1
|
Lin B, Lin J, Song Z, Zhang M, Chen Y, Ma Y, Xu W, Sun S, Luan Z, Gao L, Zhang W. Hydrogen-rich water enhances vegetable growth and fruit quality by regulating ascorbate biosynthesis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 223:109790. [PMID: 40132510 DOI: 10.1016/j.plaphy.2025.109790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/02/2025] [Accepted: 03/12/2025] [Indexed: 03/27/2025]
Abstract
Under aerobic conditions, the growth and fruit quality of vegetable crops are significantly influenced by reactive oxygen species (ROS) metabolism. Hydrogen-rich water (HRW) has emerged as a promising tool for enhancing resistance to abiotic stresses and delaying postharvest ripening and senescence. However, the physiological response and adaptation mechanisms of vegetable crops to HRW remain rarely understood. This study explores the effects of low concentrations of HRW on the growth and physiological processes of lettuce, tomato, and cucumber. The results indicate that HRW enhances seedling vigor, boosts photosynthetic efficiency, and promotes biomass accumulation. Additionally, HRW-irrigated cucumber fruit showed a 15-20 % increase in vitamin C (ascorbic acid) content, a 10-15 % rise in soluble sucrose levels, and an increase in fruit weight and diameter by 25-35 % and 8-12 %, respectively. Transcriptomic analyses revealed variations in genes associated with carbon fixation in photosynthesis, glyoxylate and dicarboxylate metabolism, hormonal regulation, and phenylalanine metabolism. These findings illuminate the mechanisms behind improved antioxidant production and L-ascorbate biosynthesis. Notably, this marks the documented case of HRW irrigation enhancing natural antioxidants in fruits. Given the unique properties of hydrogen and the potential of HRW technology in horticultural industry, the findings of this study provide valuable insights into hydrogen's role in biological processes and its impact on vegetable crops production and fruit quality.
Collapse
Affiliation(s)
- Bei Lin
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, 100193, China
| | - Jinyi Lin
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, 100193, China
| | - Zhiyu Song
- Beijing Qingrun Technology Co., Ltd., Beijing Tongzhou Fuli Center, Beijing, 101100, China
| | - Miao Zhang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, 100193, China
| | - Ying Chen
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, 100193, China
| | - Yujia Ma
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, 100193, China
| | - Weimin Xu
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, 100193, China
| | - Shilong Sun
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, 100193, China
| | - Zhen Luan
- Beijing Qingrun Technology Co., Ltd., Beijing Tongzhou Fuli Center, Beijing, 101100, China
| | - Lihong Gao
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, 100193, China
| | - Wenna Zhang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
2
|
Ni H, Wu W, Yan Y, Fang Y, Wang C, Chen J, Chen S, Wang K, Xu C, Tang X, Wu J. OsABA3 is Crucial for Plant Survival and Resistance to Multiple Stresses in Rice. RICE (NEW YORK, N.Y.) 2024; 17:46. [PMID: 39083143 PMCID: PMC11291934 DOI: 10.1186/s12284-024-00724-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/22/2024] [Indexed: 08/03/2024]
Abstract
Preharvest sprouting (PHS) is a serious problem in rice production as it leads to reductions in grain yield and quality. However, the underlying mechanism of PHS in rice remains unclear. In this study, we identified and characterized a preharvest sprouting and seedling lethal (phssl) mutant. The heterozygous phssl/+ mutant exhibited normal plant development, but severe PHS in paddy fields. However, the homozygous phssl mutant was seedling lethal. Gene cloning and genetic analysis revealed that a point mutation in OsABA3 was responsible for the mutant phenotypes. OsABA3 encodes a molybdenum cofactor (Moco) sulfurase. The activities of the sulfureted Moco-dependent enzymes such as aldehyde oxidase (AO) and xanthine dehydrogenase (XDH) were barely detectable in the phssl mutant. As the final step of abscisic acid (ABA) de novo biosynthesis is catalyzed by AO, it indicated that ABA biosynthesis was interrupted in the phssl mutant. Exogenous application of ABA almost recovered seed dormancy of the phssl mutant. The knock-out (ko) mutants of OsABA3 generated by CRISPR-Cas9 assay, were also seedling lethal, and the heterozygous mutants were similar to the phssl/+ mutant showing reduced seed dormancy and severe PHS in paddy fields. In contrast, the OsABA3 overexpressing (OE) plants displayed a significant increase in seed dormancy and enhanced plant resistance to PHS. The AO and XDH activities were abolished in the ko mutants, whereas they were increased in the OE plants. Notably, the Moco-dependent enzymes including nitrate reductase (NR) and sulfite oxidase (SO) showed reduced activities in the OE plants. Moreover, the OE plants exhibited enhanced resistances to osmotic stress and bacterial blight, and flowered earlier without any reduction in grain yield. Taken together, this study uncovered the crucial functions of OsABA3 in Moco sulfuration, plant development, and stress resistance, and suggested that OsABA3 is a promising target gene for rice breeding.
Collapse
Affiliation(s)
- Haoling Ni
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Wenshi Wu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Yanmin Yan
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Yiyuan Fang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Changjian Wang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Jiayi Chen
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Shali Chen
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Kaini Wang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Chunjue Xu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
- Shenzhen Institute of Molecular Crop Design, Shenzhen, 518107, China
| | - Xiaoyan Tang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China.
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China.
- Shenzhen Institute of Molecular Crop Design, Shenzhen, 518107, China.
| | - Jianxin Wu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|
3
|
Pardo-Hernández M, Arbona V, Simón I, Rivero RM. Specific ABA-independent tomato transcriptome reprogramming under abiotic stress combination. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:1746-1763. [PMID: 38284474 DOI: 10.1111/tpj.16642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 01/08/2024] [Accepted: 01/11/2024] [Indexed: 01/30/2024]
Abstract
Crops often have to face several abiotic stresses simultaneously, and under these conditions, the plant's response significantly differs from that observed under a single stress. However, up to the present, most of the molecular markers identified for increasing plant stress tolerance have been characterized under single abiotic stresses, which explains the unexpected results found when plants are tested under real field conditions. One important regulator of the plant's responses to abiotic stresses is abscisic acid (ABA). The ABA signaling system engages many stress-responsive genes, but many others do not respond to ABA treatments. Thus, the ABA-independent pathway, which is still largely unknown, involves multiple signaling pathways and important molecular components necessary for the plant's adaptation to climate change. In the present study, ABA-deficient tomato mutants (flacca, flc) were subjected to salinity, heat, or their combination. An in-depth RNA-seq analysis revealed that the combination of salinity and heat led to a strong reprogramming of the tomato transcriptome. Thus, of the 685 genes that were specifically regulated under this combination in our flc mutants, 463 genes were regulated by ABA-independent systems. Among these genes, we identified six transcription factors (TFs) that were significantly regulated, belonging to the R2R3-MYB family. A protein-protein interaction network showed that the TFs SlMYB50 and SlMYB86 were directly involved in the upregulation of the flavonol biosynthetic pathway-related genes. One of the most novel findings of the study is the identification of the involvement of some important ABA-independent TFs in the specific plant response to abiotic stress combination. Considering that ABA levels dramatically change in response to environmental factors, the study of ABA-independent genes that are specifically regulated under stress combination may provide a remarkable tool for increasing plant resilience to climate change.
Collapse
Affiliation(s)
- Miriam Pardo-Hernández
- Department of Plant Nutrition, Center of Edaphology and Applied Biology of Segura (CEBAS-CSIC), Campus Universitario Espinardo, Ed 25, 30100, Murcia, Spain
| | - Vicent Arbona
- Departament de Biologia, Bioquímica i Ciències Naturals, Universitat Jaume I, Castelló de la Plana, 12071, Spain
| | - Inmaculada Simón
- Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Miguel Hernández University, Orihuela, Spain
| | - Rosa M Rivero
- Department of Plant Nutrition, Center of Edaphology and Applied Biology of Segura (CEBAS-CSIC), Campus Universitario Espinardo, Ed 25, 30100, Murcia, Spain
| |
Collapse
|
4
|
Aldana JA, Moa B, Mattsson J, Russell JH, Hawkins BJ. Histological, chemical and gene expression differences between western redcedar seedlings resistant and susceptible to cedar leaf blight. FRONTIERS IN PLANT SCIENCE 2024; 15:1309762. [PMID: 38379949 PMCID: PMC10878471 DOI: 10.3389/fpls.2024.1309762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 01/08/2024] [Indexed: 02/22/2024]
Abstract
Introduction Western redcedar (Thuja plicata) is an important species in the Cupressaceae both at economic and cultural levels in the Pacific Northwest of North America. In adult trees, the species produces one of the most weathering-resistant heartwoods among conifers, making it one of the preferred species for outdoor applications. However, young T. plicata plants are susceptible to infection with cedar leaf blight (Didymascella thujina), an important foliar pathogen that can be devastating in nurseries and small-spaced plantations. Despite that, variability in the resistance against D. thujina in T. plicata has been documented, and such variability can be used to breed T. plicata for resistance against the pathogen. Objective This investigation aimed to discern the phenotypic and gene expression differences between resistant and susceptible T. plicata seedlings to shed light on the potential constitutive resistance mechanisms against cedar leaf blight in western redcedar. Methods The study consisted of two parts. First, the histological differences between four resistant and four susceptible families that were never infected with the pathogen were investigated. And second, the differences between one resistant and one susceptible family that were infected and not infected with the pathogen were analyzed at the chemical (C, N, mineral nutrients, lignin, fiber, starch, and terpenes) and gene expression (RNA-Seq) levels. Results The histological part showed that T. plicata seedlings resistant to D. thujina had constitutively thicker cuticles and lower stomatal densities than susceptible plants. The chemical analyses revealed that, regardless of their infection status, resistant plants had higher foliar concentrations of sabinene and α-thujene, and higher levels of expression of transcripts that code for leucine-rich repeat receptor-like protein kinases and for bark storage proteins. Conclusion The data collected in this study shows that constitutive differences at the phenotypic (histological and chemical) and gene expression level exist between T. plicata seedlings susceptible and resistant to D. thujina. Such differences have potential use for marker-assisted selection and breeding for resistance against cedar leaf blight in western redcedar in the future.
Collapse
Affiliation(s)
- Juan A. Aldana
- School of Arts, Science, and Education, Medicine Hat College, Medicine Hat, AB, Canada
| | - Belaid Moa
- Electrical and Computer Engineering Department, University of Victoria, Victoria, BC, Canada
| | - Jim Mattsson
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - John H. Russell
- British Columbia Ministry of Forests, Mesachie Lake, BC, Canada
| | | |
Collapse
|
5
|
Qu Y, Zhang Y, Zhang Z, Fan S, Qi Y, Wang F, Wang M, Feng M, Liu X, Ren H. Advance Research on the Pre-Harvest Sprouting Trait in Vegetable Crop Seeds. Int J Mol Sci 2023; 24:17171. [PMID: 38138999 PMCID: PMC10742742 DOI: 10.3390/ijms242417171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/21/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
Pre-harvest sprouting (PHS), the germination of seeds on the plant prior to harvest, poses significant challenges to agriculture. It not only reduces seed and grain yield, but also impairs the commodity quality of the fruit, ultimately affecting the success of the subsequent crop cycle. A deeper understanding of PHS is essential for guiding future breeding strategies, mitigating its impact on seed production rates and the commercial quality of fruits. PHS is a complex phenomenon influenced by genetic, physiological, and environmental factors. Many of these factors exert their influence on PHS through the intricate regulation of plant hormones responsible for seed germination. While numerous genes related to PHS have been identified in food crops, the study of PHS in vegetable crops is still in its early stages. This review delves into the regulatory elements, functional genes, and recent research developments related to PHS in vegetable crops. Meanwhile, this paper presents a novel understanding of PHS, aiming to serve as a reference for the study of this trait in vegetable crops.
Collapse
Affiliation(s)
- Yixin Qu
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Yaqi Zhang
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Zhongren Zhang
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Shanshan Fan
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Yu Qi
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Fang Wang
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Mingqi Wang
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Min Feng
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Xingwang Liu
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
- Sanya Institute, China Agricultural University, Sanya 572019, China
| | - Huazhong Ren
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
- Sanya Institute, China Agricultural University, Sanya 572019, China
| |
Collapse
|
6
|
Bonet-Melià P, Sandoval-Gil JM, Samperio-Ramos G, Vivanco-Bercovich M, Canino-Herrera SR, Durazo R, Camacho-Ibar VF, Alexandre A. Marine heatwaves can limit the role of surfgrasses as biofilters for wastewaters. MARINE POLLUTION BULLETIN 2023; 196:115651. [PMID: 37832497 DOI: 10.1016/j.marpolbul.2023.115651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 10/07/2023] [Accepted: 10/09/2023] [Indexed: 10/15/2023]
Abstract
Marine heatwaves (MHWs) can have detrimental effects on seagrasses, but knowledge about the impacts on their ecosystem services remains scarce. This work evaluated Phyllospadix scouleri (surgrass) as a biofilter for wastewater discharges, and how warming associated with MHW may affect this ecological function. The nitrogen uptake kinetics and assimilation abilities for ammonium, nitrate, and urea were examined under two different warming scenarios (single and repeated events) simulated in a mesocosm. N-uptake kinetics were related to urban sewage discharges close to surfgrass meadows. Our results revealed that surfgrasses can serve as effective biofilters because of their high nitrogen uptake rates and above-average canopy biomass. Nonetheless, exposure to both experimental warmings resulted in a significant decline in their ability to incorporate and assimilate nitrogen. Consequently, MHWs may reduce the capacity of surfgrasses to function as nitrogen sinks and green filters for sewage waters, jeopardizing their role as Blue Nitrogen systems.
