1
|
Zhao L, Niu J, Lin H, Zhao J, Liu Y, Song Z, Xiang C, Wang X, Yang Y, Li X, Mohammadi M, Huang Z. Paracrine-endocrine FGF chimeras as potent therapeutics for metabolic diseases. EBioMedicine 2019; 48:462-477. [PMID: 31631034 PMCID: PMC6838362 DOI: 10.1016/j.ebiom.2019.09.052] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 09/14/2019] [Accepted: 09/25/2019] [Indexed: 12/25/2022] Open
Abstract
Background The development of a clinically useful fibroblast growth factor 21 (FGF21) hormone has been impeded by its inherent instability and weak FGF receptor (FGFR) binding affinity. There is an urgent need for innovative approaches to overcome these limitations. Methods We devised a structure-based chimerisation strategy in which we substituted the thermally labile and low receptor affinity core of FGF21 with an HS binding deficient endocrinised core derived from a stable and high receptor affinity paracrine FGF1 (FGF1ΔHBS). The thermal stability, receptor binding ability, heparan sulfate and βKlotho coreceptor dependency of the chimera were measured using a thermal shift assay, SPR, SEC-MALS and cell-based studies. The half-life, tissue distribution, glucose lowering activity and adipose tissue remodeling were analyzed in normal and diabetic mice and monkeys. Findings The melting temperature of the engineered chimera (FGF1ΔHBS-FGF21C-tail) increased by ∼22 °C relative to wild-type FGF21 (FGF21WT), and resulted in a ∼5-fold increase in half-life in vivo. The chimera also acquired an ability to bind the FGFR1c isoform – the principal receptor that mediates the metabolic actions of FGF21 – and consequently was dramatically more effective than FGF21WT in correcting hyperglycemia and in ameliorating insulin resistance in db/db mice. Our chimeric FGF21 also exerted a significant beneficial effect on glycemic control in spontaneous diabetic cynomolgus monkeys. Interpretation Our study describes a structure-based chimerisation approach that effectively mitigates both the intrinsically weak receptor binding affinities and short half-lives of endocrine FGFs, and advance the development of the FGF21 hormone into a potentially useful drug for Type 2 diabetes.
Collapse
Affiliation(s)
- Longwei Zhao
- School of Pharmaceutical Sciences & Center for Structural Biology, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Jianlou Niu
- School of Pharmaceutical Sciences & Center for Structural Biology, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Huan Lin
- School of Pharmaceutical Sciences & Center for Structural Biology, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jing Zhao
- School of Pharmaceutical Sciences & Center for Structural Biology, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yang Liu
- Department of Biochemistry & Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, United States
| | - Zihui Song
- Tianjin Institute of Pharmaceutical Research, Tianjin 300301, China
| | - Congshang Xiang
- Tianjin Institute of Pharmaceutical Research, Tianjin 300301, China
| | - Xiaojie Wang
- School of Pharmaceutical Sciences & Center for Structural Biology, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yong Yang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaokun Li
- School of Pharmaceutical Sciences & Center for Structural Biology, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Moosa Mohammadi
- Department of Biochemistry & Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, United States.
| | - Zhifeng Huang
- School of Pharmaceutical Sciences & Center for Structural Biology, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| |
Collapse
|
2
|
Mascarello A, Silva Frederico MJ, Gomes Castro AJ, Mendes CP, Dutra MF, Woehl VM, Yunes RA, Mena Barreto Silva FR, Nunes RJ. Novel sulfonyl(thio)urea derivatives act efficiently both as insulin secretagogues and as insulinomimetic compounds. Eur J Med Chem 2014; 86:491-501. [DOI: 10.1016/j.ejmech.2014.09.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 09/02/2014] [Accepted: 09/03/2014] [Indexed: 10/24/2022]
|
3
|
Berenguer M, Martinez L, Giorgetti-Peraldi S, Le Marchand-Brustel Y, Govers R. A serum factor induces insulin-independent translocation of GLUT4 to the cell surface which is maintained in insulin resistance. PLoS One 2010; 5:e15560. [PMID: 21187969 PMCID: PMC3004919 DOI: 10.1371/journal.pone.0015560] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Accepted: 11/12/2010] [Indexed: 01/24/2023] Open
Abstract
In response to insulin, glucose transporter GLUT4 translocates from intracellular compartments towards the plasma membrane where it enhances cellular glucose uptake. Here, we show that sera from various species contain a factor that dose-dependently induces GLUT4 translocation and glucose uptake in 3T3-L1 adipocytes, human adipocytes, myoblasts and myotubes. Notably, the effect of this factor on GLUT4 is fully maintained in insulin-resistant cells. Our studies demonstrate that the serum-induced increase in cell surface GLUT4 levels is not due to inhibition of its internalization and is not mediated by insulin, PDGF, IGF-1, or HGF. Similarly to insulin, serum also augments cell surface levels of GLUT1 and TfR. Remarkably, the acute effect of serum on GLUT4 is largely additive to that of insulin, while it also sensitizes the cells to insulin. In accordance with these findings, serum does not appear to activate the same repertoire of downstream signaling molecules that are implicated in insulin-induced GLUT4 translocation. We conclude that in addition to insulin, at least one other biological proteinaceous factor exists that contributes to GLUT4 regulation and still functions in insulin resistance. The challenge now is to identify this factor.
Collapse
Affiliation(s)
- Marion Berenguer
- INSERM, U895, Mediterranean Research Center for Molecular Medicine (C3M), Avenir Team 9, Nice, France
- University of Nice-Sophia-Antipolis, Faculty of Medicine, Signaling and pathologies (IFR50), Nice, France
| | - Laurène Martinez
- INSERM, U895, Mediterranean Research Center for Molecular Medicine (C3M), Avenir Team 9, Nice, France
- University of Nice-Sophia-Antipolis, Faculty of Medicine, Signaling and pathologies (IFR50), Nice, France
| | - Sophie Giorgetti-Peraldi
- INSERM, U895, Mediterranean Research Center for Molecular Medicine (C3M), Team 7, Nice, France
- University of Nice-Sophia-Antipolis, Faculty of Medicine, Signaling and pathologies (IFR50), Nice, France
| | - Yannick Le Marchand-Brustel
- INSERM, U895, Mediterranean Research Center for Molecular Medicine (C3M), Avenir Team 9, Nice, France
- INSERM, U895, Mediterranean Research Center for Molecular Medicine (C3M), Team 7, Nice, France
- University of Nice-Sophia-Antipolis, Faculty of Medicine, Signaling and pathologies (IFR50), Nice, France
| | - Roland Govers
- INSERM, U895, Mediterranean Research Center for Molecular Medicine (C3M), Avenir Team 9, Nice, France
- University of Nice-Sophia-Antipolis, Faculty of Medicine, Signaling and pathologies (IFR50), Nice, France
- * E-mail:
| |
Collapse
|
4
|
Bukong TN, Hall WW, Jacqué JM. Lentivirus-associated MAPK/ERK2 phosphorylates EMD and regulates infectivity. J Gen Virol 2010; 91:2381-92. [PMID: 20463147 DOI: 10.1099/vir.0.019604-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Infection of a cell by lentiviruses, such as human immunodeficiency virus type 1 or feline immunodeficiency virus, results in the formation of a reverse transcription complex, the pre-integration complex (PIC), where viral DNA is synthesized. In non-dividing cells, efficient nuclear translocation of the PIC requires the presence of the inner nuclear lamina protein emerin (EMD). Here, we demonstrate that EMD phosphorylation is induced early after infection in primary non-dividing cells. Furthermore, we demonstrate that EMD phosphorylation is dependent on virion-associated mitogen-activated protein kinase (MAPK). Specific inhibition of MAPK activity with kinase inhibitors markedly reduced EMD phosphorylation and resulted in decreased integration of the proviral DNA into chromatin. Similarly, when a MEK1 kinase-inactive mutant was expressed in virus-producer cells, virus-induced phosphorylation of EMD was impaired and viral integration reduced during the subsequent infection. Expression of constitutively active MEK1 kinase in producer cells did not result in modulation of EMD phosphorylation or viral integration during subsequent infection. These studies demonstrate that, in addition to phosphorylating components of the PICs at an early step of infection, virion-associated MAPK plays a role in facilitating cDNA integration after nuclear translocation through phosphorylation of target-cell EMD.
Collapse
Affiliation(s)
- Terence N Bukong
- University College Dublin, Centre for Research in Infectious Diseases, Belfield, Dublin 4, Ireland
| | | | | |
Collapse
|
5
|
Kummar S, Gutierrez ME, Gardner ER, Figg WD, Melillo G, Dancey J, Sausville EA, Conley BA, Murgo AJ, Doroshow JH. A phase I trial of UCN-01 and prednisone in patients with refractory solid tumors and lymphomas. Cancer Chemother Pharmacol 2009; 65:383-9. [PMID: 19894051 DOI: 10.1007/s00280-009-1154-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Accepted: 09/24/2009] [Indexed: 10/20/2022]
Abstract
PURPOSE UCN-01 potently inhibits protein kinase C, phosphatidylinositide-dependent kinase-1, and checkpoint kinase 1, which are involved in regulating cell cycle progression. We designed a phase I study to determine the maximum tolerated dose (MTD) of UCN-01 with prednisone in patients with advanced malignancies. METHODS UCN-01 was administered as a continuous intravenous infusion over 72 h in cycle 1 and 36 h in subsequent cycles. Prednisone was given orally at 60 mg/m(2) per day for five consecutive days within each 28-day cycle. Standard dose escalation was employed, and MTD was defined as the dose at which no more than one of six patients experienced a dose-limiting toxicity (DLT). Plasma pharmacokinetics of UCN-01 were assessed. RESULTS Fifteen patients received a total of 55 courses of treatment. The MTD and the recommended phase II dose of UCN-01 in this combination is 72 mg/m(2) total dose over 72 h for cycle 1 followed by 36 mg/m(2) per cycle over 36 h. All patients experienced hyperglycemia but responded to insulin treatment. Hypophosphatemia was a DLT in two patients. There were no cumulative toxicities. No objective responses were observed, but five patients had stable disease, including two patients with lymphoid malignancies who had prolonged disease stabilizations. UCN-01 has a long terminal half-life and low clearance; there was wide inter-patient variability in peak concentrations. CONCLUSION UCN-01 can be safely administered in combination with prednisone without unacceptable toxicity. The prolonged stable disease in two patients with lymphoid malignancies is a proof of principle for the evaluation of cyclin-dependent kinase inhibitors in oncology.
Collapse
Affiliation(s)
- Shivaani Kummar
- Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Riskin A, Nannegari VH, Mond Y. Acute effectors of GLUT1 glucose transporter subcellular targeting in CIT3 mouse mammary epithelial cells. Pediatr Res 2008; 63:56-61. [PMID: 18043507 DOI: 10.1203/pdr.0b013e31815b440b] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Lactogenic hormones cause intracellular targeting of glucose transporter 1 (GLUT1) for transport of glucose to the site of lactose synthesis in mammary glands. Our aim was to study the intracellular trafficking mechanisms involved in GLUT1 targeting and recycling in CIT3 mouse mammary epithelial cells. Fusion proteins of GLUT1 and enhanced green fluorescent protein (EGFP) were expressed in CIT3 cells maintained in growth medium (GM), or exposed to secretion medium (SM), containing prolactin. Agents acting on Golgi and related subcellular compartments and on GLUT1 and GLUT4 targeting in muscle and fat cells were studied. Wortmannin and staurosporine effects on internalization of GLUT1 were not specific, supporting a basal constitutive GLUT1 membrane-recycling pathway between an intracellular pool and the cell surface in CIT3 cells, which targets most GLUT1 to the plasma membrane in GM. Upon exposure to prolactin in SM, GLUT1 was specifically targeted intracellularly to a brefeldin A-sensitive compartment. Arrest of endosomal acidification by bafilomycin A1 disrupted this prolactin-induced GLUT1 intracellular trafficking with central coalescence of GLUT1-EGFP signal, suggesting that it is via endosomal pathways. This machinery offers another level of regulation of lactose synthesis by altering GLUT1 targeting within minutes to hours.
