1
|
Garg P, Ramisetty S, Nair M, Kulkarni P, Horne D, Salgia R, Singhal SS. Strategic advancements in targeting the PI3K/AKT/mTOR pathway for Breast cancer therapy. Biochem Pharmacol 2025; 236:116850. [PMID: 40049296 DOI: 10.1016/j.bcp.2025.116850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/17/2025] [Accepted: 03/03/2025] [Indexed: 03/10/2025]
Abstract
Breast cancer (BC) is a complex disease that affects millions of women worldwide. Its growing impact calls for advanced treatment strategies to improve patient outcomes. The PI3K/AKT/mTOR pathway is a key focus in BC therapy because it plays a major role in important processes like tumor growth, survival, and resistance to treatment. Targeting this pathway could lead to better treatment options and outcomes. The present review explores how the PI3K/AKT/mTOR pathway becomes dysregulated in BC, focusing on the genetic changes like PIK3CA mutations and PTEN loss that leads to its aggravation. Current treatment options include the use of inhibitors targeting PI3K, AKT, and mTOR with combination therapies showing promise in overcoming drug resistance and improving effectiveness. Looking ahead, next-generation inhibitors and personalized treatment plans guided by biomarker analysis may provide more accurate and effective options for patients. Integrating these pathway inhibitors with immunotherapy offers an exciting opportunity to boost anti-tumor responses and improve survival rates. This review offers a comprehensive summary of the current progress in targeting the PI3K/AKT/mTOR pathway in BC. It highlights future research directions and therapeutic strategies aimed at enhancing patient outcomes and quality of life.
Collapse
Affiliation(s)
- Pankaj Garg
- Department of Chemistry, GLA University, Mathura, Uttar Pradesh 281406, India
| | - Sravani Ramisetty
- Department of Medical Oncology & Therapeutics Research, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Meera Nair
- William J. Brennan High School, San Antonio, TX 78253, USA
| | - Prakash Kulkarni
- Department of Medical Oncology & Therapeutics Research, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - David Horne
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Ravi Salgia
- Department of Medical Oncology & Therapeutics Research, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Sharad S Singhal
- Department of Medical Oncology & Therapeutics Research, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA.
| |
Collapse
|
2
|
Jen CI, Ng LT. F2-sulfated polysaccharides of Laetiporus sulphureus suppress triple-negative breast cancer cell proliferation and metastasis through the EGFR-mediated signaling pathway. Int J Biol Macromol 2025; 306:141407. [PMID: 39993674 DOI: 10.1016/j.ijbiomac.2025.141407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/20/2025] [Accepted: 02/21/2025] [Indexed: 02/26/2025]
Abstract
Sulfated polysaccharides (SPS) are a unique secondary metabolite isolated from Laetiporus sulphureus. This study examined the detailed molecular mechanisms of action of F2, a medium molecular weight SPS of L. sulphureus, on breast cancer MDA-MB-231 cell proliferation and metastasis. Results showed that the sulfate and protein content of F2 were 2.1 % and 15.6 %, respectively. F2 had a molecular weight of 23.8 kDa and did not contain a triple helix conformation. The monosaccharide composition of F2 was mannose, galactose, glucose, and fucose. F2 inhibited MDA-MB-231 cell proliferation mainly by blocking the cell cycle at the G0/G1 phase, which was attributed to the down-regulation of CDK4 and cyclin D1 and the up-regulation of p21 protein expression. F2 suppressed epidermal growth factor receptor (EGFR)-mediated intracellular signaling events, such as phosphorylation of ERK1/2, Akt, and GSK-3β and activation of NF-κB and β-catenin, resulting in the cell cycle arrest. Moreover, F2 significantly reduced the EGFR phosphorylation and expression, and the level of mutant p53 protein. F2 also effectively inhibited breast cancer cell migration and invasion through down-regulating MMP-9 and MMP-2 protein expression. In conclusion, this study demonstrated that F2 exhibited anti-proliferative and anti-metastatic activities against MDA-MB-231 cells by inhibiting the activation of EGFR-mediated signaling pathways.
Collapse
Affiliation(s)
- Chia-I Jen
- Department of Agricultural Chemistry, National Taiwan University, No.1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Lean-Teik Ng
- Department of Agricultural Chemistry, National Taiwan University, No.1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan.
| |
Collapse
|
3
|
Sabbioni G, D'Aversa E, Breveglieri G, Altieri MT, Boni C, Pegoraro A, Finotti A, Gambari R, D'Amico G, Vella A, Lippi G, Cipolli M, Bezzerri V, Borgatti M. Constitutive systemic inflammation in Shwachman-Diamond Syndrome. Mol Med 2025; 31:81. [PMID: 40021961 PMCID: PMC11869671 DOI: 10.1186/s10020-025-01133-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 02/15/2025] [Indexed: 03/03/2025] Open
Abstract
BACKGROUND AND PURPOSE Shwachman-Diamond Syndrome (SDS) is an autosomal recessive disease belonging to the inherited bone marrow failure syndromes and characterized by hypocellular bone marrow, exocrine pancreatic insufficiency, and skeletal abnormalities. SDS is associated with increased risk of developing myelodysplastic syndrome (MDS) and/or acute myeloid leukemia (AML). Although SDS is not primarily considered an inflammatory disorder, some of the associated conditions (e.g., neutropenia, pancreatitis and bone marrow dysfunction) may involve inflammation or immune system dysfunctions. We have already demonstrated that signal transducer and activator of transcription (STAT)-3 and mammalian target of rapamycin (mTOR) were hyperactivated and associated with elevated IL-6 levels in SDS leukocytes. In this study, we analyzed the level of phosphoproteins involved in STAT3 and mTOR pathways in SDS lymphoblastoid cells (LCLs) and the secretomic profile of soluble pro-inflammatory mediators in SDS plasma and LCLs in order to investigate the systemic inflammation in these patients and relative pathways. METHODS Twenty-six SDS patients and seven healthy donors of comparable age were recruited during the programmed follow-up visits for clinical evaluation at the Verona Cystic Fibrosis Center Human. The obtained samples (plasma and/or LCLs) were analyzed for: phosphoproteins, cytokines, chemokines and growth factors levels by Bio-plex technology; microRNAs profiling by next generation sequencing (NGS) and microRNAs expression validation by Real Time-PCR (RT-PCR) and droplet digital PCR (ddPCR) . RESULTS We demonstrated dysregulation of ERK1/2 and AKT phosphoproteins in SDS, as their involvement in the hyperactivation of the STAT3 and mTOR pathways confirmed the interplay of these pathways in SDS pathophysiology. However, both these signaling pathways are strongly influenced by the inflammatory environment. Here, we reported that SDS is characterized by elevated plasma levels of several soluble proinflammatory mediators. In vitro experiments show that these pro-inflammatory genes are closely correlated with STAT3/mTOR pathway activation. In addition, we found that miR-181a-3p is down-regulated in SDS. Since this miRNA acts as a regulator of several pro-inflammatory pathways such as STAT3 and ERK1/2, its down-regulation may be a driver of the constitutive inflammation observed in SDS patients. CONCLUSIONS The results obtained in this study shed light on the complex pathogenetic mechanism underlying bone marrow failure and leukemogenesis in SDS, suggesting the need for anti-inflammatory therapies for SDS patients.
Collapse
Affiliation(s)
- Giuseppe Sabbioni
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Elisabetta D'Aversa
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Giulia Breveglieri
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Maria Teresa Altieri
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Christian Boni
- Cystic Fibrosis Center, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Anna Pegoraro
- Cystic Fibrosis Center, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Alessia Finotti
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Roberto Gambari
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Giovanna D'Amico
- Centro Tettamanti, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Antonio Vella
- Unit of Immunology, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Giuseppe Lippi
- Section of Clinical Biochemistry, Department of Engineering for Innovation Medicine, University of Verona, Verona, Italy
| | - Marco Cipolli
- Cystic Fibrosis Center, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Valentino Bezzerri
- Cystic Fibrosis Center, Azienda Ospedaliera Universitaria Integrata, Verona, Italy.
- Department of Life Sciences, Health, and Health Care Professions, Link Campus University, Rome, Italy.
| | - Monica Borgatti
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy.
- Interuniversity Consortium for Biotechnology (CIB), Trieste, Italy.
| |
Collapse
|
4
|
Stein CS, Linzer CR, Heer CD, Witmer NH, Cochran JD, Spitz DR, Boudreau RL. Mitoregulin Promotes Cell Cycle Progression in Non-Small Cell Lung Cancer Cells. Int J Mol Sci 2025; 26:1939. [PMID: 40076565 PMCID: PMC11899852 DOI: 10.3390/ijms26051939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/18/2025] [Accepted: 02/20/2025] [Indexed: 03/14/2025] Open
Abstract
Mitoregulin (MTLN) is a 56-amino-acid mitochondrial microprotein known to modulate mitochondrial energetics. MTLN gene expression is elevated broadly across most cancers and has been proposed as a prognostic biomarker for non-small cell lung cancer (NSCLC). In addition, lower MTLN expression in lung adenocarcinoma (LUAD) correlates with significantly improved patient survival. In our studies, we have found that MTLN silencing in A549 NSCLC cells slowed proliferation and, in accordance with this, we observed the following: (1) increased proportion of cells in the G1 phase of cell cycle; (2) protein changes consistent with G1 arrest (e.g., reduced levels and/or reduced phosphorylation of ERK, MYC, CDK2, and RB, and elevated p27Kip1); (3) reduction in clonogenic cell survival and; (4) lower steady-state cytosolic and mitochondrial H2O2 levels as indicated by use of the roGFP2-Orp1 redox sensor. Conflicting with G1 arrest, we observed a boost in cyclin D1 abundance. We also tested MTLN silencing in combination with buthionine sulfoximine (BSO) and auranofin (AF), drugs that inhibit GSH synthesis and thioredoxin reductase, respectively, to elevate the reactive oxygen species (ROS) amount to a toxic range. Interestingly, clonogenic survival after drug treatment was greater for MTLN-silenced cultures versus the control cultures. Lower H2O2 output and reduced vulnerability to ROS damage due to G1 status may have jointly contributed to the partial BSO + AF resistance. Overall, our results provide evidence that MTLN fosters H2O2 signaling to propel G1/S transition and suggest MTLN silencing as a therapeutic strategy to limit NSCLC growth.
Collapse
Affiliation(s)
- Colleen S. Stein
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (C.R.L.); (N.H.W.); (J.D.C.)
| | - Connor R. Linzer
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (C.R.L.); (N.H.W.); (J.D.C.)
| | - Collin D. Heer
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA; (C.D.H.); (D.R.S.)
| | - Nathan H. Witmer
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (C.R.L.); (N.H.W.); (J.D.C.)
| | - Jesse D. Cochran
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (C.R.L.); (N.H.W.); (J.D.C.)
| | - Douglas R. Spitz
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA; (C.D.H.); (D.R.S.)
| | - Ryan L. Boudreau
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (C.R.L.); (N.H.W.); (J.D.C.)
| |
Collapse
|
5
|
Ahmadi Y, Faiq T, Abolhasani S. Impact of G1 phase kinetics on the acquisition of stemness in cancer cells: the critical role of cyclin D. Mol Biol Rep 2025; 52:230. [PMID: 39951181 DOI: 10.1007/s11033-025-10351-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 02/07/2025] [Indexed: 05/09/2025]
Abstract
Cancer stem cells (CSCs) represent a unique subpopulation of cells with the ability to self-renew and differentiate, thereby sustaining tumor growth and contributing to disease recurrence. Although CSCs predominantly reside in the G0 phase, their stem-like properties, such as the expression of specific CD markers, self-renewal, differentiation potential, tumor initiation, drug resistance, and increased invasive and metastatic potential, manifest during their active proliferative phase. Rapidly dividing cells exhibit alterations in their cell cycle, often characterized by shortened or bypassed G1 phases, a phenomenon observed in both embryonic stem cells and cancerous cells. Dysregulation of cell cycle control is a hallmark of cancer, leading to uncontrolled cellular proliferation and tumorigenesis. Disruption in key regulatory proteins, signaling pathways, and cell cycle checkpoints-particularly during the G1 phase-enables cancer cells to escape normal proliferation restrictions. The rapid cell-cycle progression can impair the timely degradation of proteins critical for cell cycle regulation, particularly cyclin D, thereby compromising proper cell cycle control. Therefore these proteins may be passed to daughter cells, promoting further rounds of rapid cycles. Additionally, cyclin D is often overexpressed in cancer cells, further exacerbating uncontrolled proliferation. These mechanisms may underpin key properties of CSCs, including rapid proliferation and their stem-like traits. This review examines the relationship between G1 phase kinetics and the acquisition of stem-like characteristics, emphasizing how rapid G1 phase progression and transitions between dormancy and active proliferation contribute to the emergence of CSC traits.
Collapse
Affiliation(s)
- Yasin Ahmadi
- Department of Medical Laboratory Science, Komar University of Science and Technology, Sulaymaniyah, Kurdistan Region, Iraq.
| | - Tahran Faiq
- Department of Medical Laboratory Science, Komar University of Science and Technology, Sulaymaniyah, Kurdistan Region, Iraq
| | - Sakhavat Abolhasani
- Department of Basic Sciences and Health, Sarab Faculty of Medical Sciences, Sarab, East Azerbaijan, Iran.
- Sarab School of Medical Sciences and Health Services, Sarab, East Azerbaijan, Iran.
| |
Collapse
|
6
|
Su D, Peng J, Hao J, Wang X, Yu P, Li S, Shi H. Integrated multiomics approach and pathological analyses provide new insights into hepatic injury and metabolic alterations in Saanen goats after dietary exposure to aflatoxin B 1. J Dairy Sci 2025; 108:1431-1450. [PMID: 39477065 DOI: 10.3168/jds.2024-25430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 10/04/2024] [Indexed: 01/25/2025]
Abstract
Exploring the toxicity and metabolic mechanisms of aflatoxin B1 (AFB1) in ruminants can help to develop strategies to prevent or reduce the transfer of the toxin and its metabolites to milk and meat. This study aimed to explore the effects of 3 concentrations of dietary AFB1 (0, 50, and 500 μg/kg) on hepatic injury and metabolism in Saanen goats via histological examination, western blot analysis, as well as integrated multiomics techniques. Eighteen Saanen goats were assigned to 1 of 3 treatments and the AFB1 challenge lasted for 14 d. Results showed that the liver tissue was enlarged and the relative organ index of the liver was linearly increased with elevated AFB1 levels. The hepatocyte apoptosis rate was significantly increased after AFB1 exposure, and the western blotting results revealed that both the external apoptotic pathway and mitochondrial-mediated intrinsic apoptotic pathway might be involved in AFB1-induced hepatocyte apoptosis. We identified 251, 269, and 154 significant differentially expressed genes (DEG) and 340, 596, and 127 significant differential metabolites in comparisons between the control (CON; 0 μg/kg) and low-dose (LO; 50 μg/kg) groups, the CON and high-dose (HI; 500 μg/kg) groups, and the LO and HI groups, respectively. The DEG annotated were mainly involved in the cell part, cell, single-organism process, cellular process, binding, and other functional categories. The identified metabolites primarily belonged to glycerophospholipids, prenol lipids, carboxylic acids, and derivatives. Integrative analysis of transcriptomics and metabolomics revealed that glycerophospholipids metabolism and choline metabolism in cancer were the most affected pathways related to AFB1 exposure. The identified differential metabolites, DEG, and pathways might have played a crucial role in the hepatic injury induced by AFB1 in goats.
