bianco
- CNRSImmunology, Immunopathology and Therapeutic ChemistryUPR 3572University of Strasbourg, ISISStrasbourg67000France
| | - Maurizio Prato
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE)Basque Research and Technology Alliance (BRTA)San Sebastián20014Spain
- IkerbasqueBasque Foundation for ScienceBilbao48009Spain
- Department of Chemical and Pharmaceutical SciencesUniversity of TriesteTrieste34127Italy
| |
Collapse
|
13
|
Sun Y, He W, Jiang C, Li J, Liu J, Liu M. Wearable Biodevices Based on Two-Dimensional Materials: From Flexible Sensors to Smart Integrated Systems. NANO-MICRO LETTERS 2025; 17:109. [PMID: 39812886 PMCID: PMC11735798 DOI: 10.1007/s40820-024-01597-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 11/08/2024] [Indexed: 01/16/2025]
Abstract
The proliferation of wearable biodevices has boosted the development of soft, innovative, and multifunctional materials for human health monitoring. The integration of wearable sensors with intelligent systems is an overwhelming tendency, providing powerful tools for remote health monitoring and personal health management. Among many candidates, two-dimensional (2D) materials stand out due to several exotic mechanical, electrical, optical, and chemical properties that can be efficiently integrated into atomic-thin films. While previous reviews on 2D materials for biodevices primarily focus on conventional configurations and materials like graphene, the rapid development of new 2D materials with exotic properties has opened up novel applications, particularly in smart interaction and integrated functionalities. This review aims to consolidate recent progress, highlight the unique advantages of 2D materials, and guide future research by discussing existing challenges and opportunities in applying 2D materials for smart wearable biodevices. We begin with an in-depth analysis of the advantages, sensing mechanisms, and potential applications of 2D materials in wearable biodevice fabrication. Following this, we systematically discuss state-of-the-art biodevices based on 2D materials for monitoring various physiological signals within the human body. Special attention is given to showcasing the integration of multi-functionality in 2D smart devices, mainly including self-power supply, integrated diagnosis/treatment, and human-machine interaction. Finally, the review concludes with a concise summary of existing challenges and prospective solutions concerning the utilization of 2D materials for advanced biodevices.
Collapse
Affiliation(s)
- Yingzhi Sun
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, People's Republic of China
| | - Weiyi He
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Can Jiang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, People's Republic of China
| | - Jing Li
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, People's Republic of China.
| | - Jianli Liu
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, People's Republic of China.
| | - Mingjie Liu
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, People's Republic of China
| |
Collapse
|
14
|
Kolubah PD, Mohamed HO, Hari AR, Ping Y, Hassine MB, Dally P, Obaid M, Xu X, El-Demellawi JK, Saikaly PE, Lanza M, Ghaffour N, Castaño P. Balancing Surface Chemistry and Flake Size of MXene-Based Electrodes for Bioelectrochemical Reactors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2406223. [PMID: 39593253 DOI: 10.1002/smll.202406223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/01/2024] [Indexed: 11/28/2024]
Abstract
MXenes have excellent properties as electrode materials in energy storage devices or fuel cells. In bioelectrochemical systems (for wastewater treatment and energy harvesting), MXenes can have antimicrobial characteristics in some conditions. Here, different intercalation and delamination approaches to obtain Ti3C2Tx MXene flakes with different terminal groups and lateral dimensions are comprehensively investigated. The effect of these properties on the energy harvesting performance from wastewater is then assessed. Regardless of the utilized intercalant molecules, MXene flakes obtained using soft delamination approaches are much larger (up to 10 µm) than those obtained using mechanical delamination methods (<1.5 nm), with a relatively higher content of ─O/─OH surface terminations. When employed in microbial fuel cells, electrodes made of these large MXene flakes have demonstrated a power density of over 400% higher than smaller MXene flakes, thanks to their lower charge transfer resistance (0.38 Ω). These findings highlight the crucial role of selecting appropriate intercalation and delamination methods when synthesizing MXenes for bioelectrochemical applications.
Collapse
Affiliation(s)
- Pewee D Kolubah
- Multiscale Reaction Engineering, KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Hend Omar Mohamed
- Multiscale Reaction Engineering, KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Ananda Rao Hari
- Water Desalination and Reuse Research Center, Biological and Environmental Sciences and Engineering (BESE) Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Yue Ping
- Materials Science and Engineering, Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Mohamed Ben Hassine
- Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Pia Dally
- Multiscale Reaction Engineering, KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - M Obaid
- Water Desalination and Reuse Research Center, Biological and Environmental Sciences and Engineering (BESE) Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Xiangming Xu
- Materials Science and Engineering, Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Jehad K El-Demellawi
- Saudi Aramco, EXPEC Advanced Research Center, P.O. Box 5000, Dhahran, 31311, Saudi Arabia
- Center for Renewable Energy and Storage Technologies (CREST), King Abdullah University of Science and Technology (KAUST), Thuwal, 239955-6900, Saudi Arabia
| | - Pascal E Saikaly
- Water Desalination and Reuse Research Center, Biological and Environmental Sciences and Engineering (BESE) Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
- Environmental Science and Engineering Program, BESE, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Mario Lanza
- Materials Science and Engineering, Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Noreddine Ghaffour
- Water Desalination and Reuse Research Center, Biological and Environmental Sciences and Engineering (BESE) Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
- Environmental Science and Engineering Program, BESE, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Pedro Castaño
- Multiscale Reaction Engineering, KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Chemical Engineering Program, Physical Science and Engineering (PSE) Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
15
|
Diaz-Arauzo S, Downing JR, Tsai D, Trost J, Hui J, Donahue K, Antonopoulos N, Chaney LE, Dunn JB, Hersam MC. Ultrahigh-throughput cross-flow filtration of solution-processed 2D materials enabled by porous ceramic membranes. MATERIALS HORIZONS 2024; 11:5960-5971. [PMID: 39380318 DOI: 10.1039/d4mh01205d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Printed electronics is a disruptive technology in multiple applications including environmental and biological sensors, flexible displays, and wearable diagnostic devices. With superlative electronic, optical, mechanical, and chemical properties, two-dimensional (2D) materials are promising candidates for printable electronic inks. While liquid-phase exfoliation (LPE) methods can produce electronic-grade 2D materials, conventional batch separation processes typically rely on centrifugation, which requires significant time and effort to remove incompletely exfoliated bulk powders, hindering the scale-up of 2D ink manufacturing. While cross-flow filtration (CFF) has emerged as a promising continuous flow separation method for solution-processed 2D nanosheets, previously demonstrated polymer CFF membranes necessitate low 2D nanosheet concentrations to avoid fouling, which ultimately limits mass throughput. Here, we demonstrate a fully flow-based, exfoliation-to-ink system for electronic-grade 2D materials using an integrated cross-flow separation and concentration system. To overcome the relatively low-throughput processing concentrations of incumbent polymer CFF membranes, we employ porous ceramic CFF membranes that are tolerant to 10-fold higher nanosheet concentrations and flow rates without compromising separation efficiency. Furthermore, we demonstrate a concentration method via cross-flow ultrafiltration, where the retentate can be directly formulated into printable inks with electronic-grade performance that meets or exceeds centrifugally produced inks. Life cycle assessment and technoeconomic analysis quantitatively confirm the advantages of ceramic versus polymer CFF membranes including reductions of 97%, 96%, 94%, and 93% for greenhouse gas emissions, water consumption, fossil fuel consumption, and specific production costs, respectively. Overall, this work presents an environmentally sustainable and cost-effective solution for the fabrication, separation, and printing of electronic-grade 2D materials.
Collapse
Affiliation(s)
- Santiago Diaz-Arauzo
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA.
| | - Julia R Downing
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA.
| | - Daphne Tsai
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA.
| | - Jenna Trost
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, USA
| | - Janan Hui
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
| | - Kevin Donahue
- ALSYS USA, CeraMem, Waltham, Massachusetts 02453, USA
| | | | - Lindsay E Chaney
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA.
| | - Jennifer B Dunn
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, USA
| | - Mark C Hersam
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA.
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, Illinois 60208, USA
| |
Collapse
|
16
|
Lovro Brkić A, Supina A, Čapeta D, Dončević L, Ptiček L, Mandić Š, Racané L, Delač I. Stability and reversibility of organic molecule modifications of CVD-synthesized monolayer MoS 2. NANOTECHNOLOGY 2024; 36:065702. [PMID: 39496202 DOI: 10.1088/1361-6528/ad8e6c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 11/04/2024] [Indexed: 11/06/2024]
Abstract
We investigated the stability of monolayer MoS2samples synthesized using chemical vapor deposition and subsequently modified with organic molecules under ambient conditions. By analyzing the optical signatures of the samples using photoluminescence spectroscopy, Raman spectroscopy, and surface quality using atomic force microscopy, we observed that this modification of monolayer MoS2with organic molecules is stable and retains its optical signature over time under ambient conditions. Furthermore, we show the reversibility of the effects induced by the organic molecules, as heating the modified samples restores their original optical signatures, indicating the re-establishment of the optical properties of the pristine monolayer MoS2.
Collapse
Affiliation(s)
- Antun Lovro Brkić
- Centre for Advanced Laser Techniques, Institute of Physics, Bijenička Cesta 46, 10000 Zagreb, Croatia
- Physics Department, Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, SI-1000 Ljubljana, Slovenia
| | - Antonio Supina
- Centre for Advanced Laser Techniques, Institute of Physics, Bijenička Cesta 46, 10000 Zagreb, Croatia
| | - Davor Čapeta
- Centre for Advanced Laser Techniques, Institute of Physics, Bijenička Cesta 46, 10000 Zagreb, Croatia
| | - Lucija Dončević
- Division of Molecular Medicine, Ruder Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
| | - Lucija Ptiček
- University of Zagreb, Faculty of Textile Technology, Prilaz baruna Filipovića 28a, 10000 Zagreb, Croatia
| | - Šimun Mandić
- Centre for Advanced Laser Techniques, Institute of Physics, Bijenička Cesta 46, 10000 Zagreb, Croatia
| | - Livio Racané
- University of Zagreb, Faculty of Textile Technology, Prilaz baruna Filipovića 28a, 10000 Zagreb, Croatia
| | - Ida Delač
- Centre for Advanced Laser Techniques, Institute of Physics, Bijenička Cesta 46, 10000 Zagreb, Croatia
| |
Collapse
|
17
|
Ali M, Hasan E, Barman SC, Hedhili MN, Alshareef HN, Alsulaiman D. Peptide nucleic acid-clicked Ti 3C 2T x MXene for ultrasensitive enzyme-free electrochemical detection of microRNA biomarkers. MATERIALS HORIZONS 2024; 11:5045-5057. [PMID: 39102217 DOI: 10.1039/d4mh00714j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
We report the engineering and synthesis of peptide nucleic acid-functionalized Ti3C2Tx MXene nanosheets as a novel transducing material for amplification-free, nanoparticle-free, and isothermal electrochemical detection of microRNA biomarkers. Through bio-orthogonal copper-free click chemistry, azido-modified MXene nanosheets are covalently functionalized with clickable peptide nucleic acid probes targeting prostate cancer biomarker hsa-miR-141. The platform demonstrates a wide dynamic range, single-nucleotide specificity, and 40 aM detection limit outperforming more complex, amplification-based methods. Its versatility, analytical performance, and stability under serum exposure highlight the immense potential of this first example of click-conjugated MXene in the next generation of amplification-free biosensors.
