1
|
Ohashi-Ito K, Iwamoto K, Yamagami A, Nakano T, Fukuda H. HD-ZIP III-dependent local promotion of brassinosteroid synthesis suppresses vascular cell division in Arabidopsis root apical meristem. Proc Natl Acad Sci U S A 2023; 120:e2216632120. [PMID: 37011193 PMCID: PMC10104508 DOI: 10.1073/pnas.2216632120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 02/22/2023] [Indexed: 04/05/2023] Open
Abstract
Spatiotemporal control of cell division in the meristem is vital for plant growth. In the stele of the root apical meristem (RAM), procambial cells divide periclinally to increase the number of vascular cell files. Class III homeodomain leucine zipper (HD-ZIP III) proteins are key transcriptional regulators of RAM development and suppress the periclinal division of vascular cells in the stele; however, the mechanism underlying the regulation of vascular cell division by HD-ZIP III transcription factors (TFs) remains largely unknown. Here, we performed transcriptome analysis to identify downstream genes of HD-ZIP III and found that HD-ZIP III TFs positively regulate brassinosteroid biosynthesis-related genes, such as CONSTITUTIVE PHOTOMORPHOGENIC DWARF (CPD), in vascular cells. Introduction of pREVOLUTA::CPD in a quadruple loss-of-function mutant of HD-ZIP III genes partly rescued the phenotype in terms of the vascular defect in the RAM. Treatment of a quadruple loss-of-function mutant, a gain-of-function mutant of HD-ZIP III, and the wild type with brassinosteroid and a brassinosteroid synthesis inhibitor also indicated that HD-ZIP III TFs act together to suppress vascular cell division by increasing brassinosteroid levels. Furthermore, brassinosteroid application suppressed the cytokinin response in vascular cells. Together, our findings suggest that the suppression of vascular cell division by HD-ZIP III TFs is caused, at least in part, by the increase in brassinosteroid levels through the transcriptional activation of brassinosteroid biosynthesis genes in the vascular cells of the RAM. This elevated brassinosteroid level suppresses cytokinin response in vascular cells, inhibiting vascular cell division in the RAM.
Collapse
Affiliation(s)
- Kyoko Ohashi-Ito
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo113-0033, Japan
| | - Kuninori Iwamoto
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo113-0033, Japan
| | - Ayumi Yamagami
- Department of Plant Gene and Totipotency, Graduate School of Biostudies, Kyoto University, Kyoto606-8502, Japan
| | - Takeshi Nakano
- Department of Plant Gene and Totipotency, Graduate School of Biostudies, Kyoto University, Kyoto606-8502, Japan
| | - Hiroo Fukuda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo113-0033, Japan
- Department of Bioscience and Biotechnology, Faculty of Environmental Sciences, Kyoto University of Advanced Science, Kyoto621-8555, Japan
| |
Collapse
|
2
|
Kanaoka MM, Shimizu KK, Xie B, Urban S, Freeman M, Hong Z, Okada K. KOMPEITO, an Atypical Arabidopsis Rhomboid-Related Gene, Is Required for Callose Accumulation and Pollen Wall Development. Int J Mol Sci 2022; 23:5959. [PMID: 35682638 PMCID: PMC9180352 DOI: 10.3390/ijms23115959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/20/2022] [Accepted: 05/20/2022] [Indexed: 11/30/2022] Open
Abstract
Fertilization is a key event for sexually reproducing plants. Pollen-stigma adhesion, which is the first step in male-female interaction during fertilization, requires proper pollen wall patterning. Callose, which is a β-1.3-glucan, is an essential polysaccharide that is required for pollen development and pollen wall formation. Mutations in CALLOSE SYNTHASE 5 (CalS5) disrupt male meiotic callose accumulation; however, how CalS5 activity and callose synthesis are regulated is not fully understood. In this paper, we report the isolation of a kompeito-1 (kom-1) mutant defective in pollen wall patterning and pollen-stigma adhesion in Arabidopsis thaliana. Callose was not accumulated in kom-1 meiocytes or microspores, which was very similar to the cals5 mutant. The KOM gene encoded a member of a subclass of Rhomboid serine protease proteins that lacked active site residues. KOM was localized to the Golgi apparatus, and both KOM and CalS5 genes were highly expressed in meiocytes. A 220 kDa CalS5 protein was detected in wild-type (Col-0) floral buds but was dramatically reduced in kom-1. These results suggested that KOM was required for CalS5 protein accumulation, leading to the regulation of meiocyte-specific callose accumulation and pollen wall formation.
Collapse
Affiliation(s)
- Masahiro M. Kanaoka
- Department of Botany, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwake-Cho, Sakyo-Ku, Kyoto 606-8502, Japan; (K.K.S.); (K.O.)
- Department of Microbiology, Molecular Biology and Biochemistry, University of Idaho, Moscow, ID 83844, USA; (B.X.); (Z.H.)
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Kentaro K. Shimizu
- Department of Botany, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwake-Cho, Sakyo-Ku, Kyoto 606-8502, Japan; (K.K.S.); (K.O.)
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
- Kihara Institute for Biological Research, Yokohama City University, Yokohama 244-0813, Japan
| | - Bo Xie
- Department of Microbiology, Molecular Biology and Biochemistry, University of Idaho, Moscow, ID 83844, USA; (B.X.); (Z.H.)
| | - Sinisa Urban
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA;
| | - Matthew Freeman
- Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK;
| | - Zonglie Hong
- Department of Microbiology, Molecular Biology and Biochemistry, University of Idaho, Moscow, ID 83844, USA; (B.X.); (Z.H.)
| | - Kiyotaka Okada
- Department of Botany, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwake-Cho, Sakyo-Ku, Kyoto 606-8502, Japan; (K.K.S.); (K.O.)
- Ryukoku Extension Center (REC) Ryukoku University, Yokotani 1-5, Seta Ohe-cho, Otsu-shi 520-2194, Japan
- Core Research of Science and Technology (CREST) Research Project, Tokyo 102-0076, Japan
| |
Collapse
|
3
|
Fabiańska I, Bucher M, Häusler RE. Intracellular phosphate homeostasis - A short way from metabolism to signaling. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 286:57-67. [PMID: 31300142 DOI: 10.1016/j.plantsci.2019.05.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 05/14/2019] [Accepted: 05/22/2019] [Indexed: 05/21/2023]
Abstract
Phosphorus in plant cells occurs in inorganic form as both ortho- and pyrophosphate or bound to organic compounds, like e.g., nucleotides, phosphorylated metabolites, phospholipids, phosphorylated proteins, or phytate as P storage in the vacuoles of seeds. Individual compartments of the cell are surrounded by membranes that are selective barriers to avoid uncontrolled solute exchange. A controlled exchange of phosphate or phosphorylated metabolites is accomplished by specific phosphate transporters (PHTs) and the plastidial phosphate translocator family (PTs) of the inner envelope membrane. Plastids, in particular chloroplasts, are the site of various anabolic sequences of enzyme-catalyzed reactions. Apart from their role in metabolism PHTs and PTs are presumed to be also involved in communication between organelles and plant organs. Here we will focus on the integration of phosphate transport and homeostasis in signaling processes. Recent developments in this field will be critically assessed and potential future developments discussed. In particular, the occurrence of various plastid types in one organ (i.e. the leaf) with different functions with respect to metabolism or sensing, as has been documented recently following a tissue-specific proteomics approach (Beltran et al., 2018), will shed new light on functional aspects of phosphate homeostasis.
Collapse
Affiliation(s)
- Izabela Fabiańska
- Botanical Institute, Cologne Biocenter, University of Cologne, 50674 Cologne, Germany
| | - Marcel Bucher
- Botanical Institute, Cologne Biocenter, University of Cologne, 50674 Cologne, Germany; Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, 50674 Cologne, Germany
| | - Rainer E Häusler
- Botanical Institute, Cologne Biocenter, University of Cologne, 50674 Cologne, Germany.
| |
Collapse
|
4
|
Sakr S, Wang M, Dédaldéchamp F, Perez-Garcia MD, Ogé L, Hamama L, Atanassova R. The Sugar-Signaling Hub: Overview of Regulators and Interaction with the Hormonal and Metabolic Network. Int J Mol Sci 2018; 57:2367-2379. [PMID: 30149541 DOI: 10.1093/pcp/pcw157] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 08/07/2018] [Accepted: 09/05/2016] [Indexed: 05/25/2023] Open
Abstract
Plant growth and development has to be continuously adjusted to the available resources. Their optimization requires the integration of signals conveying the plant metabolic status, its hormonal balance, and its developmental stage. Many investigations have recently been conducted to provide insights into sugar signaling and its interplay with hormones and nitrogen in the fine-tuning of plant growth, development, and survival. The present review emphasizes the diversity of sugar signaling integrators, the main molecular and biochemical mechanisms related to the sugar-signaling dependent regulations, and to the regulatory hubs acting in the interplay of the sugar-hormone and sugar-nitrogen networks. It also contributes to compiling evidence likely to fill a few knowledge gaps, and raises new questions for the future.
Collapse
Affiliation(s)
- Soulaiman Sakr
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, F-49045 Angers, France.
| | - Ming Wang
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, F-49045 Angers, France.
| | - Fabienne Dédaldéchamp
- Equipe "Sucres & Echanges Végétaux-Environnement", Ecologie et Biologie des Interactions, Université de Poitiers, UMR CNRS 7267 EBI, Bâtiment B31, 3 rue Jacques Fort, TSA 51106, 86073 Poitiers CEDEX 9, France.
| | - Maria-Dolores Perez-Garcia
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, F-49045 Angers, France.
| | - Laurent Ogé
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, F-49045 Angers, France.
| | - Latifa Hamama
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, F-49045 Angers, France.
| | - Rossitza Atanassova
- Equipe "Sucres & Echanges Végétaux-Environnement", Ecologie et Biologie des Interactions, Université de Poitiers, UMR CNRS 7267 EBI, Bâtiment B31, 3 rue Jacques Fort, TSA 51106, 86073 Poitiers CEDEX 9, France.
| |
Collapse
|
5
|
Ito E, Ebine K, Choi SW, Ichinose S, Uemura T, Nakano A, Ueda T. Integration of two RAB5 groups during endosomal transport in plants. eLife 2018; 7:34064. [PMID: 29749929 DOI: 10.7554/elife.34064.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 04/11/2018] [Indexed: 05/26/2023] Open
Abstract
RAB5 is a key regulator of endosomal functions in eukaryotic cells. Plants possess two different RAB5 groups, canonical and plant-unique types, which act via unknown counteracting mechanisms. Here, we identified an effector molecule of the plant-unique RAB5 in Arabidopsis thaliana, ARA6, which we designated PLANT-UNIQUE RAB5 EFFECTOR 2 (PUF2). Preferential colocalization with canonical RAB5 on endosomes and genetic interaction analysis indicated that PUF2 coordinates vacuolar transport with canonical RAB5, although PUF2 was identified as an effector of ARA6. Competitive binding of PUF2 with GTP-bound ARA6 and GDP-bound canonical RAB5, together interacting with the shared activating factor VPS9a, showed that ARA6 negatively regulates canonical RAB5-mediated vacuolar transport by titrating PUF2 and VPS9a. These results suggest a unique and unprecedented function for a RAB effector involving the integration of two RAB groups to orchestrate endosomal trafficking in plant cells.