Collapse
Affiliation(s)
- Donghua Su
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, Sichuan 610041, China
| | - Jing Peng
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, Sichuan 610041, China
| | - Jingjing Hao
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, Sichuan 610041, China
| | - Xi Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, Sichuan 610041, China
| | - Peiqiang Yu
- College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK S7N5A8, Canada
| | - Shengli Li
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, China Agricultural University, Beijing 100193, China
| | - Haitao Shi
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
7
|
Hashemi M, Mohandesi Khosroshahi E, Asadi S, Tanha M, Ghatei Mohseni F, Abdolmohammad Sagha R, Taheri E, Vazayefi P, Shekarriz H, Habibi F, Mortazi S, Khorrami R, Nabavi N, Rashidi M, Taheriazam A, Rahimzadeh P, Entezari M. Emerging roles of non-coding RNAs in modulating the PI3K/Akt pathway in cancer. Noncoding RNA Res 2025; 10:1-15. [PMID: 39296640 PMCID: PMC11406677 DOI: 10.1016/j.ncrna.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 07/25/2024] [Accepted: 08/08/2024] [Indexed: 09/21/2024] Open
Abstract
Cancer progression results from the dysregulation of molecular pathways, each with unique features that can either promote or inhibit tumor growth. The complexity of carcinogenesis makes it challenging for researchers to target all pathways in cancer therapy, emphasizing the importance of focusing on specific pathways for targeted treatment. One such pathway is the PI3K/Akt pathway, which is often overexpressed in cancer. As tumor cells progress, the expression of PI3K/Akt increases, further driving cancer advancement. This study aims to explore how ncRNAs regulate the expression of PI3K/Akt. NcRNAs are found in both the cytoplasm and nucleus, and their functions vary depending on their location. They can bind to the promoters of PI3K or Akt, either reducing or increasing their expression, thus influencing tumorigenesis. The ncRNA/PI3K/Akt axis plays a crucial role in determining cell proliferation, metastasis, epithelial-mesenchymal transition (EMT), and even chemoresistance and radioresistance in human cancers. Anti-tumor compounds can target ncRNAs to modulate the PI3K/Akt axis. Moreover, ncRNAs can regulate the PI3K/Akt pathway both directly and indirectly.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Elaheh Mohandesi Khosroshahi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Saba Asadi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahsa Tanha
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, United States
| | - Forough Ghatei Mohseni
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ramina Abdolmohammad Sagha
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Elham Taheri
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Paria Vazayefi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Helya Shekarriz
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Fatemeh Habibi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Shaghayegh Mortazi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ramin Khorrami
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Noushin Nabavi
- Independent Researchers, Victoria, British Columbia, V8V 1P7, Canada
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Payman Rahimzadeh
- Surgical Research Society (SRS), Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
8
|
Liu T, Zhuang XX, Zheng WJ, Gao JR. Integrative multi-omics and network pharmacology reveal the mechanisms of Fangji Huangqi Decoction in treating IgA nephropathy. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118996. [PMID: 39490710 DOI: 10.1016/j.jep.2024.118996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 10/23/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Fangji Huangqi Decoction (FJHQD), a classical Chinese herbal formulation, has demonstrated significant clinical efficacy in the treatment of IgA nephropathy (IgAN), although its mechanisms remain poorly understood. AIM OF THE STUDY This study aims to investigate the renal protective mechanisms of FJHQD using an integrated approach that combines transcriptomics, proteomics, and network pharmacology. METHODS Renal glomerular structure changes were assessed via hematoxylin and eosin (H&E) and Masson staining. IgA expression in the glomeruli was quantified using immunofluorescence. Furthermore, the potential mechanisms underlying the effects of FJHQD were explored through a combined strategy of network pharmacology, transcriptomics, and proteomics. The expression of signaling pathway-related proteins was detected using Western blot. RESULTS FJHQD inhibited mesangial cell proliferation and renal interstitial fibrosis, and significantly reduced excessive IgA deposition in the glomerular mesangium. Network pharmacology identified 113 important active components and 8 common active components in FJHQD, with quercetin, isorhamnetin, jaranol, and kaempferol having the highest number of target interactions. Integration of network pharmacology with multi-omics approaches revealed that 44 active components regulated numerous immune and inflammatory signaling pathways through 17 hub targets. These pathways include the Calcium signaling pathway, cAMP signaling pathway, Ras signaling pathway, MAPK signaling pathway, and PI3K-AKT signaling pathway. Subsequent in vivo experiments demonstrated that FJHQD effectively regulates the identified pathways in IgAN mice. Ultimately, molecular docking results further validated the reliability of the network pharmacology combined with multi-omics analyses. CONCLUSION The findings suggest that FJHQD exerts a renal protective effect, potentially through modulation of the Calcium signaling pathway, cAMP signaling pathway, Ras signaling pathway, MAPK signaling pathway, and PI3K-AKT signaling pathway. These insights offer valuable support for the clinical use of FJHQD and open new avenues for exploring the active compounds and molecular mechanisms of Traditional Chinese Medicines (TCMs).
Collapse
Affiliation(s)
- Tao Liu
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China; College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230011, Anhui, China
| | - Xing Xing Zhuang
- Department of Pharmacy, Chaohu Hospital of Anhui Medical University, Chaohu, 238000, Anhui, China
| | - Wen Jia Zheng
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China; College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230011, Anhui, China
| | - Jia Rong Gao
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China; Anhui Provincial Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, Anhui, China.
| |
Collapse
|
9
|
Lei J, Dai H, Zhang Y, Ou G, Peng Liang Z, Lu Y, Li H. Prognostic impact of primary versus secondary resistance to sorafenib in patients with HCC. Ther Adv Med Oncol 2025; 17:17588359241299678. [PMID: 39816372 PMCID: PMC11733875 DOI: 10.1177/17588359241299678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/28/2024] [Indexed: 01/18/2025] Open
Abstract
Background Sorafenib is a first-line treatment option for patients with hepatocellular carcinoma (HCC). However, the impact of sorafenib resistance type on patient survival prediction and choice of second-line treatment regimen is unknown. Objectives This study aims to explore the factors predicting resistance in patients with HCC receiving sorafenib, the impact of resistance on survival, and the optimal second-line treatment regimen. Design This was a retrospective cohort study. Methods We recruited all patients with advanced HCC who received first-line sorafenib from January 2019 to January 2023 in two medical centers in China. They were divided into primary and secondary resistance groups according to tumor progression within 3 months. Resistance was the primary outcome of this study. The secondary outcomes were progression-free survival (PFS) and overall survival (OS). Results A total of 424 patients met the inclusion criteria, including 165 patients (38.9%) in the primary group and 259 patients (61.1%) in the secondary group. The independent risk factors for primary resistance were alpha-fetoprotein (AFP) > 400 ng/mL and alanine aminotransferase (ALT) > 40 U/L. Patients in the primary group had significantly shorter median OS than those in the secondary group (9.0 months vs 23.0 months, p < 0.001). Compared with tyrosine kinase inhibitor (TKI) monotherapy, the use of TKI plus PD-1 inhibitor combination therapy as second-line treatment conferred a longer median PFS (6.0 vs 10.0 months, p < 0.001) and OS (13.0 vs 22.0 months, p < 0.001). Conclusion Sorafenib has a high incidence of primary resistance and short survival in patients who develop primary resistance. AFP and ALT are influential factors in primary resistance, and it is valuable to use these two metrics to guide the use of sorafenib. As second-line therapy, a TKI plus PD-1 inhibitor regimen should be preferentially recommended.
Collapse
Affiliation(s)
- Jin Lei
- School of Basic Medical Science, Guizhou Medical University, Guiyang, China
| | - Hongyuan Dai
- School of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Ya Zhang
- School of Clinical Medicine, Guizhou Medical University, Guiyang, China
- Department of Gastroenterology, the Affiliated Jinyang Hospital of Guizhou Medical University, Guiyang, China
| | - Guangling Ou
- School of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Zhi Peng Liang
- School of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Yinying Lu
- School of Clinical Medicine, Guizhou Medical University, Guiyang, China
- Comprehensive Liver Cancer Center, the 5th Medical Center of the PLA General Hospital, Beijing, China
| | - Haiyang Li
- School of Clinical Medicine, Guizhou Medical University, Guiyang, China
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| |
Collapse
|
10
|
Ashadul Sk M, K H, Matada GSP, Pal R, B V M, Mounika S, E H, M P V, D A. Current developments in PI3K-based anticancer agents: Designing strategies, biological activity, selectivity, structure-activity correlation, and docking insight. Bioorg Chem 2025; 154:108011. [PMID: 39662340 DOI: 10.1016/j.bioorg.2024.108011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/20/2024] [Accepted: 11/25/2024] [Indexed: 12/13/2024]
Abstract
The phospatidylinositol-3 kinase (PI3K) pathway is a critical intracellular signalling mechanism that is changed or amplified in a variety of cancers, including breast, gastric, ovarian, colorectal, prostate, glioma, and endometrial. PI3K signalling is important for cancer cell survival, angiogenesis, and metastasis, making it a promising therapeutic target. The PI3K kinases in their different isoforms, namely α, β, δ, and γ, encode PIK3CA, PIK3CB, PIK3CD, and PIK3CG genes. Specific gene mutation or overexpression of the protein is responsible for the therapeutic failure of current therapeutics. There are several current and completed clinical trials using PI3K inhibitors (pan, isoform-specific, and dual PI3K/mTOR) to develop effective PI3K inhibitors capable of overcoming resistance to existing drugs. However, the bulk of these inhibitors have had their indications revoked or voluntarily withdrawn due to concerns about their harmful consequences. Several inhibitors containing medicinally privileged scaffolds like thiazole, triazine, benzimidazole, podophyllotoxin, pyridine, quinazoline, thieno-triazole, pyrimidine, triazole, benzofuran, imidazo-pyridazine, oxazole, coumarin, and azepine derivatives have been explored to target the PI3K pathway and/or a specific isoform in the current overview. This article reviews the structure, biological activities, and clinical status of PI3K inhibitors. It focuses on the development techniques, docking insight, and structure-activity connections of PI3K-based inhibitors. The findings provide useful insights and future approaches for the development of promising PI3K-based inhibitors.
Collapse
Affiliation(s)
- Md Ashadul Sk
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru 560107, Karnataka, India
| | - Hemalatha K
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru 560107, Karnataka, India.
| | - Gurubasavaraja Swamy Purawarga Matada
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru 560107, Karnataka, India
| | - Rohit Pal
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru 560107, Karnataka, India.
| | - Manjushree B V
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru 560107, Karnataka, India
| | - S Mounika
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru 560107, Karnataka, India
| | - Haripriya E
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru 560107, Karnataka, India
| | - Viji M P
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru 560107, Karnataka, India
| | - Anjan D
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru 560107, Karnataka, India
| |
Collapse
|
11
|
Yu L, Chang H, Xie W, Zheng Y, Yang L, Wu Q, Bu F, Zhu Y, Xie Y, Pan G, Lan K, Deng Q. Manganese is a potent inducer of lysosomal activity that inhibits de novo HBV infection. PLoS Pathog 2025; 21:e1012800. [PMID: 39746094 PMCID: PMC11694974 DOI: 10.1371/journal.ppat.1012800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 12/02/2024] [Indexed: 01/04/2025] Open
Abstract
Sodium taurocholate co-transporting polypeptide (NTCP) has been identified as an entry receptor for hepatitis B virus (HBV), but the molecular events of the viral post-endocytosis steps remain obscure. In this study, we discovered that manganese (Mn) could strongly inhibit HBV infection in NTCP-reconstituted HepG2 cells without affecting viral replication. We therefore profiled the antiviral effects of Mn2+ in an attempt to elucidate the regulatory mechanisms involved in early HBV infection. Intriguingly, Mn2+ conspicuously stimulated lysosomal activity, as evidenced by hyperactivation of mTORC1 and increased endo/lysosomal acidity. After HBV-triggered internalization, the NTCP receptor was sorted to late endosomal compartments by the ESCRT machinery in concert with the invading virion. The establishment of HBV infection was found to be independent of lysosomal fusion-driven late endosome maturation; Mn2+-induced lysosomal hyperfunction virtually impaired infection, suggesting that virions may gain cytosolic access directly from late endosomes. In contrast, suppression of lysosomal activity substantially enhanced HBV infection. Prolonged mTORC1 inactivation facilitated viral infection by depleting lysosomes and accelerating endocytic transport of virions. Notably, treatment with the natural steroidal alkaloid tomatidine recapitulated the effects of Mn2+ in stimulating lysosomal activity and exhibited potent anti-HBV activity in HepG2-NTCP cells and in proliferating human hepatocyte organoids. These findings provide new insights into the post-endocytosis events of HBV infection. The negative regulation of early HBV infection by endo/lysosomal activity makes it a promising target for antiviral therapies.
Collapse
Affiliation(s)
- Lin Yu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, Shanghai, China
- Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Fudan University, Shanghai, China
| | - Hao Chang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, Shanghai, China
- Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Fudan University, Shanghai, China
| | - Wentao Xie
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, Shanghai, China
- Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Fudan University, Shanghai, China
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai, China
| | - Yuan Zheng
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, Shanghai, China
- Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Fudan University, Shanghai, China
| | - Le Yang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, Shanghai, China
- Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Fudan University, Shanghai, China
| | - Qiong Wu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, Shanghai, China
- Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Fudan University, Shanghai, China
| | - Fan Bu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, Shanghai, China
- Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Fudan University, Shanghai, China
| | - Yuanfei Zhu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, Shanghai, China
- Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Fudan University, Shanghai, China
| | - Youhua Xie
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, Shanghai, China
- Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Fudan University, Shanghai, China
| | - Guoyu Pan
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Ke Lan
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Qiang Deng
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, Shanghai, China
- Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Fudan University, Shanghai, China
| |
Collapse
|
12
|
Sampson J, Ju HM, Zhang N, Yeoh S, Choi J, Bayliss R. Targeting ERBB3 and AKT to overcome adaptive resistance in EML4-ALK-driven non-small cell lung cancer. Cell Death Dis 2024; 15:912. [PMID: 39695132 DOI: 10.1038/s41419-024-07272-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 11/22/2024] [Accepted: 11/29/2024] [Indexed: 12/20/2024]
Abstract
The fusion event between EML4 and ALK drives a significant oncogenic activity in 5% of non-small cell lung cancer (NSCLC). Even though potent ALK-tyrosine kinase inhibitors (ALK-TKIs) are successfully used for the treatment of EML4-ALK-positive NSCLC patients, a subset of those patients eventually acquire resistance during their therapy. Here, we investigate the kinase responses in EML4-ALK V1 and V3-harbouring NSCLC cancer cells after acute inhibition with ALK TKI, lorlatinib (LOR). Using phosphopeptide chip array and upstream kinase prediction analysis, we identified a group of phosphorylated tyrosine peptides including ERBB and AKT proteins that are upregulated upon ALK-TKI treatment in EML4-ALK-positive NSCLC cell lines. Dual inhibition of ALK and ERBB receptors or AKT disrupts RAS/MAPK and AKT/PI3K signalling pathways, and enhances apoptosis in EML4-ALK + NSCLC cancer cells. Heregulin, an ERBB3 ligand, differentially modulates the sensitivity of EML4-ALK cell lines to ALK inhibitors. We found that EML4-ALK cells made resistant to LOR are sensitive to inhibition of ERBB and AKT. These findings emphasize the important roles of AKT and ERBB3 to regulate signalling after acute LOR treatment, identifying them as potential targets that may be beneficial to prevent adaptive resistance to EML4-ALK-targeted therapies in NSCLC.