Collapse
Affiliation(s)
- Paula Bonet-Melià
- Universidad Autónoma de Baja California (UABC), Instituto de Investigaciones Oceanológicas (IIO), Ensenada, Baja California, Mexico
| | - Jose Miguel Sandoval-Gil
- Universidad Autónoma de Baja California (UABC), Instituto de Investigaciones Oceanológicas (IIO), Ensenada, Baja California, Mexico.
| | - Guillermo Samperio-Ramos
- Universidad Autónoma de Baja California (UABC), Instituto de Investigaciones Oceanológicas (IIO), Ensenada, Baja California, Mexico
| | - Manuel Vivanco-Bercovich
- Universidad Autónoma de Baja California (UABC), Instituto de Investigaciones Oceanológicas (IIO), Ensenada, Baja California, Mexico
| | - Sergio R Canino-Herrera
- Universidad Autónoma de Baja California (UABC), Facultad de Ciencias Marinas, Ensenada, Baja California, Mexico
| | - Reginaldo Durazo
- Universidad Autónoma de Baja California (UABC), Facultad de Ciencias Marinas, Ensenada, Baja California, Mexico
| | - Víctor F Camacho-Ibar
- Universidad Autónoma de Baja California (UABC), Instituto de Investigaciones Oceanológicas (IIO), Ensenada, Baja California, Mexico
| | - Ana Alexandre
- Universidade do Algarve, Marine Plant Ecology Research Group, CCMAR, Centre of Marine Sciences, Faro, Portugal
| |
Collapse
|
7
|
Liang K, Chen X, Liu F. Crosstalk between ABA and ethylene in regulating stomatal behavior in tomato under high CO2 and progressive soil drying. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5931-5946. [PMID: 37540146 DOI: 10.1093/jxb/erad309] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/03/2023] [Indexed: 08/05/2023]
Abstract
Increasing atmospheric CO2 concentrations accompanied by intensifying drought markedly impact plant growth and physiology. This study aimed to explore the role of abscisic acid (ABA) in mediating the response of stomata to elevated CO2 (e[CO2]) and drought. Tomato plants with different endogenous ABA concentrations [Ailsa Craig (AC), the ABA-deficient mutant flacca, and ABA-overproducing transgenic tomato SP5] were grown in ambient (a[CO2], 400 μmol mol-1) and elevated (e[CO2],800 μmol mol-1) CO2 environments and subjected to progressive soil drying. Compared with a[CO2] plants, e[CO2] plants had significantly lower stomatal conductance in AC and SP5 but not in flacca. Under drought, e[CO2] plants had better water status and higher water use efficiency. e[CO2] promoted the accumulation of ABA in leaves of plants subjected to drought, which coincided with the up-regulation of ABA biosynthetic genes and down-regulation of ABA metabolic genes. Although the increase of ABA induced by drought in flacca was much less than in AC and SP5, flacca accumulated large amounts of ethylene, suggesting that in plants with ABA deficiency, ethylene might play a compensatory role in inducing stomatal closure during soil drying. Collectively, these findings improve our understanding of plant performance in a future drier and higher-CO2 environment.
Collapse
Affiliation(s)
- Kehao Liang
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Højbakkegaard Alle 13, 2630 Taastrup, Denmark
| | - Xuefei Chen
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Højbakkegaard Alle 13, 2630 Taastrup, Denmark
| | - Fulai Liu
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Højbakkegaard Alle 13, 2630 Taastrup, Denmark
| |
Collapse
|
8
|
Caubrière D, Moseler A, Rouhier N, Couturier J. Diversity and roles of cysteine desulfurases in photosynthetic organisms. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:3345-3360. [PMID: 36861318 DOI: 10.1093/jxb/erad065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/22/2023] [Indexed: 06/08/2023]
Abstract
As sulfur is part of many essential protein cofactors such as iron-sulfur clusters, molybdenum cofactors, or lipoic acid, its mobilization from cysteine represents a fundamental process. The abstraction of the sulfur atom from cysteine is catalysed by highly conserved pyridoxal 5'-phosphate-dependent enzymes called cysteine desulfurases. The desulfuration of cysteine leads to the formation of a persulfide group on a conserved catalytic cysteine and the concomitant release of alanine. Sulfur is then transferred from cysteine desulfurases to different targets. Numerous studies have focused on cysteine desulfurases as sulfur-extracting enzymes for iron-sulfur cluster synthesis in mitochondria and chloroplasts but also for molybdenum cofactor sulfuration in the cytosol. Despite this, knowledge about the involvement of cysteine desulfurases in other pathways is quite rudimentary, particularly in photosynthetic organisms. In this review, we summarize current understanding of the different groups of cysteine desulfurases and their characteristics in terms of primary sequence, protein domain architecture, and subcellular localization. In addition, we review the roles of cysteine desulfurases in different fundamental pathways and highlight the gaps in our knowledge to encourage future work on unresolved issues especially in photosynthetic organisms.
Collapse
Affiliation(s)
| | - Anna Moseler
- Institute of Crop Science and Resource Conservation (INRES) - Chemical Signalling, University of Bonn, 53113 Bonn, Germany
| | | | - Jérémy Couturier
- Université de Lorraine, INRAE, IAM, F-54000 Nancy, France
- Institut Universitaire de France, F-75000, Paris, France
| |
Collapse
|
9
|
Ortiz-García P, González Ortega-Villaizán A, Onejeme FC, Müller M, Pollmann S. Do Opposites Attract? Auxin-Abscisic Acid Crosstalk: New Perspectives. Int J Mol Sci 2023; 24:ijms24043090. [PMID: 36834499 PMCID: PMC9960826 DOI: 10.3390/ijms24043090] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/20/2023] [Accepted: 02/02/2023] [Indexed: 02/08/2023] Open
Abstract
Plants are constantly exposed to a variety of different environmental stresses, including drought, salinity, and elevated temperatures. These stress cues are assumed to intensify in the future driven by the global climate change scenario which we are currently experiencing. These stressors have largely detrimental effects on plant growth and development and, therefore, put global food security in jeopardy. For this reason, it is necessary to expand our understanding of the underlying mechanisms by which plants respond to abiotic stresses. Especially boosting our insight into the ways by which plants balance their growth and their defense programs appear to be of paramount importance, as this may lead to novel perspectives that can pave the way to increase agricultural productivity in a sustainable manner. In this review, our aim was to present a detailed overview of different facets of the crosstalk between the antagonistic plant hormones abscisic acid (ABA) and auxin, two phytohormones that are the main drivers of plant stress responses, on the one hand, and plant growth, on the other.
Collapse
Affiliation(s)
- Paloma Ortiz-García
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentación (INIA/CSIC), Universidad Politécnica de Madrid (UPM), Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
| | - Adrián González Ortega-Villaizán
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentación (INIA/CSIC), Universidad Politécnica de Madrid (UPM), Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
| | - Francis Chukwuma Onejeme
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentación (INIA/CSIC), Universidad Politécnica de Madrid (UPM), Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
| | - Maren Müller
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
- Correspondence: (M.M.); (S.P.); Tel.: +34-934033718 (M.M.); +34-910679183 (S.P.)
| | - Stephan Pollmann
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentación (INIA/CSIC), Universidad Politécnica de Madrid (UPM), Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain
- Correspondence: (M.M.); (S.P.); Tel.: +34-934033718 (M.M.); +34-910679183 (S.P.)
| |
Collapse
|
10
|
Zhang Y, Zhang J, Li D, Sun H, Lu R, Yin S, Guo X, Gao S. Aldehyde oxidases mediate plant toxicant susceptibility and fecundity in the red flour beetle, Tribolium castaneum. BULLETIN OF ENTOMOLOGICAL RESEARCH 2022; 112:656-666. [PMID: 35168693 DOI: 10.1017/s0007485322000049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Aldehyde oxidases (AOXs) are a group of metabolic enzymes that play critical roles in the degradation of xenobiotics and chemicals. However, the physiological function of this enzyme in insects remains poorly understood. In this study, three TcAOX genes (TcAOX1, TcAOX2, TcAOX3) were identified and characterized from Tribolium castaneum genome. Spatiotemporal expression profiling showed that TcAOX1 expression was most highly expressed at the early pupal stage and was predominantly expressed in the antennae of adults, indicating that TcAOX1 was involved in the degradation of chemical signals; TcAOX2 expression was most highly expressed at the late pupal stage and was mainly expressed in the fat body, epidermis of larvae and adults, respectively; and TcAOX3 expression was in all stages and was primarily expressed in the head of adults. Moreover, the transcripts of TcAOX2 and TcAOX3 were significantly induced after exposure to plant oil, and RNA interference (RNAi) targeting of each of them enhanced the susceptibility of beetles to this plant toxicant, suggesting that these two genes are associated with plant toxicant detoxification. Intriguingly, knockdown of the TcAOX1 led to reductions in female egg-laying but unchanged the hatchability and the development of genital organs, suggesting that this gene may mediate fecundity by effecting the inactivation of chemical signals in T. castaneum. Overall, these results shed new light on the function of AOX genes in insects, and could facilitate the development of research on pest control management.
Collapse
Affiliation(s)
- Yonglei Zhang
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang 455000, China
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Jiahao Zhang
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang 455000, China
| | - Dongyu Li
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang 455000, China
| | - Haidi Sun
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang 455000, China
| | - Ruixue Lu
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang 455000, China
| | - Se Yin
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang 455000, China
| | - Xinlong Guo
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang 455000, China
| | - Shanshan Gao
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang 455000, China
| |
Collapse
|
11
|
Pons C, Casals J, Palombieri S, Fontanet L, Riccini A, Rambla JL, Ruggiero A, Figás MDR, Plazas M, Koukounaras A, Picarella ME, Sulli M, Fisher J, Ziarsolo P, Blanca J, Cañizares J, Cammareri M, Vitiello A, Batelli G, Kanellis A, Brouwer M, Finkers R, Nikoloudis K, Soler S, Giuliano G, Grillo S, Grandillo S, Zamir D, Mazzucato A, Causse M, Díez MJ, Prohens J, Monforte AJ, Granell A. Atlas of phenotypic, genotypic and geographical diversity present in the European traditional tomato. HORTICULTURE RESEARCH 2022; 9:uhac112. [PMID: 35795386 PMCID: PMC9252105 DOI: 10.1093/hr/uhac112] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/27/2022] [Indexed: 06/15/2023]
Abstract
The Mediterranean basin countries are considered secondary centres of tomato diversification. However, information on phenotypic and allelic variation of local tomato materials is still limited. Here we report on the evaluation of the largest traditional tomato collection, which includes 1499 accessions from Southern Europe. Analyses of 70 traits revealed a broad range of phenotypic variability with different distributions among countries, with the culinary end use within each country being the main driver of tomato diversification. Furthermore, eight main tomato types (phenoclusters) were defined by integrating phenotypic data, country of origin, and end use. Genome-wide association study (GWAS) meta-analyses identified associations in 211 loci, 159 of which were novel. The multidimensional integration of phenoclusters and the GWAS meta-analysis identified the molecular signatures for each traditional tomato type and indicated that signatures originated from differential combinations of loci, which in some cases converged in the same tomato phenotype. Our results provide a roadmap for studying and exploiting this untapped tomato diversity.