Collapse
Affiliation(s)
- Arieh Riskin
- Department of Pediatrics, Section of Neonatology and ARS/USDA Children's Nutrition Research Center, Baylor College of Medicine, Houston, Texas 77030, USA.
| | | | | |
Collapse
|
7
|
Luiken JJFP, Coort SLM, Koonen DPY, Bonen A, Glatz JFC. Signalling components involved in contraction-inducible substrate uptake into cardiac myocytes. Proc Nutr Soc 2007; 63:251-8. [PMID: 15294039 DOI: 10.1079/pns2004333] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Glucose and long-chain fatty acids (LCFA) are two major substrates used by heart and skeletal muscle to support contractile activity. In quiescent cardiac myocytes a substantial portion of the glucose transporter GLUT4 and the putative LCFA transporter fatty acid translocase (FAT)/CD36 are stored in intracellular compartments. Induction of cellular contraction by electrical stimulation results in enhanced uptake of both glucose and LCFA through translocation of GLUT4 and FAT/CD36 respectively to the sarcolemma. The involvement of protein kinase A, AMP-activated protein kinase (AMPK), protein kinase C (PKC) isoforms and the extracellular signal-regulated kinases was evaluated in cardiac myocytes as candidate signalling enzymes involved in recruiting these transporters in response to contraction. The collected evidence excluded the involvement of PKA and implicated an important role for AMPK and for one (or more) PKC isoform(s) in contraction-induced translocation of both GLUT4 and FAT/CD36. The unravelling of further components along this contraction pathway can provide valuable information on the coordinated regulation of the uptake of glucose and of LCFA by an increase in mechanical activity of heart and skeletal muscle.
Collapse
Affiliation(s)
- Joost J F P Luiken
- Department of Molecular Genetics, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, NL-6200 MD Maastricht, The Netherlands.
| | | | | | | | | |
Collapse
|
8
|
Jalota-Badhwar A, Kaul-Ghanekar R, Mogare D, Boppana R, Paknikar KM, Chattopadhyay S. SMAR1-derived P44 peptide retains its tumor suppressor function through modulation of p53. J Biol Chem 2007; 282:9902-9913. [PMID: 17229733 DOI: 10.1074/jbc.m608434200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The use of pharmacologically active short peptide sequences is a better option in cancer therapeutics than the full-length protein. Here we report one such 44-mer peptide sequence of SMAR1 (TAT-SMAR1 wild type, P44) that retains the tumor suppressor activity of the full-length protein. The protein transduction domain of human immunodeficiency virus, type 1, Tat protein was used here to deliver the 33-mer peptide of SMAR1 into the cells. P44 peptide could efficiently activate p53 by mediating its phosphorylation at serine 15, resulting in the activation of p21 and in effect regulating cell cycle checkpoint. In vitro phosphorylation assays with point-mutated P44-derived peptides suggested that serine 347 of SMAR1 was indispensable for its activity and represented the substrate motif for the protein kinase C family of proteins. Using xenograft nude mice models, we further demonstrate that P44 was capable of inhibiting tumor growth by preventing cellular proliferation. P44 treatment to tumor-bearing mice prevented the formation of poorly organized tumor vasculature and an increase in hypoxia-inducible factor-1alpha expression, both being signatures of tumor progression. The chimeric TAT-SMAR1-derived peptide, P44, thus has a strong therapeutic potential as an anticancer drug.
Collapse
Affiliation(s)
| | | | - Devraj Mogare
- National Center for Cell Science, Pune University Campus, Ganeshkhind, Pune 411 007
| | - Ramanamurthy Boppana
- National Center for Cell Science, Pune University Campus, Ganeshkhind, Pune 411 007
| | | | - Samit Chattopadhyay
- National Center for Cell Science, Pune University Campus, Ganeshkhind, Pune 411 007.
| |
Collapse
|
9
|
Leybaert L, De Bock M, Van Moorhem M, Decrock E, De Vuyst E. Neurobarrier coupling in the brain: Adjusting glucose entry with demand. J Neurosci Res 2007; 85:3213-20. [PMID: 17265466 DOI: 10.1002/jnr.21189] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Glucose transport over the blood-brain barrier (BBB) is a nonrate-limiting step and has therefore received little attention as a possible adjustment point within the transport reaction cascade from blood glucose to brain cell glycolysis. Considerations of the normal working point of facilitated BBB glucose shuttling via the GLUT-1 protein indicate that the transport is working at about one-third of T(max) under basal conditions. Substitution of T(max) estimates indicates that the transport is then just enough to keep up with glucose consumption, maintaining the steady state. After brain activation, glucose transport has to be stimulated, and this can be accomplished by increasing the driving force or changing the T(max) and/or K(t) parameters of BBB transport. The first possibility involves a decrease of brain interstitial glucose with subsequent flow stimulation according to the law of mass action (LMA), whereas the second possibility involves signaling from activated neurons to the BBB, a regulation loop that we propose to be called "neurobarrier coupling" (NBC). Theoretical analysis of the LMA effect and comparison with data on glucose dynamics during brain activation suggest that this factor alone only covers about half of the stimulation necessary to bring glucose delivery into line with the elevated glucose consumption during activation. Adjusting glucose entry with demand thus probably involves both LMA and NBC effects, depending on the degree of brain activation. Further work is needed to demonstrate NBC effects following physiological brain activation in vivo and to identify the signals that lead to NBC in in vitro experiments.
Collapse
Affiliation(s)
- Luc Leybaert
- Department of Physiology and Pathophysiology, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium.
| | | | | | | | | |
Collapse
|
10
|
Allen TR, Krueger KD, Hunter WJ, Agrawal DK. Evidence that insulin-like growth factor-1 requires protein kinase C-epsilon, PI3-kinase and mitogen-activated protein kinase pathways to protect human vascular smooth muscle cells from apoptosis. Immunol Cell Biol 2005; 83:651-67. [PMID: 16266318 DOI: 10.1111/j.1440-1711.2005.01387.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Insulin-like growth factor (IGF)-1 has been implicated in the development of occlusive vascular lesions. Although its role in vascular smooth muscle cell (VSMC) growth and migration are fairly well characterized, anti-apoptotic signals of IGF-1 in human VSMC remain largely unknown. In this study, we examined IGF-1 signals that protect human and rat VSMC from staurosporine (STAU)- and c-myc- induced apoptosis, respectively. Treatment with STAU resulted in apoptotic DNA fragmentation, phosphatidylserine externalization and cell shrinkage, but only occasional VSMC 'blebbing'. STAU-induced death and IGF-1-mediated survival were concentration dependent, while time-lapse video microscopy showed that IGF-1 inhibited c-myc-induced apoptosis by 90%. Pretreatment with mitogen-activated protein kinase/extracellular signal regulated kinase kinase (MEK) inhibitors UO126 and PD098059, or with the phosphatidylinositol 3-kinase (PI3-K) inhibitor wortmannin, reversed IGF-1-mediated human VSMC survival by 25-27% and 66%, respectively. Translocation studies showed that IGF-1 activated protein kinase C (PKC)-epsilon, but not PKC-alpha or PKC-delta, even in the presence of STAU, while pharmacological PKC inhibition (Ro-318220 or Go6976) implicated PKC-zeta or a novel PKC isozyme in IGF-1-mediated survival. Transient expression of activated PKC-epsilon but not activated PKC-zeta decreased myc-induced apoptosis in rat VSMC. In human VSMC, antisense oligodeoxynucleotides to PKC-epsilon partially reversed IGF-1-induced survival. In addition, IGF-1 elicited a mild but sustained activation of extracellular signal regulated kinase (ERK)1/2 in human VSMC that was abolished after 1 h in the presence of STAU. PKC downregulation reversed both IGF-1- and PMA-induced ERK activity, but platelet-derived growth factor (PDGF)-induced activity was unchanged. These results indicate for the first time that IGF-1 can protect human VSMC via multiple signals, including PKC-epsilon, PI3-K and mitogen-activated protein kinase pathways.
Collapse
MESH Headings
- Apoptosis/drug effects
- Cell Shape/drug effects
- Cells, Cultured
- Humans
- Insulin-Like Growth Factor I/pharmacology
- MAP Kinase Signaling System/drug effects
- Microscopy, Electron, Scanning
- Mitogen-Activated Protein Kinase Kinases/metabolism
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/enzymology
- Muscle, Smooth, Vascular/ultrastructure
- Phosphatidylinositol 3-Kinases/metabolism
- Protein Kinase C-epsilon/metabolism
- Staurosporine/pharmacology
Collapse
Affiliation(s)
- Todd R Allen
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, Nebraska 68178, USA
| | | | | | | |
Collapse
|
11
|
Koonen DPY, Glatz JFC, Bonen A, Luiken JJFP. Long-chain fatty acid uptake and FAT/CD36 translocation in heart and skeletal muscle. Biochim Biophys Acta Mol Cell Biol Lipids 2005; 1736:163-80. [PMID: 16198626 DOI: 10.1016/j.bbalip.2005.08.018] [Citation(s) in RCA: 172] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2004] [Revised: 08/18/2005] [Accepted: 08/30/2005] [Indexed: 12/22/2022]
Abstract
Cellular long-chain fatty acid (LCFA) uptake constitutes a process that is not yet fully understood. LCFA uptake likely involves both passive diffusion and protein-mediated transport. Several lines of evidence support the involvement of a number of plasma membrane-associated proteins, including fatty acid translocase (FAT)/CD36, plasma membrane-bound fatty acid binding protein (FABPpm), and fatty acid transport protein (FATP). In heart and skeletal muscle primary attention has been given to unravel the mechanisms by which FAT/CD36 expression and function are regulated. It appears that both insulin and contractions induce the translocation of intracellular stored FAT/CD36 to the plasma membrane to increase cellular LCFA uptake. This review focuses on this novel mechanism of regulation of LCFA uptake in heart and skeletal muscle in health and disease. The distinct signaling pathways underlying insulin-induced and contraction-induced FAT/CD36 translocation will be discussed and a comparison will be made with the well-defined glucose transport system involving the glucose transporter GLUT4. Finally, it is hypothesized that malfunctioning of recycling of these transporters may lead to intracellular triacylglycerol (TAG) accumulation and cellular insulin resistance. Current data indicate a pivotal role for FAT/CD36 in the regulation of LCFA utilization in heart and skeletal muscle under normal conditions as well as during the altered LCFA utilization observed in obesity and insulin resistance. Hence, FAT/CD36 might provide a useful therapeutic target for the prevention or treatment of insulin resistance.
Collapse
Affiliation(s)
- Debby P Y Koonen
- Department of Molecular Genetics, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, NL-6200 MD Maastricht, The Netherlands
| | | | | | | |
Collapse
|
12
|
Jalota A, Singh K, Pavithra L, Kaul-Ghanekar R, Jameel S, Chattopadhyay S. Tumor suppressor SMAR1 activates and stabilizes p53 through its arginine-serine-rich motif. J Biol Chem 2005; 280:16019-29. [PMID: 15701641 DOI: 10.1074/jbc.m413200200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Various stresses and DNA-damaging agents trigger transcriptional activity of p53 by post-translational modifications, making it a global regulatory switch that controls cell proliferation and apoptosis. Earlier we have shown that the novel MAR-associated protein SMAR1 interacts with p53. Here we delineate the minimal domain of SMAR1 (the arginine-serine-rich domain) that is phosphorylated by protein kinase C family proteins and is responsible for p53 interaction, activation, and stabilization within the nucleus. SMAR1-mediated stabilization of p53 is brought about by inhibiting Mdm2-mediated degradation of p53. We also demonstrate that this arginine-serine (RS)-rich domain triggers the various cell cycle modulating proteins that decide cell fate. Furthermore, phenotypic knock-down experiments using small interfering RNA showed that SMAR1 is required for activation and nuclear retention of p53. The level of phosphorylated p53 was significantly increased in the thymus of SMAR1 transgenic mice, showing in vivo significance of SMAR1 expression. This is the first report that demonstrates the mechanism of action of the MAR-binding protein SMAR1 in modulating the activity of p53, often referred to as the "guardian of the genome."