Collapse
Affiliation(s)
- Emi Ito
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- Department of Natural Sciences, International Christian University, Tokyo, Japan
| | - Kazuo Ebine
- Division of Cellular Dynamics, National Institute for Basic Biology, Okazaki, Japan
- Department of Basic Biology, SOKENDAI, Okazaki, Japan
| | - Seung-Won Choi
- Department of Natural Sciences, International Christian University, Tokyo, Japan
| | - Sakura Ichinose
- Department of Natural Sciences, International Christian University, Tokyo, Japan
| | - Tomohiro Uemura
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Akihiko Nakano
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced Photonics, Wako, Japan
| | - Takashi Ueda
- Division of Cellular Dynamics, National Institute for Basic Biology, Okazaki, Japan
- Department of Basic Biology, SOKENDAI, Okazaki, Japan
- Japan Science and Technology Agency, PRESTO, Saitama, Japan
| |
Collapse
|
6
|
Ito E, Ebine K, Choi SW, Ichinose S, Uemura T, Nakano A, Ueda T. Integration of two RAB5 groups during endosomal transport in plants. eLife 2018; 7:34064. [PMID: 29749929 PMCID: PMC5947987 DOI: 10.7554/elife.34064] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 04/11/2018] [Indexed: 12/31/2022] Open
Abstract
RAB5 is a key regulator of endosomal functions in eukaryotic cells. Plants possess two different RAB5 groups, canonical and plant-unique types, which act via unknown counteracting mechanisms. Here, we identified an effector molecule of the plant-unique RAB5 in Arabidopsis thaliana, ARA6, which we designated PLANT-UNIQUE RAB5 EFFECTOR 2 (PUF2). Preferential colocalization with canonical RAB5 on endosomes and genetic interaction analysis indicated that PUF2 coordinates vacuolar transport with canonical RAB5, although PUF2 was identified as an effector of ARA6. Competitive binding of PUF2 with GTP-bound ARA6 and GDP-bound canonical RAB5, together interacting with the shared activating factor VPS9a, showed that ARA6 negatively regulates canonical RAB5-mediated vacuolar transport by titrating PUF2 and VPS9a. These results suggest a unique and unprecedented function for a RAB effector involving the integration of two RAB groups to orchestrate endosomal trafficking in plant cells. Living cells often contain compartments that pass proteins, fats and other biological molecules to one another via a process called membrane trafficking. Endosomes are one of the key platforms of membrane trafficking. These structures accumulate molecules from the outside of the cell, sort them, and then redirect them back to the cell surface or send them to other compartments within the cell where they can be broken down. Proteins known as RAB5s regulate many of the activities of endosomes. Some are found in a wide range of organisms, including animals, fungi, and plants, and are referred to as the “canonical” RAB5 group. Another group of RAB5 proteins are unique to land plants and some green algae. The existence of two RAB5 groups (i.e. canonical and plant-unique) is a distinctive feature of plant cells. In 2011, researchers showed that a plant-unique RAB5 could interfere with and counteract the activities of a canonical RAB5. However, it remained ambiguous how these proteins could do this. To resolve this question, Ito et al. – who include several researchers from the 2011 study – set out to find proteins that interact with a plant-unique RAB5 from Arabidopsis thaliana. The experiments identified one partner of a plant-unique RAB5, which was named PUF2. Unexpectedly, further experiments revealed that PUF2 also regulates canonical RAB5. PUF2 was found on the surface of the endosome together with RAB5s and a protein that activates RAB5s. Notably, PUF2 also interacted with the activating factor and the inactive form of canonical RAB5. Based on these findings, Ito et al. propose that PUF2 acts as a landmark to bring inactive canonical RAB5 close to its activating factor, which helps to activate canonical RAB5. They suggest that the plant-unique RAB5 also competitively binds to the landmark and blocks the canonical RAB5. Membrane trafficking is a universal system for all living organisms, yet the system seems to be customized among different organisms. These new findings provide further evidence that land plants have evolved a unique mechanism to regulate the activities of their endosomes. The next step is to reconstruct how this system evolved and unravel its relevance to the evolution of plant-specific traits.
Collapse
Affiliation(s)
- Emi Ito
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan.,Department of Natural Sciences, International Christian University, Tokyo, Japan
| | - Kazuo Ebine
- Division of Cellular Dynamics, National Institute for Basic Biology, Okazaki, Japan.,Department of Basic Biology, SOKENDAI, Okazaki, Japan
| | - Seung-Won Choi
- Department of Natural Sciences, International Christian University, Tokyo, Japan
| | - Sakura Ichinose
- Department of Natural Sciences, International Christian University, Tokyo, Japan
| | - Tomohiro Uemura
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Akihiko Nakano
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan.,Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced Photonics, Wako, Japan
| | - Takashi Ueda
- Division of Cellular Dynamics, National Institute for Basic Biology, Okazaki, Japan.,Department of Basic Biology, SOKENDAI, Okazaki, Japan.,Japan Science and Technology Agency, PRESTO, Saitama, Japan
| |
Collapse
|
7
|
Sharma SS, Yamamoto K, Hamaji K, Ohnishi M, Anegawa A, Sharma S, Thakur S, Kumar V, Uemura T, Nakano A, Mimura T. Cadmium-induced changes in vacuolar aspects of Arabidopsis thaliana. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 114:29-37. [PMID: 28257948 DOI: 10.1016/j.plaphy.2017.02.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Revised: 02/20/2017] [Accepted: 02/21/2017] [Indexed: 06/06/2023]
Abstract
We have examined the changes due to Cd treatment in the vacuolar form in root tip cortical cells in Arabidopsis thaliana employing a transformant with GFP fused to a tonoplast protein. A Cd-induced enhancement in complexity with general expansion of vacuolar system within 24 h was evident. The changes in the vacuolar form were dependent on the applied Cd concentrations. Concomitantly, as revealed through dithizone staining, Cd accumulated in the seedling roots exhibiting abundance of Cd-dithizone complexes in root tip, root hairs and vasculature. To get insight into the involvement of SNARE protein-mediated vesicle fusion in Cd detoxification, the magnitude of Cd toxicity in a couple of knock out mutants of the vacuolar Qa-SNARE protein VAM3/SYP22 was compared with that in the wild type. The Cd toxicity appeared to be comparable in the mutants and the wild type. In order to analyze the Cd effects at cellular level, we treated the Arabidopsis suspension-cultured cells with Cd. Cd, however, did not induce a change in the vacuolar form in suspension-cultured cells although Cd measured with ICP-MS was obviously taken up into the cell. The V-ATPase activity in the microsomal fractions from vacuoles isolated from A. thaliana suspension cultured cells remained unaffected by Cd. Changes in the levels of certain metabolites of Cd-treated cells were also not so distinct except for those of glutathione. The significance of findings is discussed.
Collapse
Affiliation(s)
- Shanti S Sharma
- Department of Biosciences, Himachal Pradesh University, Shimla 171005, India
| | - Kotaro Yamamoto
- Department of Biology, Graduate School of Science, Kobe University, Nada-ku, Kobe, 657-8501 Japan
| | - Kohei Hamaji
- Department of Biology, Graduate School of Science, Kobe University, Nada-ku, Kobe, 657-8501 Japan
| | - Miwa Ohnishi
- Department of Biology, Graduate School of Science, Kobe University, Nada-ku, Kobe, 657-8501 Japan
| | - Aya Anegawa
- Department of Biology, Graduate School of Science, Kobe University, Nada-ku, Kobe, 657-8501 Japan; Agilent Technologies Japan. Ltd., Hachioji, Tokyo 192-8510, Japan
| | - Shashi Sharma
- Department of Biosciences, Himachal Pradesh University, Shimla 171005, India
| | - Sveta Thakur
- Department of Biosciences, Himachal Pradesh University, Shimla 171005, India
| | - Vijay Kumar
- Department of Biosciences, Himachal Pradesh University, Shimla 171005, India
| | - Tomohiro Uemura
- Graduate School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Akihiko Nakano
- Graduate School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan; Live Cell Super-resolution Imaging Research Team, RIKEN Center for Advanced Photonics, Wako, Saitama 351-0198, Japan
| | - Tetsuro Mimura
- Department of Biology, Graduate School of Science, Kobe University, Nada-ku, Kobe, 657-8501 Japan.
| |
Collapse
|
8
|
Arabidopsis Regenerating Protoplast: A Powerful Model System for Combining the Proteomics of Cell Wall Proteins and the Visualization of Cell Wall Dynamics. Proteomes 2016; 4:proteomes4040034. [PMID: 28248244 PMCID: PMC5260967 DOI: 10.3390/proteomes4040034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 11/04/2016] [Accepted: 11/04/2016] [Indexed: 11/17/2022] Open
Abstract
The development of a range of sub-proteomic approaches to the plant cell wall has identified many of the cell wall proteins. However, it remains difficult to elucidate the precise biological role of each protein and the cell wall dynamics driven by their actions. The plant protoplast provides an excellent means not only for characterizing cell wall proteins, but also for visualizing the dynamics of cell wall regeneration, during which cell wall proteins are secreted. It therefore offers a unique opportunity to investigate the de novo construction process of the cell wall. This review deals with sub-proteomic approaches to the plant cell wall through the use of protoplasts, a methodology that will provide the basis for further exploration of cell wall proteins and cell wall dynamics.
Collapse
|
9
|
Zalabák D, Johnová P, Plíhal O, Šenková K, Šamajová O, Jiskrová E, Novák O, Jackson D, Mohanty A, Galuszka P. Maize cytokinin dehydrogenase isozymes are localized predominantly to the vacuoles. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 104:114-24. [PMID: 27031423 DOI: 10.1016/j.plaphy.2016.03.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 03/09/2016] [Accepted: 03/10/2016] [Indexed: 05/12/2023]
Abstract
The maize genome encompasses 13 genes encoding for cytokinin dehydrogenase isozymes (CKXs). These enzymes are responsible for irreversible degradation of cytokinin plant hormones and thus, contribute regulating their levels. Here, we focus on the unique aspect of CKXs: their diverse subcellular distribution, important in regulating cytokinin homeostasis. Maize CKXs were tagged with green fluorescent protein (GFP) and transiently expressed in maize protoplasts. Most of the isoforms, namely ZmCKX1, ZmCKX2, ZmCKX4a, ZmCKX5, ZmCKX6, ZmCKX8, ZmCKX9, and ZmCKX12, were associated with endoplasmic reticulum (ER) several hours after transformation. GFP-fused CKXs were observed to accumulate in putative prevacuolar compartments. To gain more information about the spatiotemporal localization of the above isoforms, we prepared stable expression lines of all ZmCKX-GFP fusions in Arabidopsis thaliana Ler suspension culture. All the ER-associated isoforms except ZmCKX1 and ZmCKX9 were found to be targeted primarily to vacuoles, suggesting that ER-localization is a transition point in the intracellular secretory pathway and vacuoles serve as these isoforms' final destination. ZmCKX9 showed an ER-like localization pattern similar to those observed in the transient maize assay. Apoplastic localization of ZmCKX1 was further confirmed and ZmCKX10 showed cytosolic/nuclear localization due to the absence of the signal peptide sequence as previously reported. Additionally, we prepared GFP-fused N-terminal signal deletion mutants of ZmCKX2 and ZmCKX9 and clearly demonstrated that the localization pattern of these mutant forms was cytosolic/nuclear. This study provides the first complex model for spatiotemporal localization of the key enzymes of the cytokinin degradation/catabolism in monocotyledonous plants.
Collapse
Affiliation(s)
- David Zalabák
- Department of Molecular Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 27, Olomouc 783 71, Czech Republic
| | - Patricie Johnová
- Department of Molecular Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 27, Olomouc 783 71, Czech Republic
| | - Ondřej Plíhal
- Department of Molecular Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 27, Olomouc 783 71, Czech Republic
| | - Karolina Šenková
- Department of Molecular Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 27, Olomouc 783 71, Czech Republic
| | - Olga Šamajová
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 27, Olomouc 783 71, Czech Republic
| | - Eva Jiskrová
- Department of Molecular Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 27, Olomouc 783 71, Czech Republic
| | - Ondřej Novák
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 27, Olomouc 783 71, Czech Republic
| | - David Jackson
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Amitabh Mohanty
- DuPont Pioneer Ag Biotech, DuPont Knowledge Centre, Turkapally Village, Hyderabad 500078, Telangana, India
| | - Petr Galuszka
- Department of Molecular Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 27, Olomouc 783 71, Czech Republic.
| |
Collapse
|
10
|
Buschmann H. Plant Cell Division Analyzed by Transient Agrobacterium-Mediated Transformation of Tobacco BY-2 Cells. Methods Mol Biol 2016; 1370:17-25. [PMID: 26659951 DOI: 10.1007/978-1-4939-3142-2_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The continuing analysis of plant cell division will require additional protein localization studies. This is greatly aided by GFP-technology, but plant transformation and the maintenance of transgenic lines can present a significant technical bottleneck. In this chapter I describe a method for the Agrobacterium-mediated genetic transformation of tobacco BY-2 cells. The method allows for the microscopic analysis of fluorescence-tagged proteins in dividing cells in within 2 days after starting a coculture. This transient transformation procedure requires only standard laboratory equipment. It is hoped that this rapid method would aid researchers conducting live-cell localization studies in plant mitosis and cytokinesis.
