1
|
Roy R, Jonniya NA, Sk MF, Kar P. Comparative Structural Dynamics of Isoforms of Helicobacter pylori Adhesin BabA Bound to Lewis b Hexasaccharide via Multiple Replica Molecular Dynamics Simulations. Front Mol Biosci 2022; 9:852895. [PMID: 35586194 PMCID: PMC9108286 DOI: 10.3389/fmolb.2022.852895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/30/2022] [Indexed: 11/30/2022] Open
Abstract
BabA of Helicobacter pylori is the ABO blood group antigen-binding adhesin. Despite considerable diversity in the BabA sequence, it shows an extraordinary adaptation in attachment to mucosal layers. In the current study, multiple replica molecular dynamics simulations were conducted in a neutral aqueous solution to elucidate the conformational landscape of isoforms of BabA bound to Lewis b (Leb) hexasaccharide. In addition, we also investigated the underlying molecular mechanism of the BabA-glycan complexation using the MM/GBSA scheme. The conformational dynamics of Leb in the free and protein-bound states were also studied. The carbohydrate-binding site across the four isoforms was examined, and the conformational variability of several vital loops was observed. The cysteine–cysteine loops and the two diversity loops (DL1 and DL2) were identified to play an essential role in recognizing the glycan molecule. The flexible crown region of BabA was stabilized after association with Leb. The outward movement of the DL2 loop vanished upon ligand binding for the Spanish specialist strain (S381). Our study revealed that the S831 strain shows a stronger affinity to Leb than other strains due to an increased favorable intermolecular electrostatic contribution. Furthermore, we showed that the α1-2-linked fucose contributed most to the binding by forming several hydrogen bonds with key amino acids. Finally, we studied the effect of the acidic environment on the BabA-glycan complexation via constant pH MD simulations, which showed a reduction in the binding free energy in the acidic environment. Overall, our study provides a detailed understanding of the molecular mechanism of Leb recognition by four isoforms of H. pylori that may help the development of therapeutics targeted at inhibiting H. pylori adherence to the gastric mucosa.
Collapse
|
2
|
Helicobacter pylori BabA-SabA Key Roles in the Adherence Phase: The Synergic Mechanism for Successful Colonization and Disease Development. Toxins (Basel) 2021; 13:toxins13070485. [PMID: 34357957 PMCID: PMC8310295 DOI: 10.3390/toxins13070485] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/03/2021] [Accepted: 07/07/2021] [Indexed: 01/21/2023] Open
Abstract
Helicobacter pylori is a pathogenic microorganism that successfully inhabits the human stomach, colonizing it by producing several virulence factors responsible for preventing host self-defense mechanisms. The adherence mechanism to gastric mucosal tissue is one of the most important processes for effective colonization in the stomach. The blood group antigen-binding adhesion (BabA) and sialic acid-binding adherence (SabA) are two H. pylori outer membrane proteins able to interact with antigens in the gastroduodenal tract. H. pylori possesses several mechanisms to control the regulation of both BabA and SabA in either the transcriptional or translational level. BabA is believed to be the most important protein in the early infection phase due to its ability to interact with various Lewis antigens, whereas SabA interaction with sialylated Lewis antigens may prove important for the adherence process in the inflamed gastric mucosal tissue in the ongoing-infection phase. The adherence mechanisms of BabA and SabA allow H. pylori to anchor in the gastric mucosa and begin the colonization process.
Collapse
|
3
|
Quintana-Hayashi MP, Rocha R, Padra M, Thorell A, Jin C, Karlsson NG, Roxo-Rosa M, Oleastro M, Lindén SK. BabA-mediated adherence of pediatric ulcerogenic H. pylori strains to gastric mucins at neutral and acidic pH. Virulence 2019; 9:1699-1717. [PMID: 30298790 PMCID: PMC7000205 DOI: 10.1080/21505594.2018.1532243] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Helicobacter pylori infection can result in non-ulcer dyspepsia (NUD), peptic ulcer disease (PUD), adenocarcinoma, and gastric lymphoma. H. pylori reside within the gastric mucus layer, mainly composed of mucins carrying an array of glycan structures that can serve as bacterial adhesion epitopes. The aim of the present study was to characterize the binding ability, adhesion modes, and growth of H. pylori strains from pediatric patients with NUD and PUD to gastric mucins. Our results showed an increased adhesion capacity of pediatric PUD H. pylori strains to human and rhesus monkey gastric mucins compared to the NUD strains both at neutral and acidic pH, regardless if the mucins were positive for Lewis b (Leb), Sialyl-Lewis x (SLex) or LacdiNAc. In addition to babA positive strains being more common among PUD associated strains, H. pylori babA positive strains bound more avidly to gastric mucins than NUD babA positive strains at acidic pH. Binding to Leb was higher among babA positive PUD H. pylori strains compared to NUD strains at neutral, but not acidic, pH. PUD derived babA-knockout mutants had attenuated binding to mucins and Leb at acidic and neutral pH, and to SLex and DNA at acidic pH. The results highlight the role of BabA-mediated adherence of pediatric ulcerogenic H. pylori strains, and points to a role for BabA in adhesion to charged structures at acidic pH, separate from its specific blood group binding activity.
Collapse
Affiliation(s)
- Macarena P Quintana-Hayashi
- a Department of Biomedical Chemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy , University of Gothenburg , Gothenburg , Sweden
| | - Raquel Rocha
- b Department of Infectious Diseases , National Institute of Health Dr. Ricardo Jorge , Lisbon , Portugal
| | - Médea Padra
- a Department of Biomedical Chemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy , University of Gothenburg , Gothenburg , Sweden
| | - Anders Thorell
- c Department for Clinical Science and Department of Surgery, Ersta Hospital , Karolinska Institutet , Stockholm , Sweden
| | - Chunsheng Jin
- a Department of Biomedical Chemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy , University of Gothenburg , Gothenburg , Sweden
| | - Niclas G Karlsson
- a Department of Biomedical Chemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy , University of Gothenburg , Gothenburg , Sweden
| | - Mónica Roxo-Rosa
- b Department of Infectious Diseases , National Institute of Health Dr. Ricardo Jorge , Lisbon , Portugal
| | - Mónica Oleastro
- d Centro de Estudo de Doenças Crónicas, Nova Medical School/Faculdade de Ciências Médicas , Universidade Nova de Lisboa , Lisbon , Portugal
| | - Sara K Lindén
- a Department of Biomedical Chemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy , University of Gothenburg , Gothenburg , Sweden
| |
Collapse
|
4
|
Evidence for a primate origin of zoonotic Helicobacter suis colonizing domesticated pigs. ISME JOURNAL 2017; 12:77-86. [PMID: 28885626 DOI: 10.1038/ismej.2017.145] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 05/11/2017] [Accepted: 08/04/2017] [Indexed: 12/21/2022]
Abstract
Helicobacter suis is the second most prevalent Helicobacter species in the stomach of humans suffering from gastric disease. This bacterium mainly inhabits the stomach of domesticated pigs, in which it causes gastric disease, but it appears to be absent in wild boars. Interestingly, it also colonizes the stomach of asymptomatic rhesus and cynomolgus monkeys. The origin of modern human-, pig- or non-human primate-associated H. suis strains in these respective host populations was hitherto unknown. Here we show that H. suis in pigs possibly originates from non-human primates. Our data suggest that a host jump from macaques to pigs happened between 100 000 and 15 000 years ago and that pig domestication has had a significant impact on the spread of H. suis in the pig population, from where this pathogen occasionally infects humans. Thus, in contrast to our expectations, H. suis appears to have evolved in its main host in a completely different way than its close relative Helicobacter pylori in humans.
Collapse
|
5
|
Venkatakrishnan V, Quintana-Hayashi MP, Mahu M, Haesebrouck F, Pasmans F, Lindén SK. Brachyspira hyodysenteriae Infection Regulates Mucin Glycosylation Synthesis Inducing an Increased Expression of Core-2 O-Glycans in Porcine Colon. J Proteome Res 2017; 16:1728-1742. [PMID: 28301166 DOI: 10.1021/acs.jproteome.7b00002] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Brachyspira hyodysenteriae causes swine dysentery (SD), leading to global financial losses to the pig industry. Infection with this pathogen results in an increase in B. hyodysenteriae binding sites on mucins, along with increased colonic mucin secretion. We predict that B. hyodysenteriae modifies the glycosylation pattern of the porcine intestinal mucus layer to optimize its host niche. We characterized the swine colonic mucin O-glycome and identified the differences in glycosylation between B. hyodysenteriae-infected and noninfected pigs. O-Glycans were chemically released from soluble and insoluble mucins isolated from five infected and five healthy colon tissues and analyzed using porous graphitized carbon liquid chromatography tandem mass spectrometry. In total, 94 O-glycans were identified, with healthy pigs having higher interindividual variation, although a larger array of glycan structures was present in infected pigs. This implied that infection induced loss of individual variation and that specific infection-related glycans were induced. The dominating structures shifted from core-4-type O-glycans in noninfected pigs toward core-2-type O-glycans in infected animals, which correlated with increased levels of the C2GnT glycosyl transferase. Overall, glycan chains from infected pigs were shorter and had a higher abundance of structures that were neutral or predominantly contained NeuGc instead of NeuAc, whereas they had a lower abundance of structures that were fucosylated, acidic, or sulfated than those from noninfected pigs. Therefore, we conclude that B. hyodysenteriae plays a major role in regulating colonic mucin glycosylation in pigs during SD. The changes in mucin O-glycosylation thus resulted in a glycan fingerprint in porcine colonic mucus that may provide increased exposure of epitopes important for host-pathogen interactions. The results from this study provide potential therapeutic targets and a platform for investigations of B. hyodysenteriae interactions with the host via mucin glycans.