Collapse
Affiliation(s)
- Clara Pons
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana (COMAV), Universitat Politècnica de València, València, Spain
- Instituto de Biología Molecular y Celular de Plantas (IBMCP). Consejo Superior de Investigaciones Científicas (CSIC), Universitat Politècnica de València, València, Spain
| | - Joan Casals
- Department of Agri-Food Engineering and Biotechnology/Miquel Agustí Foundation, Universitat Politècnica de Catalunya, Campus Baix Llobregat, Esteve Terrades 8, 08860 Castelldefels, Spain
| | - Samuela Palombieri
- Institute of Biosciences and BioResources (IBBR), National Research Council of Italy (CNR), Via Università 133, 80055 Portici, Italy
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, 01100 Viterbo, Italy
| | - Lilian Fontanet
- INRAE, UR1052, Génétique et Amélioration des Fruits et Légumes 67 Allé des Chênes, Centre de Recherche PACA, Domaine Saint Maurice, CS60094, Montfavet, 84143, France
- HM Clause, Portes-lès-Valence, France
| | - Alessandro Riccini
- Department of Agriculture and Forest Sciences (DAFNE), Università degli Studi della Tuscia, Viterbo,Italy
| | - Jose Luis Rambla
- Instituto de Biología Molecular y Celular de Plantas (IBMCP). Consejo Superior de Investigaciones Científicas (CSIC), Universitat Politècnica de València, València, Spain
| | - Alessandra Ruggiero
- Institute of Biosciences and BioResources (IBBR), National Research Council of Italy (CNR), Via Università 133, 80055 Portici, Italy
| | - Maria del Rosario Figás
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana (COMAV), Universitat Politècnica de València, València, Spain
| | - Mariola Plazas
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana (COMAV), Universitat Politècnica de València, València, Spain
- Instituto de Biología Molecular y Celular de Plantas (IBMCP). Consejo Superior de Investigaciones Científicas (CSIC), Universitat Politècnica de València, València, Spain
| | - Athanasios Koukounaras
- Aristotle University of Thessaloniki, School of Agriculture, Laboratory of Vegetable Crops, Thessaloniki, 54124 Greece
| | - Maurizio E Picarella
- Department of Agriculture and Forest Sciences (DAFNE), Università degli Studi della Tuscia, Viterbo,Italy
| | - Maria Sulli
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Casaccia Research Centre, Rome, Italy
| | - Josef Fisher
- Hebrew University of Jerusalem, Robert H Smith Inst Plant Sci & Genet Agr, Rehovot, Israel
| | - Peio Ziarsolo
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana (COMAV), Universitat Politècnica de València, València, Spain
| | - Jose Blanca
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana (COMAV), Universitat Politècnica de València, València, Spain
| | - Joaquin Cañizares
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana (COMAV), Universitat Politècnica de València, València, Spain
| | - Maria Cammareri
- Institute of Biosciences and BioResources (IBBR), National Research Council of Italy (CNR), Via Università 133, 80055 Portici, Italy
| | - Antonella Vitiello
- Institute of Biosciences and BioResources (IBBR), National Research Council of Italy (CNR), Via Università 133, 80055 Portici, Italy
| | - Giorgia Batelli
- Institute of Biosciences and BioResources (IBBR), National Research Council of Italy (CNR), Via Università 133, 80055 Portici, Italy
| | - Angelos Kanellis
- Group of Biotechnology of Pharmaceutical Plants, Laboratory of Pharmacognosy, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Matthijs Brouwer
- Wageningen Univ & Res, Plant Breeding, POB 386, NL-6700 AJ Wageningen, Netherlands
| | - Richard Finkers
- Wageningen Univ & Res, Plant Breeding, POB 386, NL-6700 AJ Wageningen, Netherlands
| | | | - Salvador Soler
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana (COMAV), Universitat Politècnica de València, València, Spain
| | - Giovanni Giuliano
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Casaccia Research Centre, Rome, Italy
| | - Stephania Grillo
- Institute of Biosciences and BioResources (IBBR), National Research Council of Italy (CNR), Via Università 133, 80055 Portici, Italy
| | - Silvana Grandillo
- Institute of Biosciences and BioResources (IBBR), National Research Council of Italy (CNR), Via Università 133, 80055 Portici, Italy
| | - Dani Zamir
- Hebrew University of Jerusalem, Robert H Smith Inst Plant Sci & Genet Agr, Rehovot, Israel
| | - Andrea Mazzucato
- Department of Agriculture and Forest Sciences (DAFNE), Università degli Studi della Tuscia, Viterbo,Italy
| | - Mathilde Causse
- INRAE, UR1052, Génétique et Amélioration des Fruits et Légumes 67 Allé des Chênes, Centre de Recherche PACA, Domaine Saint Maurice, CS60094, Montfavet, 84143, France
| | - Maria José Díez
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana (COMAV), Universitat Politècnica de València, València, Spain
| | - Jaime Prohens
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana (COMAV), Universitat Politècnica de València, València, Spain
| | - Antonio Jose Monforte
- Instituto de Biología Molecular y Celular de Plantas (IBMCP). Consejo Superior de Investigaciones Científicas (CSIC), Universitat Politècnica de València, València, Spain
| | - Antonio Granell
- Instituto de Biología Molecular y Celular de Plantas (IBMCP). Consejo Superior de Investigaciones Científicas (CSIC), Universitat Politècnica de València, València, Spain
| |
Collapse
|
12
|
Banerjee A, Roychoudhury A. Dissecting the phytohormonal, genomic and proteomic regulation of micronutrient deficiency during abiotic stresses in plants. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01099-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
13
|
Wu J, Kamanga BM, Zhang W, Xu Y, Xu L. Research progress of aldehyde oxidases in plants. PeerJ 2022; 10:e13119. [PMID: 35356472 PMCID: PMC8958963 DOI: 10.7717/peerj.13119] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/23/2022] [Indexed: 01/12/2023] Open
Abstract
Plant aldehyde oxidases (AOs) are multi-functional enzymes, and they could oxidize abscisic aldehyde into ABA (abscisic acid) or indole acetaldehyde into IAA (indoleacetic acid) as the last step, respectively. AOs can be divided into four groups based on their biochemical and physiological functions. In this review, we summarized the recent studies about AOs in plants including the motif information, biochemical, and physiological functions. Besides their role in phytohormones biosynthesis and stress response, AOs could also involve in reactive oxygen species homeostasis, aldehyde detoxification and stress tolerance.
Collapse
Affiliation(s)
- Jun Wu
- Engineering Research Centre of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou, China
| | - Blair Moses Kamanga
- Engineering Research Centre of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou, China
| | - Wenying Zhang
- Engineering Research Centre of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou, China
| | - Yanhao Xu
- Hubei Academy of Agricultural Science, Wuhan, China
| | - Le Xu
- Engineering Research Centre of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou, China
| |
Collapse
|
14
|
Nurbekova Z, Srivastava S, Standing D, Kurmanbayeva A, Bekturova A, Soltabayeva A, Oshanova D, Turečková V, Strand M, Biswas MS, Mano J, Sagi M. Arabidopsis aldehyde oxidase 3, known to oxidize abscisic aldehyde to abscisic acid, protects leaves from aldehyde toxicity. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:1439-1455. [PMID: 34587326 DOI: 10.1111/tpj.15521] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 09/21/2021] [Accepted: 09/25/2021] [Indexed: 06/13/2023]
Abstract
The Arabidopsis thaliana aldehyde oxidase 3 (AAO3) catalyzes the oxidation of abscisic aldehyde (ABal) to abscisic acid (ABA). Besides ABal, plants generate other aldehydes that can be toxic above a certain threshold. AAO3 knockout mutants (aao3) exhibited earlier senescence but equivalent relative water content compared with wild-type (WT) during normal growth or upon application of UV-C irradiation. Aldehyde profiling in leaves of 24-day-old plants revealed higher accumulation of acrolein, crotonaldehyde, 3Z-hexenal, hexanal and acetaldehyde in aao3 mutants compared with WT leaves. Similarly, higher levels of acrolein, benzaldehyde, crotonaldehyde, propionaldehyde, trans-2-hexenal and acetaldehyde were accumulated in aao3 mutants upon UV-C irradiation. Aldehydes application to plants hastened profuse senescence symptoms and higher accumulation of aldehydes, such as acrolein, benzaldehyde and 4-hydroxy-2-nonenal, in aao3 mutant leaves as compared with WT. The senescence symptoms included greater decrease in chlorophyll content and increase in transcript expression of the early senescence marker genes, Senescence-Related-Gene1, Stay-Green-Protein2 as well as NAC-LIKE, ACTIVATED-BY AP3/P1. Notably, although aao3 had lower ABA content than WT, members of the ABA-responding genes SnRKs were expressed at similar levels in aao3 and WT. Moreover, the other ABA-deficient mutants [aba2 and 9-cis-poxycarotenoid dioxygenase3-2 (nced3-2), that has functional AAO3] exhibited similar aldehydes accumulation and chlorophyll content like WT under normal growth conditions or UV-C irradiation. These results indicate that the absence of AAO3 oxidation activity and not the lower ABA and its associated function is responsible for the earlier senescence symptoms in aao3 mutant.
Collapse
Affiliation(s)
- Zhadyrassyn Nurbekova
- The Albert Katz International School for Desert Studies, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 8499000, Israel
| | - Sudhakar Srivastava
- Jacob Blaustein Center for Scientific Cooperation, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 8499000, Israel
| | - Dominic Standing
- The Albert Katz Department of Dryland Biotechnologies, French Associates Institute for Agriculture and Biotechnology of Dryland, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 8499000, Israel
| | - Assylay Kurmanbayeva
- The Albert Katz International School for Desert Studies, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 8499000, Israel
| | - Aizat Bekturova
- The Albert Katz International School for Desert Studies, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 8499000, Israel
| | - Aigerim Soltabayeva
- The Albert Katz International School for Desert Studies, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 8499000, Israel
| | - Dinara Oshanova
- The Albert Katz International School for Desert Studies, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 8499000, Israel
| | - Veronica Turečková
- Laboratory of Growth Regulators, The Czech Academy of Sciences, Institute of Experimental Botany, Palacky University, Slechtitelu 27, Olomouc, CZ-78371, Czech Republic
| | - Miroslav Strand
- Laboratory of Growth Regulators, The Czech Academy of Sciences, Institute of Experimental Botany, Palacky University, Slechtitelu 27, Olomouc, CZ-78371, Czech Republic
| | - Md Sanaullah Biswas
- Department of Horticulture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Jun'ichi Mano
- Science Research Center, Organization of Research Initiatives, Yamaguchi University, Yamaguchi, 753-8515, Japan
| | - Moshe Sagi
- The Albert Katz Department of Dryland Biotechnologies, French Associates Institute for Agriculture and Biotechnology of Dryland, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 8499000, Israel
| |
Collapse
|
15
|
Brookbank BP, Patel J, Gazzarrini S, Nambara E. Role of Basal ABA in Plant Growth and Development. Genes (Basel) 2021; 12:genes12121936. [PMID: 34946886 PMCID: PMC8700873 DOI: 10.3390/genes12121936] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/27/2021] [Accepted: 11/28/2021] [Indexed: 01/01/2023] Open
Abstract
Abscisic acid (ABA) regulates various aspects of plant physiology, including promoting seed dormancy and adaptive responses to abiotic and biotic stresses. In addition, ABA plays an im-portant role in growth and development under non-stressed conditions. This review summarizes phenotypes of ABA biosynthesis and signaling mutants to clarify the roles of basal ABA in growth and development. The promotive and inhibitive actions of ABA in growth are characterized by stunted and enhanced growth of ABA-deficient and insensitive mutants, respectively. Growth regulation by ABA is both promotive and inhibitive, depending on the context, such as concentrations, tissues, and environmental conditions. Basal ABA regulates local growth including hyponastic growth, skotomorphogenesis and lateral root growth. At the cellular level, basal ABA is essential for proper chloroplast biogenesis, central metabolism, and expression of cell-cycle genes. Basal ABA also regulates epidermis development in the shoot, by inhibiting stomatal development, and deposition of hydrophobic polymers like a cuticular wax layer covering the leaf surface. In the root, basal ABA is involved in xylem differentiation and suberization of the endodermis. Hormone crosstalk plays key roles in growth and developmental processes regulated by ABA. Phenotypes of ABA-deficient and insensitive mutants indicate prominent functions of basal ABA in plant growth and development.
Collapse
Affiliation(s)
- Benjamin P. Brookbank
- Department of Cells and Systems Biology, University of Toronto, Toronto, ON M3S 3G5, Canada; (B.P.B.); (J.P.)
| | - Jasmin Patel
- Department of Cells and Systems Biology, University of Toronto, Toronto, ON M3S 3G5, Canada; (B.P.B.); (J.P.)
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON M1C 1A4, Canada
| | - Sonia Gazzarrini
- Department of Cells and Systems Biology, University of Toronto, Toronto, ON M3S 3G5, Canada; (B.P.B.); (J.P.)
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON M1C 1A4, Canada
- Correspondence: (S.G.); (E.N.)
| | - Eiji Nambara
- Department of Cells and Systems Biology, University of Toronto, Toronto, ON M3S 3G5, Canada; (B.P.B.); (J.P.)
- Correspondence: (S.G.); (E.N.)
| |
Collapse
|
16
|
Li S, Liu F. Exogenous Abscisic Acid Priming Modulates Water Relation Responses of Two Tomato Genotypes With Contrasting Endogenous Abscisic Acid Levels to Progressive Soil Drying Under Elevated CO 2. FRONTIERS IN PLANT SCIENCE 2021; 12:733658. [PMID: 34899772 PMCID: PMC8651563 DOI: 10.3389/fpls.2021.733658] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/25/2021] [Indexed: 06/14/2023]
Abstract
Plants have evolved multiple strategies to survive and adapt when confronting the changing climate, including elevated CO2 concentration (e[CO2]) and intensified drought stress. To explore the role of abscisic acid (ABA) in modulating the response of plant water relation characteristics to progressive drought under ambient (a[CO2], 400 ppm) and e[CO2] (800 ppm) growth environments, two tomato (Solanum lycopersicum) genotypes, Ailsa Craig (AC) and its ABA-deficient mutant (flacca), were grown in pots, treated with or without exogenous ABA, and exposed to progressive soil drying until all plant available water in the pot was depleted. The results showed that exogenous ABA application improved leaf water potential, osmotic potential, and leaf turgor and increased leaf ABA concentrations ([ABA]leaf) in AC and flacca. In both genotypes, exogenous ABA application decreased stomatal pore aperture and stomatal conductance (g s), though these effects were less pronounced in e[CO2]-grown AC and g s of ABA-treated flacca was gradually increased until a soil water threshold after which g s started to decline. In addition, ABA-treated flacca showed a partly restored stomatal drought response even when the accumulation of [ABA]leaf was vanished, implying [ABA]leaf might be not directly responsible for the decreased g s. During soil drying, [ABA]leaf remained higher in e[CO2]-grown plants compared with those under a[CO2], and a high xylem sap ABA concentration was also noticed in the ABA-treated flacca especially under e[CO2], suggesting that e[CO2] might exert an effect on ABA degradation and/or redistribution. Collectively, a fine-tune ABA homeostasis under combined e[CO2] and drought stress allowed plants to optimize leaf gas exchange and plant water relations, yet more detailed research regarding ABA metabolism is still needed to fully explore the role of ABA in mediating plant physiological response to future drier and CO2-enriched climate.