Collapse
Affiliation(s)
- Henrik Buschmann
- Botany Department, School of Biology and Chemistry, Osnabrück University, Postfach 44 69, Osnabrück, 49069, Germany.
| |
Collapse
|
11
|
Buschmann H, Dols J, Kopischke S, Peña EJ, Andrade-Navarro MA, Heinlein M, Szymanski DB, Zachgo S, Doonan JH, Lloyd CW. Arabidopsis KCBP interacts with AIR9 but stays in the cortical division zone throughout mitosis via its MyTH4-FERM domain. J Cell Sci 2015; 128:2033-46. [DOI: 10.1242/jcs.156570] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 04/10/2015] [Indexed: 12/19/2022] Open
Abstract
ABSTRACT
The preprophase band of microtubules performs the crucial function of marking the plane of cell division. Although the preprophase band depolymerises at the onset of mitosis, the division plane is ‘memorized’ by a cortical division zone to which the phragmoplast is attracted during cytokinesis. Proteins have been discovered that are part of the molecular memory but little is known about how they contribute to phragmoplast guidance. Previously, we found that the microtubule-associated protein AIR9 is found in the cortical division zone at preprophase and returns during cell plate insertion but is absent from the cortex during the intervening mitosis. To identify new components of the preprophase memory, we searched for proteins that interact with AIR9. We detected the kinesin-like calmodulin-binding protein, KCBP, which can be visualized at the predicted cortical site throughout division. A truncation study of KCBP indicates that its MyTH4-FERM domain is required for linking the motor domain to the cortex. These results suggest a mechanism by which minus-end-directed KCBP helps guide the centrifugally expanding phragmoplast to the cortical division site.
Collapse
Affiliation(s)
- Henrik Buschmann
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, Norfolk NR4 7UH, UK
| | - Jacqueline Dols
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, Norfolk NR4 7UH, UK
| | - Sarah Kopischke
- Botanical Institute, Biology and Chemistry Department, University of Osnabrück, 49069 Osnabrück, Germany
| | - Eduardo J. Peña
- Institut de Biologie Moléculaire des Plantes, UPR2357 CNRS, Strasbourg, France
| | | | - Manfred Heinlein
- Institut de Biologie Moléculaire des Plantes, UPR2357 CNRS, Strasbourg, France
| | | | - Sabine Zachgo
- Botanical Institute, Biology and Chemistry Department, University of Osnabrück, 49069 Osnabrück, Germany
| | - John H. Doonan
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, Norfolk NR4 7UH, UK
| | - Clive W. Lloyd
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, Norfolk NR4 7UH, UK
| |
Collapse
|
12
|
Sako K, Yanagawa Y, Kanai T, Sato T, Seki M, Fujiwara M, Fukao Y, Yamaguchi J. Proteomic Analysis of the 26S Proteasome Reveals Its Direct Interaction with Transit Peptides of Plastid Protein Precursors for Their Degradation. J Proteome Res 2014; 13:3223-30. [DOI: 10.1021/pr401245g] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Kaori Sako
- Plant
Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22
Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Yuki Yanagawa
- Plant-Microbe
Interaction Research Unit, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8602, Japan
| | - Tomoyuki Kanai
- Faculty
of Advanced Life Science and Graduate School of Life Science, Hokkaido University,
Kita-ku N10-W8, Sapporo 060-0810, Japan
| | - Takeo Sato
- Faculty
of Advanced Life Science and Graduate School of Life Science, Hokkaido University,
Kita-ku N10-W8, Sapporo 060-0810, Japan
| | - Motoaki Seki
- Plant
Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22
Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Masayuki Fujiwara
- Plant
Global Educational Project, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| | - Yoichiro Fukao
- Plant
Global Educational Project, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| | - Junji Yamaguchi
- Faculty
of Advanced Life Science and Graduate School of Life Science, Hokkaido University,
Kita-ku N10-W8, Sapporo 060-0810, Japan
| |
Collapse
|
13
|
Seifertová D, Skůpa P, Rychtář J, Laňková M, Pařezová M, Dobrev PI, Hoyerová K, Petrášek J, Zažímalová E. Characterization of transmembrane auxin transport in Arabidopsis suspension-cultured cells. JOURNAL OF PLANT PHYSIOLOGY 2014; 171:429-37. [PMID: 24594395 DOI: 10.1016/j.jplph.2013.09.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Revised: 09/24/2013] [Accepted: 09/28/2013] [Indexed: 05/21/2023]
Abstract
Polar auxin transport is a crucial process for control and coordination of plant development. Studies of auxin transport through plant tissues and organs showed that auxin is transported by a combination of phloem flow and the active, carrier-mediated cell-to-cell transport. Since plant organs and even tissues are too complex for determination of the kinetics of carrier-mediated auxin uptake and efflux on the cellular level, simplified models of cell suspension cultures are often used, and several tobacco cell lines have been established for auxin transport assays. However, there are very few data available on the specificity and kinetics of auxin transport across the plasma membrane for Arabidopsis thaliana suspension-cultured cells. In this report, the characteristics of carrier-mediated uptake (influx) and efflux for the native auxin indole-3-acetic acid and synthetic auxins, naphthalene-1-acetic and 2,4-dichlorophenoxyacetic acids (NAA and 2,4-D, respectively) in A. thaliana ecotype Landsberg erecta suspension-cultured cells (LE line) are provided. By auxin competition assays and inhibitor treatments, we show that, similarly to tobacco cells, uptake carriers have high affinity towards 2,4-D and that NAA is a good tool for studies of auxin efflux in LE cells. In contrast to tobacco cells, metabolic profiling showed that only a small proportion of NAA is metabolized in LE cells. These results show that the LE cell line is a useful experimental system for measurements of kinetics of auxin carriers on the cellular level that is complementary to tobacco cells.
Collapse
Affiliation(s)
- Daniela Seifertová
- Institute of Experimental Botany ASCR, Rozvojová 263, 165 02 Prague 6, Czech Republic.
| | - Petr Skůpa
- Institute of Experimental Botany ASCR, Rozvojová 263, 165 02 Prague 6, Czech Republic.
| | - Jan Rychtář
- Department of Mathematics and Statistics, The University of North Carolina at Greensboro, 130 Petty Building, NC 27403, USA.
| | - Martina Laňková
- Institute of Experimental Botany ASCR, Rozvojová 263, 165 02 Prague 6, Czech Republic.
| | - Markéta Pařezová
- Institute of Experimental Botany ASCR, Rozvojová 263, 165 02 Prague 6, Czech Republic.
| | - Petre I Dobrev
- Institute of Experimental Botany ASCR, Rozvojová 263, 165 02 Prague 6, Czech Republic.
| | - Klára Hoyerová
- Institute of Experimental Botany ASCR, Rozvojová 263, 165 02 Prague 6, Czech Republic.
| | - Jan Petrášek
- Institute of Experimental Botany ASCR, Rozvojová 263, 165 02 Prague 6, Czech Republic.
| | - Eva Zažímalová
- Institute of Experimental Botany ASCR, Rozvojová 263, 165 02 Prague 6, Czech Republic.
| |
Collapse
|
14
|
Tek AL, Kashihara K, Murata M, Nagaki K. Identification of the centromere-specific histone H3 variant in Lotus japonicus. Gene 2014; 538:8-11. [PMID: 24462968 DOI: 10.1016/j.gene.2014.01.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 12/02/2013] [Accepted: 01/11/2014] [Indexed: 11/15/2022]
Abstract
The centromere is a structurally and functionally specialized region present on every eukaryotic chromosome. Lotus japonicus is a model legume species for which there is very limited information on the centromere structure. Here we cloned and characterized the L. japonicus homolog of the centromere-specific histone H3 gene (LjCenH3) encoding a 159-amino acid protein. Using an Agrobacterium-based transformation system, LjCenH3 tagged with a green fluorescent protein was transferred into L. japonicus cells. The centromeric position of LjCENH3 protein was revealed on L. japonicus metaphase chromosomes by an immunofluorescence assay. The identification of LjCenH3 as a critical centromere landmark could pave the way for a better understanding of centromere structure in this model and other agriculturally important legume species.
Collapse
Affiliation(s)
- Ahmet L Tek
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan.
| | - Kazunari Kashihara
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan
| | - Minoru Murata
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan
| | - Kiyotaka Nagaki
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan.
| |
Collapse
|
15
|
Petrovská B, Jeřábková H, Kohoutová L, Cenklová V, Pochylová Ž, Gelová Z, Kočárová G, Váchová L, Kurejová M, Tomaštíková E, Binarová P. Overexpressed TPX2 causes ectopic formation of microtubular arrays in the nuclei of acentrosomal plant cells. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:4575-87. [PMID: 24006426 PMCID: PMC3808333 DOI: 10.1093/jxb/ert271] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
TPX2 performs multiple roles in microtubule organization. Previously, it was shown that plant AtTPX2 binds AtAurora1 kinase and colocalizes with microtubules in a cell cycle-specific manner. To elucidate the function of TPX2 further, this work analysed Arabidopsis cells overexpressing AtTPX2-GFP. Distinct arrays of bundled microtubules, decorated with AtTPX2-GFP, were formed in the vicinity of the nuclear envelope and in the nuclei of overexpressing cells. The microtubular arrays showed reduced sensitivity to anti-microtubular drugs. TPX2-mediated formation of nuclear/perinuclear microtubular arrays was not specific for the transition to mitosis and occurred independently of Aurora kinase. The fibres were not observed in cells with detectable programmed cell death and, in this respect, they differed from TPX2-dependent microtubular assemblies functioning in mammalian apoptosis. Colocalization and co-purification data confirmed the interaction of importin with AtTPX2-GFP. In cells with nuclear foci of overexpressed AtTPX2-GFP, strong nuclear signals for Ran and importin diminished when microtubular arrays were assembled. This observation suggests that TPX2-mediated microtubule formation might be triggered by a Ran cycle. Collectively, the data suggest that in the acentrosomal plant cell, in conjunction with importin, overexpressed AtTPX2 reinforces microtubule formation in the vicinity of chromatin and the nuclear envelope.