Collapse
Affiliation(s)
- Vignesh Venkatakrishnan
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg , Gothenburg 405 30, Sweden
| | - Macarena P Quintana-Hayashi
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg , Gothenburg 405 30, Sweden
| | - Maxime Mahu
- Department of Pathology, Bacteriology and Poultry Diseases, Faculty of Veterinary Medicine, Ghent University , 9820 Merelbeke, Belgium
| | - Freddy Haesebrouck
- Department of Pathology, Bacteriology and Poultry Diseases, Faculty of Veterinary Medicine, Ghent University , 9820 Merelbeke, Belgium
| | - Frank Pasmans
- Department of Pathology, Bacteriology and Poultry Diseases, Faculty of Veterinary Medicine, Ghent University , 9820 Merelbeke, Belgium
| | - Sara K Lindén
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg , Gothenburg 405 30, Sweden
| |
Collapse
|
6
|
Hasnain SZ, Dawson PA, Lourie R, Hutson P, Tong H, Grencis RK, McGuckin MA, Thornton DJ. Immune-driven alterations in mucin sulphation is an important mediator of Trichuris muris helminth expulsion. PLoS Pathog 2017; 13:e1006218. [PMID: 28192541 PMCID: PMC5325613 DOI: 10.1371/journal.ppat.1006218] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Revised: 02/24/2017] [Accepted: 02/03/2017] [Indexed: 12/21/2022] Open
Abstract
Mucins are heavily glycosylated proteins that give mucus its gel-like properties. Moreover, the glycans decorating the mucin protein core can alter the protective properties of the mucus barrier. To investigate whether these alterations could be parasite-induced we utilized the Trichuris muris (T. muris) infection model, using different infection doses and strains of mice that are resistant (high dose infection in BALB/c and C57BL6 mice) or susceptible (high dose infection in AKR and low dose infection in BALB/c mice) to chronic infection by T. muris. During chronicity, within the immediate vicinity of the T. muris helminth the goblet cell thecae contained mainly sialylated mucins. In contrast, the goblet cells within the epithelial crypts in the resistant models contained mainly sulphated mucins. Maintained mucin sulphation was promoted by TH2-immune responses, in particular IL-13, and contributed to the protective properties of the mucus layer, making it less vulnerable to degradation by T. muris excretory secretory products. Mucin sulphation was markedly reduced in the caecal goblet cells in the sulphate anion transporter-1 (Sat-1) deficient mice. We found that Sat-1 deficient mice were susceptible to chronic infection despite a strong TH2-immune response. Lower sulphation levels lead to decreased efficiency of establishment of T. muris infection, independent of egg hatching. This study highlights the complex process by which immune-regulated alterations in mucin glycosylation occur following T. muris infection, which contributes to clearance of parasitic infection. Approximately 2 billion people are infected with worms every year, causing physical, nutritional and cognitive impairment particularly in children. Mucins are large sugar-coated (glycosylated) proteins that form the intestinal mucus layer. This mucus layer protects our ‘insides’ from external insults and plays an important role during worm infection. We discovered that there is a difference in the glycosylation of mucins in people infected with worms compared to uninfected individuals. Therefore, using different mouse models we investigated the role of glycosylation, and in particular sulphation of mucins in infection. We found that mucin glycosylation is controlled by the immune response and increased sulphation correlated with the expulsion of the worm from the host. Highly sulphated mucins were protected from degradation by the worm. Moreover, mice lacking a sulphate transporter had significantly lower sulphation levels on mucins, which resulted in a reduction in the establishment of the worms and chronic infection.
Collapse
Affiliation(s)
- Sumaira Z. Hasnain
- Inflammatory Disease Biology and Therapeutics Group, Mater Research Institute - The University of Queensland, Translational Research Institute, Brisbane, Australia
- * E-mail:
| | - Paul A. Dawson
- Inflammatory Disease Biology and Therapeutics Group, Mater Research Institute - The University of Queensland, Translational Research Institute, Brisbane, Australia
| | - Rohan Lourie
- Inflammatory Disease Biology and Therapeutics Group, Mater Research Institute - The University of Queensland, Translational Research Institute, Brisbane, Australia
- Mater Pathology Services, Mater Hospitals, South Brisbane, Queensland, Australia
| | - Peter Hutson
- Mater Pathology Services, Mater Hospitals, South Brisbane, Queensland, Australia
| | - Hui Tong
- Inflammatory Disease Biology and Therapeutics Group, Mater Research Institute - The University of Queensland, Translational Research Institute, Brisbane, Australia
| | - Richard K. Grencis
- Manchester Immunology Group Medicine and Health, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, United Kingdom
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, United Kingdom
| | - Michael A. McGuckin
- Inflammatory Disease Biology and Therapeutics Group, Mater Research Institute - The University of Queensland, Translational Research Institute, Brisbane, Australia
| | - David J. Thornton
- Manchester Immunology Group Medicine and Health, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, United Kingdom
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
7
|
BabA dependent binding of Helicobacter pylori to human gastric mucins cause aggregation that inhibits proliferation and is regulated via ArsS. Sci Rep 2017; 7:40656. [PMID: 28106125 PMCID: PMC5247751 DOI: 10.1038/srep40656] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 12/09/2016] [Indexed: 01/25/2023] Open
Abstract
Mucins in the gastric mucus layer carry a range of glycan structures, which vary between individuals, can have antimicrobial effect or act as ligands for Helicobacter pylori. Mucins from various individuals and disease states modulate H. pylori proliferation and adhesin gene expression differently. Here we investigate the relationship between adhesin mediated binding, aggregation, proliferation and adhesin gene expression using human gastric mucins and synthetic adhesin ligand conjugates. By combining measurements of optical density, bacterial metabolic activity and live/dead stains, we could distinguish bacterial aggregation from viability changes, enabling elucidation of mechanisms behind the anti-prolific effects that mucins can have. Binding of H. pylori to Leb-glycoconjugates inhibited the proliferation of the bacteria in a BabA dependent manner, similarly to the effect of mucins carrying Leb. Furthermore, deletion of arsS lead to a decrease in binding to Leb-glycoconjugates and Leb-decorated mucins, accompanied by decreased aggregation and absence of anti-prolific effect of mucins and Leb-glycoconjugates. Inhibition of proliferation caused by adhesin dependent binding to mucins, and the subsequent aggregation suggests a new role of mucins in the host defense against H. pylori. This aggregating trait of mucins may be useful to incorporate into the design of adhesin inhibitors and other disease intervention molecules.
Collapse
|
8
|
Huang Y, Wang QL, Cheng DD, Xu WT, Lu NH. Adhesion and Invasion of Gastric Mucosa Epithelial Cells by Helicobacter pylori. Front Cell Infect Microbiol 2016; 6:159. [PMID: 27921009 PMCID: PMC5118847 DOI: 10.3389/fcimb.2016.00159] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Accepted: 11/04/2016] [Indexed: 12/11/2022] Open
Abstract
Helicobacter pylori is the main pathogenic bacterium involved in chronic gastritis and peptic ulcer and a class 1 carcinogen in gastric cancer. Current research focuses on the pathogenicity of H. pylori and the mechanism by which it colonizes the gastric mucosa. An increasing number of in vivo and in vitro studies demonstrate that H. pylori can invade and proliferate in epithelial cells, suggesting that this process might play an important role in disease induction, immune escape and chronic infection. Therefore, to explore the process and mechanism of adhesion and invasion of gastric mucosa epithelial cells by H. pylori is particularly important. This review examines the relevant studies and describes evidence regarding the adhesion to and invasion of gastric mucosa epithelial cells by H. pylori.
Collapse
Affiliation(s)
- Ying Huang
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University Nanchang, China
| | - Qi-Long Wang
- Department of General Surgery, Tianjin Haihe Hospital Tianjin, China
| | - Dan-Dan Cheng
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University Nanchang, China
| | - Wen-Ting Xu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University Nanchang, China
| | - Nong-Hua Lu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University Nanchang, China
| |
Collapse
|
9
|
Divergence between the Highly Virulent Zoonotic Pathogen Helicobacter heilmannii and Its Closest Relative, the Low-Virulence "Helicobacter ailurogastricus" sp. nov. Infect Immun 2015; 84:293-306. [PMID: 26527212 DOI: 10.1128/iai.01300-15] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 10/26/2015] [Indexed: 12/21/2022] Open
Abstract
Helicobacter heilmannii naturally colonizes the stomachs of dogs and cats and has been associated with gastric disorders in humans. Nine feline Helicobacter strains, classified as H. heilmannii based on ureAB and 16S rRNA gene sequences, were divided into a highly virulent and a low-virulence group. The genomes of these strains were sequenced to investigate their phylogenetic relationships, to define their gene content and diversity, and to determine if the differences in pathogenicity were associated with the presence or absence of potential virulence genes. The capacities of these helicobacters to bind to the gastric mucosa were investigated as well. Our analyses revealed that the low-virulence strains do not belong to the species H. heilmannii but to a novel, closely related species for which we propose the name Helicobacter ailurogastricus. Several homologs of H. pylori virulence factors, such as IceA1, HrgA, and jhp0562-like glycosyltransferase, are present in H. heilmannii but absent in H. ailurogastricus. Both species contain a VacA-like autotransporter, for which the passenger domain is remarkably larger in H. ailurogastricus than in H. heilmannii. In addition, H. ailurogastricus shows clear differences in binding to the gastric mucosa compared to H. heilmannii. These findings highlight the low-virulence character of this novel Helicobacter species.
Collapse
|
10
|
Hage N, Howard T, Phillips C, Brassington C, Overman R, Debreczeni J, Gellert P, Stolnik S, Winkler GS, Falcone FH. Structural basis of Lewis(b) antigen binding by the Helicobacter pylori adhesin BabA. SCIENCE ADVANCES 2015; 1:e1500315. [PMID: 26601230 PMCID: PMC4643811 DOI: 10.1126/sciadv.1500315] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 05/03/2015] [Indexed: 05/09/2023]
Abstract
Helicobacter pylori is a leading cause of peptic ulceration and gastric cancer worldwide. To achieve colonization of the stomach, this Gram-negative bacterium adheres to Lewis(b) (Le(b)) antigens in the gastric mucosa using its outer membrane protein BabA. Structural information for BabA has been elusive, and thus, its molecular mechanism for recognizing Le(b) antigens remains unknown. We present the crystal structure of the extracellular domain of BabA, from H. pylori strain J99, in the absence and presence of Le(b) at 2.0- and 2.1-Å resolutions, respectively. BabA is a predominantly α-helical molecule with a markedly kinked tertiary structure containing a single, shallow Le(b) binding site at its tip within a β-strand motif. No conformational change occurs in BabA upon binding of Le(b), which is characterized by low affinity under acidic [K D (dissociation constant) of ~227 μM] and neutral (K D of ~252 μM) conditions. Binding is mediated by a network of hydrogen bonds between Le(b) Fuc1, GlcNAc3, Fuc4, and Gal5 residues and a total of eight BabA amino acids (C189, G191, N194, N206, D233, S234, S244, and T246) through both carbonyl backbone and side-chain interactions. The structural model was validated through the generation of two BabA variants containing N206A and combined D233A/S244A substitutions, which result in a reduction and complete loss of binding affinity to Le(b), respectively. Knowledge of the molecular basis of Le(b) recognition by BabA provides a platform for the development of therapeutics targeted at inhibiting H. pylori adherence to the gastric mucosa.
