1
|
Shehjar F, Almarghalani DA, Mahajan R, Hasan SAM, Shah ZA. The Multifaceted Role of Cofilin in Neurodegeneration and Stroke: Insights into Pathogenesis and Targeting as a Therapy. Cells 2024; 13:188. [PMID: 38247879 PMCID: PMC10814918 DOI: 10.3390/cells13020188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/03/2024] [Accepted: 01/10/2024] [Indexed: 01/23/2024] Open
Abstract
This comprehensive review explores the complex role of cofilin, an actin-binding protein, across various neurodegenerative diseases (Alzheimer's, Parkinson's, schizophrenia, amyotrophic lateral sclerosis (ALS), Huntington's) and stroke. Cofilin is an essential protein in cytoskeletal dynamics, and any dysregulation could lead to potentially serious complications. Cofilin's involvement is underscored by its impact on pathological hallmarks like Aβ plaques and α-synuclein aggregates, triggering synaptic dysfunction, dendritic spine loss, and impaired neuronal plasticity, leading to cognitive decline. In Parkinson's disease, cofilin collaborates with α-synuclein, exacerbating neurotoxicity and impairing mitochondrial and axonal function. ALS and frontotemporal dementia showcase cofilin's association with genetic factors like C9ORF72, affecting actin dynamics and contributing to neurotoxicity. Huntington's disease brings cofilin into focus by impairing microglial migration and influencing synaptic plasticity through AMPA receptor regulation. Alzheimer's, Parkinson's, and schizophrenia exhibit 14-3-3 proteins in cofilin dysregulation as a shared pathological mechanism. In the case of stroke, cofilin takes center stage, mediating neurotoxicity and neuronal cell death. Notably, there is a potential overlap in the pathologies and involvement of cofilin in various diseases. In this context, referencing cofilin dysfunction could provide valuable insights into the common pathologies associated with the aforementioned conditions. Moreover, this review explores promising therapeutic interventions, including cofilin inhibitors and gene therapy, demonstrating efficacy in preclinical models. Challenges in inhibitor development, brain delivery, tissue/cell specificity, and long-term safety are acknowledged, emphasizing the need for precision drug therapy. The call to action involves collaborative research, biomarker identification, and advancing translational efforts. Cofilin emerges as a pivotal player, offering potential as a therapeutic target. However, unraveling its complexities requires concerted multidisciplinary efforts for nuanced and effective interventions across the intricate landscape of neurodegenerative diseases and stroke, presenting a hopeful avenue for improved patient care.
Collapse
Affiliation(s)
- Faheem Shehjar
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, Toledo, OH 43614, USA; (F.S.); (R.M.)
| | - Daniyah A. Almarghalani
- Stroke Research Unit, Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Reetika Mahajan
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, Toledo, OH 43614, USA; (F.S.); (R.M.)
| | - Syed A.-M. Hasan
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, USA;
| | - Zahoor A. Shah
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, Toledo, OH 43614, USA; (F.S.); (R.M.)
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, USA;
| |
Collapse
|
2
|
Label-Free Proteomics of Oral Mucosa Tissue to Identify Potential Biomarkers That Can Flag Predilection of Precancerous Lesions to Oral Cell Carcinoma: A Preliminary Study. DISEASE MARKERS 2023; 2023:1329061. [PMID: 36776920 PMCID: PMC9908334 DOI: 10.1155/2023/1329061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 02/05/2023]
Abstract
Oral squamous cell carcinomas are mostly preceded by precancerous lesions such as leukoplakia and erythroplakia. Our study is aimed at identifying potential biomarker proteins in precancerous lesions of leukoplakia and erythroplakia that can flag their transformation to oral cancer. Four biological replicate samples from clinical phenotypes of healthy control, leukoplakia, erythroplakia, and oral carcinoma were annotated based on clinical screening and histopathological evaluation of buccal mucosa tissue. Differentially expressed proteins were delineated using a label-free quantitative proteomic experiment done on an Orbitrap Fusion Tribrid mass spectrometer in three technical replicate sets of samples. Raw files were processed using MaxQuant version 2.0.1.0, and downstream analysis was done via Perseus version 1.6.15.0. Validation included functional annotation based on biological processes and pathways using the ClueGO plug-in of Cytoscape. Hierarchical clustering and principal component analysis were performed using the ClustVis tool. Across control, leukoplakia, and cancer, L-lactate dehydrogenase A chain, plectin, and WD repeat-containing protein 1 were upregulated, whereas thioredoxin 1 and spectrin alpha chain, nonerythrocytic 1 were downregulated. Across control, erythroplakia, and cancer, L-lactate dehydrogenase A chain was upregulated whereas aldehyde dehydrogenase 2, peroxiredoxin 1, heat shock 70 kDa protein 1B, and spectrin alpha chain, nonerythrocytic 1 were downregulated. We found that proteins involved in leukoplakia were associated with alteration in cytoskeletal disruption and glycolysis, while in erythroplakia, they were associated with alteration in response to oxidative stress and glycolysis across phenotypes. Hierarchical clustering subgrouped half of precancerous samples under the main branch of the control and the remaining half under carcinoma. Similarly, principal component analysis identified segregated clusters of control, precancerous lesions, and cancer, but erythroplakia phenotypes, in particular, overlapped more with the cancer cluster. Qualitative and quantitative protein signatures across control, precancer, and cancer phenotypes explain possible functional outcomes that dictate malignant transformation to oral carcinoma.
Collapse
|
3
|
Sun J, Zhong X, Fu X, Miller H, Lee P, Yu B, Liu C. The Actin Regulators Involved in the Function and Related Diseases of Lymphocytes. Front Immunol 2022; 13:799309. [PMID: 35371070 PMCID: PMC8965893 DOI: 10.3389/fimmu.2022.799309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 02/01/2022] [Indexed: 11/21/2022] Open
Abstract
Actin is an important cytoskeletal protein involved in signal transduction, cell structure and motility. Actin regulators include actin-monomer-binding proteins, Wiskott-Aldrich syndrome (WAS) family of proteins, nucleation proteins, actin filament polymerases and severing proteins. This group of proteins regulate the dynamic changes in actin assembly/disassembly, thus playing an important role in cell motility, intracellular transport, cell division and other basic cellular activities. Lymphocytes are important components of the human immune system, consisting of T-lymphocytes (T cells), B-lymphocytes (B cells) and natural killer cells (NK cells). Lymphocytes are indispensable for both innate and adaptive immunity and cannot function normally without various actin regulators. In this review, we first briefly introduce the structure and fundamental functions of a variety of well-known and newly discovered actin regulators, then we highlight the role of actin regulators in T cell, B cell and NK cell, and finally provide a landscape of various diseases associated with them. This review provides new directions in exploring actin regulators and promotes more precise and effective treatments for related diseases.
Collapse
Affiliation(s)
- Jianxuan Sun
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xingyu Zhong
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyu Fu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Heather Miller
- Cytek Biosciences, R&D Clinical Reagents, Fremont, CA, United States
| | - Pamela Lee
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Bing Yu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chaohong Liu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
4
|
Zhang MY, Wang LQ, Chim CS. miR-1250-5p is a novel tumor suppressive intronic miRNA hypermethylated in non-Hodgkin's lymphoma: novel targets with impact on ERK signaling and cell migration. Cell Commun Signal 2021; 19:62. [PMID: 34044822 PMCID: PMC8161955 DOI: 10.1186/s12964-021-00707-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 01/18/2021] [Indexed: 12/12/2022] Open
Abstract
Background miR-1250 is localised to the second intron of AATK at chromosome 17q25. As a CpG island is present at the putative promoter region of its host gene, AATK, we postulated that the intronic miR-1250-5p is a tumor suppressor miRNA co-regulated with its host gene, AATK, by promoter DNA methylation in non-Hodgkin’s lymphoma (NHL).
Methods AATK/miR-1250 methylation was studied in healthy controls, including ten normal peripheral blood buffy coats and eleven normal tonsils, ten lymphoma cell lines, and 120 primary lymphoma samples by methylation-specific PCR (MSP). The expression of miR-1250-5p and AATK was investigated by quantitative real-time PCR. Tumor suppressor properties of miR-1250-5p were demonstrated by over-expression of precursor miR-1250-5p in lymphoma cells. The target of miR-1250-5p was verified by luciferase reporter assay. Results AATK/miR-1250 methylation was absent in healthy peripheral blood and tonsils, but detected in five (50%) NHL cell lines. AATK/miR-1250 methylation correlated with repression of miR-1250-5p and AATK in NHL cell lines. In completely methylated SU-DHL-6 and SUP-T1 cells, treatment with 5-AzadC led to promoter demethylation and re-expression of both miR-1250-5p and AATK. In primary lymphoma samples, AATK/miR-1250 was frequently methylated in B-cell lymphoma (n = 41, 44.09%) and T-cell lymphoma (n = 9, 33.33%) with a comparable frequency (P = 0.318). In SU-DHL-6 and SU-DHL-1 cells, restoration of miR-1250-5p resulted in decreased cellular proliferation by MTS assay, increased cell death by trypan blue staining and enhanced apoptosis by annexin V-PI assay. Moreover, MAPK1 and WDR1 were verified as direct targets of miR-1250-5p by luciferase assay. In 39 primary NHLs, miR-1250-5p expression was shown to be inversely correlated with each of MAPK1 (P = 0.05) and WDR1 (P = 0.031) by qRT-PCR. Finally, in SU-DHL-1 cells, overexpression of miR-1250-5p led to repression of MAPK1 and WDR1 at both transcript and protein levels, with downregulation of phospho-ERK2 by Western-blotting and inhibition of SDF-1-dependent cell migration by transwell assay. Conclusions miR-1250-5p is a novel tumor suppressive intronic miRNA co-regulated and silenced by promoter DNA methylation of its host gene AATK in NHL. MAPK1 and WDR1 are novel miR-1250-5p direct targets rendering inhibition of MAPK/ERK signaling and SDF-1-dependent cell migration, hence implicated in survival and dissemination of lymphoma. Video Abstract
Supplementary Information The online version contains supplementary material available at 10.1186/s12964-021-00707-0.
Collapse
Affiliation(s)
- Min Yue Zhang
- Division of Hematology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.,Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Pokfulam Road, Pokfulam, Hong Kong
| | - Lu Qian Wang
- Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Pokfulam Road, Pokfulam, Hong Kong
| | - Chor Sang Chim
- Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Pokfulam Road, Pokfulam, Hong Kong.
| |
Collapse
|
5
|
Podvin S, Jones A, Liu Q, Aulston B, Mosier C, Ames J, Winston C, Lietz CB, Jiang Z, O’Donoghue AJ, Ikezu T, Rissman RA, Yuan SH, Hook V. Mutant Presenilin 1 Dysregulates Exosomal Proteome Cargo Produced by Human-Induced Pluripotent Stem Cell Neurons. ACS OMEGA 2021; 6:13033-13056. [PMID: 34056454 PMCID: PMC8158845 DOI: 10.1021/acsomega.1c00660] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 04/16/2021] [Indexed: 05/28/2023]
Abstract
The accumulation and propagation of hyperphosphorylated tau (p-Tau) is a neuropathological hallmark occurring with neurodegeneration of Alzheimer's disease (AD). Extracellular vesicles, exosomes, have been shown to initiate tau propagation in the brain. Notably, exosomes from human-induced pluripotent stem cell (iPSC) neurons expressing the AD familial A246E mutant form of presenilin 1 (mPS1) are capable of inducing tau deposits in the mouse brain after in vivo injection. To gain insights into the exosome proteome cargo that participates in propagating tau pathology, this study conducted proteomic analysis of exosomes produced by human iPSC neurons expressing A246E mPS1. Significantly, mPS1 altered the profile of exosome cargo proteins to result in (1) proteins present only in mPS1 exosomes and not in controls, (2) the absence of proteins in the mPS1 exosomes which were present only in controls, and (3) shared proteins which were upregulated or downregulated in the mPS1 exosomes compared to controls. These results show that mPS1 dysregulates the proteome cargo of exosomes to result in the acquisition of proteins involved in the extracellular matrix and protease functions, deletion of proteins involved in RNA and protein translation systems along with proteasome and related functions, combined with the upregulation and downregulation of shared proteins, including the upregulation of amyloid precursor protein. Notably, mPS1 neuron-derived exosomes displayed altered profiles of protein phosphatases and kinases involved in regulating the status of p-tau. The dysregulation of exosome cargo proteins by mPS1 may be associated with the ability of mPS1 neuron-derived exosomes to propagate tau pathology.
