1
|
Chakraborty P, Aravindhan V, Mukherjee S. Helminth-derived biomacromolecules as therapeutic agents for treating inflammatory and infectious diseases: What lessons do we get from recent findings? Int J Biol Macromol 2023; 241:124649. [PMID: 37119907 DOI: 10.1016/j.ijbiomac.2023.124649] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/20/2023] [Accepted: 04/24/2023] [Indexed: 05/01/2023]
Abstract
Despite the tremendous progress in healthcare sectors, a number of life-threatening infectious, inflammatory, and autoimmune diseases are continuously challenging mankind throughout the globe. In this context, recent successes in utilizing helminth parasite-derived bioactive macromolecules viz. glycoproteins, enzymes, polysaccharides, lipids/lipoproteins, nucleic acids/nucleotides, and small organic molecules for treating various disorders primarily resulted from inflammation. Among the several parasites that infect humans, helminths (cestodes, nematodes, and trematodes) are known as efficient immune manipulators owing to their explicit ability to modulate and modify the innate and adaptive immune responses of humans. These molecules selectively bind to immune receptors on innate and adaptive immune cells and trigger multiple signaling pathways to elicit anti-inflammatory cytokines, expansion of alternatively activated macrophages, T-helper 2, and immunoregulatory T regulatory cell types to induce an anti-inflammatory milieu. Reduction of pro-inflammatory responses and repair of tissue damage by these anti-inflammatory mediators have been exploited for treating a number of autoimmune, allergic, and metabolic diseases. Herein, the potential and promises of different helminths/helminth-derived products as therapeutic agents in ameliorating immunopathology of different human diseases and their mechanistic insights of function at cell and molecular level alongside the molecular signaling cross-talks have been reviewed by incorporating up-to-date findings achieved in the field.
Collapse
Affiliation(s)
- Pritha Chakraborty
- Integrative Biochemistry & Immunology Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol 713340, India
| | | | - Suprabhat Mukherjee
- Integrative Biochemistry & Immunology Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol 713340, India.
| |
Collapse
|
2
|
Loghry HJ, Yuan W, Zamanian M, Wheeler NJ, Day TA, Kimber MJ. Ivermectin inhibits extracellular vesicle secretion from parasitic nematodes. J Extracell Vesicles 2020; 10:e12036. [PMID: 33318780 PMCID: PMC7726798 DOI: 10.1002/jev2.12036] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 12/18/2022] Open
Abstract
Lymphatic filariasis (LF) is a disease caused by parasitic filarial nematodes that is endemic in 49 countries of the world and affects or threatens over 890 million people. Strategies to control LF rely heavily on mass administration of anthelmintic drugs including ivermectin (IVM), a macrocyclic lactone drug considered an Essential Medicine by the WHO. However, despite its widespread use the therapeutic mode of action of IVM against filarial nematodes is not clear. We have previously reported that filarial nematodes secrete extracellular vesicles (EVs) and that their cargo has immunomodulatory properties. Here we investigate the effects of IVM and other anti-filarial drugs on parasitic nematode EV secretion, motility, and protein secretion. We show that inhibition of EV secretion was a specific property of IVM, which had consistent and significant inhibitory effects across nematode life stages and species, with the exception of male parasites. IVM inhibited EV secretion, but not parasite motility, at therapeutically relevant concentrations. Protein secretion was inhibited by IVM in the microfilariae stage, but not in any other stage tested. Our data provides evidence that inhibiting the secretion of immunomodulatory EVs by parasitic nematodes could explain, at least in part, IVM mode of action and provides a phenotype for novel drug discovery.
Collapse
Affiliation(s)
- Hannah J. Loghry
- Department of Biomedical SciencesCollege of Veterinary MedicineIowa State UniversityAmesIowaUSA
| | - Wang Yuan
- Department of Biomedical SciencesCollege of Veterinary MedicineIowa State UniversityAmesIowaUSA
| | - Mostafa Zamanian
- Department of Pathobiological SciencesUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Nicolas J. Wheeler
- Department of Pathobiological SciencesUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Timothy A. Day
- Department of Biomedical SciencesCollege of Veterinary MedicineIowa State UniversityAmesIowaUSA
| | - Michael J. Kimber
- Department of Biomedical SciencesCollege of Veterinary MedicineIowa State UniversityAmesIowaUSA
| |
Collapse
|
3
|
Brilland B, Scherlinger M, Khoryati L, Goret J, Duffau P, Lazaro E, Charrier M, Guillotin V, Richez C, Blanco P. Platelets and IgE: Shaping the Innate Immune Response in Systemic Lupus Erythematosus. Clin Rev Allergy Immunol 2019; 58:194-212. [DOI: 10.1007/s12016-019-08744-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
4
|
Zakeri A, Hansen EP, Andersen SD, Williams AR, Nejsum P. Immunomodulation by Helminths: Intracellular Pathways and Extracellular Vesicles. Front Immunol 2018; 9:2349. [PMID: 30369927 PMCID: PMC6194161 DOI: 10.3389/fimmu.2018.02349] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 09/21/2018] [Indexed: 12/13/2022] Open
Abstract
Helminth parasites are masters at manipulating host immune responses, using an array of sophisticated mechanisms. One of the major mechanisms enabling helminths to establish chronic infections is the targeting of pattern recognition receptors (PRRs) including toll-like receptors, C-type lectin receptors, and the inflammasome. Given the critical role of these receptors and their intracellular pathways in regulating innate inflammatory responses, and also directing adaptive immunity toward Th1 and Th2 responses, recognition of the pathways triggered and/or modulated by helminths and their products will provide detailed insights about how helminths are able to establish an immunoregulatory environment. However, helminths also target PRRs-independent mechanisms (and most likely other yet unknown mechanisms and pathways) underpinning the battery of different molecules helminths produce. Herein, the current knowledge on intracellular pathways in antigen presenting cells activated by helminth-derived biomolecules is reviewed. Furthermore, we discuss the importance of helminth-derived vesicles as a less-appreciated components released during infection, their role in activating these host intracellular pathways, and their implication in the development of new therapeutic approaches for inflammatory diseases and the possibility of designing a new generation of vaccines.
Collapse
Affiliation(s)
- Amin Zakeri
- Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Eline P. Hansen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Sidsel D. Andersen
- Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Andrew R. Williams
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Peter Nejsum
- Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| |
Collapse
|
5
|
Wu Z, Wang L, Tang Y, Sun X. Parasite-Derived Proteins for the Treatment of Allergies and Autoimmune Diseases. Front Microbiol 2017; 8:2164. [PMID: 29163443 PMCID: PMC5682104 DOI: 10.3389/fmicb.2017.02164] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Accepted: 10/20/2017] [Indexed: 12/26/2022] Open
Abstract
The morbidity associated with atopic diseases and immune dysregulation disorders such as asthma, food allergies, multiple sclerosis, atopic dermatitis, type 1 diabetes mellitus, and inflammatory bowel disease has been increasing all around the world over the past few decades. Although the roles of non-biological environmental factors and genetic factors in the etiopathology have been particularly emphasized, they do not fully explain the increase; for example, genetic factors in a population change very gradually. Epidemiological investigation has revealed that the increase also parallels a decrease in infectious diseases, especially parasitic infections. Thus, the reduced prevalence of parasitic infections may be another important reason for immune dysregulation. Parasites have co-evolved with the human immune system for a long time. Some parasite-derived immune-evasion molecules have been verified to reduce the incidence and harmfulness of atopic diseases in humans by modulating the immune response. More importantly, some parasite-derived products have been shown to inhibit the progression of inflammatory diseases and consequently alleviate their symptoms. Thus, parasites, and especially their products, may have potential applications in the treatment of autoimmune diseases. In this review, the potential of parasite-derived products and their analogs for use in the treatment of atopic diseases and immune dysregulation is summarized.
Collapse
Affiliation(s)
- Zhenyu Wu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control (SYSU), Ministry of Education, Guangzhou, China.,Provincial Engineering Technology Research Center for Diseases-Vectors Control, Guangzhou, China
| | - Lifu Wang
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control (SYSU), Ministry of Education, Guangzhou, China.,Provincial Engineering Technology Research Center for Diseases-Vectors Control, Guangzhou, China
| | - Yanlai Tang
- Department of Pediatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xi Sun
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control (SYSU), Ministry of Education, Guangzhou, China.,Provincial Engineering Technology Research Center for Diseases-Vectors Control, Guangzhou, China
| |
Collapse
|
6
|
Smallwood TB, Giacomin PR, Loukas A, Mulvenna JP, Clark RJ, Miles JJ. Helminth Immunomodulation in Autoimmune Disease. Front Immunol 2017; 8:453. [PMID: 28484453 PMCID: PMC5401880 DOI: 10.3389/fimmu.2017.00453] [Citation(s) in RCA: 159] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 04/03/2017] [Indexed: 12/26/2022] Open
Abstract
Helminths have evolved to become experts at subverting immune surveillance. Through potent and persistent immune tempering, helminths can remain undetected in human tissues for decades. Redirecting the immunomodulating "talents" of helminths to treat inflammatory human diseases is receiving intensive interest. Here, we review therapies using live parasitic worms, worm secretions, and worm-derived synthetic molecules to treat autoimmune disease. We review helminth therapy in both mouse models and clinical trials and discuss what is known on mechanisms of action. We also highlight current progress in characterizing promising new immunomodulatory molecules found in excretory/secretory products of helminths and their potential use as immunotherapies for acute and chronic inflammatory diseases.