Collapse
Affiliation(s)
- Muhsin Ali
- Material Science and Engineering, Physical Science and Engineering Division, King Abdullah University of Science & Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| | - Erol Hasan
- Material Science and Engineering, Physical Science and Engineering Division, King Abdullah University of Science & Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| | - Sharat Chandra Barman
- Material Science and Engineering, Physical Science and Engineering Division, King Abdullah University of Science & Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| | - Mohamed Nejib Hedhili
- Imaging and Characterization Core Lab, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Husam N Alshareef
- Material Science and Engineering, Physical Science and Engineering Division, King Abdullah University of Science & Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| | - Dana Alsulaiman
- Material Science and Engineering, Physical Science and Engineering Division, King Abdullah University of Science & Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| |
Collapse
|
18
|
Zhai Y, Shi Z, Xia Q, Han W, Li W, Deng X, Zhang X. Lithiation: Advancing Material Synthesis and Structural Engineering for Emerging Applications. ACS NANO 2024; 18:26477-26502. [PMID: 39301666 DOI: 10.1021/acsnano.4c09114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Lithiation, a process of inserting lithium ions into a host material, is revolutionizing nanomaterials synthesis and structural engineering as well as enhancing their performance across emerging applications, particularly valuable for large-scale synthesis of high-quality low-dimensional nanomaterials. Through a systematic investigation of the synthetic strategies and structural changes induced by lithiation, this review aims to offer a comprehensive understanding of the development, potential, and challenges associated with this promising approach. First, the basic principles of lithiation/delithiation processes will be introduced. Then, the recent advancements in the lithiation-induced structure changes of nanomaterials, such as morphology tuning, phase transition, defect generation, etc., will be stressed, emphasizing the importance of lithiation in structural modulation of nanomaterials. With the tunable structures induced by the lithiation, the properties and performance in electrochemical, photochemical, electronic devices, bioapplications, etc. will be discussed, followed by outlining the current challenges and perspectives in this research area.
Collapse
Affiliation(s)
- Yanjie Zhai
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, China
| | - Zhenqi Shi
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, China
| | - Qing Xia
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, China
| | - Wenkai Han
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, China
| | - Weisong Li
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, China
| | - Xiaoran Deng
- Jiangsu Province Key Laboratory in Anesthesiology, School of Anesthesiology, Xuzhou Medical University, Jiangsu 221004, China
| | - Xiao Zhang
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, China
- Research Institute for Advanced Manufacturing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, China
- Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, China
| |
Collapse
|
19
|
Bu Y, Kim BS. Green production of functionalized few-layer borophene decorated with cerium-doped iron oxide nanoparticles for repeatable hydrogen peroxide detection. Biosens Bioelectron 2024; 260:116448. [PMID: 38820720 DOI: 10.1016/j.bios.2024.116448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/17/2024] [Accepted: 05/27/2024] [Indexed: 06/02/2024]
Abstract
Functionalized few-layer borophene (FFB) was prepared using gallnut extract and coffee waste extract as natural exfoliating and stabilizing agents in an environmentally friendly ultrasonic and high shear exfoliation. Here, a facile precipitation method was employed to grow iron oxide nanoparticles doped with cerium (Ce-FeONPs) onto the surface of FFB. This intriguing combination of materials yielded Ce-FeONPs nanoparticles that exhibited exceptional peroxidase-like activity, efficiently catalyzing the conversion of 3,3',5,5'-tetramethylbenzidine (TMB) to a blue oxidized TMB (oxTMB) in the presence of hydrogen peroxide (H2O2). Additionally, the introduction of FFB contributes a reducibility effect to the catalytic oxidation of TMB, facilitating the restoration of the oxTMB to TMB. Thus, FFB-Ce-FeONPs showcase intriguing properties encompassing both oxidative and reductive characteristics, suggesting their potential as a reagent for repeated detection of H2O2. Moreover, a colorimetric sensing system enabled the liner detection of H2O2 spanning a concentration range from 0.08 to 1 mM, with a detection limit of 0.03 mM. Noteworthily, FFB-Ce-FeONPs demonstrated sustained efficacy over ten successive recycling cycles, as indicated by consistent slopes and observable color changes. In summary, this work reports the first application of nanoenzymes in repetitive H2O2 detection. Even after ten multiple cycles, the detection limit remains virtually unaltered, underscoring the robustness and enduring effectiveness of the engineered nanomaterial. The proposed simultaneous oxidation and reduction strategies for detecting H2O2 showed a commendable capability in ten cycles of H2O2 detection, thus providing a promising approach in the field of H2O2 detection.
Collapse
Affiliation(s)
- Yingjie Bu
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Beom Soo Kim
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea.
| |
Collapse
|
20
|
Wu R, Zhang H, Ma H, Zhao B, Li W, Chen Y, Liu J, Liang J, Qin Q, Qi W, Chen L, Li J, Li B, Duan X. Synthesis, Modulation, and Application of Two-Dimensional TMD Heterostructures. Chem Rev 2024; 124:10112-10191. [PMID: 39189449 DOI: 10.1021/acs.chemrev.4c00174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Two-dimensional (2D) transition metal dichalcogenide (TMD) heterostructures have attracted a lot of attention due to their rich material diversity and stack geometry, precise controllability of structure and properties, and potential practical applications. These heterostructures not only overcome the inherent limitations of individual materials but also enable the realization of new properties through appropriate combinations, establishing a platform to explore new physical and chemical properties at micro-nano-pico scales. In this review, we systematically summarize the latest research progress in the synthesis, modulation, and application of 2D TMD heterostructures. We first introduce the latest techniques for fabricating 2D TMD heterostructures, examining the rationale, mechanisms, advantages, and disadvantages of each strategy. Furthermore, we emphasize the importance of characteristic modulation in 2D TMD heterostructures and discuss some approaches to achieve novel functionalities. Then, we summarize the representative applications of 2D TMD heterostructures. Finally, we highlight the challenges and future perspectives in the synthesis and device fabrication of 2D TMD heterostructures and provide some feasible solutions.
Collapse
Affiliation(s)
- Ruixia Wu
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Hongmei Zhang
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Huifang Ma
- Innovation Center for Gallium Oxide Semiconductor (IC-GAO), National and Local Joint Engineering Laboratory for RF Integration and Micro-Assembly Technologies, College of Integrated Circuit Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
- School of Flexible Electronics (Future Technologies) Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Bei Zhao
- School of Physics and Key Laboratory of Quantum Materials and Devices of Ministry of Education, Southeast University, Nanjing 211189, China
| | - Wei Li
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yang Chen
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Jianteng Liu
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Jingyi Liang
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Qiuyin Qin
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Weixu Qi
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Liang Chen
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Jia Li
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Bo Li
- Changsha Semiconductor Technology and Application Innovation Research Institute, School of Physics and Electronics, College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha 410082, China
| | - Xidong Duan
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
21
|
Ramteke SM, Walczak M, De Stefano M, Ruggiero A, Rosenkranz A, Marian M. 2D materials for Tribo-corrosion and -oxidation protection: A review. Adv Colloid Interface Sci 2024; 331:103243. [PMID: 38924802 DOI: 10.1016/j.cis.2024.103243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/01/2024] [Accepted: 06/21/2024] [Indexed: 06/28/2024]
Abstract
The recent rise of 2D materials has extended the opportunities of tuning a variety of properties. Tribo-corrosion, the complex synergy between mechanical wear and chemical corrosion, poses significant challenges across numerous industries where materials are subjected to both tribological stressing and corrosive environments. This intricate interplay often leads to accelerated material degradation and failure. This review critically assesses the current state of utilizing 2D nanomaterials to enhance tribo-corrosion and -oxidation behavior. The paper summarizes the fundamental knowledge about tribo-corrosion and -oxidation mechanisms before assessing the key contributions of 2D materials, including graphene, transition metal chalcogenides, hexagonal boron nitride, MXenes, and black phosphorous, regarding the resulting friction and wear behavior. The protective roles of these nanomaterials against corrosion and oxidation are investigated, highlighting their potential in mitigating material degradation. Furthermore, we delve into the nuanced interplay between mechanical and corrosive factors in the specific application of 2D materials for tribo-corrosion and -oxidation protection. The synthesis of key findings underscores the advancements achieved through integrating 2D nanomaterials. An outlook for future research directions is provided, identifying unexplored avenues, and proposing strategies to propel the field forward. This analysis aims at guiding future investigations and developments at the dynamic intersection of 2D nanomaterials, tribo-corrosion, and -oxidation protection.
Collapse
Affiliation(s)
- Sangharatna M Ramteke
- Department of Mechanical and Metallurgical Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - Magdalena Walczak
- Department of Mechanical and Metallurgical Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile; ANID - Millennium Science Initiative Program, Millennium Institute for Green Ammonia (MIGA), Santiago, Chile.
| | - Marco De Stefano
- Department of Industrial Engineering, University of Salerno, Fisciano, Italy.
| | - Alessandro Ruggiero
- Department of Industrial Engineering, University of Salerno, Fisciano, Italy.
| | - Andreas Rosenkranz
- Department of Chemical Engineering, Biotechnology and Materials (FCFM), Universidad de Chile, Santiago, Chile; ANID - Millennium Science Initiative Program, Millennium Nuclei of Advanced MXenes for Sustainable Applications (AMXSA), Santiago, Chile.
| | - Max Marian
- Department of Mechanical and Metallurgical Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile; Institute for Machine Design and Tribology (IMKT), Leibniz University Hannover, Garbsen, Germany.
| |
Collapse
|
22
|
Huang CH, Cheng TY, Wu CY, Chen KH, Wu TL, Chou YC. Embedded Hybrid-Dimensional Heterointerface for Filament Modulation in 2D Material-Based Artificial Nociceptor. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401946. [PMID: 39103304 PMCID: PMC11422813 DOI: 10.1002/advs.202401946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/09/2024] [Indexed: 08/07/2024]
Abstract
Nociceptors are key sensory receptors that transmit warning signals to the central nervous system in response to painful stimuli. This fundamental process is emulated in an electronic device by developing a novel artificial nociceptor with an ultrathin, nonstoichiometric gallium oxide (GaOx)-silicon oxide heterostructure. A large-area 2D-GaOx film is printed on a substrate through liquid metal printing to facilitate the production of conductive filaments. This nociceptive structure exhibits a unique short-term temporal response following stimulation, enabling a facile demonstration of threshold-switching physics. The developed heterointerface 2D-GaOx film enables the fabrication of fast-switching, low-energy, and compliance-free 2D-GaOx nociceptors, as confirmed through experiments. The accumulation and extrusion of Ag in the oxide matrix are significant for inducing plastic changes in artificial biological sensors. High-resolution transmission electron microscopy and electron energy loss spectroscopy demonstrate that Ag clusters in the material dispersed under electrical bias and regrouped spontaneously when the bias is removed owing to interfacial energy minimization. Moreover, 2D nociceptors are stable; thus, heterointerface engineering can enable effective control of charge transfer in 2D heterostructural devices. Furthermore, the diffusive 2D-GaOx device and its Ag dynamics enable the direct emulation of biological nociceptors, marking an advancement in the hardware implementation of artificial human sensory systems.