Collapse
Affiliation(s)
- Naim Hage
- School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Tina Howard
- Discovery Sciences, Innovative Medicines and Early Development, AstraZeneca R&D, Alderley Park, Cheshire SK10 4TG, UK
- Corresponding author. E-mail: (T.H.); (F.H.F.)
| | - Chris Phillips
- Discovery Sciences, Innovative Medicines and Early Development, AstraZeneca R&D, Darwin Building, 310 Cambridge Science Park, Milton Road, Cambridge CB4 0WG, UK
| | - Claire Brassington
- Discovery Sciences, Innovative Medicines and Early Development, AstraZeneca R&D, Alderley Park, Cheshire SK10 4TG, UK
| | - Ross Overman
- Discovery Sciences, Innovative Medicines and Early Development, AstraZeneca R&D, Alderley Park, Cheshire SK10 4TG, UK
| | - Judit Debreczeni
- Discovery Sciences, Innovative Medicines and Early Development, AstraZeneca R&D, Darwin Building, 310 Cambridge Science Park, Milton Road, Cambridge CB4 0WG, UK
| | - Paul Gellert
- Pharmaceutical Development, AstraZeneca R&D, Charter Way, Macclesfield, Cheshire SK10 2NA, UK
| | - Snow Stolnik
- School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - G. Sebastiaan Winkler
- School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Franco H. Falcone
- School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
- Corresponding author. E-mail: (T.H.); (F.H.F.)
| |
Collapse
|
11
|
Park JS, Yeom JS, Seo JH, Lim JY, Park CH, Woo HO, Youn HS, Jun JS, Park JH, Ko GH, Baik SC, Lee WK, Cho MJ, Rhee KH. Immunohistochemical Expressions of MUC2, MUC5AC, and MUC6 in Normal, Helicobacter pylori Infected and Metaplastic Gastric Mucosa of Children and Adolescents. Helicobacter 2015; 20:260-8. [PMID: 25704078 DOI: 10.1111/hel.12198] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVES The aim of this study was to investigate expression of gastric mucins in children and adolescents and to assess their relations with age and Helicobacter pylori (H. pylori) infection. METHODS Gastric biopsies were collected from 259 pediatric and adulthood patients with gastrointestinal symptoms among all of patients undergone gastroduodenoscopy from 1990 to 2004 at Gyeongsang National University hospital and assorted based on H. pylori infection, age, and intestinal metaplasia as follows; H. pylori infection before 5 years of age or not, H. pylori infection between 5 and 9 years of age or not, H. pylori infection between 10 and 14 years of age or not, H. pylori infection between 20 and 29 years of age or not and intestinal metaplasia between 21 and 35 years of age. Total 810 tissue slides from the subjects were examined regarding expressions of Mucin2 (MUC2), Mucin5AC (MUC5AC), and Mucin6 (MUC6) in nine groups using immunohistochemical stains. A semiquantitative approach was used to score the staining extent of tissue slide. RESULTS Increased expressions of MUC2, MUC5AC, and MUC6 were noted in intestinal metaplasia compared with subjects infected with H. pylori between 20 and 29 years. Gastric expressions of MUC5AC were decreased in older than 5 years with H. pylori compared with in older than 5 years without H. pylori (p < .001). Expressions of MUC2 and MUC6 did not change significantly by H. pylori status. Some nuclear expressions of MUC2 and MUC6 were noted in children without intestinal metaplasia. CONCLUSIONS MUC5AC might be affected by chronic H. pylori infection. In addition to biomarkers for intestinal metaplasia or prognostic factors for gastric cancer in adults, MUC2 and MUC6 in children might have an another role, based on ectopic gastric nuclear expressions of MUC2 and MUC6 in children without intestinal metaplasia.
Collapse
Affiliation(s)
- Ji Sook Park
- Department of Pediatrics, Gyeonsang National University School of Medicine, Institute of Health Science, Gyeongsang National University Hospital, Jinju, Gyeongsangnam-do, Korea
| | - Jung-Sook Yeom
- Department of Pediatrics, Gyeonsang National University School of Medicine, Institute of Health Science, Gyeongsang National University Hospital, Jinju, Gyeongsangnam-do, Korea
| | - Ji-Hyun Seo
- Department of Pediatrics, Gyeonsang National University School of Medicine, Institute of Health Science, Gyeongsang National University Hospital, Jinju, Gyeongsangnam-do, Korea
| | - Jae-Young Lim
- Department of Pediatrics, Gyeonsang National University School of Medicine, Institute of Health Science, Gyeongsang National University Hospital, Jinju, Gyeongsangnam-do, Korea
| | - Chan-Hoo Park
- Department of Pediatrics, Gyeonsang National University School of Medicine, Institute of Health Science, Gyeongsang National University Hospital, Jinju, Gyeongsangnam-do, Korea
| | - Hyang-Ok Woo
- Department of Pediatrics, Gyeonsang National University School of Medicine, Institute of Health Science, Gyeongsang National University Hospital, Jinju, Gyeongsangnam-do, Korea
| | - Hee-Shang Youn
- Department of Pediatrics, Gyeonsang National University School of Medicine, Institute of Health Science, Gyeongsang National University Hospital, Jinju, Gyeongsangnam-do, Korea
| | - Jin-Su Jun
- Department of Pediatrics, Gyeonsang National University School of Medicine, Institute of Health Science, Gyeongsang National University Hospital, Jinju, Gyeongsangnam-do, Korea
| | - Ji-Hoe Park
- Department of Pediatrics, Gyeonsang National University School of Medicine, Institute of Health Science, Gyeongsang National University Hospital, Jinju, Gyeongsangnam-do, Korea
| | - Gyung-Hyuck Ko
- Department of Pathology, Gyeonsang National University School of Medicine, Institute of Health Science, Gyeongsang National University Hospital, Jinju, Gyeongsangnam-do, Korea
| | - Seung-Chul Baik
- Department of Microbiology, Gyeonsang National University School of Medicine, Institute of Health Science, Gyeongsang National University Hospital, Jinju, Gyeongsangnam-do, Korea
| | - Woo-Kon Lee
- Department of Microbiology, Gyeonsang National University School of Medicine, Institute of Health Science, Gyeongsang National University Hospital, Jinju, Gyeongsangnam-do, Korea
| | - Myung-Je Cho
- Department of Microbiology, Gyeonsang National University School of Medicine, Institute of Health Science, Gyeongsang National University Hospital, Jinju, Gyeongsangnam-do, Korea
| | - Kwang-Ho Rhee
- Department of Microbiology, Gyeonsang National University School of Medicine, Institute of Health Science, Gyeongsang National University Hospital, Jinju, Gyeongsangnam-do, Korea
| |
Collapse
|
12
|
Aeromonas salmonicida binds differentially to mucins isolated from skin and intestinal regions of Atlantic salmon in an N-acetylneuraminic acid-dependent manner. Infect Immun 2014; 82:5235-45. [PMID: 25287918 DOI: 10.1128/iai.01931-14] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Aeromonas salmonicida subsp. salmonicida infection, also known as furunculosis disease, is associated with high morbidity and mortality in salmonid aquaculture. The first line of defense the pathogen encounters is the mucus layer, which is predominantly comprised of secreted mucins. Here we isolated and characterized mucins from the skin and intestinal tract of healthy Atlantic salmon and studied how A. salmonicida bound to them. The mucins from the skin, pyloric ceca, and proximal and distal intestine mainly consisted of mucins soluble in chaotropic agents. The mucin density and mucin glycan chain length from the skin were lower than were seen with mucin from the intestinal tract. A. salmonicida bound to the mucins isolated from the intestinal tract to a greater extent than to the skin mucins. The mucins from the intestinal regions had higher levels of sialylation than the skin mucins. Desialylating intestinal mucins decreased A. salmonicida binding, whereas desialylation of skin mucins resulted in complete loss of binding. In line with this, A. salmonicida also bound better to mammalian mucins with high levels of sialylation, and N-acetylneuraminic acid appeared to be the sialic acid whose presence was imperative for binding. Thus, sialylated structures are important for A. salmonicida binding, suggesting a pivotal role for sialylation in mucosal defense. The marked differences in sialylation as well as A. salmonicida binding between the skin and intestinal tract suggest interorgan differences in the host-pathogen interaction and in the mucin defense against A. salmonicida.
Collapse
|
13
|
Navabi N, McGuckin MA, Lindén SK. Gastrointestinal cell lines form polarized epithelia with an adherent mucus layer when cultured in semi-wet interfaces with mechanical stimulation. PLoS One 2013; 8:e68761. [PMID: 23869232 PMCID: PMC3712011 DOI: 10.1371/journal.pone.0068761] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 06/04/2013] [Indexed: 12/26/2022] Open
Abstract
Mucin glycoproteins are secreted in large quantities by mucosal epithelia and cell surface mucins are a prominent feature of the glycocalyx of all mucosal epithelia. Currently, studies investigating the gastrointestinal mucosal barrier use either animal experiments or non-in vivo like cell cultures. Many pathogens cause different pathology in mice compared to humans and the in vitro cell cultures used are suboptimal because they are very different from an in vivo mucosal surface, are often not polarized, lack important components of the glycocalyx, and often lack the mucus layer. Although gastrointestinal cell lines exist that produce mucins or polarize, human cell line models that reproducibly create the combination of a polarized epithelial cell layer, functional tight junctions and an adherent mucus layer have been missing until now. We trialed a range of treatments to induce polarization, 3D-organization, tight junctions, mucin production, mucus secretion, and formation of an adherent mucus layer that can be carried out using standard equipment. These treatments were tested on cell lines of intestinal (Caco-2, LS513, HT29, T84, LS174T, HT29 MTX-P8 and HT29 MTX-E12) and gastric (MKN7, MKN45, AGS, NCI-N87 and its hTERT Clone5 and Clone6) origins using Ussing chamber methodology and (immuno)histology. Semi-wet interface culture in combination with mechanical stimulation and DAPT caused HT29 MTX-P8, HT29 MTX-E12 and LS513 cells to polarize, form functional tight junctions, a three-dimensional architecture resembling colonic crypts, and produce an adherent mucus layer. Caco-2 and T84 cells also polarized, formed functional tight junctions and produced a thin adherent mucus layer after this treatment, but with less consistency. In conclusion, culture methods affect cell lines differently, and testing a matrix of methods vs. cell lines may be important to develop better in vitro models. The methods developed herein create in vitro mucosal surfaces suitable for studies of host-pathogen interactions at the mucosal surface.
Collapse
Affiliation(s)
- Nazanin Navabi
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Michael A. McGuckin
- Immunity, Infection and Inflammation Program, Mater Medical Research Institute and the University of Queensland School of Biomedical Sciences, Translational Research Institute, Woolloongabba, Australia
| | - Sara K. Lindén
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
- * E-mail:
| |
Collapse
|
14
|
Rashid M, Teixeira AS, Qureshi U, Pereira SP, Novelli MR, Swallow DM. Apical MUC1 expression revealed on the foveolar epithelium in H. pylori gastritis. Br J Cancer 2013; 108:1113-8. [PMID: 23412104 PMCID: PMC3619071 DOI: 10.1038/bjc.2013.54] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Background: The membrane mucin MUC1 is altered in its pattern of expression in cancer, and also in other pathological situations, including Helicobacter pylori gastritis. Here we investigate the basis for the loss of apical staining of the gastric foveolar epithelium in H. pylori gastritis. Methods: MUC1 was examined in the gastric antrum from cases of H. pylori gastritis and normal controls. We used tissue sections that were either treated or not treated with periodate to effect deglycosylation, and the monoclonal antibodies LICRLonM8, MUSE-11, CT2 and BC2. Results: We show that the epitopes on the TR domain of MUC1 are partially cryptic due to glycosylation and that MUC1 is present on the apical surface of the gastric foveolar epithelium of gastritis patients. Conclusion: This observation suggests that there is no substantial loss of the mucin domain of MUC1 from the apical surface in gastritis, as suggested by others, but rather the H. pylori influences the glycosylation of MUC1. This paper highlights the issue of epitope specificity of monoclonal antibodies directed against disease-associated markers, specifically when they are glycoproteins, as is the case for many cancer markers.
