1
|
Tetorou K, Aghaeipour A, Singh S, Morgan JE, Muntoni F. The role of dystrophin isoforms and interactors in the brain. Brain 2025; 148:1081-1098. [PMID: 39673425 PMCID: PMC11967788 DOI: 10.1093/brain/awae384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 09/23/2024] [Accepted: 10/26/2024] [Indexed: 12/16/2024] Open
Abstract
Dystrophin is a protein crucial for maintaining the structural integrity of skeletal muscle. So far, attention has been focused on the role of dystrophin in muscle, in view of the devastating progression of weakness and early death that characterizes Duchenne muscular dystrophy. However, in the last few years, the role of shorter dystrophin isoforms, including development and adult expression-specific mechanisms, has been a greater focus. Within the cerebral landscape, various cell types, such as glia, oligodendrocytes and Purkinje, cerebellar granule and vascular-associated cells express a spectrum of dystrophin isoforms, including Dp427, Dp140, Dp71 and Dp40. The interaction of these isoforms with a multitude of proteins suggests their involvement in neurotransmission, influencing several circuit functions. This review presents the intricate interactions among dystrophin isoforms and diverse protein complexes across different cell types and brain regions, as well as the associated clinical complications. We focus on studies investigating protein interactions with dystrophin in the past 30 years at a biochemical level. In essence, the brain's dystrophin landscape is a thrilling exploration of diversity, challenging preconceptions and opening new avenues for understanding CNS physiology. It also holds potential therapeutic implications for neurological complications involving brain dystrophin deficiency. By revealing the molecular complexities related to dystrophin, this review paves the way for future investigations and therapeutic interventions for this CNS aspect of Duchenne muscular dystrophy.
Collapse
Affiliation(s)
- Konstantina Tetorou
- Developmental Neurosciences Department, Dubowitz Neuromuscular Centre, University College London, Great Ormond Street Institute of Child Health, London WC1N 1EH, UK
- Developmental Neurosciences Department, National Institute for Health Research Great Ormond Street Hospital Biomedical Research Centre, London WC1N 1EH, UK
| | - Artadokht Aghaeipour
- Developmental Neurosciences Department, Dubowitz Neuromuscular Centre, University College London, Great Ormond Street Institute of Child Health, London WC1N 1EH, UK
- Developmental Neurosciences Department, National Institute for Health Research Great Ormond Street Hospital Biomedical Research Centre, London WC1N 1EH, UK
| | - Simran Singh
- Developmental Neurosciences Department, Dubowitz Neuromuscular Centre, University College London, Great Ormond Street Institute of Child Health, London WC1N 1EH, UK
- Developmental Neurosciences Department, National Institute for Health Research Great Ormond Street Hospital Biomedical Research Centre, London WC1N 1EH, UK
| | - Jennifer E Morgan
- Developmental Neurosciences Department, Dubowitz Neuromuscular Centre, University College London, Great Ormond Street Institute of Child Health, London WC1N 1EH, UK
- Developmental Neurosciences Department, National Institute for Health Research Great Ormond Street Hospital Biomedical Research Centre, London WC1N 1EH, UK
| | - Francesco Muntoni
- Developmental Neurosciences Department, Dubowitz Neuromuscular Centre, University College London, Great Ormond Street Institute of Child Health, London WC1N 1EH, UK
- Developmental Neurosciences Department, National Institute for Health Research Great Ormond Street Hospital Biomedical Research Centre, London WC1N 1EH, UK
| |
Collapse
|
2
|
Yamasaki H, Itoh RD, Mizumoto KB, Yoshida YS, Otaki JM, Cohen MF. Spatiotemporal Characteristics Determining the Multifaceted Nature of Reactive Oxygen, Nitrogen, and Sulfur Species in Relation to Proton Homeostasis. Antioxid Redox Signal 2025; 42:421-441. [PMID: 38407968 DOI: 10.1089/ars.2023.0544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Significance: Reactive oxygen species (ROS), reactive nitrogen species (RNS), and reactive sulfur species (RSS) act as signaling molecules, regulating gene expression, enzyme activity, and physiological responses. However, excessive amounts of these molecular species can lead to deleterious effects, causing cellular damage and death. This dual nature of ROS, RNS, and RSS presents an intriguing conundrum that calls for a new paradigm. Recent Advances: Recent advancements in the study of photosynthesis have offered significant insights at the molecular level and with high temporal resolution into how the photosystem II oxygen-evolving complex manages to prevent harmful ROS production during the water-splitting process. These findings suggest that a dynamic spatiotemporal arrangement of redox reactions, coupled with strict regulation of proton transfer, is crucial for minimizing unnecessary ROS formation. Critical Issues: To better understand the multifaceted nature of these reactive molecular species in biology, it is worth considering a more holistic view that combines ecological and evolutionary perspectives on ROS, RNS, and RSS. By integrating spatiotemporal perspectives into global, cellular, and biochemical events, we discuss local pH or proton availability as a critical determinant associated with the generation and action of ROS, RNS, and RSS in biological systems. Future Directions: The concept of localized proton availability will not only help explain the multifaceted nature of these ubiquitous simple molecules in diverse systems but also provide a basis for new therapeutic strategies to manage and manipulate these reactive species in neural disorders, pathogenic diseases, and antiaging efforts.
Collapse
Affiliation(s)
- Hideo Yamasaki
- Faculty of Science, University of the Ryukyus, Okinawa, Japan
| | - Ryuuichi D Itoh
- Faculty of Science, University of the Ryukyus, Okinawa, Japan
| | | | - Yuki S Yoshida
- Faculty of Science, University of the Ryukyus, Okinawa, Japan
| | - Joji M Otaki
- Faculty of Science, University of the Ryukyus, Okinawa, Japan
| | - Michael F Cohen
- University of California Cooperative Extension, Santa Clara County, San Jose, California, USA
| |
Collapse
|
3
|
Kundu S, Jaiswal M, Babu Mullapudi V, Guo J, Kamat M, Basso KB, Guo Z. Investigation of Glycosylphosphatidylinositol (GPI)-Plasma Membrane Interaction in Live Cells and the Influence of GPI Glycan Structure on the Interaction. Chemistry 2024; 30:e202303047. [PMID: 37966101 PMCID: PMC10922586 DOI: 10.1002/chem.202303047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/05/2023] [Accepted: 11/15/2023] [Indexed: 11/16/2023]
Abstract
Glycosylphosphatidylinositols (GPIs) need to interact with other components in the cell membrane to transduce transmembrane signals. A bifunctional GPI probe was employed for photoaffinity-based proximity labelling and identification of GPI-interacting proteins in the cell membrane. This probe contained the entire core structure of GPIs and was functionalized with photoreactive diazirine and clickable alkyne to facilitate its crosslinking with proteins and attachment of an affinity tag. It was disclosed that this probe was more selective than our previously reported probe containing only a part structure of the GPI core for cell membrane incorporation and an improved probe for studying GPI-cell membrane interaction. Eighty-eight unique membrane proteins, many of which are related to GPIs/GPI-anchored proteins, were identified utilizing this probe. The proteomics dataset is a valuable resource for further analyses and data mining to find new GPI-related proteins and signalling pathways. A comparison of these results with those of our previous probe provided direct evidence for the profound impact of GPI glycan structure on its interaction with the cell membrane.
Collapse
Affiliation(s)
- Sayan Kundu
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Mohit Jaiswal
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | | | - Jiatong Guo
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Manasi Kamat
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Kari B Basso
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Zhongwu Guo
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
- UF Health Cancer Centre, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
4
|
Yablonka-Reuveni Z, Stockdale F, Nudel U, Israeli D, Blau HM, Shainberg A, Neuman S, Kessler-Icekson G, Krull EM, Paterson B, Fuchs OS, Greenberg D, Sarig R, Halevy O, Ozawa E, Katcoff DJ. Farewell to Professor David Yaffe - A pillar of the myogenesis field. Eur J Transl Myol 2020; 30:9306. [PMID: 33117511 PMCID: PMC7582454 DOI: 10.4081/ejtm.2020.9306] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 08/12/2020] [Indexed: 12/13/2022] Open
Abstract
It is with great sadness that we have learned about the passing of Professor David Yaffe (1929-2020, Israel). Yehi Zichro Baruch - May his memory be a blessing. David was a man of family, science and nature. A native of Israel, David grew up in the historic years that preceded the birth of the State of Israel. He was a member of the group that established Kibbutz Revivim in the Negev desert, and in 1948 participated in Israel's War of Independence. David and Ruth eventually joined Kibbutz Givat Brenner by Rehovot, permitting David to be both a kibbutz member and a life-long researcher at the Weizmann Institute of Science, where David received his PhD in 1959. David returned to the Institute after his postdoc at Stanford. Here, after several years of researching a number of tissues as models for studying the process of differentiation, David entered the myogenesis field and stayed with it to his last day. With his dedication to the field of myogenesis and his commitment to furthering the understanding of the People and the Land of Israel throughout the international scientific community, David organized the first ever myogenesis meeting that took place in Shoresh, Israel in 1975. This was followed by the 1980 myogenesis meeting at the same place and many more outstanding meetings, all of which brought together myogenesis, nature and scenery. Herein, through the preparation and publication of this current manuscript, we are meeting once again at a "David Yaffe myogenesis meeting". Some of us have been members of the Yaffe lab, some of us have known David as his national and international colleagues in the myology field. One of our contributors has also known (and communicates here) about David Yaffe's earlier years as a kibbutznick in the Negev. Our collective reflections are a tribute to Professor David Yaffe. We are fortunate that the European Journal of Translational Myology has provided us with tremendous input and a platform for holding this 2020 distance meeting "Farwell to Professor David Yaffe - A Pillar of the Myogenesis Field".
Collapse
Affiliation(s)
- Zipora Yablonka-Reuveni
- Department of Biological Structure, University of Washington School of Medicine, Seattle, WA, USA
| | | | - Uri Nudel
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | | | - Helen M. Blau
- Stanford University School of Medicine, Institute for Stem Cell Biology and Regenerative Medicine, Department of Microbiology and Immunology, Clinical Sciences Research Center, Stanford, CA, USA
| | - Asher Shainberg
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | | | - Gania Kessler-Icekson
- Laboratory of Cellular and Molecular Cardiology, Felsenstein Medical Research Center, Rabin Medical Center, Petah-Tikva, and Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | | | - Bruce Paterson
- Laboratory of Biochemistry and Molecular Biology, National Institutes of Health, Bethesda, Maryland, USA
| | | | - David Greenberg
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Rachel Sarig
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Orna Halevy
- Faculty of Agriculture, The Hebrew University, Rehovot, Israel
| | - Eijiro Ozawa
- National Institute of Neuroscience, NCNP, Tokyo, Japan
| | - Don J. Katcoff
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| |
Collapse
|
5
|
Cellular Prion Protein (PrPc): Putative Interacting Partners and Consequences of the Interaction. Int J Mol Sci 2020; 21:ijms21197058. [PMID: 32992764 PMCID: PMC7583789 DOI: 10.3390/ijms21197058] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/20/2020] [Accepted: 09/23/2020] [Indexed: 02/08/2023] Open
Abstract
Cellular prion protein (PrPc) is a small glycosylphosphatidylinositol (GPI) anchored protein most abundantly found in the outer leaflet of the plasma membrane (PM) in the central nervous system (CNS). PrPc misfolding causes neurodegenerative prion diseases in the CNS. PrPc interacts with a wide range of protein partners because of the intrinsically disordered nature of the protein’s N-terminus. Numerous studies have attempted to decipher the physiological role of the prion protein by searching for proteins which interact with PrPc. Biochemical characteristics and biological functions both appear to be affected by interacting protein partners. The key challenge in identifying a potential interacting partner is to demonstrate that binding to a specific ligand is necessary for cellular physiological function or malfunction. In this review, we have summarized the intracellular and extracellular interacting partners of PrPc and potential consequences of their binding. We also briefly describe prion disease-related mutations at the end of this review.