Collapse
Affiliation(s)
- Taylor B Smallwood
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Paul R Giacomin
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Alex Loukas
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Jason P Mulvenna
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia.,Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia.,QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Richard J Clark
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - John J Miles
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia.,QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.,Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK.,School of Medicine, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
7
|
Brugia malayi Antigen (BmA) Inhibits HIV-1 Trans-Infection but Neither BmA nor ES-62 Alter HIV-1 Infectivity of DC Induced CD4+ Th-Cells. PLoS One 2016; 11:e0146527. [PMID: 26808476 PMCID: PMC4726616 DOI: 10.1371/journal.pone.0146527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Accepted: 12/19/2015] [Indexed: 11/19/2022] Open
Abstract
One of the hallmarks of HIV-1 disease is the association of heightened CD4+ T-cell activation with HIV-1 replication. Parasitic helminths including filarial nematodes have evolved numerous and complex mechanisms to skew, dampen and evade human immune responses suggesting that HIV-1 infection may be modulated in co-infected individuals. Here we studied the effects of two filarial nematode products, adult worm antigen from Brugia malayi (BmA) and excretory-secretory product 62 (ES-62) from Acanthocheilonema viteae on HIV-1 infection in vitro. Neither BmA nor ES-62 influenced HIV-1 replication in CD4+ enriched T-cells, with either a CCR5- or CXCR4-using virus. BmA, but not ES-62, had the capacity to bind the C-type lectin dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN) thereby inhibiting HIV-1 trans-infection of CD4+ enriched T-cells. As for their effect on DCs, neither BmA nor ES-62 could enhance or inhibit DC maturation as determined by CD83, CD86 and HLA-DR expression, or the production of IL-6, IL-10, IL-12 and TNF-α. As expected, due to the unaltered DC phenotype, no differences were found in CD4+ T helper (Th) cell phenotypes induced by DCs treated with either BmA or ES-62. Moreover, the HIV-1 susceptibility of the Th-cell populations induced by BmA or ES-62 exposed DCs was unaffected for both CCR5- and CXCR4-using HIV-1 viruses. In conclusion, although BmA has the potential capacity to interfere with HIV-1 transmission or initial viral dissemination through preventing the virus from interacting with DCs, no differences in the Th-cell polarizing capacity of DCs exposed to BmA or ES-62 were observed. Neither antigenic source demonstrated beneficial or detrimental effects on the HIV-1 susceptibility of CD4+ Th-cells induced by exposed DCs.
Collapse
|
8
|
Pineda MA, Eason RJ, Harnett MM, Harnett W. From the worm to the pill, the parasitic worm product ES-62 raises new horizons in the treatment of rheumatoid arthritis. Lupus 2015; 24:400-11. [PMID: 25801883 DOI: 10.1177/0961203314560004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Evidence from human studies suggests that parasitic worm infection can protect humans against rheumatoid arthritis (RA) and this idea is strengthened by data generated in model systems. Although therapeutic use of parasitic worms is currently being explored, there are obvious benefits in pursuing drug development through identification and isolation of the 'active ingredients'. ES-62 is a secreted glycoprotein of the filarial nematode Acanthocheilonema viteae, which we have found to protect against the development of collagen-induced arthritis (CIA) in mice. ES-62 activity is dependent on the inflammatory phenotype of the local environment and protection arises via inhibition of Th17- and γδT cell-dependent IL-17 production. At the same time, NK and NK T cell IL-17 production is left intact, and such selectivity suggests that ES-62 might make a particularly attractive therapeutic for RA. However, as a potentially immunogenic protein, ES-62 is unsuitable for development as a drug. Nevertheless, ES-62 activity is dependent on covalently attached phosphorylcholine (PC) residues and we have therefore produced a library of PC-based drug-like ES-62 small-molecule analogues (SMAs) as an alternative therapeutic strategy. Screening this library, we have found an ES-62 SMA that mirrors ES-62 in protecting against CIA and by the same IL-17-dependent mechanism of action.
Collapse
Affiliation(s)
- M A Pineda
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - R J Eason
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - M M Harnett
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - W Harnett
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| |
Collapse
|
9
|
Pineda MA, Al-Riyami L, Harnett W, Harnett MM. Lessons from helminth infections: ES-62 highlights new interventional approaches in rheumatoid arthritis. Clin Exp Immunol 2014; 177:13-23. [PMID: 24666108 PMCID: PMC4089150 DOI: 10.1111/cei.12252] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2013] [Indexed: 12/19/2022] Open
Abstract
Parasitic worms are able to survive in their mammalian host for many years due to their ability to manipulate the immune response by secreting immunomodulatory products. It is increasingly clear that, reflecting the anti-inflammatory actions of such worm-derived immunomodulators, there is an inverse correlation between helminth infection and autoimmune diseases in the developing world. As the decrease in helminth infections due to increased sanitation has correlated with an alarming increase in prevalence of such disorders in industrialized countries, this ‘hygiene hypothesis’ has led to the proposal that worms and their secreted products offer a novel platform for the development of safe and effective strategies for the treatment of autoimmune disorders. In this study we review the anti-inflammatory effects of one such immunomodulator, ES-62 on innate and adaptive immune responses and the mechanisms it exploits to afford protection in the murine collagen-induced arthritis (CIA) model of rheumatoid arthritis (RA). As its core mechanism involves targeting of interleukin (IL)-17 responses, which despite being pathogenic in RA are important for combating infection, we discuss how its selective targeting of IL-17 production by T helper type 17 (Th17) and γδ T cells, while leaving that of CD49b+ natural killer (NK and NK T) cells intact, reflects the ability of helminths to modulate the immune system without immunocompromising the host. Exploiting helminth immunomodulatory mechanisms therefore offers the potential for safer therapies than current biologicals, such as ‘IL-17 blockers’, that are not able to discriminate sources of IL-17 and hence present adverse effects that limit their therapeutic potential.
Collapse
Affiliation(s)
- M A Pineda
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | | | | | | |
Collapse
|
10
|
Pineda MA, Lumb F, Harnett MM, Harnett W. ES-62, a therapeutic anti-inflammatory agent evolved by the filarial nematode Acanthocheilonema viteae. Mol Biochem Parasitol 2014; 194:1-8. [PMID: 24671112 DOI: 10.1016/j.molbiopara.2014.03.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 03/07/2014] [Accepted: 03/12/2014] [Indexed: 01/29/2023]
Abstract
Filarial nematodes cause long-term infections in hundreds of millions of people. A significant proportion of those affected develop a number of debilitating health problems but, remarkably, such infections are often unnoticed for many years. It is well known that parasitic worms modulate, yet do not completely inhibit, host immunological pathways, promoting their survival by limiting effective immune mechanisms. Such immunoregulation largely depends on molecules released by the worms, termed excretory-secretory products (ES). One of these products is the molecule ES-62, which is actively secreted by the rodent filarial nematode Acanthocheilonema viteae. ES-62 has been shown to exert anti-inflammatory actions thorough its phosphorylcholine (PC)-containing moiety on a variety of cells of the immune system, affecting intracellular signalling pathways associated with antigen receptor- and TLR-dependent responses. We summarise here how ES-62 modulates key signal transduction elements and how such immunomodulation confers protection to mice subjected to certain experimental models of inflammatory disease. Finally, we discuss recent results showing that it is possible to synthetise small molecule analogues (SMAs) that mimic the anti-inflammatory properties of ES-62, opening an exciting new drug development field in translational medicine.
Collapse
Affiliation(s)
- Miguel A Pineda
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, UK
| | - Felicity Lumb
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0NR, UK
| | - Margaret M Harnett
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, UK
| | - William Harnett
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0NR, UK.
| |
Collapse
|
11
|
Joseph S, Verma S, Sahoo M, Dixit S, Verma A, Kushwaha V, Saxena K, Sharma A, Saxena J, Murthy P. Sensitization with anti-inflammatory BmAFI of Brugia malayi allows L3 development in the hostile peritoneal cavity of Mastomys coucha. Acta Trop 2011; 120:191-205. [PMID: 21875568 DOI: 10.1016/j.actatropica.2011.08.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Revised: 07/12/2011] [Accepted: 08/15/2011] [Indexed: 10/17/2022]
Abstract
Filarial parasites survive by inducing tolerance in host but the antigens and mechanisms involved are not clear. Recently we found that BmAFI, a Sephadex G-200 eluted fraction of Brugia malayi adult worm extract, stimulates IL-10 release from THP-1 cells. In the present study, we determined the SDS-PAGE profile of BmAFI and infective 3rd stage larva (L3), investigated the effect of pre-sensitization of host with BmAFI on the survival and development of L3 in the non-permissive peritoneal cavity (p.c.) of the permissive host Mastomys coucha and in the p.c. of non-permissive Swiss mice, and studied immunological correlates for the observed effects. The parasite development and burden in p.c., was determined in sensitized infected M. coucha and Swiss mice and the release of TGF-β, IL-4, IL-10, IL-13, IFN-γ and NO, cellular proliferative response to Con A and BmAFI and levels of IgG subclasses and IgE were determined in sensitized infected M. coucha. Cellular proliferative response to Con A and BmAFI, mRNA expression of GATA-3, CTLA-4 and T-bet were determined in sensitized Swiss mice. In addition, the parasitological parameter was also studied in BmAFI-sensitized M. coucha exposed to the infection by standard subcutaneous (s.c.) route to assess whether sensitization enhances the intensity of infection. BmAFI-sensitization permitted survival of L3 and their development to adult stage by day 60 p.i. in the p.c. of M. coucha; in non-sensitized animals L3 could molt to L4 only and no parasite could be recovered beyond day 30 p.i. In M. coucha that received infection by s.c. route, pre-sensitization with BmAFI enhanced the microfilaraemia and adult worm recovery. In sensitized Swiss mice L3 could successfully molt to L4 in p.c. with improved recovery of parasite. BmAFI sensitization upregulated TGF-β and IL-10 release, IgG1 and IgG2b levels, GATA-3 and CTLA-4 mRNA expression, suppressed the cellular proliferative response and downregulated Con A stimulated response, IgE, IL-13, IFN-γ and NO responses. Immunoblot analysis showed that the BmAFI antiserum also strongly reacts with some L3 molecules. The results show, for the first time, that sensitization with the anti-inflammatory BmAFI which shares some of its molecules with those in L3, facilitates parasite survival in the non-permissive p.c. of the permissive host M. coucha, render a non-permissive Swiss mouse partially permissive to infection and enhances parasite load in M. coucha receiving the infection through permissive s.c. route by evoking a modified Th2 type of response and anti-inflammatory milieu. In conclusion, the findings suggest that the anti-inflammatory BmAFI fraction facilitates survival of B. malayi infection even in non-permissive environment.