Collapse
Affiliation(s)
- Archana Jalota
- National Center for Cell Science, Pune University Campus, Ganeshkhind, Pune 411007, India
| | | | | | | | | | | |
Collapse
|
13
|
Abstract
Neurovascular and neurometabolic coupling help the brain to maintain an appropriate energy flow to the neural tissue under conditions of increased neuronal activity. Both coupling phenomena provide us, in addition, with two macroscopically measurable parameters, blood flow and intermediate metabolite fluxes, that are used to dynamically image the functioning brain. The main energy substrate for the brain is glucose, which is metabolized by glycolysis and oxidative breakdown in both astrocytes and neurons. Neuronal activation triggers increased glucose consumption and glucose demand, with new glucose being brought in by stimulated blood flow and glucose transport over the blood-brain barrier. Glucose is shuttled over the barrier by the GLUT-1 transporter, which, like all transporter proteins, has a ceiling above which no further stimulation of the transport is possible. Blood-brain barrier glucose transport is generally accepted as a nonrate-limiting step but to prevent it from becoming rate-limiting under conditions of neuronal activation, it might be necessary for the transport parameters to be adapted to the increased glucose demand. It is proposed that the blood-brain barrier glucose transport parameters are dynamically adapted to the increased glucose needs of the neural tissue after activation according to a neurobarrier coupling scheme. This review presents neurobarrier coupling within the current knowledge on neurovascular and neurometabolic coupling, and considers arguments and evidence in support of this hypothesis.
Collapse
Affiliation(s)
- Luc Leybaert
- Department of Physiology and Pathophysiology, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium.
| |
Collapse
|
14
|
Chen J, Lu G, Wang QJ. Protein kinase C-independent effects of protein kinase D3 in glucose transport in L6 myotubes. Mol Pharmacol 2005; 67:152-62. [PMID: 15496505 DOI: 10.1124/mol.104.004200] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Protein kinase C (PKC) and protein kinase D (PKD) coordinate and regulate many fundamental cellular processes. In this study, we evaluate the role of classic and novel PKC (c/nPKC) and PKD in glucose transport in L6 myotubes. c/nPKC is either activated by short-term phorbol 12-myristate 13-acetate (PMA) treatment or down-regulated by prolonged PMA treatment at a high dose in L6 myotubes. Our results indicate that PMA treatments have little impact on basal and insulin-stimulated glucose uptake and insulin-induced Akt activation. In contrast, the PKC inhibitors Go6976 [12-(2-cyanoethyl)-6,7,12,13-tetrahydro-13-methyl-5-oxo-5H-indolo[2,3-a]pyrrolo[3,4-c] carbazole], Go6983 [2-[1-(3-dimethylaminopropyl)-5-methoxyindol-3-yl]-3-(1H-indol-3-yl)maleimide], GF 109203X [bisindolylmaleimide I; 2-[1-(3-dimethylaminopropyl)indol-3-yl]-3-(1H-indol-3-yl)maleimide], and Ro 31-8220 [bisindolylmaleimide IX; 2-{1-[3-(amidinothio)propyl]-1H-indol3-yl}-3-(1-methylindol-3-yl)maleimide] block basal and insulin-stimulated glucose uptake, and their inhibitory effects persist upon down-regulation of c/nPKC by PMA, implying the presence of PKC-independent effectors in mediating their inhibition of glucose uptake. Go6976, the potent cPKC inhibitor that also effectively inhibits PKD, dose-dependently blocks basal glucose uptake in L6 myotubes, whereas Go6983, the nonselective PKC inhibitor that is ineffective for PKD, has little effect on basal glucose uptake, implying the involvement of PKD in this process. Most prominently, adenoviral gene expression of a dominant-negative PKD isoform, PKD3, primarily inhibits basal glucose uptake and, to a lesser extent, insulin-stimulated glucose uptake, whereas overexpression of wild-type PKD3 significantly enhances basal glucose uptake. Moreover, expression of a PKD3-targeted siRNA significantly inhibits basal glucose uptake. Taken together, our results indicate that PKD, specifically PKD3, directly contributes to insulin-independent basal glucose uptake in L6 skeletal muscle cells.
Collapse
Affiliation(s)
- Jun Chen
- Department of Pharmacology, University of Pittsburgh, E1354 Biomedical Science Tower, Pittsburgh, PA 15261, USA
| | | | | |
Collapse
|
15
|
Zierath JR, Kawano Y. The effect of hyperglycaemia on glucose disposal and insulin signal transduction in skeletal muscle. Best Pract Res Clin Endocrinol Metab 2003; 17:385-98. [PMID: 12962692 DOI: 10.1016/s1521-690x(03)00040-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Skeletal muscle is an important tissue for the proper maintenance of glucose homeostasis as it accounts for the major portion of glucose disposal following infusion or ingestion of glucose. Thus, cellular mechanisms regulating glucose uptake in skeletal muscle have a major impact on whole-body glucose homeostasis. Glucose transport into skeletal muscle is a rate-limiting step for glucose utilization under physiological conditions and a site of insulin resistance in patients with non-insulin-dependent diabetes mellitus (NIDDM). Defects in insulin signalling have been coupled to impaired glucose uptake in skeletal muscle from NIDDM patients. Although the exact aetiology is unclear, genetic and environmental (high-energy diets combined with a sedentary lifestyle) factors contribute to the onset of NIDDM. Furthermore, hyperglycaemia is linked with insulin resistance. This chapter will consider mechanisms for glucose disposal in skeletal muscle, potential sites of insulin resistance in skeletal muscle in NIDDM patients and the impact of hyperglycaemia on insulin action.
Collapse
Affiliation(s)
- Juleen R Zierath
- Department of Surgical Sciences, Section for Integrative Physiology, Karolinska Institutet, von Eulers väg 4, II, SE-171 77 Stockholm, Sweden.
| | | |
Collapse
|
16
|
Talior I, Yarkoni M, Bashan N, Eldar-Finkelman H. Increased glucose uptake promotes oxidative stress and PKC-delta activation in adipocytes of obese, insulin-resistant mice. Am J Physiol Endocrinol Metab 2003; 285:E295-302. [PMID: 12857675 DOI: 10.1152/ajpendo.00044.2003] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Increased oxidative stress is believed to be one of the mechanisms responsible for hyperglycemia-induced tissue damage and diabetic complications. In these studies, we undertook to characterize glucose uptake and oxidative stress in adipocytes of type 2 diabetic animals and to determine whether these promote the activation of PKC-delta. The adipocytes used were isolated either from C57Bl/6J mice that were raised on a high-fat diet (HF) and developed obesity and insulin resistance or from control animals. Basal glucose uptake significantly increased (8-fold) in HF adipocytes, and this was accompanied with upregulation of GLUT1 expression levels. Insulin-induced glucose uptake was inhibited in HF adipocytes and GLUT4 content reduced by 20% in these adipocytes. Reactive oxygen species (ROS) increased twofold in HF adipocytes compared with control adipocytes and were largely reduced with decreased glucose concentrations. At zero glucose, ROS levels were reduced to the normal levels seen in control adipocytes. The activity of PKC-delta increased twofold in HF adipocytes compared with control adipocytes and was further activated by H2O2. Moreover, PKC-delta activity was inhibited in HF adipocytes either by glucose deprivation or by treatment with the antioxidant N-acetyl-l-cysteine. In summary, we propose that increased glucose intake in HF adipocytes increases oxidative stress, which in turn promotes the activation of PKC-delta. These consequential events may be responsible, at least in part, for development of HF diet-induced insulin resistance in the fat tissue.
Collapse
Affiliation(s)
- Ilana Talior
- Dept. of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | | | |
Collapse
|
17
|
Balthazart J, Baillien M, Charlier TD, Ball GF. Calcium-dependent phosphorylation processes control brain aromatase in quail. Eur J Neurosci 2003; 17:1591-606. [PMID: 12752377 DOI: 10.1046/j.1460-9568.2003.02598.x] [Citation(s) in RCA: 133] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Increased gene transcription activated by the binding of sex steroids to their cognate receptors is one important way in which oestrogen synthase (aromatase) activity is regulated in the brain. This control mechanism is relatively slow (hours to days) but recent data indicate that aromatase activity in quail preoptic-hypothalamic homogenates is also rapidly (within minutes) affected by exposure to conditions that enhance Ca2+-dependent protein phosphorylation. We demonstrate here that Ca2+-dependent phosphorylations controlled by the activity of multiple protein kinases including PKC, and possibly also PKA and CAMK, can rapidly down-regulate aromatase activity in brain homogenates. These phosphorylations directly affect the aromatase molecule itself. Western blotting experiments on aromatase purified by immunoprecipitation reveal the presence on the enzyme of phosphorylated serine, threonine and tyrosine residues in concentrations that are increased by phosphorylating conditions. Cloning and sequencing of the quail aromatase identified a 1541-bp open reading frame that encodes a predicted 490-amino-acid protein containing all the functional domains that have been previously described in the mammalian and avian aromatase. Fifteen predicted consensus phosphorylation sites were identified in this sequence, but only two of these (threonine 455 and 486) match the consensus sequences corresponding to the protein kinases that were shown to affect aromatase activity during the pharmacological experiments (i.e. PKC and PKA). This suggests that the phosphorylation of one or both of these residues represents the mechanism underlying, at least in part, the rapid changes in aromatase activity.
Collapse
Affiliation(s)
- J Balthazart
- Center for Cellular and Molecular Neurobiology, Research Group in Behavioural Neuroendocrinology, University of Liège, 17 place Delcour (Bat. L1), B-4020 Liège, Belgium.
| | | | | | | |
Collapse
|
18
|
Dwyer DS, Vannucci SJ, Simpson IA. Expression, regulation, and functional role of glucose transporters (GLUTs) in brain. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2003; 51:159-88. [PMID: 12420359 DOI: 10.1016/s0074-7742(02)51005-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Donard S Dwyer
- Departments of Psychiatry and Pharmacology, LSU Health Sciences Center, Shreveport, Louisiana 71130, USA
| | | | | |
Collapse
|
19
|
Trailovic SM, Robertson AP, Clark CL, Martin RJ. Levamisole receptor phosphorylation: effects of kinase antagonists on membrane potential responses in Ascaris suum suggest that CaM kinase and tyrosine kinase regulate sensitivity to levamisole. J Exp Biol 2002; 205:3979-88. [PMID: 12432019 DOI: 10.1242/jeb.205.24.3979] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
A two-micropipette current-clamp technique was used to record electrophysiological responses from the somatic muscle of Ascaris suum. Levamisole and acetylcholine were applied to the bag region of the muscle using a microperfusion system. Depolarizations produced by 10 s applications of 10 μmol l-1 levamisole or 20 s applications of 10 μmol l-1 acetylcholine were recorded. The effect on the peak membrane potential change of the kinase antagonists H-7, staurosporine, KN-93 and genistein was observed. H-7 (30 μmol l-1), a non-selective antagonist of protein kinases A, C and G but which has little effect on Ca2+/calmodulin-dependent kinase II (CaM kinase II), did not produce a significant effect on the peak response to levamisole or acetylcholine. Staurosporine (1 μmol l-1), a non-selective kinase antagonist that has effects on protein kinases A, C and G, CaM kinase and tyrosine kinase, reduced the mean peak membrane potential response to levamisole from 6.8 mV to 3.9 mV (P<0.0001) and the mean response to acetylcholine from 5.5 mV to 2.8 mV (P=0.0016). The difference between the effects of H-7 and staurosporine suggested the involvement of CaM kinase II and/or tyrosine kinase. KN-93, a selective CaM kinase II antagonist,reduced the mean peak response to levamisole from 6.2 mV to 2.7 mV(P=0.035) and the mean peak response of acetylcholine from 4.7 mV to 2.0 mV (P=0.0004). The effects indicated the involvement of CaM kinase II in the phosphorylation of levamisole and acetylcholine receptors. The effect of extracellular Ca2+ on the response to levamisole was assessed by comparing responses to levamisole in normal and in low-Ca2+ bathing solutions. The response to levamisole was greater in the presence of Ca2+, an effect that may be explained by stimulation of CaM kinase II. Genistein (90 μmol l-1), a selective tyrosine kinase antagonist, reduced peak membrane potential responses to levamisole from a mean of 6.4 mV to 3.3 mV (P=0.001). This effect indicated the involvement of tyrosine kinase in maintaining the receptor.