Collapse
MESH Headings
- Humans
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/pathology
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/metabolism
- Receptor, ErbB-3/metabolism
- Receptor, ErbB-3/genetics
- Oncogene Proteins, Fusion/metabolism
- Oncogene Proteins, Fusion/genetics
- Lung Neoplasms/genetics
- Lung Neoplasms/pathology
- Lung Neoplasms/drug therapy
- Lung Neoplasms/metabolism
- Proto-Oncogene Proteins c-akt/metabolism
- Cell Line, Tumor
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Lactams/pharmacology
- Protein Kinase Inhibitors/pharmacology
- Aminopyridines/pharmacology
- Signal Transduction/drug effects
- Pyrazoles/pharmacology
- Neuregulin-1/metabolism
- Neuregulin-1/genetics
- Lactams, Macrocyclic/pharmacology
- Anaplastic Lymphoma Kinase/genetics
- Anaplastic Lymphoma Kinase/metabolism
- Anaplastic Lymphoma Kinase/antagonists & inhibitors
- Apoptosis/drug effects
- ErbB Receptors/metabolism
- ErbB Receptors/genetics
- ErbB Receptors/antagonists & inhibitors
Collapse
Affiliation(s)
- Josephina Sampson
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
| | - Hyun-Min Ju
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 138-736, Korea
| | - Nan Zhang
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Sharon Yeoh
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Jene Choi
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 138-736, Korea.
| | - Richard Bayliss
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
13
|
Jalise SZ, Habibi S, Fath-Bayati L, Habibi MA, Ababzadeh S, Hosseinzadeh F. Role and Interplay of Different Signaling Pathways Involved in Sciatic Nerve Regeneration. J Mol Neurosci 2024; 74:108. [PMID: 39531101 DOI: 10.1007/s12031-024-02286-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 10/27/2024] [Indexed: 11/16/2024]
Abstract
Regeneration of the sciatic nerve is a sophisticated process that involves the interplay of several signaling pathways that orchestrate the cellular responses critical to regeneration. Among the key pathways are the mitogen-activated protein kinase (MAPK), phosphatidylinositol 3-kinase (PI3K)/AKT, cyclic adenosine monophosphate (cAMP), and Janus kinase/signal transducers and transcription activators (JAK/STAT) pathways. In particular, the cAMP pathway modulates neuronal survival and axonal regrowth. It influences various cellular behaviors and gene expression that are essential for nerve regeneration. MAPK is indispensable for Schwann cell differentiation and myelination, whereas PI3K/AKT is integral to the transcription, translation, and cell survival processes that are vital for nerve regeneration. Furthermore, GTP-binding proteins, including those of the Ras homolog gene family (Rho), regulate neural cell adhesion, migration, and survival. Notch signaling also appears to be effective in the early stages of nerve regeneration and in preventing skeletal muscle fibrosis after injury. Understanding the intricate mechanisms and interactions of these pathways is vital for the development of effective therapeutic strategies for sciatic nerve injuries. This review underscores the need for further research to fill existing knowledge gaps and improve therapeutic outcomes.
Collapse
Affiliation(s)
- Saeedeh Zare Jalise
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Qom University of Medical Sciences, Qom, Iran
- Cellular and Molecular Research Centre, Qom University of Medical Sciences, Qom, Iran
| | - Sina Habibi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Leyla Fath-Bayati
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Qom University of Medical Sciences, Qom, Iran
- Cellular and Molecular Research Centre, Qom University of Medical Sciences, Qom, Iran
| | - Mohammad Amin Habibi
- Clinical Research Development Center, Shahid Beheshti Hospital, Qom University of Medical Sciences, Qom, Iran
| | - Shima Ababzadeh
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Qom University of Medical Sciences, Qom, Iran.
- Cellular and Molecular Research Centre, Qom University of Medical Sciences, Qom, Iran.
| | - Faezeh Hosseinzadeh
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Qom University of Medical Sciences, Qom, Iran.
- Cellular and Molecular Research Centre, Qom University of Medical Sciences, Qom, Iran.
- Clinical Trial Center, Qom University of Medical Sciences, Qom, Iran.
| |
Collapse
|
14
|
Chen T, Zhou X, Zhu M, Chen X, Chang D, Lin Y, Xu W, Zheng Y, Li S, Song J, Huang M. Phytochemical determination and mechanistic investigation of Polygala tenuifolia root (Yuanzhi) extract for bronchitis: UPLC-MS/MS analysis, network pharmacology and in vitro/in vivo evaluation. JOURNAL OF ETHNOPHARMACOLOGY 2024; 333:118418. [PMID: 38838926 DOI: 10.1016/j.jep.2024.118418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/21/2024] [Accepted: 06/02/2024] [Indexed: 06/07/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Bronchitis is a respiratory disease characterized by a productive cough. Polygala tenuifolia Willd., commonly known as Yuan zhi, is a traditional Chinese herbal medicine used for relieving cough and removing phlegm. Despite its historical use, studies are lacking on the effectiveness of P. tenuifolia in treating bronchitis. Furthermore, the molecular mechanisms underlying the action of its bioactive compounds remain unknown. AIM OF THE STUDY This study aims to identify the main bioactive compounds responsible for the effects of P. tenuifolia liquid extract (PLE) in treating bronchitis and to elucidate the associated molecular mechanisms. MATERIALS AND METHODS The main chemical compounds in PLE were identified and determined using ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS). The antitussive, expectorant and anti-inflammatory activities of PLE were evaluated in an ammonia-induced mouse cough model, a tracheal phenol red excretion mouse model, and a xylene-induced ear swelling mouse model, respectively. A network pharmacology analysis was conducted to investigate the associated gene targets, gene ontology, and KEGG pathways related to the main bioactives in PLE targeting bronchitis. PLE and its five bioactive compounds were assessed for their potential anti-inflammatory activities in lipopolysaccharide (LPS)-stimulated RAW264.7 cells. Western blot analysis was conducted to elucidate the associated molecular mechanisms. RESULTS Thirty-seven compounds in PLE were identified, and twelve main compounds were further quantified in PLE using UPLC-MS/MS. PLE oral gavage administrations (0.6 and 0.12 mg/kg) for 7 days markedly reduced cough frequency, prolonged latency period of cough, reduced phlegm and inflammation in mice. The network pharmacology analysis identified 57 gene targets of PLE against bronchitis. The PI3K/AKT and MAPK signalling pathways were the top two modulated pathways. In RAW264.7 cells, PLE (12.5-50 μg/mL) significantly reduced cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), interleukin (IL)-1β, IL-6 and tumor necrosis factor (TNF)-α. PLE downregulated LPS-elevated protein targets in both PI3K/AKT and MAPK signaling pathways. In PLE, tenuifolin, polygalaxanthone ⅠⅠⅠ, polygalasaponin ⅩⅩⅤⅢ, tenuifoliside B, and 3,6'-Disinapoyl sucrose, were identified as the top five core components responsible for treating bronchitis. These compounds were also found to modulate the protein targets in the PI3K/AKT and MAPK signalling pathways. CONCLUSIONS This study demonstrated the potential therapeutic effects of PLE on bronchitis by reducing cough, phlegm and inflammation. The anti-inflammatory action and molecular mechanisms of the 5 main bioactive compounds in PLE were partly validated through the in vitro assays. The findings provide valuable insights into the mechanisms underlying the traditional use of PLE for bronchitis.
Collapse
Affiliation(s)
- Tao Chen
- College of Pharmacy, Fujian Key Laboratory of Chinese Materia Medica, Fujian University of Traditional Chinese Medicine, Fuzhou, 350108, China
| | - Xian Zhou
- NICM Health Research Institute, Western Sydney University, Westmead, NSW, 2145, Australia
| | - Mingxing Zhu
- College of Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350108, China
| | - Xueting Chen
- College of Pharmacy, Fujian Key Laboratory of Chinese Materia Medica, Fujian University of Traditional Chinese Medicine, Fuzhou, 350108, China
| | - Dennis Chang
- NICM Health Research Institute, Western Sydney University, Westmead, NSW, 2145, Australia
| | - Yifan Lin
- Fujian Institute for Food and Drug Quality Control, Fuzhou, 350001, China
| | - Wen Xu
- College of Pharmacy, Fujian Key Laboratory of Chinese Materia Medica, Fujian University of Traditional Chinese Medicine, Fuzhou, 350108, China
| | - Yanfang Zheng
- College of Pharmacy, Fujian Key Laboratory of Chinese Materia Medica, Fujian University of Traditional Chinese Medicine, Fuzhou, 350108, China.
| | - Shaohua Li
- College of Pharmacy, Fujian Key Laboratory of Chinese Materia Medica, Fujian University of Traditional Chinese Medicine, Fuzhou, 350108, China.
| | - Jianyuan Song
- Department of Radiation Oncology, Fujian Medical University Union Hospital, Fuzhou, Fujian province, 350001, China.
| | - Mingqing Huang
- College of Pharmacy, Fujian Key Laboratory of Chinese Materia Medica, Fujian University of Traditional Chinese Medicine, Fuzhou, 350108, China.
| |
Collapse
|
15
|
Ryu Y, Wague A, Liu X, Feeley BT, Ferguson AR, Morioka K. Cellular signaling pathways in the nervous system activated by various mechanical and electromagnetic stimuli. Front Mol Neurosci 2024; 17:1427070. [PMID: 39430293 PMCID: PMC11486767 DOI: 10.3389/fnmol.2024.1427070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 09/25/2024] [Indexed: 10/22/2024] Open
Abstract
Mechanical stimuli, such as stretch, shear stress, or compression, activate a range of biomolecular responses through cellular mechanotransduction. In the nervous system, studies on mechanical stress have highlighted key pathophysiological mechanisms underlying traumatic injury and neurodegenerative diseases. However, the biomolecular pathways triggered by mechanical stimuli in the nervous system has not been fully explored, especially compared to other body systems. This gap in knowledge may be due to the wide variety of methods and definitions used in research. Additionally, as mechanical stimulation techniques such as ultrasound and electromagnetic stimulation are increasingly utilized in psychological and neurorehabilitation treatments, it is vital to understand the underlying biological mechanisms in order to develop accurate pathophysiological models and enhance therapeutic interventions. This review aims to summarize the cellular signaling pathways activated by various mechanical and electromagnetic stimuli with a particular focus on the mammalian nervous system. Furthermore, we briefly discuss potential cellular mechanosensors involved in these processes.
Collapse
Affiliation(s)
- Youngjae Ryu
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Aboubacar Wague
- Department of Veterans Affairs, San Francisco Veterans Affairs Medical Center, San Francisco, CA, United States
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Xuhui Liu
- Department of Veterans Affairs, San Francisco Veterans Affairs Medical Center, San Francisco, CA, United States
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Brian T. Feeley
- Department of Veterans Affairs, San Francisco Veterans Affairs Medical Center, San Francisco, CA, United States
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Adam R. Ferguson
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
- Brain and Spinal Injury Center, Zuckerberg San Francisco General Hospital and Trauma Center, San Francisco, CA, United States
- San Francisco Veterans Affairs Healthcare System, San Francisco, CA, United States
| | - Kazuhito Morioka
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, CA, United States
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
- Brain and Spinal Injury Center, Zuckerberg San Francisco General Hospital and Trauma Center, San Francisco, CA, United States
- Zuckerberg San Francisco General Hospital and Trauma CenterOrthopaedic Trauma Institute, , San Francisco, CA, United States
| |
Collapse
|
16
|
Pîrvu BF, Clenciu D, Beldie LA, Dica CC, Burticală MA, Ţenea-Cojan TŞ, Mitrea A, Amzolini AM, Efrem IC, Mogoş GFR, Vladu IM. The burden of cancer in metabolic dysfunction-associated steatotic liver disease. ROMANIAN JOURNAL OF MORPHOLOGY AND EMBRYOLOGY = REVUE ROUMAINE DE MORPHOLOGIE ET EMBRYOLOGIE 2024; 65:627-635. [PMID: 39957024 PMCID: PMC11924906 DOI: 10.47162/rjme.65.4.09] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 01/08/2025] [Indexed: 02/18/2025]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most prevalent chronic liver disease worldwide and has become a major public health problem. MASLD frequently progresses to cirrhosis and hepatocellular carcinoma, but recent studies also show a frequent association with extrahepatic cancers. One of the mechanisms involved in both locations is insulin resistance and hyperinsulinemia. The aim of this narrative review was to present the main etiopathogenic mechanisms involved in cancer development in patients with MASLD.
Collapse
Affiliation(s)
- Bianca Florentina Pîrvu
- Department of Diabetes, Nutrition and Metabolic Diseases, Emergency County Clinical Hospital, Craiova, Romania
| | - Diana Clenciu
- Department of Diabetes, Nutrition and Metabolic Diseases, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, Romania
| | - Luiza Andreea Beldie
- Department of Diabetes, Nutrition and Metabolic Diseases, Emergency County Clinical Hospital, Craiova, Romania
| | - Cristina Camelia Dica
- Department of Diabetes, Nutrition and Metabolic Diseases, Emergency County Clinical Hospital, Craiova, Romania
| | | | | | - Adina Mitrea
- Department of Diabetes, Nutrition and Metabolic Diseases, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, Romania
| | - Anca Maria Amzolini
- Department of Medical Semiology, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, Romania
| | - Ion Cristian Efrem
- Department of Medical Semiology, Faculty of Dentistry, University of Medicine and Pharmacy of Craiova, Romania
| | | | - Ionela Mihaela Vladu
- Department of Diabetes, Nutrition and Metabolic Diseases, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, Romania
| |
Collapse
|
17
|
Feng J, Zhang X, Tian T. Mathematical Modeling and Inference of Epidermal Growth Factor-Induced Mitogen-Activated Protein Kinase Cell Signaling Pathways. Int J Mol Sci 2024; 25:10204. [PMID: 39337687 PMCID: PMC11432143 DOI: 10.3390/ijms251810204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/18/2024] [Accepted: 09/21/2024] [Indexed: 09/30/2024] Open
Abstract
The mitogen-activated protein kinase (MAPK) pathway is an important intracellular signaling cascade that plays a key role in various cellular processes. Understanding the regulatory mechanisms of this pathway is essential for developing effective interventions and targeted therapies for related diseases. Recent advances in single-cell proteomic technologies have provided unprecedented opportunities to investigate the heterogeneity and noise within complex, multi-signaling networks across diverse cells and cell types. Mathematical modeling has become a powerful interdisciplinary tool that bridges mathematics and experimental biology, providing valuable insights into these intricate cellular processes. In addition, statistical methods have been developed to infer pathway topologies and estimate unknown parameters within dynamic models. This review presents a comprehensive analysis of how mathematical modeling of the MAPK pathway deepens our understanding of its regulatory mechanisms, enhances the prediction of system behavior, and informs experimental research, with a particular focus on recent advances in modeling and inference using single-cell proteomic data.