Collapse
|
12
|
Kao YY, Chen YC, Cheng TJ, Chiung YM, Liu PS. Zinc oxide nanoparticles interfere with zinc ion homeostasis to cause cytotoxicity. Toxicol Sci 2011; 125:462-72. [PMID: 22112499 DOI: 10.1093/toxsci/kfr319] [Citation(s) in RCA: 203] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The toxicological effects of zinc oxide nanoparticles (ZnO-NPs) are attracting increasing concern as the field of nanotechnology progresses. Although the literature suggests that toxicity of ZnO-NPs may be related to their dissolution, the mechanism for ZnO-NP perturbation of cytosolic zinc concentration ([Zn(2+)](c)) homeostasis remains obscure. Using FluoZin-3 and RhodZin-3, this study investigated changes in both [Zn(2+)](c) and mitochondrial free Zn(2+) concentration ([Zn(2+)](m)) under conditions of ZnO-NP treatment in vivo and in vitro. In human leukemia Jurkat cells and human lung carcinoma H1355 cells, ZnO-NP treatment resulted in an elevation of both [Zn(2+)](c) and [Zn(2+)](m). In H1355 cells, ZnO-NP treatment induced depolarization of mitochondrial membrane potential, as well as caspase-3 activation and lactic dehydrogenase (LDH) release. In our in vivo experiments, when rats were exposed to ZnO-NPs, higher [Zn(2+)](c) and [Zn(2+)](m) were recorded in both broncho-alveolar lavage (BAL) cells and white blood cells isolated from ZnO-NP-exposed rats, compared with high efficiency particulate air-filter-protected controls LDH levels were also elevated in the BAL of ZnO-NP-exposed rats compared with controls. A mechanical toxicological pathway for ZnO-NP toxicity is suggested by these results: an elevation in [Zn(2+)](c) resulting from ZnO-NP dissolution in the intracellular endosome; cytosolic Zn(2+) sequestration by mitochondria; and elevated [Zn(2+)](m) leading to mitochondrial dysfunction, caspase activation, and cell apoptosis. We conclude that exposure to ZnO-NPs interferes with the homeostasis of [Zn(2+)](c,) and that elevated [Zn(2+)](c) results in cell apoptosis.
Collapse
Affiliation(s)
- Yi-Yun Kao
- Department of Microbiology, Soochow University, Taipei, Taiwan, Republic of China
| | | | | | | | | |
Collapse
|
13
|
Harnett W, Goodridge HS, Allen JM, Harnett M. Receptor usage by the Acanthocheilonema viteae-derived immunomodulator, ES-62. Exp Parasitol 2011; 132:97-102. [PMID: 21925176 DOI: 10.1016/j.exppara.2011.09.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Revised: 07/17/2011] [Accepted: 09/01/2011] [Indexed: 01/15/2023]
Abstract
ES-62 is an immunomodulatory phosphorylcholine (PC)-containing glycoprotein secreted by the rodent filarial nematode Acanthocheilonema viteae. Previously, the use of knockout mice has revealed the effects of ES-62 on macrophages and dendritic cells to be dependent on TLR4. However, it is possible that ES-62 may interact with additional proteins on the surfaces of target cells and hence that cells may vary with respect to receptor usage. In this study, we identified by molecular weight, proteins that interact with ES-62 and found differences amongst the immune system cells studied. Thus, whereas lymphocytes appear to have two major interacting proteins of ∼135 and ∼82 kDa, U937 monocytes only contain an ES-62-binding protein of the latter molecular weight. Binding to the proteins on B cells and U937 cells was blocked by PC, suggesting a critical role for this ES-62 moiety in facilitating interaction. Finally, ES-62 binding is followed by internalization in both macrophages and B cells but only in the former was absence of TLR4 found to block internalization. These findings are consistent with differences in receptor usage by ES-62 amongst different cell-types.
Collapse
Affiliation(s)
- William Harnett
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK.
| | | | | | | |
Collapse
|
14
|
Abstract
The surface coat (SC) of the plant-parasitic nematode cuticle is an understudied area of current research, even though it likely plays key roles in both nematode-plant and nematode-microbe interactions. Although in several ways Caenorhabditis elegans is a poor model for plant-parasitic nematodes, it is a useful starting point for investigations of the cuticle and its SC, especially in the light of recent work using this species as a model for innate immunity and the generic biology underpinning much host-parasite biology. We review the research focused on the involvement of the SC of plant-parasitic nematodes. Using the insights gained from animal-parasitic nematodes and other sequenced nematodes, we discuss the key roles that the SC may play.
Collapse
Affiliation(s)
- Keith G Davies
- Plant Pathology and Microbiology, Rothamsted Research, Hertfordshire AL5 2JQ, United Kingdom
| | | |
Collapse
|
15
|
Bruschi F, Chiumiento L, Prete GD. Immunodulation and Helminths: Towards New Strategies for Treatment of Immune-Mediated Diseases? DETECTION OF BACTERIA, VIRUSES, PARASITES AND FUNGI 2010. [DOI: 10.1007/978-90-481-8544-3_15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
16
|
Grabitzki J, Lochnit G. Immunomodulation by phosphocholine--biosynthesis, structures and immunological implications of parasitic PC-epitopes. Mol Immunol 2009; 47:149-63. [PMID: 19864025 DOI: 10.1016/j.molimm.2009.09.035] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Accepted: 09/24/2009] [Indexed: 11/28/2022]
Abstract
Phosphocholine (PC) as a small haptenic molecule present on antigens of parasites can provoke various effects on immune cells leading to immunomodulation of the host's immune system. This immunomodulation not only allows long-term persistence but also prevents severe pathology due to down-regulation of cellular immune responses. Additionally, PC plays an important role for development and fertility of the parasites. To fully understand the mechanisms of immunomodulation the detailed knowledge of the biosynthesis of the PC-epitopes, their molecular structure and biological function has to be elucidated. The implication of parasite-specific transferases in the biosynthesis of the PC-epitopes and the sensitivity of parasites towards disruption of the choline metabolism offers new perspectives for the development of anti-parasitic drugs and therapies. Furthermore, the immunomodulation provoked by PC-epitopes preventing inflammatory reactions may be useful in the treatment of inflammatory diseases. This review summarizes the current knowledge on the biosynthesis of PC-epitopes, their structures and immunological implications.
Collapse
Affiliation(s)
- Julia Grabitzki
- Institute of Biochemistry, Faculty of Medicine, University of Giessen, Germany
| | | |
Collapse
|
17
|
Immunomodulatory activity and therapeutic potential of the filarial nematode secreted product, ES-62. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 666:88-94. [PMID: 20054977 DOI: 10.1007/978-1-4419-1601-3_7] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
ES-62 is a protein that is actively secreted by filarial nematodes during parasitism of the vertebrate host. The molecule is able to directly interact with a number of cells of the immune system including B-lymphocytes, dendritic cells, macrophages and mast cells. Interaction appears to be dependent on complexing with TLR4 and results in modulation of the activity of a number of signal transduction molecules including MAP kinases, PI-3 kinase and NF-kappaB. Immunomodulatory activity of ES-62 appears to be largely due to the presence of phosphorylcholine (PC) moieties covalently attached to N-type glycans. The net effect of ES-62's interaction with the immune system is the generation of an anti-inflammatory immunological phenotype. As a consequence of this, ES-62 demonstrates striking drug-like activity in models of disease associated with aberrant inflammation, in particular those associated with autoimmunity and allergy.
Collapse
|
18
|
HARNETT W, HARNETT MM. Lymphocyte hyporesponsiveness during filarial nematode infection. Parasite Immunol 2008; 30:447-53. [DOI: 10.1111/j.1365-3024.2008.01045.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
Marshall FA, Watson KA, Garside P, Harnett MM, Harnett W. Effect of activated antigen-specific B cells on ES-62-mediated modulation of effector function of heterologous antigen-specific T cells in vivo. Immunology 2007; 123:411-25. [PMID: 17961164 PMCID: PMC2433340 DOI: 10.1111/j.1365-2567.2007.02706.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
There is currently great interest in the idea of using helminth-derived molecules for therapeutic purposes and indeed we have shown that ES-62, a filarial nematode-derived phosphorylcholine-containing glycoprotein, significantly reduces the severity of arthritis in a murine model. Clearly, knowledge of mechanism of action is important when considering molecules for use in treating disease and although much is known regarding how ES-62 interacts with the immune system, gaps in our understanding remain. A feature of filarial nematode infection is a defective, T helper 2 (Th2)-polarized antigen-specific T-cell response and in relation to this we have recently shown that ES-62 inhibits clonal expansion and modulates effector function towards a Th2 phenotype, of antigen-specific T cells in vivo. ES-62 is also known to directly modulate B-cell behaviour and hence to determine whether it was mediating these effects on T cells by disrupting B-T-cell co-operation, we have investigated antigen-specific responses using an adoptive transfer system in which traceable numbers of tg ovalbumin (OVA)-specific T cells and hen egg lysozyme (HEL)-specific B cells respond to a chemically coupled form of OVA-HEL that contains linked epitopes that promote cognate T- and B-cell interactions. Surprisingly, these studies indicate that activated B cells restore T-cell expansion and prevent Th2-like polarization. However, ES-62-treated double cell transfer mice demonstrate a more generalized immunosuppression with reduced levels of Th1 and -2 type cytokines and antibody subclasses. Collectively, these results suggest that whilst ES-62 can target B-T-cell co-operation, this does not promote polarizing of T-cell responses towards a Th2-type phenotype.