Collapse
Affiliation(s)
- Sasa M Trailovic
- Department of Biomedical Sciences, Iowa State University, Ames 50011, USA
| | | | | | | |
Collapse
|
20
|
Tsuru M, Katagiri H, Asano T, Yamada T, Ohno S, Ogihara T, Oka Y. Role of PKC isoforms in glucose transport in 3T3-L1 adipocytes: insignificance of atypical PKC. Am J Physiol Endocrinol Metab 2002; 283:E338-45. [PMID: 12110540 DOI: 10.1152/ajpendo.00457.2001] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
To elucidate the involvement of protein kinase C (PKC) isoforms in insulin-induced and phorbol ester-induced glucose transport, we expressed several PKC isoforms, conventional PKC-alpha, novel PKC-delta, and atypical PKC isoforms of PKC-lambda and PKC-zeta, and their mutants in 3T3-L1 adipocytes using an adenovirus-mediated gene transduction system. Endogenous expression and the activities of PKC-alpha and PKC-lambda/zeta, but not of PKC-delta, were detected in 3T3-L1 adipocytes. Overexpression of each wild-type PKC isoform induced a large amount of PKC activity in 3T3-L1 adipocytes. Phorbol 12-myristrate 13-acetate (PMA) activated PKC-alpha and exogenous PKC-delta but not atypical PKC-lambda/zeta. Insulin also activated the overexpressed PKC-delta but not PKC-alpha. Expression of the wild-type PKC-alpha or PKC-delta resulted in significant increases in glucose transport activity in the basal and PMA-stimulated states. Dominant-negative PKC-alpha expression, which inhibited the PMA activation of PKC-alpha, decreased in PMA-stimulated glucose transport. Glucose transport activity in the insulin-stimulated state was increased by the expression of PKC-delta but not of PKC-alpha. These findings demonstrate that both conventional and novel PKC isoforms are involved in PMA-stimulated glucose transport and that other novel PKC isoforms could participate in PMA-stimulated and insulin-stimulated glucose transport. Atypical PKC-lambda/zeta was not significantly activated by insulin, and expression of the wild-type, constitutively active, and dominant-negative mutants of atypical PKC did not affect either basal or insulin-stimulated glucose transport. Thus atypical PKC enzymes do not play a major role in insulin-stimulated glucose transport in 3T3-L1 adipocytes.
Collapse
Affiliation(s)
- Masatoshi Tsuru
- Third Department of Internal Medicine, Yamaguchi University School of Medicine, Ube, Yamaguchi 755-8505, Japan
| | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
Empirical approaches to discovery of anticancer drugs and cancer treatment have made limited progress in the cure of cancer in the last several decades. Recent advances in technology and expanded knowledge of the molecular basis of tumorigenesis and metastasis have provided unique opportunities to design novel compounds that rationally target the abnormal molecular and biochemical signals leading to cancer. Several such novel agents have completed advanced stages in clinical development. The excellent clinical results achieved by some of these compounds are creating new paradigms in management of patients with neoplastic diseases. Clinical development of these agents also raises challenges to the traditional methods of drug evaluation and measurement of efficacy.
Collapse
Affiliation(s)
- Y A Elsayed
- Developmental Therapeutics Program Clinical Trials Unit, Division of Cancer Treatment and Diagnosis, National Cancer Institute, NIH, Rockville, Maryland 20852, USA
| | | |
Collapse
|
22
|
Millar GA, Hardin JA, Johnson LR, Gall DG. The role of PI 3-kinase in EGF-stimulated jejunal glucose transport. Can J Physiol Pharmacol 2002; 80:77-84. [PMID: 11911228 DOI: 10.1139/y02-012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Epidermal growth factor (EGF) rapidly increases jejunal glucose transport. Signal transduction mechanisms mediating EGF-induced alterations in jejunal glucose transport remain to be determined. New Zealand White rabbit (1 kg) jejunal tissue was stripped and mounted in short-circuited Ussing chambers. The transport of tritiated 3-O-methylglucose was measured in the presence of the PKC agonist 1,2-dioctanoyl-sn-glycerol (1,2-DOG) or the inactive analog 1,3-dioctanoyl-sn-glycerol (1,3-DOG). Additional experiments examined the effect of the PKC inhibitor chelerythrine, the PLC inhibitor U73122, the MAPK inhibitor PD 98059, the G-protein inhibitor GDP-betaS, the PI 3-kinase inhibitor LY294002, or the microtubule inhibitor colchicine on EGF-induced jejunal glucose transport. Net jejunal 3-O-methylglucose absorption was significantly increased following specific activation of PKC. A PKC antagonist inhibited the EGF-induced increase in net 3-O-methylglucose transport, while PI 3-kinase inhibition completely blocked the EGF-induced transport increase. Inhibition of PLC, MAPK, G-proteins, and microtubules had no effect on EGF-stimulated increases in jejunal transport. We conclude that the effect of EGF on jejunal glucose transport is mediated at least in part by PKC and PI 3-kinase.
Collapse
Affiliation(s)
- Grant A Millar
- Gastrointestinal Research Group, Health Sciences Centre, University of Calgary, AB, Canada
| | | | | | | |
Collapse
|
23
|
Kawano Y, Ryder JW, Rincon J, Zierath JR, Krook A, Wallberg-Henriksson H. Evidence against high glucose as a mediator of ERK1/2 or p38 MAPK phosphorylation in rat skeletal muscle. Am J Physiol Endocrinol Metab 2001; 281:E1255-9. [PMID: 11701441 DOI: 10.1152/ajpendo.2001.281.6.e1255] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hyperglycemia leads to multiple changes in insulin signaling in skeletal muscle from people with type 2 diabetes. We hypothesized that mitogen-activated protein kinase (MAPK) signaling cascades may be directly activated by an acute exposure to high extracellular glucose concentrations. We determined whether an elevation in the extracellular glucose concentration would induce signal transduction in skeletal muscle via MAPK cascades. Epitrochlearis muscles were incubated in the presence of 5 or 25 mM glucose. Exposure of muscle to either hyperosmosis (600 mM mannitol) or insulin (6 nM) led to a marked increase in extracellular signal-regulated protein kinase (ERK)1/2 phosphorylation. Hyperosmosis elicited a 5.2-fold increase in p38 phosphorylation (P < 0.05), whereas insulin was without effect. ERK1/2 phosphorylation was not increased by high glucose exposure. After a 20-min exposure to 25 mM glucose, a tendency toward repressed (23%) p38 phosphorylation was observed (P = 0.06). No effect of high glucose was noted on signal transduction to signal transducer and activator of transcription 3 and Akt. In conclusion, short-term exposure of skeletal muscle to high levels of glucose does not appear to alter ERK1/2 or p38 MAPK phosphorylation.
Collapse
Affiliation(s)
- Y Kawano
- Department of Clinical Physiology, Karolinska Hospital, S-171 76 Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
24
|
Heinzinger H, van den Boom F, Tinel H, Wehner F. In rat hepatocytes, the hypertonic activation of Na(+) conductance and Na(+)-K(+)-2Cl(-) symport--but not Na(+)-H(+) antiport--is mediated by protein kinase C. J Physiol 2001; 536:703-15. [PMID: 11691866 PMCID: PMC2278910 DOI: 10.1111/j.1469-7793.2001.00703.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
1. The initial event in the regulatory volume increase (RVI) of rat hepatocytes is an import of extracellular Na(+) via Na(+) conductance, Na(+)-K(+)-2Cl(-) symport, and Na(+)-H(+) antiport. 2. Here, the protein kinase inhibitors staurosporine (100 nmol l(-1)) and bis-indolyl-maleimide I (400 nmol l(-1)) were used to test for a possible contribution of protein kinase C (PKC) to the hypertonic activation of these transporters in confluent primary cultures. 3. Stimulation of Na(+) conductance was monitored: (i) by use of a differential approach based on Na(+) fluxes, (ii) by means of cable analysis, and (iii) in experiments with low Na(+) pulses. All three experimental protocols in concert demonstrated a block of the activation of Na(+) conductance by staurosporine and bis-indolyl-maleimide I. 4. In addition, both compounds significantly reduced the hypertonic activation of Na(+)-K(+)-2Cl(-) symport (quantified on the basis of furosemide-sensitive (86)Rb(+) uptake) to approximately 30 %. 5. In contrast, neither staurosporine nor bis-indolyl-maleimide I had any detectable effect on the hypertonicity-induced alkalinization of cell pH via Na(+)-H(+) antiport (determined fluorometrically). 6. Staurosporine and bis-indolyl-maleimide I completely blocked the RVI of rat hepatocytes (quantified by means of confocal laser-scanning microscopy). The high efficiency of the block suggests an additional inhibitory effect of both compounds on the activity of Na(+)/K(+)-ATPase (determined as ouabain-sensitive (86)Rb(+) uptake). 7. It is concluded that the hypertonic activation of rat hepatocyte Na(+) conductance and Na(+)-K(+)-2Cl(-) symport--but not Na(+)-H(+) antiport--is probably mediated by PKC.
Collapse
Affiliation(s)
- H Heinzinger
- Max-Planck-Institut für molekulare Physiologie, Abteilung Epithelphysiologie, Dortmund, Germany
| | | | | | | |
Collapse
|
25
|
Mittaud P, Marangi PA, Erb-Vögtli S, Fuhrer C. Agrin-induced activation of acetylcholine receptor-bound Src family kinases requires Rapsyn and correlates with acetylcholine receptor clustering. J Biol Chem 2001; 276:14505-13. [PMID: 11278328 DOI: 10.1074/jbc.m007024200] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
During neuromuscular synaptogenesis, neurally released agrin induces aggregation and tyrosine phosphorylation of acetylcholine receptors (AChRs) by acting through both the receptor tyrosine kinase MuSK (muscle-specific kinase) and the AChR-associated protein, rapsyn. To elucidate this signaling mechanism, we examined tyrosine phosphorylation of AChR-associated proteins, particularly addressing whether agrin activates Src family kinases bound to the AChR. In C2 myotubes, agrin induced tyrosine phosphorylation of these kinases, of AChR-bound MuSK, and of the AChR beta and delta subunits, as observed in phosphotyrosine immunoblotting experiments. Kinase assays revealed that the activity of AChR-associated Src kinases was increased by agrin, whereas phosphorylation of the total cellular kinase pool was unaffected. In both rapsyn-deficient myotubes and staurosporine-treated C2 myotubes, where AChRs are not clustered, agrin activated MuSK but did not cause either Src family or AChR phosphorylation. In S27 mutant myotubes, which fail to aggregate AChRs, no agrin-induced phosphorylation of AChR-bound Src kinases, MuSK, or AChRs was observed. These results demonstrate first that agrin leads to phosphorylation and activation of AChR-associated Src-related kinases, which requires rapsyn, occurs downstream of MuSK, and causes AChR phosphorylation. Second, this activation intimately correlates with AChR clustering, suggesting that these kinases may play a role in agrin-induced AChR aggregation by forming an AChR-bound signaling cascade.
Collapse
Affiliation(s)
- P Mittaud
- Brain Research Institute, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | | | | | | |
Collapse
|
26
|
Sausville EA, Arbuck SG, Messmann R, Headlee D, Bauer KS, Lush RM, Murgo A, Figg WD, Lahusen T, Jaken S, Jing X, Roberge M, Fuse E, Kuwabara T, Senderowicz AM. Phase I trial of 72-hour continuous infusion UCN-01 in patients with refractory neoplasms. J Clin Oncol 2001; 19:2319-33. [PMID: 11304786 DOI: 10.1200/jco.2001.19.8.2319] [Citation(s) in RCA: 229] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PURPOSE To define the maximum tolerated dose (MTD) and dose-limiting toxicity (DLT) of the novel protein kinase inhibitor, UCN-01 (7-hydroxystaurosporine), administered as a 72-hour continuous intravenous infusion (CIV). PATIENTS AND METHODS Forty-seven patients with refractory neoplasms received UCN-01 during this phase I trial. Total, free plasma, and salivary concentrations were determined; the latter were used to address the influence of plasma protein binding on peripheral tissue distribution. The phosphorylation state of the protein kinase C (PKC) substrate alpha-adducin and the abrogation of DNA damage checkpoint also were assessed. RESULTS The recommended phase II dose of UCN-01 as a 72-hour CIV is 42.5 mg/m(2)/d for 3 days. Avid plasma protein binding of UCN-01, as measured during the trial, dictated a change in dose escalation and administration schedules. Therefore, nine patients received drug on the initial 2-week schedule, and 38 received drug on the recommended 4-week schedule. DLTs at 53 mg/m(2)/d for 3 days included hyperglycemia with resultant metabolic acidosis, pulmonary dysfunction, nausea, vomiting, and hypotension. Pharmacokinetic determinations at the recommended dose of 42.5 mg/m(2)/d for 3 days included mean total plasma concentration of 36.4 microM (terminal elimination half-life range, 447 to 1176 hours), steady-state volume of distribution of 9.3 to 14.2 L, and clearances of 0.005 to 0.033 L/h. The mean total salivary concentration was 111 nmol/L of UCN-01. One partial response was observed in a patient with melanoma, and one protracted period ( > 2.5 years) of disease stability was observed in a patient with alk-positive anaplastic large-cell lymphoma. Preliminary evidence suggests UCN-01 modulation of both PKC substrate phosphorylation and the DNA damage-related G(2) checkpoint. CONCLUSION UCN-01 can be administered safely as an initial 72-hour CIV with subsequent monthly doses administered as 36-hour infusions.