Collapse
Affiliation(s)
- Beáta Petrovská
- Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, AS CR, v.v.i., Šlechtitelů 31, Olomouc 783 71, Czech Republic
- * These authors contributed equally to this manuscript
| | - Hana Jeřábková
- Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, AS CR, v.v.i., Šlechtitelů 31, Olomouc 783 71, Czech Republic
- * These authors contributed equally to this manuscript
| | - Lucie Kohoutová
- Institute of Microbiology, AS CR, v.v.i., Vídeňská 1083, 142 20 Prague 4, Czech Republic
- * These authors contributed equally to this manuscript
| | - Věra Cenklová
- Institute of Experimental Botany, AS CR, v.v.i., Sokolovská 6, 772 00 Olomouc, Czech Republic
| | - Žaneta Pochylová
- Institute of Experimental Botany, AS CR, v.v.i., Sokolovská 6, 772 00 Olomouc, Czech Republic
| | - Zuzana Gelová
- Institute of Experimental Botany, AS CR, v.v.i., Sokolovská 6, 772 00 Olomouc, Czech Republic
| | - Gabriela Kočárová
- Institute of Microbiology, AS CR, v.v.i., Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - Lenka Váchová
- Institute of Experimental Botany, AS CR, v.v.i., Sokolovská 6, 772 00 Olomouc, Czech Republic
| | - Michaela Kurejová
- Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, AS CR, v.v.i., Šlechtitelů 31, Olomouc 783 71, Czech Republic
| | - Eva Tomaštíková
- Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, AS CR, v.v.i., Šlechtitelů 31, Olomouc 783 71, Czech Republic
| | - Pavla Binarová
- Institute of Microbiology, AS CR, v.v.i., Vídeňská 1083, 142 20 Prague 4, Czech Republic
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
16
|
Yoshida K, Ohnishi M, Fukao Y, Okazaki Y, Fujiwara M, Song C, Nakanishi Y, Saito K, Shimmen T, Suzaki T, Hayashi F, Fukaki H, Maeshima M, Mimura T. Studies on vacuolar membrane microdomains isolated from Arabidopsis suspension-cultured cells: local distribution of vacuolar membrane proteins. PLANT & CELL PHYSIOLOGY 2013; 54:1571-84. [PMID: 23903016 DOI: 10.1093/pcp/pct107] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The local distribution of both the vacuolar-type proton ATPase (V-ATPase) and the vacuolar-type proton pyrophosphatase (V-PPase), the main vacuolar proton pumps, was investigated in intact vacuoles isolated from Arabidopsis suspension-cultured cells. Fluorescent immunostaining showed that V-PPase was distributed evenly on the vacuolar membrane (VM), but V-ATPase localized to specific regions of the VM. We hypothesize that there may be membrane microdomains on the VM. To confirm this hypothesis, we prepared detergent-resistant membranes (DRMs) from the VM in accordance with well established conventional methods. Analyses of fatty acid composition suggested that DRMs had more saturated fatty acids compared with the whole VM in phosphatidylcholine and phosphatidylethanolamine. In the proteomic analyses of both DRMs and detergent-soluble mebranes (DSMs), we confirmed the different local distributions of V-ATPase and V-PPase. The observations of DRMs with an electron microscope supported the existence of different areas on the VM. Moreover, it was observed using total internal reflection fluorescent microscopy (TIRFM) that proton pumps were frequently immobilized at specific sites on the VM. In the proteomic analyses, we also found that many other vacuolar membrane proteins are distributed differently in DRMs and DSMs. Based on the results of this study, we discuss the possibility that VM microdomains might contribute to vacuolar dynamics.
Collapse
Affiliation(s)
- Katsuhisa Yoshida
- Graduate School of Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501 Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Missihoun TD, Kirch HH, Bartels D. T-DNA insertion mutants reveal complex expression patterns of the aldehyde dehydrogenase 3H1 locus in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:3887-98. [PMID: 22442412 PMCID: PMC3388822 DOI: 10.1093/jxb/ers081] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 02/17/2012] [Accepted: 02/20/2012] [Indexed: 05/24/2023]
Abstract
The Arabidopsis thaliana aldehyde dehydrogenase 3H1 gene (ALDH3H1; AT1G44170) belongs to family 3 of the plant aldehyde dehydrogenase superfamily. The full-length transcript of the corresponding gene comprises an open reading frame of 1583 bp and encodes a protein of 484 amino acid residues. Gene expression studies have shown that this transcript accumulates mainly in the roots of 4-week-old plants following abscisic acid, dehydration, and NaCl treatments. The current study provided experimental data that the ALDH3H1 locus generates at least five alternative transcript variants in addition to the previously described ALDH3H1 mRNA. The alternative transcripts accumulated in wild-type plants at a low level but were upregulated in a mutant that carried a T-DNA insertion in the first exon of the gene. Expression of the transcript isoforms involved alternative gene splicing combined with an alternative promoter. The transcript isoforms were differentially expressed in the roots and shoots and showed developmental stage- and tissue-specific expression patterns. These data support the hypothesis that alternative isoforms produced by gene splicing or alternative promoters regulate the abundance of the constitutively spliced and functional variants.
Collapse
|
18
|
Ogawa Y, Sakurai N, Oikawa A, Kai K, Morishita Y, Mori K, Moriya K, Fujii F, Aoki K, Suzuki H, Ohta D, Saito K, Shibata D. High-throughput cryopreservation of plant cell cultures for functional genomics. PLANT & CELL PHYSIOLOGY 2012; 53:943-52. [PMID: 22437846 PMCID: PMC3345369 DOI: 10.1093/pcp/pcs038] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Accepted: 03/14/2012] [Indexed: 05/18/2023]
Abstract
Suspension-cultured cell lines from plant species are useful for genetic engineering. However, maintenance of these lines is laborious, involves routine subculturing and hampers wider use of transgenic lines, especially when many lines are required for a high-throughput functional genomics application. Cryopreservation of these lines may reduce the need for subculturing. Here, we established a simple protocol for cryopreservation of cell lines from five commonly used plant species, Arabidopsis thaliana, Daucus carota, Lotus japonicus, Nicotiana tabacum and Oryza sativa. The LSP solution (2 M glycerol, 0.4 M sucrose and 86.9 mM proline) protected cells from damage during freezing and was only mildly toxic to cells kept at room temperature for at least 2 h. More than 100 samples were processed for freezing simultaneously. Initially, we determined the conditions for cryopreservation using a programmable freezer; we then developed a modified simple protocol that did not require a programmable freezer. In the simple protocol, a thick expanded polystyrene (EPS) container containing the vials with the cell-LSP solution mixtures was kept at -30 °C for 6 h to cool the cells slowly (pre-freezing); samples from the EPS containers were then plunged into liquid nitrogen before long-term storage. Transgenic Arabidopsis cells were subjected to cryopreservation, thawed and then re-grown in culture; transcriptome and metabolome analyses indicated that there was no significant difference in gene expression or metabolism between cryopreserved cells and control cells. The simplicity of the protocol will accelerate the pace of research in functional plant genomics.
Collapse
Affiliation(s)
- Yoichi Ogawa
- Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba, 292-0818 Japan
- Present address: Honda Research Institute Japan, Kisarazu, 292-0818 Japan
| | - Nozomu Sakurai
- Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba, 292-0818 Japan
| | - Akira Oikawa
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, 599-8531 Japan
- Present address: Faculty of Agriculture, Yamagata University, Tsuruoka, 997-8555 Japan
| | - Kosuke Kai
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, 599-8531 Japan
- Present address: SYSMEX CORPORATION, Kobe, 651-0073 Japan
| | - Yoshihiko Morishita
- Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba, 292-0818 Japan
| | - Kumiko Mori
- Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba, 292-0818 Japan
| | - Kanami Moriya
- Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba, 292-0818 Japan
| | - Fumiko Fujii
- Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba, 292-0818 Japan
| | - Koh Aoki
- Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba, 292-0818 Japan
- Present address: Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, 599-8531 Japan
| | - Hideyuki Suzuki
- Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba, 292-0818 Japan
| | - Daisaku Ohta
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, 599-8531 Japan
| | - Kazuki Saito
- Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba, 292-0818 Japan
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675 Japan
| | - Daisuke Shibata
- Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba, 292-0818 Japan
| |
Collapse
|
19
|
Nagaki K, Shibata F, Kanatani A, Kashihara K, Murata M. Isolation of centromeric-tandem repetitive DNA sequences by chromatin affinity purification using a HaloTag7-fused centromere-specific histone H3 in tobacco. PLANT CELL REPORTS 2012; 31:771-9. [PMID: 22147136 DOI: 10.1007/s00299-011-1198-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 11/22/2011] [Accepted: 11/26/2011] [Indexed: 05/26/2023]
Abstract
The centromere is a multi-functional complex comprising centromeric DNA and a number of proteins. To isolate unidentified centromeric DNA sequences, centromere-specific histone H3 variants (CENH3) and chromatin immunoprecipitation (ChIP) have been utilized in some plant species. However, anti-CENH3 antibody for ChIP must be raised in each species because of its species specificity. Production of the antibodies is time-consuming and costly, and it is not easy to produce ChIP-grade antibodies. In this study, we applied a HaloTag7-based chromatin affinity purification system to isolate centromeric DNA sequences in tobacco. This system required no specific antibody, and made it possible to apply a highly stringent wash to remove contaminated DNA. As a result, we succeeded in isolating five tandem repetitive DNA sequences in addition to the centromeric retrotransposons that were previously identified by ChIP. Three of the tandem repeats were centromere-specific sequences located on different chromosomes. These results confirm the validity of the HaloTag7-based chromatin affinity purification system as an alternative method to ChIP for isolating unknown centromeric DNA sequences. The discovery of more than two chromosome-specific centromeric DNA sequences indicates the mosaic structure of tobacco centromeres.
Collapse
Affiliation(s)
- Kiyotaka Nagaki
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan.
| | | | | | | | | |
Collapse
|
20
|
Petrovská B, Cenklová V, Pochylová Ž, Kourová H, Doskočilová A, Plíhal O, Binarová L, Binarová P. Plant Aurora kinases play a role in maintenance of primary meristems and control of endoreduplication. THE NEW PHYTOLOGIST 2012; 193:590-604. [PMID: 22150830 DOI: 10.1111/j.1469-8137.2011.03989.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
• The conserved family of Aurora kinases has multiple functions during mitosis. The roles of plant Aurora kinases have been characterized using inhibitor treatments. • We down-regulated Aurora kinases in Arabidopsis thaliana using RNA interference (RNAi). We carried out a detailed phenotypic analysis of Aurora RNAi plants, biochemical and microscopic studies of AtAurora1 kinase together with AtTPX2 (targeting protein for Xklp2) and γ-tubulin. • Cell division defects were observed in plants with reduced expression of Aurora kinases. Furthermore, the maintenance of primary meristems was compromised and RNAi seedlings entered endoreduplication prematurely. AtAurora1, its activator AtTPX2, and γ-tubulin were associated with microtubules in vitro; they were attached to regrowing kinetochore microtubules and colocalized on spindle microtubules and with a subset of early phragmoplast microtubules. Only the AtAurora1 kinase was translocated to the area of the cell plate. • RNAi silencing of Aurora kinases showed that, in addition to their function in regulating mitosis, the kinases are required for maintaining meristematic activity and controlling the switch from meristematic cell proliferation to differentiation and endoreduplication. The colocalization and co-fractionation of AtAurora1 with AtTPX2, and γ-tubulin on microtubules in a cell cycle-specific manner suggests that AtAurora1 kinase may function to phosphorylate substrates that are critical to the spatiotemporal regulation of acentrosomal microtubule formation and organization.
Collapse
Affiliation(s)
- Beáta Petrovská
- Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany AS CR, v.v.i., Sokolovská 6, Olomouc 772 00, Czech Republic
| | - Věra Cenklová
- Institute of Experimental Botany, AS CR, v.v.i., Sokolovská 6, 772 00, Olomouc, Czech Republic
| | - Žaneta Pochylová
- Institute of Experimental Botany, AS CR, v.v.i., Sokolovská 6, 772 00, Olomouc, Czech Republic
| | - Hana Kourová
- Institute of Microbiology, AS CR, v.v.i., Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - Anna Doskočilová
- Institute of Microbiology, AS CR, v.v.i., Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - Ondřej Plíhal
- Institute of Microbiology, AS CR, v.v.i., Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - Lenka Binarová
- Institute of Experimental Botany, AS CR, v.v.i., Sokolovská 6, 772 00, Olomouc, Czech Republic
| | - Pavla Binarová
- Institute of Microbiology, AS CR, v.v.i., Vídeňská 1083, 142 20 Prague 4, Czech Republic
| |
Collapse
|
21
|
Agrawal GK, Bourguignon J, Rolland N, Ephritikhine G, Ferro M, Jaquinod M, Alexiou KG, Chardot T, Chakraborty N, Jolivet P, Doonan JH, Rakwal R. Plant organelle proteomics: collaborating for optimal cell function. MASS SPECTROMETRY REVIEWS 2011; 30:772-853. [PMID: 21038434 DOI: 10.1002/mas.20301] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Revised: 02/02/2010] [Accepted: 02/02/2010] [Indexed: 05/10/2023]
Abstract
Organelle proteomics describes the study of proteins present in organelle at a particular instance during the whole period of their life cycle in a cell. Organelles are specialized membrane bound structures within a cell that function by interacting with cytosolic and luminal soluble proteins making the protein composition of each organelle dynamic. Depending on organism, the total number of organelles within a cell varies, indicating their evolution with respect to protein number and function. For example, one of the striking differences between plant and animal cells is the plastids in plants. Organelles have their own proteins, and few organelles like mitochondria and chloroplast have their own genome to synthesize proteins for specific function and also require nuclear-encoded proteins. Enormous work has been performed on animal organelle proteomics. However, plant organelle proteomics has seen limited work mainly due to: (i) inter-plant and inter-tissue complexity, (ii) difficulties in isolation of subcellular compartments, and (iii) their enrichment and purity. Despite these concerns, the field of organelle proteomics is growing in plants, such as Arabidopsis, rice and maize. The available data are beginning to help better understand organelles and their distinct and/or overlapping functions in different plant tissues, organs or cell types, and more importantly, how protein components of organelles behave during development and with surrounding environments. Studies on organelles have provided a few good reviews, but none of them are comprehensive. Here, we present a comprehensive review on plant organelle proteomics starting from the significance of organelle in cells, to organelle isolation, to protein identification and to biology and beyond. To put together such a systematic, in-depth review and to translate acquired knowledge in a proper and adequate form, we join minds to provide discussion and viewpoints on the collaborative nature of organelles in cell, their proper function and evolution.