Collapse
Affiliation(s)
- Fraser A Marshall
- Division of Immunology, Infection and Inflammation, University of Glasgow, Glasgow, UK
| | | | | | | | | |
Collapse
|
20
|
Harnett W, Harnett MM. Filarial nematode secreted product ES-62 is an anti-inflammatory agent: therapeutic potential of small molecule derivatives and ES-62 peptide mimetics. Clin Exp Pharmacol Physiol 2007; 33:511-8. [PMID: 16700887 DOI: 10.1111/j.1440-1681.2006.04400.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
1. The 'hygiene hypothesis' postulates that the recent increased incidence of allergic or autoimmune diseases (e.g. asthma, type I diabetes) in the West reflects an absence of appropriate priming of the immune response by infectious agents, such as parasitic worms, during childhood. 2. Consistent with this, it has long been recognized that several autoimmune disorders, such as rheumatoid arthritis (RA), a T helper (Th) 1-mediated autoimmune disease characterized by excess production of pro-inflammatory cytokines, such as tumour necrosis factor-alpha, exhibit reduced incidence and severity in geographical regions with high parasite load, suggesting that environmental factors may subtly alter disease progression. 3. Infection with worms also appears to suppress Th2-biased inflammatory disorders, such as asthma, because there also appears to be an inverse correlation between parasite load and atopy. This is perhaps more surprising, given that helminths often induce strong Th2-type immune responses characterized by release of specific cytokines, such as interleukin (IL)-4, IL-5 and IL-13. 4. Therefore, these findings suggest that the co-evolution of helminths with hosts, which has resulted in the ability of worms to modulate inflammatory responses in order to promote parasite survival, may also have generated a predisposition for the host to develop autoimmunity and allergy in the absence of infection. 5. The mechanisms underlying such immunomodulation are not clear, but appear to involve the release of parasite-derived molecules that allow the worms to modulate or evade the host immune response by a number of mechanisms, including skewing of cytokine responses and the induction of T regulatory cells. 6. In the present review we discuss the properties of one such filarial nematode-derived immunomodulatory molecule, namely ES-62, its anti-inflammatory action and the therapeutic potential of small molecule derivatives and peptides that mimic its action.
Collapse
Affiliation(s)
- William Harnett
- Department of Immunology, University of Strathclyde, Glasgow, UK.
| | | |
Collapse
|
21
|
Schneider OD, Weiss AA, Miller WE. Pertussis toxin utilizes proximal components of the T-cell receptor complex to initiate signal transduction events in T cells. Infect Immun 2007; 75:4040-9. [PMID: 17562776 PMCID: PMC1951969 DOI: 10.1128/iai.00414-07] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pertussis toxin (PTx) is an AB(5) toxin produced by the human pathogen Bordetella pertussis. Previous work demonstrates that the five binding (B) subunits of PTx can have profound effects on T lymphocytes independent of the enzymatic activity of the A subunit. Stimulation of T cells with holotoxin (PTx) or the B subunit alone (PTxB) rapidly induces signaling events resulting in inositol phosphate accumulation, Ca(2+) mobilization, interleukin-2 (IL-2) production, and mitogenic cell growth. Although previous reports suggest the presence of PTx signaling receptors expressed on T cells, to date, the receptor(s) and membrane proximal signaling events utilized by PTx remain unknown. Here we genetically and biochemically define the membrane proximal components utilized by PTx to initiate signal transduction in T cells. Using mutants of the Jurkat T-cell line deficient for key components of the T-cell receptor (TCR) pathway, we have compared stimulation with PTx to that of anti-CD3 monoclonal antibody (MAb), which directly interacts with and activates the TCR complex. Our genetic data in combination with biochemical analysis show that PTx (via the B subunit) activates TCR signaling similar to that of anti-CD3 MAb, including activation of key signaling intermediates such as Lck, ZAP-70, and phospholipase C-gamma1. Moreover, the data indicate that costimulatory activity, as provided by CD28 ligation, is required for PTx to fully stimulate downstream indicators of T-cell activation such as IL-2 gene expression. By illuminating the signaling pathways that PTx activates in T cells, we provide a mechanistic understanding for how these signals deregulate immune system functions during B. pertussis infection.
Collapse
Affiliation(s)
- Olivia D Schneider
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati College of Medicine, 2256 Medical Science Building, 231 Albert Sabin Way, Cincinnati, OH 45267-0524, USA
| | | | | |
Collapse
|
22
|
Goodridge HS, McGuiness S, Houston KM, Egan CA, Al-Riyami L, Alcocer MJC, Harnett MM, Harnett W. Phosphorylcholine mimics the effects of ES-62 on macrophages and dendritic cells. Parasite Immunol 2007; 29:127-37. [PMID: 17266740 DOI: 10.1111/j.1365-3024.2006.00926.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Modulation of macrophage/dendritic cell (DC) cytokine production by the filarial nematode phosphorylcholine (PC)-containing product, ES-62, is mediated by Toll-like receptor (TLR) 4 and signal transduction depends on the TLR adaptor MyD88. Intriguingly, comparison of TLR4 knock-out (ko) mice with TLR4 mutant C3H/HeJ mice indicates that ES-62 cytokine responses are not dependent on the Pro712 residue of TLR4, which is crucial for the response to bacterial lipopolysaccharide (LPS). Because other immunomodulatory effects of ES-62 have been attributed to PC we have now investigated, using PC conjugated to ovalbumin (PC-Ova), whether PC is responsible for the interaction of ES-62 with TLR4. PC-Ova mimicked the modulation of interleukin (IL)-12 production by ES-62 in a TLR4- and MyD88-dependent manner and as with native ES-62, PC-Ova effects were not dependent on Pro712. Furthermore, both native ES-62 and PC-Ova suppressed Akt phosphorylation, whereas neither altered the activation of p38 or Erk MAP kinases. To rule out any role for the ES-62 protein component, we tested a PC-free recombinant ES-62 (rES-62) generated in the yeast Pichia pastoris. Surprisingly, rES-62 also modulated IL-12 production, but in a TLR4/MyD88-independent manner. Furthermore, rES-62 strongly activated both the p38 and Erk MAP kinases and Akt. However, recent biophysical analysis suggests there are differences in folding/shape between native and rES-62 and hence data obtained with the latter should be treated with caution. Nevertheless, although our study indicates that PC is likely to be primarily responsible for the modulation of cytokine production observed with native ES-62, an immunomodulatory role for the protein component cannot be ruled out.
Collapse
Affiliation(s)
- H S Goodridge
- Division of Immunology, Infection and Inflammation, University of Glasgow, Glasgow G11, UK
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
Long-term infection with parasitic worms is generally associated with an immunological phenotype that is Th2-like and anti-inflammatory. This phenotype is probably an unintentional consequence of molecular characteristics of worms (as free-living worms also express polarising molecules) in combination with deliberate attempts by the parasites, via molecular secretions, to modulate the phenotype. This review is concerned with the identity of immunomodulatory worm products, the receptors that they interact with and the signal transduction pathways that they activate. It hopes to indicate how knowledge of these factors can explain the changes in gene expression that result in the characteristic worm-induced immunological phenotype.
Collapse
Affiliation(s)
- W Harnett
- Department of Immunology, University of Strathclyde, Glasgow G4 0NR, UK.
| | | |
Collapse
|
24
|
van Riet E, Wuhrer M, Wahyuni S, Retra K, Deelder AM, Tielens AGM, van der Kleij D, Yazdanbakhsh M. Antibody responses to Ascaris-derived proteins and glycolipids: the role of phosphorylcholine. Parasite Immunol 2006; 28:363-71. [PMID: 16879308 DOI: 10.1111/j.1365-3024.2006.00844.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In addition to proteins, glycolipids can be targets of antibody responses and contribute to host-pathogen interaction. Following the structural analysis of Ascaris lumbricoides-derived glycolipids, the antibody responses of a group of children with no, light and heavy infections were analysed. The role of the phosphorylcholine moiety, present on Ascaris glycoproteins and glycolipids, in antibody reactivity of these infected individuals was determined. Children carrying heavy infections showed highest IgG reactivity to glycolipids compared to lightly or non-infected children. Substantial IgG antibody reactivity to both (glyco)proteins and glycolipids was found to be directed to the phosphorylcholine moiety as determined by either removal of this group or a competition assay. This was most pronounced for glycolipids, where removal of the phosphorylcholine moieties by hydrofluoric acid treatment abrogated IgG antibody reactivity. Measurement of IgG4 and IgE isotypes showed no IgG4 reactivity to Ascaris glycolipids, but raised IgE responses were detected in subjects with light or no Ascaris infections, suggesting that IgE responses to glycolipids may play a role in controlling parasite burden. Differences found in antibody profiles to glycolipids and (glyco)proteins, indicate that these different classes of compounds may have distinct roles in shaping of and interacting with humoral immune responses.
Collapse
Affiliation(s)
- E van Riet
- Department of Parasitology, Leiden University Medical Centre, Leiden, the Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Aas FE, Egge-Jacobsen W, Winther-Larsen HC, Løvold C, Hitchen PG, Dell A, Koomey M. Neisseria gonorrhoeae type IV pili undergo multisite, hierarchical modifications with phosphoethanolamine and phosphocholine requiring an enzyme structurally related to lipopolysaccharide phosphoethanolamine transferases. J Biol Chem 2006; 281:27712-23. [PMID: 16825186 DOI: 10.1074/jbc.m604324200] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The zwitterionic phospho-forms phosphoethanolamine and phosphocholine are recognized as influential and important substituents of pathogen cell surfaces. PilE, the major pilin subunit protein of the type IV pilus (Tfp) colonization factor of Neisseria gonorrhoeae undergoes unique, post-translational modifications with these moieties. These phospho-form modifications have been shown to be O-linked alternately to a specific, conserved serine residue of PilE. However, the enzymes and precursors involved in their addition are unknown, and the full spectrum of PilE post-translational modifications has yet to be defined. Here, an intact protein-based mass spectrometric approach was integrated with bioinformatics and reverse genetics to address these matters. Specifically we show that a protein limited in its distribution to pathogenic Neisseria species and structurally related to enzymes implicated in phosphoethanolamine modification of lipopolysaccharide is necessary for PilE covalent modification with phosphoethanolamine and phosphocholine. These findings strongly suggest that protein phospho-form modification is mechanistically similar to processes underlying analogous modifications of prokaryotic saccharolipid glycans. We also show that PilE undergoes multisite and hierarchical phospho-form modifications and that the stoichiometries of site occupancy can be influenced by PilE primary structure and the abundance of the pilin-like protein PilV. Together, these findings have important implications for the structure and antigenicity of PilE.