Collapse
Affiliation(s)
- Sonia Podvin
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California San Diego,
La Jolla, San Diego 92093, California, United States
| | - Alexander Jones
- Biomedical
Sciences Graduate Program, University of
California, San Diego, La Jolla, San Diego 92093, California, United States
| | - Qing Liu
- Department
of Neurosciences, School of Medicine, University
of California, San Diego, La Jolla, San Diego 92093, California, United States
| | - Brent Aulston
- Department
of Neurosciences, School of Medicine, University
of California, San Diego, La Jolla, San Diego 92093, California, United States
| | - Charles Mosier
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California San Diego,
La Jolla, San Diego 92093, California, United States
| | - Janneca Ames
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California San Diego,
La Jolla, San Diego 92093, California, United States
| | - Charisse Winston
- Department
of Neurosciences, School of Medicine, University
of California, San Diego, La Jolla, San Diego 92093, California, United States
| | - Christopher B. Lietz
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California San Diego,
La Jolla, San Diego 92093, California, United States
| | - Zhenze Jiang
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California San Diego,
La Jolla, San Diego 92093, California, United States
| | - Anthony J. O’Donoghue
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California San Diego,
La Jolla, San Diego 92093, California, United States
| | - Tsuneya Ikezu
- Department
of Pharmacology and Experimental Therapeutics, Department of Neurology,
Alzheimer’s Disease Research Center, Boston University, School of Medicine, Boston 02118, Massachusetts, United States
| | - Robert A. Rissman
- Department
of Neurosciences, School of Medicine, University
of California, San Diego, La Jolla, San Diego 92093, California, United States
- Veterans
Affairs San Diego Healthcare System,
La Jolla, San Diego 92161, California, United States
| | - Shauna H. Yuan
- Department
of Neurosciences, School of Medicine, University
of California, San Diego, La Jolla, San Diego 92093, California, United States
| | - Vivian Hook
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California San Diego,
La Jolla, San Diego 92093, California, United States
- Biomedical
Sciences Graduate Program, University of
California, San Diego, La Jolla, San Diego 92093, California, United States
- Department
of Neurosciences, School of Medicine, University
of California, San Diego, La Jolla, San Diego 92093, California, United States
| |
Collapse
|
6
|
Santangelo A, Rossato M, Lombardi G, Benfatto S, Lavezzari D, De Salvo GL, Indraccolo S, Dechecchi MC, Prandini P, Gambari R, Scapoli C, Di Gennaro G, Caccese M, Eoli M, Rudà R, Brandes AA, Ibrahim T, Rizzato S, Lolli I, Lippi G, Delledonne M, Zagonel V, Cabrini G. A molecular signature associated with prolonged survival in glioblastoma patients treated with regorafenib. Neuro Oncol 2021; 23:264-276. [PMID: 32661549 DOI: 10.1093/neuonc/noaa156] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Patients with glioblastoma (GBM) have a dramatically poor prognosis. The recent REGOMA trial suggested an overall survival (OS) benefit of regorafenib in recurrent GBM patients. Considering the extreme genetic heterogeneity of GBMs, we aimed to identify molecular biomarkers predictive of differential response to the drug. METHODS Total RNA was extracted from tumor samples of patients enrolled in the REGOMA trial. Genome-wide transcriptome and micro (mi)RNA profiles were associated with patients' OS and progression-free survival. RESULTS In the first step, a set of 11 gene transcripts (HIF1A, CTSK, SLC2A1, KLHL12, CDKN1A, CA12, WDR1, CD53, CBR4, NIFK-AS1, RAB30-DT) and 10 miRNAs (miR-93-5p, miR-203a-3p, miR-17-5p, let-7c-3p, miR-101-3p, miR-3607-3p, miR-6516-3p, miR-301a-3p, miR-23b-3p, miR-222-3p) was filtered by comparing survival between regorafenib and lomustine arms. In the second step, a mini-signature of 2 gene transcripts (HIF1A, CDKN1A) and 3 miRNAs (miR-3607-3p, miR-301a-3p, miR-93-5p) identified a subgroup of patients showing prolonged survival after regorafenib administration (median OS range, 10.6-20.8 mo). CONCLUSIONS The study provides evidence that a signature based on the expression of 5 biomarkers could help identify a subgroup of GBM patients exhibiting a striking survival advantage when treated with regorafenib. Although the presented results must be confirmed in larger replication cohorts, the study highlights potential biomarker options to help guide the clinical decision among regorafenib and other treatments in patients with relapsing GBM.
Collapse
Affiliation(s)
- Alessandra Santangelo
- Department of Neurosciences, Biomedicine, and Movement, University of Verona, Verona, Italy
| | - Marzia Rossato
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Giuseppe Lombardi
- Department of Oncology, Veneto Institute of Oncology (IOV), Scientific Institute for Research, Hospitalization, and Health Care (IRCCS), Padova, Italy
| | | | - Denise Lavezzari
- Department of Biotechnology, University of Verona, Verona, Italy
| | | | | | | | - Paola Prandini
- Department of Neurosciences, Biomedicine, and Movement, University of Verona, Verona, Italy
| | - Roberto Gambari
- Department of Life Sciences and Biotechnologies, University of Ferrara, Ferrara, Italy
| | - Chiara Scapoli
- Department of Life Sciences and Biotechnologies, University of Ferrara, Ferrara, Italy
| | | | - Mario Caccese
- Department of Oncology, Veneto Institute of Oncology (IOV), Scientific Institute for Research, Hospitalization, and Health Care (IRCCS), Padova, Italy
| | - Marica Eoli
- Molecular Neuro-Oncology Unit, Carlo Besta Neurological Institute Foundation, Milan, Italy
| | - Roberta Rudà
- Department of Neuro-Oncology, University of Turin and City of Health and Science Hospital, Turin, Italy
| | - Alba Ariela Brandes
- Medical Oncology Department, Local Health Unit, IRCCS Institute of Neurological Sciences, Bologna, Italy
| | - Toni Ibrahim
- Osteo-oncology and Rare Tumors Center, Romagna Scientific Institute for the Study and Treatment of Cancer, IRCCS, Meldola, Italy
| | - Simona Rizzato
- Department of Oncology, Friuli-Venezia Giulia University Hospital, Udine, Italy
| | - Ivan Lolli
- Medical Oncology Unit, IRCCS Saverio de Bellis Hospital, Castellana Grotte, Bari, Italy
| | - Giuseppe Lippi
- Department of Neurosciences, Biomedicine, and Movement, University of Verona, Verona, Italy
| | | | - Vittorina Zagonel
- Department of Oncology, Veneto Institute of Oncology (IOV), Scientific Institute for Research, Hospitalization, and Health Care (IRCCS), Padova, Italy
| | - Giulio Cabrini
- Department of Neurosciences, Biomedicine, and Movement, University of Verona, Verona, Italy.,Department of Life Sciences and Biotechnologies, University of Ferrara, Ferrara, Italy
| |
Collapse
|
7
|
Indra I, Troyanovsky RB, Shapiro L, Honig B, Troyanovsky SM. Sensing Actin Dynamics through Adherens Junctions. Cell Rep 2021; 30:2820-2833.e3. [PMID: 32101754 DOI: 10.1016/j.celrep.2020.01.106] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/23/2019] [Accepted: 01/29/2020] [Indexed: 11/19/2022] Open
Abstract
We study punctate adherens junctions (pAJs) to determine how short-lived cadherin clusters and relatively stable actin bundles interact despite differences in dynamics. We show that pAJ-linked bundles consist of two distinct regions-the bundle stalk (AJ-BS) and a tip (AJ-BT) positioned between cadherin clusters and the stalk. The tip differs from the stalk in a number of ways: it is devoid of the actin-bundling protein calponin, and exhibits a much faster F-actin turnover rate. While F-actin in the stalk displays centripetal movement, the F-actin in the tip is immobile. The F-actin turnover in both the tip and stalk is dependent on cadherin cluster stability, which in turn is regulated by F-actin. The close bidirectional coupling between the stability of cadherin and associated F-actin shows how pAJs, and perhaps other AJs, allow cells to sense and coordinate the dynamics of the actin cytoskeleton in neighboring cells-a mechanism we term "dynasensing."
Collapse
Affiliation(s)
- Indrajyoti Indra
- Department of Dermatology, Northwestern University, The Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Regina B Troyanovsky
- Department of Dermatology, Northwestern University, The Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Lawrence Shapiro
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Zuckerman Mind Brain and Behavior Institute, Columbia University, New York, NY 10032, USA.
| | - Barry Honig
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Department of Systems Biology, Columbia University, New York, NY 10032, USA; Howard Hughes Medical Institute, Columbia University, New York, NY 10032, USA; Department of Medicine, Columbia University, New York, NY 10032, USA; Zuckerman Mind Brain and Behavior Institute, Columbia University, New York, NY 10032, USA.
| | - Sergey M Troyanovsky
- Department of Dermatology, Northwestern University, The Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
8
|
Otero BA, Poukalov K, Hildebrandt RP, Thornton CA, Jinnai K, Fujimura H, Kimura T, Hagerman KA, Sampson JB, Day JW, Wang ET. Transcriptome alterations in myotonic dystrophy frontal cortex. Cell Rep 2021; 34:108634. [PMID: 33472074 PMCID: PMC9272850 DOI: 10.1016/j.celrep.2020.108634] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/16/2020] [Accepted: 12/21/2020] [Indexed: 12/13/2022] Open
Abstract
Myotonic dystrophy (DM) is caused by expanded CTG/CCTG repeats, causing symptoms in skeletal muscle, heart, and central nervous system (CNS). CNS issues are debilitating and include hypersomnolence, executive dysfunction, white matter atrophy, and neurofibrillary tangles. Here, we generate RNA-seq transcriptomes from DM and unaffected frontal cortex and identify 130 high-confidence splicing changes, most occurring only in cortex, not skeletal muscle or heart. Mis-spliced exons occur in neurotransmitter receptors, ion channels, and synaptic scaffolds, and GRIP1 mis-splicing modulates kinesin association. Optical mapping of expanded CTG repeats reveals extreme mosaicism, with some alleles showing >1,000 CTGs. Mis-splicing severity correlates with CTG repeat length across individuals. Upregulated genes tend to be microglial and endothelial, suggesting neuroinflammation, and downregulated genes tend to be neuronal. Many gene expression changes strongly correlate with mis-splicing, suggesting candidate biomarkers of disease. These findings provide a framework for mechanistic and therapeutic studies of the DM CNS.