Collapse
Affiliation(s)
- E A Sausville
- Developmental Therapeutics Program Clinical Trials Unit, Medicine Branch, and Investigational Drug Branch, Cancer Therapy Evaluation Program, National Cancer Institute, Bethesda, MD 20852, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Takahashi A, Tanaka S, Miwa Y, Yoshida H, Ikegami A, Niikawa J, Mitamura K. Involvement of calmodulin and protein kinase C in cholecystokinin release by bombesin from STC-1 cells. Pancreas 2000; 21:231-9. [PMID: 11039466 DOI: 10.1097/00006676-200010000-00003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The mouse intestinal neuroendocrine tumor cell line STC-1 secretes cholecystokinin (CCK) and other hormones. We investigated the role of Ca2+, calmodulin (CaM), and protein kinase C (PKC) in the regulation of CCK release from STC-1 cells. Phorbol 12-myristate 13-acetate (TPA) significantly stimulated CCK release. Staurosporine significantly inhibited CCK release from STC-1 cells stimulated by TPA in a dose-dependent manner. The absence of extracellular calcium completely inhibited CCK release from TPA-stimulated STC-1 cells. Neurotensin did not stimulate CCK release from these cells. W-7, a CaM antagonist, reduced CCK release from STC-1 cells stimulated by bombesin in a dose-dependent manner. These findings suggest that CaM and PKC play an important role in the regulation of CCK release from STC-1 cells stimulated by bombesin.
Collapse
Affiliation(s)
- A Takahashi
- Second Department of Internal Medicine, Showa University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
28
|
Sims KD, Straff DJ, Robinson MB. Platelet-derived growth factor rapidly increases activity and cell surface expression of the EAAC1 subtype of glutamate transporter through activation of phosphatidylinositol 3-kinase. J Biol Chem 2000; 275:5228-37. [PMID: 10671571 DOI: 10.1074/jbc.275.7.5228] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Na(+)-dependent glutamate transporters are the primary mechanism for removal of excitatory amino acids (EAAs) from the extracellular space of the central nervous system and influence both physiologic and pathologic effects of these compounds. Recent evidence suggests that the activity and cell surface expression of a neuronal subtype of glutamate transporter, EAAC1, are rapidly increased by direct activation of protein kinase C and are decreased by wortmannin, an inhibitor of phosphatidylinositol 3-kinase (PI3-K). We hypothesized that this regulation could be analogous to insulin-induced stimulation of the GLUT4 subtype of glucose transporter, which is dependent upon activation of PI3-K. Using C6 glioma, a cell line that endogenously and selectively expresses EAAC1, we report that platelet-derived growth factor (PDGF) increased Na(+)-dependent L-[(3)H]-glutamate transport activity within 30 min. This effect of PDGF was not due to a change in total cellular EAAC1 immunoreactivity but was instead correlated with an increase cell surface expression of EAAC1, as measured using a membrane impermeant biotinylation reagent combined with Western blotting. A decrease in nonbiotinylated intracellular EAAC1 was also observed. These studies suggest that PDGF causes a redistribution of EAAC1 from an intracellular compartment to the cell surface. These effects of PDGF were accompanied by a 35-fold increase in PI3-K activity and were blocked by the PI3-K inhibitors, wortmannin and LY 294002, but not by an inhibitor of protein kinase C. Other growth factors, including insulin, nerve growth factor, and epidermal growth factor had no effect on glutamate transport nor did they increase PI3-K activity. These studies suggest that, as is observed for insulin-mediated translocation of GLUT4, EAAC1 cell surface expression can be rapidly increased by PDGF through activation of PI3-K. It is possible that this PDGF-mediated increase in EAAC1 activity may contribute to the previously demonstrated neuroprotective effects of PDGF.
Collapse
Affiliation(s)
- K D Sims
- Department of Neuroscience, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | |
Collapse
|
29
|
Ito S, Nemoto T, Satoh S, Sekihara H, Seyama Y, Kubota S. Human rhabdomyosarcoma cells retain insulin-regulated glucose transport activity through glucose transporter 1. Arch Biochem Biophys 2000; 373:72-82. [PMID: 10620325 DOI: 10.1006/abbi.1999.1535] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We evaluated the expression of glucose transporter (glut) isoforms and its function in RD cells, human rhabdomyosarcoma, which retain the potential to differentiate into muscle. Gluts 1, 3, and 4 were expressed in RD cells, as detected by reverse-transcription polymerase chain reaction and immunocytochemistry. Supraphysiological concentration (1 microM) of insulin treatment increased 2-deoxy glucose transport by up to 1.68-fold together with concomitant tyrosine phosphorylation of the insulin receptor beta subunit and of insulin receptor substrate 1. Suppression of glut 1 mRNA by 38% by antisense oligonucleotide transfection led to a reduction of basal and insulin-stimulated 2-deoxy glucose transport by 38 and 55%, respectively. Suppression of gluts 3 and 4 by antisense oligonucleotide transfection did not affect both basal and insulin-stimulated 2-deoxy glucose transport. Thus, glut 1 accounts for the major part of basal and insulin-stimulated glucose transport in RD cells. Next, we transfected expression vectors carrying human gluts 1 and 4 cDNAs into RD cells to add further support for the role of glut 1 in glucose transport. Overexpression of glut 1 stimulated basal and insulin-stimulated 2-deoxy glucose transport by 1.66- and 1.43-fold, respectively. Glut 4 overexpression did not affect basal and insulin-stimulated 2-deoxy glucose transport. Western blot analysis using glut 1 antibody showed that glut 1 was redistributed from intracellular membrane to plasma membrane. These observations support the notion that RD cells, with the potential to differentiate into muscle, retain insulin responsiveness. As human muscle cell lines are not available at this point, RD cells can serve as a useful alternative to human muscle for studies related to insulin signal transduction and glucose transport.
Collapse
Affiliation(s)
- S Ito
- Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | | | | | | | | | | |
Collapse
|
30
|
Khil LY, Han SS, Kim SG, Chang TS, Jeon SD, So DS, Moon CK. Effects of brazilin on GLUT4 recruitment in isolated rat epididymal adipocytes. Biochem Pharmacol 1999; 58:1705-12. [PMID: 10571244 DOI: 10.1016/s0006-2952(99)00275-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The effects of brazilin on glucose transport into isolated rat epididymal adipocytes were investigated. Brazilin increased [3H]2-deoxy-D-glucose uptake, which was characterized by an increase in Vmax with no effect on the Km value. Phenylarsine oxide, which inhibits the translocation of glucose transporters, decreased brazilin-stimulated glucose transport to the basal level. The inhibition of phosphatidylinositol 3-kinase (PI3-kinase) with wortmannin also blocked brazilin-stimulated glucose transport. Western blot analysis with an anti-GLUT4 antibody revealed that brazilin increased the translocation of GLUT4 from intracellular pools to the plasma membrane. Brazilin, in combination with phorbol ester, showed an additive effect on glucose transport. The stimulating effect of phorbol ester on glucose transport was inhibited by staurosporine, but the effect of brazilin remained unchanged. Protein kinase C activity was not influenced by brazilin treatment. The inhibition of protein synthesis showed no effect on brazilin-stimulated glucose transport, and GLUT4 content in the total membrane fraction was not altered as a result of treatment with brazilin for 4 hr. Metabolic labeling of GLUT4 with [35S]methionine showed that de novo synthesis of GLUT4 was not induced by brazilin. These data suggest that brazilin may increase glucose transport by recruitment of GLUT4 from intracellular pools to the plasma membrane of adipocytes via the activation of PI3-kinase. However, the effect of brazilin may not be mediated by GLUT4 synthesis and protein kinase C activation.
Collapse
Affiliation(s)
- L Y Khil
- College of Pharmacy, Seoul National University, Kwanak-Gu, Korea
| | | | | | | | | | | | | |
Collapse
|
31
|
Walaas O, Horn RS, Walaas SI. Inhibition of insulin-stimulated phosphorylation of the intracellular domain of phospholemman decreases insulin-dependent GLUT4 translocation in streptolysin-O-permeabilized adipocytes. Biochem J 1999; 343 Pt 1:151-157. [PMID: 10493924 DOI: 10.1042/0264-6021:3430151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
A variety of studies indicate that protein kinase C might be involved in the insulin signalling cascade leading to translocation of the insulin-regulated glucose transporter GLUT4 from intracellular pools to the plasma membrane. Phospholemman is a plasma-membrane protein kinase C substrate whose phosphorylation is increased by insulin in intact muscle [Walaas, Czernik, Olstad, Sletten and Walaas (1994) Biochem. J. 304, 635-640]. The present study examined whether the inhibition of phospholemman phosphorylation modulates the effects of insulin on GLUT4 translocation. For this purpose, a synthetic peptide derived from the intracellular domain of phospholemman with the phosphorylatable serine residues replaced with alanine residues was prepared. This peptide was found to decrease the protein kinase C-catalysed phosphorylation of a synthetic phospholemman peptide in vitro. When introduced into streptolysin-O-permeabilized adipocytes, the peptide decreased the effects of insulin on both the phosphorylation of phospholemman and the recruitment of GLUT4 to the plasma membrane. Similarly, the internalization of phospholemman antibodies, which also decreased the protein kinase C-mediated phosphorylation of the synthetic phospholemman peptide in vitro, decreased the effect of insulin on GLUT4 translocation in the adipocytes. The results suggest that phosphorylation of the intracellular domain of phospholemman might be involved in modulating the insulin-induced translocation of GLUT4 to the plasma membrane.
Collapse
Affiliation(s)
- O Walaas
- Neurochemical Laboratory, University of Oslo, P.O. Box 1115-Blindern, 0317 Oslo, Norway
| | | | | |
Collapse
|
32
|
Russell RR, Bergeron R, Shulman GI, Young LH. Translocation of myocardial GLUT-4 and increased glucose uptake through activation of AMPK by AICAR. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 277:H643-9. [PMID: 10444490 DOI: 10.1152/ajpheart.1999.277.2.h643] [Citation(s) in RCA: 296] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Insulin increases glucose uptake through the translocation of GLUT-4 via a pathway mediated by phosphatidylinositol 3-kinase (PI3K). In contrast, myocardial glucose uptake during ischemia and hypoxia is stimulated by the translocation of GLUT-4 to the surface of cardiac myocytes through a PI3K-independent pathway that has not been characterized. AMP-activated protein kinase (AMPK) activity is also increased by myocardial ischemia, and we examined whether AMPK stimulates glucose uptake and GLUT-4 translocation. In isolated rat ventricular papillary muscles, 5-aminoimidazole-4-carboxyamide-1-beta-D-ribofuranoside (AICAR), an activator of AMPK, as well as cyanide-induced chemical hypoxia and insulin, increased 2-[(3)H]deoxyglucose uptake two- to threefold. Wortmannin, a PI3K inhibitor, did not affect either the AICAR- or the cyanide-stimulated increase in deoxyglucose uptake but eliminated the insulin-stimulated increase in deoxyglucose uptake. Immunofluorescence studies demonstrated translocation of GLUT-4 to the myocyte sarcolemma in response to stimulation with AICAR, cyanide, or insulin. Preincubation of papillary muscles with the kinase inhibitor iodotubercidin or adenine 9-beta-D-arabinofuranoside (araA), a precursor of araATP (a competitive inhibitor of AMPK), decreased AICAR- and cyanide-stimulated glucose uptake but did not affect basal or insulin-stimulated glucose uptake. In vivo infusion of AICAR caused myocardial AMPK activation and GLUT-4 translocation in the rat. We conclude that AMPK activation increases cardiac muscle glucose uptake through translocation of GLUT-4 via a pathway that is independent of PI3K. These findings suggest that AMPK activation may be important in ischemia-induced translocation of GLUT-4 in the heart.