Collapse
Affiliation(s)
- Chang-Hsun Huang
- Department of Materials Science and Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Te-Yu Cheng
- Institute of Physics, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan
| | - Chia-Yi Wu
- Department of Materials Science and Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Kuan-Hung Chen
- Department of Materials Science and Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Tian-Li Wu
- International College of Semiconductor Technology, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan
| | - Yi-Chia Chou
- Department of Materials Science and Engineering, National Taiwan University, Taipei, 10617, Taiwan
| |
Collapse
|
23
|
Pang Z, Chen Z, Li J, Liu D, Zhang G, Liu C, Du C, Zhou W. Advances in Inorganic Foam Materials Fabricated Via Blowing Strategy: A Comprehensive Review. ACS NANO 2024; 18:21747-21778. [PMID: 39105765 DOI: 10.1021/acsnano.4c05321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Two-dimensional (2D) materials with excellent properties and widespread applications have been explosively investigated. However, their conventional synthetic methods exhibit concerns of limited scalability, complex purification process, and incompetence of prohibiting their restacking. The blowing strategy, characterized by gas-template, low-cost, and high-efficiency, presents a valuable avenue for the synthesis of 2D-based foam materials and thereby addresses these constraints. Whereas, its comprehensive introduction has been rarely outlined so far. This review commences with a synopsis of the blowing strategy, elucidating its development history, the statics and kinetics of the blowing process, and the choice of precursor and foaming agents. Thereafter, we dwell at length on across-the-board foams enabled by the blowing route, like BxCyNz foams, carbon foams, and diverse composite foams consisting of carbon and metal compounds. Following that, a wide-ranging evaluation of the functionality of the foam products in fields such as energy storage, electrocatalysis, adsorption, etc. is discussed, revealing their distinctive strength originated from the foam structure. Finally, after concluding the current progress, we provide some personal discussions on the existing challenges and future research priorities in this rapidly developing method.
Collapse
Affiliation(s)
- Zimo Pang
- School of Materials Science and Engineering, Harbin Institute of Technology, Weihai 264209, P. R. China
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Zhichao Chen
- School of Materials Science and Engineering, Harbin Institute of Technology, Weihai 264209, P. R. China
| | - Jianyu Li
- School of Materials Science and Engineering, Harbin Institute of Technology, Weihai 264209, P. R. China
- CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Dongdong Liu
- School of Materials Science and Engineering, Harbin Institute of Technology, Weihai 264209, P. R. China
| | - Guangyue Zhang
- School of Materials Science and Engineering, Harbin Institute of Technology, Weihai 264209, P. R. China
| | - Canshang Liu
- School of Materials Science and Engineering, Harbin Institute of Technology, Weihai 264209, P. R. China
| | - Chengkai Du
- School of Materials Science and Engineering, Harbin Institute of Technology, Weihai 264209, P. R. China
| | - Weiwei Zhou
- School of Materials Science and Engineering, Harbin Institute of Technology, Weihai 264209, P. R. China
| |
Collapse
|
24
|
Zhang J, Fu X, Qiu J, Wang C, Wang L, Feng J, Dong L, Long C, Wang X, Li D. Construction of High-Performance Anode of Potassium-Ion Batteries by Stripping Covalent Triazine Frameworks with Molten Salt. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401804. [PMID: 38924654 PMCID: PMC11348138 DOI: 10.1002/advs.202401804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/02/2024] [Indexed: 06/28/2024]
Abstract
Covalent triazine frameworks (CTFs) are promising battery electrodes owing to their designable functional groups, tunable pore sizes, and exceptional stability. However, their practical use is limited because of the difficulty in establishing stable ion adsorption/desorption sites. In this study, a melt-salt-stripping process utilizing molten trichloro iron (FeCl3) is used to delaminate the layer-stacked structure of fluorinated covalent triazine framework (FCTF) and generate iron-based ion storage active sites. This process increases the interlayer spacing and uniformly deposits iron-containing materials, enhancing electron and ion transport. The resultant melt-FeCl3-stripped FCTF (Fe@FCTF) shows excellent performance as a potassium ion battery with a high capacity of 447 mAh g-1 at 0.1 A g-1 and 257 mAh g-1 at 1.6 A g-1 and good cycling stability. Notably, molten-salt stripping is also effective in improving the CTF's Na+ and Li+ storage properties. A stepwise reaction mechanism of K/Na/Li chelation with C═N functional groups is proposed and verified by in situ X-ray diffraction testing (XRD), ex-situ X-ray photoelectron spectroscopy (XPS), and theoretical calculations, illustrating that pyrazines and iron coordination groups play the main roles in reacting with K+/Na+/Li+ cations. These results conclude that the Fe@FCTF is a suitable anode material for potassium-ion batteries (PIBs), sodium-ion batteries (SIBs), and lithium-ion batteries (LIBs).
Collapse
Affiliation(s)
- Jingyi Zhang
- College of Physics and Materials ScienceTianjin Normal UniversityTianjin300387China
| | - Xuwang Fu
- College of Physics and Materials ScienceTianjin Normal UniversityTianjin300387China
| | - Jiacheng Qiu
- College of Physics and Materials ScienceTianjin Normal UniversityTianjin300387China
| | - Chao Wang
- College of Physics and Materials ScienceTianjin Normal UniversityTianjin300387China
| | - Li Wang
- College of Physics and Materials ScienceTianjin Normal UniversityTianjin300387China
| | - Jianmin Feng
- College of Physics and Materials ScienceTianjin Normal UniversityTianjin300387China
| | - Lei Dong
- College of Physics and Materials ScienceTianjin Normal UniversityTianjin300387China
| | - Conglai Long
- College of Physics and Materials ScienceTianjin Normal UniversityTianjin300387China
| | - Xiaowei Wang
- National Engineering Laboratory for High Efficiency Recovery of Refractory Nonferrous MetalsSchool of Metallurgy and EnvironmentCentral South UniversityChangsha410083P. R. China
| | - Dejun Li
- College of Physics and Materials ScienceTianjin Normal UniversityTianjin300387China
| |
Collapse
|
25
|
Dong M, Sun Y, Dunstan DJ, Young RJ, Papageorgiou DG. Mechanical reinforcement from two-dimensional nanofillers: model, bulk and hybrid polymer nanocomposites. NANOSCALE 2024; 16:13247-13299. [PMID: 38940686 DOI: 10.1039/d4nr01356e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Thanks to their intrinsic properties, multifunctionality and unique geometrical features, two-dimensional nanomaterials have been used widely as reinforcements in polymer nanocomposites. The effective mechanical reinforcement of polymers is, however, a multifaceted problem as it depends not only on the intrinsic properties of the fillers and the matrix, but also upon a number of other important parameters. These parameters include the processing method, the interfacial properties, the aspect ratio, defects, orientation, agglomeration and volume fraction of the fillers. In this review, we summarize recent advances in the mechanical reinforcement of polymer nanocomposites from two-dimensional nanofillers with an emphasis on the mechanisms of reinforcement. Model, bulk and hybrid polymer nanocomposites are reviewed comprehensively. The use of Raman and photoluminescence spectroscopies is examined in light of the distinctive information they can yield upon stress transfer at interfaces. It is shown that the very diverse family of 2D nanofillers includes a number of materials that can attribute distrinctive features to a polymeric matrix, and we focus on the mechanical properties of both graphene and some of the most important 2D materials beyond graphene, including boron nitride, molybdenum disulphide, other transition metal dichalcogenides, MXenes and black phosphorous. In the first part of the review we evaluate the mechanical properties of 2D nanoplatelets in "model" nanocomposites. Next we examine how the performance of these materials can be optimised in bulk nanocomposites. Finally, combinations of these 2D nanofillers with other 2D nanomaterials or with nanofillers of other dimensions are assessed thoroughly, as such combinations can lead to additive or even synergistic mechanical effects. Existing unsolved problems and future perspectives are discussed.
Collapse
Affiliation(s)
- Ming Dong
- School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, UK.
| | - Yiwei Sun
- School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, UK.
| | - David J Dunstan
- School of Physics and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK
| | - Robert J Young
- National Graphene Institute, Department of Materials, School of Natural Sciences, The University of Manchester, Manchester M13 9PL, UK.
| | - Dimitrios G Papageorgiou
- School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, UK.
| |
Collapse
|
26
|
Choi KH, Lee SH, Kang J, Zhang X, Jeon J, Bang HS, Kim Y, Kim D, Kim KI, Kim YH, Oh HS, Chang J, Lee JH, Yu HK, Choi JY. Scalable Fabrication of Quasi-One-Dimensional van der Waals Ta 2Pt 3Se 8 Nanowire Thin Films via Solution Processing for NO 2 Gas Sensing over Large Areas. ACS APPLIED MATERIALS & INTERFACES 2024; 16:35463-35473. [PMID: 38946100 DOI: 10.1021/acsami.4c05091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Solution-based processing of van der Waals (vdW) one- (1D) and two-dimensional (2D) materials is an effective strategy to obtain high-quality molecular chains or atomic sheets in a large area with scalability. In this work, quasi-1D vdW Ta2Pt3Se8 was exfoliated via liquid phase exfoliation (LPE) to produce a stably dispersed Ta2Pt3Se8 nanowire solution. In order to screen the optimal exfoliation solvent, nine different solvents were employed with different total surface tensions and polar/dispersive (P/D) component (P/D) ratios. The LPE behavior of Ta2Pt3Se8 was elucidated by matching the P/D ratios between Ta2Pt3Se8 and the applied solvent, resulting in N-methyl-2-pyrrolidone (NMP) as an optimal solvent owing to the well-matched total surface tension and P/D ratio. Subsequently, Ta2Pt3Se8 nanowire thin films are manufactured via vacuum filtration using a Ta2Pt3Se8/NMP dispersion. Then, gas sensing devices are fabricated onto the Ta2Pt3Se8 nanowire thin films, and gas sensing property toward NO2 is evaluated at various thin-film thicknesses. A 50 nm thick Ta2Pt3Se8 thin-film device exhibited a percent response of 25.9% at room temperature and 32.4% at 100 °C, respectively. In addition, the device showed complete recovery within 14.1 min at room temperature and 3.5 min at 100 °C, respectively.