Collapse
Affiliation(s)
- Brittney A Otero
- Department of Molecular Genetics & Microbiology, Center for NeuroGenetics, Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Kiril Poukalov
- Department of Molecular Genetics & Microbiology, Center for NeuroGenetics, Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Ryan P Hildebrandt
- Department of Molecular Genetics & Microbiology, Center for NeuroGenetics, Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Charles A Thornton
- Department of Neurology, University of Rochester Medical Center, Rochester, NY, USA
| | - Kenji Jinnai
- Department of Neurology, National Hospital Organization Hyogo-Chuo Hospital, Sanda, Japan
| | - Harutoshi Fujimura
- Department of Neurology, National Hospital Organization Toneyama Hospital, Osaka, Japan
| | - Takashi Kimura
- Department of Neurology, Hyogo College of Medicine, Nichinomiya, Japan
| | | | | | - John W Day
- Department of Neurology, Stanford University, Palo Alto, CA, USA
| | - Eric T Wang
- Department of Molecular Genetics & Microbiology, Center for NeuroGenetics, Genetics Institute, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
9
|
Jin ZL, Yao XR, Wen L, Hao G, Kwon JW, Hao J, Kim NH. AIP1 and Cofilin control the actin dynamics to modulate the asymmetric division and cytokinesis in mouse oocytes. FASEB J 2020; 34:11292-11306. [PMID: 32602619 DOI: 10.1096/fj.202000093r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/17/2020] [Accepted: 04/26/2020] [Indexed: 11/11/2022]
Abstract
Actin-interacting protein 1 (AIP1), also known as WD repeat-containing protein 1 (WDR1), is ubiquitous in eukaryotic organisms, and it plays critical roles in the dynamic reorganization of the actin cytoskeleton. However, the biological function and mechanism of AIP1 in mammalian oocyte maturation is still largely unclear. In this study, we demonstrated that AIP1 boosts ADF/Cofilin activity in mouse oocytes. AIP1 is primarily distributed around the spindle region during oocyte maturation, and its depletion impairs meiotic spindle migration and asymmetric division. The knockdown of AIP1 resulted in the gathering of a large number of actin-positive patches around the spindle region. This effect was reduced by human AIP1 (hAIP1) or Cofilin (S3A) expression. AIP1 knockdown also reduced the phosphorylation of Cofilin near the spindle, indicating that AIP1 interacts with ADF/Cofilin-decorated actin filaments and enhances filament disassembly. Moreover, the deletion of AIP1 disrupts Cofilin localization in metaphase I (MI) and induces cytokinesis defects in metaphase II (MII). Taken together, our results provide evidence that AIP1 promotes actin dynamics and cytokinesis via Cofilin in the gametes of female mice.
Collapse
Affiliation(s)
- Zhe-Long Jin
- School of Biotechnology and Healthcare, Wuyi University, Jiangmen, China.,Department of Animal Sciences, Chungbuk National University, Cheongju, Korea
| | - Xue-Rui Yao
- School of Biotechnology and Healthcare, Wuyi University, Jiangmen, China.,Department of Animal Sciences, Chungbuk National University, Cheongju, Korea
| | - Liu Wen
- School of Biotechnology and Healthcare, Wuyi University, Jiangmen, China
| | - Guo Hao
- School of Biotechnology and Healthcare, Wuyi University, Jiangmen, China.,Department of Animal Sciences, Chungbuk National University, Cheongju, Korea
| | - Jeong-Woo Kwon
- School of Biotechnology and Healthcare, Wuyi University, Jiangmen, China
| | - Jiang Hao
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, China
| | - Nam-Hyung Kim
- School of Biotechnology and Healthcare, Wuyi University, Jiangmen, China.,Department of Animal Sciences, Chungbuk National University, Cheongju, Korea
| |
Collapse
|
10
|
Salz A, Gurniak C, Jönsson F, Witke W. Cofilin1-driven actin dynamics controls migration of thymocytes and is essential for positive selection in the thymus. J Cell Sci 2020; 133:jcs238048. [PMID: 31974112 DOI: 10.1242/jcs.238048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 01/14/2020] [Indexed: 11/20/2022] Open
Abstract
Actin dynamics is essential for T-cell development. We show here that cofilin1 is the key molecule for controlling actin filament turnover in this process. Mice with specific depletion of cofilin1 in thymocytes showed increased steady-state levels of actin filaments, and associated alterations in the pattern of thymocyte migration and adhesion. Our data suggest that cofilin1 is controlling oscillatory F-actin changes, a parameter that influences the migration pattern in a 3-D environment. In a collagen matrix, cofilin1 controls the speed and resting intervals of migrating thymocytes. Cofilin1 was not involved in thymocyte proliferation, cell survival, apoptosis or surface receptor trafficking. However, in cofilin1 mutant mice, impaired adhesion and migration resulted in a specific block of thymocyte differentiation from CD4/CD8 double-positive thymocytes towards CD4 and CD8 single-positive cells. Our data suggest that tuning of the dwelling time of thymocytes in the thymic niches is tightly controlled by cofilin1 and essential for positive selection during T-cell differentiation. We describe a novel role of cofilin1 in the physiological context of migration-dependent cell differentiation.
Collapse
Affiliation(s)
- Andree Salz
- Institute of Genetics, University of Bonn, Karlrobert-Kreiten Strasse 13, 53115 Bonn, Germany
| | - Christine Gurniak
- Institute of Genetics, University of Bonn, Karlrobert-Kreiten Strasse 13, 53115 Bonn, Germany
| | - Friederike Jönsson
- Unit of Antibodies in Therapy and Pathology, Institut Pasteur, UMR 1222 INSERM, 75015 Paris, France
| | - Walter Witke
- Institute of Genetics, University of Bonn, Karlrobert-Kreiten Strasse 13, 53115 Bonn, Germany
| |
Collapse
|
11
|
Janssen E, Geha RS. Primary immunodeficiencies caused by mutations in actin regulatory proteins. Immunol Rev 2019; 287:121-134. [PMID: 30565251 DOI: 10.1111/imr.12716] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 08/31/2018] [Indexed: 12/31/2022]
Abstract
The identification of patients with monogenic gene defects have illuminated the function of different proteins in the immune system, including proteins that regulate the actin cytoskeleton. Many of these actin regulatory proteins are exclusively expressed in leukocytes and regulate the formation and branching of actin filaments. Their absence or abnormal function leads to defects in immune cell shape, cellular projections, migration, and signaling. Through the study of patients' mutations and generation of mouse models that recapitulate the patients' phenotypes, our laboratory and others have gained a better understanding of the role these proteins play in cell biology and the underlying pathogenesis of immunodeficiencies and immune dysregulatory syndromes.
Collapse
Affiliation(s)
- Erin Janssen
- Division of Immunology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Raif S Geha
- Division of Immunology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
12
|
Identification of potential therapeutic targets of deer antler extract on bone regulation based on serum proteomic analysis. Mol Biol Rep 2019; 46:4861-4872. [DOI: 10.1007/s11033-019-04934-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Accepted: 06/20/2019] [Indexed: 12/23/2022]
|
13
|
Pfeifer A, Rusinek D, Żebracka-Gala J, Czarniecka A, Chmielik E, Zembala-Nożyńska E, Wojtaś B, Gielniewski B, Szpak-Ulczok S, Oczko-Wojciechowska M, Krajewska J, Polańska J, Jarząb B. Novel TG-FGFR1 and TRIM33-NTRK1 transcript fusions in papillary thyroid carcinoma. Genes Chromosomes Cancer 2019; 58:558-566. [PMID: 30664823 PMCID: PMC6594006 DOI: 10.1002/gcc.22737] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 01/14/2019] [Accepted: 01/15/2019] [Indexed: 02/06/2023] Open
Abstract
Papillary thyroid carcinoma (PTC) is most common among all thyroid cancers. Multiple genomic alterations occur in PTC, and gene rearrangements are one of them. Here we screened 14 tumors for novel fusion transcripts by RNA‐Seq. Two samples harboring RET/PTC1 and RET/PTC3 rearrangements were positive controls whereas the remaining ones were negative regarding the common PTC alterations. We used Sanger sequencing to validate potential fusions. We detected 2 novel potentially oncogenic transcript fusions: TG‐FGFR1 and TRIM33‐NTRK1. We detected 4 novel fusion transcripts of unknown significance accompanying the TRIM33‐NTRK1 fusion: ZSWIM5‐TP53BP2, TAF4B‐WDR1, ABI2‐MTA3, and ARID1B‐PSMA1. Apart from confirming the presence of RET/PTC1 and RET/PTC3 in positive control samples, we also detected known oncogenic fusion transcripts in remaining samples: TFG‐NTRK1, ETV6‐NTRK3, MKRN1‐BRAF, EML4‐ALK, and novel isoform of CCDC6‐RET.
Collapse
Affiliation(s)
- Aleksandra Pfeifer
- Department of Nuclear Medicine and Endocrine Oncology, Maria Sklodowska-Curie Institute - Oncology Center Gliwice Branch, Gliwice, Poland
| | - Dagmara Rusinek
- Department of Nuclear Medicine and Endocrine Oncology, Maria Sklodowska-Curie Institute - Oncology Center Gliwice Branch, Gliwice, Poland
| | - Jadwiga Żebracka-Gala
- Department of Nuclear Medicine and Endocrine Oncology, Maria Sklodowska-Curie Institute - Oncology Center Gliwice Branch, Gliwice, Poland
| | - Agnieszka Czarniecka
- Department of Oncological and Reconstructive Surgery, Maria Sklodowska-Curie Institute - Oncology Center Gliwice Branch, Gliwice, Poland
| | - Ewa Chmielik
- Tumor Pathology Department, Maria Sklodowska-Curie Institute - Oncology Center Gliwice Branch, Gliwice, Poland
| | - Ewa Zembala-Nożyńska
- Tumor Pathology Department, Maria Sklodowska-Curie Institute - Oncology Center Gliwice Branch, Gliwice, Poland
| | - Bartosz Wojtaś
- Laboratory of Molecular Neurobiology, Neurobiology Center, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Bartłomiej Gielniewski
- Laboratory of Molecular Neurobiology, Neurobiology Center, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Sylwia Szpak-Ulczok
- Department of Nuclear Medicine and Endocrine Oncology, Maria Sklodowska-Curie Institute - Oncology Center Gliwice Branch, Gliwice, Poland
| | - Małgorzata Oczko-Wojciechowska
- Department of Nuclear Medicine and Endocrine Oncology, Maria Sklodowska-Curie Institute - Oncology Center Gliwice Branch, Gliwice, Poland
| | - Jolanta Krajewska
- Department of Nuclear Medicine and Endocrine Oncology, Maria Sklodowska-Curie Institute - Oncology Center Gliwice Branch, Gliwice, Poland
| | - Joanna Polańska
- Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology, Gliwice, Poland
| | - Barbara Jarząb
- Department of Nuclear Medicine and Endocrine Oncology, Maria Sklodowska-Curie Institute - Oncology Center Gliwice Branch, Gliwice, Poland
| |
Collapse
|
14
|
Hayakawa K, Sekiguchi C, Sokabe M, Ono S, Tatsumi H. Real-Time Single-Molecule Kinetic Analyses of AIP1-Enhanced Actin Filament Severing in the Presence of Cofilin. J Mol Biol 2018; 431:308-322. [PMID: 30439520 DOI: 10.1016/j.jmb.2018.11.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 11/08/2018] [Accepted: 11/08/2018] [Indexed: 11/17/2022]
Abstract
Rearrangement of actin filaments by polymerization, depolymerization, and severing is important for cell locomotion, membrane trafficking, and many other cellular functions. Cofilin and actin-interacting protein 1 (AIP1; also known as WDR1) are evolutionally conserved proteins that cooperatively sever actin filaments. However, little is known about the biophysical basis of the actin filament severing by these proteins. Here, we performed single-molecule kinetic analyses of fluorescently labeled AIP1 during the severing process of cofilin-decorated actin filaments. Results demonstrated that binding of a single AIP molecule was sufficient to enhance filament severing. After AIP1 binding to a filament, severing occurred with a delay of 0.7 s. Kinetics of binding and dissociation of a single AIP1 molecule to/from actin filaments followed a second-order and a first-order kinetics scheme, respectively. AIP1 binding and severing were detected preferentially at the boundary between the cofilin-decorated and bare regions on actin filaments. Based on the kinetic parameters explored in this study, we propose a possible mechanism behind the enhanced severing by AIP1.