Collapse
Affiliation(s)
- R R Russell
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | | | | | |
Collapse
|
33
|
Biggs TE, Cooke SJ, Barton CH, Harris MP, Saksela K, Mann DA. Induction of activator protein 1 (AP-1) in macrophages by human immunodeficiency virus type-1 NEF is a cell-type-specific response that requires both hck and MAPK signaling events. J Mol Biol 1999; 290:21-35. [PMID: 10388555 DOI: 10.1006/jmbi.1999.2849] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Human immunodeficiency virus type 1 (HIV-1) Nef is important for viral infectivity and pathogenicity. HIV-1 infection is associated with inappropriate activation and defects in the function of monocytes/macrophages. We have studied the effects of HIV-1 Nef in the murine (RAW264.7) and human (THP-1) monocyte-macrophage cell lines. Investigation of the activator protein-1 (AP-1) transcription factor showed that Nef expression induced both its DNA binding and transcriptional activities. Increased AP-1 DNA binding activity in RAW264.7 cells was associated with raised levels of c-Fos expression and induction of mRNA for the AP-1 responsive tissue inhibitor of metalloproteinases-1 (TIMP-1) gene. Mutagenesis and kinase inhibition studies were employed to determine signaling pathways used by Nef to induce AP-1. Data from these studies indicated that induction of AP-1 by Nef is likely to be mediated through the MAPK (ERK1 and 2) signaling pathway and requires the proline-rich PxxP motif of Nef, suggesting the involvement of upstream protein kinases belonging to the Src family. Effects of Nef on AP-1 induction were cell lineage-specific, being stimulatory in macrophages, inhibitory in T cells and without effect in HeLa cells. These latter two observations led us to test the possibility that cell-specific interactions of Nef with Src family proteins may modulate AP-1 activity. To this end we demonstrated that a dominant-negative Hck mutant caused inhibition of Nef-mediated AP-1 DNA binding activity in RAW cells. In conclusion, induction of AP-1 by Nef is a specific feature of human and murine macrophage cell lines that requires signal transduction events involving Hck and MAPKs.
Collapse
Affiliation(s)
- T E Biggs
- Southampton General Hospital, Southampton, SO16 6YD, UK
| | | | | | | | | | | |
Collapse
|
34
|
Su YQ, Xia GL, Byskov AG, Fu GD, Yang CR. Protein kinase C and intracellular calcium are involved in follicle-stimulating hormone-mediated meiotic resumption of cumulus cell-enclosed porcine oocytes in hypoxanthine-supplemented medium. Mol Reprod Dev 1999; 53:51-8. [PMID: 10230816 DOI: 10.1002/(sici)1098-2795(199905)53:1<51::aid-mrd6>3.0.co;2-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The present experiments were conducted to examine the hypothesis that follicle-stimulating hormone (FSH) can stimulate the hydrolysis of phosphoinositide, generating the intracellular second messengers to activate protein kinase C and mobilizing intracellular calcium, thus inducing oocyte meiotic resumption. Pig cumulus cell-enclosed oocytes (CEO) were cultured for 24 hr in 4 mM hypoxanthine (HX)-supplemented medium and treated with different agents in the following designs: (1) CEO were treated with neomycin (an inhibitor of phosphoinositide hydrolysis) in the presence of FSH or only treated with 7,12-dimethylbenzin(a) anthracene (DMBA, a tumor promoter which can cause phosphorylation of phospholipase C (PLC), formation of inositol triphophate, and mobilization of intracellular calcium) to mimic the direct activation of PLC; (2) CEO were challenged by FSH, together with sphingosine or staurosporine (two kinds of PKC inhibitors); or treated with phorbol myristate acetate (PMA, an activator of PKC) separately; (3) CEO were primed with BAPTA/AM (an intracellular calcium chelator) or BAPTA/AM +FSH for 60 min, and then transferred into a new culture medium supplemented with FSH but without BAPTA/AM; total culture time was 24 hr. At the end of the culture, the incidence of germinal vesicle breakdown (GVBD) was calculated. The results showed that: (1) FSH (100 U/liter) could stimulate pig CEO to override the arrest of HX and resume meiosis; DMBA (10(-8)-10(-5) M) itself also had such a kind of effect; whereas neomycin, at the level of 10-20 mM, could dramatically inhibit the stimulatory effect of FSH. (2) Staurosporine (10(-9)-10(-6) M) or sphingosine (10(-8)-10(-5) M) could also inhibit the effect of FSH in a dose-dependent manner on stimulating CEO to resume meiosis. However, PMA (10(-8)-10(-5) M) alone had a dual effect on the meiotic resumption of pig CEO. PMA, at the level of 10(-8)-10(-6) M, could stimulate CEO to resume meiosis, and at high concentration of 10(-5) M , it could even enhance the inhibitory effect of HX. (3) Priming CEO with BAPTA/AM only or BAPTA/AM +FSH for 60 min could significantly inhibit the effect of FSH in a dose-dependent manner. These results indicate that in the process of ligand-mediated meiotic resumption of pig CEO, FSH can stimulate the hydrolysis of phosphoinositide leading to the activation of PKC and mobilization of intracellular calcium; and suggest that multiple signaling pathways and signal interaction are involved in this process.
Collapse
Affiliation(s)
- Y Q Su
- College of Biological Sciences, China Agricultural University, Beijing, People's Republic of China
| | | | | | | | | |
Collapse
|
35
|
Yoshikawa T, Noguchi Y, Satoh S. Inhibition of IRS-1 phosphorylation and the alterations of GLUT4 in isolated adipocytes from cachectic tumor-bearing rats. Biochem Biophys Res Commun 1999; 256:676-81. [PMID: 10080958 DOI: 10.1006/bbrc.1999.0394] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cellular and molecular mechanisms of insulin resistance in isolated adipocytes from methylcholanthrene-induced sarcoma-bearing rats were investigated by measuring 3-O-[14C]methyl glucose transport activity, glucose transporter-4 (GLUT4) protein in both plasma membrane and low-density microsomes, and insulin-stimulated tyrosine phosphorylation of the insulin receptor (IR) and insulin receptor substrate-1 (IRS-1). Compared to both pair-fed and freely fed controls, tumor-bearing rats (TBR) had a decreased insulin-stimulated glucose transport activity with a lower Vmax and a higher EC50. GLUT4 protein in low-density microsomes from adipocytes maintained at the basal state was less in TBR than in controls. In insulin-stimulated adipocytes, GLUT4 protein in plasma membranes was also less in tumor-bearing rats than in controls. Insulin-induced tyrosine phosphorylation of IRS-1 was less in TBR than controls, but that of the IR was similar among the three groups. These data suggest that the insulin resistance seen in adipose cells of these tumor-bearing rats was caused in part by a decreased amount of GLUT4 protein in both basal and insulin-stimulated states resulting from the selective inhibition of insulin-stimulated phosphorylation of IRS-1.
Collapse
Affiliation(s)
- T Yoshikawa
- First Department of Surgery, Third Department of Internal Medicine, Yokohama City University, School of Medicine, 3-9 Fukuura, Yokohama, Kanazawa-Ku, 236-0004, Japan.
| | | | | |
Collapse
|
36
|
Ahmed N, Berridge MV. Distinct regulation of glucose transport by interleukin-3 and oncogenes in a murine bone marrow-derived cell line. Biochem Pharmacol 1999; 57:387-96. [PMID: 9933027 DOI: 10.1016/s0006-2952(98)00267-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Growth factors and oncogenes promote glucose uptake, but the extent to which increased uptake is regulated at the level of glucose transporter function has not been clearly established. In this paper, we show that interleukin-3 (IL-3), a cytokine growth factor, and the transforming oncogenes ras and abl alter the activation state of glucose transporters by distinct mechanisms. Using bone marrow-derived IL-3-dependent 32Dc13 (32D clone 3) cells and 32D cells transformed with ras and abl oncogenes, we demonstrated that IL-3 enhanced [3H]-2-deoxyglucose (2-DOG) uptake in parental 32Dc13 cells by 40-50% at 0.2 mM 2-DOG, and this was associated with a 2.5-fold increase in transporter affinity for glucose (reduced Km). In comparison, ras and abl oncogenes enhanced 2-DOG uptake by 72-112%, associated with a 2-fold greater transporter affinity for glucose. The tyrosine kinase inhibitor genistein reversed the effects of both IL-3 and oncogenes on glucose uptake and reduced transporter affinity for glucose. Likewise, with exponentially growing 32D cells in the presence of IL-3, a protein kinase C inhibitor, staurosporine, and a phosphatidylinositol 3-kinase (PI-3) kinase inhibitor, wortmannin, inhibited 2-DOG uptake and decreased transporter affinity for glucose. In contrast, in oncogene-transformed cells, staurosporine inhibited 2-DOG uptake but failed to decrease transporter affinity for glucose, whereas wortmannin did not affect 2-DOG uptake. Inhibition of protein tyrosine phosphatases with vanadate enhanced 2-DOG uptake and transporter affinity for glucose in parental cells and in ras-transformed cells but had little effect on abl-transformed cells. Consistently, the serine/threonine phosphatase type 2A inhibitor okadaic acid enhanced 2-DOG uptake and transporter affinity for glucose in parental cells but had little effect on ras- or abl-transformed cells. These results demonstrate differences in the regulation of glucose transport in parental and oncogene-transformed 32D cells. Thus, IL-3 responses are dependent upon tyrosine, serine/threonine, and PI-3 kinases, whereas ras and abl effects on glucose transport depend upon tyrosine phosphorylation but are compromised in their dependence upon serine/threonine and PI-3 kinases.
Collapse
Affiliation(s)
- N Ahmed
- Malaghan Institute of Medical Research, Wellington School of Medicine, Wellington South, New Zealand.
| | | |
Collapse
|
37
|
Formisano P, Oriente F, Miele C, Caruso M, Auricchio R, Vigliotta G, Condorelli G, Beguinot F. In NIH-3T3 fibroblasts, insulin receptor interaction with specific protein kinase C isoforms controls receptor intracellular routing. J Biol Chem 1998; 273:13197-202. [PMID: 9582362 DOI: 10.1074/jbc.273.21.13197] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Insulin increased protein kinase C (PKC) activity by 2-fold in both membrane preparations and insulin receptor (IR) antibody precipitates from NIH-3T3 cells expressing human IRs (3T3hIR). PKC-alpha, -delta, and -zeta were barely detectable in IR antibody precipitates of unstimulated cells, while increasing by 7-, 3.5-, and 3-fold, respectively, after insulin addition. Preexposure of 3T3hIR cells to staurosporine reduced insulin-induced receptor coprecipitation with PKC-alpha, -delta, and -zeta by 3-, 4-, and 10-fold, respectively, accompanied by a 1.5-fold decrease in insulin degradation and a similar increase in insulin retroendocytosis. Selective depletion of cellular PKC-alpha and -delta, by 24 h of 12-O-tetradecanoylphorbol-13-acetate (TPA) exposure, reduced insulin degradation by 3-fold and similarly increased insulin retroendocytosis, with no change in PKC-zeta. In lysates of NIH-3T3 cells expressing the R1152Q/K1153A IRs (3T3Mut), insulin-induced coprecipitation of PKC-alpha, -delta, and -zeta with the IR was reduced by 10-, 7-, and 3-fold, respectively. Similar to the 3T3hIR cells chronically exposed to TPA, untreated 3T3Mut featured a 3-fold decrease in insulin degradation, with a 3-fold increase in intact insulin retroendocytosis. Thus, in NIH-3T3 cells, insulin elicits receptor interaction with multiple PKC isoforms. Interaction of PKC-alpha and/or -delta with the IR appears to control its intracellular routing.