Collapse
Affiliation(s)
- Ganesh Kumar Agrawal
- Research Laboratory for Biotechnology and Biochemistry (RLABB), P.O. Box 13265, Sanepa, Kathmandu, Nepal.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Gil L, Yaron I, Shalitin D, Sauer N, Turgeon R, Wolf S. Sucrose transporter plays a role in phloem loading in CMV-infected melon plants that are defined as symplastic loaders. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 66:366-74. [PMID: 21241389 DOI: 10.1111/j.1365-313x.2011.04498.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Based on the high density of plasmodesmata interconnecting the intermediary cells and their neighboring phloem parenchyma or bundle-sheath cells, and based on the insensitivity to the sucrose transport inhibitor p-chloromercuribenzenesulfonic acid (PCMBS), cucurbits have been concluded to be symplastic loaders. In the present study, we identified and characterized the full-length sequence of sucrose transporter gene (CmSUT1) from melon (Cucumis melo L. cv. Hale's best jumbo). In vitro experiments confirmed that the identified gene product has sucrose transporter activity in baker's yeast. Healthy and cucumber mosaic virus (CMV)-infected melon plants were employed to examine sucrose transporter activity in planta. Pretreatment with PCMBS inhibited loading of newly fixed ¹⁴CO₂ into minor veins of CMV-infected plants. Moreover, CMV infection caused significant increase in CmSUT1 transcripts expression, mainly in vascular bundles of minor veins, which was associated with elevated sucrose content in phloem sap collected from source-leaf petioles. We propose that cucurbit plants contain the machinery for apoplastic phloem loading and that CMV infection causes a quantitative shift in the mode by which photoassimilates are loaded into the sieve tube.
Collapse
Affiliation(s)
- Lidor Gil
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture and the Otto Warburg Minerva Center for Agricultural Biotechnology, The Hebrew University of Jerusalem, The Robert H. Smith Faculty of Agriculture, Food and Environment, Rehovot 76100, Israel
| | | | | | | | | | | |
Collapse
|
23
|
Buschmann H, Green P, Sambade A, Doonan JH, Lloyd CW. Cytoskeletal dynamics in interphase, mitosis and cytokinesis analysed through Agrobacterium-mediated transient transformation of tobacco BY-2 cells. THE NEW PHYTOLOGIST 2011; 190:258-267. [PMID: 21182528 DOI: 10.1111/j.1469-8137.2010.03587.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Transient transformation with Agrobacterium is a widespread tool allowing rapid expression analyses in plants. However, the available methods generate expression in interphase and do not allow the routine analysis of dividing cells. Here, we present a transient transformation method (termed 'TAMBY2') to enable cell biological studies in interphase and cell division. Agrobacterium-mediated transient gene expression in tobacco BY-2 was analysed by Western blotting and quantitative fluorescence microscopy. Time-lapse microscopy of cytoskeletal markers was employed to monitor cell division. Double-labelling in interphase and mitosis enabled localization studies. We found that the transient transformation efficiency was highest when BY-2/Agrobacterium co-cultivation was performed on solid medium. Transformants produced in this way divided at high frequency. We demonstrated the utility of the method by defining the behaviour of a previously uncharacterized microtubule motor, KinG, throughout the cell cycle. Our analyses demonstrated that TAMBY2 provides a flexible tool for the transient transformation of BY-2 with Agrobacterium. Fluorescence double-labelling showed that KinG localizes to microtubules and to F-actin. In interphase, KinG accumulates on microtubule lagging ends, suggesting a minus-end-directed function in vivo. Time-lapse studies of cell division showed that GFP-KinG strongly labels preprophase band and phragmoplast, but not the metaphase spindle.
Collapse
Affiliation(s)
- H Buschmann
- Department of Cell and Developmental Biology, John Innes Centre, Colney Lane, Norwich NR4 7UH, UK
| | - P Green
- Department of Cell and Developmental Biology, John Innes Centre, Colney Lane, Norwich NR4 7UH, UK
| | - A Sambade
- Department of Cell and Developmental Biology, John Innes Centre, Colney Lane, Norwich NR4 7UH, UK
| | - J H Doonan
- Department of Cell and Developmental Biology, John Innes Centre, Colney Lane, Norwich NR4 7UH, UK
| | - C W Lloyd
- Department of Cell and Developmental Biology, John Innes Centre, Colney Lane, Norwich NR4 7UH, UK
| |
Collapse
|
24
|
Burko Y, Geva Y, Refael-Cohen A, Shleizer-Burko S, Shani E, Berger Y, Halon E, Chuck G, Moshelion M, Ori N. From organelle to organ: ZRIZI MATE-Type transporter is an organelle transporter that enhances organ initiation. PLANT & CELL PHYSIOLOGY 2011; 52:518-27. [PMID: 21257605 DOI: 10.1093/pcp/pcr007] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Plant architecture is a predictable but flexible trait. The timing and position of organ initiation from the shoot apical meristem (SAM) contribute to the final plant form. While much progress has been made recently in understanding how the site of leaf initiation is determined, the mechanism underlying the temporal interval between leaf primordia is still largely unknown. The Arabidopsis ZRIZI (ZRZ) gene belongs to a large gene family encoding multidrug and toxic compound extrusion (MATE) transporters. Unique among plant MATE transporters identified so far, ZRZ is localized to the membrane of a small organelle, possibly the mitochondria. Plants overexpressing ZRZ in initiating leaves are short, produce leaves much faster than wild-type plants and show enhanced growth of axillary buds. These results suggest that ZRZ is involved in communicating a leaf-borne signal that determines the rate of organ initiation.
Collapse
Affiliation(s)
- Yogev Burko
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture and The Otto Warburg Minerva Center for Agricultural Biotechnology, Hebrew University, Rehovot 76100, Israel
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Nagaki K, Terada K, Wakimoto M, Kashihara K, Murata M. Centromere targeting of alien CENH3s in Arabidopsis and tobacco cells. Chromosome Res 2010; 18:203-11. [PMID: 20084454 DOI: 10.1007/s10577-009-9108-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Accepted: 12/15/2009] [Indexed: 11/29/2022]
Abstract
The centromere is a region utilized for spindle attachment on a eukaryotic chromosome and essential for accurate chromatid segregation. In most eukaryotes, centromeres have specific DNA sequences and are capable of assembling specific proteins to form a complex called the kinetochore. Among these proteins, centromeric histone H3 (CENH3) is one of the most fundamental, since CENH3s have been found in all investigated functional centromeres and recruits other centromeric proteins. In this study, the localization of alien CENH3s were analyzed in Arabidopsis and tobacco-cultured cells to determine the interaction between species-specific centromeric DNA and CENH3. Results showed that CENH3 of Arabidopsis and tobacco were localized on centromeres in the tobacco-cultured cells, unlike the case with CENH3 of rice and Luzula. In addition to these CENH3s, CENH3 of Luzula was partially localized in the Arabidopsis cultured cells. These data suggest that only evolutionally close CENH3s are able to target centromeres in alien species. Furthermore, the ability to target alien centromeres of histone fold domains was investigated using amino-terminal deleted CENH3s.
Collapse
Affiliation(s)
- Kiyotaka Nagaki
- Research Institute for Bioresources, Okayama University, Kurashiki, Japan.
| | | | | | | | | |
Collapse
|
26
|
Kärkönen A, Koutaniemi S. Lignin biosynthesis studies in plant tissue cultures. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2010; 52:176-85. [PMID: 20377679 DOI: 10.1111/j.1744-7909.2010.00913.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Lignin, a phenolic polymer abundant in cell walls of certain cell types, has given challenges to scientists studying its structure or biosynthesis. In plants lignified tissues are distributed between other, non-lignified tissues. Characterization of native lignin in the cell wall has been difficult due to the highly cross-linked nature of the wall components. Model systems, like plant tissue cultures with tracheary element differentiation or extracellular lignin formation, have provided useful information related to lignin structure and several aspects of lignin formation. For example, many enzyme activities in the phenylpropanoid pathway have been first identified in tissue cultures. This review focuses on studies where the use of plant tissue cultures has been advantageous in structural and biosynthesis studies of lignin, and discusses the validity of tissue cultures as models for lignin biosynthesis.
Collapse
Affiliation(s)
- Anna Kärkönen
- Department of Applied Biology, University of Helsinki, Helsinki, Finland.
| | | |
Collapse
|
27
|
Buschmann H, Sambade A, Pesquet E, Calder G, Lloyd CW. Microtubule dynamics in plant cells. Methods Cell Biol 2010; 97:373-400. [PMID: 20719281 DOI: 10.1016/s0091-679x(10)97020-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
This chapter describes some of the choices and unavoidable compromises to be made when studying microtubule dynamics in plant cells. The choice of species still depends very much on the ability to produce transgenic plants and most work has been done in the relatively small cells of Arabidopsis plants or in tobacco BY-2 suspension cells. Fluorescence-tagged microtubule proteins have been used to label entire microtubules, or their plus ends, but there are still few minus-end markers for these acentrosomal cells. Pragmatic decisions have to be made about probes, balancing the efficacy of microtubule labeling against a tendency to overstabilize and bundle the microtubules and even induce helical plant growth. A key limitation in visualizing plant microtubules is the ability to keep plants alive for long periods under the microscope and we describe a biochamber that allows for plant cell growth and development while allowing gas exchange and reducing evaporation. Another major difficulty is the limited fluorescence lifetime and we describe imaging strategies to reduce photobleaching in long-term imaging. We also discuss methods of measuring microtubule dynamics, with emphasis on the behavior of plant-specific microtubule arrays.
Collapse
Affiliation(s)
- Henrik Buschmann
- Department of Cell and Developmental Biology, John Innes Centre, Norwich NR47UH, United Kingdom
| | | | | | | | | |
Collapse
|
28
|
Hamaji K, Nagira M, Yoshida K, Ohnishi M, Oda Y, Uemura T, Goh T, Sato MH, Morita MT, Tasaka M, Hasezawa SI, Nakano A, Hara-Nishimura I, Maeshima M, Fukaki H, Mimura T. Dynamic aspects of ion accumulation by vesicle traffic under salt stress in Arabidopsis. PLANT & CELL PHYSIOLOGY 2009; 50:2023-33. [PMID: 19880402 DOI: 10.1093/pcp/pcp143] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The intracellular membrane dynamics of Arabidopsis cells under high salt treatment were investigated. When Arabidopsis was treated with high levels of NaCl in hydroponic culture, root tip cells showed rapid changes in the vacuolar volume, a decrease in the number of small acid compartments, active movement of vesicles and accumulation of Na(+) both in the central vacuole and in the vesicles around the main vacuole observed with the Na(+)-dependent fluorescence of Sodium Green. Detailed observation of Arabidopsis suspension-cultured cells under high salt treatment showed a similar pattern of response to that observed in root tip cells. Immunostaining of suspension-cultured cells with antibodies against AtNHX1 clearly showed the occurrence of dotted fluorescence in the cytoplasm only under salt treatment. We also confirmed the existence of AtNHX1 in the vacuolar membrane isolated from suspension-cultured cells with immunofluorescence. Knockout of the vacuolar Q(a)-SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) protein VAM3/SYP22 caused an increase in salt tolerance. In mutant plants, the distribution of Na(+) between roots and shoots differed from that of wild-type plants, with Na(+) accumulating more in roots and less in the shoots of the mutant plants. The role of vesicle traffic under salt stress is discussed.