Collapse
Affiliation(s)
- Kyung Hwan Choi
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Sang Hoon Lee
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jinsu Kang
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Xiaojie Zhang
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jiho Jeon
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Republic of Korea
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Hyeon-Suk Bang
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Yeongjin Kim
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Dahoon Kim
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Kyung In Kim
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Yeong Hyeop Kim
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hyung-Suk Oh
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- KIST-SKKU Carbon-Neutral Research Center, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jongwha Chang
- Department of Pharmaceutical Sciences, Irma Lerma Rangel School of Pharmacy, Texas A&M University, College Station, Texas 77843, United States
| | - Jae-Hyun Lee
- Department of Materials Science and Engineering & Department of Energy Systems Research, Ajou University, Suwon 16499, Republic of Korea
| | - Hak Ki Yu
- Department of Materials Science and Engineering & Department of Energy Systems Research, Ajou University, Suwon 16499, Republic of Korea
| | - Jae-Young Choi
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Republic of Korea
- KIST-SKKU Carbon-Neutral Research Center, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
27
|
Li H, Wang Y, Chen S, Peng F, Gao F. Boosting Electrochemical Reduction of Nitrate to Ammonia by Constructing Nitrate-Favored Active Cu-B Sites on SnS 2. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308182. [PMID: 38308386 DOI: 10.1002/smll.202308182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/13/2024] [Indexed: 02/04/2024]
Abstract
The electrochemical reduction of nitrate to ammonia is an effective method for mitigating nitrate pollution and generating ammonia. To design superior electrocatalysts, it is essential to construct a reaction site with high activity. Herein, a simple two-step method is applied to in situ reduce amorphous copper over boron-doped SnS2 nanosheets(denoted as aCu@B-SnS2-x. DFT calculations reveal the combination of amorphous copper and B-doping strategy can construct Cu-B active twins and introduce sulfur vacancies on the surface of the inert SnS2, the active twins can efficiently adsorb nitrate and forcibly separate oxygen atoms from nitrate under the assistance of the exposed Sn atom, leading to strong nitrate adsorption. Benefiting from this, aCu@B-SnS2-x exhibited an ultrahigh NH3 FE of 94.6% at -0.67 V versus RHE and the highest NH3 yield rate of 0.55 mmol h-1 mg-1 cat (9350 µg h-1 mg-1 cat) at -0.77 V versus RHE under alkaline conditions. Besides, aCu@B-SnS2-x is confirmed to remain active after various stability tests, suggesting the practicality of utilizing aCu@B-SnS2-x in industrial applications. This work highlights the feasibility of enhanced nitrate-to-ammonia conversion efficiency by combining the doping method and amorphous metal.
Collapse
Affiliation(s)
- Heen Li
- Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao, 066004, P. R. China
| | - Yuanzhe Wang
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Ecological Utilization, Tianjin University of Science & Technology, Tianjin, 300222, P. R. China
| | - Shuheng Chen
- Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao, 066004, P. R. China
| | - Fei Peng
- Analyses and Testing Center, Hebei Normal University of Science and Technology, Qinhuangdao, 066000, P. R. China
| | - Faming Gao
- Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao, 066004, P. R. China
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Ecological Utilization, Tianjin University of Science & Technology, Tianjin, 300222, P. R. China
| |
Collapse
|
28
|
Wang B, Shi L, Zhou Y, Wang X, Liu X, Shen D, Yang Q, Xiao S, Zhang J, Li Y. 3D Dense Encapsulated Architecture of 2D Bi Nanosheets Enabling Potassium-Ion Storage with Superior Volumetric and Areal Capacities. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310736. [PMID: 38282175 DOI: 10.1002/smll.202310736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/16/2024] [Indexed: 01/30/2024]
Abstract
2D alloy-based anodes show promise in potassium-ion batteries (PIBs). Nevertheless, their low tap density and huge volume expansion cause insufficient volumetric capacity and cycling stability. Herein, a 3D highly dense encapsulated architecture of 2D-Bi nanosheets (HD-Bi@G) with conducive elastic networks and 3D compact encapsulation structure of 2D nano-sheets are developed. As expected, HD-Bi@G anode exhibits a considerable volumetric capacity of 1032.2 mAh cm-3, stable long-life span with 75% retention after 2000 cycles, superior rate capability of 271.0 mAh g-1 at 104 C, and high areal capacity of 7.94 mAh cm-2 (loading: 24.2 mg cm-2) in PIBs. The superior volumetric and areal performance mechanisms are revealed through systematic kinetic investigations, ex situ characterization techniques, and theorical calculation. The 3D high-conductivity elastic network with dense encapsulated 2D-Bi architecture effectively relieves the volume expansion and pulverization of Bi nanosheets, maintains internal 2D structure with fast kinetics, and overcome sluggish ionic/electronic diffusion obstacle of ultra-thick, dense electrodes. The uniquely encapsulated 2D-nanosheet structure greatly reduces K+ diffusion energy barrier and accelerates K+ diffusion kinetics. These findings validate a feasible approach to fabricate 3D dense encapsulated architectures of 2D-alloy nanosheets with conductive elastic networks, enabling the design of ultra-thick, dense electrodes for high-volumetric-energy-density energy storage.
Collapse
Affiliation(s)
- Bingchun Wang
- School of Materials and Energy, Guangdong University of Technology, No. 100 Waihuan Xi Road, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China
| | - Liwen Shi
- School of Materials and Energy, Guangdong University of Technology, No. 100 Waihuan Xi Road, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China
| | - Yiru Zhou
- School of Materials and Energy, Guangdong University of Technology, No. 100 Waihuan Xi Road, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China
| | - Xinying Wang
- School of Materials and Energy, Guangdong University of Technology, No. 100 Waihuan Xi Road, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China
| | - Xi Liu
- School of Materials and Energy, Guangdong University of Technology, No. 100 Waihuan Xi Road, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China
| | - Dijun Shen
- School of Materials and Energy, Guangdong University of Technology, No. 100 Waihuan Xi Road, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China
| | - Qian Yang
- School of Materials and Energy, Guangdong University of Technology, No. 100 Waihuan Xi Road, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China
| | - Shengfu Xiao
- School of Materials and Energy, Guangdong University of Technology, No. 100 Waihuan Xi Road, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China
| | - Jiacheng Zhang
- School of Materials and Energy, Guangdong University of Technology, No. 100 Waihuan Xi Road, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China
| | - Yunyong Li
- School of Materials and Energy, Guangdong University of Technology, No. 100 Waihuan Xi Road, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China
| |
Collapse
|
29
|
Maurtua C, Zide J, Chakraborty C. Molecular beam epitaxy and other large-scale methods for producing monolayer transition metal dichalcogenides. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 36:383003. [PMID: 38901422 DOI: 10.1088/1361-648x/ad5a5d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 06/20/2024] [Indexed: 06/22/2024]
Abstract
Transition metal dichalcogenide (TMD/TMDC) monolayers have gained considerable attention in recent years for their unique properties. Some of these properties include direct bandgap emission and strong mechanical and electronic properties. For these reasons, monolayer TMDs have been considered a promising material for next-generation quantum technologies and optoelectronic devices. However, for the field to make more gainful advancements and be implemented in devices, high-quality TMD monolayers need to be produced at a larger scale with high quality. In this article, some of the current means to produce larger-scale semiconducting monolayer TMDs will be reviewed. An emphasis will be given to the technique of molecular beam epitaxy (MBE) for two main reasons: (1) there is a growing body of research using this technique to grow TMD monolayers and (2) there is yet to be a body of work that has summarized the current research for MBE monolayer growth of TMDs.
Collapse
Affiliation(s)
- Collin Maurtua
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, United States of America
| | - Joshua Zide
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, United States of America
| | - Chitraleema Chakraborty
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, United States of America
| |
Collapse
|
30
|
Liang X, Ma C, Jiao S. Study on Confined Water in Flexible Graphene/GO Nanochannels. J Phys Chem B 2024; 128:5472-5480. [PMID: 38805383 DOI: 10.1021/acs.jpcb.4c02204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
The structural evolution of flexible nanochannels within a 2D material membrane, influenced by the ingress of water molecules, plays a crucial role in the membrane's filtration and structural stability. However, the experimental observation of nanoscale water is challenging, and current studies mostly focus on rigid nanochannels. Further investigation on the nanoconfined water is urgently needed, considering the flexibility and deformation of the channel. In this work, MD simulations and theoretical analyses are conducted to investigate the water structure and thermodynamic properties when confined within both rigid and flexible graphene/graphene oxide (GO) nanochannels. In free rigid graphene nanochannels, the interlayer distance exhibits a quantized increase with the number of water molecules, along with sudden changes in entropy, potential energy, and free energy of the water molecules. Meanwhile, in flexible graphene nanochannels, the average interlayer space increases linearly with the number of water molecules. In free rigid GO nanochannels, with the increase of oxidation concentration, the quantized increase in the interlayer space gradually diminishes, accompanied by a decrease in both potential energy and free energy. This work provides insights into the configurational evolution of flexible nanochannels within water, offering guidance in fields such as desalination and mass transport of 2D material membranes.
Collapse
Affiliation(s)
- Xingfu Liang
- Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai Institute of Applied Mathematics and Mechanics, School of Mechanics and Engineering Science, Shanghai University, Yanchang Road 149, Shanghai 200444, China
| | - Chengpeng Ma
- Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai Institute of Applied Mathematics and Mechanics, School of Mechanics and Engineering Science, Shanghai University, Yanchang Road 149, Shanghai 200444, China
| | - Shuping Jiao
- Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai Institute of Applied Mathematics and Mechanics, School of Mechanics and Engineering Science, Shanghai University, Yanchang Road 149, Shanghai 200444, China
| |
Collapse
|
31
|
He Y, Andrade AF, Ménard-Moyon C, Bianco A. Biocompatible 2D Materials via Liquid Phase Exfoliation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310999. [PMID: 38457626 DOI: 10.1002/adma.202310999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 02/17/2024] [Indexed: 03/10/2024]
Abstract
2D materials (2DMs), such as graphene, transition metal dichalcogenides (TMDs), and black phosphorus (BP), have been proposed for different types of bioapplications, owing to their unique physicochemical, electrical, optical, and mechanical properties. Liquid phase exfoliation (LPE), as one of the most effective up-scalable and size-controllable methods, is becoming the standard process to produce high quantities of various 2DM types as it can benefit from the use of green and biocompatible conditions. The resulting exfoliated layered materials have garnered significant attention because of their biocompatibility and their potential use in biomedicine as new multimodal therapeutics, antimicrobials, and biosensors. This review focuses on the production of LPE-assisted 2DMs in aqueous solutions with or without the aid of surfactants, bioactive, or non-natural molecules, providing insights into the possibilities of applications of such materials in the biological and biomedical fields.
Collapse
Affiliation(s)
- Yilin He
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University of Strasbourg, ISIS, Strasbourg, 67000, France
| | - Andrés Felipe Andrade
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University of Strasbourg, ISIS, Strasbourg, 67000, France
| | - Cécilia Ménard-Moyon
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University of Strasbourg, ISIS, Strasbourg, 67000, France
| | - Alberto Bianco
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University of Strasbourg, ISIS, Strasbourg, 67000, France
| |
Collapse
|
32
|
Martínez-Jódar A, Villar-Rodil S, Munuera JM, Castro-Muñiz A, Coleman JN, Raymundo-Piñero E, Paredes JI. Two-Dimensional MoS 2 Nanosheets Derived from Cathodic Exfoliation for Lithium Storage Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:932. [PMID: 38869557 PMCID: PMC11173767 DOI: 10.3390/nano14110932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 06/14/2024]
Abstract
The preparation of 2H-phase MoS2 thin nanosheets by electrochemical delamination remains a challenge, despite numerous efforts in this direction. In this work, by choosing appropriate intercalating cations for cathodic delamination, the insertion process was facilitated, leading to a higher degree of exfoliation while maintaining the original 2H-phase of the starting bulk MoS2 material. Specifically, trimethylalkylammonium cations were tested as electrolytes, outperforming their bulkier tetraalkylammonium counterparts, which have been the focus of past studies. The performance of novel electrochemically derived 2H-phase MoS2 nanosheets as electrode material for electrochemical energy storage in lithium-ion batteries was investigated. The lower thickness and thus higher flexibility of cathodically exfoliated MoS2 promoted better electrochemical performance compared to liquid-phase and ultrasonically assisted exfoliated MoS2, both in terms of capacity (447 vs. 371 mA·h·g-1 at 0.2 A·g-1) and rate capability (30% vs. 8% capacity retained when the current density was increased from 0.2 A·g-1 to 5 A·g-1), as well as cycle life (44% vs. 17% capacity retention at 0.2 A·g-1 after 580 cycles). Overall, the present work provides a convenient route for obtaining MoS2 thin nanosheets for their advantageous use as anode material for lithium storage.