Collapse
Affiliation(s)
- Jinping Feng
- School of Mathematics and Statistics, Henan University, Kaifeng 475001, China
| | - Xinan Zhang
- School of Mathematics and Statistics, Central China Normal University, Wuhan 430079, China
| | - Tianhai Tian
- School of Mathematics, Monash University, Melbourne 3800, Australia
| |
Collapse
|
18
|
Healy FM, Turner AL, Marensi V, MacEwan DJ. Mediating kinase activity in Ras-mutant cancer: potential for an individualised approach? Front Pharmacol 2024; 15:1441938. [PMID: 39372214 PMCID: PMC11450236 DOI: 10.3389/fphar.2024.1441938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/06/2024] [Indexed: 10/08/2024] Open
Abstract
It is widely acknowledged that there is a considerable number of oncogenic mutations within the Ras superfamily of small GTPases which are the driving force behind a multitude of cancers. Ras proteins mediate a plethora of kinase pathways, including the MAPK, PI3K, and Ral pathways. Since Ras was considered undruggable until recently, pharmacological targeting of pathways downstream of Ras has been attempted to varying success, though drug resistance has often proven an issue. Nuances between kinase pathway activation in the presence of various Ras mutants are thought to contribute to the resistance, however, the reasoning behind activation of different pathways in different Ras mutational contexts is yet to be fully elucidated. Indeed, such disparities often depend on cancer type and disease progression. However, we are in a revolutionary age of Ras mutant targeted therapy, with direct-targeting KRAS-G12C inhibitors revolutionising the field and achieving FDA-approval in recent years. However, these are only beneficial in a subset of patients. Approximately 90% of Ras-mutant cancers are not KRAS-G12C mutant, and therefore raises the question as to whether other distinct amino acid substitutions within Ras may one day be targetable in a similar manner, and indeed whether better understanding of the downstream pathways these various mutants activate could further improve therapy. Here, we discuss the favouring of kinase pathways across an array of Ras-mutant oncogenic contexts and assess recent advances in pharmacological targeting of various Ras mutants. Ultimately, we will examine the utility of individualised pharmacological approaches to Ras-mediated cancer.
Collapse
Affiliation(s)
- Fiona M. Healy
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Amy L. Turner
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Vanessa Marensi
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
- Chester Medical School, University of Chester, Chester, United Kingdom
| | - David J. MacEwan
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
19
|
Pan J, Zhang Y, He L, Wu Y, Xiao W, Zhang J, Xu Y. STRIP2 is regulated by the transcription factor Sp1 and promotes lung adenocarcinoma progression via activating the PI3K/AKT/mTOR/MYC signaling pathway. Genomics 2024; 116:110923. [PMID: 39191354 DOI: 10.1016/j.ygeno.2024.110923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 07/26/2024] [Accepted: 08/19/2024] [Indexed: 08/29/2024]
Abstract
BACKGROUND Patients with lung adenocarcinoma (LUAD) generally have poor prognosis. The role of striatin-interacting protein 2 (STRIP2) in LUAD remain unclear. METHODS Liquid chromatography-mass spectrometry analyses were used to screen the STRIP2-binding proteins and co-immunoprecipitation verified these interactions. A dual luciferase reporter assay explored the transcription factor activating STRIP2 transcription. Xenograft and lung metastasis models assessed STRIP2's role in tumor growth and metastasis in vivo. RESULTS STRIP2 is highly expressed in LUAD tissues and is linked to poor prognosis. STRIP2 expression in LUAD cells significantly promoted cell proliferation, invasion, and migration in vitro and in vivo. Mechanistically, STRIP2 boosted the PI3K/AKT/mTOR/MYC cascades by binding AKT. In addition, specificity protein 1, potently activated STRIP2 transcription by binding to the STRIP2 promoter. Blocking STRIP2 reduces tumor growth and lung metastasis in xenograft models. CONCLUSIONS Our study identifies STRIP2 is a key driver of LUAD progression and a potential therapeutic target.
Collapse
Affiliation(s)
- Junfan Pan
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, China
| | - Yuan Zhang
- The First Affiliated Hospital of Xiamen University, Xiamen 361003, China
| | - Liu He
- School of Basic Medicine, Fujian Medical University, Fuzhou 350004, China
| | - Yue Wu
- School of Basic Medicine, Fujian Medical University, Fuzhou 350004, China
| | - Weijin Xiao
- Department of Pathology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, China.
| | - Jing Zhang
- Department of Thoracic Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, China.
| | - Yiquan Xu
- Department of Thoracic Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, China.
| |
Collapse
|
20
|
Li D, Li D, Wang Z, Li J, Shahzad KA, Wang Y, Tan F. Signaling pathways activated and regulated by stem cell-derived exosome therapy. Cell Biosci 2024; 14:105. [PMID: 39164778 PMCID: PMC11334359 DOI: 10.1186/s13578-024-01277-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 07/10/2024] [Indexed: 08/22/2024] Open
Abstract
Stem cell-derived exosomes exert comparable therapeutic effects to those of their parental stem cells without causing immunogenic, tumorigenic, and ethical disadvantages. Their therapeutic advantages are manifested in the management of a broad spectrum of diseases, and their dosing versatility are exemplified by systemic administration and local delivery. Furthermore, the activation and regulation of various signaling cascades have provided foundation for the claimed curative effects of exosomal therapy. Unlike other relevant reviews focusing on the upstream aspects (e.g., yield, isolation, modification), and downstream aspects (e.g. phenotypic changes, tissue response, cellular behavior) of stem cell-derived exosome therapy, this unique review endeavors to focus on various affected signaling pathways. After meticulous dissection of relevant literature from the past five years, we present this comprehensive, up-to-date, disease-specific, and pathway-oriented review. Exosomes sourced from various types of stem cells can regulate major signaling pathways (e.g., the PTEN/PI3K/Akt/mTOR, NF-κB, TGF-β, HIF-1α, Wnt, MAPK, JAK-STAT, Hippo, and Notch signaling cascades) and minor pathways during the treatment of numerous diseases encountered in orthopedic surgery, neurosurgery, cardiothoracic surgery, plastic surgery, general surgery, and other specialties. We provide a novel perspective in future exosome research through bridging the gap between signaling pathways and surgical indications when designing further preclinical studies and clinical trials.
Collapse
Affiliation(s)
- Ding Li
- Department of ORL-HNS, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Danni Li
- Department of ORL-HNS, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
- Plasma Medicine and Surgical Implants Center, Tongji University, Shanghai, China
| | - Zhao Wang
- Department of ORL-HNS, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jiaojiao Li
- Department of ORL-HNS, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
- Plasma Medicine and Surgical Implants Center, Tongji University, Shanghai, China
| | - Khawar Ali Shahzad
- Department of ORL-HNS, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
- Plasma Medicine and Surgical Implants Center, Tongji University, Shanghai, China
| | - Yanhong Wang
- Department of ORL-HNS, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
- Plasma Medicine and Surgical Implants Center, Tongji University, Shanghai, China
| | - Fei Tan
- Department of ORL-HNS, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China.
- Plasma Medicine and Surgical Implants Center, Tongji University, Shanghai, China.
- The Royal College of Surgeons in Ireland, Dublin, Ireland.
- The Royal College of Surgeons of England, London, UK.
| |
Collapse
|
21
|
Shen R, Cheng K, Li G, Pan Z, Qiaolongbatu X, Wang Y, Ma C, Huang X, Wang L, Li W, Wang Y, Jing L, Fan G, Wu Z. Alisol A, the Eye-Entering Ingredient of Alisma orientale, Relieves Macular Edema Through TNF-α as Revealed by UPLC-Triple-TOF/MS, Network Pharmacology, and Zebrafish Verification. Drug Des Devel Ther 2024; 18:3361-3382. [PMID: 39100223 PMCID: PMC11297588 DOI: 10.2147/dddt.s468119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 07/08/2024] [Indexed: 08/06/2024] Open
Abstract
Purpose Alisma orientale (AO, Alisma orientale (Sam). Juzep) has been widely employed for the treatment of macular edema (ME) in traditional Chinese medicine due to its renowned water-relief properties. Nonetheless, the comprehensive investigation of AO in alleviating ME remained unexplored. This study aims to identify the active components of AO that target the eye and investigate its pharmacological effects and mechanisms on ME. Methods The study commenced with UPLC-Triple-TOF/MS analysis to identify the primary constituents of AO. Zebrafish eye tissues were then analyzed after a five-day administration of AO to detect absorbed components and metabolites. Subsequently, network pharmacology, molecular docking, and molecular dynamics simulations were employed to predict the mechanisms of ME treatment via biological target pathways. In vivo experiments were conducted to corroborate the pharmacological actions and mechanisms. Results A total of 7 compounds, consisting of 2 prototype ingredients and 5 metabolites (including isomers), were found to traverse the blood-eye barrier and localized within eye tissues. Network pharmacology results showed that AO played a role in the treatment of ME mainly by regulating the pathway network of PI3K-AKT and MAPK with TNF-α centered. Computational analyses suggested that 11-dehydro-16-oxo-24-deoxy-alisol A, a metabolite of alisol A, mitigates edema through TNF-α inhibition. Furthermore, zebrafish fundus confocal experiments and HE staining of eyes confirmed the attenuating effects of alisol A on fundus angiogenesis and ocular edema, representing the first report of AO's ME-inhibitory effects. Conclusion In this study, computational analyses with experimental validation were used to understand the biological activity and mechanism of alisol A in the treatment of ME. The findings shed light on the bioactive constituents and pharmacological actions of AO, offering valuable insights and a theoretical foundation for its clinical application in managing ME.
Collapse
Affiliation(s)
- Rui Shen
- School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, People’s Republic of China
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, People’s Republic of China
| | - Kebin Cheng
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, People’s Republic of China
| | - Guanyi Li
- School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, People’s Republic of China
| | - Zhendong Pan
- Department of Clinical Pharmacy, Eye and ENT Hospital, Fudan University, Shanghai, 200031, People’s Republic of China
| | - Xijier Qiaolongbatu
- School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, People’s Republic of China
| | - Yuting Wang
- School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, People’s Republic of China
| | - Cui Ma
- School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, People’s Republic of China
| | - Xucong Huang
- School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, People’s Republic of China
| | - Li Wang
- School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, People’s Republic of China
| | - Wenjing Li
- School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, People’s Republic of China
| | - Yuanyuan Wang
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, People’s Republic of China
| | - Lili Jing
- School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, People’s Republic of China
| | - Guorong Fan
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, People’s Republic of China
| | - Zhenghua Wu
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, People’s Republic of China
| |
Collapse
|
22
|
Lu Q, Yang D, Li H, Niu T, Tong A. Multiple myeloma: signaling pathways and targeted therapy. MOLECULAR BIOMEDICINE 2024; 5:25. [PMID: 38961036 PMCID: PMC11222366 DOI: 10.1186/s43556-024-00188-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/21/2024] [Indexed: 07/05/2024] Open
Abstract
Multiple myeloma (MM) is the second most common hematological malignancy of plasma cells, characterized by osteolytic bone lesions, anemia, hypercalcemia, renal failure, and the accumulation of malignant plasma cells. The pathogenesis of MM involves the interaction between MM cells and the bone marrow microenvironment through soluble cytokines and cell adhesion molecules, which activate various signaling pathways such as PI3K/AKT/mTOR, RAS/MAPK, JAK/STAT, Wnt/β-catenin, and NF-κB pathways. Aberrant activation of these pathways contributes to the proliferation, survival, migration, and drug resistance of myeloma cells, making them attractive targets for therapeutic intervention. Currently, approved drugs targeting these signaling pathways in MM are limited, with many inhibitors and inducers still in preclinical or clinical research stages. Therapeutic options for MM include non-targeted drugs like alkylating agents, corticosteroids, immunomodulatory drugs, proteasome inhibitors, and histone deacetylase inhibitors. Additionally, targeted drugs such as monoclonal antibodies, chimeric antigen receptor T cells, bispecific T-cell engagers, and bispecific antibodies are being used in MM treatment. Despite significant advancements in MM treatment, the disease remains incurable, emphasizing the need for the development of novel or combined targeted therapies based on emerging theoretical knowledge, technologies, and platforms. In this review, we highlight the key role of signaling pathways in the malignant progression and treatment of MM, exploring advances in targeted therapy and potential treatments to offer further insights for improving MM management and outcomes.
Collapse
Affiliation(s)
- Qizhong Lu
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, Research Unit of Gene and Immunotherapy, Chinese Academy of Medical Sciences, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Donghui Yang
- College of Veterinary Medicine, Shaanxi Center of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, 712100, China
| | - Hexian Li
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, Research Unit of Gene and Immunotherapy, Chinese Academy of Medical Sciences, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ting Niu
- Department of Hematology, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Aiping Tong
- State Key Laboratory of Biotherapy and Cancer Center, Research Unit of Gene and Immunotherapy, Chinese Academy of Medical Sciences, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, 610212, China.
| |
Collapse
|
23
|
Mazibuko M, Ghazi T, Chuturgoon A. Patulin alters alpha-adrenergic receptor signalling and induces epigenetic modifications in the kidneys of C57BL/6 mice. Arch Toxicol 2024; 98:2143-2152. [PMID: 38806716 PMCID: PMC11168996 DOI: 10.1007/s00204-024-03728-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 03/07/2024] [Indexed: 05/30/2024]
Abstract
Patulin (PAT) is a food-borne mycotoxin produced by Penicillium and Byssochlamys species. It is widely known for its mutagenic, carcinogenic, and genotoxic effects and has been associated with kidney injury; however, the mechanism of toxicity remains unclear. To address this gap, we conducted a study to explore the changes in α-adrenergic receptor signalling pathways and epigenetic modifications induced by PAT in the kidneys of C57BL/6 mice during acute (1 day) and prolonged (10 days) exposure. The mice (20-22 g) were orally administered PAT (2.5 mg/kg; at 1 and 10 days), and post-treatment, the kidneys were harvested, homogenised and extracted for RNA, DNA, and protein. The relative gene expression of the α-adrenergic receptors (ADRA1, ADRA2A, ADRA2B) and associated signalling pathways (MAPK, MAPK14, ERK, PI3K, and AKT) was assessed by qPCR. The protein expression of ERK1/2 and MAPK was determined by western blot. The impact of PAT on DNA methylation was evaluated by quantifying global DNA methylation; qPCR was used to determine gene expression levels of DNA methyltransferases (DNMT1, DNMT3A, and DNMT3B) and demethylase (MBD2). PAT downregulated the expression of ADRA1, ADRA2A, ADRA2B, PI3K, and AKT and upregulated ERK1/2 and MAPK protein expression. Furthermore, PAT induced alterations in DNA methylation patterns by upregulating DNMT1 and MBD2 expressions and downregulating DNMT3A and DNMT3B expressions, resulting in global DNA hypomethylation. In conclusion, PAT disrupts α-1 and α-2 adrenergic receptor signalling pathways and induces epigenetic modifications, that can lead to kidney injury.