Collapse
Affiliation(s)
- Finn Erik Aas
- Centre for Molecular Biology and Neuroscience, Department of Molecular Biosciences, University of Oslo, 0316 Oslo, Norway
| | | | | | | | | | | | | |
Collapse
|
26
|
Taylor MD, Harris A, Nair MG, Maizels RM, Allen JE. F4/80+Alternatively Activated Macrophages Control CD4+T Cell Hyporesponsiveness at Sites Peripheral to Filarial Infection. THE JOURNAL OF IMMUNOLOGY 2006; 176:6918-27. [PMID: 16709852 DOI: 10.4049/jimmunol.176.11.6918] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Both T cells and APC have been strongly implicated in the immune suppression observed during filarial nematode infections, but their relative roles are poorly understood, particularly in regard to timing and locality of action. Using Litomosoides sigmodontis infection of susceptible BALB/c mice, we have studied the progression of filarial immunosuppression leading to patent infection with blood microfilaremia. Patent infection is associated with decreased immune responsiveness in the draining thoracic lymph nodes (tLN) and intrinsically hyporesponsive CD4+ T cells at the infection site. We now show that we are able to separate, both in time and space, different suppressive mechanisms and cell populations that contribute to filarial hyporesponsiveness. L. sigmodontis infection recruited a F4/80+ population of alternatively activated macrophages that potently inhibited Ag-specific CD4+ T cell proliferative responses even in the presence of competent naive APC. T cell responsiveness was partially restored by neutralizing TGF-beta, but not by blocking IL-10 or CTLA-4 signaling. During prepatent infection, the macrophage population was restricted to the infection site. However, once infection became patent with systemic release of microfilariae, the suppressive macrophage activity extended peripherally into the tLN. In contrast, the hyporesponsive CD4+ T cell phenotype remained localized at the infection site, and the tLN CD4+ T cell population recovered full Ag responsiveness in the absence of suppressive macrophages. Filarial immunosuppression, therefore, evolves over time at sites increasingly distal to infection, and the mechanisms of filarial down-regulation are dependent on proximity to the infection site.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antigen-Presenting Cells/immunology
- Antigen-Presenting Cells/parasitology
- Antigen-Presenting Cells/pathology
- Antigens, Differentiation/biosynthesis
- Antigens, Differentiation/physiology
- Antigens, Differentiation, Myelomonocytic/physiology
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- CD4-Positive T-Lymphocytes/parasitology
- Cell Movement/immunology
- Cells, Cultured
- Female
- Filariasis/immunology
- Filariasis/parasitology
- Filariasis/pathology
- Filarioidea/growth & development
- Filarioidea/immunology
- Immune Tolerance
- Immunophenotyping
- Lymph Nodes/immunology
- Lymph Nodes/parasitology
- Lymph Nodes/pathology
- Macrophage Activation/immunology
- Mice
- Mice, Inbred BALB C
- Mice, Transgenic
- Molecular Sequence Data
- Pleural Cavity/immunology
- Pleural Cavity/parasitology
- Pleural Cavity/pathology
- T-Lymphocytes, Regulatory/cytology
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/parasitology
Collapse
Affiliation(s)
- Matthew D Taylor
- Institute of Immunology and Infection Research, Ashworth Laboratories, University of Edinburgh, Edinburgh, United Kingdom
| | | | | | | | | |
Collapse
|
27
|
Marshall FA, Grierson AM, Garside P, Harnett W, Harnett MM. ES-62, an immunomodulator secreted by filarial nematodes, suppresses clonal expansion and modifies effector function of heterologous antigen-specific T cells in vivo. THE JOURNAL OF IMMUNOLOGY 2005; 175:5817-26. [PMID: 16237074 DOI: 10.4049/jimmunol.175.9.5817] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
ES-62 is a phosphorylcholine-containing glycoprotein secreted by filarial nematodes, which has previously been shown to possess a range of immunomodulatory capabilities. We now show, using a CD4+ transgenic TCR T cell adoptive transfer system, that ES-62 can modulate heterologous Ag (OVA)-specific responses in vivo. Thus, in contrast to the mixed IgG1-IgG2a response observed in control animals, ES-62-treated mice exhibited a Th2-biased IgG Ab response as evidenced by stable enhancement of anti-OVA IgG1 production and a profound inhibition of anti-OVA IgG2a. Consistent with this, Ag-specific IFN-gamma produced was suppressed by pre-exposure to ES-62 when T cells were rechallenged ex vivo. However, the response observed was not classical Th2, because although Ag-specific IL-5 production was enhanced by pre-exposure to ES-62, IL-13, and IL-4 were inhibited when T cells were rechallenged ex vivo. Moreover, such T cells produced lower levels of IL-2 and proliferated less upon Ag rechallenge ex vivo. Finally, pre-exposure to ES-62 inhibited the clonal expansion of the transferred Ag-specific CD4+ T cells and altered the functional response of such T cells in vivo, by modulating the kinetics and reducing the extent of their migration into B cell follicles.
Collapse
Affiliation(s)
- Fraser A Marshall
- Division of Immunology, Infection and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | | | | | | | | |
Collapse
|
28
|
Harnett W, Goodridge HS, Harnett MM. Subversion of immune cell signal transduction pathways by the secreted filarial nematode product, ES-62. Parasitology 2005; 130 Suppl:S63-8. [PMID: 16281993 DOI: 10.1017/s0031182005008164] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Filarial nematodes achieve longevity within the infected host by suppressing and modulating the host immune response. To do this, the worms actively secrete products that have been demonstrated to possess immunomodulatory properties. In this article we discuss the immunomodulatory effects of the phosphorylcholine-containing filarial nematode secreted glycoprotein ES-62. In particular we describe how it modulates intracellular signal transduction pathways in a number of different cells of the immune system, in particular B-lymphocytes, T-lymphocytes, macrophages and dendritic cells.
Collapse
Affiliation(s)
- W Harnett
- Department of Immunology, University of Strathclyde, Glasgow, UK.
| | | | | |
Collapse
|
29
|
Goodridge HS, Stepek G, Harnett W, Harnett MM. Signalling mechanisms underlying subversion of the immune response by the filarial nematode secreted product ES-62. Immunology 2005; 115:296-304. [PMID: 15946247 PMCID: PMC1782160 DOI: 10.1111/j.1365-2567.2005.02167.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Secretion of immunomodulatory molecules is a key strategy employed by pathogens to enable their survival in host organisms. For example, arthropod-transmitted filarial nematodes, which achieve longevity within the infected host by suppressing and modulating the host immune response, produce excretory-secretory (ES) products that have been demonstrated to possess immunomodulatory properties. In this review we discuss the immunomodulatory effects of the phosphorylcholine-containing filarial nematode-secreted glycoprotein ES-62 and describe the intracellular signal transduction pathways it targets to achieve these effects.
Collapse
Affiliation(s)
- Helen S Goodridge
- Division of Immunology, Infection and Inflammation, University of Glasgow, Glasgow G11 6NT, UK
| | | | | | | |
Collapse
|
30
|
Couper KN, Chen W, Houston KM, Harnett W, Johnson LL. ES-62 is unable to modulate Toxoplasma gondii-driven Th1 responses and pathology. Parasite Immunol 2005; 27:147-50. [PMID: 15910423 DOI: 10.1111/j.1365-3024.2005.00755.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
ES-62, a filarial nematode-derived anti-inflammatory immunomodulator, was administered to mice in an attempt to prevent pathology associated with Toxoplasma gondii infection. The nematode product was shown to elevate mitogen and T. gondii-specific IL-10 production but was unable to inhibit Th1 responses. Consequently ES-62 could not prevent Th1 generated immunopathology.
Collapse
Affiliation(s)
- K N Couper
- Trudeau Institute Inc., Saranac Lake, New York 12983, USA
| | | | | | | | | |
Collapse
|
31
|
Goodridge HS, Deehan MR, Harnett W, Harnett MM. Subversion of immunological signalling by a filarial nematode phosphorylcholine-containing secreted product. Cell Signal 2005; 17:11-6. [PMID: 15451020 DOI: 10.1016/j.cellsig.2004.05.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2004] [Accepted: 05/24/2004] [Indexed: 11/20/2022]
Abstract
Modulation of immune responses is an important strategy employed by pathogens to enable their survival in host organisms. Secreted immunomodulatory molecules are key weapons in the pathogen's battle with the host immune system. In this review, we will discuss the immunomodulatory effects of the phosphorylcholine-containing filarial nematode glycoprotein, ES-62, on the host immune system and summarise the results of our studies to identify the intracellular signalling pathways targeted by ES-62 to achieve these effects.
Collapse
Affiliation(s)
- Helen S Goodridge
- Division of Immunology, Infection and Inflammation, University of Glasgow, Western Infirmary, Dumbarton Road, Glasgow G11 6NT, UK
| | | | | | | |
Collapse
|
32
|
Goodridge HS, Marshall FA, Else KJ, Houston KM, Egan C, Al-Riyami L, Liew FY, Harnett W, Harnett MM. Immunomodulation via novel use of TLR4 by the filarial nematode phosphorylcholine-containing secreted product, ES-62. THE JOURNAL OF IMMUNOLOGY 2005; 174:284-93. [PMID: 15611251 DOI: 10.4049/jimmunol.174.1.284] [Citation(s) in RCA: 181] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Filarial nematodes, parasites of vertebrates, including humans, secrete immunomodulatory molecules into the host environment. We have previously demonstrated that one such molecule, the phosphorylcholine-containing glycoprotein ES-62, acts to bias the immune response toward an anti-inflammatory/Th2 phenotype that is conducive to both worm survival and host health. For example, although ES-62 initially induces macrophages to produce low levels of IL-12 and TNF-alpha, exposure to the parasite product ultimately renders the cells unable to produce these cytokines in response to classic stimulators such as LPS/IFN-gamma. We have investigated the possibility that a TLR is involved in the recognition of ES-62 by target cells, because phosphorylcholine, a common pathogen-associated molecular pattern, appears to be responsible for many of the immunomodulatory properties of ES-62. We now demonstrate that ES-62-mediated, low level IL-12 and TNF-alpha production by macrophages and dendritic cells is abrogated in MyD88 and TLR4, but not TLR2, knockout, mice implicating TLR4 in the recognition of ES-62 by these cells and MyD88 in the transduction of the resulting intracellular signals. We also show that ES-62 inhibits IL-12 induction by TLR ligands other than LPS, bacterial lipopeptide (TLR2) and CpG (TLR9), via this TLR4-dependent pathway. Surprisingly, macrophages and dendritic cells from LPS-unresponsive, TLR4-mutant C3H/HeJ mice respond normally to ES-62. This is the first report to demonstrate that modulation of cytokine responses by a pathogen product can be abrogated in cells derived from TLR4 knockout, but not C3H/HeJ mice, suggesting the existence of a novel mechanism of TLR4-mediated immunomodulation.