Collapse
|
6
|
Fremuntova Z, Mosko T, Soukup J, Kucerova J, Kostelanska M, Hanusova ZB, Filipova M, Cervenakova L, Holada K. Changes in cellular prion protein expression, processing and localisation during differentiation of the neuronal cell line CAD 5. Biol Cell 2019; 112:1-21. [PMID: 31736091 DOI: 10.1111/boc.201900045] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 11/08/2019] [Accepted: 11/09/2019] [Indexed: 11/30/2022]
Abstract
BACKGROUND INFORMATION Cellular prion protein (PrPC ) is infamous for its role in prion diseases. The physiological function of PrPC remains enigmatic, but several studies point to its involvement in cell differentiation processes. To test this possibility, we monitored PrPC changes during the differentiation of prion-susceptible CAD 5 cells, and then we analysed the effect of PrPC ablation on the differentiation process. RESULTS Neuronal CAD 5 cells differentiate within 5 days of serum withdrawal, with the majority of the cells developing long neurites. This process is accompanied by an up to sixfold increase in PrPC expression and enhanced N-terminal β-cleavage of the protein, which suggests a role for the PrPC in the differentiation process. Moreover, the majority of PrPC in differentiated cells is inside the cell, and a large proportion of the protein does not associate with membrane lipid rafts. In contrast, PrPC in proliferating cells is found mostly on the cytoplasmic membrane and is predominantly associated with lipid rafts. To determine the importance of PrPC in cell differentiation, a CAD 5 PrP-/- cell line with ablated PrPC expression was created using the CRISPR/Cas9 system. We observed no considerable difference in morphology, proliferation rate or expression of molecular markers between CAD 5 and CAD 5 PrP-/- cells during the differentiation initiated by serum withdrawal. CONCLUSIONS PrPC characteristics, such as cell localisation, level of expression and posttranslational modifications, change during CAD 5 cell differentiation, but PrPC ablation does not change the course of the differentiation process. SIGNIFICANCE Ablation of PrPC expression does not affect CAD 5 cell differentiation, although we observed many intriguing changes in PrPC features during the process. Our study does not support the concept that PrPC is important for neuronal cell differentiation, at least in simple in vitro conditions.
Collapse
Affiliation(s)
- Zuzana Fremuntova
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Tibor Mosko
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Jakub Soukup
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic.,Department of Genetics and Microbiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Johanka Kucerova
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Marie Kostelanska
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Zdenka Backovska Hanusova
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Marcela Filipova
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | | | - Karel Holada
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| |
Collapse
|
7
|
Borgonovo ZL, Ribeiro CF, Costa MD, Souza IL, Rossi GR, Alcantara MV, Ingberman M, Braga LG, Mercadante AF, Nakao LS, Zanata SM. Monoclonal Antibody DL11C8 Identifies ADAM23 as a Component of Lipid Raft Microdomains. Neuroscience 2018; 384:165-177. [DOI: 10.1016/j.neuroscience.2018.05.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 04/25/2018] [Accepted: 05/13/2018] [Indexed: 11/16/2022]
|
8
|
Wu GR, Mu TC, Gao ZX, Wang J, Sy MS, Li CY. Prion protein is required for tumor necrosis factor α (TNFα)-triggered nuclear factor κB (NF-κB) signaling and cytokine production. J Biol Chem 2017; 292:18747-18759. [PMID: 28900035 PMCID: PMC5704461 DOI: 10.1074/jbc.m117.787283] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 09/10/2017] [Indexed: 12/18/2022] Open
Abstract
The expression of normal cellular prion protein (PrP) is required for the pathogenesis of prion diseases. However, the physiological functions of PrP remain ambiguous. Here, we identified PrP as being critical for tumor necrosis factor (TNF) α-triggered signaling in a human melanoma cell line, M2, and a pancreatic ductal cell adenocarcinoma cell line, BxPC-3. In M2 cells, TNFα up-regulates the expression of p-IκB-kinase α/β (p-IKKα/β), p-p65, and p-JNK, but down-regulates the IκBα protein, all of which are downstream signaling intermediates in the TNF receptor signaling cascade. When PRNP is deleted in M2 cells, the effects of TNFα are no longer detectable. More importantly, p-p65 and p-JNK responses are restored when PRNP is reintroduced into the PRNP null cells. TNFα also activates NF-κB and increases TNFα production in wild-type M2 cells, but not in PrP-null M2 cells. Similar results are obtained in the BxPC-3 cells. Moreover, TNFα activation of NF-κB requires ubiquitination of receptor-interacting serine/threonine kinase 1 (RIP1) and TNF receptor-associated factor 2 (TRAF2). TNFα treatment increases the binding between PrP and the deubiquitinase tumor suppressor cylindromatosis (CYLD), in these treated cells, binding of CYLD to RIP1 and TRAF2 is reduced. We conclude that PrP traps CYLD, preventing it from binding and deubiquitinating RIP1 and TRAF2. Our findings reveal that PrP enhances the responses to TNFα, promoting proinflammatory cytokine production, which may contribute to inflammation and tumorigenesis.
Collapse
Affiliation(s)
- Gui-Ru Wu
- From the Wuhan Institute of Virology, Chinese Academy of Sciences, State Key Laboratory of Virology, 44 Xiao Hong Shan Zhong Qu, Wuhan 430071, China.,the University of Chinese Academy of Sciences, Beijing 100000, China
| | - Tian-Chen Mu
- the Department of Life Sciences, Wuhan University, Wuhan 430010, China
| | - Zhen-Xing Gao
- From the Wuhan Institute of Virology, Chinese Academy of Sciences, State Key Laboratory of Virology, 44 Xiao Hong Shan Zhong Qu, Wuhan 430071, China
| | - Jun Wang
- From the Wuhan Institute of Virology, Chinese Academy of Sciences, State Key Laboratory of Virology, 44 Xiao Hong Shan Zhong Qu, Wuhan 430071, China
| | - Man-Sun Sy
- the Department of Pathology, Case Western Reserve University, Cleveland, Ohio 44106, and
| | - Chao-Yang Li
- From the Wuhan Institute of Virology, Chinese Academy of Sciences, State Key Laboratory of Virology, 44 Xiao Hong Shan Zhong Qu, Wuhan 430071, China, .,the Wuhan Brain Hospital, No. 5 Huiji Road, Jiang'an District, Wuhan 430010, China
| |
Collapse
|
9
|
Abstract
Since its discovery the cellular prion protein (encoded by the Prnp gene) has been associated with a large number of functions. The proposed functions rank from basic cellular processes such as cell cycle and survival to neural functions such as behavior and neuroprotection, following a pattern similar to that of Moore's law for electronics. In addition, particular interest is increasing in the participation of Prnp in neurodegeneration. However, in recent years a redefinition of these functions has begun, since examples of previously attributed functions were increasingly re-associated with other proteins. Most of these functions are linked to so-called "Prnp-flanking genes" that are close to the genomic locus of Prnp and which are present in the genome of some Prnp mouse models. In addition, their role in neuroprotection against convulsive insults has been confirmed in recent studies. Lastly, in recent years a large number of models indicating the participation of different domains of the protein in apoptosis have been uncovered. However, after more than 10 years of molecular dissection our view is that the simplest mechanistic model in PrP(C)-mediated cell death should be considered, as Ockham's razor theory suggested.
Collapse
Affiliation(s)
- José A del Río
- a Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia (IBEC) , Parc Científic de Barcelona, Barcelona , Spain.,b Department of Cell Biology, Physiology and Inmunology , Facultat de Biologia, Universitat de Barcelona , Barcelona , Spain.,c Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) , Barcelona , Spain
| | - Rosalina Gavín
- a Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia (IBEC) , Parc Científic de Barcelona, Barcelona , Spain.,b Department of Cell Biology, Physiology and Inmunology , Facultat de Biologia, Universitat de Barcelona , Barcelona , Spain.,c Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) , Barcelona , Spain
| |
Collapse
|
10
|
Strup-Perrot C, Vozenin MC, Monceau V, Pouzoulet F, Petit B, Holler V, Perrot S, Desquibert L, Fouquet S, Souquere S, Pierron G, Rousset M, Thenet S, Cardot P, Benderitter M, Deutsch E, Aigueperse J. PrP(c) deficiency and dasatinib protect mouse intestines against radiation injury by inhibiting of c-Src. Radiother Oncol 2016; 120:175-83. [PMID: 27406443 DOI: 10.1016/j.radonc.2016.06.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 04/13/2016] [Accepted: 06/14/2016] [Indexed: 10/21/2022]
Abstract
BACKGROUND & AIM Despite extensive study of the contribution of cell death and apoptosis to radiation-induced acute intestinal injury, our knowledge of the signaling mechanisms involved in epithelial barrier dysfunction remains inadequate. Because PrP(c) plays a key role in intestinal homeostasis by renewing epithelia, we sought to study its role in epithelial barrier function after irradiation. DESIGN Histology, morphometry and plasma FD-4 levels were used to examine ileal architecture, wound healing, and intestinal leakage in PrP(c)-deficient (KO) and wild-type (WT) mice after total-body irradiation. Impairment of the PrP(c) Src pathway after irradiation was explored by immunofluorescence and confocal microscopy, with Caco-2/Tc7 cells. Lastly, dasatinib treatment was used to switch off the Src pathway in vitro and in vivo. RESULTS The decrease in radiation-induced lethality, improved intestinal wound healing, and reduced intestinal leakage promoted by PrP(c) deficiency demonstrate its involvement in acute intestinal damage. Irradiation of Cacao2/Tc7 cells induced PrP(c) to target the nuclei associated with Src activation. Finally, the protective effect triggered by dasatinib confirmed Src involvement in radiation-induced acute intestinal toxicity. CONCLUSION Our data are the first to show a role for the PrP(c)-Src pathway in acute intestinal response to radiation injury and offer a novel therapeutic opportunity.