Collapse
Affiliation(s)
- Kimihide Hayakawa
- Mechanobiology Laboratory, Nagoya University Graduate School of Medicine, 65 Tsurumai, Nagoya 466-8550, Japan
| | - Carina Sekiguchi
- Department of Physiology, Nagoya University Graduate School of Medicine, 65 Tsurumai, Nagoya 466-8550, Japan
| | - Masahiro Sokabe
- Mechanobiology Laboratory, Nagoya University Graduate School of Medicine, 65 Tsurumai, Nagoya 466-8550, Japan
| | - Shoichiro Ono
- Department of Pathology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Hitoshi Tatsumi
- Department of Applied Bioscience, Kanazawa Institute of Technology (KIT), Ishikawa 924-0838, Japan.
| |
Collapse
|
15
|
Mentel M, Ionescu AE, Puscalau-Girtu I, Helm MS, Badea RA, Rizzoli SO, Szedlacsek SE. WDR1 is a novel EYA3 substrate and its dephosphorylation induces modifications of the cellular actin cytoskeleton. Sci Rep 2018; 8:2910. [PMID: 29440662 PMCID: PMC5811557 DOI: 10.1038/s41598-018-21155-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 01/31/2018] [Indexed: 12/12/2022] Open
Abstract
Eyes absent (EYA) proteins are unusual proteins combining in a single polypeptide chain transactivation, threonine phosphatase, and tyrosine phosphatase activities. They play pivotal roles in organogenesis and are involved in a variety of physiological and pathological processes including innate immunity, DNA damage repair or cancer metastasis. The molecular targets of EYA tyrosine phosphatase activity are still elusive. Therefore, we sought to identify novel EYA substrates and also to obtain further insight into the tyrosine-dephosphorylating role of EYA proteins in various cellular processes. We show here that Src kinase phosphorylates tyrosine residues in two human EYA family members, EYA1 and EYA3. Both can autodephosphorylate these residues and their nuclear and cytoskeletal localization seems to be controlled by Src phosphorylation. Next, using a microarray of phosphotyrosine-containing peptides, we identified a phosphopeptide derived from WD-repeat-containing protein 1 (WDR1) that is dephosphorylated by EYA3. We further demonstrated that several tyrosine residues on WDR1 are phosphorylated by Src kinase, and are efficiently dephosphorylated by EYA3, but not by EYA1. The lack of phosphorylation generates major changes to the cellular actin cytoskeleton. We, therefore, conclude that WDR1 is an EYA3-specific substrate, which implies that EYA3 is a key modulator of the cytoskeletal reorganization.
Collapse
Affiliation(s)
- Mihaela Mentel
- Department of Enzymology, Institute of Biochemistry of the Romanian Academy, Spl. Independentei 296, Bucharest, 060031, Romania
| | - Aura E Ionescu
- Department of Enzymology, Institute of Biochemistry of the Romanian Academy, Spl. Independentei 296, Bucharest, 060031, Romania
| | - Ioana Puscalau-Girtu
- Department of Enzymology, Institute of Biochemistry of the Romanian Academy, Spl. Independentei 296, Bucharest, 060031, Romania
| | - Martin S Helm
- Department for Neuro- and Sensory Physiology, University Medical Center Göttingen, and Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Cluster of Excellence 171, Humboldtalle 23, Göttingen, 37073, Germany.,Max-Planck Research School Molecular Biology, Göttingen, 37077, Germany
| | - Rodica A Badea
- Department of Enzymology, Institute of Biochemistry of the Romanian Academy, Spl. Independentei 296, Bucharest, 060031, Romania
| | - Silvio O Rizzoli
- Department for Neuro- and Sensory Physiology, University Medical Center Göttingen, and Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Cluster of Excellence 171, Humboldtalle 23, Göttingen, 37073, Germany
| | - Stefan E Szedlacsek
- Department of Enzymology, Institute of Biochemistry of the Romanian Academy, Spl. Independentei 296, Bucharest, 060031, Romania.
| |
Collapse
|
16
|
Functions of actin-interacting protein 1 (AIP1)/WD repeat protein 1 (WDR1) in actin filament dynamics and cytoskeletal regulation. Biochem Biophys Res Commun 2017; 506:315-322. [PMID: 29056508 DOI: 10.1016/j.bbrc.2017.10.096] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 10/18/2017] [Indexed: 02/04/2023]
Abstract
Actin-depolymerizing factor (ADF)/cofilin and actin-interacting protein 1 (AIP1), also known as WD-repeat protein 1 (WDR1), are conserved among eukaryotes and play critical roles in dynamic reorganization of the actin cytoskeleton. AIP1 preferentially promotes disassembly of ADF/cofilin-decorated actin filaments but exhibits minimal effects on bare actin filaments. Therefore, AIP1 has been often considered to be an ancillary co-factor of ADF/cofilin that merely boosts ADF/cofilin activity level. However, genetic and cell biological studies show that AIP1 deficiency often causes lethality or severe abnormalities in multiple tissues and organs including muscle, epithelia, and blood, suggesting that AIP1 is a major regulator of many biological processes that depend on actin dynamics. This review summarizes recent progress in studies on the biochemical mechanism of actin filament severing by AIP1 and in vivo functions of AIP1 in model organisms and human diseases.
Collapse
|
17
|
MRTF-A-miR-206-WDR1 form feedback loop to regulate breast cancer cell migration. Exp Cell Res 2017; 359:394-404. [DOI: 10.1016/j.yexcr.2017.08.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 08/05/2017] [Accepted: 08/16/2017] [Indexed: 01/07/2023]
|
18
|
Kong W, Mou X, Deng J, Di B, Zhong R, Wang S, Yang Y, Zeng W. Differences of immune disorders between Alzheimer's disease and breast cancer based on transcriptional regulation. PLoS One 2017; 12:e0180337. [PMID: 28719625 PMCID: PMC5515412 DOI: 10.1371/journal.pone.0180337] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 06/14/2017] [Indexed: 01/01/2023] Open
Abstract
Although chronic inflammation and immune disorders are of great importance to the pathogenesis of both dementia and cancer, the pathophysiological mechanisms are not clearly understood. In recent years, growing epidemiological evidence and meta-analysis data suggest an inverse association between Alzheimer's disease (AD), which is the most common form of dementia, and cancer. It has been revealed that some common genes and biological processes play opposite roles in AD and cancer; however, the biological immune mechanism for the inverse association is not clearly defined. An unsupervised matrix decomposition two-stage bioinformatics procedure was adopted to investigate the opposite behaviors of the immune response in AD and breast cancer (BC) and to discover the underlying transcriptional regulatory mechanisms. Fast independent component analysis (FastICA) was applied to extract significant genes from AD and BC microarray gene expression data. Based on the extracted data, the shared transcription factors (TFs) from AD and BC were captured. Second, the network component analysis (NCA) algorithm in this study was presented to quantitatively deduce the TF activities and regulatory influences because quantitative dynamic regulatory information for TFs is not available via microarray techniques. Based on the NCA results and reconstructed transcriptional regulatory networks, inverse regulatory processes and some known innate immune responses were described in detail. Many of the shared TFs and their regulatory processes were found to be closely related to the adaptive immune response from dramatically different directions and to play crucial roles in both AD and BC pathogenesis. From the above findings, the opposing cellular behaviors demonstrate an invaluable opportunity to gain insights into the pathogenesis of these two types of diseases and to aid in developing new treatments.
Collapse
Affiliation(s)
- Wei Kong
- College of Information Engineering, Shanghai Maritime University, Haigang Ave., Shanghai, P. R. China
| | - Xiaoyang Mou
- Department of Biochemistry, Rowan University and Guava Medicine, Glassboro, New Jersey, United States of America
| | - Jin Deng
- College of Information Engineering, Shanghai Maritime University, Haigang Ave., Shanghai, P. R. China
| | - Benteng Di
- College of Information Engineering, Shanghai Maritime University, Haigang Ave., Shanghai, P. R. China
| | - Ruxing Zhong
- College of Information Engineering, Shanghai Maritime University, Haigang Ave., Shanghai, P. R. China
| | - Shuaiqun Wang
- College of Information Engineering, Shanghai Maritime University, Haigang Ave., Shanghai, P. R. China
| | - Yang Yang
- Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Weiming Zeng
- College of Information Engineering, Shanghai Maritime University, Haigang Ave., Shanghai, P. R. China
| |
Collapse
|
19
|
Kuhns DB, Fink DL, Choi U, Sweeney C, Lau K, Priel DL, Riva D, Mendez L, Uzel G, Freeman AF, Olivier KN, Anderson VL, Currens R, Mackley V, Kang A, Al-Adeli M, Mace E, Orange JS, Kang E, Lockett SJ, Chen D, Steinbach PJ, Hsu AP, Zarember KA, Malech HL, Gallin JI, Holland SM. Cytoskeletal abnormalities and neutrophil dysfunction in WDR1 deficiency. Blood 2016; 128:2135-2143. [PMID: 27557945 PMCID: PMC5084607 DOI: 10.1182/blood-2016-03-706028] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 08/10/2016] [Indexed: 11/20/2022] Open
Abstract
Cell motility, division, and structural integrity depend on dynamic remodeling of the cellular cytoskeleton, which is regulated in part by actin polymerization and depolymerization. In 3 families, we identified 4 children with recurrent infections and varying clinical manifestations including mild neutropenia, impaired wound healing, severe stomatitis with oral stenosis, and death. All patients studied had similar distinctive neutrophil herniation of the nuclear lobes and agranular regions within the cytosol. Chemotaxis and chemokinesis were markedly impaired, but staphylococcal killing was normal, and neutrophil oxidative burst was increased both basally and on stimulation. Neutrophil spreading on glass and cell polarization were also impaired. Neutrophil F-actin was elevated fourfold, suggesting an abnormality in F-actin regulation. Two-dimensional differential in-gel electrophoresis identified abnormal actin-interacting protein 1 (Aip1), encoded by WDR1, in patient samples. Biallelic mutations in WDR1 affecting distinct antiparallel β-strands of Aip1 were identified in all patients. It has been previously reported that Aip1 regulates cofilin-mediated actin depolymerization, which is required for normal neutrophil function. Heterozygous mutations in clinically normal relatives confirmed that WDR1 deficiency is autosomal recessive. Allogeneic stem cell transplantation corrected the immunologic defect in 1 patient. Mutations in WDR1 affect neutrophil morphology, motility, and function, causing a novel primary immunodeficiency.
