1
|
Dermitzakis I, Kyriakoudi SA, Chatzianagnosti S, Chatzi D, Vakirlis E, Meditskou S, Manthou ME, Theotokis P. Epigenetics in Skin Homeostasis and Ageing. EPIGENOMES 2025; 9:3. [PMID: 39846570 PMCID: PMC11755608 DOI: 10.3390/epigenomes9010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/19/2024] [Accepted: 12/31/2024] [Indexed: 01/24/2025] Open
Abstract
The skin, the largest organ of the human body, plays numerous essential roles, including protection against environmental hazards and the regulation of body temperature. The processes of skin homeostasis and ageing are complex and influenced by many factors, with epigenetic mechanisms being particularly significant. Epigenetics refers to the regulation of gene expression without altering the underlying DNA sequence. The dynamic nature of the skin, characterized by constant cellular turnover and responsiveness to environmental stimuli, requires precise gene activity control. This control is largely mediated by epigenetic modifications such as DNA methylation, histone modification, and regulation by non-coding RNAs. The present review endeavours to provide a comprehensive exploration and elucidation of the role of epigenetic mechanisms in regulating skin homeostasis and ageing. By integrating our current knowledge of epigenetic modifications with the latest advancements in dermatological research, we can gain a deeper comprehension of the complex regulatory networks that govern skin biology. Understanding these mechanisms also presents promising avenues for therapeutic interventions aimed at improving skin health and mitigating age-related skin conditions.
Collapse
Affiliation(s)
- Iasonas Dermitzakis
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (S.A.K.); (S.C.); (D.C.); (S.M.); (M.E.M.); (P.T.)
| | - Stella Aikaterini Kyriakoudi
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (S.A.K.); (S.C.); (D.C.); (S.M.); (M.E.M.); (P.T.)
| | - Sofia Chatzianagnosti
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (S.A.K.); (S.C.); (D.C.); (S.M.); (M.E.M.); (P.T.)
| | - Despoina Chatzi
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (S.A.K.); (S.C.); (D.C.); (S.M.); (M.E.M.); (P.T.)
| | - Efstratios Vakirlis
- First Department of Dermatology and Venereology, School of Medicine, Aristotle University of Thessaloniki, 54643 Thessaloniki, Greece;
| | - Soultana Meditskou
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (S.A.K.); (S.C.); (D.C.); (S.M.); (M.E.M.); (P.T.)
| | - Maria Eleni Manthou
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (S.A.K.); (S.C.); (D.C.); (S.M.); (M.E.M.); (P.T.)
| | - Paschalis Theotokis
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (S.A.K.); (S.C.); (D.C.); (S.M.); (M.E.M.); (P.T.)
| |
Collapse
|
2
|
Escobar E, Gómez-Valenzuela F, Peñafiel C, Chimenos-Küstner E, Pérez-Tomás R. Immunohistochemical evaluation of cyclin D1 and p63 in odontogenic keratocyst and unicystic ameloblastoma. REVISTA ESPANOLA DE PATOLOGIA : PUBLICACION OFICIAL DE LA SOCIEDAD ESPANOLA DE ANATOMIA PATOLOGICA Y DE LA SOCIEDAD ESPANOLA DE CITOLOGIA 2024; 57:280-287. [PMID: 39393896 DOI: 10.1016/j.patol.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/07/2024] [Accepted: 06/19/2024] [Indexed: 10/13/2024]
Abstract
INTRODUCTION Odontogenic keratocyst (OKC) and unicystic ameloblastoma (UA) are lesions of odontogenic origin. Both lesions are morphologically cysts. However, they are classified as developmental cysts and epithelial odontogenic tumours, respectively. Cyclin D1 (CCD1) dysregulation is associated with oncogenic activity and malignancies, while tumour protein p63 (p63) alterations are associated with tumourigenesis. AIM To evaluate and compare the protein expression of CCD1 and p63 in sporadic OKC (OKC-sp), syndromic OKC (OKC-sy), and UA. MATERIAL AND METHODS 45 cases from the Anatomical Pathology Department, Faculty of Dentistry, University of Chile were analysed and divided into groups: OKC-sp (n=15), OKC-sy (n=15) and UA (n=15), the latter categorised into intraluminal and/or luminal (n=7) and mural (n=8). Immunohistochemical staining for CCD1 and p63 proteins was performed from paraffin-embedded sections. Statistical analysis included the Shapiro-Wilk test, one-way ANOVA with Tukey's multiple comparisons, and Spearman's correlation coefficient (p<0.05). RESULTS There was an involvement mainly in women in the mandibular area, and a high frequency of jaw expansion, especially in the mural UA. P63 protein expression was higher than CCD1 in all cystic lesions, particularly in mural UA (p<0.001). No correlation was found between CCD1 and p63 expression. CONCLUSION P63 may serve as a valuable marker for evaluating cell proliferative activity in odontogenic cystic lesions, providing insights into the aggressive behaviour of mural UA.