Collapse
|
17
|
Adaptive divergence in shoot gravitropism creates hybrid sterility in an Australian wildflower. Proc Natl Acad Sci U S A 2021; 118:2004901118. [PMID: 34789571 PMCID: PMC8617494 DOI: 10.1073/pnas.2004901118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2021] [Indexed: 11/18/2022] Open
Abstract
New species originate as populations become reproductively isolated from one another. Despite recent progress in uncovering the genetic basis of reproductive isolation, it remains unclear whether intrinsic reproductive barriers, such as hybrid sterility, can evolve as a by-product of local adaptation to contrasting environments. Here, we show that differences in a plant’s response to the pull of gravity have repeatedly evolved amongst coastal populations of an Australian wildflower, thus implicating a role of natural selection in their evolution. We found a strong genetic association between variation in this adaptive trait and hybrid sterility, suggesting that intrinsic reproductive barriers contribute to the origin of new species as populations adapt to heterogeneous environments. Natural selection is responsible for much of the diversity we see in nature. Just as it drives the evolution of new traits, it can also lead to new species. However, it is unclear whether natural selection conferring adaptation to local environments can drive speciation through the evolution of hybrid sterility between populations. Here, we show that adaptive divergence in shoot gravitropism, the ability of a plant’s shoot to bend upwards in response to the downward pull of gravity, contributes to the evolution of hybrid sterility in an Australian wildflower, Senecio lautus. We find that shoot gravitropism has evolved multiple times in association with plant height between adjacent populations inhabiting contrasting environments, suggesting that these traits have evolved by natural selection. We directly tested this prediction using a hybrid population subjected to eight rounds of recombination and three rounds of selection in the field. Our experiments revealed that shoot gravitropism responds to natural selection in the expected direction of the locally adapted population. Using the advanced hybrid population, we discovered that individuals with extreme differences in gravitropism had more sterile crosses than individuals with similar gravitropic responses, which were largely fertile, indicating that this adaptive trait is genetically correlated with hybrid sterility. Our results suggest that natural selection can drive the evolution of locally adaptive traits that also create hybrid sterility, thus revealing an evolutionary connection between local adaptation and the origin of new species.
Collapse
|
18
|
Wang Y, Zhang J, Sun M, He C, Yu K, Zhao B, Li R, Li J, Yang Z, Wang X, Duan H, Fu J, Liu S, Zhang X, Zheng J. Multi-Omics Analyses Reveal Systemic Insights into Maize Vivipary. PLANTS (BASEL, SWITZERLAND) 2021; 10:2437. [PMID: 34834800 PMCID: PMC8618366 DOI: 10.3390/plants10112437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/28/2021] [Accepted: 11/04/2021] [Indexed: 06/13/2023]
Abstract
Maize vivipary, precocious seed germination on the ear, affects yield and seed quality. The application of multi-omics approaches, such as transcriptomics or metabolomics, to classic vivipary mutants can potentially reveal the underlying mechanism. Seven maize vivipary mutants were selected for transcriptomic and metabolomic analyses. A suite of transporters and transcription factors were found to be upregulated in all mutants, indicating that their functions are required during seed germination. Moreover, vivipary mutants exhibited a uniform expression pattern of genes related to abscisic acid (ABA) biosynthesis, gibberellin (GA) biosynthesis, and ABA core signaling. NCED4 (Zm00001d007876), which is involved in ABA biosynthesis, was markedly downregulated and GA3ox (Zm00001d039634) was upregulated in all vivipary mutants, indicating antagonism between these two phytohormones. The ABA core signaling components (PYL-ABI1-SnRK2-ABI3) were affected in most of the mutants, but the expression of these genes was not significantly different between the vp8 mutant and wild-type seeds. Metabolomics analysis integrated with co-expression network analysis identified unique metabolites, their corresponding pathways, and the gene networks affected by each individual mutation. Collectively, our multi-omics analyses characterized the transcriptional and metabolic landscape during vivipary, providing a valuable resource for improving seed quality.
Collapse
Affiliation(s)
- Yiru Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.W.); (M.S.); (R.L.); (J.L.); (Z.Y.); (J.F.)
| | - Junli Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng 475000, China; (J.Z.); (K.Y.); (B.Z.); (X.W.); (H.D.)
| | - Minghao Sun
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.W.); (M.S.); (R.L.); (J.L.); (Z.Y.); (J.F.)
| | - Cheng He
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA; (C.H.); (S.L.)
| | - Ke Yu
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng 475000, China; (J.Z.); (K.Y.); (B.Z.); (X.W.); (H.D.)
| | - Bing Zhao
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng 475000, China; (J.Z.); (K.Y.); (B.Z.); (X.W.); (H.D.)
| | - Rui Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.W.); (M.S.); (R.L.); (J.L.); (Z.Y.); (J.F.)
| | - Jian Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.W.); (M.S.); (R.L.); (J.L.); (Z.Y.); (J.F.)
| | - Zongying Yang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.W.); (M.S.); (R.L.); (J.L.); (Z.Y.); (J.F.)
| | - Xiao Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng 475000, China; (J.Z.); (K.Y.); (B.Z.); (X.W.); (H.D.)
| | - Haiyang Duan
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng 475000, China; (J.Z.); (K.Y.); (B.Z.); (X.W.); (H.D.)
- Collaborative Innovation Center of Henan Grain Crops, Key Laboratory of Wheat and Maize Crops Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Junjie Fu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.W.); (M.S.); (R.L.); (J.L.); (Z.Y.); (J.F.)
| | - Sanzhen Liu
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA; (C.H.); (S.L.)
| | - Xuebin Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng 475000, China; (J.Z.); (K.Y.); (B.Z.); (X.W.); (H.D.)
| | - Jun Zheng
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.W.); (M.S.); (R.L.); (J.L.); (Z.Y.); (J.F.)
| |
Collapse
|
19
|
Živanović B, Milić Komić S, Nikolić N, Mutavdžić D, Srećković T, Veljović Jovanović S, Prokić L. Differential Response of Two Tomato Genotypes, Wild Type cv. Ailsa Craig and Its ABA-Deficient Mutant flacca to Short-Termed Drought Cycles. PLANTS 2021; 10:plants10112308. [PMID: 34834671 PMCID: PMC8617711 DOI: 10.3390/plants10112308] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/20/2021] [Accepted: 10/20/2021] [Indexed: 01/14/2023]
Abstract
Two tomato genotypes with constitutively different ABA level, flacca mutant and wild type of Ailsa Craig cv. (WT), were subjected to three repeated drought cycles, with the aim to reveal the role of the abscisic acid (ABA) threshold in developing drought tolerance. Differential responses to drought of two genotypes were obtained: more pronounced stomatal closure, ABA biosynthesis and proline accumulation in WT compared to the mutant were compensated by dry weight accumulation accompanied by transient redox disbalance in flacca. Fourier-transform infrared (FTIR) spectra analysis of isolated cell wall material and morphological parameter measurements on tomato leaves indicated changes in dry weight accumulation and carbon re-allocation to cell wall constituents in flacca, but not in WT. A higher proportion of cellulose, pectin and lignin in isolated cell walls from flacca leaves further increased with repeated drought cycles. Different ABA-dependent stomatal closure between drought cycles implies that acquisition of stomatal sensitivity may be a part of stress memory mechanism developed under given conditions. The regulatory role of ABA in the cell wall restructuring and growth regulation under low leaf potential was discussed with emphasis on the beneficial effects of drought priming in developing differential defense strategies against drought.
Collapse
Affiliation(s)
- Bojana Živanović
- Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade, Serbia; (B.Ž.); (S.M.K.); (N.N.); (D.M.); (T.S.)
| | - Sonja Milić Komić
- Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade, Serbia; (B.Ž.); (S.M.K.); (N.N.); (D.M.); (T.S.)
| | - Nenad Nikolić
- Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade, Serbia; (B.Ž.); (S.M.K.); (N.N.); (D.M.); (T.S.)
| | - Dragosav Mutavdžić
- Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade, Serbia; (B.Ž.); (S.M.K.); (N.N.); (D.M.); (T.S.)
- Center for Green Technologies, Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade, Serbia
| | - Tatjana Srećković
- Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade, Serbia; (B.Ž.); (S.M.K.); (N.N.); (D.M.); (T.S.)
- Center for Green Technologies, Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade, Serbia
| | - Sonja Veljović Jovanović
- Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade, Serbia; (B.Ž.); (S.M.K.); (N.N.); (D.M.); (T.S.)
- Center for Green Technologies, Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade, Serbia
- Correspondence: (S.V.J.); (L.P.)
| | - Ljiljana Prokić
- Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia
- Correspondence: (S.V.J.); (L.P.)
| |
Collapse
|
20
|
Brodribb T, Brodersen CR, Carriqui M, Tonet V, Rodriguez Dominguez C, McAdam S. Linking xylem network failure with leaf tissue death. THE NEW PHYTOLOGIST 2021; 232:68-79. [PMID: 34164816 DOI: 10.1111/nph.17577] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/14/2021] [Indexed: 06/13/2023]
Abstract
Global warming is expected to dramatically accelerate forest mortality as temperature and drought intensity increase. Predicting the magnitude of this impact urgently requires an understanding of the process connecting atmospheric drying to plant tissue damage. Recent episodes of forest mortality worldwide have been widely attributed to dry conditions causing acute damage to plant vascular systems. Under this scenario vascular embolisms produced by water stress are thought to cause plant death, yet this hypothetical trajectory has never been empirically demonstrated. Here we provide foundational evidence connecting failure in the vascular network of leaves with tissue damage caused during water stress. We observe a catastrophic sequence initiated by water column breakage under tension in leaf veins which severs local leaf tissue water supply, immediately causing acute cellular dehydration and irreversible damage. By highlighting the primacy of vascular network failure in the death of leaves exposed to drought or evaporative stress our results provide a strong mechanistic foundation upon which models of plant damage in response to dehydration can be confidently structured.
Collapse
Affiliation(s)
- Timothy Brodribb
- School of Biological Sciences, University of Tasmania, Sandy Bay, Tasmania, 7001, Australia
| | - Craig R Brodersen
- School of the Environment, Yale University, New Haven, CT, 06511, USA
| | - Marc Carriqui
- School of Biological Sciences, University of Tasmania, Sandy Bay, Tasmania, 7001, Australia
| | - Vanessa Tonet
- School of Biological Sciences, University of Tasmania, Sandy Bay, Tasmania, 7001, Australia
| | - Celia Rodriguez Dominguez
- Irrigation and Crop Ecophysiology Group, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS, CSIC), Avda. Reina Mercedes, 10, Sevilla, 41012, Spain
| | - Scott McAdam
- Purdue Center for Plant Biology, Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
21
|
Bekturova A, Oshanova D, Tiwari P, Nurbekova Z, Kurmanbayeva A, Soltabayeva A, Yarmolinsky D, Srivastava S, Turecková V, Strnad M, Sagi M. Adenosine 5' phosphosulfate reductase and sulfite oxidase regulate sulfite-induced water loss in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:6447-6466. [PMID: 34107028 DOI: 10.1093/jxb/erab249] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 05/30/2021] [Indexed: 05/22/2023]
Abstract
Chloroplast-localized adenosine-5'-phosphosulphate reductase (APR) generates sulfite and plays a pivotal role in reduction of sulfate to cysteine. The peroxisome-localized sulfite oxidase (SO) oxidizes excess sulfite to sulfate. Arabidopsis wild type, SO RNA-interference (SO Ri) and SO overexpression (SO OE) transgenic lines infiltrated with sulfite showed increased water loss in SO Ri plants, and smaller stomatal apertures in SO OE plants compared with wild-type plants. Sulfite application also limited sulfate and abscisic acid-induced stomatal closure in wild type and SO Ri. The increases in APR activity in response to sulfite infiltration into wild type and SO Ri leaves resulted in an increase in endogenous sulfite, indicating that APR has an important role in sulfite-induced increases in stomatal aperture. Sulfite-induced H2O2 generation by NADPH oxidase led to enhanced APR expression and sulfite production. Suppression of APR by inhibiting NADPH oxidase and glutathione reductase2 (GR2), or mutation in APR2 or GR2, resulted in a decrease in sulfite production and stomatal apertures. The importance of APR and SO and the significance of sulfite concentrations in water loss were further demonstrated during rapid, harsh drought stress in root-detached wild-type, gr2 and SO transgenic plants. Our results demonstrate the role of SO in sulfite homeostasis in relation to water consumption in well-watered plants.