Collapse
Affiliation(s)
- Makabongwe Mazibuko
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, Howard College Campus, University of KwaZulu-Natal, Durban, 4041, South Africa
| | - Terisha Ghazi
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, Howard College Campus, University of KwaZulu-Natal, Durban, 4041, South Africa.
| | - Anil Chuturgoon
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, Howard College Campus, University of KwaZulu-Natal, Durban, 4041, South Africa.
| |
Collapse
|
24
|
Rukhlenko OS, Imoto H, Tambde A, McGillycuddy A, Junk P, Tuliakova A, Kolch W, Kholodenko BN. Cell State Transition Models Stratify Breast Cancer Cell Phenotypes and Reveal New Therapeutic Targets. Cancers (Basel) 2024; 16:2354. [PMID: 39001416 PMCID: PMC11240448 DOI: 10.3390/cancers16132354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/17/2024] [Accepted: 06/23/2024] [Indexed: 07/16/2024] Open
Abstract
Understanding signaling patterns of transformation and controlling cell phenotypes is a challenge of current biology. Here we applied a cell State Transition Assessment and Regulation (cSTAR) approach to a perturbation dataset of single cell phosphoproteomic patterns of multiple breast cancer (BC) and normal breast tissue-derived cell lines. Following a separation of luminal, basal, and normal cell states, we identified signaling nodes within core control networks, delineated causal connections, and determined the primary drivers underlying oncogenic transformation and transitions across distinct BC subtypes. Whereas cell lines within the same BC subtype have different mutational and expression profiles, the architecture of the core network was similar for all luminal BC cells, and mTOR was a main oncogenic driver. In contrast, core networks of basal BC were heterogeneous and segregated into roughly four major subclasses with distinct oncogenic and BC subtype drivers. Likewise, normal breast tissue cells were separated into two different subclasses. Based on the data and quantified network topologies, we derived mechanistic cSTAR models that serve as digital cell twins and allow the deliberate control of cell movements within a Waddington landscape across different cell states. These cSTAR models suggested strategies of normalizing phosphorylation networks of BC cell lines using small molecule inhibitors.
Collapse
Affiliation(s)
- Oleksii S Rukhlenko
- Systems Biology Ireland, School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland
| | - Hiroaki Imoto
- Systems Biology Ireland, School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland
| | - Ayush Tambde
- Systems Biology Ireland, School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland
- Stratford College, D06 T9V3 Dublin, Ireland
| | - Amy McGillycuddy
- Systems Biology Ireland, School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland
- School of Biological, Health and Sports Sciences, Technological University, D07 H6K8 Dublin, Ireland
| | - Philipp Junk
- Systems Biology Ireland, School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland
| | - Anna Tuliakova
- Systems Biology Ireland, School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland
| | - Walter Kolch
- Systems Biology Ireland, School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, D04 V1W8 Dublin, Ireland
| | - Boris N Kholodenko
- Systems Biology Ireland, School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, D04 V1W8 Dublin, Ireland
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
25
|
Rauen KA, Tidyman WE. RASopathies - what they reveal about RAS/MAPK signaling in skeletal muscle development. Dis Model Mech 2024; 17:dmm050609. [PMID: 38847227 PMCID: PMC11179721 DOI: 10.1242/dmm.050609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024] Open
Abstract
RASopathies are rare developmental genetic syndromes caused by germline pathogenic variants in genes that encode components of the RAS/mitogen-activated protein kinase (MAPK) signal transduction pathway. Although the incidence of each RASopathy syndrome is rare, collectively, they represent one of the largest groups of multiple congenital anomaly syndromes and have severe developmental consequences. Here, we review our understanding of how RAS/MAPK dysregulation in RASopathies impacts skeletal muscle development and the importance of RAS/MAPK pathway regulation for embryonic myogenesis. We also discuss the complex interactions of this pathway with other intracellular signaling pathways in the regulation of skeletal muscle development and growth, and the opportunities that RASopathy animal models provide for exploring the use of pathway inhibitors, typically used for cancer treatment, to correct the unique skeletal myopathy caused by the dysregulation of this pathway.
Collapse
Affiliation(s)
- Katherine A Rauen
- Department of Pediatrics, Division of Genomic Medicine, University of California Davis, Sacramento, CA, 95817, USA
- University of California Davis MIND Institute, Sacramento, CA 95817, USA
| | - William E Tidyman
- University of California Davis MIND Institute, Sacramento, CA 95817, USA
| |
Collapse
|
26
|
Reza Seyedi Moqadam SM, Lamuki MS, Sadeghimahalli F, Ghanbari M. The effect of Artemisia annua L. aqueous and methanolic extracts on insulin signaling in liver of HFD/STZ diabetic mice. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2024; 21:215-221. [PMID: 38485514 DOI: 10.1515/jcim-2024-0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/20/2024] [Indexed: 06/27/2024]
Abstract
OBJECTIVES Many studies have shown the anti-diabetic effects of medicinal plants. But their molecular mechanism has been less studied. Understanding of these mechanisms can help to better manage the treatment of diabetes by using these plants. So, this research examined the effect of Artemisia annua extract on PI3K (phosphatidylinositol 3-kinase)/AKt (serine/threonine kinase protein B) signaling pathway in liver of high-fat diet (HFD)/Streptozotocin (STZ)-induced type 2 diabetic mice. METHODS Groups of mice were control, untreated diabetic mice, diabetic mice treated with various doses (400, 200, 100 mg/kg) of methanolic and aqueous extract of A. annua and metformin for four weeks. Type 2 diabetes was produced by feeding high-fat diet following injection of low dose of STZ. After experiment duration all mice were sacrificed and blood glucose, insulin, homeostasis model assessment of insulin resistance index (HOMA-IR), index of insulin sensitivity index (ISI) were detected and liver tissues were isolated for to detect m-RNA expression of PI3K and Akt. RESULTS Extracts of aqueous and methanolic this plant markedly reduced hyperglycemia, hyperinsulinemia, HOMA-IR and elevated ISI in diabetic group in comparison with un-treated diabetic mice. In addition, they could enhance the expression of AKt and PI3K m-RNA in liver tissues in diabetic mice. CONCLUSIONS Artemisia annua extract ameliorated insulin resistance and improved insulin action in liver via the high activity of PI3K/AKt signaling pathway. So, it can be a suitable alternative treatment to synthetic antidiabetic drugs to improve insulin action in condition of type 2 diabetes.
Collapse
Affiliation(s)
- S Mohammad Reza Seyedi Moqadam
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, 92948 Mazandaran University of Medical Sciences , Sari, Iran
| | - Mohammad Shokrzadeh Lamuki
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, 92948 Mazandaran University of Medical Sciences , Sari, Iran
- Pharmaceutical Science Research Center, Hemoglobinopathy Institute, 92948 Mazandaran University of Medical Sciences , Sari, Iran
| | - Forouzan Sadeghimahalli
- Pharmaceutical Science Research Center, Hemoglobinopathy Institute, 92948 Mazandaran University of Medical Sciences , Sari, Iran
- Department of Physiology, School of Medicine, 92948 Mazandaran University of Medical Sciences , Sari, Iran
| | - Mahshid Ghanbari
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, 92948 Mazandaran University of Medical Sciences , Sari, Iran
| |
Collapse
|
27
|
Rodríguez-González J, Wilkins-Rodríguez AA, Gutiérrez-Kobeh L. Human Dendritic Cell Maturation Is Modulated by Leishmania mexicana through Akt Signaling Pathway. Trop Med Infect Dis 2024; 9:118. [PMID: 38787051 PMCID: PMC11126033 DOI: 10.3390/tropicalmed9050118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 05/09/2024] [Accepted: 05/11/2024] [Indexed: 05/25/2024] Open
Abstract
Dendritic cells (DC) along with macrophages are the main host cells of the intracellular parasite Leishmania. DC traverse a process of maturation, passing through an immature state with phagocytic ability to a mature one where they can modulate the immune response through the secretion of cytokines. Several studies have demonstrated that Leishmania inhibits DC maturation. Nevertheless, when cells are subjected to a second stimulus such as LPS/IFN-γ, they manage to mature. In the maturation process of DC, several signaling pathways have been implicated, importantly MAPK. On the other hand, Akt is a signaling pathway deeply involved in cell survival. Some Leishmania species have shown to activate MAPK and Akt in different cells. The aim of this work was to investigate the role of ERK and Akt in the maturation of monocyte-derived DC (moDC) infected with L. mexicana. moDC were infected with L. mexicana metacyclic promastigotes, and the phosphorylation of ERK and Akt, the expression of MHCII and CD86 and IL-12 transcript, and secretion were determined in the presence or absence of an Akt inhibitor. We showed that L. mexicana induces a sustained Akt and ERK phosphorylation, while the Akt inhibitor inhibits it. Moreover, the infection of moDC downregulates CD86 expression but not MHCII, and the Akt inhibitor reestablishes CD86 expression and 12p40 production. Thus, L. mexicana can modulate DC maturation though Akt signaling.
Collapse
Affiliation(s)
- Jorge Rodríguez-González
- Laboratorio de Estudios Epidemiológicos, Clínicos, Diseños Experimentales e Investigación, Facultad de Ciencias Químicas, Universidad Autónoma Benito Juárez, Oaxaca C.P. 68120, Mexico;
| | - Arturo A. Wilkins-Rodríguez
- Unidad de Investigación UNAM-INC, División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México-Instituto Nacional de Cardiología “Ignacio Chávez”, Juan Badiano No. 1, Col. Sección XVI, Tlalpan, Mexico City C.P. 14080, Mexico;
| | - Laila Gutiérrez-Kobeh
- Unidad de Investigación UNAM-INC, División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México-Instituto Nacional de Cardiología “Ignacio Chávez”, Juan Badiano No. 1, Col. Sección XVI, Tlalpan, Mexico City C.P. 14080, Mexico;
| |
Collapse
|
28
|
Wei Q, Zhang YH. Flavonoids with Anti-Angiogenesis Function in Cancer. Molecules 2024; 29:1570. [PMID: 38611849 PMCID: PMC11013936 DOI: 10.3390/molecules29071570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 03/23/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
The formation of new blood vessels, known as angiogenesis, significantly impacts the development of multiple types of cancer. Consequently, researchers have focused on targeting this process to prevent and treat numerous disorders. However, most existing anti-angiogenic treatments rely on synthetic compounds and humanized monoclonal antibodies, often expensive or toxic, restricting patient access to these therapies. Hence, the pursuit of discovering new, affordable, less toxic, and efficient anti-angiogenic compounds is imperative. Numerous studies propose that natural plant-derived products exhibit these sought-after characteristics. The objective of this review is to delve into the anti-angiogenic properties exhibited by naturally derived flavonoids from plants, along with their underlying molecular mechanisms of action. Additionally, we summarize the structure, classification, and the relationship between flavonoids with their signaling pathways in plants as anti-angiogenic agents, including main HIF-1α/VEGF/VEGFR2/PI3K/AKT, Wnt/β-catenin, JNK1/STAT3, and MAPK/AP-1 pathways. Nonetheless, further research and innovative approaches are required to enhance their bioavailability for clinical application.
Collapse
Affiliation(s)
- Qiang Wei
- School of Medicine, Anhui Xinhua University, 555 Wangjiang West Road, Hefei 230088, China;
| | | |
Collapse
|
29
|
Li JB, Li D, Liu YY, Cao A, Wang H. Cytotoxicity of vanadium dioxide nanoparticles to human embryonic kidney cell line: Compared with vanadium(IV/V) ions. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 106:104378. [PMID: 38295964 DOI: 10.1016/j.etap.2024.104378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 01/24/2024] [Indexed: 02/13/2024]
Abstract
Vanadium dioxide (VO2) is a class of thermochromic material with potential applications in various fields. Massive production and wide application of VO2 raise the concern of its potential toxicity to human, which has not been fully understood. Herein, a commercial VO2 nanomaterial (S-VO2) was studied for its potential toxicity to human embryonic kidney cell line HEK293, and two most common vanadium ions, V(IV) and V(V), were used for comparison to reveal the related mechanism. Our results indicate that S-VO2 induces dose-dependent cellular viability loss mainly through the dissolved V ions of S-VO2 outside the cell rather than S-VO2 particles inside the cell. The dissolved V ions of S-VO2 overproduce reactive oxygen species to trigger apoptosis and proliferation inhibition via several signaling pathways of cell physiology, such as MAPK and PI3K-Akt, among others. All bioassays indicate that the differences in toxicity between S-VO2, V(IV), and V(V) in HEK293 cells are very small, supporting that the toxicity is mainly due to the dissolved V ions, in the form of V(V) and/or V(IV), but the V(V)'s behavior is more similar to S-VO2 according to the gene expression analysis. This study reveals the toxicity mechanism of nanosized VO2 at the molecular level and the role of dissolution of VO2, providing valuable information for safe applications of vanadium oxides.
Collapse
Affiliation(s)
- Jia-Bei Li
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| | - Dan Li
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| | - Yuan-Yuan Liu
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| | - Aoneng Cao
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| | - Haifang Wang
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
30
|
Hu J, Fu S, Zhan Z, Zhang J. Advancements in dual-target inhibitors of PI3K for tumor therapy: Clinical progress, development strategies, prospects. Eur J Med Chem 2024; 265:116109. [PMID: 38183777 DOI: 10.1016/j.ejmech.2023.116109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/24/2023] [Accepted: 12/28/2023] [Indexed: 01/08/2024]
Abstract
Phosphoinositide 3-kinases (PI3Ks) modify lipids by the phosphorylation of inositol phospholipids at the 3'-OH position, thereby participating in signal transduction and exerting effects on various physiological processes such as cell growth, metabolism, and organism development. PI3K activation also drives cancer cell growth, survival, and metabolism, with genetic dysregulation of this pathway observed in diverse human cancers. Therefore, this target is considered a promising potential therapeutic target for various types of cancer. Currently, several selective PI3K inhibitors and one dual-target PI3K inhibitor have been approved and launched on the market. However, the majority of these inhibitors have faced revocation or voluntary withdrawal of indications due to concerns regarding their adverse effects. This article provides a comprehensive review of the structure and biological functions, and clinical status of PI3K inhibitors, with a specific emphasis on the development strategies and structure-activity relationships of dual-target PI3K inhibitors. The findings offer valuable insights and future directions for the development of highly promising dual-target drugs targeting PI3K.