Collapse
Affiliation(s)
- Kohei Hamaji
- Graduate School of Science, Kobe University, Nada-ku, Kobe, 657-8501, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Nagaki K, Kashihara K, Murata M. Characterization of the two centromeric proteins CENP-C and MIS12 in Nicotiana species. Chromosome Res 2009; 17:719-26. [PMID: 19697146 DOI: 10.1007/s10577-009-9064-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Revised: 06/09/2009] [Accepted: 06/09/2009] [Indexed: 10/20/2022]
Abstract
Centromeres play an important role in chromosome transmission in eukaryotes and comprise specific DNA and proteins that form complexes called kinetochores. In tobacco, although a centromere-specific histone H3 (NtCENH3) and centromeric DNA sequence (Nt2-7) have been identified, no other kinetochore components have been determined. In this study, we isolated and characterized cDNAs encoding two centromeric proteins CENP-C and MIS12 from Nicotiana tabaccum. Two CENP-C homologues, NtCENP-C-1 and -2, isolated from N. tabaccum were similar to CENP-C from N. sylvestris and N. tomentosiformis, respectively. Similarly, two Mis12 homologues, NtMIS12-1 and -2, in N. tabaccum were shown to originate from N. sylvestris and N. tomentosiformis, respectively. Both respective homologues for CENP-C and Mis12 were expressed at the same level. This indicates that in a tetraploid species, N. tabaccum, two ancestral genes encoding the centromeric proteins participate equally in the functioning of centromeres.
Collapse
Affiliation(s)
- Kiyotaka Nagaki
- Research Institute for Bioresources, Okayama University, Kurashiki, Japan.
| | | | | |
Collapse
|
30
|
Papdi C, Joseph MP, Salamó IP, Vidal S, Szabados L. Genetic technologies for the identification of plant genes controlling environmental stress responses. FUNCTIONAL PLANT BIOLOGY : FPB 2009; 36:696-720. [PMID: 32688681 DOI: 10.1071/fp09047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2009] [Accepted: 06/11/2009] [Indexed: 06/11/2023]
Abstract
Abiotic conditions such as light, temperature, water availability and soil parameters determine plant growth and development. The adaptation of plants to extreme environments or to sudden changes in their growth conditions is controlled by a well balanced, genetically determined signalling system, which is still far from being understood. The identification and characterisation of plant genes which control responses to environmental stresses is an essential step to elucidate the complex regulatory network, which determines stress tolerance. Here, we review the genetic approaches, which have been used with success to identify plant genes which control responses to different abiotic stress factors. We describe strategies and concepts for forward and reverse genetic screens, conventional and insertion mutagenesis, TILLING, gene tagging, promoter trapping, activation mutagenesis and cDNA library transfer. The utility of the various genetic approaches in plant stress research we review is illustrated by several published examples.
Collapse
Affiliation(s)
- Csaba Papdi
- Institute of Plant Biology, Biological Research Centre, 6726-Szeged, Temesvári krt. 62, Hungary
| | - Mary Prathiba Joseph
- Institute of Plant Biology, Biological Research Centre, 6726-Szeged, Temesvári krt. 62, Hungary
| | - Imma Pérez Salamó
- Institute of Plant Biology, Biological Research Centre, 6726-Szeged, Temesvári krt. 62, Hungary
| | - Sabina Vidal
- Facultad de Ciencias, Universidad de la República, Iguá 4225, CP 11400, Montevideo, Uruguay
| | - László Szabados
- Institute of Plant Biology, Biological Research Centre, 6726-Szeged, Temesvári krt. 62, Hungary
| |
Collapse
|
31
|
Fujimoto M, Arimura SI, Mano S, Kondo M, Saito C, Ueda T, Nakazono M, Nakano A, Nishimura M, Tsutsumi N. Arabidopsis dynamin-related proteins DRP3A and DRP3B are functionally redundant in mitochondrial fission, but have distinct roles in peroxisomal fission. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 58:388-400. [PMID: 19144001 DOI: 10.1111/j.1365-313x.2009.03786.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Two similar Arabidopsis dynamin-related proteins, DRP3A and DRP3B, are thought to be key factors in both mitochondrial and peroxisomal fission. However, the functional and genetic relationships between DRP3A and DRP3B have not been fully investigated. In a yeast two-hybrid assay, DRP3A and DRP3B interacted with themselves and with each other. DRP3A and DRP3B localized to mitochondria and peroxisomes, and co-localized with each other in leaf epidermal cells. In two T-DNA insertion mutants, drp3a and drp3b, the mitochondria are a little longer and fewer in number than those in the wild-type cells. In the double mutant, drp3a/drp3b, mitochondria are connected to each other, resulting in massive elongation. Overexpression of either DRP3A or DRP3B in drp3a/drp3b restored the particle shape of mitochondria, suggesting that DRP3A and DRP3B are functionally redundant in mitochondrial fission. In the case of peroxisomal fission, DRP3A and DRP3B appear to have different functions: peroxisomes in drp3a were larger and fewer in number than those in the wild type, whereas peroxisomes in drp3b were as large and as numerous as those in the wild type, and peroxisomes in drp3a/drp3b were as large and as numerous as those in drp3a. Although overexpression of DRP3A in drp3a/drp3b restored the shape and number of peroxisomes, overexpression of DRP3B did not restore the phenotypes, and often caused elongation instead. These results suggest that DRP3B and DRP3A have redundant molecular functions in mitochondrial fission, whereas DRP3B has a minor role in peroxisomal fission that is distinct from that of DRP3A.
Collapse
Affiliation(s)
- Masaru Fujimoto
- Laboratory of Plant Molecular Genetics, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Prabhakar V, Löttgert T, Gigolashvili T, Bell K, Flügge UI, Häusler RE. Molecular and functional characterization of the plastid-localized Phosphoenolpyruvate enolase (ENO1) from Arabidopsis thaliana. FEBS Lett 2009; 583:983-91. [PMID: 19223001 DOI: 10.1016/j.febslet.2009.02.017] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2009] [Revised: 02/09/2009] [Accepted: 02/09/2009] [Indexed: 10/21/2022]
Abstract
The Arabidopsis thaliana gene At1g74030 codes for a putative plastid phosphoenolpyruvate (PEP) enolase (ENO1). The recombinant ENO1 protein exhibited enolase activity and its kinetic properties were determined. ENO1 is localized to plastids and expressed in most heterotrophic tissues including trichomes and non-root-hair cells, but not in the mesophyll of leaves. Two T-DNA insertion eno1 mutants exhibited distorted trichomes and reduced numbers of root hairs as the only visible phenotype. The essential role of ENO1 in PEP provision for anabolic processes within plastids, such as the shikimate pathway, is discussed with respect to plastid transporters, such as the PEP/phosphate translocator.
Collapse
Affiliation(s)
- Veena Prabhakar
- Universität zu Köln, Botanisches Institut, Köln (Cologne), Germany
| | | | | | | | | | | |
Collapse
|
33
|
Ho AYY, Day DA, Brown MH, Marc J. Arabidopsis phospholipase Dδ as an initiator of cytoskeleton-mediated signalling to fundamental cellular processes. FUNCTIONAL PLANT BIOLOGY : FPB 2009; 36:190-198. [PMID: 32688638 DOI: 10.1071/fp08222] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2008] [Accepted: 12/10/2008] [Indexed: 06/11/2023]
Abstract
Phospholipase D (PLD), in combination with the cytoskeleton, plays a key role in plant signal transduction. One isotype of the multigene Arabidopsis PLD family, AtPLDδ, has been implicated in binding microtubules, although the molecular details of the mechanism and identities of potential interaction partners are unclear. We constructed a GFP-AtPLDδ reporter gene, stably transformed it into an Arabidopsis suspension cell line, and used epitope-tagged affinity pull-down assays to isolate a complex of co-purifying proteins. Mass spectrometry analysis of the complex revealed a set of proteins including β-tubulin, actin 7, HSP70, clathrin heavy chain, ATP synthase subunits, and a band 7-4/flotillin homologue. Sequence alignments with defined tubulin- and actin-binding regions from human HsPLD2 revealed highly homologous regions in all 12 AtPLD isotypes, suggesting direct interactions of AtPLDδ with tubulin and actin, while interactions with the remaining partners are likely to be mediated by the cytoskeleton. We propose that AtPLDδ acts through a complex of cytoskeletal and partner proteins to modulate fundamental cellular processes such as cytoskeletal rearrangements, vesicular trafficking, assembly of Golgi apparatus, mitosis and cytokinesis.
Collapse
Affiliation(s)
- Angela Y Y Ho
- School of Biological Sciences, Macleay Building A12, University of Sydney, Sydney, NSW 2006, Australia
| | - David A Day
- School of Biological Sciences, Macleay Building A12, University of Sydney, Sydney, NSW 2006, Australia
| | - Melissa H Brown
- School of Biological Sciences, Macleay Building A12, University of Sydney, Sydney, NSW 2006, Australia
| | - Jan Marc
- School of Biological Sciences, Macleay Building A12, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
34
|
Pogorelko GV, Fursova OV. A highly efficient miPCR method for isolating FSTs from transgenic Arabidopsis thaliana plants. J Genet 2008; 87:133-40. [PMID: 18776641 DOI: 10.1007/s12041-008-0020-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The exact localization of an insertion in the genome of transgenic plants obtained by Agrobacterium-mediated transformation is an integral part of most experiments aimed at studying these types of mutants. There are several methods for isolating unknown nucleotide sequences of genomic DNA which flank the borders of T-DNA integrated in the genome of plants. However, all the methods based on PCR have limitations which in some cases do not permit the desired objective to be achieved. We have developed a new technique for isolating flanking sequence tags (FSTs) via modified inverse PCR. This method is highly efficient and simple, but also retains the advantages of previously well-documented approaches.
Collapse
Affiliation(s)
- Gennady V Pogorelko
- Nikolai Ivanovich Vavilov Institute of General Genetics, Russian Academy of Sciences, Gubkin Street 3, 119991 Moscow, Russia.
| | | |
Collapse
|
35
|
Promoter DNA hypermethylation and gene repression in undifferentiated Arabidopsis cells. PLoS One 2008; 3:e3306. [PMID: 18827894 PMCID: PMC2556100 DOI: 10.1371/journal.pone.0003306] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2008] [Accepted: 09/01/2008] [Indexed: 11/19/2022] Open
Abstract
Maintaining and acquiring the pluripotent cell state in plants is critical to tissue regeneration and vegetative multiplication. Histone-based epigenetic mechanisms are important for regulating this undifferentiated state. Here we report the use of genetic and pharmacological experimental approaches to show that Arabidopsis cell suspensions and calluses specifically repress some genes as a result of promoter DNA hypermethylation. We found that promoters of the MAPK12, GSTU10 and BXL1 genes become hypermethylated in callus cells and that hypermethylation also affects the TTG1, GSTF5, SUVH8, fimbrin and CCD7 genes in cell suspensions. Promoter hypermethylation in undifferentiated cells was associated with histone hypoacetylation and primarily occurred at CpG sites. Accordingly, we found that the process specifically depends on MET1 and DRM2 methyltransferases, as demonstrated with DNA methyltransferase mutants. Our results suggest that promoter DNA methylation may be another important epigenetic mechanism for the establishment and/or maintenance of the undifferentiated state in plant cells.