Collapse
Affiliation(s)
- Aizat Bekturova
- The Albert Katz International School for Desert Studies, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Israel
| | - Dinara Oshanova
- The Albert Katz International School for Desert Studies, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Israel
| | - Poonam Tiwari
- Jacob Blaustein Center for Scientific Cooperation, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Israel
| | - Zhadyrassyn Nurbekova
- The Albert Katz International School for Desert Studies, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Israel
| | - Assylay Kurmanbayeva
- The Albert Katz International School for Desert Studies, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Israel
| | - Aigerim Soltabayeva
- The Albert Katz International School for Desert Studies, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Israel
| | - Dmitry Yarmolinsky
- Jacob Blaustein Center for Scientific Cooperation, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Israel
| | - Sudhakar Srivastava
- Jacob Blaustein Center for Scientific Cooperation, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Israel
| | - Veronika Turecková
- Laboratory of Growth Regulators, Palacky University & Institute of Experimental Botany ASCR, Slechtitelu 11, Olomouc, Czech Republic
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Palacky University & Institute of Experimental Botany ASCR, Slechtitelu 11, Olomouc, Czech Republic
| | - Moshe Sagi
- Plant Stress Laboratory, French Associates Institute for Agriculture and Biotechnology of Drylands, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede-Boker Campus, Israel
| |
Collapse
|
22
|
Innes SN, Solhaug KA, Torre S, Dodd IC. Different abscisic acid-deficient mutants show unique morphological and hydraulic responses to high air humidity. PHYSIOLOGIA PLANTARUM 2021; 172:1795-1807. [PMID: 33826767 DOI: 10.1111/ppl.13417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/09/2021] [Accepted: 03/03/2021] [Indexed: 06/12/2023]
Abstract
High relative humidity (RH) perturbs plant growth, stomatal functioning and abscisic acid (ABA) homeostasis, but the role of ABA in this physiological regulation is equivocal. To determine the role(s) of ABA in plant responses to high RH, wild-type (WT) tomato and barley plants and their respective ABA-deficient mutants flacca and Az34 (which are mutated in the same locus of the ABA biosynthesis pathway) were grown in contrasting RHs (60% and 90%) to measure biomass partitioning, stomatal traits and water relations. Surprisingly, growth RH did not affect foliar ABA levels in either species. While Az34 showed similar stomatal size and density as WT plants, flacca had larger and more abundant stomata. High RH increased stomatal size in tomato, but decreased it in barley, and decreased stomatal density in tomato, but not in barley. Altered stomatal responses in ABA-deficient plants to high RH had little effect on tomato photosynthesis, but Az34 barley showed lower photosynthesis. ABA deficiency decreased relative shoot growth rate (RGRSHOOT ) in both species, yet this was counteracted by high RH increasing leaf water status in tomato, but not in barley. High RH increased RGRSHOOT in flacca, but not in WT tomatoes, while having no effect on RGRSHOOT in barley, but affecting barley net assimilation rate, leaf area ratio (LAR) and specific leaf area in an ABA-dependent manner. ABA-RH interaction affected leaf development in tomato only. Thus, different crop species show variable responses to both high RH and ABA deficiency, making it difficult to generalise on the role of ABA in growth regulation at contrasting RHs.
Collapse
Affiliation(s)
- Sheona N Innes
- Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Knut Asbjørn Solhaug
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway
| | - Sissel Torre
- Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Ian C Dodd
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| |
Collapse
|
23
|
Li S, Fang L, Hegelund JN, Liu F. Elevated CO 2 Modulates Plant Hydraulic Conductance Through Regulation of PIPs Under Progressive Soil Drying in Tomato Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:666066. [PMID: 34168667 PMCID: PMC8218578 DOI: 10.3389/fpls.2021.666066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/23/2021] [Indexed: 05/13/2023]
Abstract
Increasing atmospheric CO2 concentrations accompanied by abiotic stresses challenge food production worldwide. Elevated CO2 (e[CO2]) affects plant water relations via multiple mechanisms involving abscisic acid (ABA). Here, two tomato (Solanum lycopersicum) genotypes, Ailsa Craig (AC) and its ABA-deficient mutant (flacca), were used to investigate the responses of plant hydraulic conductance to e[CO2] and drought stress. Results showed that e[CO2] decreased transpiration rate (E) increased plant water use efficiency only in AC, whereas it increased daily plant water consumption and osmotic adjustment in both genotypes. Compared to growth at ambient [CO2], AC leaf and root hydraulic conductance (K leaf and K root) decreased at e[CO2], which coincided with the transcriptional regulations of genes of plasma membrane intrinsic proteins (PIPs) and OPEN STOMATA 1 (OST1), and these effects were attenuated in flacca during soil drying. Severe drought stress could override the effects of e[CO2] on plant water relation characteristics. In both genotypes, drought stress resulted in decreased E, K leaf, and K root accompanied by transcriptional responses of PIPs and OST1. However, under conditions combining e[CO2] and drought, some PIPs were not responsive to drought in AC, indicating that e[CO2] might disturb ABA-mediated drought responses. These results provide some new insights into mechanisms of plant hydraulic response to drought stress in a future CO2-enriched environment.
Collapse
|
24
|
Kaiser E, Morales A, Harbinson J, Heuvelink E, Marcelis LFM. High Stomatal Conductance in the Tomato Flacca Mutant Allows for Faster Photosynthetic Induction. FRONTIERS IN PLANT SCIENCE 2020; 11:1317. [PMID: 32983206 PMCID: PMC7477092 DOI: 10.3389/fpls.2020.01317] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 08/11/2020] [Indexed: 05/05/2023]
Abstract
Due to their slow movement and closure upon shade, partially closed stomata can be a substantial limitation to photosynthesis in variable light intensities. The abscisic acid deficient flacca mutant in tomato (Solanum lycopersicum) displays very high stomatal conductance (gs ). We aimed to determine to what extent this substantially increased gs affects the rate of photosynthetic induction. Steady-state and dynamic photosynthesis characteristics were measured in flacca and wildtype leaves, by the use of simultaneous gas exchange and chlorophyll fluorometry. The steady-state response of photosynthesis to CO2, maximum quantum efficiency of photosystem II photochemistry (Fv/Fm ), as well as mesophyll conductance to CO2 diffusion were not significantly different between genotypes, suggesting similar photosynthetic biochemistry, photoprotective capacity, and internal CO2 permeability. When leaves adapted to shade (50 µmol m-2 s-1) at 400 µbar CO2 partial pressure and high humidity (7 mbar leaf-to-air vapour pressure deficit, VPD) were exposed to high irradiance (1500 µmol m-2 s-1), photosynthetic induction was faster in flacca compared to wildtype leaves, and this was attributable to high initial gs in flacca (~0.6 mol m-2 s-1): in flacca, the times to reach 50 (t50 ) and 90% (t90 ) of full photosynthetic induction were 91 and 46% of wildtype values, respectively. Low humidity (15 mbar VPD) reduced gs and slowed down photosynthetic induction in the wildtype, while no change was observed in flacca; under low humidity, t50 was 63% and t90 was 36% of wildtype levels in flacca. Photosynthetic induction in low CO2 partial pressure (200 µbar) increased gs in the wildtype (but not in flacca), and revealed no differences in the rate of photosynthetic induction between genotypes. Effects of higher gs in flacca were also visible in transients of photosystem II operating efficiency and non-photochemical quenching. Our results show that at ambient CO2 partial pressure, wildtype gs is a substantial limitation to the rate of photosynthetic induction, which flacca overcomes by keeping its stomata open at all times, and it does so at the cost of reduced water use efficiency.
Collapse
Affiliation(s)
- Elias Kaiser
- Horticulture and Product Physiology, Department of Plant Sciences, Wageningen University, Wageningen, Netherlands
- *Correspondence: Elias Kaiser,
| | - Alejandro Morales
- Centre for Crop Systems Analysis, Department of Plant Sciences, Wageningen University, Wageningen, Netherlands
- Molecular Plant Physiology, Institute of Environmental Biology, Utrecht University, Utrecht, Netherlands
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, Utrecht, Netherlands
| | - Jeremy Harbinson
- Horticulture and Product Physiology, Department of Plant Sciences, Wageningen University, Wageningen, Netherlands
| | - Ep Heuvelink
- Horticulture and Product Physiology, Department of Plant Sciences, Wageningen University, Wageningen, Netherlands
| | - Leo F. M. Marcelis
- Horticulture and Product Physiology, Department of Plant Sciences, Wageningen University, Wageningen, Netherlands
| |
Collapse
|
25
|
Inhibition of vertebrate aldehyde oxidase as a therapeutic treatment for cancer, obesity, aging and amyotrophic lateral sclerosis. Eur J Med Chem 2019; 187:111948. [PMID: 31877540 DOI: 10.1016/j.ejmech.2019.111948] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/02/2019] [Accepted: 12/02/2019] [Indexed: 10/25/2022]
Abstract
The aldehyde oxidases (AOXs) are a small sub-family of cytosolic molybdo-flavoenzymes, which are structurally conserved proteins and broadly distributed from plants to animals. AOXs play multiple roles in both physiological and pathological processes and AOX inhibition is of increasing significance in the development of novel drugs and therapeutic strategies. This review provides an overview of the evolution and the action mechanism of AOX and the role of each domain. The review provides an update of the polymorphisms in the human AOX. This review also summarises the physiology of AOX in different organs and its role in drug metabolism. The inhibition of AOX is a promising therapeutic treatment for cancer, obesity, aging and amyotrophic lateral sclerosis.
Collapse
|
26
|
Unraveling Molecular and Genetic Studies of Wheat (Triticum aestivum L.) Resistance against Factors Causing Pre-Harvest Sprouting. AGRONOMY-BASEL 2019. [DOI: 10.3390/agronomy9030117] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Pre-harvest sprouting (PHS) is one of the most important factors having adverse effects on yield and grain quality all over the world, particularly in wet harvest conditions. PHS is controlled by both genetic and environmental factors and the interaction of these factors. Breeding varieties with high PHS resistance have important implications for reducing yield loss and improving grain quality. The rapid advancements in the wheat genomic database along with transcriptomic and proteomic technologies have broadened our knowledge for understanding the regulatory mechanism of PHS resistance at transcriptomic and post-transcriptomic levels. In this review, we have described in detail the recent advancements on factors influencing PHS resistance, including grain color, seed dormancy, α-amylase activity, plant hormones (especially abscisic acid and gibberellin), and QTL/genes, which are useful for mining new PHS-resistant genes and developing new molecular markers for multi-gene pyramiding breeding of wheat PHS resistance, and understanding the complicated regulatory mechanism of PHS resistance.
Collapse
|
27
|
Gascuel Q, Diretto G, Monforte AJ, Fortes AM, Granell A. Use of Natural Diversity and Biotechnology to Increase the Quality and Nutritional Content of Tomato and Grape. FRONTIERS IN PLANT SCIENCE 2017; 8:652. [PMID: 28553296 PMCID: PMC5427129 DOI: 10.3389/fpls.2017.00652] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 04/10/2017] [Indexed: 05/18/2023]
Abstract
Improving fruit quality has become a major goal in plant breeding. Direct approaches to tackling fruit quality traits specifically linked to consumer preferences and environmental friendliness, such as improved flavor, nutraceutical compounds, and sustainability, have slowly been added to a breeder priority list that already includes traits like productivity, efficiency, and, especially, pest and disease control. Breeders already use molecular genetic tools to improve fruit quality although most advances have been made in producer and industrial quality standards. Furthermore, progress has largely been limited to simple agronomic traits easy-to-observe, whereas the vast majority of quality attributes, specifically those relating to flavor and nutrition, are complex and have mostly been neglected. Fortunately, wild germplasm, which is used for resistance against/tolerance of environmental stresses (including pathogens), is still available and harbors significant genetic variation for taste and health-promoting traits. Similarly, heirloom/traditional varieties could be used to identify which genes contribute to flavor and health quality and, at the same time, serve as a good source of the best alleles for organoleptic quality improvement. Grape (Vitis vinifera L.) and tomato (Solanum lycopersicum L.) produce fleshy, berry-type fruits, among the most consumed in the world. Both have undergone important domestication and selection processes, that have dramatically reduced their genetic variability, and strongly standardized fruit traits. Moreover, more and more consumers are asking for sustainable production, incompatible with the wide range of chemical inputs. In the present paper, we review the genetic resources available to tomato/grape breeders, and the recent technological progresses that facilitate the identification of genes/alleles of interest within the natural or generated variability gene pool. These technologies include omics, high-throughput phenotyping/phenomics, and biotech approaches. Our review also covers a range of technologies used to transfer to tomato and grape those alleles considered of interest for fruit quality. These include traditional breeding, TILLING (Targeting Induced Local Lesions in Genomes), genetic engineering, or NPBT (New Plant Breeding Technologies). Altogether, the combined exploitation of genetic variability and innovative biotechnological tools may facilitate breeders to improve fruit quality tacking more into account the consumer standards and the needs to move forward into more sustainable farming practices.
Collapse
Affiliation(s)
- Quentin Gascuel
- Laboratory of Plant-Microbe Interactions, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Toulouse UniversityCastanet Tolosan, France
| | - Gianfranco Diretto
- Italian National Agency for New Technologies, Energy, and Sustainable Development, Casaccia Research CentreRome, Italy
| | - Antonio J. Monforte
- Instituto de Biología Molecular y Celular de Plantas, Agencia Estatal Consejo Superior de Investigaciones Científicas, Universidad Politécnica de ValenciaValencia, Spain
| | - Ana M. Fortes
- Faculdade de Ciências de Lisboa, Instituto de Biossistemas e Ciências Integrativas (BioISI), Universidade de LisboaLisboa, Portugal
| | - Antonio Granell
- Instituto de Biología Molecular y Celular de Plantas, Agencia Estatal Consejo Superior de Investigaciones Científicas, Universidad Politécnica de ValenciaValencia, Spain
| |
Collapse
|
28
|
Sussmilch FC, Brodribb TJ, McAdam SAM. What are the evolutionary origins of stomatal responses to abscisic acid in land plants? JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2017; 59:240-260. [PMID: 28093875 DOI: 10.1111/jipb.12523] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Accepted: 01/15/2017] [Indexed: 05/20/2023]
Abstract
The evolution of active stomatal closure in response to leaf water deficit, mediated by the hormone abscisic acid (ABA), has been the subject of recent debate. Two different models for the timing of the evolution of this response recur in the literature. A single-step model for stomatal control suggests that stomata evolved active, ABA-mediated control of stomatal aperture, when these structures first appeared, prior to the divergence of bryophyte and vascular plant lineages. In contrast, a gradualistic model for stomatal control proposes that the most basal vascular plant stomata responded passively to changes in leaf water status. This model suggests that active ABA-driven mechanisms for stomatal responses to water status instead evolved after the divergence of seed plants, culminating in the complex, ABA-mediated responses observed in modern angiosperms. Here we review the findings that form the basis for these two models, including recent work that provides critical molecular insights into resolving this intriguing debate, and find strong evidence to support a gradualistic model for stomatal evolution.