Collapse
Affiliation(s)
- Jiarui Hu
- Department of Neurology, Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Siyu Fu
- Department of Neurology, Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Zixuan Zhan
- Department of Neurology, Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jifa Zhang
- Department of Neurology, Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
31
|
Luo L, Wang X, Liao YP, Xu X, Chang CH, Nel AE. Reprogramming the pancreatic cancer stroma and immune landscape by a silicasome nanocarrier delivering nintedanib, a protein tyrosine kinase inhibitor. NANO TODAY 2024; 54:102058. [PMID: 38681872 PMCID: PMC11044875 DOI: 10.1016/j.nantod.2023.102058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
The prevailing desmoplastic stroma and immunosuppressive microenvironment within pancreatic ductal adenocarcinoma (PDAC) pose substantial challenges to therapeutic intervention. Despite the potential of protein tyrosine kinase (PTK) inhibitors in mitigating the desmoplastic stromal response and enhancing the immune milieu, their efficacy is curtailed by suboptimal pharmacokinetics (PK) and insufficient tumor penetration. To surmount these hurdles, we have pioneered a novel strategy, employing lipid bilayer-coated mesoporous silica nanoparticles (termed "silicasomes") as a carrier for the delivery of Nintedanib. Nintedanib, a triple PTK inhibitor that targets vascular endothelial growth factor, platelet-derived growth factor and fibroblast growth factor receptors, was encapsulated in the pores of silicasomes via a remote loading mechanism for weak bases. This innovative approach not only enhanced pharmacokinetics and intratumor drug concentrations but also orchestrated a transformative shift in the desmoplastic and immune landscape in a robust orthotopic KRAS-mediated pancreatic carcinoma (KPC) model. Our results demonstrate attenuation of vascular density and collagen content through encapsulated Nintedanib treatment, concomitant with significant augmentation of the CD8+/FoxP3+ T-cell ratio. This remodeling was notably correlated with tumor regression in the KPC model. Strikingly, the synergy between encapsulated Nintedanib and anti-PD-1 immunotherapy further potentiated the antitumor effect. Both free and encapsulated Nintedanib induced a transcriptional upregulation of PD-L1 via the extracellular signal-regulated kinase (ERK) pathway. In summary, our pioneering approach involving the silicasome carrier not only improved antitumor angiogenesis but also profoundly reshaped the desmoplastic stromal and immune landscape within PDAC. These insights hold excellent promise for the development of innovative combinatorial strategies in PDAC therapy.
Collapse
Affiliation(s)
- Lijia Luo
- Division of Nanomedicine, Department of Medicine, University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Xiang Wang
- Division of Nanomedicine, Department of Medicine, University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Yu-Pei Liao
- Division of Nanomedicine, Department of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Xiao Xu
- Division of Nanomedicine, Department of Medicine, University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Chong Hyun Chang
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Andre E. Nel
- Division of Nanomedicine, Department of Medicine, University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
32
|
Yu Q, Xu C, Song J, Jin Y, Gao X. Mechanisms of Traditional Chinese medicine/natural medicine in HR-positive Breast Cancer: A comprehensive Literature Review. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117322. [PMID: 37866466 DOI: 10.1016/j.jep.2023.117322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 09/13/2023] [Accepted: 10/12/2023] [Indexed: 10/24/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE With the emergence of endocrine resistance, the survival and good prognosis of HR-positive breast cancer (HR + BC) patients are threatened. As a common complementary and alternative therapy in cancer treatment, traditional Chinese medicine (TCM) has been widely used, and its internal mechanisms have been increasingly explored. AIM OF THE REVIEW In this review, the development status and achievements in understanding of the mechanisms related to the anti-invasion and anti-metastasis effects of TCM against HR + BC and the reversal of endocrine drug resistance by TCM in recent years have been summarized to provide ideas for antitumour research on the active components of TCM/natural medicine. METHODS We searched the electronic databases PubMed, Web of Science, and China National Knowledge Infrastructure database (CNKI) (from inception to July 2023) with the key words "HR-positive breast cancer" or "HR-positive breast carcinoma", "HR + BC" and "traditional Chinese medicine", "TCM", or "natural plant", "herb", etc., with the aim of elucidating the intrinsic mechanisms of traditional Chinese medicine and natural medicine in the treatment of HR + BC. RESULTS TCM/natural medicine monomers and formulas can regulate the expression of related genes and proteins through the PI3K/AKT, JAK2/STAT3, MAPK, Wnt and other signalling pathways, inhibit the proliferation and metastasis of HR + BC tumours, play a synergistic role in combination with endocrine drugs, and reverse endocrine drug resistance. CONCLUSION The wide variety of TCM/natural medicine components makes the research and development of new methods of TCM for BC treatments more selective and innovative. Although progress has been made on research on TCM/natural medicine, there are still many problems in clinical and basic experimental designs, and more in-depth scientific explorations and research are still needed.
Collapse
Affiliation(s)
- Qinghong Yu
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China.
| | - Chuchu Xu
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China.
| | - Jiaqing Song
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China.
| | - Ying Jin
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China.
| | - Xiufei Gao
- The First Affiliated Hospital of Zhejiang Chinese Medical University, NO. 54 Youdian Road, Hangzhou, Zhejiang, 310006, China.
| |
Collapse
|
33
|
Novoplansky O, Shnerb AB, Marripati D, Jagadeeshan S, Abu Shareb R, Conde-López C, Zorea J, Prasad M, Ben Lulu T, Yegodayev KM, Benafsha C, Li Y, Kong D, Kuo F, Morris LGT, Kurth I, Hess J, Elkabets M. Activation of the EGFR/PI3K/AKT pathway limits the efficacy of trametinib treatment in head and neck cancer. Mol Oncol 2023; 17:2618-2636. [PMID: 37501404 DOI: 10.1002/1878-0261.13500] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 05/23/2023] [Accepted: 07/26/2023] [Indexed: 07/29/2023] Open
Abstract
Blocking the mitogen-activated protein kinase (MAPK) pathway with the MEK1/2 inhibitor trametinib has produced promising results in patients with head and neck squamous cell carcinoma (HNSCC). In the current study, we showed that trametinib treatment leads to overexpression and activation of the epidermal growth factor receptor (EGFR) in HNSCC cell lines and patient-derived xenografts. Knockdown of EGFR improved trametinib treatment efficacy both in vitro and in vivo. Mechanistically, we demonstrated that trametinib-induced EGFR overexpression hyperactivates the phosphatidylinositol 3-kinase (PI3K)/AKT pathway. In vitro, blocking the PI3K pathway with GDC-0941 (pictilisib), or BYL719 (alpelisib), prevented AKT pathway hyperactivation and enhanced the efficacy of trametinib in a synergistic manner. In vivo, a combination of trametinib and BYL719 showed superior antitumor efficacy vs. the single agents, leading to tumor growth arrest. We confirmed our findings in a syngeneic murine head and neck cancer cell line in vitro and in vivo. Taken together, our findings show that trametinib treatment induces hyperactivation of EGFR/PI3K/AKT; thus, blocking of the EGFR/PI3K pathway is required to improve trametinib efficacy in HNSCC.
Collapse
Affiliation(s)
- Ofra Novoplansky
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Avital B Shnerb
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Divyasree Marripati
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Sankar Jagadeeshan
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Raghda Abu Shareb
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Cristina Conde-López
- Division of Radiooncology-Radiobiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jonathan Zorea
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Manu Prasad
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Talal Ben Lulu
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Ksenia M Yegodayev
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Chen Benafsha
- Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Yushi Li
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Dexin Kong
- School of Pharmaceutical Sciences, Tianjin Medical University, Tianjin, China
| | - Fengshen Kuo
- Immunogenomics and Precision Oncology Platform, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Luc G T Morris
- Immunogenomics and Precision Oncology Platform, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Ina Kurth
- Division of Radiooncology-Radiobiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jochen Hess
- Section Experimental and Translational Head and Neck Oncology, Department of Otolaryngology, Head and Neck Surgery, University Hospital Heidelberg, Germany
- Research Group Molecular Mechanisms of Head and Neck Tumors, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| | - Moshe Elkabets
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
34
|
Glover HJ, Holliday H, Shparberg RA, Winkler D, Day M, Morris MB. Signalling pathway crosstalk stimulated by L-proline drives mouse embryonic stem cells to primitive-ectoderm-like cells. Development 2023; 150:dev201704. [PMID: 37823343 PMCID: PMC10652046 DOI: 10.1242/dev.201704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 10/02/2023] [Indexed: 10/13/2023]
Abstract
The amino acid L-proline exhibits growth factor-like properties during development - from improving blastocyst development to driving neurogenesis in vitro. Addition of 400 μM L-proline to self-renewal medium drives naïve mouse embryonic stem cells (ESCs) to early primitive ectoderm-like (EPL) cells - a transcriptionally distinct primed or partially primed pluripotent state. EPL cells retain expression of pluripotency genes, upregulate primitive ectoderm markers, undergo a morphological change and have increased cell number. These changes are facilitated by a complex signalling network hinging on the Mapk, Fgfr, Pi3k and mTor pathways. Here, we use a factorial experimental design coupled with statistical modelling to understand which signalling pathways are involved in the transition between ESCs and EPL cells, and how they underpin changes in morphology, cell number, apoptosis, proliferation and gene expression. This approach reveals pathways which work antagonistically or synergistically. Most properties were affected by more than one inhibitor, and each inhibitor blocked specific aspects of the naïve-to-primed transition. These mechanisms underpin progression of stem cells across the in vitro pluripotency continuum and serve as a model for pre-, peri- and post-implantation embryogenesis.
Collapse
Affiliation(s)
- Hannah J. Glover
- School of Medical Sciences, University of Sydney, Sydney 2006, Australia
- Naomi Berrie Diabetes Center, Columbia Stem Cell Initiative, Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Holly Holliday
- School of Medical Sciences, University of Sydney, Sydney 2006, Australia
| | | | - David Winkler
- Department of Biochemistry and Chemistry, Latrobe Institute for Molecular Science, Latrobe University, Bundoora 3083, Australia
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Australia
- Advanced Materials and Healthcare Technologies, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Margot Day
- School of Medical Sciences, University of Sydney, Sydney 2006, Australia
| | - Michael B. Morris
- School of Medical Sciences, University of Sydney, Sydney 2006, Australia
| |
Collapse
|
35
|
Tomasin R, Rodrigues AM, Manucci AC, Bruni-Cardoso A. A molecular landscape of quiescence and proliferation highlights the role of Pten in mammary gland acinogenesis. J Cell Sci 2023; 136:jcs261178. [PMID: 37712332 DOI: 10.1242/jcs.261178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 09/08/2023] [Indexed: 09/16/2023] Open
Abstract
Cell context is key for cell state. Using physiologically relevant models of laminin-rich extracellular matrix (lrECM) induction of mammary epithelial cell quiescence and differentiation, we provide a landscape of the key molecules for the proliferation-quiescence decision, identifying multiple layers of regulation at the mRNA and protein levels. Quiescence occurred despite activity of Fak (also known as PTK2), Src and phosphoinositide 3-kinases (PI3Ks), suggesting the existence of a disconnecting node between upstream and downstream proliferative signalling. Pten, a lipid and protein phosphatase, fulfils this role, because its inhibition increased proliferation and restored signalling via the Akt, mTORC1, mTORC2 and mitogen-activated protein kinase (MAPK) pathways. Pten and laminin levels were positively correlated in developing murine mammary epithelia, and Pten localized apicolaterally in luminal cells in ducts and near the nascent lumen in terminal end buds. Consistently, in three-dimensional acinogenesis models, Pten was required for triggering and sustaining quiescence, polarity and architecture. The multilayered regulatory circuitry that we uncovered provides an explanation for the robustness of quiescence within a growth-suppressive microenvironment, which could nonetheless be disrupted by perturbations in master regulators such as Pten.
Collapse
Affiliation(s)
- Rebeka Tomasin
- E-signal lab, Department of Biochemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, SP 05508-000, Brazil
| | - Ana Maria Rodrigues
- E-signal lab, Department of Biochemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, SP 05508-000, Brazil
| | - Antonio Carlos Manucci
- E-signal lab, Department of Biochemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, SP 05508-000, Brazil
| | - Alexandre Bruni-Cardoso
- E-signal lab, Department of Biochemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, SP 05508-000, Brazil
| |
Collapse
|
36
|
Jiang RY, Fang ZR, Zhang HP, Xu JY, Zhu JY, Chen KY, Wang W, Jiang X, Wang XJ. Ginsenosides: changing the basic hallmarks of cancer cells to achieve the purpose of treating breast cancer. Chin Med 2023; 18:125. [PMID: 37749560 PMCID: PMC10518937 DOI: 10.1186/s13020-023-00822-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/16/2023] [Indexed: 09/27/2023] Open
Abstract
In 2021, breast cancer accounted for a substantial proportion of cancer cases and represented the second leading cause of cancer deaths among women worldwide. Although tumor cells originate from normal cells in the human body, they possess distinct biological characteristics resulting from changes in gene structure and function of cancer cells in contrast with normal cells. These distinguishing features, known as hallmarks of cancer cells, differ from those of normal cells. The hallmarks primarily include high metabolic activity, mitochondrial dysfunction, and resistance to cell death. Current evidence suggests that the fundamental hallmarks of tumor cells affect the tissue structure, function, and metabolism of tumor cells and their internal and external environment. Therefore, these fundamental hallmarks of tumor cells enable tumor cells to proliferate, invade and avoid apoptosis. Modifying these hallmarks of tumor cells represents a new and potentially promising approach to tumor treatment. The key to breast cancer treatment lies in identifying the optimal therapeutic agent with minimal toxicity to normal cells, considering the specific types of tumor cells in patients. Some herbal medicines contain active ingredients which can precisely achieve this purpose. In this review, we introduce Ginsenoside's mechanism and research significance in achieving the therapeutic effect of breast cancer by changing the functional hallmarks of tumor cells, providing a new perspective for the potential application of Ginsenoside as a therapeutic drug for breast cancer.