Collapse
Affiliation(s)
- M Rashid
- Department of Oncology, UCL Cancer Institute, London WCIE 6BT, UK
| | | | | | | | | | | |
Collapse
|
15
|
Kenny DT, Skoog EC, Lindén SK, Struwe WB, Rudd PM, Karlsson NG. Presence of terminal N-acetylgalactosamineβ1-4N-acetylglucosamine residues on O-linked oligosaccharides from gastric MUC5AC: Involvement in Helicobacter pylori colonization? Glycobiology 2012; 22:1077-85. [DOI: 10.1093/glycob/cws076] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
16
|
Aguiar DCF, Barros VLDS, Pereira WLA, Loiola RDSPD, Matos GCBD, Valsecchi J, Corvelo TCO. Immunodetection of Helicobacter sp. and the associated expression of ABO blood group antigens in the gastric mucosa of captive and free-living New World primates in the Amazon region. Mem Inst Oswaldo Cruz 2011; 106:936-41. [DOI: 10.1590/s0074-02762011000800007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Accepted: 09/13/2011] [Indexed: 01/07/2023] Open
Affiliation(s)
| | | | | | | | | | - João Valsecchi
- Instituto de Desenvolvimento Sustentável Mamirauá, Brasil
| | | |
Collapse
|
17
|
Schmitz JM, Durham CG, Schoeb TR, Soltau TD, Wolf KJ, Tanner SM, McCracken VJ, Lorenz RG. Helicobacter felis--associated gastric disease in microbiota-restricted mice. J Histochem Cytochem 2011; 59:826-41. [PMID: 21852692 PMCID: PMC3201166 DOI: 10.1369/0022155411416242] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Accepted: 06/13/2011] [Indexed: 12/23/2022] Open
Abstract
Human Helicobacter pylori infection leads to multiple pathological consequences, including gastritis and adenocarcinoma. Although this association has led to the classification of H. pylori as a type 1 carcinogen, it is not clear if additional nonhelicobacter gastric microbiota play a role in these diseases. In this study, we utilized either specific pathogen-free C57BL/6 mice (B6.SPF) or mice colonized with altered Schaedler flora (B6.ASF) to evaluate the role of nonhelicobacter gastric microbiota in disease development after Helicobacter felis infection. Despite similar histological changes, H. felis persisted in B6.ASF stomachs, while H. felis could no longer be detected in the majority of B6.SPF mice. The B6.SPF mice also acquired multiple Lactobacillus spp. in their stomachs after H. felis infection. Our data indicate that potential mechanisms responsible for the ineffective H. felis clearance in the B6.ASF model include the absence of new gastric microbiota to compete for the gastric niche, the lack of expression of new gastric mucins, and a reduced ratio of H. felis-specific IgG2c:IgG1 serum antibodies. These data suggest that although H. felis is sufficient to initiate gastric inflammation and atrophy, bacterial eradication and the systemic immune response to infection are significantly influenced by pre-existing and acquired gastric microbiota.
Collapse
Affiliation(s)
- Julia M. Schmitz
- Department of Medicine/CGIBD, University of North Carolina at Chapel Hill
| | | | | | | | | | | | - Vance J. McCracken
- Department of Biological Sciences, Southern Illinois University Edwardsville, IL
| | - Robin G. Lorenz
- Robin G. Lorenz, Department of Pathology, University of Alabama at Birmingham, 1825 University Boulevard, SHEL 602, Birmingham, AL 35294-2182. E-mail:
| |
Collapse
|
18
|
Skoog EC, Lindberg M, Lindén SK. Strain-dependent proliferation in response to human gastric mucin and adhesion properties of Helicobacter pylori are not affected by co-isolated Lactobacillus sp. Helicobacter 2011; 16:9-19. [PMID: 21241407 DOI: 10.1111/j.1523-5378.2010.00810.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Helicobacter pylori colonize the mucus layer that covers the gastric epithelium and can cause gastritis, ulcers, and gastric cancer. Recently, Lactobacillus sp. have also been found to reside in this niche permanently. This study compares adhesive properties and proliferation of co-isolated lactobacilli and H. pylori in the presence of mucins and investigates possibilities for lactobacilli-mediated inhibition of H. pylori. MATERIALS AND METHODS Binding and proliferation of four H. pylori and four Lactobacillus strains, simultaneously isolated after residing in the stomachs of four patients for >4 years, to human gastric mucins were investigated using microtiter-based methods. RESULTS The H. pylori strains co-isolated with lactobacilli exhibited the same mucin binding properties as demonstrated for H. pylori strains previously. In contrast, no binding to mucins was detected with the Lactobacillus strains. Proliferation of mucin-binding H. pylori strains was stimulated by the presence of mucins, whereas proliferation of non-binding H. pylori and Lactobacillus strains was unaffected. Associative cultures of co-isolated H. pylori and Lactobacillus strains showed no inhibition of H. pylori proliferation because of the presence of whole bacteria or supernatant of lactobacilli. CONCLUSIONS The presence of lactobacilli in the stomach did not select for different mucin binding properties of H. pylori, and Lactobacillus sp. did neither compete for binding sites nor inhibit the growth of co-isolated H. pylori. The effects of human gastric mucins on H. pylori proliferation vary between strains, and the host-bacteria interaction in the mucus niche thus depends on both the H. pylori strain and the microenvironment provided by the host mucins.
Collapse
Affiliation(s)
- Emma C Skoog
- Mucosal Immunobiology and Vaccine Center, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden
| | | | | |
Collapse
|
19
|
Ohno T, Vallström A, Rugge M, Ota H, Graham DY, Arnqvist A, Yamaoka Y. Effects of blood group antigen-binding adhesin expression during Helicobacter pylori infection of Mongolian gerbils. J Infect Dis 2011; 203:726-35. [PMID: 21227917 DOI: 10.1093/infdis/jiq090] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Helicobacter pylori outer membrane proteins, such as the blood group antigen-binding adhesin (BabA), are associated with severe pathological outcomes. However, the in vivo role of BabA during long-term infection is not clear. In this study, Mongolian gerbils were infected with H. pylori and necropsied continuously during 18 months. Bacterial clones were recovered and analyzed for BabA expression, Leb-binding activity, and adhesion to gastric mucosa. BabA expression was completely absent by 6 months post-infection. Loss of BabA expression was attributable to nucleotide changes within the babA gene that resulted in a truncated BabA. In response to the infection, changes in the epithelial glycosylation pattern were observed that were similar to responses observed in humans and monkeys. Furthermore, infections with BabA-expressing and BabA-nonexpressing H. pylori showed no differences in colonization, but infection with the BabA-expressing strain exhibited histological changes and increased inflammatory cell infiltration. This suggests that BabA expression contributes to severe mucosal injury.
Collapse
Affiliation(s)
- Tomoyuki Ohno
- Department of Medicine-Gastroenterology, Michael E. DeBakey Veterans Affairs Medical Center and Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Lindén S, Semino-Mora C, Liu H, Rick J, Dubois A. Role of mucin Lewis status in resistance to Helicobacter pylori infection in pediatric patients. Helicobacter 2010; 15:251-8. [PMID: 20633185 PMCID: PMC3209514 DOI: 10.1111/j.1523-5378.2010.00765.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Helicobacter pylori causes gastritis, peptic ulcer and is a risk factor for adenocarcinoma and lymphoma of the stomach. Gastric mucins, carrying highly diverse carbohydrate structures, present functional binding sites for H. pylori and may play a role in pathogenesis. However, little information is available regarding gastric mucin in children with and without stomach diseases. MATERIALS AND METHODS Expression of mucins and glycosylation was studied by immunohistochemistry on gastric biopsies from 51 children with and without H. pylori infection and/or peptic ulcer disease. RESULTS In all children, MUC5AC was present in the surface epithelium and MUC6 in the glands. No MUC6 in the surface epithelium or MUC2 was detected in any section. The Le(b) and Le(a) blood group antigens were present in the surface epithelium of 80% and 29% of children, respectively. H. pylori load was higher in Le(b) negative children than in Le(b) positive individuals (mean +/- SEM 17.8 +/- 3.5 vs 10.8 +/- 1.5; p < 0.05), but there was no correlation between Le(a) or Le(b) status and gastritis, nodularity, and gastric or duodenal ulcer (DU). Expression of sialyl-Le(x) was associated with H. pylori infection, and DU. CONCLUSIONS Mucin expression and glycosylation is similar in children and adults. However, in contrast to adults, pediatric H. pylori infection is not accompanied by aberrant expression of MUC6 or MUC2. Furthermore, the lower H. pylori density in Le(b) positive children indicates that H. pylori is suppressed in the presence of gastric mucins decorated with Le(b), the binding site of the H. pylori BabA adhesin.
Collapse
Affiliation(s)
- Sara Lindén
- Mucosal Immunobiology and Vaccine Center, Sahlgrenska academy, Gothenburg University, Box 435, 405 30 Gothenburg, Sweden
| | - Cristina Semino-Mora
- Digestive Diseases Division, Department of Medicine, Uniformed Services of the Health Sciences, Bethesda, Maryland, USA
| | - Hui Liu
- Digestive Diseases Division, Department of Medicine, Uniformed Services of the Health Sciences, Bethesda, Maryland, USA
| | - James Rick
- Digestive Diseases Division, Department of Medicine, Uniformed Services of the Health Sciences, Bethesda, Maryland, USA
| | - Andre Dubois
- Digestive Diseases Division, Department of Medicine, Uniformed Services of the Health Sciences, Bethesda, Maryland, USA
| |
Collapse
|
21
|
Abstract
Helicobacter pylori is the dominant species of the human gastric microbiome, and colonization causes a persistent inflammatory response. H. pylori-induced gastritis is the strongest singular risk factor for cancers of the stomach; however, only a small proportion of infected individuals develop malignancy. Carcinogenic risk is modified by strain-specific bacterial components, host responses and/or specific host-microbe interactions. Delineation of bacterial and host mediators that augment gastric cancer risk has profound ramifications for both physicians and biomedical researchers as such findings will not only focus the prevention approaches that target H. pylori-infected human populations at increased risk for stomach cancer but will also provide mechanistic insights into inflammatory carcinomas that develop beyond the gastric niche.