Collapse
Affiliation(s)
- Carine Strup-Perrot
- Institut de Radioprotection et de Sûreté Nucléaire, PRP-HOM, SRBE, Laboratoire de Recherche sur la Régénération des tissus sains Irradiés, Fontenay-aux-Roses, France
| | - Marie-Catherine Vozenin
- Inserm U1030, Radiotherapie experimentale, Institut Gustave Roussy, Villejuif, France; Laboratoire de Radio-Oncologie, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Virginie Monceau
- Institut de Radioprotection et de Sûreté Nucléaire, PRP-HOM, SRBE, Laboratoire de Recherche sur la Régénération des tissus sains Irradiés, Fontenay-aux-Roses, France; Inserm U1030, Radiotherapie experimentale, Institut Gustave Roussy, Villejuif, France
| | - Frederic Pouzoulet
- Institut Curie, Translational Research Department, Hopital St Louis, Paris, France
| | - Benoit Petit
- Laboratoire de Radio-Oncologie, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland; Service Commun d'Expérimentation Animale, Institut Gustave Roussy, Villejuif, France
| | - Valérie Holler
- Institut de Radioprotection et de Sûreté Nucléaire, PRP-HOM, SRBE, Laboratoire de Recherche sur la Régénération des tissus sains Irradiés, Fontenay-aux-Roses, France
| | - Sébastien Perrot
- Université Paris-Est, Ecole Nationale Vétérinaire d'Alfort, Institut de Recherche Clinique Animale, Maisons-Alfort Cedex, France
| | - Loïc Desquibert
- Université Paris-Est, Ecole Nationale Vétérinaire d'Alfort, Institut de Recherche Clinique Animale, Maisons-Alfort Cedex, France
| | - Stéphane Fouquet
- Stéphane FOUQUET, Centre de Recherche Institut de la Vision, UMR_S968 Inserm/UPMC/CHNO des Quinze-Vingts, Paris, France
| | | | - Gérard Pierron
- CNRS, UMR-8122, Institut Gustave Roussy, Villejuif, France
| | - Monique Rousset
- Centre de Recherche des Cordeliers, Université Pierre et Marie Curie-Paris 6, UMR S 872, France; INSERM, U 872, Paris, France; Université Paris Descartes-Paris 5, UMR S 872, France
| | - Sophie Thenet
- Centre de Recherche des Cordeliers, Université Pierre et Marie Curie-Paris 6, UMR S 872, France; INSERM, U 872, Paris, France; Université Paris Descartes-Paris 5, UMR S 872, France; Ecole Pratique des Hautes Etudes, Laboratoire de Pharmacologie Cellulaire et Moléculaire, Paris, France
| | - Philippe Cardot
- Centre de Recherche des Cordeliers, Université Pierre et Marie Curie-Paris 6, UMR S 872, France; INSERM, U 872, Paris, France; Université Paris Descartes-Paris 5, UMR S 872, France
| | - Marc Benderitter
- Institut de Radioprotection et de Sûreté Nucléaire, PRP-HOM, SRBE, Laboratoire de Recherche sur la Régénération des tissus sains Irradiés, Fontenay-aux-Roses, France
| | - Eric Deutsch
- Inserm U1030, Radiotherapie experimentale, Institut Gustave Roussy, Villejuif, France
| | - Jocelyne Aigueperse
- Institut de Radioprotection et de Sûreté Nucléaire, PRP-HOM, Fontenay-aux-Roses, France
| |
Collapse
|
11
|
Carulla P, Llorens F, Matamoros-Angles A, Aguilar-Calvo P, Espinosa JC, Gavín R, Ferrer I, Legname G, Torres JM, del Río JA. Involvement of PrP(C) in kainate-induced excitotoxicity in several mouse strains. Sci Rep 2015; 5:11971. [PMID: 26155834 PMCID: PMC4648388 DOI: 10.1038/srep11971] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 06/12/2015] [Indexed: 01/14/2023] Open
Abstract
The cellular prion protein (PrP(C)) has been associated with a plethora of cellular functions ranging from cell cycle to neuroprotection. Mice lacking PrP(C) show an increased susceptibility to epileptic seizures; the protein, then, is neuroprotective. However, lack of experimental reproducibility has led to considering the possibility that other factors besides PrP(C) deletion, such as the genetic background of mice or the presence of so-called "Prnp flanking genes", might contribute to the reported susceptibility. Here, we performed a comparative analysis of seizure-susceptibility using characterized Prnp(+/+) and Prnp(0/0) mice of B6129, B6.129, 129/Ola or FVB/N genetic backgrounds. Our study indicates that PrP(C) plays a role in neuroprotection in KA-treated cells and mice. For this function, PrP(C) should contain the aa32-93 region and needs to be linked to the membrane. In addition, some unidentified "Prnp-flanking genes" play a role parallel to PrP(C) in the KA-mediated responses in B6129 and B6.129 Prnp(0/0) mice.
Collapse
Affiliation(s)
- Patricia Carulla
- 1] Molecular and Cellular Neurobiotechnology, Institute of Bioengineering of Catalonia (IBEC), Parc Científic de Barcelona, Barcelona, Spain [2] Department of Cell Biology, Universitat de Barcelona, Barcelona, Spain [3] Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - Franc Llorens
- 1] Molecular and Cellular Neurobiotechnology, Institute of Bioengineering of Catalonia (IBEC), Parc Científic de Barcelona, Barcelona, Spain [2] Department of Cell Biology, Universitat de Barcelona, Barcelona, Spain [3] Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain [4] German Center for Neurodegenerative Diseases (DZNE), Robert-Koch Str. 40, 37075, Göttingen, Germany
| | - Andreu Matamoros-Angles
- 1] Molecular and Cellular Neurobiotechnology, Institute of Bioengineering of Catalonia (IBEC), Parc Científic de Barcelona, Barcelona, Spain [2] Department of Cell Biology, Universitat de Barcelona, Barcelona, Spain [3] Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | | | - Juan Carlos Espinosa
- Centro de Investigación en Sanidad Animal (CISA-INIA), Valdeolmos, Madrid, Spain
| | - Rosalina Gavín
- 1] Molecular and Cellular Neurobiotechnology, Institute of Bioengineering of Catalonia (IBEC), Parc Científic de Barcelona, Barcelona, Spain [2] Department of Cell Biology, Universitat de Barcelona, Barcelona, Spain [3] Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - Isidre Ferrer
- 1] Institut de Neuropatologia, IDIBELL-Hospital Universitari de Bellvitge, Hospitalet de Llobregat, Barcelona, Spain [2] Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - Giuseppe Legname
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
| | - Juan Maria Torres
- Centro de Investigación en Sanidad Animal (CISA-INIA), Valdeolmos, Madrid, Spain
| | - José A del Río
- 1] Molecular and Cellular Neurobiotechnology, Institute of Bioengineering of Catalonia (IBEC), Parc Científic de Barcelona, Barcelona, Spain [2] Department of Cell Biology, Universitat de Barcelona, Barcelona, Spain [3] Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| |
Collapse
|
12
|
Sakudo A, Onodera T. Prion protein (PrP) gene-knockout cell lines: insight into functions of the PrP. Front Cell Dev Biol 2015; 2:75. [PMID: 25642423 PMCID: PMC4295555 DOI: 10.3389/fcell.2014.00075] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 12/22/2014] [Indexed: 11/13/2022] Open
Abstract
Elucidation of prion protein (PrP) functions is crucial to fully understand prion diseases. A major approach to studying PrP functions is the use of PrP gene-knockout (Prnp (-/-)) mice. So far, six types of Prnp (-/-) mice have been generated, demonstrating the promiscuous functions of PrP. Recently, other PrP family members, such as Doppel and Shadoo, have been found. However, information obtained from comparative studies of structural and functional analyses of these PrP family proteins do not fully reveal PrP functions. Recently, varieties of Prnp (-/-) cell lines established from Prnp (-/-) mice have contributed to the analysis of PrP functions. In this mini-review, we focus on Prnp (-/-) cell lines and summarize currently available Prnp (-/-) cell lines and their characterizations. In addition, we introduce the recent advances in the methodology of cell line generation with knockout or knockdown of the PrP gene. We also discuss how these cell lines have provided valuable insights into PrP functions and show future perspectives.
Collapse
Affiliation(s)
- Akikazu Sakudo
- Laboratory of Biometabolic Chemistry, Faculty of Medicine, School of Health Sciences, University of the Ryukyus Nishihara, Japan
| | - Takashi Onodera
- Research Center for Food Safety, School of Agricultural and Life Sciences, University of Tokyo Tokyo, Japan
| |
Collapse
|
13
|
Liebert A, Bicknell B, Adams R. Prion Protein Signaling in the Nervous System—A Review and Perspective. ACTA ACUST UNITED AC 2014. [DOI: 10.4137/sti.s12319] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Prion protein (PrPC) was originally known as the causative agent of transmissible spongiform encephalopathy (TSE) but with recent research, its true function in cells is becoming clearer. It is known to act as a scaffolding protein, binding multiple ligands at the cell membrane and to be involved in signal transduction, passing information from the extracellular matrix (ECM) to the cytoplasm. Its role in the coordination of transmitters at the synapse, glyapse, and gap junction and in short- and long-range neurotrophic signaling gives PrPC a major part in neural transmission and nervous system signaling. It acts to regulate cellular function in multiple targets through its role as a controller of redox status and calcium ion flux. Given the importance of PrPC in cell physiology, this review considers its potential role in disease apart from TSE. The putative functions of PrPC point to involvement in neurodegenerative disease, neuropathic pain, chronic headache, and inflammatory disease including neuroinflammatory disease of the nervous system. Potential targets for the treatment of disease influenced by PrPC are discussed.
Collapse
Affiliation(s)
- Ann Liebert
- Faculty of Health Science, University of Sydney, Australia
| | - Brian Bicknell
- Faculty of Health Science, Australian Catholic University, Australia
| | | |
Collapse
|
14
|
Campisi E, Cardone F, Graziano S, Galeno R, Pocchiari M. Role of proteomics in understanding prion infection. Expert Rev Proteomics 2013; 9:649-66. [PMID: 23256675 DOI: 10.1586/epr.12.58] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Transmissible spongiform encephalopathies or prion diseases are fatal neurodegenerative pathologies characterized by the autocatalytic misfolding and polymerization of a cellular glycoprotein (cellular prion protein [PrP(C)]) that accumulates in the CNS and leads to neurodegeneration. The detailed mechanics of PrP(C) conversion to its pathological isoform (PrP(TSE)) are unclear but one or more exogenous factors are likely involved in the process of PrP misfolding. In the last 20 years, proteomic investigations have identified several endogenous proteins that interact with PrP(C), PrP(TSE) or both, which are possibly involved in the prion pathogenetic process. However, current approaches have not yet produced convincing conclusions on the biological value of such PrP interactors. Future advancements in the comprehension of the molecular pathogenesis of prion diseases, in experimental techniques and in data analysis procedures, together with a boost in more productive international collaborations, are therefore needed to improve the understanding on the role of PrP interactors. Finally, the advancement of 'omics' techniques in prion diseases will contribute to the development of novel diagnostic tests and effective drugs.
Collapse
Affiliation(s)
- Edmondo Campisi
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | | | | | | | | |
Collapse
|
15
|
Rubenstein R. Proteomic analysis of prion diseases: creating clarity or causing confusion? Electrophoresis 2012; 33:3631-43. [PMID: 23161058 DOI: 10.1002/elps.201200310] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 06/25/2012] [Accepted: 07/04/2012] [Indexed: 11/10/2022]
Abstract
Prion diseases, or transmissible spongiform encephalopathies, are progressive, fatal neurodegenerative diseases. There are both human and animal forms of the disease and all are associated with the conversion of a normal host-coded cellular prion protein (PrP(C) ) into an abnormal protease-resistant isoform (PrP(Sc) ). Although methodologies are sensitive and specific for postmortem disease diagnosis, the use of PrP(Sc) as a preclinical or general biomarker for surveillance is difficult, due to the fact that it is present in extremely small amounts in accessible tissues or body fluids such as blood, urine, saliva, and cerebrospinal fluid. Recently, amplification techniques have been developed, which have enabled increased sensitivity for PrP(Sc) detection. However, it has recently been reported that proteinase K sensitive, pathological isoforms of PrP may have a significant role in the pathogenesis of some prion diseases. Accordingly, the development of new diagnostic tests that do not rely on PrP(Sc) and proteinase K digestion is desirable. The search for biomarkers (other than PrP(Sc) ) as tools for diagnosis of prion diseases has a long history. Ideally biomarkers able to detect all transmissible spongiform encephalopathies, even at preclinical stages of infection are desirable but not yet possible due to the heterogeneity of the disease and lengthy disease progression. Recent advances in neuroproteomics have led to an overwhelming amount of information, which may offer insight on protein-protein interactions. While the amount of data obtained is impressive, the ability to relate it to the disease and validating its usefulness in diagnostic biomarker development remains a formidable challenge.