Collapse
Affiliation(s)
- Douglas B Kuhns
- Neutrophil Monitoring Laboratory, Applied/Developmental Research Directorate, Leidos Biomedical Research, Inc, Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Danielle L Fink
- Neutrophil Monitoring Laboratory, Applied/Developmental Research Directorate, Leidos Biomedical Research, Inc, Frederick National Laboratory for Cancer Research, Frederick, MD
| | | | | | - Karen Lau
- Neutrophil Monitoring Laboratory, Applied/Developmental Research Directorate, Leidos Biomedical Research, Inc, Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Debra Long Priel
- Neutrophil Monitoring Laboratory, Applied/Developmental Research Directorate, Leidos Biomedical Research, Inc, Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Dara Riva
- Neutrophil Monitoring Laboratory, Applied/Developmental Research Directorate, Leidos Biomedical Research, Inc, Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Laura Mendez
- Neutrophil Monitoring Laboratory, Applied/Developmental Research Directorate, Leidos Biomedical Research, Inc, Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Gulbu Uzel
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD
| | - Alexandra F Freeman
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD
| | - Kenneth N Olivier
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD
| | - Victoria L Anderson
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD
| | - Robin Currens
- Werner H. Kirsten Student Internship Program, National Cancer Institute, NIH, Frederick, MD
| | - Vanessa Mackley
- Werner H. Kirsten Student Internship Program, National Cancer Institute, NIH, Frederick, MD
| | - Allison Kang
- Werner H. Kirsten Student Internship Program, National Cancer Institute, NIH, Frederick, MD
| | | | - Emily Mace
- Baylor Institute for Immunology, Dallas, TX
| | | | | | - Stephen J Lockett
- Cancer Research Technology Program, Leidos Biomedical Research, Inc, Frederick National Laboratory for Cancer Research, Frederick, MD; and
| | - De Chen
- Cancer Research Technology Program, Leidos Biomedical Research, Inc, Frederick National Laboratory for Cancer Research, Frederick, MD; and
| | - Peter J Steinbach
- Center for Molecular Modeling, Center for Information Technology, NIH, Bethesda, MD
| | - Amy P Hsu
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD
| | | | | | | | - Steven M Holland
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD
| |
Collapse
|
20
|
Abstract
Through years of evolutionary selection pressures, organisms have developed potent toxins that coincidentally have marked antineoplastic activity. These natural products have been vital for the development of multiagent treatment regimens currently employed in cancer chemotherapy, and are used in the treatment of a variety of malignancies. Therefore, this review catalogs recent advances in natural product-based drug discovery via the examination of mechanisms of action and available clinical data to highlight the utility of these novel compounds in the burgeoning age of precision medicine. The review also highlights the recent development of antibody-drug conjugates and other immunotoxins, which are capable of delivering highly cytotoxic agents previously deemed too toxic to elicit therapeutic benefit preferentially to neoplastic cells. Finally, the review examines natural products not currently used in the clinic that have novel mechanisms of action, and may serve to supplement current chemotherapeutic protocols.
Collapse
|
21
|
Lee JH, Kim JE, Kim BG, Han HH, Kang S, Cho NH. STAT3-induced WDR1 overexpression promotes breast cancer cell migration. Cell Signal 2016; 28:1753-60. [PMID: 27521604 DOI: 10.1016/j.cellsig.2016.08.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 08/05/2016] [Accepted: 08/09/2016] [Indexed: 01/05/2023]
Abstract
WD repeat domain 1 (WDR1), a protein that assists cofilin-mediated actin filament disassembly, is overexpressed in the invading front of invasive ductal carcinoma (IDC), but its implication of overexpression and how to be regulated have not been studied. In our study, we demonstrated that STAT3 bound to the 5' upstream sequence (-1971 to -1964), a putative promoter region, of WDR1 gene, and its activation induced WDR1 overexpression in breast cancer cells. The exogenous overexpression of WDR1 increased the migration of MDA-MB-231, which was attenuated by WDR1 knockdown. In the analysis of breast cancer patients, WDR1 overexpression was associated with a shorter distant metastasis-free survival (DMFS), more specifically in basal-like tumors.
Collapse
Affiliation(s)
- Joo Hyun Lee
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Republic of Korea; Department of Pathology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ji Eun Kim
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Republic of Korea; Department of Pathology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Baek Gil Kim
- Department of Pathology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyun Ho Han
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Republic of Korea; Department of Pathology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Suki Kang
- The Severance Biomedical Science Institute, Seoul, Republic of Korea
| | - Nam Hoon Cho
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Republic of Korea; Department of Pathology, Yonsei University College of Medicine, Seoul, Republic of Korea; The Severance Biomedical Science Institute, Seoul, Republic of Korea.
| |
Collapse
|
22
|
Roland K, Kestemont P, Dieu M, Raes M, Silvestre F. Using a novel “Integrated Biomarker Proteomic” index to assess the effects of freshwater pollutants in European eel peripheral blood mononuclear cells. J Proteomics 2016; 137:83-96. [DOI: 10.1016/j.jprot.2016.01.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 12/30/2015] [Accepted: 01/05/2016] [Indexed: 01/04/2023]
|
23
|
Abstract
Plant-based Ayurvedic medicine has been practiced in India for thousands of years for the treatment of a variety of disorders. They are rich sources of bioactive compounds potentially useful for prevention and treatment of cancer. Withania somnifera (commonly known as Ashwagandha in Ayurvedic medicine) is a widely used medicinal plant whose anticancer value was recognized after isolation of steroidal compounds withanolides from the leaves of this shrub. Withaferin A is the first member of withanolides to be isolated, and it is the most abundant withanolide present in W. somnifera. Its cancer-protective role has now been established using chemically induced and oncogene-driven rodent cancer models. The present review summarizes the key preclinical studies demonstrating anticancer effects of withaferin along with its molecular targets and mechanisms related to its anticancer effects. Anticancer potential of other withanolides is also discussed.
Collapse
|
24
|
Lechuga S, Baranwal S, Ivanov AI. Actin-interacting protein 1 controls assembly and permeability of intestinal epithelial apical junctions. Am J Physiol Gastrointest Liver Physiol 2015; 308:G745-56. [PMID: 25792565 PMCID: PMC4421013 DOI: 10.1152/ajpgi.00446.2014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 03/11/2015] [Indexed: 01/31/2023]
Abstract
Adherens junctions (AJs) and tight junctions (TJs) are crucial regulators of the integrity and restitution of the intestinal epithelial barrier. The structure and function of epithelial junctions depend on their association with the cortical actin cytoskeleton that, in polarized epithelial cells, is represented by a prominent perijunctional actomyosin belt. The assembly and stability of the perijunctional cytoskeleton is controlled by constant turnover (disassembly and reassembly) of actin filaments. Actin-interacting protein (Aip) 1 is an emerging regulator of the actin cytoskeleton, playing a critical role in filament disassembly. In this study, we examined the roles of Aip1 in regulating the structure and remodeling of AJs and TJs in human intestinal epithelium. Aip1 was enriched at apical junctions in polarized human intestinal epithelial cells and normal mouse colonic mucosa. Knockdown of Aip1 by RNA interference increased the paracellular permeability of epithelial cell monolayers, decreased recruitment of AJ/TJ proteins to steady-state intercellular contacts, and attenuated junctional reassembly in a calcium-switch model. The observed defects of AJ/TJ structure and functions were accompanied by abnormal organization and dynamics of the perijunctional F-actin cytoskeleton. Moreover, loss of Aip1 impaired the apico-basal polarity of intestinal epithelial cell monolayers and inhibited formation of polarized epithelial cysts in 3-D Matrigel. Our findings demonstrate a previously unanticipated role of Aip1 in regulating the structure and remodeling of intestinal epithelial junctions and early steps of epithelial morphogenesis.
Collapse
Affiliation(s)
- Susana Lechuga
- 1Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia;
| | - Somesh Baranwal
- 1Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia;
| | - Andrei I. Ivanov
- 1Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia; ,2Virginia Institute of Molecular Medicine, Virginia Commonwealth University, Richmond, Virginia; ,3VCU Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
25
|
Gressin L, Guillotin A, Guérin C, Blanchoin L, Michelot A. Architecture dependence of actin filament network disassembly. Curr Biol 2015; 25:1437-47. [PMID: 25913406 DOI: 10.1016/j.cub.2015.04.011] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2015] [Revised: 03/06/2015] [Accepted: 04/08/2015] [Indexed: 10/23/2022]
Abstract
Turnover of actin networks in cells requires the fast disassembly of aging actin structures. While ADF/cofilin and Aip1 have been identified as central players, how their activities are modulated by the architecture of the networks remains unknown. Using our ability to reconstitute a diverse array of cellular actin organizations, we found that ADF/cofilin binding and ADF/cofilin-mediated disassembly both depend on actin geometrical organization. ADF/cofilin decorates strongly and stabilizes actin cables, whereas its weaker interaction to Arp2/3 complex networks is correlated with their dismantling and their reorganization into stable architectures. Cooperation of ADF/cofilin with Aip1 is necessary to trigger the full disassembly of all actin filament networks. Additional experiments performed at the single-molecule level indicate that this cooperation is optimal above a threshold of 23 molecules of ADF/cofilin bound as clusters along an actin filament. Our results indicate that although ADF/cofilin is able to dismantle selectively branched networks through severing and debranching, stochastic disassembly of actin filaments by ADF/cofilin and Aip1 represents an efficient alternative pathway for the full disassembly of all actin networks. Our data support a model in which the binding of ADF/cofilin is required to trigger a structural change of the actin filaments, as a prerequisite for their disassembly by Aip1.
Collapse
Affiliation(s)
- Laurène Gressin
- Physics of the Cytoskeleton and Morphogenesis Group, Institut de Recherches en Technologies et Sciences pour le Vivant, Laboratoire de Physiologie Cellulaire et Végétale, CNRS/CEA/INRA/UJF, Grenoble 38054, France
| | - Audrey Guillotin
- Physics of the Cytoskeleton and Morphogenesis Group, Institut de Recherches en Technologies et Sciences pour le Vivant, Laboratoire de Physiologie Cellulaire et Végétale, CNRS/CEA/INRA/UJF, Grenoble 38054, France
| | - Christophe Guérin
- Physics of the Cytoskeleton and Morphogenesis Group, Institut de Recherches en Technologies et Sciences pour le Vivant, Laboratoire de Physiologie Cellulaire et Végétale, CNRS/CEA/INRA/UJF, Grenoble 38054, France
| | - Laurent Blanchoin
- Physics of the Cytoskeleton and Morphogenesis Group, Institut de Recherches en Technologies et Sciences pour le Vivant, Laboratoire de Physiologie Cellulaire et Végétale, CNRS/CEA/INRA/UJF, Grenoble 38054, France.
| | - Alphée Michelot
- Physics of the Cytoskeleton and Morphogenesis Group, Institut de Recherches en Technologies et Sciences pour le Vivant, Laboratoire de Physiologie Cellulaire et Végétale, CNRS/CEA/INRA/UJF, Grenoble 38054, France.
| |
Collapse
|
26
|
Chen Q, Courtemanche N, Pollard TD. Aip1 promotes actin filament severing by cofilin and regulates constriction of the cytokinetic contractile ring. J Biol Chem 2014; 290:2289-300. [PMID: 25451933 DOI: 10.1074/jbc.m114.612978] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Aip1 (actin interacting protein 1) is ubiquitous in eukaryotic organisms, where it cooperates with cofilin to disassemble actin filaments, but neither its mechanism of action nor its biological functions have been clear. We purified both fission yeast and human Aip1 and investigated their biochemical activities with or without cofilin. Both types of Aip1 bind actin filaments with micromolar affinities and weakly nucleate actin polymerization. Aip1 increases up to 12-fold the rate that high concentrations of yeast or human cofilin sever actin filaments, most likely by competing with cofilin for binding to the side of actin filaments, reducing the occupancy of the filaments by cofilin to a range favorable for severing. Aip1 does not cap the barbed ends of filaments severed by cofilin. Fission yeast lacking Aip1 are viable and assemble cytokinetic contractile rings normally, but rings in these Δaip1 cells accumulate 30% less myosin II. Further, these mutant cells initiate the ingression of cleavage furrows earlier than normal, shortening the stage of cytokinetic ring maturation by 50%. The Δaip1 mutation has negative genetic interactions with deletion mutations of both capping protein subunits and cofilin mutations with severing defects, but no genetic interaction with deletion of coronin.