Collapse
Affiliation(s)
- Alberto Martínez-Jódar
- Instituto de Ciencia y Tecnología del Carbono, INCAR-CSIC, Francisco Pintado Fe 26, 33011 Oviedo, Spain; (A.M.-J.); (A.C.-M.)
- CEMHTI UPR3079, University of Orléans, CNRS, 1D avenue de la Recherche Scientifique, 45071 Orléans, France;
| | - Silvia Villar-Rodil
- Instituto de Ciencia y Tecnología del Carbono, INCAR-CSIC, Francisco Pintado Fe 26, 33011 Oviedo, Spain; (A.M.-J.); (A.C.-M.)
| | - José M. Munuera
- Department of Physics, Faculty of Sciences, University of Oviedo, C/ Leopoldo Calvo Sotelo, 18, 33007 Oviedo, Spain;
- School of Physics, CRANN and AMBER Research Centre, Trinity College Dublin, D02 E8C0 Dublin, Ireland;
| | - Alberto Castro-Muñiz
- Instituto de Ciencia y Tecnología del Carbono, INCAR-CSIC, Francisco Pintado Fe 26, 33011 Oviedo, Spain; (A.M.-J.); (A.C.-M.)
| | - Jonathan N. Coleman
- School of Physics, CRANN and AMBER Research Centre, Trinity College Dublin, D02 E8C0 Dublin, Ireland;
| | | | - Juan I. Paredes
- Instituto de Ciencia y Tecnología del Carbono, INCAR-CSIC, Francisco Pintado Fe 26, 33011 Oviedo, Spain; (A.M.-J.); (A.C.-M.)
| |
Collapse
|
33
|
Golmohammadpour M, Ayazi Z, Mohammad-Rezaei R. Fabrication of MXene/chitosan/polyurea nanocomposite decorated on a graphenized substrate for electro-enhanced solid-phase microextraction of diclofenac followed by its determination using differential pulse voltammetry. Mikrochim Acta 2024; 191:315. [PMID: 38720091 DOI: 10.1007/s00604-024-06379-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 04/22/2024] [Indexed: 06/11/2024]
Abstract
A novel solid-phase microextraction fiber based on MXene-chitosan-polyurea (MXene/CS/EPPU) nanocomposite decorated on a graphenized pencil lead fiber (MXene/CS/EPPU/GPLF) was prepared and utilized for electro-enhanced solid-phase microextraction (EE-SPME) of diclofenac (DCF) in biological samples. After extraction and desorption of DCF, it was determined by differential pulse voltammetry (DPV). For this purpose, the working electrode was prepared by deposition of the mentioned MXene/CS/EPPU nanocomposite onto the graphenized pencil lead. The synthesized SPME fiber was characterized using scanning electron microscopy and X-ray diffraction techniques. The effect of various parameters influencing the extraction and the desorption process were investigated, including applied voltage in the extraction and desorption steps, extraction and desorption times, and pH. The developed method exhibited a rather wide linearity in the range 2-1200 ng mL-1 (R2 = 0.985) for the determination of DCF in plasma samples. The limit of detection and the limit of quantification for plasma samples were estimated to be 0.58 and 1.9 ng mL-1 based on the 3Sb/m and 10Sb/m definitions, respectively. The method's accuracy and applicability have been evaluated by the analysis of plasma samples, leading to the relative recoveries in the range 87.0% and 98.0% with the relative standard deviations lower than 3.1%.
Collapse
Affiliation(s)
- Mahdi Golmohammadpour
- Electroanalytical Chemistry Research Laboratory, Faculty of Sciences, Azarbaijan Shahid Madani University, P.O.Box:53714-161, Tabriz, Iran
| | - Zahra Ayazi
- Electroanalytical Chemistry Research Laboratory, Faculty of Sciences, Azarbaijan Shahid Madani University, P.O.Box:53714-161, Tabriz, Iran.
| | - Rahim Mohammad-Rezaei
- Electroanalytical Chemistry Research Laboratory, Faculty of Sciences, Azarbaijan Shahid Madani University, P.O.Box:53714-161, Tabriz, Iran.
| |
Collapse
|
34
|
Kundu A, Dhillon AK, Singh R, Barman S, Siddhanta S, Chakraborty B. Evolution of Mn-Bi 2O 3 from the Mn-doped Bi 3O 4Br electro(pre)catalyst during the oxygen evolution reaction. Dalton Trans 2024; 53:8020-8032. [PMID: 38651992 DOI: 10.1039/d4dt00633j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Mn-doped Bi3O4Br has been synthesized using a solvothermal route. The undoped Bi3O4Br and Mn-Bi3O4Br materials possess orthorhombic unit cells with two distinct Bi sites forming a layered atomic arrangement. The shift in the (020) plane in the powder X-ray diffraction (PXRD) pattern confirms Mn-doping in the Bi3O4Br lattice. Elemental mapping indicated 7% Mn doping in the Bi3O4Br lattice structure. A core-level X-ray photoelectron study (XPS) indicates the presence of BiIII and MnII valence-states in Mn-Bi3O4Br. Doping with a cation (MnII) containing a different charge and ionic radius resulted in vacancy/defects in Mn-Bi3O4Br which further altered its electronic structure by reducing the indirect band gap, beneficial for electron conduction and electrocatalysis. The irreversible MnII to MnIII transformation at a potential of 1.48 V (vs. RHE) precedes the electrochemical oxygen evolution reaction (OER). The Mn-doped electrocatalyst achieved 10 mA cm-2 current density at 337 mV overpotential, while the pristine Bi3O4Br required 385 mV overpotential to reach the same activity. The pronounced OER activity of the Mn-Bi3O4Br sample over the pristine Bi3O4Br highlights the necessity of MnII doping. The superior activity of the Mn-Bi3O4Br catalyst over that of Bi3O4Br is due to a low Tafel slope, better double-layer capacitance (Cdl), and small charge-transfer resistance (Rct). The chronoamperometry (CA) study depicts long-term stability for 12 h at 20 mA cm-2. An electrolyzer fabricated as Pt(-)/(+)Mn-Bi3O4Br can deliver 10 mA cm-2 at a cell potential of 2.05 V. The post-CA-OER analyses of the anode confirmed the leaching of [Br-] followed by in situ formation of Mn-doped Bi2O3 as the electrocatalytically active species. Herein, an ultra-low Mn-doping into Bi3O4Br leads to an improvement in the electrocatalytic performance of the inactive Bi3O4Br material.
Collapse
Affiliation(s)
- Avinava Kundu
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, 110016, New Delhi, India.
| | - Ashish Kumar Dhillon
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, 110016, New Delhi, India.
| | - Ruchi Singh
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, 110016, New Delhi, India.
| | - Sanmitra Barman
- Center for Advanced Materials and Devices (CAMD), BML Munjal University, Haryana, India.
| | - Soumik Siddhanta
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, 110016, New Delhi, India.
| | - Biswarup Chakraborty
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, 110016, New Delhi, India.
| |
Collapse
|
35
|
Buravets V, Hosek F, Burtsev V, Miliutina E, Maixner J, Lapcak L, Bajtosova L, Cieslar M, Procházka M, Minar J, Kolska Z, Svorcik V, Lyutakov O. Rapid and Universal Synthesis of 2D Transition Metal (Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, and W) Sulfides through Oxide Sulfurization in CS 2 Vapor. Inorg Chem 2024; 63:8215-8221. [PMID: 38655681 PMCID: PMC11080058 DOI: 10.1021/acs.inorgchem.4c00475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/12/2024] [Accepted: 04/12/2024] [Indexed: 04/26/2024]
Abstract
Transition metal (TM) sulfides belong to the class of 2D materials with a wide application range. Various methods, including solvothermal, hydrothermal, chemical vapor deposition, and quartz ampoule-based approaches, have been employed for the synthesis of TM sulfides. Some of them face limitations due to the low stability of TM sulfides and their susceptibility to oxidation, and others require more sophisticated equipment or complex and rare precursors or are not scalable. In this work, we propose an alternative approach for the synthesis of 2D TM sulfides by sulfurization of corresponding metal oxides in the vapor of CS2 at elevated temperature. Subsequent treatment in liquid nitrogen allows exfoliation of created sulfides to a 2D structure. A proposed approach was successfully applied to nine transition metals: Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, and W. The resulting materials were extensively characterized using various analytical techniques with a focus on their crystalline structure and 2D nature. Our approach offers several advantages including the use of simple precursors (CS2 and metal oxides), universality (in all cases, the sulfides were obtained), equipment simplicity (tube furnace and quartz reactor), short preparation time (3 h), and the ability of morphology and phase tuning (in particular cases) of the created materials by adjusting the temperature. In addition, gram-scale bulk materials can be obtained in the entry-level laboratories using the proposed approach.
Collapse
Affiliation(s)
- Vladislav Buravets
- Department
of Solid State Engineering, University of
Chemistry and Technology, Prague 166 28, Czech Republic
| | - Frantisek Hosek
- Department
of Solid State Engineering, University of
Chemistry and Technology, Prague 166 28, Czech Republic
| | - Vasilii Burtsev
- Department
of Solid State Engineering, University of
Chemistry and Technology, Prague 166 28, Czech Republic
| | - Elena Miliutina
- Department
of Solid State Engineering, University of
Chemistry and Technology, Prague 166 28, Czech Republic
| | - Jaroslav Maixner
- Central
Laboratories, University of Chemistry and
Technology, Prague 166 28, Czech Republic
| | - Ladislav Lapcak
- Central
Laboratories, University of Chemistry and
Technology, Prague 166 28, Czech Republic
| | - Lucia Bajtosova
- Faculty
of Mathematics and Physics, Charles University, Prague 12116, Czech Republic
| | - Miroslav Cieslar
- Faculty
of Mathematics and Physics, Charles University, Prague 12116, Czech Republic
| | - Michal Procházka
- New
Technologies−Research Centre, University
of West Bohemia, Univerzitní
8, Plzeň 30614, Czech Republic
| | - Jan Minar
- New
Technologies−Research Centre, University
of West Bohemia, Univerzitní
8, Plzeň 30614, Czech Republic
| | - Zdenka Kolska
- CENAB,
Faculty of Science, J. E. Purkyne University, Usti nad Labem 40096, Czech Republic
| | - Vaclav Svorcik
- Department
of Solid State Engineering, University of
Chemistry and Technology, Prague 166 28, Czech Republic
| | - Oleksiy Lyutakov
- Department
of Solid State Engineering, University of
Chemistry and Technology, Prague 166 28, Czech Republic
| |
Collapse
|
36
|
Li H, Tan P, Rao Y, Bhattacharya S, Wang Z, Kim S, Gangopadhyay S, Shi H, Jankovic M, Huh H, Li Z, Maharjan P, Wells J, Jeong H, Jia Y, Lu N. E-Tattoos: Toward Functional but Imperceptible Interfacing with Human Skin. Chem Rev 2024; 124:3220-3283. [PMID: 38465831 DOI: 10.1021/acs.chemrev.3c00626] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
The human body continuously emits physiological and psychological information from head to toe. Wearable electronics capable of noninvasively and accurately digitizing this information without compromising user comfort or mobility have the potential to revolutionize telemedicine, mobile health, and both human-machine or human-metaverse interactions. However, state-of-the-art wearable electronics face limitations regarding wearability and functionality due to the mechanical incompatibility between conventional rigid, planar electronics and soft, curvy human skin surfaces. E-Tattoos, a unique type of wearable electronics, are defined by their ultrathin and skin-soft characteristics, which enable noninvasive and comfortable lamination on human skin surfaces without causing obstruction or even mechanical perception. This review article offers an exhaustive exploration of e-tattoos, accounting for their materials, structures, manufacturing processes, properties, functionalities, applications, and remaining challenges. We begin by summarizing the properties of human skin and their effects on signal transmission across the e-tattoo-skin interface. Following this is a discussion of the materials, structural designs, manufacturing, and skin attachment processes of e-tattoos. We classify e-tattoo functionalities into electrical, mechanical, optical, thermal, and chemical sensing, as well as wound healing and other treatments. After discussing energy harvesting and storage capabilities, we outline strategies for the system integration of wireless e-tattoos. In the end, we offer personal perspectives on the remaining challenges and future opportunities in the field.