Collapse
Affiliation(s)
- Richard Rubenstein
- Department of Neurology, SUNY Downstate Medical Center, Brooklyn, NY 11203, USA.
| |
Collapse
|
16
|
Last V, Williams A, Werling D. Inhibition of cytosolic Phospholipase A2 prevents prion peptide-induced neuronal damage and co-localisation with Beta III Tubulin. BMC Neurosci 2012; 13:106. [PMID: 22928663 PMCID: PMC3496594 DOI: 10.1186/1471-2202-13-106] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Accepted: 08/21/2012] [Indexed: 11/10/2022] Open
Abstract
Background Activation of phospholipase A2 (PLA2) and the subsequent metabolism of arachidonic acid (AA) to prostaglandins have been shown to play an important role in neuronal death in neurodegenerative disease. Here we report the effects of the prion peptide fragment HuPrP106-126 on the PLA2 cascade in primary cortical neurons and translocation of cPLA2 to neurites. Results Exposure of primary cortical neurons to HuPrP106-126 increased the levels of phosphorylated cPLA2 and caused phosphorylated cPLA2 to relocate from the cell body to the cellular neurite in a PrP-dependent manner, a previously unreported observation. HuPrP106-126 also induced significant AA release, an indicator of cPLA2 activation; this preceded synapse damage and subsequent cellular death. The novel translocation of p-cPLA2 postulated the potential for exposure to HuPrP106-126 to result in a re-arrangement of the cellular cytoskeleton. However p-cPLA2 did not colocalise significantly with F-actin, intermediate filaments, or microtubule-associated proteins. Conversely, p-cPLA2 did significantly colocalise with the cytoskeletal protein beta III tubulin. Pre-treatment with the PLA2 inhibitor, palmitoyl trifluoromethyl ketone (PACOCF3) reduced cPLA2 activation, AA release and damage to the neuronal synapse. Furthermore, PACOCF3 reduced expression of p-cPLA2 in neurites and inhibited colocalisation with beta III tubulin, resulting in protection against PrP-induced cell death. Conclusions Collectively, these findings suggest that cPLA2 plays a vital role in the action of HuPrP106-126 and that the colocalisation of p-cPLA2 with beta III tubulin could be central to the progress of neurodegeneration caused by prion peptides. Further work is needed to define exactly how PLA2 inhibitors protect neurons from peptide-induced toxicity and how this relates to intracellular structural changes occurring in neurodegeneration.
Collapse
Affiliation(s)
- Victoria Last
- Department of Pathology and Infectious Diseases, Royal Veterinary College, Hawkshead Lane, North Mymms, Hertfordshire AL9 7TA, UK.
| | | | | |
Collapse
|
17
|
Nieznanska H, Dudek E, Zajkowski T, Szczesna E, Kasprzak AA, Nieznanski K. Prion protein impairs kinesin-driven transport. Biochem Biophys Res Commun 2012; 425:788-93. [PMID: 22885185 DOI: 10.1016/j.bbrc.2012.07.153] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Accepted: 07/27/2012] [Indexed: 01/11/2023]
Abstract
Our previous studies have demonstrated that prion protein (PrP) leads to disassembly of microtubular cytoskeleton through binding to tubulin and its oligomerization. Here we found that PrP-treated cells exhibited improper morphology of mitotic spindles. Formation of aberrant spindles may result not only from altered microtubule dynamics - as expected from PrP-induced tubulin oligomerization - but also from impairing the function of molecular motors. Therefore we checked whether binding of PrP to microtubules affected movement generated by Ncd - a kinesin responsible for the proper organization of division spindles. We found that PrP inhibited Ncd-driven transport of microtubules. Most probably, the inhibition of the microtubule movement resulted from PrP-induced changes in the microtubule structure since Ncd-microtubule binding was reduced already at low PrP to tubulin molar ratios. This study suggests another plausible mechanism of PrP cytotoxicity related to the interaction with tubulin, namely impeding microtubule-dependent transport.
Collapse
Affiliation(s)
- Hanna Nieznanska
- Department of Biochemistry, Nencki Institute of Experimental Biology, 3 Pasteur St., 02-093 Warsaw, Poland
| | | | | | | | | | | |
Collapse
|
18
|
Zhou RM, Jing YY, Guo Y, Gao C, Zhang BY, Chen C, Shi Q, Tian C, Wang ZY, Gong HS, Han J, Xu BL, Dong XP. Molecular interaction of TPPP with PrP antagonized the CytoPrP-induced disruption of microtubule structures and cytotoxicity. PLoS One 2011; 6:e23079. [PMID: 21857997 PMCID: PMC3155546 DOI: 10.1371/journal.pone.0023079] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Accepted: 07/05/2011] [Indexed: 11/30/2022] Open
Abstract
Background Tubulin polymerization promoting protein/p25 (TPPP/p25), known as a microtubule-associated protein (MAP), is a brain-specific unstructured protein with a physiological function of stabilizing cellular microtubular ultrastructures. Whether TPPP involves in the normal functions of PrP or the pathogenesis of prion disease remains unknown. Here, we proposed the data that TPPP formed molecular complex with PrP. We also investigated its influence on the aggregation of PrP and fibrillization of PrP106–126 in vitro, its antagonization against the disruption of microtubule structures and cytotoxicity of cytosolic PrP in cells, and its alternation in the brains of scrapie-infected experimental hamsters. Methodology/Principal Findings Using pull-down and immunoprecipitation assays, distinct molecular interaction between TPPP and PrP were identified and the segment of TPPP spanning residues 100–219 and the segment of PrP spanning residues 106–126 were mapped as the regions responsible for protein interaction. Sedimentation experiments found that TPPP increased the aggregation of full-length recombinant PrP (PrP23–231) in vitro. Transmission electron microscopy and Thioflavin T (ThT) assays showed that TPPP enhanced fibril formation of synthetic peptide PrP106–126 in vitro. Expression of TPPP in the cultured cells did not obviously change the microtubule networks observed by a tubulin-specific immunofluorescent assay and cell growth features measured by CCK8 tests, but significantly antagonized the disruption of microtubule structures and rescued the cytotoxicity caused by the accumulation of cytosolic PrP (CytoPrP). Furthermore, Western blots identified that the levels of the endogenous TPPP in the brains of scrapie-infected experimental hamsters were significantly reduced. Conclusion/Significance Those data highlight TPPP may work as a protective factor for cells against the damage effects of the accumulation of abnormal forms of PrPs, besides its function as an agent for dynamic stabilization of microtubular ultrastructures.
Collapse
Affiliation(s)
- Rui-Min Zhou
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
- Henan Provincial Center for Disease Control and Prevention, Zhengzhou, Henan Province, People's Republic of China
| | - Yuan-Yuan Jing
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Yan Guo
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Chen Gao
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Bao-Yun Zhang
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Cao Chen
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Qi Shi
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Chan Tian
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Zhao-Yun Wang
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Han-Shi Gong
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Jun Han
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Bian-Li Xu
- Henan Provincial Center for Disease Control and Prevention, Zhengzhou, Henan Province, People's Republic of China
| | - Xiao-Ping Dong
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
- * E-mail:
| |
Collapse
|
19
|
Jing YY, Li XL, Shi Q, Wang ZY, Guo Y, Pan MM, Tian C, Zhu SY, Chen C, Gong HS, Han J, Gao C, Dong XP. A Novel PrP Partner HS-1 Associated Protein X-1 (HAX-1) Protected the Cultured Cells Against the Challenge of H2O2. J Mol Neurosci 2011; 45:216-28. [DOI: 10.1007/s12031-011-9498-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2011] [Accepted: 01/20/2011] [Indexed: 01/28/2023]
|
20
|
Cytosolic PrP Induces Apoptosis of Cell by Disrupting Microtubule Assembly. J Mol Neurosci 2010; 43:316-25. [DOI: 10.1007/s12031-010-9443-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2010] [Accepted: 08/23/2010] [Indexed: 10/19/2022]
|
21
|
Li C, Xin W, Sy MS. Binding of pro-prion to filamin A: by design or an unfortunate blunder. Oncogene 2010; 29:5329-45. [PMID: 20697352 DOI: 10.1038/onc.2010.307] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Over the last decades, cancer research has focused on tumor suppressor genes and oncogenes. Genes in other cellular pathways has received less attention. Between 0.5% to 1% of the mammalian genome encodes for proteins that are tethered on the cell membrane via a glycosylphosphatidylinositol (GPI)-anchor. The GPI modification pathway is complex and not completely understood. Prion (PrP), a GPI-anchored protein, is infamous for being the only normal protein that when misfolded can cause and transmit a deadly disease. Though widely expressed and highly conserved, little is known about the functions of PrP. Pancreatic cancer and melanoma cell lines express PrP. However, in these cell lines the PrP exists as a pro-PrP as defined by retaining its GPI anchor peptide signal sequence (GPI-PSS). Unexpectedly, the GPI-PSS of PrP has a filamin A (FLNA) binding motif and binds FLNA. FLNA is a cytolinker protein, and an integrator of cell mechanics and signaling. Binding of pro-PrP to FLNA disrupts the normal FLNA functions. Although normal pancreatic ductal cells lack PrP, about 40% of patients with pancreatic ductal cell adenocarcinoma express PrP in their cancers. These patients have significantly shorter survival time compared with patients whose cancers lack PrP. Pro-PrP is also detected in melanoma in situ but is undetectable in normal melanocyte, and invasive melanoma expresses more pro-PrP. In this review, we will discuss the underlying mechanisms by which binding of pro-PrP to FLNA disrupts normal cellular physiology and contributes to tumorigenesis, and the potential mechanisms that cause the accumulation of pro-PrP in cancer cells.
Collapse
Affiliation(s)
- C Li
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106-7288, USA
| | | | | |
Collapse
|
22
|
Nieznanski K. Interactions of prion protein with intracellular proteins: so many partners and no consequences? Cell Mol Neurobiol 2010; 30:653-66. [PMID: 20041289 PMCID: PMC11498852 DOI: 10.1007/s10571-009-9491-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Accepted: 12/18/2009] [Indexed: 10/20/2022]
Abstract
Prion protein (PrP) plays a key role in the pathogenesis of transmissible spongiform encephalopathies (TSEs)--fatal diseases of the central nervous system. Its physiological function as well as exact role in neurodegeneration remain unclear, hence screens for proteins interacting with PrP seem to be the most promising approach to elucidating these issues. PrP is mostly a plasma membrane-anchored extracellular glycoprotein and only a small fraction resides inside the cell, yet the number of identified intracellular partners of PrP is comparable to that of its membranal or extracellular interactors. Since some TSEs are accompanied by significantly increased levels of cytoplasmic PrP and this fraction of the protein has been found to be neurotoxic, it is of particular interest to characterize the intracellular interactome of PrP. It seems reasonable that at elevated cytoplasmic levels, PrP may exert cytotoxic effect by affecting the physiological functions of its intracellular interactors. This review is focused on the cytoplasmic partners of PrP along with possible consequences of their binding.
Collapse
Affiliation(s)
- Krzysztof Nieznanski
- Department of Biochemistry, Polish Academy of Sciences, Nencki Institute of Experimental Biology, 3 Pasteur St, Warsaw 02093, Poland.
| |
Collapse
|
23
|
Sy MS, Li C, Yu S, Xin W. The fatal attraction between pro-prion and filamin A: prion as a marker in human cancers. Biomark Med 2010. [PMID: 20550479 DOI: 10.2217/bmm.10.14]available] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Pancreatic cancer is the fourth leading cancer causing deaths in the USA, with more than 30,000 deaths per year. The overall median survival for all pancreatic cancer is 6 months and the 5-year survival rate is less than 10%. This dismal outcome reflects the inefficacy of the chemotherapeutic agents, as well as the lack of an early diagnostic marker. A protein known as prion (PrP) is expressed in human pancreatic cancer cell lines. However, in these cell lines, the PrP is incompletely processed and exists as pro-PrP. The pro-PrP binds to a molecule inside the cell, filamin A (FLNa), which is an integrator of cell signaling and mechanics. The binding of pro-PrP to FLNa disrupts the normal functions of FLNa, altering the cell's cytoskeleton and signal transduction machineries. As a result, the tumor cells grow more aggressively. Approximately 40% of patients with pancreatic cancer express PrP in their cancer. These patients have significantly shorter survival compared with patients whose pancreatic cancers lack PrP. Therefore, expression of pro-PrP and its binding to FLNa provide a growth advantage to pancreatic cancers. In this article, we discuss the following points: the biology of PrP, the consequences of binding of pro-PrP to FLNa in pancreatic cancer, the detection of pro-PrP in other cancers, the potential of using pro-PrP as a diagnostic marker, and prevention of the binding between pro-PrP and FLNa as a target for therapeutic intervention in cancers.