Collapse
Affiliation(s)
- Enrico Escobar
- Department of Oral Pathology and Medicine, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Fernán Gómez-Valenzuela
- Department of Gynaecology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - Cristian Peñafiel
- Department of Oral Pathology and Medicine, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Eduardo Chimenos-Küstner
- Department of Odonto-Stomatology, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Ricardo Pérez-Tomás
- Department of Pathology and Experimental Therapy-Bellvitge, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| |
Collapse
|
3
|
Taylor MA, Kandyba E, Halliwill K, Delrosario R, Khoroshkin M, Goodarzi H, Quigley D, Li YR, Wu D, Bollam SR, Mirzoeva OK, Akhurst RJ, Balmain A. Stem-cell states converge in multistage cutaneous squamous cell carcinoma development. Science 2024; 384:eadi7453. [PMID: 38815020 DOI: 10.1126/science.adi7453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 04/05/2024] [Indexed: 06/01/2024]
Abstract
Stem cells play a critical role in cancer development by contributing to cell heterogeneity, lineage plasticity, and drug resistance. We created gene expression networks from hundreds of mouse tissue samples (both normal and tumor) and integrated these with lineage tracing and single-cell RNA-seq, to identify convergence of cell states in premalignant tumor cells expressing markers of lineage plasticity and drug resistance. Two of these cell states representing multilineage plasticity or proliferation were inversely correlated, suggesting a mutually exclusive relationship. Treatment of carcinomas in vivo with chemotherapy repressed the proliferative state and activated multilineage plasticity whereas inhibition of differentiation repressed plasticity and potentiated responses to cell cycle inhibitors. Manipulation of this cell state transition point may provide a source of potential combinatorial targets for cancer therapy.
Collapse
Affiliation(s)
- Mark A Taylor
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94158, USA
- Clinical Research Centre, Medical University of Bialystok, Bialystok 15-089, Poland
| | - Eve Kandyba
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94158, USA
| | - Kyle Halliwill
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94158, USA
- AbbVie, South San Francisco, CA 94080, USA
| | - Reyno Delrosario
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94158, USA
| | - Matvei Khoroshkin
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94158, USA
| | - Hani Goodarzi
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94158, USA
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94518, USA
- Department of Urology, University of California San Francisco, San Francisco, CA 94518, USA
- Arc Institute, Palo Alto, CA 94304, USA
| | - David Quigley
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94158, USA
- Department of Urology, University of California San Francisco, San Francisco, CA 94518, USA
- Department of Epidemiology & Biostatistics, University of California San Francisco, San Francisco, CA 94518, USA
| | - Yun Rose Li
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94158, USA
- Department of Radiation Oncology, City of Hope National Medical Center, Duarte, CA 91010, USA
- Department of Cancer Genetics & Epigenetics, City of Hope National Medical Center, Duarte, CA 91010, USA
- Division of Quantitative Medicine & Systems Biology, Translational Genomics Research Institute, Phoenix, CA 85004, USA
| | - Di Wu
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94158, USA
| | - Saumya R Bollam
- Biomedical Sciences Graduate Program, University of California San Francisco, San Francisco, CA 94518, USA
| | - Olga K Mirzoeva
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94158, USA
| | - Rosemary J Akhurst
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94158, USA
- Department of Anatomy, University of California San Francisco, San Francisco, CA 94518, USA
| | - Allan Balmain
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94158, USA
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94518, USA
| |
Collapse
|
4
|
Wrynn T, Min S, Horeth E, Osinski J, Sinha S, Romano RA. ΔNp63 regulates Sfrp1 expression to direct salivary gland branching morphogenesis. PLoS One 2024; 19:e0301082. [PMID: 38722977 PMCID: PMC11081224 DOI: 10.1371/journal.pone.0301082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/08/2024] [Indexed: 05/13/2024] Open
Abstract