Collapse
Affiliation(s)
- P Formisano
- Dipartimento di Biologia e Patologia Cellulare e Molecolare "L. Califano" and Centro di Endocrinologia ed Oncolgia Sperimentale del Consiglio Nazionale delle Ricerche (CNR), "Federico II" University of Naples Medical School, Naples, Italy
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Multiple signaling pathways regulate cell surface expression and activity of the excitatory amino acid carrier 1 subtype of Glu transporter in C6 glioma. J Neurosci 1998. [PMID: 9502808 DOI: 10.1523/jneurosci.18-07-02475.1998] [Citation(s) in RCA: 212] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Neuronal and glial sodium-dependent transporters are crucial for the control of extracellular glutamate levels in the CNS. The regulation of these transporters is relatively unexplored, but the activity of other transporters is regulated by protein kinase C (PKC)- and phosphatidylinositol 3-kinase (PI3K)-mediated trafficking to and from the cell surface. In the present study the C6 glioma cell line was used as a model system that endogenously expresses the excitatory amino acid carrier 1 (EAAC1) subtype of neuronal glutamate transporter. As previously observed, phorbol 12-myristate 13-acetate (PMA) caused an 80% increase in transporter activity within minutes that cannot be attributed to the synthesis of new transporters. This increase in activity correlated with an increase in cell surface expression of EAAC1 as measured by using a membrane-impermeant biotinylation reagent. Both effects of PMA were blocked by the PKC inhibitor bisindolylmaleimide II (Bis II). The putative PI3K inhibitor, wortmannin, decreased L-[3H]-glutamate uptake activity by >50% within minutes. Wortmannin decreased the Vmax of L-[3H]-glutamate and D-[3H]-aspartate transport, but it did not affect Na+-dependent [3H]-glycine transport. Wortmannin also decreased cell surface expression of EAAC1. Although wortmannin did not block the effects of PMA on activity, it prevented the PMA-induced increase in cell surface expression. This trafficking of EAAC1 also was examined with immunofluorescent confocal microscopy, which supported the biotinylation studies and also revealed a clustering of EAAC1 at cell surface after treatment with PMA. These studies suggest that the trafficking of the neuronal glutamate transporter EAAC1 is regulated by two independent signaling pathways and also may suggest a novel endogenous protective mechanism to limit glutamate-induced excitotoxicity.
Collapse
|
39
|
Davis KE, Straff DJ, Weinstein EA, Bannerman PG, Correale DM, Rothstein JD, Robinson MB. Multiple signaling pathways regulate cell surface expression and activity of the excitatory amino acid carrier 1 subtype of Glu transporter in C6 glioma. J Neurosci 1998; 18:2475-85. [PMID: 9502808 PMCID: PMC6793087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/1997] [Revised: 01/09/1998] [Accepted: 01/09/1998] [Indexed: 02/06/2023] Open
Abstract
Neuronal and glial sodium-dependent transporters are crucial for the control of extracellular glutamate levels in the CNS. The regulation of these transporters is relatively unexplored, but the activity of other transporters is regulated by protein kinase C (PKC)- and phosphatidylinositol 3-kinase (PI3K)-mediated trafficking to and from the cell surface. In the present study the C6 glioma cell line was used as a model system that endogenously expresses the excitatory amino acid carrier 1 (EAAC1) subtype of neuronal glutamate transporter. As previously observed, phorbol 12-myristate 13-acetate (PMA) caused an 80% increase in transporter activity within minutes that cannot be attributed to the synthesis of new transporters. This increase in activity correlated with an increase in cell surface expression of EAAC1 as measured by using a membrane-impermeant biotinylation reagent. Both effects of PMA were blocked by the PKC inhibitor bisindolylmaleimide II (Bis II). The putative PI3K inhibitor, wortmannin, decreased L-[3H]-glutamate uptake activity by >50% within minutes. Wortmannin decreased the Vmax of L-[3H]-glutamate and D-[3H]-aspartate transport, but it did not affect Na+-dependent [3H]-glycine transport. Wortmannin also decreased cell surface expression of EAAC1. Although wortmannin did not block the effects of PMA on activity, it prevented the PMA-induced increase in cell surface expression. This trafficking of EAAC1 also was examined with immunofluorescent confocal microscopy, which supported the biotinylation studies and also revealed a clustering of EAAC1 at cell surface after treatment with PMA. These studies suggest that the trafficking of the neuronal glutamate transporter EAAC1 is regulated by two independent signaling pathways and also may suggest a novel endogenous protective mechanism to limit glutamate-induced excitotoxicity.
Collapse
Affiliation(s)
- K E Davis
- Department of Neuroscience, Children's Hospital of Philadelphia, Children's Seashore House, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Reks SE, Smith PH, Messina JL, Weinstock RS. Translocation of PKC delta by insulin in a rat hepatoma cell line. Endocrine 1998; 8:161-7. [PMID: 9704573 DOI: 10.1385/endo:8:2:161] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/1997] [Accepted: 01/12/1998] [Indexed: 02/08/2023]
Abstract
The aim of this study was to examine the effects of insulin and phorbol 12-myristate 13-acetate (PMA), an activator of classic and novel PKCs, on the translocation of PKC from cytosol to membrane in H4IIE (H4) rat hepatoma cells. Six PKC isoforms were expressed, including PKC-mu and PKC-lambda, identified for the first time in this hepatoma-cell line. Insulin induced translocation of PKC-delta from the cytosol to the membrane fraction as early as 15 min and maximally at 60 min with levels returning to that of controls by 180 min. Insulin also decreased levels of PKC-zeta in membranes at 5, 10, 15, and 30 min, but had no effect on cytosol levels. Ten minutes of PMA treatment translocated PKC-delta completely, and 24 h of PMA treatment downregulated PKC-delta. Neither acute nor chronic PMA had any effect on PKC-zeta. These studies establish the ability of both insulin and PMA to activate PKC-delta in H4 cells, and coupled with our previous work demonstrating a diminution of the effect of insulin on gene transcription in PKC downregulated cells, suggest that insulin may exert specific effects, in part, through a PKC-dependent pathway.
Collapse
Affiliation(s)
- S E Reks
- Department of Medicine, SUNY Health Science Center, Syracuse 13210, USA
| | | | | | | |
Collapse
|
41
|
Malide D, Davies-Hill TM, Levine M, Simpson IA. Distinct localization of GLUT-1, -3, and -5 in human monocyte-derived macrophages: effects of cell activation. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 274:E516-26. [PMID: 9530136 DOI: 10.1152/ajpendo.1998.274.3.e516] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We determined subcellular localization of GLUT-1, GLUT-3, and GLUT-5 as human monocytes differentiate into macrophages in culture, and effects of the activating agents N-formyl-methionyl-leucyl-phenylalanine (fMLP) and phorbol myristate acetate (PMA). Western blot analysis demonstrated progressively increased GLUT-1, rapidly decreased GLUT-3, and a delayed increase of GLUT-5 expression during differentiation. Confocal microscopy revealed that each isoform displayed a unique subcellular distribution and cell-activation response. GLUT-1 was localized primarily to the cell surface but was also detected in the perinuclear region in a pattern characteristic of recycling endosomes. GLUT-3 exhibited predominantly a distinct vesicle-like staining but was present only in monocytes. GLUT-5 was found primarily at the cell surface but was detectable intracellularly. Activation with fMLP induced similar GLUT-1 and GLUT-5 redistributions from intracellular compartments toward the cell surface. PMA elicited a similar translocation of GLUT-1, but GLUT-5 was redistributed from the plasma membrane to a distinct intracellular compartment that appeared connected to the cell surface. These results suggest specific subcellular targeting of each transporter isoform and differential regulation of their trafficking pathways in cultured macrophages.
Collapse
Affiliation(s)
- D Malide
- Experimental Diabetes, Metabolism, and Nutrition Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
42
|
Carter AB, Monick MM, Hunninghake GW. Lipopolysaccharide-induced NF-kappaB activation and cytokine release in human alveolar macrophages is PKC-independent and TK- and PC-PLC-dependent. Am J Respir Cell Mol Biol 1998; 18:384-91. [PMID: 9490656 DOI: 10.1165/ajrcmb.18.3.2972] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
A critical feature of sepsis-induced adult respiratory distress syndrome (ARDS) is the release of cytokines (such as interleukin [IL]-6, IL-8, and tumor necrosis factor [TNF]) from endotoxin (lipopolysaccharide [LPS])-activated alveolar macrophages (AM). Nuclear factor kappa B (NF-kappaB) is activated in AM from patients with ARDS, and it is essential for the transcription of many cytokine genes. In these studies, we evaluated the regulation of LPS-induced cytokine release and the activation of NF-kappaB in human AM. We found that the activation of NF-kappaB and the release of IL-6, IL-8, and TNF from AM exposed to LPS was protein kinase C-independent and tyrosine kinase- and phosphatidylcholine-specific phospholipase C-dependent. We also found that LPS-induced activation of NF-kappaB was enhanced in AM cultured in serum or in the presence of LPS-binding protein, simulating conditions in the lung that are present in ARDS. In addition, LPS triggered the activation of several different NF-kappaB complexes in AM, and different forms of NF-kappaB bound to the IL-6, IL-8, and TNF promoter sequences. These observations suggest that physiologic abnormalities present in the lungs of patients with ARDS facilitate the activation of NF-kappaB and local release of cytokines.
Collapse
Affiliation(s)
- A B Carter
- Department of Medicine, University of Iowa College of Medicine, Iowa City, IA 52242, USA.
| | | | | |
Collapse
|
43
|
Abstract
An elevated content of membrane glycoprotein PC-1 has been observed in cells and tissues of insulin resistant patients. In addition, in vitro overexpression of PC-1 in cultured cells induces insulin resistance associated with diminished insulin receptor tyrosine kinase activity. We now find that PC-1 overexpression also influences insulin receptor signaling at a step downstream of insulin receptor tyrosine kinase, independent of insulin receptor tyrosine kinase. In the present studies, we employed Chinese hamster ovary cells that overexpress the human insulin receptor (CHO IR cells; approximately 10(6) receptors per cell), and transfected them with human PC-1 c-DNA (CHO IR PC-1). In CHO IR PC-1 cells, insulin receptor tyrosine kinase activity was unchanged, following insulin treatment of cells. However, several biological effects of insulin, including glucose and amino acid uptake, were decreased. In CHO IR PC-1 cells, insulin stimulation of mitogen-activated protein (MAP) kinase activity was normal, suggesting that PC-1 overexpression did not affect insulin receptor activation of Ras, which is upstream of MAP kinase. Also, insulin-stimulated phosphatidylinositol (PI)-3-kinase activity was normal, suggesting that PC-1 overexpression did not interfere with the activation of this enzyme by insulin receptor substrate-1. In these cells, however, insulin stimulation of p70 ribosomal S6 kinase activity was diminished. These studies suggest, therefore, that, in addition to blocking insulin receptor tyrosine kinase activation, PC-1 can also block insulin receptor signaling at a post-receptor site.
Collapse
Affiliation(s)
- S Kumakura
- Diabetes and Endocrine Research, Mt. Zion Medical Center, University of California, San Francisco 94115, USA
| | | | | |
Collapse
|
44
|
Sorbara LR, Davies-Hill TM, Koehler-Stec EM, Vannucci SJ, Horne MK, Simpson IA. Thrombin-induced translocation of GLUT3 glucose transporters in human platelets. Biochem J 1997; 328 ( Pt 2):511-6. [PMID: 9371709 PMCID: PMC1218949 DOI: 10.1042/bj3280511] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Platelets derive most of their energy from anaerobic glycolysis; during activation this requirement rises approx. 3-fold. To accommodate the high glucose flux, platelets express extremely high concentrations (155+/-18 pmol/mg of membrane protein) of the most active glucose transporter isoform, GLUT3. Thrombin, a potent platelet activator, was found to stimulate 2-deoxyglucose transport activity 3-5-fold within 10 min at 25 degrees C, with a half-time of 1-2 min. To determine the mechanism underlying the increase in glucose transport activity, an impermeant photolabel, [2-3H]2N-4-(1-azi-2,2,2-trifluoethyl)benzoyl-1,3, -bis-(d-mannose-4-ylozy)-2-propylamine, was used to covalently bind glucose transporters accessible to the extracellular milieu. In response to thrombin, the level of transporter labelling increased 2.7-fold with a half-time of 1-2 min. This suggests a translocation of GLUT3 transporters from an intracellular site to the plasma membrane in a manner analogous to that seen for the translocation of GLUT4 in insulin-stimulated rat adipose cells. To investigate whether a similar signalling pathway was involved in both systems, platelets and adipose cells were exposed to staurosporin and wortmannin, two inhibitors of GLUT4 translocation in adipose cells. Thrombin stimulation of glucose transport activity in platelets was more sensitive to staurosporin inhibition than was insulin-stimulated transport activity in adipose cells, but it was totally insensitive to wortmannin. This indicates that the GLUT3 translocation in platelets is mediated by a protein kinase C not by a phosphatidylinositol 3-kinase mechanism. In support of this contention, the phorbol ester PMA, which specifically activates protein kinase C, fully stimulated glucose transport activity in platelets and was equally sensitive to inhibition by staurosporin. This study provides a cellular mechanism by which platelets enhance their capacity to import glucose to fulfil the increased energy demands associated with activation.