Collapse
Affiliation(s)
- Man-Sun Sy
- Department of Pathology, School of Medicine, Case Western Reserve University, 2103 Cornell Road, Cleveland, OH 44106, USA.
| | | | | | | |
Collapse
|
24
|
Sy MS, Li C, Yu S, Xin W. The fatal attraction between pro-prion and filamin A: prion as a marker in human cancers. Biomark Med 2010; 4:453-64. [PMID: 20550479 PMCID: PMC2925173 DOI: 10.2217/bmm.10.14] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Pancreatic cancer is the fourth leading cancer causing deaths in the USA, with more than 30,000 deaths per year. The overall median survival for all pancreatic cancer is 6 months and the 5-year survival rate is less than 10%. This dismal outcome reflects the inefficacy of the chemotherapeutic agents, as well as the lack of an early diagnostic marker. A protein known as prion (PrP) is expressed in human pancreatic cancer cell lines. However, in these cell lines, the PrP is incompletely processed and exists as pro-PrP. The pro-PrP binds to a molecule inside the cell, filamin A (FLNa), which is an integrator of cell signaling and mechanics. The binding of pro-PrP to FLNa disrupts the normal functions of FLNa, altering the cell's cytoskeleton and signal transduction machineries. As a result, the tumor cells grow more aggressively. Approximately 40% of patients with pancreatic cancer express PrP in their cancer. These patients have significantly shorter survival compared with patients whose pancreatic cancers lack PrP. Therefore, expression of pro-PrP and its binding to FLNa provide a growth advantage to pancreatic cancers. In this article, we discuss the following points: the biology of PrP, the consequences of binding of pro-PrP to FLNa in pancreatic cancer, the detection of pro-PrP in other cancers, the potential of using pro-PrP as a diagnostic marker, and prevention of the binding between pro-PrP and FLNa as a target for therapeutic intervention in cancers.
Collapse
Affiliation(s)
- Man-Sun Sy
- Department of Pathology, School of Medicine, Case Western Reserve University, 2103 Cornell Road, Cleveland, OH 44106, USA.
| | | | | | | |
Collapse
|
25
|
Piccinini M, Scandroglio F, Prioni S, Buccinnà B, Loberto N, Aureli M, Chigorno V, Lupino E, DeMarco G, Lomartire A, Rinaudo MT, Sonnino S, Prinetti A. Deregulated sphingolipid metabolism and membrane organization in neurodegenerative disorders. Mol Neurobiol 2010; 41:314-40. [PMID: 20127207 DOI: 10.1007/s12035-009-8096-6] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Accepted: 12/22/2009] [Indexed: 12/13/2022]
Abstract
Sphingolipids are polar membrane lipids present as minor components in eukaryotic cell membranes. Sphingolipids are highly enriched in nervous cells, where they exert important biological functions. They deeply affect the structural and geometrical properties and the lateral order of cellular membranes, modulate the function of several membrane-associated proteins, and give rise to important intra- and extracellular lipid mediators. Sphingolipid metabolism is regulated along the differentiation and development of the nervous system, and the expression of a peculiar spatially and temporarily regulated sphingolipid pattern is essential for the maintenance of the functional integrity of the nervous system: sphingolipids in the nervous system participate to several signaling pathways controlling neuronal survival, migration, and differentiation, responsiveness to trophic factors, synaptic stability and synaptic transmission, and neuron-glia interactions, including the formation and stability of central and peripheral myelin. In several neurodegenerative diseases, sphingolipid metabolism is deeply deregulated, leading to the expression of abnormal sphingolipid patterns and altered membrane organization that participate to several events related to the pathogenesis of these diseases. The most impressive consequence of this deregulation is represented by anomalous sphingolipid-protein interactions that are at least, in part, responsible for the misfolding events that cause the fibrillogenic and amyloidogenic processing of disease-specific protein isoforms, such as amyloid beta peptide in Alzheimer's disease, huntingtin in Huntington's disease, alpha-synuclein in Parkinson's disease, and prions in transmissible encephalopathies. Targeting sphingolipid metabolism represents today an underexploited but realistic opportunity to design novel therapeutic strategies for the intervention in these diseases.
Collapse
Affiliation(s)
- Marco Piccinini
- Section of Biochemistry, Department of Medicine and Experimental Oncology, University of Turin, Turin, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Lyahyai J, Serrano C, Ranera B, Badiola JJ, Zaragoza P, Martin-Burriel I. Effect of Scrapie on the Stability of Housekeeping Genes. Anim Biotechnol 2009; 21:1-13. [DOI: 10.1080/10495390903323851] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
27
|
Glypican-1 mediates both prion protein lipid raft association and disease isoform formation. PLoS Pathog 2009; 5:e1000666. [PMID: 19936054 PMCID: PMC2773931 DOI: 10.1371/journal.ppat.1000666] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2009] [Accepted: 10/26/2009] [Indexed: 11/28/2022] Open
Abstract
In prion diseases, the cellular form of the prion protein, PrPC, undergoes a conformational conversion to the infectious isoform, PrPSc. PrPC associates with lipid rafts through its glycosyl-phosphatidylinositol (GPI) anchor and a region in its N-terminal domain which also binds to heparan sulfate proteoglycans (HSPGs). We show that heparin displaces PrPC from rafts and promotes its endocytosis, suggesting that heparin competes with an endogenous raft-resident HSPG for binding to PrPC. We then utilised a transmembrane-anchored form of PrP (PrP-TM), which is targeted to rafts solely by its N-terminal domain, to show that both heparin and phosphatidylinositol-specific phospholipase C can inhibit its association with detergent-resistant rafts, implying that a GPI-anchored HSPG targets PrPC to rafts. Depletion of the major neuronal GPI-anchored HSPG, glypican-1, significantly reduced the raft association of PrP-TM and displaced PrPC from rafts, promoting its endocytosis. Glypican-1 and PrPC colocalised on the cell surface and both PrPC and PrPSc co-immunoprecipitated with glypican-1. Critically, treatment of scrapie-infected N2a cells with glypican-1 siRNA significantly reduced PrPSc formation. In contrast, depletion of glypican-1 did not alter the inhibitory effect of PrPC on the β-secretase cleavage of the Alzheimer's amyloid precursor protein. These data indicate that glypican-1 is a novel cellular cofactor for prion conversion and we propose that it acts as a scaffold facilitating the interaction of PrPC and PrPSc in lipid rafts. The prion diseases are unique in that their infectious nature is not dependent on nucleic acid but is instead attributed to a misfolded protein, the prion protein. This misfolded prion protein is capable of inducing the misfolding of the normal form of the prion protein that is present on the surface of neurons and other cells in the body. However, the site in the cell at which this misfolding occurs and whether other proteins are involved remains controversial. We have addressed these questions by investigating how the normal form of the prion protein is targeted to specialised domains on the plasma membrane termed cholesterol-rich lipid rafts. We show that targeting is due, in part, to a particular heparin sulfate proteoglycan called glypican-1. Significantly, reducing the levels of glypican-1 in an infected cell line reduced the accumulation of misfolded prion protein. We propose that glypican-1 acts as a scaffold facilitating the favourable interaction of the misfolded, infectious form of the prion protein with the normal cellular form within cholesterol-rich lipid rafts. Our results indicate that glypican-1 is intimately involved in the misfolding of the prion protein, the critical event in the pathogenesis of prion diseases such as Creutzfeldt-Jakob disease in humans.
Collapse
|
28
|
Osiecka KM, Nieznanska H, Skowronek KJ, Karolczak J, Schneider G, Nieznanski K. Prion protein region 23-32 interacts with tubulin and inhibits microtubule assembly. Proteins 2009; 77:279-96. [PMID: 19422054 DOI: 10.1002/prot.22435] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In previous studies we have demonstrated that prion protein (PrP) binds directly to tubulin and this interaction leads to the inhibition of microtubule formation by inducement of tubulin oligomerization. This report is aimed at mapping the regions of PrP and tubulin involved in the interaction and identification of PrP domains responsible for tubulin oligomerization. Preliminary studies focused our attention to the N-terminal flexible part of PrP encompassing residues 23-110. Using a panel of deletion mutants of PrP, we identified two microtubule-binding motifs at both ends of this part of the molecule. We found that residues 23-32 constitute a major site of interaction, whereas residues 101-110 represent a weak binding site. The crucial role of the 23-32 sequence in the interaction with tubulin was confirmed employing chymotryptic fragments of PrP. Surprisingly, the octarepeat region linking the above motifs plays only a supporting role in the interaction. The binding of Cu(2+) to PrP did not affect the interaction. We also demonstrate that PrP deletion mutants lacking residues 23-32 exhibit very low efficiency in the inducement of tubulin oligomerization. Moreover, a synthetic peptide corresponding to this sequence, but not that identical with fragment 101-110, mimics the effects of the full-length protein on tubulin oligomerization and microtubule assembly. At the cellular level, peptide composed of the PrP motive 23-30 and signal sequence (1-22) disrupted the microtubular cytoskeleton. Using tryptic and chymotryptic fragments of alpha- and beta-tubulin, we mapped the docking sites for PrP within the C-terminal domains constituting the outer surface of microtubule.
Collapse
Affiliation(s)
- Katarzyna M Osiecka
- Department of Biochemistry, Nencki Institute of Experimental Biology, Warsaw, Poland
| | | | | | | | | | | |
Collapse
|
29
|
Li X, Dong C, Shi S, Wang G, Li Y, Wang X, Shi Q, Tian C, Zhou R, Gao C, Dong X. The octarepeat region of hamster PrP (PrP51-91) enhances the formation of microtubule and antagonize Cu(2+)-induced microtubule-disrupting activity. Acta Biochim Biophys Sin (Shanghai) 2009; 41:929-37. [PMID: 19902127 DOI: 10.1093/abbs/gmp088] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Prion protein (PrP) is considered to associate with microtubule and its major component, tubulin. In the present study, octarepeat region of PrP (PrP51-91) was expressed in prokaryotic-expressing system. Using GST pull-down assay and co-immunoprecipitation, the molecular interaction between PrP51-91 and tubulin was observed. Our data also demonstrated that PrP51-91 could efficiently stimulate microtubule assembly in vitro, indicating a potential effect of PrP on microtubule dynamics. Moreover, PrP51-91 was confirmed to be able to antagonize Cu(2+)-induced microtubule-disrupting activity in vivo, partially protecting against Cu(2+) intoxication to culture cells and stabilize cellular microtubule structure. The association of the octarepeat region of PrP with tubulin may further provide insight into the biological function of PrP in the neurons.
Collapse
Affiliation(s)
- Xiaoli Li
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Li C, Yu S, Nakamura F, Yin S, Xu J, Petrolla AA, Singh N, Tartakoff A, Abbott DW, Xin W, Sy MS. Binding of pro-prion to filamin A disrupts cytoskeleton and correlates with poor prognosis in pancreatic cancer. J Clin Invest 2009; 119:2725-36. [PMID: 19690385 PMCID: PMC2735930 DOI: 10.1172/jci39542] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Accepted: 06/17/2009] [Indexed: 01/02/2023] Open
Abstract
The cellular prion protein (PrP) is a highly conserved, widely expressed, glycosylphosphatidylinositol-anchored (GPI-anchored) cell surface glycoprotein. Since its discovery, most studies on PrP have focused on its role in neurodegenerative prion diseases, whereas its function outside the nervous system remains unclear. Here, we report that human pancreatic ductal adenocarcinoma (PDAC) cell lines expressed PrP. However, the PrP was neither glycosylated nor GPI-anchored, existing as pro-PrP and retaining its GPI anchor peptide signal sequence (GPI-PSS). We also showed that the PrP GPI-PSS has a filamin A-binding (FLNa-binding) motif and interacted with FLNa, an actin-associated protein that integrates cell mechanics and signaling. Binding of pro-PrP to FLNa disrupted cytoskeletal organization. Inhibition of PrP expression by shRNA in the PDAC cell lines altered the cytoskeleton and expression of multiple signaling proteins; it also reduced cellular proliferation and invasiveness in vitro as well as tumor growth in vivo. A subgroup of human patients with pancreatic cancer was found to have tumors that expressed pro-PrP. Most importantly, PrP expression in tumors correlated with a marked decrease in patient survival. We propose that binding of pro-PrP to FLNa perturbs FLNa function, thus contributing to the aggressiveness of PDAC. Prevention of this interaction could provide an attractive target for therapeutic intervention in human PDAC.