Collapse
Affiliation(s)
- Qian Chen
- From the Departments of Molecular Cellular and Developmental Biology
| | | | - Thomas D Pollard
- From the Departments of Molecular Cellular and Developmental Biology, Molecular Biophysics and Biochemistry, and Cell Biology Yale University, New Haven, Connecticut 06520-8103
| |
Collapse
|
27
|
Nadkarni AV, Brieher WM. Aip1 destabilizes cofilin-saturated actin filaments by severing and accelerating monomer dissociation from ends. Curr Biol 2014; 24:2749-57. [PMID: 25448002 DOI: 10.1016/j.cub.2014.09.048] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 08/28/2014] [Accepted: 09/16/2014] [Indexed: 01/13/2023]
Abstract
BACKGROUND Depolymerization of actin filaments is vital for the morphogenesis of dynamic cytoskeletal arrays and actin-dependent cell motility. Cofilin is necessary for actin disassembly in cells, and it severs filaments most efficiently at low cofilin to actin ratios, whereas higher concentrations of cofilin suppress severing. However, the cofilin concentration in thymocytes is too high to allow the severing of single-actin filaments. RESULTS We observed that filaments sever efficiently in thymus cytosol. We identified Aip1 as a critical factor responsible for the severing and destabilization of actin filaments even in the presence of high amounts of cofilin. By fluorescence resonance energy transfer (FRET)-based spectroscopy and single-filament imaging of actin, we show that, besides driving the rapid severing of cofilin-actin filaments, Aip1 also augments the monomer dissociation rate at both the barbed and pointed ends of actin. Our results also demonstrate that Aip1 does not cap the barbed ends of actin filaments, as was previously thought. CONCLUSIONS Our results indicate that Aip1 is a cofilin-dependent actin depolymerization factor and not a barbed-end-capping factor as was previously thought. Aip1 inverts the rules of cofilin-mediated actin disassembly such that increasing ratios of cofilin to actin now result in filament destabilization through faster severing and accelerated monomer loss from barbed and pointed ends. Aip1 therefore offers a potential control point for disassembly mechanisms in cells to switch from a regime of cofilin-saturation and stabilization to one that favors fast disassembly and destabilization.
Collapse
Affiliation(s)
- Ambika V Nadkarni
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - William M Brieher
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
28
|
Trendowski M. Exploiting the cytoskeletal filaments of neoplastic cells to potentiate a novel therapeutic approach. Biochim Biophys Acta Rev Cancer 2014; 1846:599-616. [PMID: 25286320 DOI: 10.1016/j.bbcan.2014.09.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Revised: 09/19/2014] [Accepted: 09/21/2014] [Indexed: 02/06/2023]
Abstract
Although cytoskeletal-directed agents have been a mainstay in chemotherapeutic protocols due to their ability to readily interfere with the rapid mitotic progression of neoplastic cells, they are all microtubule-based drugs, and there has yet to be any microfilament- or intermediate filament-directed agents approved for clinical use. There are many inherent differences between the cytoskeletal networks of malignant and normal cells, providing an ideal target to attain preferential damage. Further, numerous microfilament-directed agents, and an intermediate filament-directed agent of particular interest (withaferin A) have demonstrated in vitro and in vivo efficacy, suggesting that cytoskeletal filaments may be exploited to supplement chemotherapeutic approaches currently used in the clinical setting. Therefore, this review is intended to expose academics and clinicians to the tremendous variety of cytoskeletal filament-directed agents that are currently available for further chemotherapeutic evaluation. The mechanisms by which microfilament directed- and intermediate filament-directed agents damage malignant cells are discussed in detail in order to establish how the drugs can be used in combination with each other, or with currently approved chemotherapeutic agents to generate a substantial synergistic attack, potentially establishing a new paradigm of chemotherapeutic agents.
Collapse
Affiliation(s)
- Matthew Trendowski
- Department of Biology, Syracuse University, 107 College Place, Syracuse, NY 13244, USA.
| |
Collapse
|
29
|
Abstract
The importance of the cytoskeleton in mounting a successful immune response is evident from the wide range of defects that occur in actin-related primary immunodeficiencies (PIDs). Studies of these PIDs have revealed a pivotal role for the actin cytoskeleton in almost all stages of immune system function, from hematopoiesis and immune cell development, through to recruitment, migration, intercellular and intracellular signaling, and activation of both innate and adaptive immune responses. The major focus of this review is the immune defects that result from mutations in the Wiskott-Aldrich syndrome gene (WAS), which have a broad impact on many different processes and give rise to clinically heterogeneous immunodeficiencies. We also discuss other related genetic defects and the possibility of identifying new genetic causes of cytoskeletal immunodeficiency.
Collapse
Affiliation(s)
- Dale A Moulding
- Molecular Immunology Unit, Center for Immunodeficiency, Institute of Child Health, University College London, London, UK
| | | | | | | |
Collapse
|
30
|
Wu T, Schwender H, Ruczinski I, Murray JC, Marazita ML, Munger RG, Hetmanski JB, Parker MM, Wang P, Murray T, Taub M, Li S, Redett RJ, Fallin MD, Liang KY, Wu-Chou YH, Chong SS, Yeow V, Ye X, Wang H, Huang S, Jabs EW, Shi B, Wilcox AJ, Jee SH, Scott AF, Beaty TH. Evidence of gene-environment interaction for two genes on chromosome 4 and environmental tobacco smoke in controlling the risk of nonsyndromic cleft palate. PLoS One 2014; 9:e88088. [PMID: 24516586 PMCID: PMC3916361 DOI: 10.1371/journal.pone.0088088] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 01/06/2014] [Indexed: 11/18/2022] Open
Abstract
Nonsyndromic cleft palate (CP) is one of the most common human birth defects and both genetic and environmental risk factors contribute to its etiology. We conducted a genome-wide association study (GWAS) using 550 CP case-parent trios ascertained in an international consortium. Stratified analysis among trios with different ancestries was performed to test for GxE interactions with common maternal exposures using conditional logistic regression models. While no single nucleotide polymorphism (SNP) achieved genome-wide significance when considered alone, markers in SLC2A9 and the neighboring WDR1 on chromosome 4p16.1 gave suggestive evidence of gene-environment interaction with environmental tobacco smoke (ETS) among 259 Asian trios when the models included a term for GxE interaction. Multiple SNPs in these two genes were associated with increased risk of nonsyndromic CP if the mother was exposed to ETS during the peri-conceptual period (3 months prior to conception through the first trimester). When maternal ETS was considered, fifteen of 135 SNPs mapping to SLC2A9 and 9 of 59 SNPs in WDR1 gave P values approaching genome-wide significance (10(-6)<P<10(-4)) in a test for GxETS interaction. SNPs rs3733585 and rs12508991 in SLC2A9 yielded P = 2.26×10(-7) in a test for GxETS interaction. SNPs rs6820756 and rs7699512 in WDR1 also yielded P = 1.79×10(-7) and P = 1.98×10(-7) in a 1 df test for GxE interaction. Although further replication studies are critical to confirming these findings, these results illustrate how genetic associations for nonsyndromic CP can be missed if potential GxE interaction is not taken into account, and this study suggest SLC2A9 and WDR1 should be considered as candidate genes for CP.
Collapse
Affiliation(s)
- Tao Wu
- Peking University Health Science Center, Beijing, China
- Johns Hopkins University, School of Public Health, Baltimore, Maryland, United States of America
- * E-mail:
| | - Holger Schwender
- Mathematical Institute, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | - Ingo Ruczinski
- Johns Hopkins University, School of Public Health, Baltimore, Maryland, United States of America
| | - Jeffrey C. Murray
- University of Iowa, Children’s Hospital, Iowa City, Iowa, United States of America
| | - Mary L. Marazita
- Center for Craniofacial and Dental Genetics, School of Dental Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | | | - Jacqueline B. Hetmanski
- Johns Hopkins University, School of Public Health, Baltimore, Maryland, United States of America
| | - Margaret M. Parker
- Johns Hopkins University, School of Public Health, Baltimore, Maryland, United States of America
| | - Ping Wang
- Peking University Health Science Center, Beijing, China
| | - Tanda Murray
- Johns Hopkins University, School of Public Health, Baltimore, Maryland, United States of America
| | - Margaret Taub
- Johns Hopkins University, School of Public Health, Baltimore, Maryland, United States of America
| | - Shuai Li
- Peking University Health Science Center, Beijing, China
| | - Richard J. Redett
- Johns Hopkins University, School of Medicine, Baltimore, Maryland, United States of America
| | - M. Daniele Fallin
- Johns Hopkins University, School of Public Health, Baltimore, Maryland, United States of America
| | - Kung Yee Liang
- Johns Hopkins University, School of Public Health, Baltimore, Maryland, United States of America
- National Yang-Ming University, Taipei, Taiwan
| | | | | | - Vincent Yeow
- KK Women’s & Children’s Hospital, Singapore, Singapore
| | - Xiaoqian Ye
- Wuhan University, School of Stomatology, Wuhan, China
- Mount Sinai Medical Center, New York, New York, United States of America
| | - Hong Wang
- Peking University Health Science Center, Beijing, China
| | | | - Ethylin W. Jabs
- Johns Hopkins University, School of Medicine, Baltimore, Maryland, United States of America
- Mount Sinai Medical Center, New York, New York, United States of America
| | - Bing Shi
- State Key Laboratory of Oral Disease, West China College of Stomatology, Sichuan University, Chengdu, China
| | - Allen J. Wilcox
- NIEHS/NIH, Epidemiology Branch, Durham, North Carolina, United States of America
| | - Sun Ha Jee
- Yonsei University, School of Public Health, Seoul, Korea
| | - Alan F. Scott
- Johns Hopkins University, School of Medicine, Baltimore, Maryland, United States of America
| | - Terri H. Beaty
- Johns Hopkins University, School of Public Health, Baltimore, Maryland, United States of America
| |
Collapse
|
31
|
Hast BE, Cloer EW, Goldfarb D, Li H, Siesser PF, Yan F, Walter V, Zheng N, Hayes DN, Major MB. Cancer-derived mutations in KEAP1 impair NRF2 degradation but not ubiquitination. Cancer Res 2013; 74:808-17. [PMID: 24322982 DOI: 10.1158/0008-5472.can-13-1655] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
NRF2 is a transcription factor that mediates stress responses. Oncogenic mutations in NRF2 localize to one of its two binding interfaces with KEAP1, an E3 ubiquitin ligase that promotes proteasome-dependent degradation of NRF2. Somatic mutations in KEAP1 occur commonly in human cancer, where KEAP1 may function as a tumor suppressor. These mutations distribute throughout the KEAP1 protein but little is known about their functional impact. In this study, we characterized 18 KEAP1 mutations defined in a lung squamous cell carcinoma tumor set. Four mutations behaved as wild-type KEAP1, thus are likely passenger events. R554Q, W544C, N469fs, P318fs, and G333C mutations attenuated binding and suppression of NRF2 activity. The remaining mutations exhibited hypomorphic suppression of NRF2, binding both NRF2 and CUL3. Proteomic analysis revealed that the R320Q, R470C, G423V, D422N, G186R, S243C, and V155F mutations augmented the binding of KEAP1 and NRF2. Intriguingly, these "super-binder" mutants exhibited reduced degradation of NRF2. Cell-based and in vitro biochemical analyses demonstrated that despite its inability to suppress NRF2 activity, the R320Q "superbinder" mutant maintained the ability to ubiquitinate NRF2. These data strengthen the genetic interactions between KEAP1 and NRF2 in cancer and provide new insight into KEAP1 mechanics.