Branching morphogenesis is a complex process shared by many organs including the lungs, kidney, prostate, as well as several exocrine organs including the salivary, mammary and lacrimal glands. This critical developmental program ensures the expansion of an organ's surface area thereby maximizing processes of cellular secretion or absorption. It is guided by reciprocal signaling from the epithelial and mesenchymal cells. While signaling pathways driving salivary gland branching morphogenesis have been relatively well-studied, our understanding of the underlying transcriptional regulatory mechanisms directing this program, is limited. Here, we performed in vivo and ex vivo studies of the embryonic mouse submandibular gland to determine the function of the transcription factor ΔNp63, in directing branching morphogenesis. Our studies show that loss of ΔNp63 results in alterations in the differentiation program of the ductal cells which is accompanied by a dramatic reduction in branching morphogenesis that is mediated by dysregulation of WNT signaling. We show that ΔNp63 modulates WNT signaling to promote branching morphogenesis by directly regulating Sfrp1 expression. Collectively, our findings have revealed a novel role for ΔNp63 in the regulation of this critical process and offers a better understanding of the transcriptional networks involved in branching morphogenesis.
Collapse
Affiliation(s)
- Theresa Wrynn
- Department of Oral Biology, School of Dental Medicine, State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Sangwon Min
- Department of Stem Cell and Regenerative Biology, Faculty of Arts and Sciences, Harvard University, Cambridge, Massachusetts, United States of America
| | - Erich Horeth
- Department of Oral Biology, School of Dental Medicine, State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Jason Osinski
- Department of Oral Biology, School of Dental Medicine, State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Satrajit Sinha
- Department of Biochemistry, School of Dental Medicine, State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Rose-Anne Romano
- Department of Oral Biology, School of Dental Medicine, State University of New York at Buffalo, Buffalo, New York, United States of America
- Department of Biochemistry, School of Dental Medicine, State University of New York at Buffalo, Buffalo, New York, United States of America
| |
Collapse
|
5
|
Sato S, Ogawa Y, Shimizu E, Asai K, Okazaki T, Rusch R, Hirayama M, Shimmura S, Negishi K, Tsubota K. Cellular senescence promotes meibomian gland dysfunction in a chronic graft-versus-host disease mouse model. Ocul Surf 2024; 32:198-210. [PMID: 38499288 DOI: 10.1016/j.jtos.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/27/2024] [Accepted: 03/12/2024] [Indexed: 03/20/2024]
Abstract
PURPOSE Aging is a well-established risk factor for meibomian gland dysfunction (MGD). We previously reported an accelerated cellular senescence phenomenon in the lacrimal glands of a murine model of chronic graft-versus-host disease (cGVHD). Herein, we aimed to elucidate the relationship between cellular senescence and MGD in cGVHD mice, utilizing the senolytic agent ABT-263. METHODS A cGVHD mouse model was established through allogeneic bone marrow transplantation (BMT) from B10.D2 to BALB/c mice. Subsequently, cGVHD mice were treated with either ABT-263 or vehicle. The eyelids of recipients were analyzed at 4-week intervals post-BMT in both groups. RESULTS Meibomian gland (MG) area was significantly smaller in cGVHD mice than in syngeneic control mice. ABT-263-treated mice retained a significantly larger MG area than their vehicle-treated counterparts. Pathological and immunohistochemical examinations revealed significant reductions in eyelid tissue inflammation and pathological fibrosis in the ABT-263 group compared to that in the vehicle-treated group. Additionally, expression of DNA damage markers, senescent cell markers, and senescence-associated secretory phenotype (SASP) factors was elevated in the eyelids of cGVHD mice compared with that in syngeneic mice. The expression of these cellular senescence-associated molecules was considerably suppressed in ABT-263-treated eyelids compared to that in vehicle-treated ones. CONCLUSIONS Cellular senescence, along with expression of SASP factors, exhibited increased activity in the eyelids, particularly in the MGs of cGVHD mice. ABT-263 mitigated the severity of MGD. These findings highlight the potential of targeting cellular senescence as an effective approach for MGD treatment in cGVHD.