Collapse
Affiliation(s)
- Chaoyang Li
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA.
Translational Medicine Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA.
University Hospital of Cleveland, Cleveland, Ohio, USA.
Cell Biology Program, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Shuiliang Yu
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA.
Translational Medicine Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA.
University Hospital of Cleveland, Cleveland, Ohio, USA.
Cell Biology Program, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Fumihiko Nakamura
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA.
Translational Medicine Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA.
University Hospital of Cleveland, Cleveland, Ohio, USA.
Cell Biology Program, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Shaoman Yin
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA.
Translational Medicine Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA.
University Hospital of Cleveland, Cleveland, Ohio, USA.
Cell Biology Program, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Jinghua Xu
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA.
Translational Medicine Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA.
University Hospital of Cleveland, Cleveland, Ohio, USA.
Cell Biology Program, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Amber A. Petrolla
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA.
Translational Medicine Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA.
University Hospital of Cleveland, Cleveland, Ohio, USA.
Cell Biology Program, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Neena Singh
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA.
Translational Medicine Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA.
University Hospital of Cleveland, Cleveland, Ohio, USA.
Cell Biology Program, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Alan Tartakoff
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA.
Translational Medicine Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA.
University Hospital of Cleveland, Cleveland, Ohio, USA.
Cell Biology Program, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Derek W. Abbott
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA.
Translational Medicine Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA.
University Hospital of Cleveland, Cleveland, Ohio, USA.
Cell Biology Program, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Wei Xin
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA.
Translational Medicine Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA.
University Hospital of Cleveland, Cleveland, Ohio, USA.
Cell Biology Program, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Man-Sun Sy
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA.
Translational Medicine Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA.
University Hospital of Cleveland, Cleveland, Ohio, USA.
Cell Biology Program, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
31
|
Ermonval M, Baudry A, Baychelier F, Pradines E, Pietri M, Oda K, Schneider B, Mouillet-Richard S, Launay JM, Kellermann O. The cellular prion protein interacts with the tissue non-specific alkaline phosphatase in membrane microdomains of bioaminergic neuronal cells. PLoS One 2009; 4:e6497. [PMID: 19652718 PMCID: PMC2715859 DOI: 10.1371/journal.pone.0006497] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Accepted: 06/26/2009] [Indexed: 11/29/2022] Open
Abstract
Background The cellular prion protein, PrPC, is GPI anchored and abundant in lipid rafts. The absolute requirement of PrPC in neurodegeneration associated to prion diseases is well established. However, the function of this ubiquitous protein is still puzzling. Our previous work using the 1C11 neuronal model, provided evidence that PrPC acts as a cell surface receptor. Besides a ubiquitous signaling function of PrPC, we have described a neuronal specificity pointing to a role of PrPC in neuronal homeostasis. 1C11 cells, upon appropriate induction, engage into neuronal differentiation programs, giving rise either to serotonergic (1C115-HT) or noradrenergic (1C11NE) derivatives. Methodology/Principal Findings The neuronal specificity of PrPC signaling prompted us to search for PrPC partners in 1C11-derived bioaminergic neuronal cells. We show here by immunoprecipitation an association of PrPC with an 80 kDa protein identified by mass spectrometry as the tissue non-specific alkaline phosphatase (TNAP). This interaction occurs in lipid rafts and is restricted to 1C11-derived neuronal progenies. Our data indicate that TNAP is implemented during the differentiation programs of 1C115-HT and 1C11NE cells and is active at their cell surface. Noteworthy, TNAP may contribute to the regulation of serotonin or catecholamine synthesis in 1C115-HT and 1C11NE bioaminergic cells by controlling pyridoxal phosphate levels. Finally, TNAP activity is shown to modulate the phosphorylation status of laminin and thereby its interaction with PrP. Conclusion/Significance The identification of a novel PrPC partner in lipid rafts of neuronal cells favors the idea of a role of PrP in multiple functions. Because PrPC and laminin functionally interact to support neuronal differentiation and memory consolidation, our findings introduce TNAP as a functional protagonist in the PrPC-laminin interplay. The partnership between TNAP and PrPC in neuronal cells may provide new clues as to the neurospecificity of PrPC function.
Collapse
Affiliation(s)
- Myriam Ermonval
- Différenciation cellulaire et Prions, Institut Pasteur, Département de Biologie Cellulaire et Infection, Paris, France
- CNRS FRE 2937, Villejuif, France
- * E-mail: (ME); (OK)
| | - Anne Baudry
- Différenciation cellulaire et Prions, Institut Pasteur, Département de Biologie Cellulaire et Infection, Paris, France
- CNRS FRE 2937, Villejuif, France
| | | | - Elodie Pradines
- Différenciation cellulaire et Prions, Institut Pasteur, Département de Biologie Cellulaire et Infection, Paris, France
- CNRS FRE 2937, Villejuif, France
| | - Mathéa Pietri
- Différenciation cellulaire et Prions, Institut Pasteur, Département de Biologie Cellulaire et Infection, Paris, France
- CNRS FRE 2937, Villejuif, France
| | - Kimimitsu Oda
- Division of Oral Biochemistry, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Japan
| | - Benoît Schneider
- Différenciation cellulaire et Prions, Institut Pasteur, Département de Biologie Cellulaire et Infection, Paris, France
- CNRS FRE 2937, Villejuif, France
| | - Sophie Mouillet-Richard
- Différenciation cellulaire et Prions, Institut Pasteur, Département de Biologie Cellulaire et Infection, Paris, France
- CNRS FRE 2937, Villejuif, France
| | - Jean-Marie Launay
- AP-HP Service de Biochimie, U942 INSERM Hôpital Lariboisière, Paris, France
- Pharma Research Department, F. Hoffmann-La-Roche, Basel, Switzerland
| | - Odile Kellermann
- Différenciation cellulaire et Prions, Institut Pasteur, Département de Biologie Cellulaire et Infection, Paris, France
- CNRS FRE 2937, Villejuif, France
- * E-mail: (ME); (OK)
| |
Collapse
|
32
|
Giorgi A, Di Francesco L, Principe S, Mignogna G, Sennels L, Mancone C, Alonzi T, Sbriccoli M, De Pascalis A, Rappsilber J, Cardone F, Pocchiari M, Maras B, Schininà ME. Proteomic profiling of PrP27-30-enriched preparations extracted from the brain of hamsters with experimental scrapie. Proteomics 2009; 9:3802-14. [DOI: 10.1002/pmic.200900085] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
33
|
Pradines E, Loubet D, Schneider B, Launay JM, Kellermann O, Mouillet-Richard S. CREB-dependent gene regulation by prion protein: impact on MMP-9 and beta-dystroglycan. Cell Signal 2008; 20:2050-8. [PMID: 18718863 DOI: 10.1016/j.cellsig.2008.07.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2008] [Revised: 07/18/2008] [Accepted: 07/22/2008] [Indexed: 10/21/2022]
Abstract
Corruption of the normal function of the cellular prion protein (PrP(C)) by the scrapie isoform (PrP(Sc)) emerges as a critical causal event in Transmissible Spongiform Encaphalopathies (TSE) pathogenesis. However, PrP(C) physiological role remains unclear. By exploiting the properties of the 1C11 neuroectodermal cell line, able to convert into 1C11(5-HT) serotonergic or 1C11(NE) noradrenergic neuronal cells, we assigned a signaling function to PrP(C). Here, we establish that antibody-mediated PrP(C) ligation promotes the recruitment of the cAMP responsive element binding protein (CREB) transcription factor downstream from the MAPK ERK1/2, in 1C11 precursor cells and their 1C11(5-HT) and 1C11(NE) neuronal progenies. Whatever the differentiation state of 1C11 cells, the PrP(C)-dependent CREB activation triggers Egr-1 and c-fos transcription, two immediate early genes that relay CREB's role in cell survival and proliferation as well as in neuronal plasticity. Furthermore, in 1C11-derived neuronal cells, we draw a link between the PrP(C)-CREB coupling and a transcriptional regulation of the metalloproteinase MMP-9 and its inhibitor TIMP-1, which play pivotal roles in neuronal pathophysiology. Finally, the PrP(C)-dependent control on MMP-9 impacts on the processing of the transmembrane protein, beta-dystroglycan. Taken together, our data define molecular mechanisms that likely mirror PrP(C) ubiquitous contribution to cytoprotection and its involvement in neuronal plasticity.
Collapse
Affiliation(s)
- Elodie Pradines
- Différenciation, Cellules souches et Prions, CNRS FRE2937 - INSERM U747, Institut André Lwoff, 7 rue Guy Moquet, BP8, 94801 Villejuif Cedex, France
| | | | | | | | | | | |
Collapse
|
34
|
Affiliation(s)
- Adriano Aguzzi
- Institute of Neuropathology, University of Zurich, CH-8091 Zurich, Switzerland,
| | - Frank Baumann
- Institute of Neuropathology, University of Zurich, CH-8091 Zurich, Switzerland,
| | - Juliane Bremer
- Institute of Neuropathology, University of Zurich, CH-8091 Zurich, Switzerland,
| |
Collapse
|
35
|
Linden R, Martins VR, Prado MAM, Cammarota M, Izquierdo I, Brentani RR. Physiology of the prion protein. Physiol Rev 2008; 88:673-728. [PMID: 18391177 DOI: 10.1152/physrev.00007.2007] [Citation(s) in RCA: 435] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Prion diseases are transmissible spongiform encephalopathies (TSEs), attributed to conformational conversion of the cellular prion protein (PrP(C)) into an abnormal conformer that accumulates in the brain. Understanding the pathogenesis of TSEs requires the identification of functional properties of PrP(C). Here we examine the physiological functions of PrP(C) at the systemic, cellular, and molecular level. Current data show that both the expression and the engagement of PrP(C) with a variety of ligands modulate the following: 1) functions of the nervous and immune systems, including memory and inflammatory reactions; 2) cell proliferation, differentiation, and sensitivity to programmed cell death both in the nervous and immune systems, as well as in various cell lines; 3) the activity of numerous signal transduction pathways, including cAMP/protein kinase A, mitogen-activated protein kinase, phosphatidylinositol 3-kinase/Akt pathways, as well as soluble non-receptor tyrosine kinases; and 4) trafficking of PrP(C) both laterally among distinct plasma membrane domains, and along endocytic pathways, on top of continuous, rapid recycling. A unified view of these functional properties indicates that the prion protein is a dynamic cell surface platform for the assembly of signaling modules, based on which selective interactions with many ligands and transmembrane signaling pathways translate into wide-range consequences upon both physiology and behavior.