Collapse
Affiliation(s)
- Bridgid E Hast
- Authors' Affiliations: Department of Cell Biology and Physiology; Lineberger Comprehensive Cancer Center; and Division of Medical Oncology, Department of Internal Medicine and Otolaryngology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine; Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; and Department of Pharmacology, Howard Hughes Medical Institute, University of Washington, Seattle, Washington
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Singh SK, Sethi S, Aravamudhan S, Krüger M, Grabher C. Proteome mapping of adult zebrafish marrow neutrophils reveals partial cross species conservation to human peripheral neutrophils. PLoS One 2013; 8:e73998. [PMID: 24019943 PMCID: PMC3760823 DOI: 10.1371/journal.pone.0073998] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 07/30/2013] [Indexed: 11/18/2022] Open
Abstract
Neutrophil granulocytes are pivotal cells within the first line of host defense of the innate immune system. In this study, we have used a gel-based LC-MS/MS approach to explore the proteome of primary marrow neutrophils from adult zebrafish. The identified proteins originated from all major cellular compartments. Gene ontology analysis revealed significant association of proteins with different immune-related network and pathway maps. 75% of proteins identified in neutrophils were identified in neutrophils only when compared to neutrophil-free brain tissue. Moreover, cross-species comparison with human peripheral blood neutrophils showed partial conservation of immune-related proteins between human and zebrafish. This study provides the first zebrafish neutrophil proteome and may serve as a valuable resource for an understanding of neutrophil biology and innate immunity.
Collapse
Affiliation(s)
- Sachin Kumar Singh
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Sachin Sethi
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | | | - Marcus Krüger
- Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Clemens Grabher
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Karlsruhe, Germany
- * E-mail:
| |
Collapse
|
33
|
Izawa S, Okamura T, Matsuzawa K, Ohkura T, Ohkura H, Ishiguro K, Noh JY, Kamijo K, Yoshida A, Shigemasa C, Kato M, Yamamoto K, Taniguchi SI. Autoantibody against WD repeat domain 1 is a novel serological biomarker for screening of thyroid neoplasia. Clin Endocrinol (Oxf) 2013; 79:35-42. [PMID: 23215816 DOI: 10.1111/cen.12121] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 10/23/2012] [Accepted: 12/03/2012] [Indexed: 11/29/2022]
Abstract
BACKGROUND Thyroid nodules are common among adults, and accurate diagnosis is critical in for management decisions. Ultrasound and fine needle aspiration cytology are the most common methods to evaluate nodules, but they are not practical for screening large numbers of patients because of cost and time considerations. OBJECTIVE The aim of this study was to isolate an autoantibody to tumour antigen, WD repeat domain 1 (WDR1), and evaluate its diagnostic sensitivity and specificity for thyroid neoplasms. PATIENTS AND METHODS We investigated serological biomarkers in patients with thyroid carcinoma who had a poor prognosis. Using a serological analysis of recombinant cDNA expression cloning (SEREX) strategy, we isolated WDR1 and its specific autoantibody in the sera of patients with undifferentiated thyroid carcinoma (UTC). We examined using indirect ELISA, the titre of the anti-WDR1 antibody (AWA) in 54 study patients: 10 with UTC, 20 with papillary thyroid carcinoma (PTC), 17 with benign thyroid nodule (BTN), 7 with autoimmune thyroid disease (AITD), as well as 38 controls (N). RESULTS WDR1 was ubiquitously expressed in various types of thyroid tissues. However, the titre of AWA in UTC and PTC was significantly higher than that in BTN, AITD and N (P < 0·001). No significant correlation was observed between thyroid function, serum thyroglobulin and tumour diameter. The cut-off value estimated using ROC to differentiate malignancies from others was 0·95 (sensitivity 96·7%, specificity 91·9%, AUC 0·969, P < 0·001). CONCLUSIONS Anti-WDR1 antibody could be a novel approach for serological screening of PTC and UTC, and could be an efficient and inexpensive biomarker.
Collapse
MESH Headings
- Animals
- Autoantibodies/blood
- Autoantibodies/immunology
- Biomarkers, Tumor/blood
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/immunology
- Blotting, Northern
- Carcinoma/diagnosis
- Carcinoma/genetics
- Carcinoma/immunology
- Carcinoma, Papillary
- Cell Line
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- Diagnosis, Differential
- Enzyme-Linked Immunosorbent Assay
- Female
- Gene Expression Regulation, Neoplastic
- Gene Library
- Humans
- Male
- Microfilament Proteins/blood
- Microfilament Proteins/genetics
- Microfilament Proteins/immunology
- ROC Curve
- Sequence Analysis, DNA
- Thyroglobulin/blood
- Thyroid Cancer, Papillary
- Thyroid Neoplasms/diagnosis
- Thyroid Neoplasms/genetics
- Thyroid Neoplasms/immunology
- Thyroid Nodule/diagnosis
- Thyroid Nodule/genetics
- Thyroid Nodule/immunology
Collapse
Affiliation(s)
- Shoichiro Izawa
- Endocrinology and Metabolism, Department of Molecular Medicine and Therapeutics, Tottori University Faculty of Medicine, Yonago, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Premature delivery reduces intestinal cytoskeleton, metabolism, and stress response proteins in newborn formula-fed pigs. J Pediatr Gastroenterol Nutr 2013; 56:615-22. [PMID: 23364244 DOI: 10.1097/mpg.0b013e318288cf71] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
OBJECTIVE Preterm infants often show intolerance to the first enteral feeds, and the structural and functional basis of this intolerance remains unclear. We hypothesized that preterm and term neonates show similar gut trophic responses to feeding but different expression of intestinal functional proteins, thus helping to explain why preterm neonates are more susceptible to feeding-induced disorders such as necrotizing enterocolitis (NEC). METHODS Incidence of feeding-induced NEC, intestinal mass, and brush border enzyme activities, and the intestinal proteome in preterm cesarean-delivered pigs were compared with the corresponding values in pigs delivered spontaneously at term. RESULTS For both preterm and term pigs, mucosal mass and maltase activity increased (50%-100%), whereas lactase decreased (-50%), relative to values at birth. Only preterm pigs were highly NEC sensitive (30% vs 0% in term pigs, P < 0.05). By gel-based proteomics, 36 identified proteins differed in expression, with most proteins showing downregulation in preterm pigs, including proteins related to intestinal structure and actin filaments, stress response, protein processing, and nutrient metabolism. CONCLUSIONS Despite that enteral feeding induces rapid gut tropic response in both term and preterm neonates, the expression level of cellular proteins related to mucosal integrity, metabolism, and stress response differed markedly (including complement 3, prohibitin, ornithine carbamoyltransferase, and arginosuccinate synthetase). These proteins may play a role in the development of functional gut disorders and NEC in preterm neonates.
Collapse
|
35
|
Haslene-Hox H, Oveland E, Woie K, Salvesen HB, Wiig H, Tenstad O. Increased WD-repeat containing protein 1 in interstitial fluid from ovarian carcinomas shown by comparative proteomic analysis of malignant and healthy gynecological tissue. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:2347-59. [PMID: 23707566 DOI: 10.1016/j.bbapap.2013.05.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 04/30/2013] [Accepted: 05/13/2013] [Indexed: 12/28/2022]
Abstract
We aimed to identify differentially expressed proteins in interstitial fluid from ovarian cancer employing multiple fractioning and high resolution mass spectrometry-based proteomic analysis, and asked whether specific proteins that may serve as biomarker candidates or therapeutic targets could be identified. High throughput proteomics was conducted on immunodepleted and fractioned interstitial fluid from pooled samples of ovarian carcinomas, using endometrial carcinomas and healthy ovarian tissue as controls. Differential analysis revealed the up-regulation of extracellular proteasomes in tumor interstitial fluid compared to the healthy control. Moreover, a number of differentially expressed proteins in interstitial fluid from ovarian carcinomas compared with control tissues were identified. Detection of proteasome 20S related proteins in TIF compared to IF from healthy tissue indicates that the 20S proteasome can have a role in the tumor microenvironment. Six selected proteins, CEACAM5, FREM2, MUC5AC, TFF3, PYCARD and WDR1, were independently validated in individual tumor lysates from ovarian carcinomas by multiple reaction monitoring initiated detection and sequence analysis, Western blot and/or selected reaction monitoring. Quantification of specific proteins revealed substantial heterogeneity between individual samples. Nevertheless, WD repeat-containing protein 1 was confirmed as being significantly overexpressed in interstitial fluid from ovarian carcinomas compared to healthy ovarian tissue by Orbitrap analysis of individual native interstitial fluid from ovarian and endometrial carcinomas and healthy ovarian tissue. We suggest that this protein should be explored as a therapeutic target in ovarian carcinomas. This article is part of a Special Issue entitled: An Updated Secretome.
Collapse
|
36
|
Shi M, Xie Y, Zheng Y, Wang J, Su Y, Yang Q, Huang S. Oryza sativa actin-interacting protein 1 is required for rice growth by promoting actin turnover. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 73:747-60. [PMID: 23134061 DOI: 10.1111/tpj.12065] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 10/18/2012] [Accepted: 11/01/2012] [Indexed: 05/03/2023]
Abstract
Rapid actin turnover is essential for numerous actin-based processes. However, how it is precisely regulated remains poorly understood. Actin-interacting protein 1 (AIP1) has been shown to be an important factor by acting coordinately with actin-depolymerizing factor (ADF)/cofilin in promoting actin depolymerization, the rate-limiting factor in actin turnover. However, the molecular mechanism by which AIP1 promotes actin turnover remains largely unknown in plants. Here, we provide a demonstration that AIP1 promotes actin turnover, which is required for optimal growth of rice plants. Specific down-regulation of OsAIP1 increased the level of filamentous actin and reduced actin turnover, whereas over-expression of OsAIP1 induced fragmentation and depolymerization of actin filaments and enhanced actin turnover. In vitro biochemical characterization showed that, although OsAIP1 alone does not affect actin dynamics, it enhances ADF-mediated actin depolymerization. It also caps the filament barbed end in the presence of ADF, but the capping activity is not required for their coordinated action. Real-time visualization of single filament dynamics showed that OsAIP1 enhanced ADF-mediated severing and dissociation of pointed end subunits. Consistent with this, the filament severing frequency and subunit off-rate were enhanced in OsAIP1 over-expressors but decreased in RNAi protoplasts. Importantly, OsAIP1 acts coordinately with ADF and profilin to induce massive net actin depolymerization, indicating that AIP1 plays a major role in the turnover of actin, which is required to optimize F-actin levels in plants.