Collapse
Affiliation(s)
- L R Sorbara
- National Institutes of Health, EDMNS/DB/NIDDK, Bldg. 10, Rm. 5N102, 10 Center Drive, Bethesda, MD 20892-1420, USA
| | | | | | | | | | | |
Collapse
|
45
|
Standaert ML, Galloway L, Karnam P, Bandyopadhyay G, Moscat J, Farese RV. Protein kinase C-zeta as a downstream effector of phosphatidylinositol 3-kinase during insulin stimulation in rat adipocytes. Potential role in glucose transport. J Biol Chem 1997; 272:30075-82. [PMID: 9374484 DOI: 10.1074/jbc.272.48.30075] [Citation(s) in RCA: 349] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Insulin provoked rapid increases in enzyme activity of immunoprecipitable protein kinase C-zeta (PKC-zeta) in rat adipocytes. Concomitantly, insulin provoked increases in 32P labeling of PKC-zeta both in intact adipocytes and during in vitro assay of immunoprecipitated PKC-zeta; the latter probably reflected autophosphorylation, as it was inhibited by the PKC-zeta pseudosubstrate. Insulin-induced activation of immunoprecipitable PKC-zeta was inhibited by LY294002 and wortmannin; this suggested dependence upon phosphatidylinositol (PI) 3-kinase. Accordingly, activation of PI 3-kinase by a pYXXM-containing peptide in vitro resulted in a wortmannin-inhibitable increase in immunoprecipitable PKC-zeta enzyme activity. Also, PI-3,4-(PO4)2, PI-3,4,5-(PO4)3, and PI-4,5-(PO4)2 directly stimulated enzyme activity and autophosphoralytion in control PKC-zeta immunoprecipitates to levels observed in insulin-treated PKC-zeta immunoprecipitates. In studies of glucose transport, inhibition of immunoprecipitated PKC-zeta enzyme activity in vitro by both the PKC-zeta pseudosubstrate and RO 31-8220 correlated well with inhibition of insulin-stimulated glucose transport in intact adipocytes. Also, in adipocytes transiently expressing hemagglutinin antigen-tagged GLUT4, co-transfection of wild-type or constitutive PKC-zeta stimulated hemagglutinin antigen-GLUT4 translocation, whereas dominant-negative PKC-zeta partially inhibited it. Our findings suggest that insulin activates PKC-zeta through PI 3-kinase, and PKC-zeta may act as a downstream effector of PI 3-kinase and contribute to the activation of GLUT4 translocation.
Collapse
Affiliation(s)
- M L Standaert
- J. A. Haley Veterans' Hospital Research Service and Departments of Internal Medicine and Biochemistry/Molecular Biology, University of South Florida College of Medicine, Tampa, Florida 33612, USA
| | | | | | | | | | | |
Collapse
|
46
|
Walaas O, Horn RS, Walaas SI. The protein kinase C pseudosubstrate peptide (PKC19-36) inhibits insulin-stimulated protein kinase activity and insulin-mediated translocation of the glucose transporter glut 4 in streptolysin-O permeabilized adipocytes. FEBS Lett 1997; 413:152-6. [PMID: 9287134 DOI: 10.1016/s0014-5793(97)00898-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The effect of insulin on protein kinase activity and plasma membrane translocation of the glucose transporter GLUT 4 has been studied in adipocytes permeabilized by Streptolysin-O. Insulin increased protein kinase activity, and this was completely inhibited by the PKC pseudosubstrate inhibitor peptide (PKC19-36). Insulin-mediated translocation of GLUT 4 was also inhibited by the PKC inhibitor peptide. Both these insulin effects were blocked by a PKCbeta neutralizing antibody. Our results are consistent with the hypothesis that insulin activates PKCbeta activity in adipocytes in situ, and that this PKC activation is a component of the system whereby insulin regulates translocation of GLUT 4 to the plasma membrane.
Collapse
Affiliation(s)
- O Walaas
- Neurochemical Laboratory, University of Oslo, Norway
| | | | | |
Collapse
|
47
|
Anichini E, Zamperini A, Chevanne M, Caldini R, Pucci M, Fibbi G, Del Rosso M. Interaction of urokinase-type plasminogen activator with its receptor rapidly induces activation of glucose transporters. Biochemistry 1997; 36:3076-83. [PMID: 9115983 DOI: 10.1021/bi9619379] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The interaction of urokinase-type plasminogen activator (u-PA) or of u-PA amino-terminal fragment (u-PA-ATF) with the cell surface receptor (u-PAR) was found to stimulate an increase of glucose uptake in many cell lines, ranging from normal and transformed human fibroblasts, mouse fibroblasts transfected with human u-PAR, and cells of epidermal origin. Such increase of glucose uptake reached a peak within 5-10 min, depending on the cell line, and occurred through the facilitative glucose transporters (GLUTs), since it was inhibited by cytochalasin B. Each cell line showed a specific mosaic of glucose transporter isoforms, GLUT2 being the most widespread and GLUT1 the most abundant, when present. u-PAR stimulation was followed by translocation of GLUT1 from the microsomal to the membrane compartment, as shown by both immunoblotting and immunofluorescence of sonicated plasma membrane sheets and by activation of GLUT2 on the cell surface. Both translocation and activation resulted inhibitable by protein-tyrosine kinase inhibitors and independent of downregulation of protein kinase C (PKC). The increase of intracellular glucose was followed by neosynthesis of diacylglycerol (DAG) from glucose, as previously shown. Such neosynthesis was completely inhibited by impairment of facilitative GLUT transport by cytochalasin B. DAG neosynthesis was followed by activation of PKC, whose activity translocated into the intracellular compartment (PKM), where it probably phosphorylates substrates required for u-PAR-dependent chemotaxis. Our data show that u-PAR-mediated signal transduction, related with u-PA-induced chemotaxis, involves activation of tyrosine kinase-dependent glucose transporters, leading to increased de novo DAG synthesis from glucose, eventually resulting in activation of PKC.
Collapse
Affiliation(s)
- E Anichini
- Istituto di Patologia Generale, Universita di Firenze, Italy
| | | | | | | | | | | | | |
Collapse
|
48
|
Rondinone CM, Zarnowski MJ, Londos C, Smith UP. The inhibitory effect of staurosporine on insulin action is prevented by okadaic acid. Evidence for an important role of serine/threonine phosphorylation in eliciting insulin-like effects. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1314:49-56. [PMID: 8972717 DOI: 10.1016/s0167-4889(96)00075-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The serine/threonine phosphatase inhibitor, okadaic acid (OA), exerted several insulin-like effects in rat adipose cells and was, in part, synergistic with insulin. OA stimulated glucose transport activity, altered the electrophoretic mobility of IRS-1, increased the phosphorylation of the MAP-kinases ERK 1 and 2 on tyrosine sites, markedly increased MAP kinase activity and also acted synergistically with insulin in activating these enzymes. However, OA did not increase PI 3-kinase activity or the tyrosine phosphorylation of key upstream proteins in insulin's signaling cascade. Staurosporine virtually completely inhibited the insulin-stimulated glucose transport and MAP kinase activation in spite of a maintained high PI 3-kinase activity. In contrast, the effects of OA alone or in the presence of insulin were less, or not at all, affected. These data suggest that OA exerts an insulin-like effect through a serine/threonine-related pathway which is distinct from, but converges with, that of insulin downstream PI 3-kinase and upon which staurosporine exerts an inhibitory effect.
Collapse
Affiliation(s)
- C M Rondinone
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
49
|
Frevert EU, Kahn BB. Protein kinase C isoforms epsilon, eta, delta and zeta in murine adipocytes: expression, subcellular localization and tissue-specific regulation in insulin-resistant states. Biochem J 1996; 316 ( Pt 3):865-71. [PMID: 8670164 PMCID: PMC1217430 DOI: 10.1042/bj3160865] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The Ca(2+)-insensitive protein kinase C (PKC) isoforms epsilon, eta, delta and zeta are possible direct downstream targets of phosphatidylinositol 3-kinase (P13-K), and might therefore be involved in insulin signalling. Although isoform-specific changes in PKC expression have been reported for skeletal muscle and liver in insulin-resistant states, little is known about these isoforms in adipocytes. Therefore we studied (1) expression and subcellular localization of these isoforms in murine adipocytes, (2) translocation of specific isoforms to membranes in response to treatment with insulin and phorbol 12-myristate 13-acetate (PMA) and (3) regulation of expression in insulin-resistant states. The PKC isoforms epsilon, eta, delta and zeta are expressed in adipocytes. Immunoreactivity for all isoforms is higher in the membranes than in the cytosol, but subcellular fractionation by differential centrifugation shows an isoform-specific distribution within the membrane fractions. PMA treatment of adipocytes induces translocation of PKC-epsilon and -delta from the cytosol to the membrane fractions. Insulin treatment does not alter the subcellular distribution of any of the isoforms. 3T3-L1 adipocytes express PKC-epsilon and -zeta, and PKC-epsilon expression increases with differentiation from preadipocytes to adipocytes. PKC-epsilon expression decreases in an adipose-specific and age/obesity-dependent manner in two insulin-resistant models, the brown-adipose-tissue-deficient mouse and db/db mouse compared with control mice. We conclude that, although none of the isoforms investigated seems to be activated by insulin, the decrease in PKC-epsilon expression might contribute to metabolic alterations in adipocytes associated with insulin resistance and obesity.
Collapse
Affiliation(s)
- E U Frevert
- Department of Medicine, Beth Israel Hospital, Harvard Medical School, Boston, MA 02215, USA
| | | |
Collapse
|
50
|
Standaert ML, Avignon A, Yamada K, Bandyopadhyay G, Farese RV. The phosphatidylinositol 3-kinase inhibitor, wortmannin, inhibits insulin-induced activation of phosphatidylcholine hydrolysis and associated protein kinase C translocation in rat adipocytes. Biochem J 1996; 313 ( Pt 3):1039-46. [PMID: 8611143 PMCID: PMC1216966 DOI: 10.1042/bj3131039] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We questioned whether phosphatidylinositol 3-kinase (PI 3-kinase) and protein kinase C (PKC) function as interrelated signalling mechanisms during insulin action in rat adipocytes. Insulin rapidly activated a phospholipase D that hydrolyses phosphatidylcholine (PC), and this activation was accompanied by increases in diacylglycerol and translocative activation of PKC-alpha and PKC-beta in the plasma membrane. Wortmannin, an apparently specific PI 3-kinase inhibitor, inhibited insulin-stimulated, phospholipase D-dependent PC hydrolysis and subsequent translocation of PKC-alpha and PKC-beta to the plasma membrane. Wortmannin did not inhibit PKC directly in vitro, or the PKC-dependent effects of phorbol esters on glucose transport in intact adipocytes. The PKC inhibitor RO 31-8220 did not inhibit PI 3-kinase directly or its activation in situ by insulin, but inhibited both insulin-stimulated and phorbol ester-stimulated glucose transport. Our findings suggest that insulin acts through PI 3-kinase to activate a PC-specific phospholipase D and causes the translocative activation of PKC-alpha and PKC-beta in plasma membranes of rat adipocytes.
Collapse
|