Collapse
Affiliation(s)
- Frances C Sussmilch
- School of Biological Sciences, University of Tasmania, Hobart, Tasmania, Australia
| | - Timothy J Brodribb
- School of Biological Sciences, University of Tasmania, Hobart, Tasmania, Australia
| | - Scott A M McAdam
- School of Biological Sciences, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
29
|
Kaufholdt D, Baillie CK, Meinen R, Mendel RR, Hänsch R. The Molybdenum Cofactor Biosynthesis Network: In vivo Protein-Protein Interactions of an Actin Associated Multi-Protein Complex. FRONTIERS IN PLANT SCIENCE 2017; 8:1946. [PMID: 29184564 PMCID: PMC5694649 DOI: 10.3389/fpls.2017.01946] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 10/30/2017] [Indexed: 05/09/2023]
Abstract
Survival of plants and nearly all organisms depends on the pterin based molybdenum cofactor (Moco) as well as its effective biosynthesis and insertion into apo-enzymes. To this end, both the central Moco biosynthesis enzymes are characterized and the conserved four-step reaction pathway for Moco biosynthesis is well-understood. However, protection mechanisms to prevent degradation during biosynthesis as well as transfer of the highly oxygen sensitive Moco and its intermediates are not fully enlightened. The formation of protein complexes involving transient protein-protein interactions is an efficient strategy for protected metabolic channelling of sensitive molecules. In this review, Moco biosynthesis and allocation network is presented and discussed. This network was intensively studied based on two in vivo interaction methods: bimolecular fluorescence complementation (BiFC) and split-luciferase. Whereas BiFC allows localisation of interacting partners, split-luciferase assay determines interaction strengths in vivo. Results demonstrate (i) interaction of Cnx2 and Cnx3 within the mitochondria and (ii) assembly of a biosynthesis complex including the cytosolic enzymes Cnx5, Cnx6, Cnx7, and Cnx1, which enables a protected transfer of intermediates. The whole complex is associated with actin filaments via Cnx1 as anchor protein. After biosynthesis, Moco needs to be handed over to the specific apo-enzymes. A potential pathway was discovered. Molybdenum-containing enzymes of the sulphite oxidase family interact directly with Cnx1. In contrast, the xanthine oxidoreductase family acquires Moco indirectly via a Moco binding protein (MoBP2) and Moco sulphurase ABA3. In summary, the uncovered interaction matrix enables an efficient transfer for intermediate and product protection via micro-compartmentation.
Collapse
|
30
|
Hadi F, Ali N, Fuller MP. Molybdenum (Mo) increases endogenous phenolics, proline and photosynthetic pigments and the phytoremediation potential of the industrially important plant Ricinus communis L. for removal of cadmium from contaminated soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:20408-20430. [PMID: 27457556 DOI: 10.1007/s11356-016-7230-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 07/11/2016] [Indexed: 05/26/2023]
Abstract
Cadmium (Cd) in agricultural soil negatively affects crops yield and compromises food safety. Remediation of polluted soil is necessary for the re-establishment of sustainable agriculture and to prevent hazards to human health and environmental pollution. Phytoremediation is a promising technology for decontamination of polluted soil. The present study investigated the effect of molybdenum (Mo) (0.5, 1.0 and 2.0 ppm) on endogenous production of total phenolics and free proline, plant biomass and photosynthetic pigments in Ricinus communis plants grown in Cd (25, 50 and 100 ppm) contaminated soils and the potential for Cd phytoextraction. Mo was applied via seed soaking, soil addition and foliar spray. Foliar sprays significantly increased plant biomass, Cd accumulation and bioconcentration. Phenolic concentrations showed significantly positive correlations with Cd accumulation in roots (R 2 = 0.793, 0.807 and 0.739) and leaves (R 2 = 0.707, 721 and 0.866). Similarly, proline was significantly positively correlated with Cd accumulation in roots (R 2 = 0.668, 0.694 and 0.673) and leaves (R 2 = 0.831, 0.964 and 0.930). Foliar application was found to be the most effective way to deliver Mo in terms of increase in plant growth, Cd accumulation and production of phenolics and proline.
Collapse
Affiliation(s)
- Fazal Hadi
- Department of Biotechnology, University of Malakand, Chakdara, Dir Lower, Khyber Pakhtunkhwa, 18800, Pakistan.
| | - Nasir Ali
- Department of Biotechnology, University of Malakand, Chakdara, Dir Lower, Khyber Pakhtunkhwa, 18800, Pakistan
- Department of Biotechnology and Microbiology, Sarhad University of Science and Information Technology, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | | |
Collapse
|
31
|
Ferrández-Ayela A, Sánchez-García AB, Martínez-Andújar C, Kevei Z, Gifford ML, Thompson AJ, Pérez-Alfocea F, Pérez-Pérez JM. Identification of novel stress-responsive biomarkers from gene expression datasets in tomato roots. FUNCTIONAL PLANT BIOLOGY : FPB 2016; 43:783-796. [PMID: 32480503 DOI: 10.1071/fp15385] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 04/18/2016] [Indexed: 06/11/2023]
Abstract
Abiotic stresses such as heat, drought or salinity have been widely studied individually. Nevertheless, in the nature and in the field, plants and crops are commonly exposed to a different combination of stresses, which often result in a synergistic response mediated by the activation of several molecular pathways that cannot be inferred from the response to each individual stress. By screening microarray data obtained from different plant species and under different stresses, we identified several conserved stress-responsive genes whose expression was differentially regulated in tomato (Solanum lycopersicum L.) roots in response to one or several stresses. We validated 10 of these genes as reliable biomarkers whose expression levels are related to different signalling pathways involved in adaptive stress responses. In addition, the genes identified in this work could be used as general salt-stress biomarkers to rapidly evaluate the response of salt-tolerant cultivars and wild species for which sufficient genetic information is not yet available.
Collapse
Affiliation(s)
| | | | | | - Zoltan Kevei
- Cranfield Soil and AgriFood Institute, School of Energy, Environment and Agrifood, Cranfield University, Cranfield, Bedfordshire, MK43 0AL, UK
| | - Miriam L Gifford
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | - Andrew J Thompson
- Cranfield Soil and AgriFood Institute, School of Energy, Environment and Agrifood, Cranfield University, Cranfield, Bedfordshire, MK43 0AL, UK
| | | | | |
Collapse
|
32
|
McAdam SAM, Sussmilch FC, Brodribb TJ. Stomatal responses to vapour pressure deficit are regulated by high speed gene expression in angiosperms. PLANT, CELL & ENVIRONMENT 2016; 39:485-91. [PMID: 26353082 DOI: 10.1111/pce.12633] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 08/27/2015] [Indexed: 05/21/2023]
Abstract
Plants dynamically regulate water use by the movement of stomata on the surface of leaves. Stomatal responses to changes in vapour pressure deficit (VPD) are the principal regulator of daytime transpiration and water use efficiency in land plants. In angiosperms, stomatal responses to VPD appear to be regulated by the phytohormone abscisic acid (ABA), yet the origin of this ABA is controversial. After a 20 min exposure of plants, from three diverse angiosperm species, to a doubling in VPD, stomata closed, foliar ABA levels increased and the expression of the gene encoding the key, rate-limiting carotenoid cleavage enzyme (9-cis-epoxycarotenoid dioxygenase, NCED) in the ABA biosynthetic pathway was significantly up-regulated. The NCED gene was the only gene in the ABA biosynthetic pathway to be up-regulated over the short time scale corresponding to the response of stomata. The closure of stomata and rapid increase in foliar ABA levels could not be explained by the release of ABA from internal stores in the leaf or the hydrolysis of the conjugate ABA-glucose ester. These results implicate an extremely rapid de novo biosynthesis of ABA, mediated by a single gene, as the means by which angiosperm stomata respond to natural changes in VPD.
Collapse
Affiliation(s)
- Scott A M McAdam
- School of Biological Sciences, University of Tasmania, Private Bag 55, Hobart, Tasmania, 7001, Australia
| | - Frances C Sussmilch
- School of Biological Sciences, University of Tasmania, Private Bag 55, Hobart, Tasmania, 7001, Australia
| | - Timothy J Brodribb
- School of Biological Sciences, University of Tasmania, Private Bag 55, Hobart, Tasmania, 7001, Australia
| |
Collapse
|
33
|
Hamisch D, Kaufholdt D, Kuchernig JC, Bittner F, Mendel RR, Hänsch R, Popko J. Transgenic Poplar Plants for the Investigation of ABA-Dependent Salt and Drought Stress Adaptation in Trees. ACTA ACUST UNITED AC 2016. [DOI: 10.4236/ajps.2016.79128] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
34
|
|
35
|
McAdam SAM, Sussmilch FC, Brodribb TJ, Ross JJ. Molecular characterization of a mutation affecting abscisic acid biosynthesis and consequently stomatal responses to humidity in an agriculturally important species. AOB PLANTS 2015; 7:plv091. [PMID: 26216469 PMCID: PMC4583606 DOI: 10.1093/aobpla/plv091] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 07/20/2015] [Indexed: 05/04/2023]
Abstract
Mutants deficient in the phytohormone abscisic acid (ABA) have been instrumental in determining not only the biosynthetic pathway for this hormone, but also its physiological role in land plants. The wilty mutant of Pisum sativum is one of the classical, well-studied ABA-deficient mutants; however, this mutant remains uncharacterized at a molecular level. Using a candidate gene approach, we show that the wilty mutation affects the xanthoxin dehydrogenase step in ABA biosynthesis. To date, this step has only been represented by mutants in the ABA2 gene of Arabidopsis thaliana. Functional ABA biosynthesis appears to be critical for normal stomatal responses to changes in humidity in angiosperms, with wilty mutant plants having no increase in foliar ABA levels in response to a doubling in vapour pressure deficit, and no closure of stomata. Phylogenetic analysis of the ABA2 gene family from diverse land plants indicates that an ABA-biosynthesis-specific short-chain dehydrogenase (ABA2) evolved in the earliest angiosperms. The relatively recent origin of specificity in this step has important implications for both the evolution of ABA biosynthesis and action in land plants.
Collapse
Affiliation(s)
- Scott A M McAdam
- School of Biological Sciences, University of Tasmania, Private Bag 55, Hobart, TAS 7005, Australia
| | - Frances C Sussmilch
- School of Biological Sciences, University of Tasmania, Private Bag 55, Hobart, TAS 7005, Australia
| | - Timothy J Brodribb
- School of Biological Sciences, University of Tasmania, Private Bag 55, Hobart, TAS 7005, Australia
| | - John J Ross
- School of Biological Sciences, University of Tasmania, Private Bag 55, Hobart, TAS 7005, Australia
| |
Collapse
|
36
|
Yu HQ, Zhang YY, Yong TM, Liu YP, Zhou SF, Fu FL, Li WC. Cloning and functional validation of molybdenum cofactor sulfurase gene from Ammopiptanthus nanus. PLANT CELL REPORTS 2015; 34:1165-1176. [PMID: 25721201 DOI: 10.1007/s00299-015-1775-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 02/09/2015] [Accepted: 02/17/2015] [Indexed: 06/04/2023]
Abstract
The molybdenum cofactor sulfurase gene ( AnMCSU ) was cloned from xerophytic desert plant Ammopiptanthus nanus and validated for its function of tolerance toward abiotic stresses by heterologous expression in Arabidopsis thaliana. Molybdenum cofactor sulfurase participates in catalyzing biosynthesis of abscisic acid, which plays a crucial role in the response of plants to abiotic stresses. In this study, we cloned molybdenum cofactor sulfurase gene (AnMCSU) from a super-xerophytic desert plant, Ammopiptanthus nanus, by using rapid amplification of cDNA ends method. This gene has a total length of 2544 bp, with a 5'- and a 3'-untranslated region of 167 and 88 bp, and an open reading frame of 2289 bp, which encodes an 84.85 kDa protein of 762 amino acids. The putative amino acid sequence shares high homology and conserved amino acid residues crucial for the function of molybdenum cofactor sulfurases with other leguminous species. The encoded protein of the AnMCSU gene was located in the cytoplasm by transient expression in Nicotiana benthamiana. The result of real-time quantitative PCR showed that the expression of the AnMCSU gene was induced by heat, dehydration, high salt stresses, and ABA induction, and inhibited by cold stress. The heterologous expression of the AnMCSU gene significantly enhanced the tolerance of Arabidopsis thaliana to high salt, cold, osmotic stresses, and abscisic acid induction. All these results suggest that the AnMCSU gene might play a crucial role in the adaptation of A. nanus to abiotic stress and has potential to be applied to transgenic improvement of commercial crops.