Collapse
Affiliation(s)
- Shinri Sato
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan.
| | - Yoko Ogawa
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan.
| | - Eisuke Shimizu
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Kazuki Asai
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Takahiro Okazaki
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Robert Rusch
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Masatoshi Hirayama
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Shigeto Shimmura
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan; Fujita Medical Innovation Center Tokyo, Fujita Health University, Tokyo, Japan
| | - Kazuno Negishi
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | | |
Collapse
|
6
|
Eyermann CE, Chen X, Somuncu OS, Li J, Joukov AN, Chen J, Alexandrova EM. ΔNp63 Regulates Homeostasis, Stemness, and Suppression of Inflammation in the Adult Epidermis. J Invest Dermatol 2024; 144:73-83.e10. [PMID: 37543242 DOI: 10.1016/j.jid.2023.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 06/22/2023] [Accepted: 07/10/2023] [Indexed: 08/07/2023]
Abstract
The p63 transcription factor is critical for epidermis formation in embryonic development, but its role in the adult epidermis is poorly understood. In this study, we show that acute genetic ablation of ΔNp63, the main p63 isoform, in adult epidermis disrupts keratinocyte proliferation and self-maintenance and, unexpectedly, triggers an inflammatory psoriasis-like condition. Mechanistically, single-cell RNA sequencing revealed the downregulation of cell cycle genes, upregulation of differentiation markers, and induction of several proinflammatory pathways in ΔNp63-ablated keratinocytes. Intriguingly, ΔNp63-ablated cells disappear by 3 weeks after ablation, at the expense of the remaining nonablated cells. This is not associated with active cell death and is likely due to reduced self-maintenance and enhanced differentiation. Indeed, in vivo wound healing, a physiological readout of the epidermal stem cell function, is severely impaired upon ΔNp63 ablation. We found that the Wnt signaling pathway (Wnt10A, Fzd6, Fzd10) and the activator protein 1 (JunB, Fos, FosB) factors are the likely ΔNp63 effectors responsible for keratinocyte proliferation/stemness and suppression of differentiation, respectively, whereas IL-1a, IL-18, IL-24, and IL-36γ are the likely negative effectors responsible for suppression of inflammation. These data establish ΔNp63 as a critical node that coordinates epidermal homeostasis, stemness, and suppression of inflammation, upstream of known regulatory pathways.
Collapse
Affiliation(s)
- Christopher E Eyermann
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA; Stony Brook Cancer Center, Stony Brook, New York, USA
| | - Xi Chen
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA; Stony Brook Cancer Center, Stony Brook, New York, USA
| | - Ozge S Somuncu
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA; Stony Brook Cancer Center, Stony Brook, New York, USA
| | - Jinyu Li
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA; Stony Brook Cancer Center, Stony Brook, New York, USA
| | | | - Jiang Chen
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA; Stony Brook Cancer Center, Stony Brook, New York, USA
| | - Evguenia M Alexandrova
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA; Stony Brook Cancer Center, Stony Brook, New York, USA.