Collapse
Affiliation(s)
- Rui-Yuan Jiang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
- Zhejiang Chinese Medical University, NO. 548, Binwen Road, Binjiang District, Hangzhou, 310000, Zhejiang, China
| | - Zi-Ru Fang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
- Zhejiang Chinese Medical University, NO. 548, Binwen Road, Binjiang District, Hangzhou, 310000, Zhejiang, China
| | - Huan-Ping Zhang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
- Wenzhou Medical University, No. 270, Xueyuan West Road, Lucheng District, Wenzhou, 325027, Zhejiang, China
| | - Jun-Yao Xu
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Jia-Yu Zhu
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
- Zhejiang Chinese Medical University, NO. 548, Binwen Road, Binjiang District, Hangzhou, 310000, Zhejiang, China
| | - Ke-Yu Chen
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
- Zhejiang Chinese Medical University, NO. 548, Binwen Road, Binjiang District, Hangzhou, 310000, Zhejiang, China
| | - Wei Wang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
- Wenzhou Medical University, No. 270, Xueyuan West Road, Lucheng District, Wenzhou, 325027, Zhejiang, China
| | - Xiao Jiang
- Department of Basic Medical Sciences, Guangxi University of Chinese Medicine, NO. 13, Wuhe Road, Qingxiu District, Nanning, 530022, Guangxi, China.
| | - Xiao-Jia Wang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China.
| |
Collapse
|
37
|
Rashid R, Tripathi R, Singh A, Sarkar S, Kawale A, Bader GN, Gupta S, Gupta RK, Jha RK. Naringenin improves ovarian health by reducing the serum androgen and eliminating follicular cysts in letrozole-induced polycystic ovary syndrome in the Sprague Dawley rats. Phytother Res 2023; 37:4018-4041. [PMID: 37165686 DOI: 10.1002/ptr.7860] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 04/03/2023] [Accepted: 04/17/2023] [Indexed: 05/12/2023]
Abstract
Polycystic ovary syndrome (PCOS) is most common in women of reproductive age, giving rise to androgen excess and anovulation, leading to infertility and non-reproductive complications. We explored the ameliorating effect of naringenin in PCOS using the Sprague Dawley (SD) rat model and human granulosa cells. Letrozole-induced PCOS rats were given either naringenin (50 mg/kg/day) alone or in combination with metformin (300 mg/kg/day), followed by the estrous cycle, hormonal analysis, and glucose sensitivity test. To evaluate the effect of naringenin on granulosa cell (hGC) steroidogenesis, we treated cells with naringenin (2.5 μM) alone or in combination with metformin (1 mM) in the presence of forskolin (10 μM). To determine the steroidogenesis of CYP-17A1, -19A1, and 3βHSD2, the protein expression levels were examined. Treatment with naringenin in the PCOS animal groups increased ovulation potential and decreased cystic follicles and levels of androgens. The expression levels of CYP-17A1, -19A1, and 3βHSD2, were seen restored in the ovary of PCOS SD rats' model and in the human ovarian cells in response to the naringenin. We found an increased expression level of phosphorylated-AKT in the ovary and hGCs by naringenin. Naringenin improves ovulation and suppress androgens and cystic follicles, involving AKT activation.
Collapse
Affiliation(s)
- Rumaisa Rashid
- Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow, India
- Department of Pharmaceutical Sciences, University of Kashmir, Jammu and Kashmir, India
| | - Rupal Tripathi
- Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Akanksha Singh
- Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Sudarsan Sarkar
- Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Ajaykumar Kawale
- Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - G N Bader
- Department of Pharmaceutical Sciences, University of Kashmir, Jammu and Kashmir, India
| | - Satish Gupta
- Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Rakesh Kumar Gupta
- Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Rajesh Kumar Jha
- Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
38
|
Smolen KA, Papke CM, Swingle MR, Musiyenko A, Li C, Salter EA, Camp AD, Honkanen RE, Kettenbach AN. Quantitative proteomics and phosphoproteomics of PP2A-PPP2R5D variants reveal deregulation of RPS6 phosphorylation via converging signaling cascades. J Biol Chem 2023; 299:105154. [PMID: 37572851 PMCID: PMC10485637 DOI: 10.1016/j.jbc.2023.105154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 07/28/2023] [Accepted: 07/29/2023] [Indexed: 08/14/2023] Open
Abstract
Genetic germline variants of PPP2R5D (encoding: phosphoprotein phosphatase 2 regulatory protein 5D) result in PPP2R5D-related disorder (Jordan's Syndrome), which is characterized by intellectual disability, hypotonia, seizures, macrocephaly, autism spectrum disorder, and delayed motor skill development. The disorder originates from de novo single nucleotide mutations, generating missense variants that act in a dominant manner. Pathogenic mutations altering 13 different amino acids have been identified, with the E198K variant accounting for ∼40% of reported cases. However, the generation of a heterozygous E198K variant cell line to study the molecular effects of the pathogenic mutation has been challenging. Here, we use CRISPR-PRIME genomic editing to introduce a transition (c.592G>A) in a single PPP2R5D allele in HEK293 cells, generating E198K-heterozygous lines to complement existing E420K variant lines. We generate global protein and phosphorylation profiles of WT, E198K, and E420K cell lines and find unique and shared changes between variants and WT cells in kinase- and phosphatase-controlled signaling cascades. We observed ribosomal protein S6 (RPS6) hyperphosphorylation as a shared signaling alteration, indicative of increased ribosomal protein S6-kinase activity. Treatment with rapamycin or an RPS6-kinase inhibitor (LY2584702) suppressed RPS6 phosphorylation in both, suggesting upstream activation of mTORC1/p70S6K. Intriguingly, our data suggests ERK-dependent activation of mTORC1 in both E198K and E420K variant cells, with additional AKT-mediated mTORC1 activation in the E420K variant. Thus, although upstream activation of mTORC1 differs between PPP2R5D-related disorder genotypes, inhibition of mTORC1 or RPS6 kinases warrants further investigation as potential therapeutic strategies for patients.
Collapse
Affiliation(s)
- Kali A Smolen
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Cinta M Papke
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama, USA
| | - Mark R Swingle
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama, USA
| | - Alla Musiyenko
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama, USA
| | - Chenchen Li
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama, USA
| | - E Alan Salter
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama, USA
| | - Ashley D Camp
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama, USA
| | - Richard E Honkanen
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama, USA.
| | - Arminja N Kettenbach
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA; Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA.
| |
Collapse
|
39
|
Aguilar-Valdés A, González-Vela F, Sánchez-Vidal H, Martínez-Aguilar J. A proteomic signature and potential pharmacological opportunities in the adaptive resistance to MEK and PI3K kinase inhibition in pancreatic cancer cells. Proteomics 2023; 23:e2300041. [PMID: 37140101 DOI: 10.1002/pmic.202300041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/23/2023] [Accepted: 04/18/2023] [Indexed: 05/05/2023]
Abstract
Pancreatic cancer is one of the most lethal cancer types and is becoming a leading cause of cancer-related deaths. The limited benefit offered by chemotherapy agents has propelled the search for alternative approaches that target specific molecular drivers of cancer growth and progression. Mutant KRas and effector pathways Raf/MEK/ERK and PI3K/Akt are key players in pancreatic cancer; however, preclinical studies have shown adaptive tumour response to combined MEK and PI3K kinase inhibition leading to treatment resistance. There is a critical unmet need to decipher the molecular basis underlying adaptation to this targeted approach. Here, we aimed to identify common protein expression alterations associated with adaptive resistance in KRas-mutant pancreatic cancer cells, and test if it can be overcome by selected already available small molecule drugs. We found a group of 14 proteins with common expression change in resistant cells, including KRas, caveolin-1, filamin-a, eplin, IGF2R and cytokeratins CK-8, -18 and -19. Notably, several proteins have previously been observed in pancreatic cancer cells with intrinsic resistance to the combined kinase inhibition treatment, suggesting a proteomic signature. We also found that resistant cells are sensitive to small molecule drugs ERK inhibitor GDC-0994, S6K1 inhibitor DG2 and statins.
Collapse
Affiliation(s)
- Alain Aguilar-Valdés
- Red de Apoyo a la Investigación, Coordinación de la Investigación Científica, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Francisco González-Vela
- Red de Apoyo a la Investigación, Coordinación de la Investigación Científica, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Hilda Sánchez-Vidal
- Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Juan Martínez-Aguilar
- Red de Apoyo a la Investigación, Coordinación de la Investigación Científica, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
40
|
Narayanan J, Tamilanban T, Kumar PS, Guru A, Muthupandian S, Kathiravan MK, Arockiaraj J. Role and mechanistic actions of protein kinase inhibitors as an effective drug target for cancer and COVID. Arch Microbiol 2023; 205:238. [PMID: 37193831 PMCID: PMC10188327 DOI: 10.1007/s00203-023-03559-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 05/18/2023]
Abstract
Kinases can be grouped into 20 families which play a vital role as a regulator of neoplasia, metastasis, and cytokine suppression. Human genome sequencing has discovered more than 500 kinases. Mutations of the kinase itself or the pathway regulated by kinases leads to the progression of diseases such as Alzheimer's, viral infections, and cancers. Cancer chemotherapy has made significant leaps in recent years. The utilization of chemotherapeutic agents for treating cancers has become difficult due to their unpredictable nature and their toxicity toward the host cells. Therefore, targeted therapy as a therapeutic option against cancer-specific cells and toward the signaling pathways is a valuable avenue of research. SARS-CoV-2 is a member of the Betacoronavirus genus that is responsible for causing the COVID pandemic. Kinase family provides a valuable source of biological targets against cancers and for recent COVID infections. Kinases such as tyrosine kinases, Rho kinase, Bruton tyrosine kinase, ABL kinases, and NAK kinases play an important role in the modulation of signaling pathways involved in both cancers and viral infections such as COVID. These kinase inhibitors consist of multiple protein targets such as the viral replication machinery and specific molecules targeting signaling pathways for cancer. Thus, kinase inhibitors can be used for their anti-inflammatory, anti-fibrotic activity along with cytokine suppression in cases of COVID. The main goal of this review is to focus on the pharmacology of kinase inhibitors for cancer and COVID, as well as ideas for future development.
Collapse
Affiliation(s)
- J Narayanan
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Tamil Nadu, 603203, India
| | - T Tamilanban
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Tamil Nadu, 603203, India
| | - P Senthil Kumar
- Faculty of Pharmacy, Karpagam Academy of Higher Education, Pollachi Main Road, Eachanari Post, Coimbatore, Tamil Nadu, 641021, India
| | - Ajay Guru
- Department of Conservative Dentistry and Endodontics, Saveetha Dental College and Hospitals, SIMATS, Chennai, Tamil Nadu, 600077, India.
| | - Saravanan Muthupandian
- AMR and Nanomedicine Lab, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Tamil Nadu, 600077, India.
| | - M K Kathiravan
- 209, Dr APJ Abdul Kalam Research Lab, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Tamil Nadu, 603203, India.
| | - Jesu Arockiaraj
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Tamil Nadu, 603203, India.
| |
Collapse
|
41
|
Park J, An G, Park H, Hong T, Lim W, Song G. Developmental defects induced by thiabendazole are mediated via apoptosis, oxidative stress and alteration in PI3K/Akt and MAPK pathways in zebrafish. ENVIRONMENT INTERNATIONAL 2023; 176:107973. [PMID: 37196567 DOI: 10.1016/j.envint.2023.107973] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/07/2023] [Accepted: 05/08/2023] [Indexed: 05/19/2023]
Abstract
Thiabendazole, a benzimidazole fungicide, is widely used to prevent yield loss in agricultural land by inhibiting plant diseases derived from fungi. As thiabendazole has a stable benzimidazole ring structure, it remains in the environment for an extended period, and its toxic effects on non-target organisms have been reported, indicating the possibility that it could threaten public health. However, little research has been conducted to elucidate the comprehensive mechanisms of its developmental toxicity. Therefore, we used zebrafish, a representative toxicological model that can predict toxicity in aquatic organisms and mammals, to demonstrate the developmental toxicity of thiabendazole. Various morphological malformations were observed, including decreased body length, eye size, and increased heart and yolk sac edema. Apoptosis, reactive oxygen species (ROS) production, and inflammatory response were also triggered by thiabendazole exposure in zebrafish larvae. Furthermore, PI3K/Akt and MAPK signaling pathways important for appropriate organogenesis were significantly changed by thiabendazole. These results led to toxicity in various organs and a reduction in the expression of related genes, including cardiovascular toxicity, neurotoxicity, and hepatic and pancreatic toxicity, which were detected in flk1:eGFP, olig2:dsRED, and L-fabp:dsRed;elastase:GFP transgenic zebrafish models, respectively. Overall, this study partly determined the developmental toxicity of thiabendazole in zebrafish and provided evidence of the environmental hazards of this fungicide.
Collapse
Affiliation(s)
- Junho Park
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Garam An
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Hahyun Park
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Taeyeon Hong
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Whasun Lim
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
42
|
Önal HT, Yetkin D, Ayaz F. Escitalopram's inflammatory effect on the mammalian macrophages and its intracellular mechanism of action. Prog Neuropsychopharmacol Biol Psychiatry 2023; 125:110762. [PMID: 37031947 DOI: 10.1016/j.pnpbp.2023.110762] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 03/29/2023] [Accepted: 04/06/2023] [Indexed: 04/11/2023]
Abstract
The majority of patients with depression are treated with antidepressant drugs that are in the serotonin reuptake inhibitor (SSRI) group. Different studies have been conducted on the effect of treatment with antidepressants on the level of pro-inflammatory cytokines. There have been studies on the effects of escitalopram, an SSRI group antidepressant, on the pro-inflammatory cytokine levels both in vivo and in vitro. The results of these studies do not overlap and therefore the escitalopram's effect on the immune system should be studied in more depth. In this study, we aimed to examine, in detail, the cytokine production amount by escitalopram treatment of the J774.2 macrophage cells and its intracellular mechanism of action by examining the PI3K and p38 pathways. As a result of our study, we observed that Escitalopram caused a significant increase in TNF-α, IL-6, and GM-CSF levels in mammalian macrophage cells, but did not induce IL-12p40 production. We observed that the p38 and PI3K pathways play a role in inflammation in the presence of Escitalopram.
Collapse
Affiliation(s)
- Harika Topal Önal
- Medical Laboratory Techniques, Vocational School of Health Services, Toros University, Mersin, Turkey.
| | - Derya Yetkin
- Mersin University Advanced Technology Education Research and Application Center, Mersin, Turkey
| | - Furkan Ayaz
- Science Institute, Faculty of Arts and Science, Department of Biotechnology, Mersin University, Mersin, Turkey; Mersin University Biotechnology Research and Application Center, Mersin University, Mersin, Turkey.
| |
Collapse
|
43
|
Hu X, Liu W, He M, Qiu Q, Zhou B, Liu R, Wu F, Huang Z. Comparison of the molecular mechanisms of Fuzi Lizhong Pill and Huangqin decoction in the treatment of the cold and heat syndromes of ulcerative colitis based on network pharmacology. Comput Biol Med 2023; 159:106870. [PMID: 37084637 DOI: 10.1016/j.compbiomed.2023.106870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 02/21/2023] [Accepted: 03/30/2023] [Indexed: 04/23/2023]
Abstract
OBJECTIVE The aim of this study was to illuminate the similarities and differences of two prescriptions as "cold" and "heat" drugs for treating ulcerative colitis (UC) with the simultaneous occurrence of heat and cold syndrome via network pharmacology. METHODS (1) Active compounds of Fuzi-Lizhong Pill (FLP) and Huangqin Decoction (HQT) were retrieved from the TCMSP database, and their common active compounds were compared using the Venn diagram. (2) Potential proteins targeted to three sets of compounds either (i) shared by FLP and HQT, (ii) unique to FLP or (iii) unique to HQT were screened from the STP, STITCH and TCMSP databases, and three corresponding core compound sets were identified in Herb-Compound-Target (H-C-T) networks. (3) Targets related to UC were identified from the DisGeNET and GeneCards databases and compared with the FLP-HQT common targets to identify potential targets of FLP-HQT compounds related to UC. (4) Three potential target sets were imported into the STRING database for protein‒protein interaction (PPI) analysis, and three core target sets were defined. (5) The binding capabilities and interacting modes between core compounds and key targets were verified by molecular docking via Discovery Studio 2019 and molecular dynamics (MD) simulations via Amber 2018. (6) The target sets were enriched for KEGG pathways using the DAVID database. RESULTS (1) FLP and HQT included 95 and 113 active compounds, respectively, with 46 common compounds, 49 FLP-specific compounds and 67 HQT-specific compounds. (2) 174 targets of FLP-HQT common compounds, 168 targets of FLP-specific compounds, and 369 targets of HQT-specific compounds were predicted from the STP, STITCH and TCMSP databases; six core compounds specific to FLP and HQT were screened in the FLP-specific and HQT-specific H-C-T networks, respectively. (3) 103 targets overlapped from the 174 predicted targets and the 4749 UC-related targets; two core compounds for FLP-HQT were identified from the FLP-HQT H-C-T network. (4) 103 FLP-HQT-UC common targets, 168 of FLP-specific targets and 369 of HQT-specific targets had shared core targets (AKT1, MAPK3, TNF, JUN and CASP3) based on the PPI network analysis. (5) Molecular docking demonstrated that naringenin, formononetin, luteolin, glycitein, quercetin, kaempferol and baicalein of FLP and HQT play a critical role in treating UC; meanwhile, MD simulations revealed the stability of protein‒ligand interactions. (6) The enriched pathways indicated that most targets were related to anti-inflammatory, immunomodulatory and other pathways. Compared with the pathways identified using traditional methods, FLP-specific pathways included the PPAR signaling pathway and the bile secretion pathway, and HQT-specific pathways included the vascular smooth muscle contraction pathway and the natural killer cell-mediated cytotoxicity pathway etc. CONCLUSION: In this study, we clarified the common mechanisms of FLP and HQT in treating UC and their specific mechanisms in treating cold and heat syndrome in UC through compound, target and pathway distinction and a literature comparison based on network pharmacology; these results provide a new perspective on the detailed mechanism of "multidrugs and single-disease" thought in traditional Chinese medicine.