Collapse
Affiliation(s)
- Hongbian Li
- Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Philip Tan
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Yifan Rao
- Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Sarnab Bhattacharya
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Zheliang Wang
- Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Sangjun Kim
- Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Susmita Gangopadhyay
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Hongyang Shi
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Matija Jankovic
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Heeyong Huh
- Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Zhengjie Li
- Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Pukar Maharjan
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Jonathan Wells
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Hyoyoung Jeong
- Department of Electrical and Computer Engineering, University of California Davis, Davis, California 95616, United States
| | - Yaoyao Jia
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Nanshu Lu
- Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, Austin, Texas 78712, United States
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
37
|
Chao Y, Han Y, Chen Z, Chu D, Xu Q, Wallace G, Wang C. Multiscale Structural Design of 2D Nanomaterials-based Flexible Electrodes for Wearable Energy Storage Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305558. [PMID: 38115755 PMCID: PMC10916616 DOI: 10.1002/advs.202305558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/22/2023] [Indexed: 12/21/2023]
Abstract
2D nanomaterials play a critical role in realizing high-performance flexible electrodes for wearable energy storge devices, owing to their merits of large surface area, high conductivity and high strength. The electrode is a complex system and the performance is determined by multiple and interrelated factors including the intrinsic properties of materials and the structures at different scales from macroscale to atomic scale. Multiscale design strategies have been developed to engineer the structures to exploit full potential and mitigate drawbacks of 2D materials. Analyzing the design strategies and understanding the working mechanisms are essential to facilitate the integration and harvest the synergistic effects. This review summarizes the multiscale design strategies from macroscale down to micro/nano-scale structures and atomic-scale structures for developing 2D nanomaterials-based flexible electrodes. It starts with brief introduction of 2D nanomaterials, followed by analysis of structural design strategies at different scales focusing on the elucidation of structure-property relationship, and ends with the presentation of challenges and future prospects. This review highlights the importance of integrating multiscale design strategies. Finding from this review may deepen the understanding of electrode performance and provide valuable guidelines for designing 2D nanomaterials-based flexible electrodes.
Collapse
Affiliation(s)
- Yunfeng Chao
- Henan Institute of Advanced TechnologyZhengzhou UniversityZhengzhou450052China
- Intelligent Polymer Research InstituteARC Centre of Excellence for Electromaterials ScienceAIIM FacilityInnovation CampusUniversity of WollongongWollongongNSW2522Australia
| | - Yan Han
- Energy & Materials Engineering CentreCollege of Physics and Materials ScienceTianjin Normal UniversityTianjin300387China
| | - Zhiqi Chen
- Intelligent Polymer Research InstituteARC Centre of Excellence for Electromaterials ScienceAIIM FacilityInnovation CampusUniversity of WollongongWollongongNSW2522Australia
| | - Dewei Chu
- School of Materials Science and EngineeringThe University of New South WalesSydneyNSW2052Australia
| | - Qun Xu
- Henan Institute of Advanced TechnologyZhengzhou UniversityZhengzhou450052China
| | - Gordon Wallace
- Intelligent Polymer Research InstituteARC Centre of Excellence for Electromaterials ScienceAIIM FacilityInnovation CampusUniversity of WollongongWollongongNSW2522Australia
| | - Caiyun Wang
- Intelligent Polymer Research InstituteARC Centre of Excellence for Electromaterials ScienceAIIM FacilityInnovation CampusUniversity of WollongongWollongongNSW2522Australia
| |
Collapse
|
38
|
Yang Y, Zhang C, Cao D, Song Y, Chen S, Song Y, Wang F, Wang G, Yuan Y. Design and preparation of fluorescent covalent organic frameworks for biological sensing. Chem Commun (Camb) 2024; 60:2605-2612. [PMID: 38334456 DOI: 10.1039/d4cc00167b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Covalent organic frameworks (COFs) are a new class of functional solids featuring several fantastic structural characteristics, including a great diversity of building units and cross-linking patterns, precise integration of building blocks, and adjustable topology of porous architecture. In addition to the above features, some COF samples are constructed with high-density conjugated fragments, which have unique potential advantages in fluorescence imaging, and thus may have great potential applications in bioimaging. Herein, this article summarizes the recent progress in the design and preparation of fluorescent covalent organic frameworks. We investigate the systemic correlation between the structural qualities of COF networks and biological sensors. Finally, the significant advantages, major challenges, and future opportunities of fluorescent covalent organic frameworks are discussed for the development of next-generation porous materials for sensing applications.
Collapse
Affiliation(s)
- Yajie Yang
- State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun, 130012, China
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Northeast Normal University, Changchun 130024, China.
| | - Cheng Zhang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Northeast Normal University, Changchun 130024, China.
| | - Doudou Cao
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Northeast Normal University, Changchun 130024, China.
| | - Yingbo Song
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Northeast Normal University, Changchun 130024, China.
| | - Shusen Chen
- Beijing Research Institute of Chemical Engineering and Metallurgy, CNNC Key Laboratory on Uranium Extraction from Seawater, Beijing, China
| | - Yan Song
- Beijing Research Institute of Chemical Engineering and Metallurgy, CNNC Key Laboratory on Uranium Extraction from Seawater, Beijing, China
| | - Fengju Wang
- Beijing Research Institute of Chemical Engineering and Metallurgy, CNNC Key Laboratory on Uranium Extraction from Seawater, Beijing, China
| | - Guangtong Wang
- School of Medicine and Health, Harbin Institute of Technology, Harbin, 150080, P. R. China.
| | - Ye Yuan
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Northeast Normal University, Changchun 130024, China.
| |
Collapse
|
39
|
Muñoz J. Rational Design of Stimuli-Responsive Inorganic 2D Materials via Molecular Engineering: Toward Molecule-Programmable Nanoelectronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305546. [PMID: 37906953 DOI: 10.1002/adma.202305546] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/10/2023] [Indexed: 11/02/2023]
Abstract
The ability of electronic devices to act as switches makes digital information processing possible. Succeeding graphene, emerging inorganic 2D materials (i2DMs) have been identified as alternative 2D materials to harbor a variety of active molecular components to move the current silicon-based semiconductor technology forward to a post-Moore era focused on molecule-based information processing components. In this regard, i2DMs benefits are not only for their prominent physiochemical properties (e.g., the existence of bandgap), but also for their high surface-to-volume ratio rich in reactive sites. Nonetheless, since this field is still in an early stage, having knowledge of both i) the different strategies for molecularly functionalizing the current library of i2DMs, and ii) the different types of active molecular components is a sine qua non condition for a rational design of stimuli-responsive i2DMs capable of performing logical operations at the molecular level. Consequently, this Review provides a comprehensive tutorial for covalently anchoring ad hoc molecular components-as active units triggered by different external inputs-onto pivotal i2DMs to assess their role in the expanding field of molecule-programmable nanoelectronics for electrically monitoring bistable molecular switches. Limitations, challenges, and future perspectives of this emerging field which crosses materials chemistry with computation are critically discussed.
Collapse
Affiliation(s)
- Jose Muñoz
- Departament de Química, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, 08193, Spain
| |
Collapse
|
40
|
Ra HS, Lee SH, Jeong SJ, Cho S, Lee JS. Advances in Heterostructures for Optoelectronic Devices: Materials, Properties, Conduction Mechanisms, Device Applications. SMALL METHODS 2024; 8:e2300245. [PMID: 37330655 DOI: 10.1002/smtd.202300245] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/20/2023] [Indexed: 06/19/2023]
Abstract
Atomically thin 2D transition metal dichalcogenides (TMDs) have recently been spotlighted for next-generation electronic and photoelectric device applications. TMD materials with high carrier mobility have superior electronic properties different from bulk semiconductor materials. 0D quantum dots (QDs) possess the ability to tune their bandgap by composition, diameter, and morphology, which allows for a control of their light absorbance and emission wavelength. However, QDs exhibit a low charge carrier mobility and the presence of surface trap states, making it difficult to apply them to electronic and optoelectronic devices. Accordingly, 0D/2D hybrid structures are considered as functional materials with complementary advantages that may not be realized with a single component. Such advantages allow them to be used as both transport and active layers in next-generation optoelectronic applications such as photodetectors, image sensors, solar cells, and light-emitting diodes. Here, recent discoveries related to multicomponent hybrid materials are highlighted. Research trends in electronic and optoelectronic devices based on hybrid heterogeneous materials are also introduced and the issues to be solved from the perspective of the materials and devices are discussed.
Collapse
Affiliation(s)
- Hyun-Soo Ra
- Department of Energy Science and Engineering and Energy Science and Engineering Research Center, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu, 42988, Republic of Korea
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels, 08860, Barcelona, Spain
| | - Sang-Hyeon Lee
- Department of Energy Science and Engineering and Energy Science and Engineering Research Center, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Seock-Jin Jeong
- Department of Energy Science and Engineering and Energy Science and Engineering Research Center, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Sinyoung Cho
- Department of Energy Science and Engineering and Energy Science and Engineering Research Center, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Jong-Soo Lee
- Department of Energy Science and Engineering and Energy Science and Engineering Research Center, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu, 42988, Republic of Korea
| |
Collapse
|
41
|
Lv Y, Lu S, Xu W, Xin Y, Wang X, Wang S, Yu J. Application of dandelion-like Sm 2O 3/Co 3O 4/rGO in high performance supercapacitors. RSC Adv 2024; 14:2088-2101. [PMID: 38196908 PMCID: PMC10775768 DOI: 10.1039/d3ra06352f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 01/02/2024] [Indexed: 01/11/2024] Open
Abstract
Novel 2D material-based supercapacitors are promising candidates for energy applications due to their distinctive physical, chemical, and electrochemical properties. In this study, a dandelion-like structure material comprised of Sm2O3, Co3O4, and 2D reduced graphene oxide (rGO) on nickel foam (NF) was synthesised using a hydrothermal method followed by subsequent annealing treatment. This dandelion composite grows further through the tremella-like structure of Sm2O3 and Co3O4, which facilitates the diffusion of ions and prevents structural collapse during charging and discharging. A substantial number of active sites are generated during redox reactions by the unique surface morphology of the Sm2O3/Co3O4/rGO/NF composite (SCGN). The maximum specific capacity the SCGN material achieves is 3448 F g-1 for 1 A g-1 in a 6 mol L-1 KOH solution. Benefiting from its morphological structure, the prepared composite (SCGN) exhibits a high cyclability of 93.2% over 3000 charge-discharge cycles at 10 A g-1 and a coulombic efficiency of 97.4%. Additionally, the assembled SCGN//SCGN symmetric supercapacitors deliver a high energy density of 64 W h kg-1 with a power density of 300 W kg-1, which increases to an outstanding power density of 12 000 W kg-1 at 28.7 W h kg-1 and long cycle stability (80.9% capacitance retention after 30 000 cycles). These results suggest that the manufactured SCGN electrodes could be viable active electrode materials for electrochemical supercapacitors.