| |
Collapse
|
7
|
Mahani MA, Karimvand AN, Naserifar N. Optimized hybrid dielectrophoretic microchip for separation of bioparticles. J Sep Sci 2023; 46:e2300257. [PMID: 37480169 DOI: 10.1002/jssc.202300257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/23/2023]
Abstract
Point-of-care diagnostics requires a smart separation of particles and/or cells. In this work, the multiorifice fluid fractionation as a passive method and dielectrophoresis-based actuator as an active tool are combined to offer a new device for size-based particle separation. The main objective of the combination of these two well-established techniques is to improve the performance of the multiorifice fluid fractionation by taking advantage of dielectrophoresis-based actuator for separating particles. Initially, by using numerical simulations, the effect of using dielectrophoresis-based actuator in multiorifice fluid fractionation on the separation of particles was investigated, and the size of the device was optimized by 25% compared to a device without dielectrophoresis-based actuator. Also, adding dielectrophoresis-based actuator to multiorifice fluid fractionation can extend the range of flow rates needed for separation. In the absence of dielectrophoresis-based actuator, the separation took place only when the flow rate is 100 μL/min, in the presence of dielectrophoresis-based actuator (20 Vp-p), the separation happened in flow rates ranging from 70 to 120 μL/min.
Collapse
Affiliation(s)
- Moheb Amir Mahani
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran
| | | | - Naser Naserifar
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran
| |
Collapse
|
8
|
Taylor MA, Kandyba E, Halliwill K, Delrosario R, Koroshkin M, Goodarzi H, Quigley D, Li YR, Wu D, Bollam S, Mirzoeva O, Akhurst RJ, Balmain A. Gene networks reveal stem-cell state convergence during preneoplasia and progression to malignancy in multistage skin carcinogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.08.539863. [PMID: 37215032 PMCID: PMC10197547 DOI: 10.1101/2023.05.08.539863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Adult mammalian stem cells play critical roles in normal tissue homeostasis, as well as in tumor development, by contributing to cell heterogeneity, plasticity, and development of drug resistance. The relationship between different types of normal and cancer stem cells is highly controversial and poorly understood. Here, we carried out gene expression network analysis of normal and tumor samples from genetically heterogeneous mice to create network metagenes for visualization of stem-cell networks, rather than individual stem-cell markers, at the single-cell level during multistage carcinogenesis. We combined this approach with lineage tracing and single-cell RNASeq of stem cells and their progeny, identifying a previously unrecognized hierarchy in which Lgr6+ stem cells from tumors generate progeny that express a range of other stem-cell markers including Sox2, Pitx1, Foxa1, Klf5, and Cd44. Our data identify a convergence of multiple stem-cell and tumor-suppressor pathways in benign tumor cells expressing markers of lineage plasticity and oxidative stress. This same single-cell population expresses network metagenes corresponding to markers of cancer drug resistance in human tumors of the skin, lung and prostate. Treatment of mouse squamous carcinomas in vivo with the chemotherapeutic cis-platin resulted in elevated expression of the genes that mark this cell population. Our data have allowed us to create a simplified model of multistage carcinogenesis that identifies distinct stem-cell states at different stages of tumor progression, thereby identifying networks involved in lineage plasticity, drug resistance, and immune surveillance, providing a rich source of potential targets for cancer therapy.