Collapse
Affiliation(s)
- Rafael Linden
- Instituto de Biofísica da Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| | | | | | | | | | | |
Collapse
|
36
|
Petrakis S, Irinopoulou T, Panagiotidis CH, Engelstein R, Lindstrom J, Orr-Urtreger A, Gabizon R, Grigoriadis N, Sklaviadis T. Cellular prion protein co-localizes with nAChR beta4 subunit in brain and gastrointestinal tract. Eur J Neurosci 2008; 27:612-20. [PMID: 18279314 DOI: 10.1111/j.1460-9568.2008.06037.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
PrP(C), the cellular isoform of prion protein, is widely expressed in most tissues, including brain, muscle and gastrointestinal tract. Despite its involvement in several bioprocesses, PrP has still no apparent physiological role. During propagation of transmissible spongiform encephalopathies (TSE), prion protein is converted to the pathological isoform, PrP(Sc), in a process believed to be mediated by unknown host factors. The identification of proteins associated with PrP may provide information about both the biology of prions and the pathogenesis of TSE. Thus far, PrP(C) has been shown to interact with synaptic proteins, components of the cytoskeleton and intracellular proteins involved in signalling pathways. Here, we describe the association of PrP with the beta4 subunit of nicotinic acetylcholine receptor (nAChR), as indicated by co-immunoprecipitation assays and double-label immunofluorescence. The interaction between prion protein and native beta4 subunit was further studied by affinity chromatography, using immobilized and refolded recombinant PrP as a bait and brain homogenates from normal individuals. Additionally, the participation of beta4 subunit in the pathogenesis of TSE was studied by in vivo assays. beta4(-/-) and wild-type mice were challenged with the RML (Rocky Mountain Laboratories) infectious agent. Transgenic animals displayed altered incubation times but the deletion of beta4 subunit did not result in a significant change of the incubation period of the disease. Our results suggest that PrP(C) is a member of a multiprotein membrane complex participating in the formation and function of alpha3beta4 nAChR.
Collapse
Affiliation(s)
- S Petrakis
- Prion Disease Research Group, Laboratory of Pharmacology, School of Pharmaceutical Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Dong CF, Shi S, Wang XF, An R, Li P, Chen JM, Wang X, Wang GR, Shan B, Zhang BY, Han J, Dong XP. The N-terminus of PrP is responsible for interacting with tubulin and fCJD related PrP mutants possess stronger inhibitive effect on microtubule assembly in vitro. Arch Biochem Biophys 2008; 470:83-92. [DOI: 10.1016/j.abb.2007.11.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2007] [Revised: 11/08/2007] [Accepted: 11/11/2007] [Indexed: 10/22/2022]
|
38
|
Fournier JG. Cellular prion protein electron microscopy: attempts/limits and clues to a synaptic trait. Implications in neurodegeneration process. Cell Tissue Res 2008; 332:1-11. [PMID: 18236081 DOI: 10.1007/s00441-007-0565-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2007] [Accepted: 11/20/2007] [Indexed: 11/24/2022]
Abstract
Prion diseases are caused by an infectious agent constituted by a rogue protein called prion (PrP Sc) of neuronal origin (PrP c) and are exemplified by Creutzfeldt-Jakob disease in humans and bovine spongiform encephalopathy in cattle. Considerable efforts have been made to understand the cerebral damage caused by these diseases but a clear comprehensive view cannot be achieved without defining the neurophysiological function of PrP c. This lack of information is in part attributable to our ignorance of the precise localization of PrP c in the brain neuronal cell. One relevant option to explore this aspect is to undertake PrP immunohistochemistry at the electron-microscopy level, knowing that this challenge raises major technical constraints. In describing the attempts and restrictions of the various approaches used, we review here the efforts that have been invested in this particular field of prionology. The common result emerging from these contributions is that the synapse could be the site at which PrP c exerts its critical activity. This location suggests, in the perspective of synaptic regulation, that PrP c can be assigned multiple biological functions and supports the novel concept that prion-like changes are involved in long-term memory formation. The synaptic trait of PrP c and PrP Sc suggests that synapse loss is the key event in neuronal death. Interestingly, synaptic alterations are also considered to be predominant in the pathophysiological mechanism in Alzheimer, Parkinson and Huntington diseases. All these brain disorders, characterized by the formation of a specific amyloid protein of synaptic origin, can be classified under the heading of amyloidogenic synaptopathies.
Collapse
Affiliation(s)
- Jean-Guy Fournier
- SEPIA/DSV/DRM/CEA, 18 Route Panorama, 92260, Fontenay aux Roses, France.
| |
Collapse
|
39
|
Bedecs K. Cell culture models to unravel prion protein function and aberrancies in prion diseases. Methods Mol Biol 2008; 459:1-20. [PMID: 18576144 DOI: 10.1007/978-1-59745-234-2_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
From an early stage of prion research, tissue cultures that could support and propagate the scrapie agent were sought after. The earliest attempts were explants from brains of infected mice, and their growth and morphological characteristics were compared with those from uninfected mice. Using the explant technique, several investigators reported increased cell growth in cultures established from scrapie-sick brain compared with cultures from normal mice. These are odd findings in the light of the massive neuronal cell death known to occur in scrapie-infected brains; however, the cell types responsible for the increased cell growth in the scrapie-explants most probably were not neuronal. The first successful cell culture established in this way, in which the scrapie agent was serially and continuously passaged beyond the initial explant, was in the scrapie mouse brain culture, which is still used today. This chapter describes the generation and use of chronically prion-infected cell lines as cell culture models of prion diseases. These cell lines have been crucial for the current understanding of the cell biology of both the normal (PrP(C)) and the pathogenic isoform (PrP(Sc)) of the prion protein. They also have been useful in the development of antiprion drugs, prospectively used for therapy of prion diseases, and they offer an alternative approach for transmission/infectivity assays normally performed by mouse bioassay. Cell culture models also have been used to study prion-induced cytopathological changes, which could explain the typical spongiform neurodegeneration in prion diseases.
Collapse
Affiliation(s)
- Katarina Bedecs
- Department of Biochemistry and Biophysics, Stockholm University, Sweden
| |
Collapse
|
40
|
Watts JC, Westaway D. The prion protein family: Diversity, rivalry, and dysfunction. Biochim Biophys Acta Mol Basis Dis 2007; 1772:654-72. [PMID: 17562432 DOI: 10.1016/j.bbadis.2007.05.001] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2006] [Revised: 04/26/2007] [Accepted: 05/02/2007] [Indexed: 11/24/2022]
Abstract
The prion gene family currently consists of three members: Prnp which encodes PrP(C), the precursor to prion disease associated isoforms such as PrP(Sc); Prnd which encodes Doppel, a testis-specific protein involved in the male reproductive system; and Sprn which encodes the newest PrP-like protein, Shadoo, which is expressed in the CNS. Although the identification of numerous candidate binding partners for PrP(C) has hinted at possible cellular roles, molecular interpretations of PrP(C) activity remain obscure and no widely-accepted view as to PrP(C) function has emerged. Nonetheless, studies into the functional interrelationships of prion proteins have revealed an interesting phenomenon: Doppel is neurotoxic to cerebellar cells in a manner which can be blocked by either PrP(C) or Shadoo. Further examination of this paradigm may help to shed light on two prominent unanswered questions in prion biology: the functional role of PrP(C) and the neurotoxic pathways initiated by PrP(Sc) in prion disease.
Collapse
Affiliation(s)
- Joel C Watts
- Centre for Research in Neurodegenerative Diseases and Department of Laboratory Medicine and Pathobiology, University of Toronto, Canada
| | | |
Collapse
|
41
|
Fernández AP, Serrano J, Rodrigo J, Monleón E, Monzón M, Vargas A, Badiola JJ, Martínez-Murillo R, Martínez A. Changes in the expression pattern of the nitrergic system of ovine cerebellum affected by scrapie. J Neuropathol Exp Neurol 2007; 66:196-207. [PMID: 17356381 DOI: 10.1097/01.jnen.0000248557.37832.b4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The constitutive and inducible isoforms of nitric oxide synthase (NOS) and the end-product of nitration, nitrotyrosine, were analyzed by immunohistochemistry, Western blotting, and enzymatic activity in sheep at different stages of the prion disease, scrapie. Four groups were studied: 1) nonaffected (control), 2) preclinical, 3) clinical, and 4) terminal. Constitutive neuronal NOS (nNOS) was the most abundant isoform present in cerebellar neurons of the sheep. Expression of nNOS increased in preclinical animals but diminished in the late stages of the disease. The Purkinje cells that usually are not immunoreactive for this protein became immunopositive in the clinical phase. In unaffected sheep, the inducible isoform (iNOS) was slightly positive in the Purkinje cells. As the disease progressed, the immunoreactivity of Purkinje neurons for iNOS increased. At the final stages, numerous iNOS-positive microglial cells were found in the molecular layer. There was a basal level of protein nitration in the cerebellum of unaffected sheep, especially in the molecular layer. As the disease progressed, the distal prolongations of the Purkinje cells and the astroglia became immunoreactive for nitrotyrosine. Our results suggest that the nitrergic system reacts to the progression of spongiform diseases and may be part of their pathogenesis mechanism.
Collapse
Affiliation(s)
- Ana Patricia Fernández
- Department of Neuroanatomy and Cell Biology, Instituto Cajal, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Lalatta-Costerbosa G, Mazzoni M, Clavenzani P, Di Guardo G, Mazzuoli G, Marruchella G, De Grossi L, Agrimi U, Chiocchetti R. Nitric oxide synthase immunoreactivity and NADPH-d histochemistry in the enteric nervous system of Sarda breed sheep with different PrP genotypes in whole-mount and cryostat preparations. J Histochem Cytochem 2007; 55:387-401. [PMID: 17210925 DOI: 10.1369/jhc.6a7052.2007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Until now, significant differences in the neurochemical pattern of enteric neurons have been demonstrated in all species studied; however, some strong similarities also occur across species, such as the occurrence of nitric oxide synthase immunoreactivity (NOS-IR) in inhibitory motor neurons to muscle. In consideration of the insufficient data regarding the enteric nervous system (ENS) of sheep, we investigated the myenteric plexus and submucosal plexus of the ovine ileum. Since the pivotal role of the ENS in the early pathogenesis of sheep scrapie, the "prototype" of prion diseases, has been suggested, we have focused our observations also on the host's PrP genotype. We have studied the morphology and distribution of NOS-IR neurons and their relationships with the enteric glia in whole-mount preparations and in cryostat sections. NOS-IR neurons, always encircled by glial processes, were located in both plexuses. Many NOS-IR fibers were seen in the circular muscle layer, in the submucosa, and in the mucosa. In the submucosa they were close to the lymphoid tissue. No differences in the distribution and percentage of NOS-IR fibers and neurons were observed among sheep carrying different PrP genotype, thus making unlikely their contribution in the determinism of susceptibility/resistance to scrapie infection.
Collapse
|
43
|
Petrakis S, Sklaviadis T. Identification of proteins with high affinity for refolded and native PrPC. Proteomics 2006; 6:6476-84. [PMID: 17111435 DOI: 10.1002/pmic.200600103] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
PrPC, the cellular prion protein, is widely expressed in most tissues, including brain, muscle and the gastrointestinal tract, but its physiological role remains unclear. During propagation of transmissible spongiform encephalopathies (TSEs), prion protein is converted to the pathological isoform, PrPSc, in a process believed to be mediated by as-yet-unknown host factors. The identification of proteins associated with PrP may provide information about the biology of prions and the pathogenesis of TSEs. In the present work, we report proteins identified from brain tissue based on their ability to bind to recombinant PrP (recPrP) or form multimolecular complexes with native PrPC in the presence of cross-linkers. Immobilized his-tagged recPrP was used as an affinity matrix to isolate PrP-interacting proteins from brain homogenates of normal individuals. In parallel, PrPC-associated proteins were characterized by cross-linking and co-immunoprecipitation assays. The unknown molecules were identified by MS and the results of LC-MS/MS analysis were subsequently verified by Western blot. Both techniques resulted in identification of proteins participating in the formation of cytoskeleton and signal transduction, further supporting the hypothesis that PrP is involved in the organization and function of receptors throughout the nervous system.