Collapse
Affiliation(s)
- Helen S Goodridge
- Division of Immunology, Infection, and Inflammation, University of Glasgow, Western Infirmary, Dumbarton Road, Glasgow G11 6NT, Scotland, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
|
34
|
Borkow G, Bentwich Z. Chronic immune activation associated with chronic helminthic and human immunodeficiency virus infections: role of hyporesponsiveness and anergy. Clin Microbiol Rev 2005; 17:1012-30, table of contents. [PMID: 15489359 PMCID: PMC523563 DOI: 10.1128/cmr.17.4.1012-1030.2004] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Chronic immune activation is one of the hallmarks of human immunodeficiency virus (HIV) infection. It is present also, with very similar characteristics, in very large human populations infested with helminthic infections. We have tried to review the studies addressing the changes in the immune profiles and responses of hosts infected with either one of these two chronic infections. Not surprisingly, several of the immune derangements and impairments seen in HIV infection, and considered by many to be the "specific" effects of HIV, can be found in helminth-infected but HIV-noninfected individuals and can thus be accounted for by the chronic immune activation itself. A less appreciated element in chronic immune activation is the immune suppression and anergy which it may generate. Both HIV and helminth infections represent this aspect in a very wide and illustrative way. Different degrees of anergy and immune hyporesponsiveness are present in these infections and probably have far-reaching effects on the ability of the host to cope with these and other infections. Furthermore, they may have important practical implications, especially with regard to protective vaccinations against AIDS, for populations chronically infected with helminths and therefore widely anergic. The current knowledge of the mechanisms responsible for the generation of anergy by chronic immune activation is thoroughly reviewed.
Collapse
Affiliation(s)
- Gadi Borkow
- Animal Scienes, Faculty of Agriculture, Hebrew University, Rehovot, Israel
| | | |
Collapse
|
35
|
Goodridge HS, Marshall FA, Wilson EH, Houston KM, Liew FY, Harnett MM, Harnett W. In vivo exposure of murine dendritic cell and macrophage bone marrow progenitors to the phosphorylcholine-containing filarial nematode glycoprotein ES-62 polarizes their differentiation to an anti-inflammatory phenotype. Immunology 2004; 113:491-8. [PMID: 15554927 PMCID: PMC1782600 DOI: 10.1111/j.1365-2567.2004.01993.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2004] [Accepted: 09/08/2004] [Indexed: 11/30/2022] Open
Abstract
We have previously shown in an in vitro study that the filarial nematode phosphorylcholine (PC)-containing glycoprotein ES-62 promotes a murine dendritic cell (DC) phenotype that induces T helper type 2 (Th2) responses. We now show that, in addition to directly priming Th2 responses, ES-62 can act to dampen down the pro-inflammatory DC responses elicited by lipopolysaccharide. Furthermore, we also demonstrate that murine DCs and macrophages derived ex vivo from bone marrow cells exposed in vivo to ES-62 by release from osmotic pumps are hyporesponsive to subsequent stimulation with lipopolysaccharide. These effects can be largely mimicked by exposure to the PC moiety of ES-62 conjugated to an irrelevant protein. The data we provide are, as far as we aware, the first to show that a defined pathogen product can modulate the developmental pathway of bone marrow cells of the immune system in vivo. Such a finding could have important implications for the use of pathogen products or their derivatives for immunotherapy.
Collapse
Affiliation(s)
- Helen S Goodridge
- Division of Immunology, Infection and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
36
|
Semnani RT, Nutman TB. Toward an understanding of the interaction between filarial parasites and host antigen-presenting cells. Immunol Rev 2004; 201:127-38. [PMID: 15361237 DOI: 10.1111/j.0105-2896.2004.00196.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Lymphatic filarial infection, from an immunologic point of view, is one of the most complex parasite infections. Not only are there different clinical manifestations that reflect differing immune responses, but the parasite's multiple stages, each with distinct anatomic tropism, add a compartmental layer of complexity to an already complicated process. Moreover, these parasites have finely tuned immune evasion strategies that enable escape from the innate immune system. As different stages of the parasite interact with different types of antigen-presenting cells that, in turn, may play a significant role in shaping the subsequent adaptive immune response, the focus of this review is to provide insight into the interaction between filarial parasites and antigen-presenting cells with an eye toward understanding how they influence parasite antigen-driven T-cell responses.
Collapse
Affiliation(s)
- Roshanak Tolouei Semnani
- Helminth Immunology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| | | |
Collapse
|
37
|
Hegge FT, Hitchen PG, Aas FE, Kristiansen H, Løvold C, Egge-Jacobsen W, Panico M, Leong WY, Bull V, Virji M, Morris HR, Dell A, Koomey M. Unique modifications with phosphocholine and phosphoethanolamine define alternate antigenic forms of Neisseria gonorrhoeae type IV pili. Proc Natl Acad Sci U S A 2004; 101:10798-803. [PMID: 15249686 PMCID: PMC490014 DOI: 10.1073/pnas.0402397101] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Several major bacterial pathogens and related commensal species colonizing the human mucosa express phosphocholine (PC) at their cell surfaces. PC appears to impact host-microbe biology by serving as a ligand for both C-reactive protein and the receptor for platelet-activating factor. Type IV pili of Neisseria gonorrhoeae (Ng) and Neisseria meningitidis, filamentous protein structures critical to the colonization of their human hosts, are known to react variably with monoclonal antibodies recognizing a PC epitope. However, the structural basis for this reactivity has remained elusive. To address this matter, we exploited the finding that the PilE pilin subunit in Ng mutants lacking the PilV protein acquired the PC epitope independent of changes in pilin primary structure. Specifically, we show by using mass spectrometry that PilE derived from the pilV background is composed of a mixture of subunits bearing O-linked forms of either phosphoethanolamine (PE) or PC at the same residue, whereas the wild-type background carries only PE at that same site. Therefore, PilV can influence pilin structure and antigenicity by modulating the incorporation of these alternative modifications. The disaccharide covalently linked to Ng pilin was also characterized because it is present on the same peptides bearing the PE and PC modifications and, contrary to previous reports, was found to be linked by means of 2,4-diacetamido-2,4,6-trideoxyhexose. Taken together, these findings provide new insights into Ng type IV pilus structure and antigenicity and resolve long-standing issues regarding the nature of both the PC epitope and the pilin glycan.
Collapse
Affiliation(s)
- Finn Terje Hegge
- Centre for Molecular Biology and Neuroscience, University of Oslo, 0316 Oslo, Norway
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Wilson EH, Deehan MR, Katz E, Brown KS, Houston KM, O'Grady J, Harnett MM, Harnett W. Hyporesponsiveness of murine B lymphocytes exposed to the filarial nematode secreted product ES-62 in vivo. Immunology 2003; 109:238-45. [PMID: 12757619 PMCID: PMC1782967 DOI: 10.1046/j.1365-2567.2003.01661.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2002] [Revised: 03/18/2003] [Accepted: 03/20/2003] [Indexed: 11/20/2022] Open
Abstract
ES-62 is a phosphorylcholine (PC)-containing glycoprotein secreted by filarial nematodes, parasites of vertebrates including humans. We have previously demonstrated that pre-exposure to this molecule in vitro interferes with subsequent B-cell receptor (BCR)-dependent activation of murine splenic B lymphocytes. To investigate the significance of this during filarial nematode infection, we now employ mice exposed to ES-62, at concentrations equivalent to those found for PC-containing molecules in the bloodstream of parasitized humans, via release from implanted osmotic pumps. Using this approach, we reveal that splenic and lymph node mononuclear cells, and also purified splenic B cells recovered from these mice have reduced ability ex vivo to proliferate in response to BCR ligation. The effect on BCR-induced proliferation was further investigated with respect to elucidating the mechanism of action of the parasite product and was shown to be associated with impaired signal transduction affecting the ErkMAPkinase pathway. Also, it was found that ES-62 did not act by promoting apoptosis or by priming for apoptosis following subsequent stimulation, but rather, appeared to render cells hyporesponsive to stimulation. ES-62 is thus shown for the first time to be a potent modulator of B lymphocyte function in vivo at a concentration relevant to natural filarial nematode infection. This finding considerably strengthens the idea that ES-62 plays a role in evasion of the immune response during parasitism.
Collapse
Affiliation(s)
- Emma H Wilson
- Department of Immunology, University of Strathclyde, Glasgow, UK
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Taubert A, Zahner H. Cellular immune responses of filaria (Litomosoides sigmodontis) infected BALB/c mice detected on the level of cytokine transcription. Parasite Immunol 2001; 23:453-62. [PMID: 11489169 DOI: 10.1046/j.1365-3024.2001.00405.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cellular immune responses of BALB/c mice infected with 80 or 160 L3 of Litomosoides sigmodontis were studied over a period of 200 days postinfection (p.i.) by stimulating spleen cells with specific microfilariae and adult antigens and Concanavalin A (Con A). Effects were determined as the level of transcription of cytokine genes [interleukin (IL)-2, interferon (IFN)-gamma, IL-4, IL-5, IL-10, IL-13] employing a semiquantitative reverse transcriptase-polymerase chain reaction technique. Con A stimulation resulted in generally enhanced transcription levels in infected animals. Exposure to filarial antigens stimulated T cells of infected animals dependent on time p.i. There was a general strong response in the early prepatency (24 days p.i.), a temporary almost complete downregulation of cytokine gene transcription except IL-10 towards the end of prepatency (45 days p.i.), and subsequently strong reactions particularly concerning IFN-gamma and IL-13 during patency and postpatency. The dose of infection as well as the mode of antigenic stimulation had generally only small effects on the cytokine gene transcription: following the same type of kinetics, infection with 160 L3 as well as the use of microfilarial antigen generally induced lower levels of cytokine gene transcription compared with infection with 80 L3 and stimulation with female antigen, respectively.