Collapse
Affiliation(s)
- Xiyun Hu
- Key Laboratory of Computer-Aided Drug Design of Dongguan City, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523710, China; Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Dongguan, 523808, China
| | - Weidong Liu
- Key Laboratory of Computer-Aided Drug Design of Dongguan City, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523710, China; Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Dongguan, 523808, China
| | - Meiqi He
- Key Laboratory of Computer-Aided Drug Design of Dongguan City, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523710, China; Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Dongguan, 523808, China
| | - Qimiao Qiu
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Dongguan, 523808, China
| | - Bingjie Zhou
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Dongguan, 523808, China
| | - Ruining Liu
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Dongguan, 523808, China
| | - Fengxu Wu
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, School of Pharmaceutical Sciences, Hubei University of Medicine, Shiyan, 442000, China.
| | - Zunnan Huang
- Key Laboratory of Computer-Aided Drug Design of Dongguan City, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523710, China; Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Dongguan, 523808, China; Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, 524023, China.
| |
Collapse
|
44
|
Lu S, Xu J, Xu Y, Liu Y, Shi D, Wang J, Qiu F. Glycyrol attenuates colon injury via promotion of SQSTM1/p62 ubiquitination and autophagy by inhibiting the ubiquitin-specific protease USP8. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023] Open
|
45
|
Regulation of germline proteostasis by HSF1 and insulin/IGF-1 signaling. Biochem Soc Trans 2023; 51:501-512. [PMID: 36892215 DOI: 10.1042/bst20220616] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 03/10/2023]
Abstract
Protein homeostasis (proteostasis) is essential for cellular function and organismal health and requires the concerted actions of protein synthesis, folding, transport, and turnover. In sexually reproducing organisms, the immortal germline lineage passes genetic information across generations. Accumulating evidence indicates the importance of proteome integrity for germ cells as genome stability. As gametogenesis involves very active protein synthesis and is highly energy-demanding, it has unique requirements for proteostasis regulation and is sensitive to stress and nutrient availability. The heat shock factor 1 (HSF1), a key transcriptional regulator of cellular response to cytosolic and nuclear protein misfolding has evolutionarily conserved roles in germline development. Similarly, insulin/insulin-like growth factor-1 (IGF-1) signaling, a major nutrient-sensing pathway, impacts many aspects of gametogenesis. Here, we focus on HSF1 and IIS to review insights into their roles in germline proteostasis and discuss the implications on gamete quality control during stress and aging.
Collapse
|
46
|
Jiang L, Li L, Liu Y, Zhan M, Lu L, Yuan S, Liu Y. Drug resistance mechanism of kinase inhibitors in the treatment of hepatocellular carcinoma. Front Pharmacol 2023; 14:1097277. [PMID: 36891274 PMCID: PMC9987615 DOI: 10.3389/fphar.2023.1097277] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 02/01/2023] [Indexed: 02/16/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common form of primary liver cancer, and it usually occurs following chronic liver disease. Although some progress has been made in the treatment of HCC, the prognosis of patients with advanced HCC is not optimistic, mainly because of the inevitable development of drug resistance. Therefore, multi-target kinase inhibitors for the treatment of HCC, such as sorafenib, lenvatinib, cabozantinib, and regorafenib, produce small clinical benefits for patients with HCC. It is necessary to study the mechanism of kinase inhibitor resistance and explore possible solutions to overcome this resistance to improve clinical benefits. In this study, we reviewed the mechanisms of resistance to multi-target kinase inhibitors in HCC and discussed strategies that can be used to improve treatment outcomes.
Collapse
Affiliation(s)
- Lei Jiang
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People’s Hospital (Zhuhai Hospital AffiliatedWith Jinan University), Zhuhai, Guangdong, China
| | - Luan Li
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Yongzhuang Liu
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, Liaoning Province, China
| | - Meixiao Zhan
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People’s Hospital (Zhuhai Hospital AffiliatedWith Jinan University), Zhuhai, Guangdong, China
| | - Ligong Lu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People’s Hospital (Zhuhai Hospital AffiliatedWith Jinan University), Zhuhai, Guangdong, China
| | - Shengtao Yuan
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, Liaoning Province, China
| | - Yanyan Liu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People’s Hospital (Zhuhai Hospital AffiliatedWith Jinan University), Zhuhai, Guangdong, China
| |
Collapse
|
47
|
Li X, Yin X, Bao H, Liu C. Circular RNA ITCH increases sorafenib-sensitivity in hepatocellular carcinoma via sequestering miR-20b-5p and modulating the downstream PTEN-PI3K/Akt pathway. Mol Cell Probes 2023; 67:101877. [PMID: 36442661 DOI: 10.1016/j.mcp.2022.101877] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 11/24/2022] [Accepted: 11/24/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUNDS Sorafenib-resistance leads to poor prognosis and high mortality in advanced hepatocellular carcinoma (HCC), and this study aims to investigate the functional role of a circular RNA ITCH (circITCH) in regulating the sorafenib-resistance of HCC and its underlying mechanisms. METHODS The expression of circITCH in HCC tissues and cell lines were detected by performing quantitative real-time polymerase chain reaction. Sorafenib-resistant HCC cells were transfected with PLCDH-circITCH to upregulate circITCH and intervened with sorafenib, and MTT assay, flow cytometry and transwell assay were used to test the cell viability, apoptosis and migration ability, respectively. The downstream target of circITCH were explored by using bioinformatic analysis, dual luciferase reporter system and Western blot. RESULTS CircITCH was significantly down-regulated in HCC tissues and cell lines, compared with their normal counterparts. Especially, in contrast with the sorafenib-sensitive HCC cells, continuous sorafenib treatment decreased the expression levels of circITCH in the sorafenib-resistant HCC cells. Overexpression of circITCH increased sorafenib-sensitivity, promoted cell apoptosis and reduced cell migration abilities in the sorafenib-resistant HCC cells. Mechanically, circITCH elevated PTEN expression to inactivate the PI3K/Akt signals through negatively regulating miR-20b-5p in HCC, and upregulating miR-20b-5p or inhibiting PTEN abolished the enhancing effect of circITCH overexpression on sorafenib-induced cytotoxicity in sorafenib-resistant HCC cells. CONCLUSION Taken together, this study proves that circITCH enhances sorafenib-sensitivity in sorafenib-resistant HCC cells via regulating the miR-20b-5p/PTEN/PI3K/Akt signaling cascade, which highlights the potential value of circITCH as a target for enhancing the sorafenib-sensitivity in HCC.
Collapse
Affiliation(s)
- Xiaodong Li
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.
| | - Xuedong Yin
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.
| | - Heyi Bao
- Department of General Surgery, Qiqihar First Hospital, Qiqihar, 161005, China.
| | - Chang Liu
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.
| |
Collapse
|
48
|
Wang Y, Wang HM, Zhou Y, Hu LH, Wan JM, Yang JH, Niu HB, Hong XP, Hu P, Chen LB, Hu P, Chen LB. Dusp1 regulates thermal tolerance limits in zebrafish by maintaining mitochondrial integrity. Zool Res 2023; 44:126-141. [PMID: 36419379 PMCID: PMC9841188 DOI: 10.24272/j.issn.2095-8137.2022.397] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Temperature tolerance restricts the distribution of a species. However, the molecular and cellular mechanisms that set the thermal tolerance limits of an organism are poorly understood. Here, we report on the function of dual-specificity phosphatase 1 (DUSP1) in thermal tolerance regulation. Notably, we found that dusp1 -/- zebrafish grew normally but survived within a narrowed temperature range. The higher susceptibility of these mutant fish to both cold and heat challenges was attributed to accelerated cell death caused by aggravated mitochondrial dysfunction and over-production of reactive oxygen species in the gills. The DUSP1-MAPK-DRP1 axis was identified as a key pathway regulating these processes in both fish and human cells. These observations suggest that DUSP1 may play a role in maintaining mitochondrial integrity and redox homeostasis. We therefore propose that maintenance of cellular redox homeostasis may be a key mechanism for coping with cellular thermal stress and that the interplay between signaling pathways regulating redox homeostasis in the most thermosensitive tissue (i.e., gills) may play an important role in setting the thermal tolerance limit of zebrafish.
Collapse
Affiliation(s)
- Ying Wang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 200120, China,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 200120, China,Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 200120, China
| | - Hua-Min Wang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 200120, China,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 200120, China,Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 200120, China
| | - Yan Zhou
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 200120, China,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 200120, China,Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 200120, China
| | - Ling-Hong Hu
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 200120, China,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 200120, China,Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 200120, China
| | - Jing-Ming Wan
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 200120, China,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 200120, China,Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 200120, China
| | - Ji-Hui Yang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 200120, China,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 200120, China,Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 200120, China
| | - Hong-Bo Niu
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 200120, China,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 200120, China,Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 200120, China
| | - Xiu-Ping Hong
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 200120, China,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 200120, China,Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 200120, China
| | - Peng Hu
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 200120, China,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 200120, China,Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 200120, China
| | - Liang-Biao Chen
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 200120, China,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 200120, China,Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 200120, China,E-mail:
| | | | | | | | | | | | | |
Collapse
|
49
|
Stulpinas A, Sereika M, Vitkeviciene A, Imbrasaite A, Krestnikova N, Kalvelyte AV. Crosstalk between protein kinases AKT and ERK1/2 in human lung tumor-derived cell models. Front Oncol 2023; 12:1045521. [PMID: 36686779 PMCID: PMC9848735 DOI: 10.3389/fonc.2022.1045521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/28/2022] [Indexed: 01/06/2023] Open
Abstract
There is no doubt that cell signaling manipulation is a key strategy for anticancer therapy. Furthermore, cell state determines drug response. Thus, establishing the relationship between cell state and therapeutic sensitivity is essential for the development of cancer therapies. In the era of personalized medicine, the use of patient-derived ex vivo cell models is a promising approach in the translation of key research findings into clinics. Here, we were focused on the non-oncogene dependencies of cell resistance to anticancer treatments. Signaling-related mechanisms of response to inhibitors of MEK/ERK and PI3K/AKT pathways (regulators of key cellular functions) were investigated using a panel of patients' lung tumor-derived cell lines with various stemness- and EMT-related markers, varying degrees of ERK1/2 and AKT phosphorylation, and response to anticancer treatment. The study of interactions between kinases was the goal of our research. Although MEK/ERK and PI3K/AKT interactions are thought to be cell line-specific, where oncogenic mutations have a decisive role, we demonstrated negative feedback loops between MEK/ERK and PI3K/AKT signaling pathways in all cell lines studied, regardless of genotype and phenotype differences. Our work showed that various and distinct inhibitors of ERK signaling - selumetinib, trametinib, and SCH772984 - increased AKT phosphorylation, and conversely, inhibitors of AKT - capivasertib, idelalisib, and AKT inhibitor VIII - increased ERK phosphorylation in both control and cisplatin-treated cells. Interaction between kinases, however, was dependent on cellular state. The feedback between ERK and AKT was attenuated by the focal adhesion kinase inhibitor PF573228, and in cells grown in suspension, showing the possible role of extracellular contacts in the regulation of crosstalk between kinases. Moreover, studies have shown that the interplay between MEK/ERK and PI3K/AKT signaling pathways may be dependent on the strength of the chemotherapeutic stimulus. The study highlights the importance of spatial location of the cells and the strength of the treatment during anticancer therapy.
Collapse
|
50
|
Önal HT, Yetkin D, Ayaz F. Immunostimulatory activity of fluoxetine in macrophages via regulation of the PI3K and P38 signaling pathways. Immunol Res 2022; 71:413-421. [PMID: 36512200 PMCID: PMC9745289 DOI: 10.1007/s12026-022-09350-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 12/01/2022] [Indexed: 12/15/2022]
Abstract
Fluoxetine is an antidepressant drug that is heavily preferred in the cure of depression, which is from the selective serotonin reuptake inhibitor (SSRI) group. There are many reports on the effect of fluoxetine on the immune system, and its effect on the macrophage cells has never been looked at before. We aimed to demonstrate the cytokine production potential of fluoxetine antidepressant, which is widely used in the clinic, in the J774.2 cell line and its effect on PI3K and P38 pathways. The use of fluoxetine alone in J774.2 macrophage cells showed immunostimulatory properties by inducing the production of tumor necrosis factor-α (TNF-α), interleukin (IL) IL-6, IL-12p40, and granulocyte–macrophage colony-stimulating factor (GM-CSF) cytokines. It showed anti-inflammatory properties by completely stopping the production of cytokines (IL-6, IL12p40, TNF-α, and GM-CSF) at all concentrations where LPS and fluoxetine were used together. While PI3K and P38 pathways were not effective in the immunostimulatory effect in the presence of the drug agent, we found that the PI3K and P38 pathways were influenced during their anti-inflammatory activity.
Collapse
Affiliation(s)
- Harika Topal Önal
- Medical Laboratory Techniques, Vocational School of Health Services, Toros University, 33140 Mersin, Turkey
| | - Derya Yetkin
- Mersin University Advanced Technology Education Research and Application Center, Mersin University, 33110 Mersin, Turkey
| | - Furkan Ayaz
- Department of Biotechnology, Faculty of Arts and Science, Mersin University, Mersin, Turkey 33110
- Mersin University Biotechnology Research and Application Center, Mersin University, 33110, Mersin, Turkey
| |
Collapse
|