Collapse
Affiliation(s)
- Mark A. Taylor
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco; San Francisco, 94158, USA
| | - Eve Kandyba
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco; San Francisco, 94158, USA
| | - Kyle Halliwill
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco; San Francisco, 94158, USA
| | - Reyno Delrosario
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco; San Francisco, 94158, USA
| | - Matvei Koroshkin
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco; San Francisco, 94158, USA
| | - Hani Goodarzi
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco; San Francisco, 94158, USA
| | - David Quigley
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco; San Francisco, 94158, USA
| | - Yun Rose Li
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco; San Francisco, 94158, USA
| | - Di Wu
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco; San Francisco, 94158, USA
| | - Saumya Bollam
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco; San Francisco, 94158, USA
| | - Olga Mirzoeva
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco; San Francisco, 94158, USA
| | - Rosemary J. Akhurst
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco; San Francisco, 94158, USA
| | - Allan Balmain
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco; San Francisco, 94158, USA
| |
Collapse
|
9
|
Liu S, Tan C, Tyers M, Zetterberg A, Kafri R. What programs the size of animal cells? Front Cell Dev Biol 2022; 10:949382. [PMID: 36393871 PMCID: PMC9665425 DOI: 10.3389/fcell.2022.949382] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 09/07/2022] [Indexed: 01/19/2023] Open
Abstract
The human body is programmed with definite quantities, magnitudes, and proportions. At the microscopic level, such definite sizes manifest in individual cells - different cell types are characterized by distinct cell sizes whereas cells of the same type are highly uniform in size. How do cells in a population maintain uniformity in cell size, and how are changes in target size programmed? A convergence of recent and historical studies suggest - just as a thermostat maintains room temperature - the size of proliferating animal cells is similarly maintained by homeostatic mechanisms. In this review, we first summarize old and new literature on the existence of cell size checkpoints, then discuss additional advances in the study of size homeostasis that involve feedback regulation of cellular growth rate. We further discuss recent progress on the molecules that underlie cell size checkpoints and mechanisms that specify target size setpoints. Lastly, we discuss a less-well explored teleological question: why does cell size matter and what is the functional importance of cell size control?
Collapse
Affiliation(s)
- Shixuan Liu
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Program in Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, United States
| | - Ceryl Tan
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Program in Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Mike Tyers
- Institute for Research in Immunology and Cancer, University of Montréal, Montréal, QC, Canada
| | - Anders Zetterberg
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Ran Kafri
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Program in Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
| |
Collapse
|
10
|
Chalmers FE, Mogre S, Rimal B, Son J, Patterson AD, Stairs DB, Glick AB. The unfolded protein response gene Ire1α is required for tissue renewal and normal differentiation in the mouse tongue and esophagus. Dev Biol 2022; 492:59-70. [PMID: 36179879 DOI: 10.1016/j.ydbio.2022.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 11/19/2022]
Abstract
The IRE1α-XBP1s signaling branch of the unfolded protein response is a well-characterized survival pathway that allows cells to adapt to and resolve endoplasmic reticulum stress. Recent data has broadened our understanding of IRE1α-XBP1s signaling beyond a stress response and revealed a physiological mechanism required for the differentiation and maturation of a wide variety of cell types. Here we provide evidence that the IRE1α-XBP1s signaling pathway is required for the proliferation and maturation of basal keratinocytes in the mouse tongue and esophageal epithelium. Mice with conditional targeted deletion of either Ire1α or Xbp1 in keratin 14 expressing basal keratinocytes displayed severe thinning of the lingual and esophageal mucosa that rendered them unable to eat. In IRE1α null epithelium harvested at an earlier timepoint, genes regulating cell proliferation, cell-cell adhesion, and keratinization were significantly downregulated; indirect immunofluorescence revealed fewer proliferating basal keratinocytes, downregulation of E-cadherin, and thinning of the loricrin-positive granular and cornified layers. The number of Tp63-positive basal keratinocytes was reduced in the absence of IRE1α, and expression of the Wnt pathway transcription factor LEF1, which is required for the proliferation of lingual transit amplifying cells, was also significantly downregulated at the transcript and protein level. Together these results reveal an essential role for IRE1α-XBP1s in the maintenance of the stratified squamous epithelial tissue of the tongue and esophagus.