Collapse
|
36
|
Yamamoto M, Maruyama D, Endo T, Nishikawa SI. Arabidopsis thaliana Has a Set of J Proteins in the Endoplasmic Reticulum that are Conserved from Yeast to Animals and Plants. ACTA ACUST UNITED AC 2008; 49:1547-62. [DOI: 10.1093/pcp/pcn119] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
37
|
Ueda M, Nishikawa T, Fujimoto M, Takanashi H, Arimura SI, Tsutsumi N, Kadowaki KI. Substitution of the gene for chloroplast RPS16 was assisted by generation of a dual targeting signal. Mol Biol Evol 2008; 25:1566-75. [PMID: 18453549 DOI: 10.1093/molbev/msn102] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Organelle (mitochondria and chloroplasts in plants) genomes lost a large number of genes after endosymbiosis occurred. Even after this major gene loss, organelle genomes still lose their own genes, even those that are essential, via gene transfer to the nucleus and gene substitution of either different organelle origin or de novo genes. Gene transfer and substitution events are important processes in the evolution of the eukaryotic cell. Gene loss is an ongoing process in the mitochondria and chloroplasts of higher plants. The gene for ribosomal protein S16 (rps16) is encoded in the chloroplast genome of most higher plants but not in Medicago truncatula and Populus alba. Here, we show that these 2 species have compensated for loss of the rps16 from the chloroplast genome by having a mitochondrial rps16 that can target the chloroplasts as well as mitochondria. Furthermore, in Arabidopsis thaliana, Lycopersicon esculentum, and Oryza sativa, whose chloroplast genomes encode the rps16, we show that the product of the mitochondrial rps16 has dual targeting ability. These results suggest that the dual targeting of RPS16 to the mitochondria and chloroplasts emerged before the divergence of monocots and dicots (140-150 MYA). The gene substitution of the chloroplast rps16 by the nuclear-encoded rps16 in higher plants is the first report about ongoing gene substitution by dual targeting and provides evidence for an intermediate stage in the formation of this heterogeneous organelle.
Collapse
Affiliation(s)
- Minoru Ueda
- Genetic Diversity Department, National Institute of Agrobiological Sciences, Kannondai, Tsukuba, Ibaraki, Japan
| | | | | | | | | | | | | |
Collapse
|
38
|
Kitsios G, Alexiou KG, Bush M, Shaw P, Doonan JH. A cyclin-dependent protein kinase, CDKC2, colocalizes with and modulates the distribution of spliceosomal components in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 54:220-35. [PMID: 18208522 DOI: 10.1111/j.1365-313x.2008.03414.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Cyclin-dependent kinases (CDKs) play key regulatory roles in diverse cellular functions, including cell-cycle progression, transcription and translation. In plants, CDKs have been classified into several groups, named A through to G, but the functions of most are poorly characterized. CDKCs are known to phosphorylate the C-terminal domain (CTD) of RNA polymerase II (RNAP II), and therefore the CDKC-cyclinT (CycT) complex may have a role similar to the animal CDK9-CycT complex of the positive transcription elongation factor b (P-TEFb). However, we found that the predicted structure of the Arabidopsis CDKC2 protein is more similar to the mammalian cdc2-related kinase, CRK7, than to CDK9. CRK7 is proposed to link transcription with splicing, and CDKC2 contains all the structural features of CRK7 that make the latter distinct from CDK9. Consistent with this, we show that GFP-CDKC2 fusion proteins co-localize with spliceosomal components, that the expression of CDKC2 modifies the location of these components, and that co-localization was dependent on the transcriptional status of the cells and on CDKC2-kinase activity. We propose, therefore, that the Arabidopsis CDKC2 combines the functions of both CRK7 and CDK9, and could also couple splicing with transcription.
Collapse
|
39
|
Tonsor SJ, Scott C, Boumaza I, Liss TR, Brodsky JL, Vierling E. Heat shock protein 101 effects in A. thaliana: genetic variation, fitness and pleiotropy in controlled temperature conditions. Mol Ecol 2008; 17:1614-26. [PMID: 18321256 PMCID: PMC2727869 DOI: 10.1111/j.1365-294x.2008.03690.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The Hsp100/ClpB heat shock protein family is ancient and required for high temperature survival, but natural variation in expression and its phenotypic effects is unexplored in plants. In controlled environment experiments, we examined the effects of variation in the Arabidopsis cytosolic AtHsp101 (hereafter Hsp101). Ten wild-collected ecotypes differed in Hsp101 expression responses across a 22 to 40 degrees C gradient. Genotypes from low latitudes expressed the least Hsp101. We tested fitness and pleiotropic consequences of varying Hsp101 expression in 'control' vs. mild thermal stress treatments (15/25 degrees C D/N vs. 15/25 degrees D/N plus 3 h at 35 degrees C 3 days/week). Comparing wild type and null mutants, wt Columbia (Col) produced approximately 33% more fruits compared to its Hsp101 homozygous null mutant. There was no difference between Landsberg erecta null mutant NIL (Ler) and wt Ler; wt Ler showed very low Hsp101 expression. In an assay of six genotypes, fecundity was a saturating function of Hsp101 content, in both experimental treatments. Thus, in addition to its essential role in acquired thermal tolerance, Hsp101 provides a substantial fitness benefit under normal growth conditions. Knocking out Hsp101 decreased fruit production, days to germination and days to bolting, total dry mass, and number of inflorescences; it increased transpiration rate and allocation to root mass. Root : total mass ratio decayed exponentially with Hsp101 content. This study shows that Hsp101 expression is evolvable in natural populations. Our results further suggest that Hsp101 is primarily an emergency high-temperature tolerance mechanism, since expression levels are lower in low-latitude populations from warmer climates. Hsp101 expression appears to carry an important trade-off in reduced root growth. This trade-off may select for suppressed expression under chronically high temperatures.
Collapse
Affiliation(s)
- S J Tonsor
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| | | | | | | | | | | |
Collapse
|
40
|
Kim SI, Gelvin SB. Genome-wide analysis of Agrobacterium T-DNA integration sites in the Arabidopsis genome generated under non-selective conditions. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 51:779-91. [PMID: 17605756 DOI: 10.1111/j.1365-313x.2007.03183.x] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Previous work from numerous laboratories has suggested that integration of Agrobacterium tumefaciens T-DNA into the plant genome occurs preferentially in promoter or transcriptionally active regions. However, all of these studies were conducted on plants recovered from selective conditions requiring the expression of transgenes. The conclusions of these studies may therefore have been biased because of the selection of transformants. In this study, we investigated T-DNA integration sites in the Arabidopsis genome by analyzing T-DNA/plant DNA junctions generated under non-selective conditions. We found a relatively high frequency of T-DNA insertions in heterochromatic regions, including centromeres, telomeres and rDNA repeats. These T-DNA insertion regions are disfavored under selective conditions. The frequency with which T-DNA insertions mapped to exon, intron, 5' upstream and 3' downstream regions closely resembled their respective proportions in the Arabidopsis genome. Transcriptional profiling indicated that expression levels of T-DNA pre-integration target sites recovered using selective conditions were significantly higher than those of random Arabidopsis sequences, whereas expression levels of genomic sequences targeted by T-DNA under non-selective conditions were similar to those of random Arabidopsis sequences. T-DNA target sites identified using non-selective conditions did not correlate with DNA methylation status, suggesting that T-DNA integration occurs without regard to DNA methylation. Our results indicate that T-DNA integration may occur more randomly than previously indicated, and that selection pressure may shift the recovery of T-DNA insertions into gene-rich or transcriptionally active regions of chromatin.
Collapse
Affiliation(s)
- Sang-Ic Kim
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907-1392, USA
| | | |
Collapse
|
41
|
Koo J, Kim Y, Kim J, Yeom M, Lee IC, Nam HG. A GUS/Luciferase Fusion Reporter for Plant Gene Trapping and for Assay of Promoter Activity with Luciferin-Dependent Control of the Reporter Protein Stability. ACTA ACUST UNITED AC 2007; 48:1121-31. [PMID: 17597079 DOI: 10.1093/pcp/pcm081] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
A gene-trapping vector carrying a GUS/Luciferase dual reporter gene was developed to establish an efficient and convenient screening system for T-DNA-based gene trapping in plants. A key feature of this gene trap scheme is to place two different types of reporters, luciferase (Luc) and beta-glucuronidase (GUS), as a fusion protein within a trapped gene to probe the activity of the gene. Luc is then utilized as a non-invasive, vital and highly sensitive screening reporter to identify trapped lines, including direct screening of the trapped lines from the primary T-DNA mutant pools. GUS is utilized as a histochemical assay reporter to analyze detailed cellular expression patterns. Transgenic expression studies in Arabidopsis showed that this fusion reporter protein retains functional enzyme activity for both GUS and Luc. Using this system in Arabidopsis, we were able to identify 3,737 trapped lines from 26,900 individual T-DNA insertion lines. Sequence determination of the T-DNA insertion loci in the genome of 78 trapped lines identified GUS/Luc fusions with 27 annotated Arabidopsis genes which included a subset of transcription factors, protein kinases, regulatory proteins and metabolic enzymes. Of these, particular expression patterns of four tagged genes were further confirmed by analyzing putative promoter regions of the corresponding wild-type genes. Furthermore, the protein stability of the GUS/Luc fusion reporter was controlled by application of luciferase substrate (luciferin), overcoming the excessive stability problem of GUS that causes misrepresentation of the transcriptional activity of a promoter. These results demonstrate the utility of the GUS/Luc dual reporter system as a gene trap reporter for studying plant genome function and also as a convenient dual reporter system for study of gene expression.
Collapse
MESH Headings
- Arabidopsis/genetics
- Base Sequence
- Blotting, Northern
- Blotting, Western
- DNA, Bacterial/genetics
- Firefly Luciferin/metabolism
- Gene Expression Regulation, Plant
- Genes, Plant/genetics
- Genes, Reporter/genetics
- Genome, Plant/genetics
- Glucuronidase/genetics
- Glucuronidase/metabolism
- Luciferases/genetics
- Luciferases/metabolism
- Models, Genetic
- Molecular Sequence Data
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/metabolism
- Promoter Regions, Genetic/genetics
Collapse
Affiliation(s)
- Jachoon Koo
- Division of Molecular Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Korea
| | | | | | | | | | | |
Collapse
|
42
|
Gigolashvili T, Yatusevich R, Berger B, Müller C, Flügge UI. The R2R3-MYB transcription factor HAG1/MYB28 is a regulator of methionine-derived glucosinolate biosynthesis in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 51:247-61. [PMID: 17521412 DOI: 10.1111/j.1365-313x.2007.03133.x] [Citation(s) in RCA: 265] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Methionine-derived glucosinolates belong to a class of plant secondary metabolites that serve as chemoprotective compounds in plant biotic defense reactions and also exhibit strong anticancerogenic properties beneficial to human health. In a screen for the trans-activation potential of various transcription factors toward glucosinolate biosynthetic genes, we could identify the HAG1 (HIGH ALIPHATIC GLUCOSINOLATE 1, also referred to as MYB28) gene as a positive regulator of aliphatic methionine-derived glucosinolates. The content of aliphatic glucosinolates as well as transcript levels of aliphatic glucosinolate biosynthetic genes were elevated in gain-of-function mutants and decreased in HAG1 RNAi knock-down mutants. Pro(HAG1):GUS expression analysis revealed strong HAG1 promoter activity in generative organs and mature leaves of A. thaliana plants, the main sites of accumulation of aliphatic glucosinolates. Mechanical stimuli such as touch or wounding transiently induced HAG1/MYB28 expression in inflorescences of flowering plants, and HAG1/MYB28 over-expression reduced insect performance as revealed by weight gain assays with the generalist lepidopteran herbivore Spodoptera exigua. Expression of HAG1/MYB28 was significantly induced by glucose, indicating a novel transcriptional regulatory mechanism for the integration of carbohydrate availability upon biotic challenge. We hypothesize that HAG1/MYB28 is a novel regulator of aliphatic glucosinolate biosynthesis that controls the response to biotic challenges.