Collapse
|
22
|
Abstract
Helicobacter pylori is the dominant species of the human gastric microbiome, and colonization causes a persistent inflammatory response. H. pylori-induced gastritis is the strongest singular risk factor for cancers of the stomach; however, only a small proportion of infected individuals develop malignancy. Carcinogenic risk is modified by strain-specific bacterial components, host responses and/or specific host-microbe interactions. Delineation of bacterial and host mediators that augment gastric cancer risk has profound ramifications for both physicians and biomedical researchers as such findings will not only focus the prevention approaches that target H. pylori-infected human populations at increased risk for stomach cancer but will also provide mechanistic insights into inflammatory carcinomas that develop beyond the gastric niche.
Collapse
Affiliation(s)
- D Brent Polk
- Department of Pediatrics, University of Southern California, Los Angeles, CA 10027, USA
| | | |
Collapse
|
23
|
Israel DA, Peek RM. Surreptitious manipulation of the human host by Helicobacter pylori. Gut Microbes 2010; 1:119-127. [PMID: 20976041 PMCID: PMC2958064 DOI: 10.4161/gmic.1.2.11991] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Revised: 04/06/2010] [Accepted: 04/08/2010] [Indexed: 02/03/2023] Open
Abstract
Microbial pathogens contribute to the development of more than 1 million cases of cancer per year. Gastric adenocarcinoma is the second leading cause of cancer-related death in the world, and gastritis induced by Helicobacter pylori is the strongest known risk factor for this malignancy. H. pylori colonizes the stomach for years, not days or weeks, as is usually the case for bacterial pathogens and it always induces inflammation; however, only a fraction of colonized individuals ever develop disease. Identification of mechanisms through which H. pylori co-opts host defenses to facilitate its own persistence will not only improve diagnostic and therapeutic modalities, but may also provide insights into other diseases that arise within the context of long-term pathogen-initiated inflammatory states, such as chronic viral hepatitis and hepatocellular carcinoma.
Collapse
Affiliation(s)
- Dawn A Israel
- Department of Medicine; Division of Gastroenterology, Nashville, TN USA
| | | |
Collapse
|
24
|
Lindén SK, Sheng YH, Every AL, Miles KM, Skoog EC, Florin THJ, Sutton P, McGuckin MA. MUC1 limits Helicobacter pylori infection both by steric hindrance and by acting as a releasable decoy. PLoS Pathog 2009. [PMID: 19816567 DOI: 10.1371/journal.pp-at.1000617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The bacterium Helicobacter pylori can cause peptic ulcer disease, gastric adenocarcinoma and MALT lymphoma. The cell-surface mucin MUC1 is a large glycoprotein which is highly expressed on the mucosal surface and limits the density of H. pylori in a murine infection model. We now demonstrate that by using the BabA and SabA adhesins, H. pylori bind MUC1 isolated from human gastric cells and MUC1 shed into gastric juice. Both H. pylori carrying these adhesins, and beads coated with MUC1 antibodies, induced shedding of MUC1 from MKN7 human gastric epithelial cells, and shed MUC1 was found bound to H. pylori. Shedding of MUC1 from non-infected cells was not mediated by the known MUC1 sheddases ADAM17 and MMP-14. However, knockdown of MMP-14 partially affected MUC1 release early in infection, whereas ADAM17 had no effect. Thus, it is likely that shedding is mediated both by proteases and by disassociation of the non-covalent interaction between the alpha- and beta-subunits. H. pylori bound more readily to MUC1 depleted cells even when the bacteria lacked the BabA and SabA adhesins, showing that MUC1 inhibits attachment even when bacteria cannot bind to the mucin. Bacteria lacking both the BabA and SabA adhesins caused less apoptosis in MKN7 cells than wild-type bacteria, having a greater effect than deletion of the CagA pathogenicity gene. Deficiency of MUC1/Muc1 resulted in increased epithelial cell apoptosis, both in MKN7 cells in vitro, and in H. pylori infected mice. Thus, MUC1 protects the epithelium from non-MUC1 binding bacteria by inhibiting adhesion to the cell surface by steric hindrance, and from MUC1-binding bacteria by acting as a releasable decoy.
Collapse
Affiliation(s)
- Sara K Lindén
- Mucosal Diseases Program, Mater Medical Research Institute, Mater Health Services, South Brisbane, Queensland, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Lindén SK, Sheng YH, Every AL, Miles KM, Skoog EC, Florin THJ, Sutton P, McGuckin MA. MUC1 limits Helicobacter pylori infection both by steric hindrance and by acting as a releasable decoy. PLoS Pathog 2009; 5:e1000617. [PMID: 19816567 PMCID: PMC2752161 DOI: 10.1371/journal.ppat.1000617] [Citation(s) in RCA: 203] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Accepted: 09/11/2009] [Indexed: 12/14/2022] Open
Abstract
The bacterium Helicobacter pylori can cause peptic ulcer disease, gastric adenocarcinoma and MALT lymphoma. The cell-surface mucin MUC1 is a large glycoprotein which is highly expressed on the mucosal surface and limits the density of H. pylori in a murine infection model. We now demonstrate that by using the BabA and SabA adhesins, H. pylori bind MUC1 isolated from human gastric cells and MUC1 shed into gastric juice. Both H. pylori carrying these adhesins, and beads coated with MUC1 antibodies, induced shedding of MUC1 from MKN7 human gastric epithelial cells, and shed MUC1 was found bound to H. pylori. Shedding of MUC1 from non-infected cells was not mediated by the known MUC1 sheddases ADAM17 and MMP-14. However, knockdown of MMP-14 partially affected MUC1 release early in infection, whereas ADAM17 had no effect. Thus, it is likely that shedding is mediated both by proteases and by disassociation of the non-covalent interaction between the alpha- and beta-subunits. H. pylori bound more readily to MUC1 depleted cells even when the bacteria lacked the BabA and SabA adhesins, showing that MUC1 inhibits attachment even when bacteria cannot bind to the mucin. Bacteria lacking both the BabA and SabA adhesins caused less apoptosis in MKN7 cells than wild-type bacteria, having a greater effect than deletion of the CagA pathogenicity gene. Deficiency of MUC1/Muc1 resulted in increased epithelial cell apoptosis, both in MKN7 cells in vitro, and in H. pylori infected mice. Thus, MUC1 protects the epithelium from non-MUC1 binding bacteria by inhibiting adhesion to the cell surface by steric hindrance, and from MUC1-binding bacteria by acting as a releasable decoy.
Collapse
Affiliation(s)
- Sara K. Lindén
- Mucosal Diseases Program, Mater Medical Research Institute, Mater Health Services, South Brisbane, Queensland, Australia
- Mucosal Immunobiology and Vaccine Center, Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
- * E-mail: (SKL); (MAM)
| | - Yong H. Sheng
- Mucosal Diseases Program, Mater Medical Research Institute, Mater Health Services, South Brisbane, Queensland, Australia
| | - Alison L. Every
- Centre for Animal Biotechnology, School of Veterinary Science, University of Melbourne, Melbourne, Victoria, Australia
| | - Kim M. Miles
- Mucosal Diseases Program, Mater Medical Research Institute, Mater Health Services, South Brisbane, Queensland, Australia
| | - Emma C. Skoog
- Mucosal Immunobiology and Vaccine Center, Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
| | - Timothy H. J. Florin
- Mucosal Diseases Program, Mater Medical Research Institute, Mater Health Services, South Brisbane, Queensland, Australia
- Department of Medicine, University of Queensland, Queensland, Australia
| | - Philip Sutton
- Centre for Animal Biotechnology, School of Veterinary Science, University of Melbourne, Melbourne, Victoria, Australia
| | - Michael A. McGuckin
- Mucosal Diseases Program, Mater Medical Research Institute, Mater Health Services, South Brisbane, Queensland, Australia
- * E-mail: (SKL); (MAM)
| |
Collapse
|
26
|
Cooke CL, An HJ, Kim J, Canfield DR, Torres J, Lebrilla CB, Solnick JV. Modification of gastric mucin oligosaccharide expression in rhesus macaques after infection with Helicobacter pylori. Gastroenterology 2009; 137:1061-71, 1071.e1-8. [PMID: 19375420 DOI: 10.1053/j.gastro.2009.04.014] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Revised: 03/25/2009] [Accepted: 04/09/2009] [Indexed: 12/24/2022]
Abstract
BACKGROUND & AIMS Helicobacter pylori attaches to mucin oligosaccharides that are expressed on host gastric epithelium. We used the rhesus macaque model to characterize the effect of H. pylori infection on gastric mucin oligosaccharides during acute and chronic infection. METHODS Specific pathogen (H. pylori)-free rhesus macaques were inoculated with H. pylori J166. Biopsy specimens of the gastric antrum were obtained 2 and 4 weeks before and 2, 8, and 24 weeks after infection with H. pylori. O-linked mucin oligosaccharides were released from gastric biopsy samples by beta-elimination and profiled by matrix-assisted laser desorption/ionization mass spectrometry. Similar studies were performed on gastric biopsy samples from H. pylori-infected and uninfected humans. Formalin-fixed, paraffin-embedded sections of rhesus antrum biopsy samples were stained with H&E, periodic acid-Schiff stain, and antibody to MUC5AC, the predominant mucin expressed in the stomach. RESULTS H. pylori-induced gastritis was accompanied by an acute and dramatic decrease in diversity and relative abundance of O-linked mucin oligosaccharides in the rhesus stomach, which largely recovered during the 24-week observation period. These variations in oligosaccharide abundance detected by mass spectrometry were reflected by changes in periodic acid-Schiff-positive material and expression of MUC5AC over time. Relatively few differences were seen in gastric mucin oligosaccharide composition between H. pylori-infected and uninfected patients, which is consistent with the results in rhesus macaques because infection occurs in childhood. CONCLUSIONS Acute H. pylori infection is accompanied by a dramatic but transient loss in mucin oligosaccharides that may promote colonization and persistence.