Collapse
Affiliation(s)
- Fiona E Chalmers
- Department of Veterinary and Biomedical Sciences, College of Agricultural Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Saie Mogre
- Department of Veterinary and Biomedical Sciences, College of Agricultural Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Bipin Rimal
- Department of Veterinary and Biomedical Sciences, College of Agricultural Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Jeongin Son
- Department of Veterinary and Biomedical Sciences, College of Agricultural Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Andrew D Patterson
- Department of Veterinary and Biomedical Sciences, College of Agricultural Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Douglas B Stairs
- Department of Pathology, College of Medicine, The Pennsylvania State University, Penn State Milton S. Hershey Medical Center, Hershey, PA, 17033, USA
| | - Adam B Glick
- Department of Veterinary and Biomedical Sciences, College of Agricultural Sciences, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
11
|
Chalmers FE, Dusold JE, Shaik JA, Walsh HA, Glick AB. Targeted deletion of TGFβ1 in basal keratinocytes causes profound defects in stratified squamous epithelia and aberrant melanocyte migration. Dev Biol 2022; 485:9-23. [PMID: 35227671 PMCID: PMC8969113 DOI: 10.1016/j.ydbio.2022.02.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 02/12/2022] [Accepted: 02/22/2022] [Indexed: 11/29/2022]
Abstract
Transforming Growth Factor Beta 1 (TGFβ1) is a multifunctional cytokine that regulates proliferation, apoptosis, and epithelial-mesenchymal transition of epithelial cells. While its role in cancer is well studied, less is known about TGFβ1 and regulation of epithelial development. To address this, we deleted TGFβ1 in basal keratinocytes of stratified squamous epithelia. Newborn mice with a homozygous TGFβ1 deletion had significant defects in proliferation and differentiation of the epidermis and oral mucosa, and died shortly after birth. Hair follicles were sparse in TGFβ1 depleted skin and had delayed development. Additionally, the Wnt pathway transcription factor LEF1 was reduced in hair follicle bulbs and nearly absent from the basal epithelial layer. Hemizygous knockout mice survived to adulthood but were runted and had sparse coats. The skin of these mice had irregular hair follicle morphology and aberrant hair cycle progression, as well as abnormally high melanin expression and delayed melanocyte migration. In contrast to newborn TGFβ1 null mice, the epidermis was hyperproliferative, acanthotic and inflamed. Expression of p63, a master regulator of stratified epithelial identity, proliferation and differentiation, was reduced in TGFβ1 null newborn epidermis but expanded in the postnatal acanthotic epidermis of TGFβ1 hemizygous mice. Thus, TGFβ1 is both essential and haploinsufficient with context dependent roles in stratified squamous epithelial development and homeostasis.
Collapse
Affiliation(s)
- Fiona E Chalmers
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, USA
| | - Justyn E Dusold
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, USA
| | - Javed A Shaik
- Dermatology Department, University of Minnesota, USA
| | - Hailey A Walsh
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, USA
| | - Adam B Glick
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, USA.
| |
Collapse
|
12
|
Nishimori T, Hanazono K, Matsuda K, Kawamura Y, Kadosawa T, Endo Y, Uchide T. Prognostic role of ΔNp63 expression in canine transitional cell carcinoma of the urinary bladder. Open Vet J 2022; 11:700-706. [PMID: 35070867 PMCID: PMC8770170 DOI: 10.5455/ovj.2021.v11.i4.22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 11/19/2021] [Indexed: 01/23/2023] Open
Abstract
Background Decreased p63 protein expression in canine transitional cell carcinoma (TCC) of the urinary bladder is associated with vascular invasion of the tumor, metastasis, and shortened survival. ΔNp63, an isoform of p63, is downregulated in high-grade invasive urothelial carcinoma in humans. However, the clinical significance of ΔNp63 expression in canine urinary bladder tumors is unknown. Therefore, it is essential to investigate ΔNp63 expression patterns in TCC, the most common urinary bladder tumor in dogs. Aim This study aimed to evaluate the expression and role of ΔNp63 in canine TCC of the urinary bladder. Methods ΔNp63 expression was compared between the normal canine urinary bladder, polypoid cystitis, and TCC. The correlation of ΔNp63 expression with histopathological and clinical findings were further evaluated, and its usefulness as a prognostic factor was examined. Results We observed that ΔNp63 was highly expressed in dogs' normal urinary bladder and polypoid cystitis, and its expression levels were low in TCC. Furthermore, low levels of ΔNp63 expression were associated with vascular invasion, metastasis, and shortened survival in dogs with TCC. Conclusion These results indicate that ΔNp63 expression could serve as a valuable biomarker for invasion, metastasis, and prognosis of canine TCC of the urinary bladder.