Collapse
Affiliation(s)
- Yanling Lv
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology Beijing 100081 China +86 10 68912631 +86 10 68912667
| | - Shixiang Lu
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology Beijing 100081 China +86 10 68912631 +86 10 68912667
| | - Wenguo Xu
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology Beijing 100081 China +86 10 68912631 +86 10 68912667
| | - Yulin Xin
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology Beijing 100081 China +86 10 68912631 +86 10 68912667
| | - Xiaoyan Wang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology Beijing 100081 China +86 10 68912631 +86 10 68912667
| | - Shasha Wang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology Beijing 100081 China +86 10 68912631 +86 10 68912667
| | - Jiaan Yu
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology Beijing 100081 China +86 10 68912631 +86 10 68912667
| |
Collapse
|
42
|
Liao L, Kovalska E, Regner J, Song Q, Sofer Z. Two-Dimensional Van Der Waals Thin Film and Device. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2303638. [PMID: 37731156 DOI: 10.1002/smll.202303638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 08/07/2023] [Indexed: 09/22/2023]
Abstract
In the rapidly evolving field of thin-film electronics, the emergence of large-area flexible and wearable devices has been a significant milestone. Although organic semiconductor thin films, which can be manufactured through solution processing, have been identified, their utility is often undermined by their poor stability and low carrier mobility under ambient conditions. However, inorganic nanomaterials can be solution-processed and demonstrate outstanding intrinsic properties and structural stability. In particular, a series of two-dimensional (2D) nanosheet/nanoparticle materials have been shown to form stable colloids in their respective solvents. However, the integration of these 2D nanomaterials into continuous large-area thin with precise control of layer thickness and lattice orientation still remains a significant challenge. This review paper undertakes a detailed analysis of van der Waals thin films, derived from 2D materials, in the advancement of thin-film electronics and optoelectronic devices. The superior intrinsic properties and structural stability of inorganic nanomaterials are highlighted, which can be solution-processed and underscor the importance of solution-based processing, establishing it as a cornerstone strategy for scalable electronic and optoelectronic applications. A comprehensive exploration of the challenges and opportunities associated with the utilization of 2D materials for the next generation of thin-film electronics and optoelectronic devices is presented.
Collapse
Affiliation(s)
- Liping Liao
- Department of Inorganic Chemistry, University of Chemistry and Technology, Technicka 5, Prague, 166 28, Czech Republic
| | - Evgeniya Kovalska
- Faculty of Environment, Science and Economy, Department of Engineering, Exeter, EX4 4QF, UK
| | - Jakub Regner
- Department of Inorganic Chemistry, University of Chemistry and Technology, Technicka 5, Prague, 166 28, Czech Republic
| | - Qunliang Song
- School of Materials and Energy, Southwest University, Chongqing, 400715, P. R. China
| | - Zdeněk Sofer
- Department of Inorganic Chemistry, University of Chemistry and Technology, Technicka 5, Prague, 166 28, Czech Republic
| |
Collapse
|
43
|
Lee H, Heo E, Yoon H. Physically Exfoliating 2D Materials: A Versatile Combination of Different Materials into a Layered Structure. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:18678-18695. [PMID: 38095583 DOI: 10.1021/acs.langmuir.3c02418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Improving the properties of the existing two-dimensional (2D) materials is a major concern for many researchers today. Synergistic coupling of single-phase 2D material species with secondary functional materials has resulted in 2D nanohybrids with significantly enhanced properties beyond the sum of their individual components. In particular, nanohybrids created by alternatingly integrating different material species in the confined 2D nanometer regime have the potential to meet the needs of a wide variety of applications, particularly the many important energy-related applications that are of interest. However, scaling up production of 2D nanohybrids is still challenging, which is a major barrier to their practical application. Delamination and exfoliation by physical means separate the weakly bound 2D nanosheets into kinetically stable single- or few-layers. Herein, we provide a concise overview of recent achievements in the physical exfoliation-based fabrication of 2D nanohybrids featuring controlled heterolayered structures. Several strategies to efficiently produce heterolayered 2D nanohybrids in large quantities are described, such as (i) coexfoliation of different 2D species, (ii) aqueous-phase synthesis, and (iii) gas-phase synthesis. The versatility of the 2D nanohybrids was also illustrated by remarkable research examples, especially in energy-related applications.
Collapse
Affiliation(s)
- Haney Lee
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, South Korea
| | - Eunseo Heo
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, South Korea
| | - Hyeonseok Yoon
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, South Korea
- School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, South Korea
| |
Collapse
|
44
|
Hu Y, Rogée L, Wang W, Zhuang L, Shi F, Dong H, Cai S, Tay BK, Lau SP. Extendable piezo/ferroelectricity in nonstoichiometric 2D transition metal dichalcogenides. Nat Commun 2023; 14:8470. [PMID: 38123543 PMCID: PMC10733392 DOI: 10.1038/s41467-023-44298-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023] Open
Abstract
Engineering piezo/ferroelectricity in two-dimensional materials holds significant implications for advancing the manufacture of state-of-the-art multifunctional materials. The inborn nonstoichiometric propensity of two-dimensional transition metal dichalcogenides provides a spiffy ready-available solution for breaking inversion centrosymmetry, thereby conducing to circumvent size effect challenges in conventional perovskite oxide ferroelectrics. Here, we show the extendable and ubiquitous piezo/ferroelectricity within nonstoichiometric two-dimensional transition metal dichalcogenides that are predominantly centrosymmetric during standard stoichiometric cases. The emerged piezo/ferroelectric traits are aroused from the sliding of van der Waals layers and displacement of interlayer metal atoms triggered by the Frankel defects of heterogeneous interlayer native metal atom intercalation. We demonstrate two-dimensional chromium selenides nanogenerator and iron tellurides ferroelectric multilevel memristors as two representative applications. This innovative approach to engineering piezo/ferroelectricity in ultrathin transition metal dichalcogenides may provide a potential avenue to consolidate piezo/ferroelectricity with featured two-dimensional materials to fabricate multifunctional materials and distinguished multiferroic.
Collapse
Affiliation(s)
- Yi Hu
- Department of Applied Physics, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, PR China
- Centre for Micro- and Nano-Electronics (CMNE), School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 638798, Singapore
| | - Lukas Rogée
- Department of Applied Physics, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, PR China
| | - Weizhen Wang
- Department of Applied Physics, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, PR China
| | - Lyuchao Zhuang
- Department of Applied Physics, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, PR China
| | - Fangyi Shi
- Department of Applied Physics, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, PR China
| | - Hui Dong
- Department of Applied Physics, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, PR China
| | - Songhua Cai
- Department of Applied Physics, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, PR China
| | - Beng Kang Tay
- Centre for Micro- and Nano-Electronics (CMNE), School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 638798, Singapore
- IRL 3288 CINTRA (CNRS-NTU-THALES Research Alliances), Nanyang Technological University, Singapore, 637553, Singapore
| | - Shu Ping Lau
- Department of Applied Physics, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, PR China.
| |
Collapse
|
45
|
Mo X, Huang H, Sun C, Zhang Z, Wang J, Geng S, Chu PK, Yu XF, Liu W. Synthesis of germanium/germanium phosphide in-plane heterostructure with efficient photothermal and enhanced photodynamic effects in the second near-infrared biowindow. J Colloid Interface Sci 2023; 652:1228-1239. [PMID: 37657222 DOI: 10.1016/j.jcis.2023.08.137] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/16/2023] [Accepted: 08/21/2023] [Indexed: 09/03/2023]
Abstract
Inspired by the bifunctional phototherapy agents (PTAs), constructing compact PTAs with efficient photothermal therapy (PTT) and photodynamic therapy (PDT) effects in the near-infrared (NIR-II) biowindow is crucial for high therapeutic efficacy. Herein, none-layered germanium (Ge) is transformed to layered Ge/germanium phosphide (Ge/GeP) structure, and a novel two-dimensional sheet-like compact S-scheme Ge/GeP in-plane heterostructure with a large extinction coefficient of 15.66 L/g cm-1 at 1,064 nm is designed and demonstrated. In addition to the outstanding photothermal effects, biocompatibility and degradability, type I and type II PDT effects are activated by a single laser. Furthermore, enhanced reactive oxygen species generation under longer wavelength NIR laser irradiation is achieved, and production of singlet oxygen and superoxide radical upon 1,064 nm laser irradiation is more than double that under 660 nm laser irradiation. The S-scheme charge transfer mechanism between Ge and GeP, is demonstrated by photo-irradiated Kelvin probe force microscopy and electron spin resonance analysis. Thus, the obtained S-scheme Ge/GeP in-plane heterostructure shows synergistic therapeutic effects of PTT/PDT both in vitro and in vivo in the NIR-II biowindow and the novel nanoplatform with excellent properties has large clinical potential.