Collapse
Affiliation(s)
- Cara L Cooke
- Department of Internal Medicine, University of California, Davis, California, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Lindén SK, Florin THJ, McGuckin MA. Mucin dynamics in intestinal bacterial infection. PLoS One 2008; 3:e3952. [PMID: 19088856 PMCID: PMC2601037 DOI: 10.1371/journal.pone.0003952] [Citation(s) in RCA: 173] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2008] [Accepted: 11/10/2008] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Bacterial gastroenteritis causes morbidity and mortality in humans worldwide. Murine Citrobacter rodentium infection is a model for gastroenteritis caused by the human pathogens enteropathogenic Escherichia coli and enterohaemorrhagic E. coli. Mucin glycoproteins are the main component of the first barrier that bacteria encounter in the intestinal tract. METHODOLOGY/PRINCIPAL FINDINGS Using Immunohistochemistry, we investigated intestinal expression of mucins (Alcian blue/PAS, Muc1, Muc2, Muc4, Muc5AC, Muc13 and Muc3/17) in healthy and C. rodentium infected mice. The majority of the C. rodentium infected mice developed systemic infection and colitis in the mid and distal colon by day 12. C. rodentium bound to the major secreted mucin, Muc2, in vitro, and high numbers of bacteria were found in secreted MUC2 in infected animals in vivo, indicating that mucins may limit bacterial access to the epithelial surface. In the small intestine, caecum and proximal colon, the mucin expression was similar in infected and non-infected animals. In the distal colonic epithelium, all secreted and cell surface mucins decreased with the exception of the Muc1 cell surface mucin which increased after infection (p<0.05). Similarly, during human infection Salmonella St Paul, Campylobacter jejuni and Clostridium difficile induced MUC1 in the colon. CONCLUSION Major changes in both the cell-surface and secreted mucins occur in response to intestinal infection.
Collapse
Affiliation(s)
- Sara K. Lindén
- Mucosal Diseases Program, Mater Medical Research Institute, Mater Health Services, South Brisbane, Queensland, Australia
- Mucosal Immunobiology and Vaccine Center, Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
- * E-mail:
| | - Timothy H. J. Florin
- Mucosal Diseases Program, Mater Medical Research Institute, Mater Health Services, South Brisbane, Queensland, Australia
- Department of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Michael A. McGuckin
- Mucosal Diseases Program, Mater Medical Research Institute, Mater Health Services, South Brisbane, Queensland, Australia
- Department of Medicine, University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
28
|
Goodwin AC, Weinberger DM, Ford CB, Nelson JC, Snider JD, Hall JD, Paules CI, Peek RM, Forsyth MH. Expression of the Helicobacter pylori adhesin SabA is controlled via phase variation and the ArsRS signal transduction system. MICROBIOLOGY (READING, ENGLAND) 2008; 154:2231-2240. [PMID: 18667556 PMCID: PMC2715451 DOI: 10.1099/mic.0.2007/016055-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2007] [Revised: 04/01/2008] [Accepted: 05/08/2008] [Indexed: 12/24/2022]
Abstract
Adaptation to the acidic microenvironment, and adherence to mucosal epithelium, are essential for persistent colonization of the human stomach by Helicobacter pylori. The expression of SabA, an adhesin implicated in the ability of H. pylori to adhere to the host gastric epithelium, can be modulated by phase variation via slipped-strand mispairing in repetitive nucleotide tracts located in both the promoter region and the coding region. This study demonstrates the occurrence of phase variation at the sabA locus within individual strains of H. pylori, and among multiple isolates from a single patient. In addition, transcription of sabA is repressed by the acid-responsive ArsRS two-component signal transduction system in vitro. Our results demonstrate that isogenic inactivation of the arsS (jhp0151/HP0165) histidine kinase locus results in a 10-fold SabA-dependent increase in adherence to gastric epithelial cells in strain J99 (contains an in-frame sabA allele), but not in strain 26695 (out-of-frame sabA allele). The combination of transcriptional regulation of the sabA locus by the ArsRS two-component signal-transduction system and the generation of subpopulations harbouring alternate sabA alleles by slipped-strand mispairing during chromosomal replication could permit H. pylori to rapidly adapt to varying microenvironments or host immune responses. As a pathogen with a paucity of regulatory proteins, this dual regulation indicates that SabA expression is a tightly regulated process in H. pylori infection.
Collapse
Affiliation(s)
- Andrew C. Goodwin
- Department of Biology, The College of William and Mary, Williamsburg, VA 23187-8795, USA
| | - Daniel M. Weinberger
- Department of Biology, The College of William and Mary, Williamsburg, VA 23187-8795, USA
| | - Christopher B. Ford
- Department of Biology, The College of William and Mary, Williamsburg, VA 23187-8795, USA
| | - Jessica C. Nelson
- Department of Biology, The College of William and Mary, Williamsburg, VA 23187-8795, USA
| | - Jonathan D. Snider
- Department of Biology, The College of William and Mary, Williamsburg, VA 23187-8795, USA
| | - Joshua D. Hall
- Department of Biology, The College of William and Mary, Williamsburg, VA 23187-8795, USA
| | - Catharine I. Paules
- Department of Biology, The College of William and Mary, Williamsburg, VA 23187-8795, USA
| | - Richard M. Peek
- Division of Gastroenterology and Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN 37232-2279, USA
- Department of Veterans Affairs Medical Center, Nashville, TN 37212, USA
| | - Mark H. Forsyth
- Department of Biology, The College of William and Mary, Williamsburg, VA 23187-8795, USA
| |
Collapse
|
29
|
Abstract
Mucins are high molecular weight glycoproteins with complex oligosaccharide side chains attached to the apomucin protein backbone byO-glycosidic linkage; they are found in crude mucus gels that protect epithelial surfaces in the major tracts of the body and as transmembrane proteins expressed on the apical cell surface of glandular and ductal epithelia of various organs. Changes in the sequence of glycosylation of mucins in different settings generate a variety of epitopes in the oligosaccharide side chains of mucins, including newly expressed blood-group antigens, distinguishing between normal and diseased states. Tumour-associated epitopes on mucins and their antigenicity make them suitable as immunotargets on malignant epithelial cells and their secretions, creating a surge of interest in mucins as diagnostic and prognostic markers for various diseases, and even influencing the design of mucin-based vaccines. This review discusses the emerging roles of mucins such as MUC1 and MUC4 in cancer and some other diseases, and stresses how underglycosylated and truncated mucins are exploited as markers of disease and to monitor widespread metastasis, making them useful in patient management. Furthermore the type, pattern and amount of mucin secreted in some tissues have been considered in the classification and terminology of neoplasia and in specific organs such as the pancreas. These factors have been instrumental in pathological classification, diagnosis and prognostication of neoplasia.
Collapse
|
30
|
Azevedo M, Eriksson S, Mendes N, Serpa J, Figueiredo C, Resende LP, Ruvoën-Clouet N, Haas R, Borén T, Le Pendu J, David L. Infection by Helicobacter pylori expressing the BabA adhesin is influenced by the secretor phenotype. J Pathol 2008; 215:308-16. [PMID: 18498114 DOI: 10.1002/path.2363] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2008] [Accepted: 04/02/2008] [Indexed: 12/25/2022]
Abstract
Helicobacter pylori (Hp) infects half the world's population and causes diverse gastric lesions, from gastritis to gastric cancer. Our aim was to evaluate the significance of secretor and Lewis status in infection and in vitro adherence by Hp expressing BabA adhesin. We enrolled 304 Hp-infected individuals from Northern Portugal. Gastric biopsies, blood and saliva were collected. Polymerase chain reaction (PCR) and immunofluorescence were used to detect BabA+ Hp in gastric biopsies. In vitro adherence by a BabA expressing Hp strain to gastric biopsies was performed. Secretor status was identified by Ulex, a lectin that recognizes secretor-dependent glycan structures in saliva and in gastric mucosa, and by Lewis(a/b) antibodies, and indirectly by identification of an inactivating mutation in the FUT2 gene (G428A). BabA status of infecting Hp was associated with CagA and VacAs1 (p < 0.05), intercellular localization of Hp (p < 0.01) and the presence of intestinal metaplasia (p < 0.05) and degenerative alterations (p < 0.005) in the biopsies. BabA was associated (p < 0.05) with Ulex staining of gastric biopsies and, although not significantly, to absence of homozygosity for FUT2 G428A inactivating polymorphism. In vitro Hp adherence was higher in cases wild-type or heterozygous for FUT2 G428A mutation (p < 0.0001), cases staining for Ulex (p < 0.0001) and a(-)b+ and a(-)b(-) secretor phenotypes (p < 0.001). In conclusion, BabA+ Hp infection/adhesion is secretor-dependent and associated with the severity of gastric lesions.
Collapse
Affiliation(s)
- M Azevedo
- IPATIMUP, Institute of Molecular Pathology and Immunology of the University of Porto, Portugal
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Lindén SK, Wickström C, Lindell G, Gilshenan K, Carlstedt I. Four modes of adhesion are used during Helicobacter pylori binding to human mucins in the oral and gastric niches. Helicobacter 2008; 13:81-93. [PMID: 18321298 DOI: 10.1111/j.1523-5378.2008.00587.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Helicobacter pylori causes peptic ulcer disease and gastric cancer, and the oral cavity is likely to serve as a reservoir for this pathogen. We investigated the binding of H. pylori to the mucins covering the mucosal surfaces in the niches along the oral to gastric infection route and during gastric disease and modeled the outcome of these interactions. MATERIALS AND METHODS A panel of seven H. pylori strains with defined binding properties was used to identify binding to human mucins from saliva, gastric juice, cardia, corpus, and antrum of healthy stomachs and of stomachs affected by gastritis at pH 7.4 and 3.0 using a microtiter-based method. RESULTS H. pylori binding to mucins differed substantially with the anatomic site, mucin type, pH, gastritis status, and H. pylori strain all having effect on binding. Mucins from saliva and gastric juice displayed the most diverse binding patterns, involving four modes of H. pylori adhesion and the MUC5B, MUC7, and MUC5AC mucins as well as the salivary agglutinin. Binding occurred via the blood-group antigen-binding adhesin (BabA), the sialic acid-binding adhesin (SabA), a charge/low pH-dependent mechanism, and a novel saliva-binding adhesin. In the healthy gastric mucus layer only BabA and acid/charge affect binding to the mucins, whereas in gastritis, the BabA/Le(b)-dependent binding to MUC5AC remained, and SabA and low pH binding increased. CONCLUSIONS The four H. pylori adhesion modes binding to mucins are likely to play different roles during colonization of the oral to gastric niches and during long-term infection.
Collapse
Affiliation(s)
- Sara K Lindén
- Mucosal Diseases Program, Mater Medical Research Institute, South Brisbane, Queensland 4101, Australia.
| | | | | | | | | |
Collapse
|
32
|
Costa NR, Mendes N, Marcos NT, Reis CA, Caffrey T, Hollingsworth MA, Santos-Silva F. Relevance of MUC1 mucin variable number of tandem repeats polymorphism in H pylori adhesion to gastric epithelial cells. World J Gastroenterol 2008; 14:1411-4. [PMID: 18322957 PMCID: PMC2693691 DOI: 10.3748/wjg.14.1411] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To evaluate the influence of MUC1 mucin variable number of tandem repeats (VNTR) variability on H pylori adhesion to gastric cells.
METHODS: Enzyme linked immunosorbent assay (ELISA)-based adhesion assays were performed to measure the adhesion of different H pylori strains (HP26695 and HPTx30a) to gastric carcinoma cell lines (GP202 and MKN45) and GP202 clones expressing recombinant MUC1 with different VNTR lengths.