Collapse
Affiliation(s)
- Hao Qiang Yu
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
37
|
Azzi L, Deluche C, Gévaudant F, Frangne N, Delmas F, Hernould M, Chevalier C. Fruit growth-related genes in tomato. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:1075-86. [PMID: 25573859 DOI: 10.1093/jxb/eru527] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Tomato (Solanum lycopersicum Mill.) represents a model species for all fleshy fruits due to its biological cycle and the availability of numerous genetic and molecular resources. Its importance in human nutrition has made it one of the most valuable worldwide commodities. Tomato fruit size results from the combination of cell number and cell size, which are determined by both cell division and expansion. As fruit growth is mainly driven by cell expansion, cells from the (fleshy) pericarp tissue become highly polyploid according to the endoreduplication process, reaching a DNA content rarely encountered in other plant species (between 2C and 512C). Both cell division and cell expansion are under the control of complex interactions between hormone signalling and carbon partitioning, which establish crucial determinants of the quality of ripe fruit, such as the final size, weight, and shape, and organoleptic and nutritional traits. This review describes the genes known to contribute to fruit growth in tomato.
Collapse
Affiliation(s)
- Lamia Azzi
- University of Bordeaux, UMR1332 Biologie du Fruit et Pathologie, INRA Bordeaux Aquitaine, CS20032, F-33882 Villenave d'Ornon cedex, France
| | - Cynthia Deluche
- University of Bordeaux, UMR1332 Biologie du Fruit et Pathologie, INRA Bordeaux Aquitaine, CS20032, F-33882 Villenave d'Ornon cedex, France
| | - Frédéric Gévaudant
- University of Bordeaux, UMR1332 Biologie du Fruit et Pathologie, INRA Bordeaux Aquitaine, CS20032, F-33882 Villenave d'Ornon cedex, France
| | - Nathalie Frangne
- University of Bordeaux, UMR1332 Biologie du Fruit et Pathologie, INRA Bordeaux Aquitaine, CS20032, F-33882 Villenave d'Ornon cedex, France
| | - Frédéric Delmas
- University of Bordeaux, UMR1332 Biologie du Fruit et Pathologie, INRA Bordeaux Aquitaine, CS20032, F-33882 Villenave d'Ornon cedex, France
| | - Michel Hernould
- University of Bordeaux, UMR1332 Biologie du Fruit et Pathologie, INRA Bordeaux Aquitaine, CS20032, F-33882 Villenave d'Ornon cedex, France
| | - Christian Chevalier
- INRA, UMR1332 Biologie du Fruit et Pathologie, INRA Bordeaux Aquitaine, CS20032, F-33882, Villenave d'Ornon cedex, France
| |
Collapse
|
38
|
Yarmolinsky D, Brychkova G, Kurmanbayeva A, Bekturova A, Ventura Y, Khozin-Goldberg I, Eppel A, Fluhr R, Sagi M. Impairment in Sulfite Reductase Leads to Early Leaf Senescence in Tomato Plants. PLANT PHYSIOLOGY 2014; 165:1505-1520. [PMID: 24987017 PMCID: PMC4119034 DOI: 10.1104/pp.114.241356] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 06/30/2014] [Indexed: 05/03/2023]
Abstract
Sulfite reductase (SiR) is an essential enzyme of the sulfate assimilation reductive pathway, which catalyzes the reduction of sulfite to sulfide. Here, we show that tomato (Solanum lycopersicum) plants with impaired SiR expression due to RNA interference (SIR Ri) developed early leaf senescence. The visual chlorophyll degradation in leaves of SIR Ri mutants was accompanied by a reduction of maximal quantum yield, as well as accumulation of hydrogen peroxide and malondialdehyde, a product of lipid peroxidation. Interestingly, messenger RNA transcripts and proteins involved in chlorophyll breakdown in the chloroplasts were found to be enhanced in the mutants, while transcripts and their plastidic proteins, functioning in photosystem II, were reduced in these mutants compared with wild-type leaves. As a consequence of SiR impairment, the levels of sulfite, sulfate, and thiosulfate were higher and glutathione levels were lower compared with the wild type. Unexpectedly, in a futile attempt to compensate for the low glutathione, the activity of adenosine-5'-phosphosulfate reductase was enhanced, leading to further sulfite accumulation in SIR Ri plants. Increased sulfite oxidation to sulfate and incorporation of sulfite into sulfoquinovosyl diacylglycerols were not sufficient to maintain low basal sulfite levels, resulting in accumulative leaf damage in mutant leaves. Our results indicate that, in addition to its biosynthetic role, SiR plays an important role in prevention of premature senescence. The higher sulfite is likely the main reason for the initiation of chlorophyll degradation, while the lower glutathione as well as the higher hydrogen peroxide and malondialdehyde additionally contribute to premature senescence in mutant leaves.
Collapse
Affiliation(s)
- Dmitry Yarmolinsky
- The Jacob Blaustein Institute for Desert Research, Albert Katz Department of Dryland Biotechnologies, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel (D.Y., G.B., A.K., A.B., Y.V., I.K.-G., A.E., M.S.); andDepartment of Plant Sciences, Weizmann Institute of Science, Rehovot 76100, Israel (R.F.)
| | - Galina Brychkova
- The Jacob Blaustein Institute for Desert Research, Albert Katz Department of Dryland Biotechnologies, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel (D.Y., G.B., A.K., A.B., Y.V., I.K.-G., A.E., M.S.); andDepartment of Plant Sciences, Weizmann Institute of Science, Rehovot 76100, Israel (R.F.)
| | - Assylay Kurmanbayeva
- The Jacob Blaustein Institute for Desert Research, Albert Katz Department of Dryland Biotechnologies, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel (D.Y., G.B., A.K., A.B., Y.V., I.K.-G., A.E., M.S.); andDepartment of Plant Sciences, Weizmann Institute of Science, Rehovot 76100, Israel (R.F.)
| | - Aizat Bekturova
- The Jacob Blaustein Institute for Desert Research, Albert Katz Department of Dryland Biotechnologies, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel (D.Y., G.B., A.K., A.B., Y.V., I.K.-G., A.E., M.S.); andDepartment of Plant Sciences, Weizmann Institute of Science, Rehovot 76100, Israel (R.F.)
| | - Yvonne Ventura
- The Jacob Blaustein Institute for Desert Research, Albert Katz Department of Dryland Biotechnologies, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel (D.Y., G.B., A.K., A.B., Y.V., I.K.-G., A.E., M.S.); andDepartment of Plant Sciences, Weizmann Institute of Science, Rehovot 76100, Israel (R.F.)
| | - Inna Khozin-Goldberg
- The Jacob Blaustein Institute for Desert Research, Albert Katz Department of Dryland Biotechnologies, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel (D.Y., G.B., A.K., A.B., Y.V., I.K.-G., A.E., M.S.); andDepartment of Plant Sciences, Weizmann Institute of Science, Rehovot 76100, Israel (R.F.)
| | - Amir Eppel
- The Jacob Blaustein Institute for Desert Research, Albert Katz Department of Dryland Biotechnologies, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel (D.Y., G.B., A.K., A.B., Y.V., I.K.-G., A.E., M.S.); andDepartment of Plant Sciences, Weizmann Institute of Science, Rehovot 76100, Israel (R.F.)
| | - Robert Fluhr
- The Jacob Blaustein Institute for Desert Research, Albert Katz Department of Dryland Biotechnologies, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel (D.Y., G.B., A.K., A.B., Y.V., I.K.-G., A.E., M.S.); andDepartment of Plant Sciences, Weizmann Institute of Science, Rehovot 76100, Israel (R.F.)
| | - Moshe Sagi
- The Jacob Blaustein Institute for Desert Research, Albert Katz Department of Dryland Biotechnologies, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel (D.Y., G.B., A.K., A.B., Y.V., I.K.-G., A.E., M.S.); andDepartment of Plant Sciences, Weizmann Institute of Science, Rehovot 76100, Israel (R.F.)
| |
Collapse
|
39
|
Du M, Zhai Q, Deng L, Li S, Li H, Yan L, Huang Z, Wang B, Jiang H, Huang T, Li CB, Wei J, Kang L, Li J, Li C. Closely related NAC transcription factors of tomato differentially regulate stomatal closure and reopening during pathogen attack. THE PLANT CELL 2014; 26:3167-84. [PMID: 25005917 PMCID: PMC4145139 DOI: 10.1105/tpc.114.128272] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Revised: 06/18/2014] [Accepted: 06/26/2014] [Indexed: 05/18/2023]
Abstract
To restrict pathogen entry, plants close stomata as an integral part of innate immunity. To counteract this defense, Pseudomonas syringae pv tomato produces coronatine (COR), which mimics jasmonic acid (JA), to reopen stomata for bacterial entry. It is believed that abscisic acid (ABA) plays a central role in regulating bacteria-triggered stomatal closure and that stomatal reopening requires the JA/COR pathway, but the downstream signaling events remain unclear. We studied the stomatal immunity of tomato (Solanum lycopersicum) and report here the distinct roles of two homologous NAC (for NAM, ATAF1,2, and CUC2) transcription factors, JA2 (for jasmonic acid2) and JA2L (for JA2-like), in regulating pathogen-triggered stomatal movement. ABA activates JA2 expression, and genetic manipulation of JA2 revealed its positive role in ABA-mediated stomatal closure. We show that JA2 exerts this effect by regulating the expression of an ABA biosynthetic gene. By contrast, JA and COR activate JA2L expression, and genetic manipulation of JA2L revealed its positive role in JA/COR-mediated stomatal reopening. We show that JA2L executes this effect by regulating the expression of genes involved in the metabolism of salicylic acid. Thus, these closely related NAC proteins differentially regulate pathogen-induced stomatal closure and reopening through distinct mechanisms.
Collapse
Affiliation(s)
- Minmin Du
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China College of Horticulture, Northeast Agricultural University, Harbin 150030, China
| | - Qingzhe Zhai
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Lei Deng
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shuyu Li
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hongshuang Li
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Liuhua Yan
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhuo Huang
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Bao Wang
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hongling Jiang
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Tingting Huang
- Institute of Vegetable, Qingdao Academy of Agricultural Sciences, Qingdao 266100, China
| | - Chang-Bao Li
- Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Jianing Wei
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100080, China
| | - Le Kang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100080, China
| | - Jingfu Li
- College of Horticulture, Northeast Agricultural University, Harbin 150030, China
| | - Chuanyou Li
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
40
|
Affiliation(s)
- Russ Hille
- Department of Biochemistry, University of California, Riverside, Riverside, California 92521, United States
| | - James Hall
- Department of Biochemistry, University of California, Riverside, Riverside, California 92521, United States
| | - Partha Basu
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, Pennsylvania 15282, United States
| |
Collapse
|
41
|
Porcel R, Zamarreño ÁM, García-Mina JM, Aroca R. Involvement of plant endogenous ABA in Bacillus megaterium PGPR activity in tomato plants. BMC PLANT BIOLOGY 2014; 14:36. [PMID: 24460926 PMCID: PMC3903769 DOI: 10.1186/1471-2229-14-36] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 01/23/2014] [Indexed: 05/08/2023]
Abstract
BACKGROUND Plant growth-promoting rhizobacteria (PGPR) are naturally occurring soil bacteria which benefit plants by improving plant productivity and immunity. The mechanisms involved in these processes include the regulation of plant hormone levels such as ethylene and abscisic acid (ABA). The aim of the present study was to determine whether the activity of Bacillus megaterium PGPR is affected by the endogenous ABA content of the host plant. The ABA-deficient tomato mutants flacca and sitiens and their near-isogenic wild-type parental lines were used. Growth, stomatal conductance, shoot hormone concentration, competition assay for colonization of tomato root tips, and root expression of plant genes expected to be modulated by ABA and PGPR were examined. RESULTS Contrary to the wild-type plants in which PGPR stimulated growth rates, PGPR caused growth inhibition in ABA-deficient mutant plants. PGPR also triggered an over accumulation of ethylene in ABA-deficient plants which correlated with a higher expression of the pathogenesis-related gene Sl-PR1b. CONCLUSIONS Positive correlation between over-accumulation of ethylene and a higher expression of Sl-PR1b in ABA-deficient mutant plants could indicate that maintenance of normal plant endogenous ABA content may be essential for the growth promoting action of B. megaterium by keeping low levels of ethylene production.
Collapse
Affiliation(s)
- Rosa Porcel
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín (EEZ-CSIC), Profesor Albareda 1, 18008 Granada, Spain
| | - Ángel María Zamarreño
- CIPAV TimacAGRO International-Roullier Group, Polígono Arazuri-Orkoien, c/C no. 32, 31160-Orkoien, Navarra, Spain
| | - José María García-Mina
- CIPAV TimacAGRO International-Roullier Group, Polígono Arazuri-Orkoien, c/C no. 32, 31160-Orkoien, Navarra, Spain
| | - Ricardo Aroca
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín (EEZ-CSIC), Profesor Albareda 1, 18008 Granada, Spain
| |
Collapse
|
42
|
Zdunek-Zastocka E, Sobczak M. Expression of Pisum sativum PsAO3 gene, which encodes an aldehyde oxidase utilizing abscisic aldehyde, is induced under progressively but not rapidly imposed drought stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 71:57-66. [PMID: 23876699 DOI: 10.1016/j.plaphy.2013.06.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2013] [Accepted: 06/29/2013] [Indexed: 06/02/2023]
Abstract
Aldehyde oxidase (AO; EC 1.2.3.1) catalyzes the final step of abscisic acid (ABA) biosynthesis, which is the oxidation of abscisic aldehyde (ABAld) to ABA. Gene expression analyses indicate that the stress-induced Pisum sativum PsAOγ isoform, which effectively uses ABAld as a substrate, is encoded by the PsAO3 gene. PsAO3 was heterologously expressed in Pichia pastoris and the recombinant PsAO3 protein revealed substrate preferences highly similar to the native PsAOγ protein present in the pea leaves and roots. Both proteins prefer indole-3-aldehyde and naphthaldehyde as substrates, although high activities against abscisic aldehyde and citral were also observed. The Km values of PsAO3 for naphthaldehyde and abscisic aldehyde (4.6 and 5.1 μM, respectively) were the lowest among the substrates tested. PsAO3 activity was almost completely inhibited by potassium cyanide, diphenyleneiodonium, and methanol. Rapidly imposed drought stress did not increase the level of PsAO3 mRNA or activity of any AO isoform, although an enhanced ABA accumulation and induction of PsNCED2 and -3 (9-cis-epoxycarotenoid dioxygenase; EC 1.13.11.51) expression, both in the pea roots and leaves, was observed. During a progressively induced drought, the level of PsAO3 transcript and PsAOγ activity increased significantly in the roots and leaves, whereas ABA accumulation occurred only in the leaves where it was accompanied by induction of the PsNCED3 expression. Therefore, we suppose that next to NCED, also AO (mainly PsAOγ) might be involved in regulation of the drought-induced ABA synthesis. However, while the "constitutive activity" of PsAOγ is sufficient for the fast generation of ABA under rapid drought stress, the enhanced PsAOγ activity is required for the progressive and long-term ABA accumulation in the leaves under progressive drought stress.