Collapse
Affiliation(s)
- Xianwei Mo
- Zhanjiang Institute of Clinical Medicine, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang 524045, China
| | - Hao Huang
- Shenzhen Key Laboratory of Micro/Nano Biosensing, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Caixia Sun
- Shenzhen Key Laboratory of Micro/Nano Biosensing, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; The First Clinical Medical School, Guangdong Medical University, Zhanjiang 524023, China
| | - Zhenyu Zhang
- Shenzhen Key Laboratory of Micro/Nano Biosensing, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jiahong Wang
- Shenzhen Key Laboratory of Micro/Nano Biosensing, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Hubei Three Gorges Laboratory, Yichang, Hubei 443007, China
| | - Shengyong Geng
- Shenzhen Key Laboratory of Micro/Nano Biosensing, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Paul K Chu
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Xue-Feng Yu
- Shenzhen Key Laboratory of Micro/Nano Biosensing, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Hubei Three Gorges Laboratory, Yichang, Hubei 443007, China
| | - Wenxin Liu
- Zhanjiang Institute of Clinical Medicine, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang 524045, China.
| |
Collapse
|
46
|
Sun C, Zhang X, Huang H, Liu Y, Mo X, Feng Y, Wang J, Zhou W, Chu PK, Yu XF, Liu W. Selective oxidation of p-phenylenediamine for blood glucose detection enabled by Se-vacancy-rich TiSe 2-x@Au nanozyme. Biosens Bioelectron 2023; 241:115665. [PMID: 37716159 DOI: 10.1016/j.bios.2023.115665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/25/2023] [Accepted: 09/02/2023] [Indexed: 09/18/2023]
Abstract
Nanozymes with enzyme-like characteristics have drawn wide interest but the catalytic activity and substrate selectivity of nanozymes still need improvement. Herein, Se-vacancy-rich TiSe2-x@Au nanocomposites are designed and demonstrated as nanozymes. The TiSe2-x@Au nanocomposites show excellent peroxidase-like activity and the chromogenic substrate p-phenylenediamine (PPD) can be selectively oxidized to compounds that exhibit an absorption peak at 413 nm that differs from that of self-oxidation or generally oxidized species, suggesting high catalytic activity and strong substrate selectivity. Theoretical calculations reveal that the PPD adsorption geometry at Se vacancies with an adsorption energy of -3.00 eV shows a unique spatial configuration and charge distribution, thereby inhibiting the free reaction and promoting both the activity and selectivity in PPD oxidation. The TiSe2-x@Au colorimetric system exhibits a wide linear range of 0.015 mM-0.6 mM and a low detection limit of 0.0037 mM in the detection of glucose. The blood glucose detection performance for human serum samples is comparable to that of a commercial glucose meter in the hospital (relative standard deviation < 6%). Our findings demonstrate a new strategy for rapid and accurate detection of blood glucose and our results provide insights into the future design of nanozymes.
Collapse
Affiliation(s)
- Caixia Sun
- Zhanjiang Institute of Clinical Medicine, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, 524045, People's Republic of China; Shenzhen Key Laboratory of Micro/Nano Biosensing, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China; The First Clinical Medical School, Guangdong Medical University, Zhanjiang, 524023, People's Republic of China
| | - Xue Zhang
- Shenzhen Key Laboratory of Micro/Nano Biosensing, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
| | - Hao Huang
- Shenzhen Key Laboratory of Micro/Nano Biosensing, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China.
| | - Ya Liu
- Zhanjiang Institute of Clinical Medicine, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, 524045, People's Republic of China
| | - Xianwei Mo
- Zhanjiang Institute of Clinical Medicine, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, 524045, People's Republic of China
| | - Yufei Feng
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, 524048, People's Republic of China
| | - Jiahong Wang
- Shenzhen Key Laboratory of Micro/Nano Biosensing, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
| | - Wenhua Zhou
- Shenzhen Key Laboratory of Micro/Nano Biosensing, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China; Biomedical Imaging Science and System Key Laboratory, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
| | - Paul K Chu
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, People's Republic of China
| | - Xue-Feng Yu
- Shenzhen Key Laboratory of Micro/Nano Biosensing, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China; Biomedical Imaging Science and System Key Laboratory, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
| | - Wenxin Liu
- Zhanjiang Institute of Clinical Medicine, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, 524045, People's Republic of China.
| |
Collapse
|
47
|
Li L, Shen G. MXene based flexible photodetectors: progress, challenges, and opportunities. MATERIALS HORIZONS 2023; 10:5457-5473. [PMID: 37818551 DOI: 10.1039/d3mh01362f] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Abstract
The growing interest in applying 2D transition-metal carbides and nitrides (MXenes) to diverse application fields such as energy storage and harvesters, catalysts, sensors, optoelectronics, electromagnetic interference shielding and antennas since its first discovery in 2011 is clearly evident. Their intrinsic high conductivity limits the development of MXenes in photodetectors that rely on the semiconducting properties of active materials, while the abundant functional groups on the surface of MXenes provide opportunities for using MXenes as sensing materials in the fabrication of flexible photodetectors. Considerable studies on MXene based photodetectors have been carried out, but the main obstacles include seeking novel semiconducting materials in MXene families, the manufacturing technology, etc. This review highlights the progress, challenges and opportunities in MXene based flexible photodetectors and discusses novel materials, architectures, and approaches that capitalize on our growing understanding of MXenes.
Collapse
Affiliation(s)
- La Li
- School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing 100081, China.
| | - Guozhen Shen
- School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing 100081, China.
| |
Collapse
|
48
|
Li Q, Li W, Cao J, Zhou J, Li D, Ao Z. Unveiling the intrinsic role of water in the catalytic cycle of formaldehyde oxidation: a comprehensive study integrating density functional theory and microkinetic analysis. Phys Chem Chem Phys 2023; 25:30670-30678. [PMID: 37933752 DOI: 10.1039/d3cp04339h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Previous research is predominantly in consensus on the reaction mechanism between formaldehyde (HCHO) and oxygen (O2) over catalysts. However, water vapor (H2O) always remains present during the reaction, and the intrinsic role of H2O in the oxidation of HCHO still needs to be fully understood. In this study, a single-atom catalyst, Al-doped C2N substrate, Al1/C2N, can be adopted as an example to investigate the relationship and interaction among O2, H2O, and HCHO. Density functional theory (DFT) calculations and microkinetic simulations were carried out to interpret the enhancement mechanism of H2O on HCHO oxidation over Al1/C2N. The outcome demonstrates that H2O directly breaks down a surface hydroxyl group on Al1/C2N, considerably lowering the energy required to form crucial intermediates, thus promoting oxidation. Without H2O, Al1/C2N cannot effectively oxidize HCHO at ambient temperature. During oxidation, H2O takes the major catalytic responsibility, delaying the entrance of O2 into the reaction, which is not only the product but also the crucial reactant to initiate catalysis, thereby sustaining the catalytic cycle. Moreover, this study predicts the catalytic behavior at various temperatures and presents feasible recommendations for regulating the reaction rates. The oxidation mechanism of HCHO is explained at the molecular level in this study, emphasizing the intrinsic role of water on Al1/C2N, which fills in the relevant studies for HCHO oxidation on two-dimensional carbon materials.
Collapse
Affiliation(s)
- Qianyu Li
- Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhuhai 519087, P. R. China.
- School of Environment, Beijing Normal University, Beijing 100875, P. R. China
| | - Wenlang Li
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Institute of Environmental Health and Pollution Control, Guangzhou 510006, P. R. China
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Jiachun Cao
- Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhuhai 519087, P. R. China.
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Institute of Environmental Health and Pollution Control, Guangzhou 510006, P. R. China
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Junhui Zhou
- Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhuhai 519087, P. R. China.
| | - Didi Li
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Institute of Environmental Health and Pollution Control, Guangzhou 510006, P. R. China
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Zhimin Ao
- Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhuhai 519087, P. R. China.
| |
Collapse
|
49
|
Chen B, Sui S, He F, He C, Cheng HM, Qiao SZ, Hu W, Zhao N. Interfacial engineering of transition metal dichalcogenide/carbon heterostructures for electrochemical energy applications. Chem Soc Rev 2023; 52:7802-7847. [PMID: 37869994 DOI: 10.1039/d3cs00445g] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
To support the global goal of carbon neutrality, numerous efforts have been devoted to the advancement of electrochemical energy conversion (EEC) and electrochemical energy storage (EES) technologies. For these technologies, transition metal dichalcogenide/carbon (TMDC/C) heterostructures have emerged as promising candidates for both electrode materials and electrocatalysts over the past decade, due to their complementary advantages. It is worth noting that interfacial properties play a crucial role in establishing the overall electrochemical characteristics of TMDC/C heterostructures. However, despite the significant scientific contribution in this area, a systematic understanding of TMDC/C heterostructures' interfacial engineering is currently lacking. This literature review aims to focus on three types of interfacial engineering, namely interfacial orientation engineering, interfacial stacking engineering, and interfacial doping engineering, of TMDC/C heterostructures for their potential applications in EES and EEC devices. To accomplish this goal, a combination of experimental and theoretical approaches was used to allow the analysis and summary of the fundamental electrochemical properties and preparation strategies of TMDC/C heterostructures. Moreover, this review highlights the design and utilization of the interfacial engineering of TMDC/C heterostructures for specific EES and EEC devices. Finally, the challenges and opportunities of using interfacial engineering of TMDC/C heterostructures in practical EES and EEC devices are outlined. We expect that this review will effectively guide readers in their understanding, design, and application of interfacial engineering of TMDC/C heterostructures.
Collapse
Affiliation(s)
- Biao Chen
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350, People's Republic of China.
- National Industry-Education Platform of Energy Storage, Tianjin University, 135 Yaguan Road, Tianjin 300350, People's Republic of China
| | - Simi Sui
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350, People's Republic of China.
- Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300401, People's Republic of China
| | - Fang He
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350, People's Republic of China.
| | - Chunnian He
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350, People's Republic of China.
- National Industry-Education Platform of Energy Storage, Tianjin University, 135 Yaguan Road, Tianjin 300350, People's Republic of China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, People's Republic of China
| | - Hui-Ming Cheng
- Faculty of Materials Science and Energy Engineering/Institute of Technology for Carbon Neutrality, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, People's Republic of China
| | - Shi-Zhang Qiao
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, South Australia, 5005, Australia.
| | - Wenbin Hu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350, People's Republic of China.
- National Industry-Education Platform of Energy Storage, Tianjin University, 135 Yaguan Road, Tianjin 300350, People's Republic of China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, People's Republic of China
| | - Naiqin Zhao
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350, People's Republic of China.
- National Industry-Education Platform of Energy Storage, Tianjin University, 135 Yaguan Road, Tianjin 300350, People's Republic of China
| |
Collapse
|
50
|
Jin CC, Liu DM, Zhang LX. An Emerging Family of Piezocatalysts: 2D Piezoelectric Materials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303586. [PMID: 37386814 DOI: 10.1002/smll.202303586] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/14/2023] [Indexed: 07/01/2023]
Abstract
Piezocatalysis is an emerging technique that holds great promise for the conversion of ubiquitous mechanical energy into electrochemical energy through piezoelectric effect. However, mechanical energies in natural environment (such as wind energy, water flow energy, and noise) are typically tiny, scattered, and featured with low frequency and low power. Therefore, a high response to these tiny mechanical energies is critical to achieving high piezocatalytic performance. In comparison to nanoparticles or 1D piezoelectric materials, 2D piezoelectric materials possess characteristics such as high flexibility, easy deformation, large surface area, and rich active sites, showing more promise in future for practical applications. In this review, state-of-the-art research progresses on 2D piezoelectric materials and their applications in piezocatalysis are provided. First, a detailed description of 2D piezoelectric materials are offered. Then a comprehensive summary of the piezocatalysis technique is presented and examines the piezocatalysis applications of 2D piezoelectric materials in various fields, including environmental remediation, small-molecule catalysis, and biomedicine. Finally, the main challenges and prospects of 2D piezoelectric materials and their applications in piezocatalysis are discussed. It is expected that this review can fuel the practical application of 2D piezoelectric materials in piezocatalysis.
Collapse
Affiliation(s)
- Cheng-Chao Jin
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, P. R. China
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
| | - Dai-Ming Liu
- College of Electromechanical Engineering, Shandong Engineering Laboratory for Preparation and Application of High-performance Carbon-Materials, Qingdao University of Science & Technology, 99 Songling Road, Qingdao, 266061, P. R. China
| | - Ling-Xia Zhang
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, P. R. China
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
| |
Collapse
|