Collapse
Affiliation(s)
- A Taubert
- Institute of Parasitology, Justus Liebig University Giessen, Rudolf-Buchheim-Strasse 2, D-35392 Giessen, Germany.
| | | |
Collapse
|
40
|
Goodridge HS, Wilson EH, Harnett W, Campbell CC, Harnett MM, Liew FY. Modulation of macrophage cytokine production by ES-62, a secreted product of the filarial nematode Acanthocheilonema viteae. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:940-5. [PMID: 11441102 DOI: 10.4049/jimmunol.167.2.940] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Parasite survival and host health may depend on the ability of the parasite to modulate the host immune response by the release of immunomodulatory molecules. Excretory-secretory (ES)-62, one such well-defined molecule, is a major secreted protein of the rodent filarial nematode Acanthocheilonema viteae, and has homologues in human filarial nematodes. Previously we have shown that ES-62 is exclusively associated with a Th2 Ab response in mice. Here we provide a rationale for this polarized immune response by showing that the parasite molecule suppresses the IFN-gamma/LPS-induced production, by macrophages, of bioactive IL-12 (p70), a key cytokine in the development of Th1 responses. This suppression of the induction of a component of the host immune response extends to the production of the proinflammatory cytokines IL-6 and TNF-alpha, but not NO. The molecular mechanism underlying these findings awaits elucidation but, intriguingly, the initial response of macrophages to ES-62 is to demonstrate a low and transient release of these cytokines before becoming refractory to further release induced by IFN-gamma/LPS. The relevance of our observations is underscored by the finding that macrophages recovered from mice exposed to "physiological" levels of ES-62 by the novel approach of continuous release from implanted osmotic pumps in vivo were similarly refractory to release of IL-12, TNF-alpha, IL-6, but not NO, ex vivo. Therefore, our results suggest that exposure to ES-62 renders macrophages subsequently unable to produce Th1/proinflammatory cytokines. This likely contributes to the generation of immune responses with an anti-inflammatory Th2 phenotype, a well-documented feature of filarial nematode infection.
Collapse
MESH Headings
- Adjuvants, Immunologic/metabolism
- Adjuvants, Immunologic/physiology
- Animals
- Cell Survival/immunology
- Cells, Cultured
- Cytokines/biosynthesis
- Dipetalonema/immunology
- Dose-Response Relationship, Immunologic
- Drug Combinations
- Glycoproteins/administration & dosage
- Glycoproteins/metabolism
- Glycoproteins/physiology
- Helminth Proteins/administration & dosage
- Helminth Proteins/metabolism
- Helminth Proteins/physiology
- Immunosuppressive Agents/pharmacology
- Infusion Pumps, Implantable
- Interferon-gamma/antagonists & inhibitors
- Interferon-gamma/pharmacology
- Interleukin-12/antagonists & inhibitors
- Interleukin-12/biosynthesis
- Interleukin-12/genetics
- Interleukin-6/antagonists & inhibitors
- Interleukin-6/biosynthesis
- Lipopolysaccharides/antagonists & inhibitors
- Lipopolysaccharides/pharmacology
- Macrophage Activation/immunology
- Macrophages, Peritoneal/immunology
- Macrophages, Peritoneal/metabolism
- Male
- Mice
- Mice, Inbred BALB C
- Nitric Oxide/biosynthesis
- RNA, Messenger/antagonists & inhibitors
- RNA, Messenger/metabolism
- Tumor Necrosis Factor-alpha/antagonists & inhibitors
- Tumor Necrosis Factor-alpha/biosynthesis
Collapse
Affiliation(s)
- H S Goodridge
- Department of Immunology and Bacteriology, University of Glasgow, Western Infirmary, Dumbarton Road, Glasgow G11 6NT, United Kingdom
| | | | | | | | | | | |
Collapse
|
41
|
Maizels RM, Gomez-Escobar N, Gregory WF, Murray J, Zang X. Immune evasion genes from filarial nematodes. Int J Parasitol 2001; 31:889-98. [PMID: 11406138 DOI: 10.1016/s0020-7519(01)00213-2] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Helminth parasites have large genomes (approximately 10(8) bp) which are likely to encode a spectrum of products able to block or divert the host immune response. We have employed three parallel approaches to identify the first generation of 'immune evasion genes' from parasites such as the filarial nematode Brugia malayi. The first strategy is a conventional route to characterise prominent surface or secreted antigens. In this way we have identified a 15-kDa protein, which is located on the surface of both L3 and adult B. malayi, and secreted by these parasites in vitro, as a member of the cystatin (cysteine protease inhibitor) family. This product, Bm-CPI-2, blocks conventional cysteine proteases such as papain, but also the aspariginyl endopeptidase involved in the Class II antigen processing pathway in human B cells. In parallel, we identified the major T cell-stimulating antigen from the microfilarial stage as a serpin (serine protease inhibitor), Bm-SPN-2. Microfilariae secrete this product which blocks two key proteases of the neutrophil, a key mediator of inflammation and innate immunity. The second route involves a priori hypotheses that helminth parasites encode homologues of mammalian cytokines such as TGF-beta which are members of broad, ancient metazoan gene families. We have identified two TGF-beta homologues in B. malayi, and shown that one form (Bm-TGH-2) is both secreted by adult parasites in vitro and able to bind to host TGF-beta receptors. Likewise, B. malayi expresses homologues of mammalian MIF, which are remarkably similar in both structure and function to the host protein, even though amino acid identity is only 28%. Finally, we deployed a third method of selecting critical genes, using an expression-based criterion to select abundant mRNAs taken from key points in parasite life histories. By this means, we have shown that the major transcript present in mosquito-borne infective larvae, Bm-ALT, is a credible vaccine candidate for use against lymphatic filariasis, while a second abundantly-expressed gene, Bm-VAL-1, is similar to a likely vaccine antigen being developed against hookworm parasites.
Collapse
Affiliation(s)
- R M Maizels
- Institute of Cell, Animal and Population Biology, University of Edinburgh, West Mains Road, Edinburgh EH9 3JT, UK.
| | | | | | | | | |
Collapse
|
42
|
Maizels RM, Blaxter ML, Scott AL. Immunological genomics of Brugia malayi: filarial genes implicated in immune evasion and protective immunity. Parasite Immunol 2001; 23:327-44. [PMID: 11472553 DOI: 10.1046/j.1365-3024.2001.00397.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Filarial nematodes are metazoan parasites with genome sizes of> 100 million base pairs, probably encoding 15 000-20 000 genes. Within this considerable gene complement, it seems likely that filariae have evolved a spectrum of immune evasion products which underpin their ability to live for many years within the human host. Moreover, no suitable vaccine currently exists for human filarial diseases, and few markers have yet been established for diagnostic use. In this review, we bring together biochemical and immunological data on prominent filarial proteins with the exciting new information provided by the Filarial Genome Project's expressed sequence tag (EST) database. In this discussion, we focus on those genes with the highest immunological profile, such as inhibitors of host enzymes, cytokine homologues and stage-specific surface proteins, as well as products associated with the mosquito-borne infective larva which offer the best opportunity for an anti-filarial vaccine. These gene products provide a fascinating glimpse of the molecular repertoire which helminth parasites have evolved to manipulate and evade the mammalian immune response.
Collapse
Affiliation(s)
- R M Maizels
- Institute for Cell, Animal and Population Biology, University of Edinburgh, Edinburgh, UK.
| | | | | |
Collapse
|
43
|
Deehan MR, Harnett W, Harnett MM. A filarial nematode-secreted phosphorylcholine-containing glycoprotein uncouples the B cell antigen receptor from extracellular signal-regulated kinase-mitogen-activated protein kinase by promoting the surface Ig-mediated recruitment of Src homology 2 domain-containing tyrosine phosphatase-1 and Pac-1 mitogen-activated kinase-phosphatase. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 166:7462-8. [PMID: 11390499 DOI: 10.4049/jimmunol.166.12.7462] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Unraveling the molecular mechanisms by which filarial nematodes, major human pathogens in the tropics, evade the host immune system remains an elusive goal. We have previously shown that excretory-secretory product-62 (ES-62), a homologue of phosphorylcholine-containing molecules that are secreted by human parasites and which is active in rodent models of filarial infection, is able to polyclonally activate certain protein tyrosine kinase and mitogen-activating protein kinase signal transduction elements in B lymphocytes. Such activation mediates desensitization of subsequent B cell Ag receptor (BCR) ligation-induced activation of extracellular signal-regulated kinase-mitogen-activated protein (ErkMAP) kinase and ultimately B cell proliferation. We now show that the desensitization is due to ES-62 targeting two major regulatory sites of B cell activation. Firstly, pre-exposure to ES-62 primes subsequent BCR-mediated recruitment of SHP-1 tyrosine phosphatase to abolish recruitment of the RasErkMAP kinase cascade via the Igalphabeta-ShcGrb2Sos adaptor complex interactions. Secondly, any ongoing ErkMAP kinase signaling in ES-62-primed B cells is terminated by the MAP kinase phosphatase, Pac-1 that is activated consequently to challenge via the BCR.