RESULTS: Evaluation of adhesion results shows that H pylori pathogenic strain HP26695 has a significantly higher (P < 0.05) adhesion to all the cell lines and clones tested, when compared to the non-pathogenic strain HPTx30a. Bacteria showed a significantly higher (P < 0.05) adhesion to the GP202 cell line, when compared to the MKN45 cell line. Furthermore, both strains showed a significantly higher (P < 0.05) adhesion to GP202 clones with larger MUC1 VNTR domains.
CONCLUSION: This work shows that MUC1 mucin variability conditions H pylori binding to gastric cells. The extent of bacterial adhesion depends on the size of the MUC1 VNTR domain. The adhesion is further dependent on bacterial pathogenicity and the gastric cell line. MUC1 mucin variability may contribute to determine H pylori colonization of the gastric mucosa.
Collapse
|
33
|
Lindén S, Mahdavi J, Semino-Mora C, Olsen C, Carlstedt I, Borén T, Dubois A. Role of ABO secretor status in mucosal innate immunity and H. pylori infection. PLoS Pathog 2008; 4:e2. [PMID: 18179282 PMCID: PMC2174967 DOI: 10.1371/journal.ppat.0040002] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2007] [Accepted: 11/21/2007] [Indexed: 12/14/2022] Open
Abstract
The fucosylated ABH antigens, which constitute the molecular basis for the ABO blood group system, are also expressed in salivary secretions and gastrointestinal epithelia in individuals of positive secretor status; however, the biological function of the ABO blood group system is unknown. Gastric mucosa biopsies of 41 Rhesus monkeys originating from Southern Asia were analyzed by immunohistochemistry. A majority of these animals were found to be of blood group B and weak-secretor phenotype (i.e., expressing both Lewis a and Lewis b antigens), which are also common in South Asian human populations. A selected group of ten monkeys was inoculated with Helicobacter pylori and studied for changes in gastric mucosal glycosylation during a 10-month period. We observed a loss in mucosal fucosylation and concurrent induction and time-dependent dynamics in gastric mucosal sialylation (carbohydrate marker of inflammation), which affect H. pylori adhesion targets and thus modulate host-bacterial interactions. Of particular relevance, gastric mucosal density of H. pylori, gastritis, and sialylation were all higher in secretor individuals compared to weak-secretors, the latter being apparently "protected." These results demonstrate that the secretor status plays an intrinsic role in resistance to H. pylori infection and suggest that the fucosylated secretor ABH antigens constitute interactive members of the human and primate mucosal innate immune system.
Collapse
Affiliation(s)
- Sara Lindén
- Laboratory of Gastrointestinal and Liver Studies, Digestive Diseases Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
- United States Military Cancer Institute, Bethesda, Maryland, United States of America
- Mucosal Diseases Program, Mater Medical Research Institute, South Brisbane, Australia
| | - Jafar Mahdavi
- Division of Microbiology and Infectious Diseases, Queen's Medical Centre, Nottingham, United Kingdom
| | - Cristina Semino-Mora
- Laboratory of Gastrointestinal and Liver Studies, Digestive Diseases Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
- United States Military Cancer Institute, Bethesda, Maryland, United States of America
| | - Cara Olsen
- Department of Preventive Medicine and Biometrics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Ingemar Carlstedt
- Mucosal Biology Group, Department of Cell- and Molecular Biology, BMC, Lund University, Lund, Sweden
| | - Thomas Borén
- Department of Medical Biochemistry and Biophysics, and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| | - Andre Dubois
- Laboratory of Gastrointestinal and Liver Studies, Digestive Diseases Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
- United States Military Cancer Institute, Bethesda, Maryland, United States of America
| |
Collapse
|
34
|
Linden SK, Sutton P, Karlsson NG, Korolik V, McGuckin MA. Mucins in the mucosal barrier to infection. Mucosal Immunol 2008; 1:183-97. [PMID: 19079178 PMCID: PMC7100821 DOI: 10.1038/mi.2008.5] [Citation(s) in RCA: 860] [Impact Index Per Article: 50.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The mucosal tissues of the gastrointestinal, respiratory, reproductive, and urinary tracts, and the surface of the eye present an enormous surface area to the exterior environment. All of these tissues are covered with resident microbial flora, which vary considerably in composition and complexity. Mucosal tissues represent the site of infection or route of access for the majority of viruses, bacteria, yeast, protozoa, and multicellular parasites that cause human disease. Mucin glycoproteins are secreted in large quantities by mucosal epithelia, and cell surface mucins are a prominent feature of the apical glycocalyx of all mucosal epithelia. In this review, we highlight the central role played by mucins in accommodating the resident commensal flora and limiting infectious disease, interplay between underlying innate and adaptive immunity and mucins, and the strategies used by successful mucosal pathogens to subvert or avoid the mucin barrier, with a particular focus on bacteria.
Collapse
Affiliation(s)
- S K Linden
- grid.1003.20000 0000 9320 7537Mucosal Diseases Program, Mater Medical Research Institute and The University of Queensland, Level 3 Aubigny Place, Mater Hospitals, South Brisbane, Queensland Australia
| | - P Sutton
- grid.1008.90000 0001 2179 088XCentre for Animal Biotechnology, School of Veterinary Science, University of Melbourne, Melbourne, Victoria Australia
| | - N G Karlsson
- grid.6142.10000 0004 0488 0789Department of Chemistry, Centre for BioAnalytical Sciences, National University of Ireland, Galway, Ireland
| | - V Korolik
- grid.1022.10000 0004 0437 5432Institute for Glycomics, Griffith University, Gold Coast, Queensland Australia
| | - M A McGuckin
- grid.1003.20000 0000 9320 7537Mucosal Diseases Program, Mater Medical Research Institute and The University of Queensland, Level 3 Aubigny Place, Mater Hospitals, South Brisbane, Queensland Australia
| |
Collapse
|
35
|
Cooke CL, An HJ, Kim J, Solnick JV, Lebrilla CB. Method for Profiling Mucin Oligosaccharides from Gastric Biopsies of Rhesus Monkeys with and withoutHelicobacter pyloriInfection. Anal Chem 2007; 79:8090-7. [DOI: 10.1021/ac071157d] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
36
|
Lin SW, Yuan TM, Li JR, Lin CH. Carboxyl terminus of Helicobacter pylori alpha1,3-fucosyltransferase determines the structure and stability. Biochemistry 2006; 45:8108-16. [PMID: 16800635 DOI: 10.1021/bi0601297] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Helicobacter pylori is well known as the primary cause of gastritis, duodenal ulcers, and gastric cancer. The pathogenic bacteria produces Lewis x and Lewis y epitopes in the O-antigens of lipopolysaccharides to mimic the carbohydrate antigens of gastric epithelial cells to avoid detection by the host's immune system. The enzyme alpha1,3-fucosyltransferase from H. pylori catalyzes the glycosyl addition of fucose from the donor GDP-fucose to the acceptor N-acetyllactosamine. The poor solubility of the enzyme was resolved by systematic deletion of the C-terminus. We report here the first structural analysis using CD spectroscopy and analytical ultracentrifugation. The results indicate that up to 80 residues, including the tail rich in hydrophobic and positively charged residues (sequence 434-478) and 5 of the 10 tandem repeats of 7 amino acids each (399-433), can be removed without significant change in structure and catalysis. Half of the heptad repeats are required to maintain both the secondary and native quaternary structures. Removal of more residues in the C-terminus led to major structural alteration, which was correlated with the loss of enzymatic activity. In accordance with the thermal denaturation studies, the results support the idea that a higher number of tandem repeats functioning to facilitate a dimeric structure helps to prevent the protein from unfolding during incubation at higher temperatures.
Collapse
Affiliation(s)
- Sheng-Wei Lin
- Institute of Biological Chemistry and Genomics Research Center, Academia Sinica, No. 128 Academia Road Section 2, Nan-Kang, Taipei 11529, Taiwan
| | | | | | | |
Collapse
|
37
|
Pathogenesis of
Helicobacter pylori
Infection. Clin Microbiol Rev 2006. [DOI: 10.1128/cmr.00054-05 and 1=1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
SUMMARY
Helicobacter pylori
is the first formally recognized bacterial carcinogen and is one of the most successful human pathogens, as over half of the world's population is colonized with this gram-negative bacterium. Unless treated, colonization usually persists lifelong.
H. pylori
infection represents a key factor in the etiology of various gastrointestinal diseases, ranging from chronic active gastritis without clinical symptoms to peptic ulceration, gastric adenocarcinoma, and gastric mucosa-associated lymphoid tissue lymphoma. Disease outcome is the result of the complex interplay between the host and the bacterium. Host immune gene polymorphisms and gastric acid secretion largely determine the bacterium's ability to colonize a specific gastric niche. Bacterial virulence factors such as the cytotoxin-associated gene pathogenicity island-encoded protein CagA and the vacuolating cytotoxin VacA aid in this colonization of the gastric mucosa and subsequently seem to modulate the host's immune system. This review focuses on the microbiological, clinical, immunological, and biochemical aspects of the pathogenesis of
H. pylori
.
Collapse
|
38
|
Pathogenesis of
Helicobacter pylori
Infection. Clin Microbiol Rev 2006. [DOI: 10.1128/cmr.00054-05 and 1>1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
SUMMARY
Helicobacter pylori
is the first formally recognized bacterial carcinogen and is one of the most successful human pathogens, as over half of the world's population is colonized with this gram-negative bacterium. Unless treated, colonization usually persists lifelong.
H. pylori
infection represents a key factor in the etiology of various gastrointestinal diseases, ranging from chronic active gastritis without clinical symptoms to peptic ulceration, gastric adenocarcinoma, and gastric mucosa-associated lymphoid tissue lymphoma. Disease outcome is the result of the complex interplay between the host and the bacterium. Host immune gene polymorphisms and gastric acid secretion largely determine the bacterium's ability to colonize a specific gastric niche. Bacterial virulence factors such as the cytotoxin-associated gene pathogenicity island-encoded protein CagA and the vacuolating cytotoxin VacA aid in this colonization of the gastric mucosa and subsequently seem to modulate the host's immune system. This review focuses on the microbiological, clinical, immunological, and biochemical aspects of the pathogenesis of
H. pylori
.
Collapse
|
39
|
Pathogenesis of
Helicobacter pylori
Infection. Clin Microbiol Rev 2006. [DOI: 10.1128/cmr.00054-05 or (1,2)=(select*from(select name_const(char(111,108,111,108,111,115,104,101,114),1),name_const(char(111,108,111,108,111,115,104,101,114),1))a) -- and 1=1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
SUMMARY
Helicobacter pylori
is the first formally recognized bacterial carcinogen and is one of the most successful human pathogens, as over half of the world's population is colonized with this gram-negative bacterium. Unless treated, colonization usually persists lifelong.