Collapse
Affiliation(s)
- Tamara Gigolashvili
- Botanisches Institut der Universität zu Köln, Gyrhofstrasse 15, Köln, Germany
| | | | | | | | | |
Collapse
|
43
|
Korolev AV, Buschmann H, Doonan JH, Lloyd CW. AtMAP70-5, a divergent member of the MAP70 family of microtubule-associated proteins, is required for anisotropic cell growth in Arabidopsis. J Cell Sci 2007; 120:2241-7. [PMID: 17567681 DOI: 10.1242/jcs.007393] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AtMAP70-5 is the most divergent of a recently described multigene family of plant-specific microtubule-associated proteins (MAPs). It is significantly smaller than other members and has several isoform-specific sequence features. To confirm that this protein still functions as a MAP we show that it directly binds microtubules in vitro and decorates microtubules in vivo. When added to tubulin polymerization assays, AtMAP70-5 increases the length distribution profile of microtubules indicating that it stabilizes microtubule dynamics. The overexpressed fusion protein perturbs cell polarity in cell suspensions by inducing extra poles for growth. Similarly, in Arabidopsis plants the overexpression of AtMAP70-5 causes epidermal cells to swell; it also stunts growth and induces right-handed organ twisting. RNAi-mediated downregulation of AtMAP70-5 results in reduced inflorescence stem length and diameter and individual cells are inhibited in their capacity for expansion. These observations suggest that the control over AtMAP70-5 expression levels is important in order to maintain axial polarity and to ensure regular extension of plant organs.
Collapse
Affiliation(s)
- Andrey V Korolev
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, NR4 7UH, UK.
| | | | | | | |
Collapse
|
44
|
Lee EJ, Matsumura Y, Soga K, Hoson T, Koizumi N. Glycosyl hydrolases of cell wall are induced by sugar starvation in Arabidopsis. PLANT & CELL PHYSIOLOGY 2007; 48:405-13. [PMID: 17234672 DOI: 10.1093/pcp/pcm009] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Three Arabidopsis genes encoding a putative beta-galactosidase (At5g56870), beta-xylosidase (At5g49360) and beta-glucosidase (At3g60140) are induced by sugar starvation. The deduced proteins belong to the glycosyl hydrolase families 35, 3 and 1, respectively. They are predicted to be secretory proteins that play roles in modification of cell wall polysaccharides based on amino acid similarity. The beta-galactosidase encoded by At5g56870 was identified as a secretory protein in culture medium of suspension cells by mass spectrometry analysis. This protein was specifically detected under sugar-starved conditions with a specific antibody. Induction of these genes was repressed in suspension cells grown with galactose, xylose and glucose, as well as with sucrose. In planta, expression of the genes and protein accumulation were detected when photosynthesis was inhibited. Glycosyl hydrolase activity against galactan also increased during sugar starvation. The amount of monosaccharide in pectin and hemicellulose in detached leaves decreased in response to sugar starvation. These findings suggest that the cell wall may function as a storage reserve of carbon in addition to providing physical support for the plant body.
Collapse
Affiliation(s)
- Eun-Jeong Lee
- Nara Institute of Science and Technology, Graduate School of Biological Science, Nara, 630-0192, Japan
| | | | | | | | | |
Collapse
|
45
|
Launholt D, Grønlund JT, Nielsen HK, Grasser KD. Overlapping expression patterns among the genes encodingArabidopsischromosomal high mobility group (HMG) proteins. FEBS Lett 2007; 581:1114-8. [PMID: 17316617 DOI: 10.1016/j.febslet.2007.02.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2007] [Revised: 02/07/2007] [Accepted: 02/07/2007] [Indexed: 11/30/2022]
Abstract
High mobility group (HMG) proteins are usually considered ubiquitous components of the eukaryotic chromatin. Using HMG gene promoter-GUS reporter gene fusions we have examined the expression of the reporter gene in transgenic Arabidopsis plants. These experiments have revealed that the different HMGA and HMGB promoters display overlapping patterns of activity, but they also show tissue- and developmental stage-specific differences. Moreover, leader introns that are present in some of the HMGB genes can modulate reporter gene expression. The differential HMG gene expression supports the view that the various HMG proteins serve partially different architectural functions in plant chromatin.
Collapse
Affiliation(s)
- Dorte Launholt
- Department of Life Sciences, Aalborg University, Sohngaardsholmsvej 49, DK-9000 Aalborg, Denmark
| | | | | | | |
Collapse
|
46
|
Santi L, Huang Z, Mason H. Virus-like particles production in green plants. Methods 2007; 40:66-76. [PMID: 16997715 PMCID: PMC2677071 DOI: 10.1016/j.ymeth.2006.05.020] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2005] [Accepted: 05/03/2006] [Indexed: 12/13/2022] Open
Abstract
Viruses-like particles (VLPs), assembled from capsid structural subunits of several different viruses, have found a number of biomedical applications such as vaccines and novel delivery systems for nucleic acids and small molecules. Production of recombinant proteins in different plant systems has been intensely investigated and improved upon in the last two decades. Plant-derived antibodies, vaccines, and microbicides have received great attention and shown immense promise. In the case of mucosal vaccines, orally delivered plant-produced VLPs require minimal processing of the plant tissue, thus offering an inexpensive and safe alternative to more conventional live attenuated and killed virus vaccines. For other applications which require higher level of purification, recent progress in expression levels using plant viral vectors have shown that plants can compete with traditional fermentation systems. In this review, the different methods used in the production of VLPs in green plants are described. Specific examples of expression, assembly, and immunogenicity of several plant-derived VLPs are presented.
Collapse
Affiliation(s)
- Luca Santi
- Biodesign Institute at Arizona State University, Tempe, 852878-5401, USA
| | | | | |
Collapse
|
47
|
Buschmann H, Chan J, Sanchez-Pulido L, Andrade-Navarro MA, Doonan JH, Lloyd CW. Microtubule-Associated AIR9 Recognizes the Cortical Division Site at Preprophase and Cell-Plate Insertion. Curr Biol 2006; 16:1938-43. [PMID: 17027491 DOI: 10.1016/j.cub.2006.08.028] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2006] [Revised: 08/04/2006] [Accepted: 08/04/2006] [Indexed: 11/30/2022]
Abstract
In plants, the preprophase band (PPB) of microtubules marks the cortical site where the cross-wall will fuse with the parental wall during cytokinesis . This band disappears before metaphase, and it is not known how the division plane is "memorized". One idea is that the PPB leaves behind molecules involved in the maturation of the cell plate . Here, we report on the proteomic isolation of a novel 187 kDa microtubule-associated protein, AIR9, conserved in land plants and trypanosomatid parasites. AIR9 decorates cortical microtubules and the PPB but is downregulated during mitosis. AIR9 reappears at the former PPB site precisely when the cortex is contacted by the outwardly growing cytokinetic apparatus. AIR9 then moves inward on the new cross-wall and thus forms a torus. Truncation studies show that formation of the torus requires a repeated domain separate from AIR9's microtubule binding site. Cell plates induced to insert outside the predicted division site do not elicit an AIR9 torus, suggesting that AIR9 recognizes a component of the former PPB. Such misplaced walls remain immature, based on their prolonged staining for the cell-plate polymer callose. We propose that AIR9 may be part of the mechanism ensuring the maturation of those cell plates successfully contacting the "programmed" cortical division site.
Collapse
Affiliation(s)
- Henrik Buschmann
- Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom.
| | | | | | | | | | | |
Collapse
|
48
|
Verslues PE, Guo Y, Dong CH, Ma W, Zhu JK. Mutation of SAD2, an importin beta-domain protein in Arabidopsis, alters abscisic acid sensitivity. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 47:776-87. [PMID: 16889648 DOI: 10.1111/j.1365-313x.2006.02833.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
A number of protein and RNA-processing mutants have been shown to affect ABA sensitivity. A new mutant, sad2-1, was isolated from a T-DNA mutagenized population of RD29A:LUC plants and shown to have increased luminescence after ABA, salt, cold or polyethylene glycol treatments. Expression of several ABA- and stress-responsive genes was higher in the mutant than in the wild type. sad2-1 also exhibited ABA hypersensitivity in seed germination and seedling growth. SAD2 was found to encode an importin beta-domain family protein likely to be involved in nuclear transport. SAD2 was expressed at a low level in all tissues examined except flowers, but SAD2 expression was not inducible by ABA or stress. Subcellular localization of GFP-tagged SAD2 showed a predominantly nuclear localization, consistent with a role for SAD2 in nuclear transport. Knockout of the closest importin beta homolog of SAD2 in Arabidopsis did not duplicate the sad2 phenotype, indicating that SAD2 plays a specific role in ABA signaling. Analysis of RD29A:LUC luminescence and ABA and stress sensitivity in double mutants of sad2-1 and sad1 or abh1-7, a newly isolated allele of ABH1 also in the RD29A:LUC background, suggested that SAD2 acts upstream of or has additive effects with these two genes. The results suggest a role for nuclear transport in ABA signal transduction, and the possible roles of SAD2 in relation to that of SAD1 and ABH1 are discussed.
Collapse
Affiliation(s)
- Paul E Verslues
- Institute for Integrative Genome Biology and Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| | | | | | | | | |
Collapse
|
49
|
Kocábek T, Repková J, Dudová M, Hoyerová K, Vrba L. Isolation and characterization of a novel semi-lethal Arabidopsis thaliana mutant of gene for pentatricopeptide (PPR) repeat-containing protein. Genetica 2006; 128:395-407. [PMID: 17028967 DOI: 10.1007/s10709-006-7518-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2006] [Accepted: 02/21/2006] [Indexed: 11/24/2022]
Abstract
A novel Arabidopsis thaliana mutant of one member of the pentatricopeptide repeat (PPR) gene family has been identified among T-DNA insertion lines. Tagging of the At1g53330 gene caused the appearance of a semi-lethal mutation with a complex phenotypic expression from embryo lethality associated with the abnormal pattern of cell division during globular to heart transition to fertile plants with just subtle phenotypic changes. The PPR protein At1g53330.1 was predicted to be targeted to mitochondria by TargetP and MitoProt programs. Complementation analysis confirmed that the phenotype is a result of a single T-DNA integration. A thorough functional analysis of this mutant aimed at finding a particular organelle target of At1g53330.1 protein will follow.
Collapse
Affiliation(s)
- Tomás Kocábek
- Institute of Plant Molecular Biology, Biological Centre of the Academy of Sciences of the Czech Republic, Branisovská 31, CZ-370 05, Ceské Budejovice, Czech Republic.
| | | | | | | | | |
Collapse
|
50
|
Oosumi T, Gruszewski HA, Blischak LA, Baxter AJ, Wadl PA, Shuman JL, Veilleux RE, Shulaev V. High-efficiency transformation of the diploid strawberry (Fragaria vesca) for functional genomics. PLANTA 2006; 223:1219-30. [PMID: 16320068 DOI: 10.1007/s00425-005-0170-3] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2005] [Accepted: 10/31/2005] [Indexed: 05/05/2023]
Abstract
Fragaria vesca L., a diploid (2n = 2x = 14) relative of the commercial octoploid strawberry, is an attractive model for functional genomics research in Rosaceae. Its small genome size, short reproductive cycle, and facile vegetative and seed propagation make F. vesca a promising candidate for forward and reverse genetics experiments. However, the lack of a high-efficiency transformation protocol required for systematic production of thousands of T-DNA insertional mutant lines and high-throughput gene validation is a major bottleneck. We describe a new transformation procedure that uses leaf explants from newly unfolded trifoliate leaves obtained from stock plants 6-7 weeks after seed germination, co-cultivation with Agrobacterium strain GV3101, and stringent selection on MS medium containing 4 mg l(-1) hygromycin. Using this protocol we achieved 100% transformation efficiency for 6 of 14 F. vesca accessions tested. Accession PI 551572 was determined to be the best candidate for a model in F. vesca functional genomics research, as it showed the greatest propensity for callus formation, transformation, shoot regeneration, ex vitro establishment, and plant growth, requiring only 14-15 weeks to complete its life cycle in different seasons in the greenhouse.
Collapse
Affiliation(s)
- Teruko Oosumi
- Virginia Bioinformatics Institute, Virginia Polytechnic Institute and State University, Washington St, Blacksburg, VA 24061, USA
| | | | | | | | | | | | | | | |
Collapse
|