Collapse
Affiliation(s)
- M R Deehan
- Department of Immunology, University of Glasgow, Glasgow, United Kingdom
| | | | | |
Collapse
|
44
|
Harnett W, Harnett MM. Modulation of the host immune system by phosphorylcholine-containing glycoproteins secreted by parasitic filarial nematodes. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1539:7-15. [PMID: 11389964 DOI: 10.1016/s0167-4889(01)00101-x] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Phosphorylcholine (PC) is increasingly becoming recognised as a carbohydrate-associated component of a wide variety of procaryotic and eucaryotic pathogens. Studies employing nematode PC-containing molecules indicate that it possesses a plethora of immunomodulatory activities. ES-62 is a PC-containing glycoprotein, which is secreted by the rodent filarial nematode Acanthocheilonema viteae and which provides a model system for the dissection of the mechanisms of immune evasion induced by related PC-containing glycoproteins expressed by human filarial nematodes. At concentrations equivalent to those found for PC-containing molecules in the bloodstream of parasitised humans, ES-62 is able to inhibit antigen receptor-stimulated proliferation of B and T lymphocytes in vitro and in vivo. The active component of ES-62 appears to be PC, as PC conjugated to albumin or even PC alone broadly mimic the results obtained with ES-62. PC-induced impaired lymphocyte responsiveness appears to reflect uncoupling of the antigen receptors from key intracellular proliferative signalling events such as the phosphoinositide 3-kinase, protein kinase C and Ras mitogen-activating protein kinase pathways. Although PC-ES-62 can desensitise B and T cells, not all cells are affected, and in fact it is still possible to generate an antibody response to the molecule. Dissection of this response indicates that it is of the TH-2 type. This appears to reflect the ability of ES-62 to direct the polarity of the T cell response by suppressing the production of proinflammatory cytokines, inducing the induction of anti-inflammatory cytokines and by driving the maturation of dendritic cells that direct TH-2 T cell responses.
Collapse
Affiliation(s)
- W Harnett
- Department of Immunology, University of Strathclyde, Glasgow, UK.
| | | |
Collapse
|
45
|
Lochnit G, Dennis RD, Geyer R. Phosphorylcholine substituents in nematodes: structures, occurrence and biological implications. Biol Chem 2000; 381:839-47. [PMID: 11076016 DOI: 10.1515/bc.2000.106] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Phosphorylcholine (PC), a small haptenic molecule, is found in a wide variety of prokaryotic organisms, i. e. bacteria, and in eukaryotic parasites such as nematodes, as well as in fungi. Linked to parasite-specific glycoprotein glycans or glycolipids, it is assumed to be responsible for a variety of immunological effects, including invasion mechanisms and long-term persistence of parasites within the host. Numerous reports have indicated various effects of PC-substituted molecules derived from parasitic nematodes on signal transduction pathways in B and T lymphocytes, displaying a highly adapted and profound modulation of the immune system by these parasites. The Nematoda, comprising parasitic and free-living species, can be regarded as promising prototypic systems for structural analyses, immunological studies and biosynthetic investigations. In this context, Ascaris suum, the pig parasitic nematode, is an ideal organism for immunological studies and an excellent source for obtaining large amounts of PC-substituted (macro)molecules. Caenorhabditis elegans, as a completely genome-sequenced species and expressing parasite analogous PC-substituted structures, together with the possibility for easy in vitro cultivation, represents a conceptual model for biosynthetic studies, whereas filarial parasites represent important model systems for human pathogens, especially in developing countries. This review summarises current knowledge on the tissue-specific expression of PC epitopes, structural data of glycoprotein glycans and glycosphingolipids bearing this substituent and biological implications for the immune systems of the respective hosts.
Collapse
Affiliation(s)
- G Lochnit
- Institute of Biochemistry, University of Giessen, Germany
| | | | | |
Collapse
|
46
|
Morelle W, Haslam SM, Olivier V, Appleton JA, Morris HR, Dell A. Phosphorylcholine-containing N-glycans of Trichinella spiralis: identification of multiantennary lacdiNAc structures. Glycobiology 2000; 10:941-50. [PMID: 10988255 DOI: 10.1093/glycob/10.9.941] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Although the presence of phosphorylcholine (PC) in Trichinella spiralis is well established, the precise structure of the PC-bearing molecules is not known. In this paper, we report structural studies of N-glycans released from T.spiralis affinity-purified antigens by peptide N-glycosidase F. Three classes of N-glycan structures were observed: high mannose type structures; those which had been fully trimmed to the trimannosyl core and were sub-stoichiometrically fucosylated; and those with a trimannosyl core, with and without core fucosylation, carrying between one and eight N-acetylhexosamine residues. Of the three classes of glycans, only the last was found to be substituted with detectable levels of phosphorylcholine.
Collapse
Affiliation(s)
- W Morelle
- Department of Biochemistry, Imperial College, London, UK
| | | | | | | | | | | |
Collapse
|
47
|
Morelle W, Haslam SM, Morris HR, Dell A. Characterization of the N-linked glycans of adult Trichinella spiralis. Mol Biochem Parasitol 2000; 109:171-7. [PMID: 10960176 DOI: 10.1016/s0166-6851(00)00241-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- W Morelle
- Department of Biochemistry, Imperial College of Science, Technology and Medicine, London, UK
| | | | | | | |
Collapse
|
48
|
Tzianabos AO, Finberg RW, Wang Y, Chan M, Onderdonk AB, Jennings HJ, Kasper DL. T cells activated by zwitterionic molecules prevent abscesses induced by pathogenic bacteria. J Biol Chem 2000; 275:6733-40. [PMID: 10702228 DOI: 10.1074/jbc.275.10.6733] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Immunologic paradigms classify bacterial polysaccharides as T cell-independent antigens. However, these models fail to explain how zwitterionic polysaccharides (Zps) confer protection against intraabdominal abscess formation in a T cell-dependent manner. Here, we demonstrate that Zps elicit a potent CD4+ T cell response in vitro that requires available major histocompatibility complex class II molecules on antigen-presenting cells. Specific chemical modifications to Zps show that: 1) the activity is specific for carbohydrate structure, and 2) the proliferative response depends upon free amino and carboxyl groups on the repeating units of these polysaccharides. Peptides synthesized to mimic the zwitterionic charge motif associated with Zps also exhibited these biologic properties. Lysine-aspartic acid (KD) peptides with more than 15 repeating units stimulated CD4+ T cells in vitro and conferred protection against abscesses induced by bacteria such as Bacteroides fragilis and Staphylococcus aureus. Evidence for the biologic importance of T cell activation by these zwitterionic polymers was provided when human CD4+ T cells stimulated with these molecules in vitro and adoptively transferred to rats in vivo conferred protection against intraabdominal abscesses induced by viable bacterial challenge. These studies demonstrate that bacterial polysaccharides with a distinct charge motif activate T cells and that this activity confers immunity to a distinct pathologic response to bacterial infection.
Collapse
Affiliation(s)
- A O Tzianabos
- Channing Laboratory, Brigham and Women's Hospital, Dana Farber Cancer Institute, Harvard Medical School Boston, Massachusetts 02115, USA.
| | | | | | | | | | | | | |
Collapse
|
49
|
Harnett W, Deehan MR, Houston KM, Harnett MM. Immunomodulatory properties of a phosphorylcholine-containing secreted filarial glycoprotein. Parasite Immunol 1999; 21:601-8. [PMID: 10583862 DOI: 10.1046/j.1365-3024.1999.00267.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
ES-62 is a phosphorylcholine (PC)-containing glycoprotein which is secreted by the rodent filarial nematode Acanthocheilonema viteae. A homologue exists in the human filarial nematode Brugia malayi and indeed PC is found attached to glycoproteins of many, if not all, filarial species. At concentrations equivalent to those found for PC-containing molecules in the bloodstream of parasitized humans, ES-62 is able to polyclonally activate certain protein tyrosine kinase and mitogen-activating protein kinase signal-transduction elements in B and T lymphocytes following in-vitro exposure. Although this interaction is insufficient to cause lymphocyte proliferation per se, it serves to desensitize the cells to subsequent activation of the phosphoinositide-3-kinase, protein kinase C and Ras mitogen-activating protein kinase pathways and hence also to proliferation via the antigen receptors. The active component of ES-62 appears to be PC, as the results obtained with ES-62 are broadly mimicked by PC conjugated to BSA or PC alone. Although PC can also be shown to desensitize B cells following in-vivo administration, not all cells are affected, as it is still possible to generate an antibody response. Dissection of this response indicates that it is of the Th2 type.
Collapse
Affiliation(s)
- W Harnett
- Department of Immunology, University of Strathclyde, Glasgow G4 ONR, UK
| | | | | | | |
Collapse
|
50
|
Harnett W, Houston KM, Tate R, Garate T, Apfel H, Adam R, Haslam SM, Panico M, Paxton T, Dell A, Morris H, Brzeski H. Molecular cloning and demonstration of an aminopeptidase activity in a filarial nematode glycoprotein. Mol Biochem Parasitol 1999; 104:11-23. [PMID: 10589978 DOI: 10.1016/s0166-6851(99)00113-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
ES-62 is an abundant phosphorylcholine-containing secreted glycoprotein of the filarial nematode Acanthocheilonema viteae. Using an antiserum directed against the parasite molecule, 3 cDNAs of size, approximately 1.5-1.6 kbp were isolated from an A. viteae expression library. Sequence analysis in combination with N-terminal amino acid sequencing of purified ES-62 revealed that each clone contained a full-length cDNA for ES-62 corresponding to 474 amino acid residues but differed in their 5' and 3' untranslated regions. Characterisation of the 5' end of ES-62 mRNA using 5' rapid amplification of cDNA ends showed that it coded for a signal sequence. Several tryptic peptides were independently sequenced using quadruple-time-of-flight mass spectrometry and used to confirm the cDNA sequence. The mature protein was found to contain three potential N-linked glycosylation sites. Comparison of the derived amino acid sequence of ES-62 with the SwissProt database identified a sequence (between amino acid residues approximately 250 and 350 of mature ES-62) with significant similarity to several bacterial/fungal aminopeptidases. Incubation of ES-62 with leucine-7-amino-4-methylcoumarin as substrate confirmed that ES-62 possessed aminopeptidase activity.
Collapse
Affiliation(s)
- W Harnett
- Department of Immunology, University of Strathclyde, The Todd Centre, Glasgow, UK.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|