Collapse
Affiliation(s)
- Edyta Zdunek-Zastocka
- Department of Biochemistry, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland.
| | | |
Collapse
|
43
|
Alexandre A, Silva J, Buapet P, Björk M, Santos R. Effects of CO(2) enrichment on photosynthesis, growth, and nitrogen metabolism of the seagrass Zostera noltii. Ecol Evol 2012; 2:2625-35. [PMID: 23145346 PMCID: PMC3492787 DOI: 10.1002/ece3.333] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 06/19/2012] [Accepted: 06/22/2012] [Indexed: 11/21/2022] Open
Abstract
Seagrass ecosystems are expected to benefit from the global increase in CO(2) in the ocean because the photosynthetic rate of these plants may be C(i)-limited at the current CO(2) level. As well, it is expected that lower external pH will facilitate the nitrate uptake of seagrasses if nitrate is cotransported with H(+) across the membrane as in terrestrial plants. Here, we investigate the effects of CO(2) enrichment on both carbon and nitrogen metabolism of the seagrass Zostera noltii in a mesocosm experiment where plants were exposed for 5 months to two experimental CO(2) concentrations (360 and 700 ppm). Both the maximum photosynthetic rate (P(m)) and photosynthetic efficiency (α) were higher (1.3- and 4.1-fold, respectively) in plants exposed to CO(2)-enriched conditions. On the other hand, no significant effects of CO(2) enrichment on leaf growth rates were observed, probably due to nitrogen limitation as revealed by the low nitrogen content of leaves. The leaf ammonium uptake rate and glutamine synthetase activity were not significantly affected by increased CO(2) concentrations. On the other hand, the leaf nitrate uptake rate of plants exposed to CO(2)-enriched conditions was fourfold lower than the uptake of plants exposed to current CO(2) level, suggesting that in the seagrass Z. noltii nitrate is not cotransported with H(+) as in terrestrial plants. In contrast, the activity of nitrate reductase was threefold higher in plant leaves grown at high-CO(2) concentrations. Our results suggest that the global effects of CO(2) on seagrass production may be spatially heterogeneous and depend on the specific nitrogen availability of each system. Under a CO(2) increase scenario, the natural levels of nutrients will probably become limiting for Z. noltii. This potential limitation becomes more relevant because the expected positive effect of CO(2) increase on nitrate uptake rate was not confirmed.
Collapse
Affiliation(s)
- Ana Alexandre
- Marine Plant Ecology Research Group, CCMAR – Centre of Marine Sciences, Universidade do AlgarveFaro, Portugal
| | - João Silva
- Marine Plant Ecology Research Group, CCMAR – Centre of Marine Sciences, Universidade do AlgarveFaro, Portugal
| | | | - Mats Björk
- Botany Department, Stockholm UniversityStockholm, Sweden
| | - Rui Santos
- Marine Plant Ecology Research Group, CCMAR – Centre of Marine Sciences, Universidade do AlgarveFaro, Portugal
| |
Collapse
|
44
|
Nitsch L, Kohlen W, Oplaat C, Charnikhova T, Cristescu S, Michieli P, Wolters-Arts M, Bouwmeester H, Mariani C, Vriezen WH, Rieu I. ABA-deficiency results in reduced plant and fruit size in tomato. JOURNAL OF PLANT PHYSIOLOGY 2012; 169:878-83. [PMID: 22424572 DOI: 10.1016/j.jplph.2012.02.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 02/15/2012] [Accepted: 02/16/2012] [Indexed: 05/08/2023]
Abstract
Abscisic acid (ABA) deficient mutants, such as notabilis and flacca, have helped elucidating the role of ABA during plant development and stress responses in tomato (Solanum lycopersicum L.). However, these mutants have only moderately decreased ABA levels. Here we report on plant and fruit development in the more strongly ABA-deficient notabilis/flacca (not/flc) double mutant. We observed that plant growth, leaf-surface area, drought-induced wilting and ABA-related gene expression in the different genotypes were strongly correlated with the ABA levels and thus most strongly affected in the not/flc double mutants. These mutants also had reduced fruit size that was caused by an overall smaller cell size. Lower ABA levels in fruits did not correlate with changes in auxin levels, but were accompanied by higher ethylene evolution rates. This suggests that in a wild-type background ABA stimulates cell enlargement during tomato fruit growth via a negative effect on ethylene synthesis.
Collapse
Affiliation(s)
- L Nitsch
- Radboud University Nijmegen, IWWR, Department of Molecular Plant Physiology, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Identification of persulfide-binding and disulfide-forming cysteine residues in the NifS-like domain of the molybdenum cofactor sulfurase ABA3 by cysteine-scanning mutagenesis. Biochem J 2012; 441:823-32. [DOI: 10.1042/bj20111170] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The Moco (molybdenum cofactor) sulfurase ABA3 from Arabidopsis thaliana catalyses the sulfuration of the Moco of aldehyde oxidase and xanthine oxidoreductase, which represents the final activation step of these enzymes. ABA3 consists of an N-terminal NifS-like domain that exhibits L-cysteine desulfurase activity and a C-terminal domain that binds sulfurated Moco. The strictly conserved Cys430 in the NifS-like domain binds a persulfide intermediate, which is abstracted from the substrate L-cysteine and finally needs to be transferred to the Moco of aldehyde oxidase and xanthine oxidoreductase. In addition to Cys430, another eight cysteine residues are located in the NifS-like domain, with two of them being highly conserved among Moco sulfurase proteins and, at the same time, being in close proximity to Cys430. By determination of the number of surface-exposed cysteine residues and the number of persulfide-binding cysteine residues in combination with the sequential substitution of each of the nine cysteine residues, a second persulfide-binding cysteine residue, Cys206, was identified. Furthermore, the active-site Cys430 was found to be located on top of a loop structure, formed by the two flanking residues Cys428 and Cys435, which are likely to form an intramolecular disulfide bridge. These findings are confirmed by a structural model of the NifS-like domain, which indicates that Cys428 and Cys435 are within disulfide bond distance and that a persulfide transfer from Cys430 to Cys206 is indeed possible.
Collapse
|
46
|
Abstract
Recent progress in our understanding of the structural and catalytic properties of molybdenum-containing enzymes in eukaryotes is reviewed, along with aspects of the biosynthesis of the cofactor and its insertion into apoprotein.
Collapse
Affiliation(s)
- Russ Hille
- Department of Biochemistry, University of California, Riverside, CA 92521
| | - Takeshi Nishino
- Department of Biochemistry and Molecular Biology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, Japan and Department of Biochemistry, University of California, Riverside, CA 92521
| | - Florian Bittner
- Department of Plant Biology, Technical University of Braunschweig, 38023 Braunschweig, Germany
| |
Collapse
|
47
|
López-Ráez JA, Kohlen W, Charnikhova T, Mulder P, Undas AK, Sergeant MJ, Verstappen F, Bugg TDH, Thompson AJ, Ruyter-Spira C, Bouwmeester H. Does abscisic acid affect strigolactone biosynthesis? THE NEW PHYTOLOGIST 2010; 187:343-354. [PMID: 20487312 DOI: 10.1111/j.1469-8137.2010.03291.x] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
*Strigolactones are considered a novel class of plant hormones that, in addition to their endogenous signalling function, are exuded into the rhizosphere acting as a signal to stimulate hyphal branching of arbuscular mycorrhizal (AM) fungi and germination of root parasitic plant seeds. Considering the importance of the strigolactones and their biosynthetic origin (from carotenoids), we investigated the relationship with the plant hormone abscisic acid (ABA). *Strigolactone production and ABA content in the presence of specific inhibitors of oxidative carotenoid cleavage enzymes and in several tomato ABA-deficient mutants were analysed by LC-MS/MS. In addition, the expression of two genes involved in strigolactone biosynthesis was studied. *The carotenoid cleavage dioxygenase (CCD) inhibitor D2 reduced strigolactone but not ABA content of roots. However, in abamineSG-treated plants, an inhibitor of 9-cis-epoxycarotenoid dioxygenase (NCED), and the ABA mutants notabilis, sitiens and flacca, ABA and strigolactones were greatly reduced. The reduction in strigolactone production correlated with the downregulation of LeCCD7 and LeCCD8 genes in all three mutants. *The results show a correlation between ABA levels and strigolactone production, and suggest a role for ABA in the regulation of strigolactone biosynthesis.
Collapse
Affiliation(s)
- Juan A López-Ráez
- Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, NL-6708 PB Wageningen, the Netherlands
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín (CSIC), Profesor Albareda 1, 18008 Granada, Spain
| | - Wouter Kohlen
- Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, NL-6708 PB Wageningen, the Netherlands
| | - Tatsiana Charnikhova
- Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, NL-6708 PB Wageningen, the Netherlands
| | - Patrick Mulder
- RIKILT, Institute of Food Safety, Bornsesteeg 45, NL-6708 PD Wageningen, the Netherlands
| | - Anna K Undas
- Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, NL-6708 PB Wageningen, the Netherlands
- Centre for Biosystems Genomics, PO Box 98, NL-6700 AB Wageningen, the Netherlands
| | - Martin J Sergeant
- Warwick-HRI, Wellesbourne, University of Warwick, Warwickshire, CV35 9EF, UK
| | - Francel Verstappen
- Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, NL-6708 PB Wageningen, the Netherlands
- Centre for Biosystems Genomics, PO Box 98, NL-6700 AB Wageningen, the Netherlands
| | - Timothy D H Bugg
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | - Andrew J Thompson
- Warwick-HRI, Wellesbourne, University of Warwick, Warwickshire, CV35 9EF, UK
| | - Carolien Ruyter-Spira
- Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, NL-6708 PB Wageningen, the Netherlands
| | - Harro Bouwmeester
- Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, NL-6708 PB Wageningen, the Netherlands
- Centre for Biosystems Genomics, PO Box 98, NL-6700 AB Wageningen, the Netherlands
| |
Collapse
|
48
|
Zhong R, Thompson J, Ottesen E, Lamppa GK. A forward genetic screen to explore chloroplast protein import in vivo identifies Moco sulfurase, pivotal for ABA and IAA biosynthesis and purine turnover. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 63:44-59. [PMID: 20374530 DOI: 10.1111/j.1365-313x.2010.04220.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
A genetic screen in Arabidopsis was developed to explore the regulation of chloroplast protein import in vivo using two independent reporters representing housekeeping and photosynthetic pre-proteins. We first used 5-enolpyruvylshikimate 3-phosphate synthase (EPSP synthase*), a key enzyme in the shikimic acid pathway, with a mutation that confers tolerance to the herbicide glyphosate. Because the EPSP synthase* pre-protein must be imported for its function, the loss of glyphosate tolerance provided an initial indication of an import deficiency. Second, the fate of GFP fused to a ferredoxin transit peptide (FD5-GFP) was determined. A class of altered chloroplast import (aci) mutants showed both glyphosate sensitivity and FD5-GFP mislocalized to nuclei. aci2-1 was selected for further study. Yellow fluorescent protein (YFP) fused to the transit peptide of EPSP synthase* or the small subunit of Rubisco was not imported into chloroplasts, but also localized to nuclei during protoplast transient expression. Isolated aci2-1 chloroplasts showed a 50% reduction in pre-protein import efficiency in an in vitro assay. Mutants did not grow photoautotrophically on media without sucrose and were small and dark green in soil. aci2-1 and two alleles code for Moco-sulfurase, which activates the aldehyde oxidases required for the biosynthesis of the plant hormones abscisic acid (ABA) and indole-acetic acid (IAA) and controls purine nucleotide (ATP and GTP) turnover and nitrogen recycling via xanthine dehydrogenase. These enzyme activities were not detected in aci2-1. ABA, IAA and/or purine turnover may play previously unrecognized roles in the regulation of chloroplast protein import in response to developmental, metabolic and environmental cues.
Collapse
Affiliation(s)
- Rong Zhong
- Department of Molecular Genetics and Cell Biology, The University of Chicago, 920 East 58th Street, Chicago, IL 60637, USA
| | | | | | | |
Collapse
|
49
|
Influences of Mo on Nitrate Reductase, Glutamine Synthetase and Nitrogen Accumulation and Utilization in Mo-Efficient and Mo-Inefficient Winter Wheat Cultivars. ACTA ACUST UNITED AC 2010. [DOI: 10.1016/s1671-2927(09)60104-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
50
|
|