Collapse
Affiliation(s)
- Spyros Petrakis
- Prion Disease Research Group, Laboratory of Pharmacology, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | |
Collapse
|
44
|
Nieznanski K, Podlubnaya ZA, Nieznanska H. Prion protein inhibits microtubule assembly by inducing tubulin oligomerization. Biochem Biophys Res Commun 2006; 349:391-9. [PMID: 16934224 DOI: 10.1016/j.bbrc.2006.08.051] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2006] [Accepted: 08/11/2006] [Indexed: 11/24/2022]
Abstract
A growing body of evidence points to an association of prion protein (PrP) with microtubular cytoskeleton. Recently, direct binding of PrP to tubulin has also been found. In this work, using standard light scattering measurements, sedimentation experiments, and electron microscopy, we show for the first time the effect of a direct interaction between these proteins on tubulin polymerization. We demonstrate that full-length recombinant PrP induces a rapid increase in the turbidity of tubulin diluted below the critical concentration for microtubule assembly. This effect requires magnesium ions and is weakened by NaCl. Moreover, the PrP-induced light scattering structures of tubulin are cold-stable. In preparations of diluted tubulin incubated with PrP, electron microscopy revealed the presence of approximately 50 nm disc-shaped structures not reported so far. These unique tubulin oligomers may form large aggregates. The effect of PrP is more pronounced under the conditions promoting microtubule formation. In these tubulin samples, PrP induces formation of the above oligomers associated with short protofilaments and sheets of protofilaments into aggregates. Noticeably, this is accompanied by a significant reduction of the number and length of microtubules. Hence, we postulate that prion protein may act as an inhibitor of microtubule assembly by inducing formation of stable tubulin oligomers.
Collapse
Affiliation(s)
- Krzysztof Nieznanski
- Nencki Institute of Experimental Biology, Department of Muscle Biochemistry, Warsaw, Poland.
| | | | | |
Collapse
|
45
|
Wurm S, Wechselberger C. Prion protein modifies TGF-β induced signal transduction. Biochem Biophys Res Commun 2006; 349:525-32. [PMID: 16942751 DOI: 10.1016/j.bbrc.2006.08.074] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2006] [Accepted: 08/11/2006] [Indexed: 10/24/2022]
Abstract
Members of the transforming growth factor-beta (TGF-beta) superfamily regulate a multitude of cellular processes as well as the expression of various proteins such as, e.g., matrix metalloproteinases (MMPs). These endopeptidases selectively degrade components of the extracellular matrix as well as non-matrix substrates like growth factors and cell surface receptors. MMPs are activated during embryonic development, morphogenesis, and tissue resorption/remodeling as well as in pathological conditions such as deranged wound healing and cancer metastasis. In this report we demonstrate that over-expression of cellular prion protein in mouse mammary gland epithelial cells is able to modulate TGF-beta induced signal transduction leading to a synergistic increase of secreted MMP-2 activity. This correlates with elevated substrate detachment of cells grown as an epithelial monolayer as well as interfering with morphogenesis of cells cultured in a three-dimensional collagen type I matrix.
Collapse
Affiliation(s)
- Susanne Wurm
- Upper Austrian Research GmbH, Center for Biomedical Nanotechnology, 4020 Linz, Austria
| | | |
Collapse
|
46
|
Martín SF, Herva ME, Espinosa JC, Parra B, Castilla J, Brun A, Torres JM. Cell expression of a four extra octarepeat mutated PrPCmodifies cell structure and cell cycle regulation. FEBS Lett 2006; 580:4097-104. [PMID: 16828087 DOI: 10.1016/j.febslet.2006.06.054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2006] [Revised: 06/19/2006] [Accepted: 06/20/2006] [Indexed: 11/23/2022]
Abstract
RK13 cell lines generated to express bovine PrP(C) with a four extra octarepeat insertional mutation (Bo-10ORPrP(C)) show partially insoluble PrP(C) and lower rates of cell growth when compared to either the same cells expressing wild type Bo-6ORPrP(C) or the original RK13 cell line. The expression of Bo-10ORPrP(C) in cell cultures was also associated with changes in cell size and reorganization of the actin cytoskeleton. This last process was reversed by Clostridium difficile toxin-B, a specific inhibitor of small GTPase proteins. Further, in clones expressing Bo-10ORPrP(C), increased proportions of cells at cell cycle stage G2/M were observed. Proteasome inhibitors caused a further expansion of G2/M-stage cells that was more marked in cell lines expressing Bo-10ORPrP(C) than those expressing Bo-6ORPrP(C), while this effect was minimal or null in the original RK13 cell line. Hence, the presence of Bo-10ORPrP(C) in RK13 cells promotes cell cycle arrest at G2/M, and the effect is amplified by proteasome inhibition. These findings suggest a role for PrP(C) in cell morphology and cell cycle regulation, and open new avenues for understanding the mechanisms underlying PrP mutation-associated diseases.
Collapse
Affiliation(s)
- Sergio F Martín
- Centro de Investigación en Sanidad (CISA-INIA), Ctra. de Algete a El Casar, km. 8.100, 28130 Valdeolmos, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
47
|
Loberto N, Prioni S, Bettiga A, Chigorno V, Prinetti A, Sonnino S. The membrane environment of endogenous cellular prion protein in primary rat cerebellar neurons. J Neurochem 2005; 95:771-83. [PMID: 16248888 DOI: 10.1111/j.1471-4159.2005.03397.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
We studied the membrane environment of cellular prion protein in primary cultured rat cerebellar neurons differentiated in vitro. In these cells, about 45% of total cellular prion protein (corresponding to a 35-fold enrichment) is associated with a low-density, sphingolipid- and cholesterol-enriched membrane fraction, that can be separated by flotation on sucrose gradient. Biotinylation experiments indicated that almost all prion protein recovered in this fraction was exposed at the cell surface. Prion protein was efficiently separated from this fraction by a monoclonal antibody immuno-separation procedure. Under conditions designed to preserve lipid-mediated membrane organization, several proteins were found in the prion protein-enriched membrane domains (i.e. the non-receptor tyrosine kinases Lyn and Fyn and the neuronal glycosylphosphatidylinositol-anchored protein Thy-1). The prion protein-rich membrane domains contained, as well, about 50% of the sphingolipids, cholesterol and phosphatidylcholine present in the sphingolipid-enriched membrane fraction. All main sphingolipids, including sphingomyelin, neutral glycosphingolipids and gangliosides, were similarly enriched in the prion protein-rich membrane domains. Thus, prion protein plasma membrane environment in differentiated neurons resulted to be a complex entity, whose integrity requires a network of lipid-mediated non-covalent interactions.
Collapse
Affiliation(s)
- Nicoletta Loberto
- Center of Excellence on Neurodegenerative Diseases, Department of Medical Chemistry, Biochemistry and Biotechnology, University of Milan, Segrate, Italy
| | | | | | | | | | | |
Collapse
|
48
|
Nieznanski K, Nieznanska H, Skowronek KJ, Osiecka KM, Stepkowski D. Direct interaction between prion protein and tubulin. Biochem Biophys Res Commun 2005; 334:403-11. [PMID: 16004966 DOI: 10.1016/j.bbrc.2005.06.092] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2005] [Accepted: 06/20/2005] [Indexed: 02/04/2023]
Abstract
Recently published data show that the prion protein in its cellular form (PrP(C)) is a component of multimolecular complexes. In this report, zero-length cross-linking with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) allowed us to identify tubulin as one of the molecules interacting with PrP(C) in complexes observed in porcine brain extracts. We found that porcine brain tubulin added to these extracts can be cross-linked with PrP(C). Moreover, we observed that the 34 kDa species identified previously as full-length diglycosylated prion protein co-purifies with tubulin. Cross-linking of PrP(C) species separated by Cu(2+)-loaded immobilized metal affinity chromatography confirmed that only the full-length protein but not the N-terminally truncated form (C1) binds to tubulin. By means of EDC cross-linking and cosedimentation experiments, we also demonstrated a direct interaction of recombinant human PrP (rPrP) with tubulin. The stoichiometry of cosedimentation implies that rPrP molecules are able to bind both the alpha- and beta-isoforms of tubulin composing microtubule. Furthermore, prion protein exhibits higher affinity for microtubules than for unpolymerized tubulin.
Collapse
Affiliation(s)
- Krzysztof Nieznanski
- Department of Muscle Biochemistry, Nencki Institute of Experimental Biology, Warsaw, Poland.
| | | | | | | | | |
Collapse
|
49
|
Nieznanski K, Rutkowski M, Dominik M, Stepkowski D. Proteolytic processing and glycosylation influence formation of porcine prion protein complexes. Biochem J 2005; 387:93-100. [PMID: 15500447 PMCID: PMC1134936 DOI: 10.1042/bj20041344] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
High level of heterogeneity seems to be a ubiquitous feature of mammalian PrPs (prion proteins) and may be relevant to the pathogenesis of prion diseases. In the present study, we describe the heterogeneity of PrP(C) (cellular form of PrP) from porcine brain. It was disclosed and characterized by a combination of one-dimensional PAGE and two-dimensional PAGE analyses with enzymic deglycosylation and copper-affinity experiments. We found that the identified two main populations of porcine PrP(C) consist of diglycosylated forms and correspond to the full-length (molecular mass 32-36 kDa) and proteolytically modified protein (molecular mass 25-30 kDa), known as C1. The two populations were fully separated during Cu2+-loaded immobilized metal affinity chromatography, indicating different affinity for copper ions. The more basic forms, migrating as species of higher molecular mass, exhibited stronger affinity for copper ions, whereas those with more acidic pI and of lower molecular mass were low-affinity Cu2+-binding molecules and thus could represent N-terminally truncated PrP(C). Size-exclusion chromatography revealed that most of the PrP(C) molecules in porcine brain extracts exist in the form of high-molecular-mass complexes (probably with other proteins). The heterogeneity of porcine PrP(C), resulting from proteolytic modification and glycosylation, influences its ability to assemble into these complexes. N-truncated molecules dominate over full-length PrP(C) in fractions of molecular mass over the range 65-130 kDa, whereas the full-length species are the major forms of PrP(C) present in the monomeric fraction and in complexes above 130 kDa. Two-dimensional PAGE analysis indicated that the complexed PrP(C) differs in the composition of pI forms from the monomers.
Collapse
Affiliation(s)
- Krzysztof Nieznanski
- Department of Muscle Biochemistry, Nencki Institute of Experimental Biology, ul. Pasteura 3, 02 093 Warsaw, Poland.
| | | | | | | |
Collapse
|
50
|
Massimino ML, Ballarin C, Bertoli A, Casonato S, Genovesi S, Negro A, Sorgato MC. Human Doppel and prion protein share common membrane microdomains and internalization pathways. Int J Biochem Cell Biol 2005; 36:2016-31. [PMID: 15203115 DOI: 10.1016/j.biocel.2004.03.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2003] [Revised: 02/17/2004] [Accepted: 03/15/2004] [Indexed: 11/24/2022]
Abstract
Doppel is the first identified homologue of the prion protein (PrPc) implicated in prion disease. Doppel is considered an N-truncated form of PrPc, and shares with PrPc several structural and biochemical features. When over expressed in the brain of some PrP knockout animals, it provokes cerebellar ataxia. As this phenotype is rescued by reintroducing the PrP gene, it has been suggested that Doppel and PrPc have antagonistic functions and may compete for a common ligand. However, a direct interaction between the two proteins has recently been observed. To investigate whether the neuronal environment is suitable for such possibility, human Doppel and PrPc were expressed separately, or together, in neuroblastoma cells, and then studied by biochemical and immunomicroscopic tools, as well as in intact cells expressing fluorescent fusion constructs. The results demonstrate that Doppel and PrPc co-patch extensively at the plasma membrane, and get internalized together after ganglioside cross-linking by cholera toxin or addition of an antibody against only one of the proteins. These processes no longer occur if the integrity of rafts is disrupted. We also show that, whereas each protein expressed alone occupies Triton X-100-insoluble membrane microdomains, co-transfected Doppel and PrPc redistribute together into a less ordered lipidic environment. All these features are consistent with interactions occurring between Doppel and PrPc in our neuronal cell model.
Collapse
Affiliation(s)
- Maria Lina Massimino
- Dipartimento di Chimica Biologica, Università degli Studi di Padova, Istituto CNR di Neuroscienze and C.R.I.B.I., Viale G. Colombo 3, 35121 Padova, Italy
| | | | | | | | | | | | | |
Collapse
|