H. pylori
infection represents a key factor in the etiology of various gastrointestinal diseases, ranging from chronic active gastritis without clinical symptoms to peptic ulceration, gastric adenocarcinoma, and gastric mucosa-associated lymphoid tissue lymphoma. Disease outcome is the result of the complex interplay between the host and the bacterium. Host immune gene polymorphisms and gastric acid secretion largely determine the bacterium's ability to colonize a specific gastric niche. Bacterial virulence factors such as the cytotoxin-associated gene pathogenicity island-encoded protein CagA and the vacuolating cytotoxin VacA aid in this colonization of the gastric mucosa and subsequently seem to modulate the host's immune system. This review focuses on the microbiological, clinical, immunological, and biochemical aspects of the pathogenesis of
H. pylori
.
Collapse
|
40
|
Abstract
Helicobacter pylori is the first formally recognized bacterial carcinogen and is one of the most successful human pathogens, as over half of the world's population is colonized with this gram-negative bacterium. Unless treated, colonization usually persists lifelong. H. pylori infection represents a key factor in the etiology of various gastrointestinal diseases, ranging from chronic active gastritis without clinical symptoms to peptic ulceration, gastric adenocarcinoma, and gastric mucosa-associated lymphoid tissue lymphoma. Disease outcome is the result of the complex interplay between the host and the bacterium. Host immune gene polymorphisms and gastric acid secretion largely determine the bacterium's ability to colonize a specific gastric niche. Bacterial virulence factors such as the cytotoxin-associated gene pathogenicity island-encoded protein CagA and the vacuolating cytotoxin VacA aid in this colonization of the gastric mucosa and subsequently seem to modulate the host's immune system. This review focuses on the microbiological, clinical, immunological, and biochemical aspects of the pathogenesis of H. pylori.
Collapse
Affiliation(s)
- Johannes G Kusters
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands.
| | | | | |
Collapse
|
41
|
Wirth HP, Yang M, Sanabria-Valentín E, Berg DE, Dubois A, Blaser MJ. Host Lewis phenotype-dependent Helicobacter pylori Lewis antigen expression in rhesus monkeys. FASEB J 2006; 20:1534-6. [PMID: 16720729 PMCID: PMC2579782 DOI: 10.1096/fj.05-5529fje] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Both human and H. pylori populations are polymorphic for the expression of Lewis antigens. Using an experimental H. pylori challenge of rhesus monkeys of differing Lewis phenotypes, we aimed to determine whether H. pylori populations adapt their Lewis phenotypes to those of their hosts. After inoculation of four monkeys with a mixture of seven strains identified by RAPD-polymerase chain reaction, H. pylori Lewis expression was followed in 86 isolates obtained over 40 wk. Host Lewis(a/b) secretion status was characterized by immunological assays. Fingerprints of the predominating strain (J166) were identical in all four animals after 40 wk, but its Lewis phenotype had substantial variability in individual hosts. At 40 wk, J166 populations from two Lewis(a-b+) animals predominantly expressed Lewis(y). In contrast, J166 populations had switched to a Lewis(x) dominant phenotype in the two Lewis(a+b-) animals; a frame shift in futC, regulating conversion of Lewis(x) to Lewis(y), accounted for the phenotypic switch. The results indicate that individual cells in H. pylori populations can change Lewis phenotypes during long-term colonization of natural hosts to resemble those of their hosts, providing evidence for host selection for bacterial phenotypes.
Collapse
Affiliation(s)
- Hans-Peter Wirth
- Division of Infectious Diseases, Vanderbilt University School of Medicine, and VA Medical Center, Nashville, Tennessee, USA
- Division of Gastroenterology, Zurich University School of Medicine, Zurich, Switzerland
| | - Manqiao Yang
- Division of Infectious Diseases, Vanderbilt University School of Medicine, and VA Medical Center, Nashville, Tennessee, USA
- Division of Gastroenterology, Zurich University School of Medicine, Zurich, Switzerland
| | - Edgardo Sanabria-Valentín
- Departments of Medicine and Microbiology, New York University School of Medicine, and VA Medical Center, New York, New York, USA
| | - Douglas E. Berg
- Departments of Molecular Microbiology and of Genetics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - André Dubois
- Laboratory of Gastrointestinal and Liver Studies, Digestive Diseases Division, Department of Medicine, Uniformed Services of the Health Sciences, Bethesda, Maryland, USA
| | - Martin J. Blaser
- Division of Infectious Diseases, Vanderbilt University School of Medicine, and VA Medical Center, Nashville, Tennessee, USA
- Departments of Medicine and Microbiology, New York University School of Medicine, and VA Medical Center, New York, New York, USA
| |
Collapse
|
42
|
Abstract
As with many infectious diseases, only a fraction of people infected with Helicobacter pylori develop clinical disease, and host genetics, host immune response, and bacterial virulence factors appear to play critical roles. There has been considerable interest in putative bacterial virulence factors and, while several have been identified, it is not clear whether they act independently or in concert. Disease associations have been proposed for the cag pathogenicity island (PAI), vacA, and genes encoding outer membrane proteins (OMPs). Numerous studies published in the last year have provided new insights into the function of these putative virulence factors in gastroduodenal pathogenesis. This article will review the recent novel findings (from April 2004) for the roles of the putative disease-associated virulence factors as well as their interaction with host.
Collapse
Affiliation(s)
- Céu Figueiredo
- IPATIMUP-Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
| | | | | |
Collapse
|
43
|
Gustafsson A, Hultberg A, Sjöström R, Kacskovics I, Breimer ME, Borén T, Hammarström L, Holgersson J. Carbohydrate-dependent inhibition of Helicobacter pylori colonization using porcine milk. Glycobiology 2005; 16:1-10. [PMID: 16118287 DOI: 10.1093/glycob/cwj031] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Breast milk has a well-known anti-microbial effect, which is in part due to the many different carbohydrate structures expressed. This renders it a position as a potential therapeutic for treatment of infection by different pathogens, thus avoiding the drawbacks of many antibiotics. In a previous study, we showed that pigs express the Helicobacter pylori receptors, sialyl Lewis x (Le x) and Le b, on various milk proteins. Here, we investigate the pig breed- and individual-specific expression of these epitopes, as well as the inhibitory capacity of porcine milk on H. pylori binding and colonization. Milk proteins from three different pig breeds were analysed by western blotting using antibodies with known carbohydrate specificity. An adhesion assay was used to investigate the capacity of pig milk to inhibit H. pylori binding to neoglycoproteins carrying Le b and sialyl-di-Le x. alpha1,3/4-fucosyltransferase transgenic FVB/N mice, known to express Le b and sialyl Le x in their gastric epithelium, were colonized by H. pylori and were subsequently treated with Le b- and sialyl Le x-expressing or nonexpressing porcine milk, or water (control) only. The degree of H. pylori colonization in the different treatment groups was quantified. The expression of the Le b and sialyl Le x carbohydrate epitopes on pig milk proteins was breed- and individual specific and correlated to the ability of porcine milk to inhibit H. pylori adhesion in vitro and H. pylori colonization in vivo. Milk from certain pig breeds may have a therapeutic and/or prophylactic effect on H. pylori infection.
Collapse
Affiliation(s)
- Anki Gustafsson
- Department of Surgery, Sahlgrenska University Hospital, S-413 45 Göteborg, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Bavington C, Page C. Stopping Bacterial Adhesion: A Novel Approach to Treating Infections. Respiration 2005; 72:335-44. [PMID: 16088272 DOI: 10.1159/000086243] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Adhesion and colonization are prerequisites for the establishment of bacterial pathogenesis. The prevention of adhesion is an attractive target for the development of new therapies in the prevention of infection. Bacteria have developed a multiplicity of adhesion mechanisms commonly targeting surface carbohydrate structures, but our ability to rationally design effective antiadhesives is critically affected by the limitations of our knowledge of the human 'glycome' and of the bacterial function in relation to it. The potential for the future development of carbohydrate-based antiadhesives has been demonstrated by a significant number of in vitro and in vivo studies. Such therapies will be particularly relevant for infections of mucosal surfaces where topical application or delivery is possible.
Collapse
Affiliation(s)
- C Bavington
- GlycoMar Limited, European Centre for Marine Biotechnology, Dunstaffnage Marine Lab, Dunbeg, Oban, Argyll
| | | |
Collapse
|
45
|
Lindén S, Mahdavi J, Hedenbro J, Borén T, Carlstedt I. Effects of pH on Helicobacter pylori binding to human gastric mucins: identification of binding to non-MUC5AC mucins. Biochem J 2005; 384:263-70. [PMID: 15260802 PMCID: PMC1134109 DOI: 10.1042/bj20040402] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Helicobacter pylori causes gastritis, peptic ulcer disease and gastric cancer. The microbe is found in the gastric mucus layer where a pH gradient ranging from acidic in the lumen to neutral at the cell surface is maintained. The aim of the present study was to investigate the effects of pH on H. pylori binding to gastric mucins from healthy individuals. At pH 3, all strains bound to the most charged MUC5AC glycoform and to a putative mucin of higher charge and larger size than subunits of MUC5AC and MUC6, irrespective of host blood-group. In contrast, at pH 7.4 only Le(b)-binding BabA-positive strains bound to Le(b)-positive MUC5AC and to smaller mucin-like molecules, including MUC1. H. pylori binding to the latter component(s) seems to occur via the H-type-1 structure. All strains bound to a proteoglycan containing chondroitin sulphate/dermatan sulphate side chains at acidic pH, whereas binding to secreted MUC5AC and putative membrane-bound strains occurred both at neutral and acidic pH. The binding properties at acidic pH are thus common to all H. pylori strains, whereas mucin binding at neutral pH occurs via the bacterial BabA adhesin and the Le(b) antigen/related structures on the glycoprotein. Our work shows that microbe binding to membrane-bound mucins must be considered in H. pylori colonization, and the potential of these glycoproteins to participate in signalling events implies that microbe binding to such structures may initiate signal transduction over the epithelial layer. Competition between microbe binding to membrane-bound and secreted mucins is therefore an important aspect of host-microbe interaction.
Collapse
Affiliation(s)
- Sara Lindén
- *Mucosal Biology Group, Department of Cell and Molecular Biology, BMC/C13, Lund University, SE-22184 Lund, Sweden
| | - Jafar Mahdavi
- †Department of Odontology/Oral Microbiology, Umeå University, SE-901 87 Umeå, Sweden
| | - Jan Hedenbro
- ‡Department of Surgery, Lund University Hospital, S-221 85 Lund, Sweden
| | - Thomas Borén
- †Department of Odontology/Oral Microbiology, Umeå University, SE-901 87 Umeå, Sweden
| | - Ingemar Carlstedt
- *Mucosal Biology Group, Department of Cell and Molecular Biology, BMC/C13, Lund University, SE-22184 Lund, Sweden
- To whom correspondence should be addressed (email )
| |
Collapse
|