Collapse
Affiliation(s)
- Meng Shi
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | | | | | | | | | | | | |
Collapse
|
37
|
Cervero P, Himmel M, Krüger M, Linder S. Proteomic analysis of podosome fractions from macrophages reveals similarities to spreading initiation centres. Eur J Cell Biol 2012; 91:908-22. [DOI: 10.1016/j.ejcb.2012.05.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 05/10/2012] [Accepted: 05/11/2012] [Indexed: 12/24/2022] Open
|
38
|
Schlieben P, Meyer A, Weise C, Bondzio A, Einspanier R, Gruber AD, Klopfleisch R. Differences in the proteome of high-grade versus low-grade canine cutaneous mast cell tumours. Vet J 2012; 194:210-4. [PMID: 22578690 DOI: 10.1016/j.tvjl.2012.04.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Revised: 03/17/2012] [Accepted: 04/01/2012] [Indexed: 12/28/2022]
Abstract
Cutaneous mast cell tumours (MCTs) are the most common skin tumours in dogs. However, the molecular differences between benign tumours with a good prognosis and highly malignant, invasive and metastatic tumours with short survival times are for the most part unclear. In the present study the proteome of low-grade MCTs with a good prognosis was compared with that of poor-prognosis high-grade tumours independent of their mutational status of exon 11 of the KIT gene. Using two-dimensional difference gel electrophoresis and mass spectrometry, 13 proteins with a significant differential expression between the two groups were identified. Four stress response proteins (HSPA9, PDIA3, TCP1A and TCP1E) were significantly up-regulated in high-grade tumours, while proteins mainly associated with cell motility and metastasis had either increased (WDR1, ACTR3, ANXA6) or decreased (ANXA2, ACTB) expression levels. High-grade tumours also had a paradox down-regulation of transferrin, a protein that is usually up-regulated in neoplastic cells. The histologically observable dedifferentiation of high-grade tumours was reflected by decreased tryptase protein expression levels. Results of quantitative real-time RT-PCR analysis indicated that the differences in protein expression levels of most proteins were regulated at the transcript level. Based on these findings, it is hypothesized that high-grade MCT cells have a higher resistance to cellular stress and thus are able to better cope with the adverse environment in highly proliferating tumours independent of increased KIT signalling. It is noteworthy that some of the proteins identified have been proposed as therapeutic targets for human oncology and it will be interesting to evaluate their therapeutic and diagnostic potential for canine MCTs.
Collapse
Affiliation(s)
- P Schlieben
- Department of Veterinary Pathology, Freie Universität Berlin, Robert-von-Ostertag-Straße 15, 14163 Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
39
|
Saberianfar R, Cunningham-Dunlop S, Karagiannis J. Global gene expression analysis of fission yeast mutants impaired in Ser-2 phosphorylation of the RNA pol II carboxy terminal domain. PLoS One 2011; 6:e24694. [PMID: 21931816 PMCID: PMC3171476 DOI: 10.1371/journal.pone.0024694] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 08/15/2011] [Indexed: 12/29/2022] Open
Abstract
In Schizosaccharomyces pombe the nuclear-localized Lsk1p-Lsc1p cyclin dependent kinase complex promotes Ser-2 phosphorylation of the heptad repeats found within the RNA pol II carboxy terminal domain (CTD). Here, we first provide evidence supporting the existence of a third previously uncharacterized Ser-2 CTD kinase subunit, Lsg1p. As expected for a component of the complex, Lsg1p localizes to the nucleus, promotes Ser-2 phosphorylation of the CTD, and physically interacts with both Lsk1p and Lsc1p in vivo. Interestingly, we also demonstrate that lsg1Δ mutants – just like lsk1Δ and lsc1Δ strains – are compromised in their ability to faithfully and reliably complete cytokinesis. Next, to address whether kinase mediated alterations in CTD phosphorylation might selectively alter the expression of genes with roles in cytokinesis and/or the cytoskeleton, global gene expression profiles were analyzed. Mutants impaired in Ser-2 phosphorylation display little change with respect to the level of transcription of most genes. However, genes affecting cytokinesis – including the actin interacting protein gene, aip1 – as well as genes with roles in meiosis, are included in a small subset that are differentially regulated. Significantly, genetic analysis of lsk1Δ aip1Δ double mutants is consistent with Lsk1p and Aip1p acting in a linear pathway with respect to the regulation of cytokinesis.
Collapse
Affiliation(s)
- Reza Saberianfar
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| | | | - Jim Karagiannis
- Department of Biology, University of Western Ontario, London, Ontario, Canada
- * E-mail:
| |
Collapse
|
40
|
Ono S, Nomura K, Hitosugi S, Tu DK, Lee JA, Baillie DL, Ono K. The two actin-interacting protein 1 genes have overlapping and essential function for embryonic development in Caenorhabditis elegans. Mol Biol Cell 2011; 22:2258-69. [PMID: 21551072 PMCID: PMC3128528 DOI: 10.1091/mbc.e10-12-0934] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Disassembly of actin filaments by actin-depolymerizing factor (ADF)/cofilin and actin-interacting protein 1 (AIP1) is a conserved mechanism to promote reorganization of the actin cytoskeleton. We previously reported that unc-78, an AIP1 gene in the nematode Caenorhabditis elegans, is required for organized assembly of sarcomeric actin filaments in the body wall muscle. unc-78 functions in larval and adult muscle, and an unc-78-null mutant is homozygous viable and shows only weak phenotypes in embryos. Here we report that a second AIP1 gene, aipl-1 (AIP1-like gene-1), has overlapping function with unc-78, and that depletion of the two AIP1 isoforms causes embryonic lethality. A single aipl-1-null mutation did not cause a detectable phenotype. However, depletion of both unc-78 and aipl-1 arrested development at late embryonic stages due to severe disorganization of sarcomeric actin filaments in body wall muscle. In vitro, both AIPL-1 and UNC-78 preferentially cooperated with UNC-60B, a muscle-specific ADF/cofilin isoform, in actin filament disassembly but not with UNC-60A, a nonmuscle ADF/cofilin. AIPL-1 is expressed in embryonic muscle, and forced expression of AIPL-1 in adult muscle compensated for the function of UNC-78. Thus our results suggest that enhancement of actin filament disassembly by ADF/cofilin and AIP1 proteins is critical for embryogenesis.
Collapse
Affiliation(s)
- Shoichiro Ono
- Department of Pathology, Emory University, Atlanta, GA 30322, USA.
| | | | | | | | | | | | | |
Collapse
|
41
|
Ishikawa-Ankerhold HC, Gerisch G, Müller-Taubenberger A. Genetic evidence for concerted control of actin dynamics in cytokinesis, endocytic traffic, and cell motility by coronin and Aip1. Cytoskeleton (Hoboken) 2010; 67:442-55. [PMID: 20506401 DOI: 10.1002/cm.20456] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Coronin and actin-interacting protein 1 (Aip1) are actin-binding proteins that by different mechanisms inhibit actin polymerization or enhance the disassembly of actin filaments. Cells of Dictyostelium discoideum lacking both proteins are retarded in growth and early development and often fail to proceed to fruiting body formation. Coronin/Aip1-null cells show numerous surface protrusions enriched in filamentous actin and cofilin. We show that the double-null cells are characterized by an increase in filamentous actin that causes a thickening of the cell cortex. This imbalance has severe consequences for processes that rely on the dynamic reorganization of the actin cytoskeleton, such as cell motility, cytokinesis and endocytosis. Although cell motility is considerably slowed down, the double-mutant cells are still capable of orientating in a gradient of chemoattractant. The cytokinesis defect is caused by the lack of proper cleavage furrow formation, a defect that is partially rescued by low concentrations of latrunculin A, an inhibitor of actin polymerization. Furthermore, we demonstrate that the disassembly of the actin coat after phagocytic or macropinocytic uptake is significantly delayed in the double-mutant cells. Our results prove that coronin and Aip1 are important effectors that act together in maintaining the balance of actin polymerization and depolymerization in living cells.
Collapse
|
42
|
Choi CH, Patel H, Barber DL. Expression of actin-interacting protein 1 suppresses impaired chemotaxis of Dictyostelium cells lacking the Na+-H+ exchanger NHE1. Mol Biol Cell 2010; 21:3162-70. [PMID: 20668166 PMCID: PMC2938382 DOI: 10.1091/mbc.e09-12-1058] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Dictyostelium cells lacking the intracellular pH regulator NHE1 have defective chemotaxis. A modifier screen and reconstitution studies show expression of recombinant actin interacting protein 1 (Aip1) suppresses the Ddnhe1-phenotype. Aip1 promotes cofilin-dependent actin remodeling, which is likely a major determinant in pH-dependent chemotaxis. Increased intracellular pH is an evolutionarily conserved signal necessary for directed cell migration. We reported previously that in Dictyostelium cells lacking H+ efflux by a Na+-H+ exchanger (NHE; Ddnhe1−), chemotaxis is impaired and the assembly of filamentous actin (F-actin) is attenuated. We now describe a modifier screen that reveals the C-terminal fragment of actin-interacting protein 1 (Aip1) enhances the chemotaxis defect of Ddnhe1− cells but has no effect in wild-type Ax2 cells. However, expression of full-length Aip1 mostly suppresses chemotaxis defects of Ddnhe1− cells and restores F-actin assembly. Aip1 functions to promote cofilin-dependent actin remodeling, and we found that although full-length Aip1 binds cofilin and F-actin, the C-terminal fragment binds cofilin but not F-actin. Because pH-dependent cofilin activity is attenuated in mammalian cells lacking H+ efflux by NHE1, our current data suggest that full-length Aip1 facilitates F-actin assembly when cofilin activity is limited. We predict the C-terminus of Aip1 enhances defective chemotaxis of Ddnhe1− cells by sequestering the limited amount of active cofilin without promoting F-actin assembly. Our findings indicate a cooperative role of Aip1 and cofilin in pH-dependent cell migration, and they suggest defective chemotaxis in Ddnhe1− cells is determined primarily by loss of cofilin-dependent actin dynamics.
Collapse
Affiliation(s)
- Chang-Hoon Choi
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | | |
Collapse
|
43
|
Lin SL, Chien CW, Han CL, Chen ESW, Kao SH, Chen YJ, Liao F. Temporal proteomics profiling of lipid rafts in CCR6-activated T cells reveals the integration of actin cytoskeleton dynamics. J Proteome Res 2010; 9:283-97. [PMID: 19928914 DOI: 10.1021/pr9006156] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Chemokines orchestrate leukocyte migration toward sites of inflammation and infection and target leukocytes via chemokine receptors such as CCR6, a subfamily of the seven-transmembrane G-protein-coupled receptors. Lipid rafts are cholesterol and sphingolipid-enriched liquid-ordered membrane microdomains thought to serve as scaffolding platforms for signal transduction. To globally understand the dynamic changes of proteins within lipid rafts upon CCR6 activation in T cells, we quantitatively analyzed the time-dependent changes of lipid raft proteome using our recently reported membrane proteomics strategy combining gel-assisted digestion, iTRAQ labeling and LC-MS/MS. To our knowledge, the error-free identification of 852 proteins represents the first data set of the raft proteome in T cells upon chemokine receptor activation, including 354 previously annotated raft proteins and 85 dynamically recruited proteins that are potential raft-associated proteins. The temporal profiles revealed that many proteins involved in the actin cytoskeleton rearrangement are actively recruited into lipid rafts upon CCR6 activation. We further confirmed the proteomics results by Western blotting and used small interfering RNA-mediated knockdown to evaluate their roles upon CCR6 activation. In sum, we employed quantitative proteomic strategy to analyze raft proteome and identified many molecules actively involved in the control of actin assembly and disassembly regulating CCR6 activation-induced cell migration.
Collapse
Affiliation(s)
- Shu-Ling Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | | | | | | | | | | | | |
Collapse
|