Collapse
Affiliation(s)
| | - Kiwamu Hanazono
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan
| | - Kazuya Matsuda
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan
| | - Yoshio Kawamura
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan
| | - Tsuyoshi Kadosawa
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan
| | - Yoshifumi Endo
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan
| | - Tsuyoshi Uchide
- Laboratory of Veterinary Molecular Pathology and Therapeutics, Tokyo University of Agriculture and Technology, Fuchu, Japan
| |
Collapse
|
13
|
Chang MS, Azin M, Demehri S. Cutaneous Squamous Cell Carcinoma: The Frontier of Cancer Immunoprevention. ANNUAL REVIEW OF PATHOLOGY 2022; 17:101-119. [PMID: 35073167 DOI: 10.1146/annurev-pathol-042320-120056] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Cutaneous squamous cell carcinoma (cSCC) is the second most common cancer, with its incidence rising steeply. Immunosuppression is a well-established risk factor for cSCC, and this risk factor highlights the critical role of the immune system in regulating cSCC development and progression. Further highlighting the nature of cSCC as an immunological disorder, substantial evidence demonstrates a tight association between cSCC risk and age-related immunosenescence. Besides the proven efficacy of immune checkpoint blockade therapy for advanced cSCC, novel immunotherapy that targets cSCC precursor lesions has shown efficacy for cSCC prevention. Furthermore, the appreciation of the interplay between keratinocytes, commensal papillomaviruses, and the immune system has revealed the possibility for the development of a preventive cSCC vaccine. cSCC shares fundamental aspects of its origin and pathogenesis with mucosal SCCs. Therefore, advances in the field of cSCC immunoprevention will inform our approach to the management of mucosal SCCs and potentially other epithelial cancers.
Collapse
Affiliation(s)
| | - Marjan Azin
- Center for Cancer Immunology, Center for Cancer Research, Massachusetts General Hospital, Boston, Massachusetts 02114, USA.,Department of Dermatology, Cutaneous Biology Research Center, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | - Shadmehr Demehri
- Harvard Medical School, Boston, Massachusetts 02115, USA; .,Center for Cancer Immunology, Center for Cancer Research, Massachusetts General Hospital, Boston, Massachusetts 02114, USA.,Department of Dermatology, Cutaneous Biology Research Center, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| |
Collapse
|
14
|
Abdulhussain M, Shareef K, Zubidi M. Assessment of the Relationship between Expression of p63 with Different Clinical Types of Oral Lichen Planus: A Retrospective Immunohistochemistry Study. DENTAL HYPOTHESES 2022. [DOI: 10.4103/denthyp.denthyp_83_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
15
|
Generation of a lung squamous cell carcinoma three-dimensional culture model with keratinizing structures. Sci Rep 2021; 11:24305. [PMID: 34934075 PMCID: PMC8692465 DOI: 10.1038/s41598-021-03708-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 12/08/2021] [Indexed: 11/08/2022] Open
Abstract
Tumor nests in lung squamous cell carcinoma (LUSC) have a hierarchical structure resembling squamous epithelium. The nests consist of basal-like cells on the periphery and layers of keratinocyte-like cells that differentiate towards the center of the nest, forming keratin pearls. Reproducing this spatial heterogeneity in in vitro models would be useful for understanding the biology of LUSC. Here, we established a three-dimensional (3D) culture model with a squamous epithelial structure using LUSC cell lines PLR327F-LD41 and MCC001F, established in-house. When PLR327F-LD41 cells were cultured in a mixture of Matrigel and collagen I, they generated 3D colonies (designated cancer organoids, or COs) with involucrin (IVL)-positive keratinizing cells in the center (IVLinner COs). COs with uniform size were generated by seeding PLR327F-LD41 cells in a form of small cell aggregates. Since Notch signaling induces the differentiation of squamous epithelium, we confirmed the effect of γ-secretase inhibitor in inhibiting Notch signaling in IVLinner COs. Surprisingly, γ-secretase inhibitor did not block induction of IVL-positive cells; however, cells residing between the CK5-positive basal-like layer and IVL-positive layer decreased significantly. Thus, our 3D culture model with uniform size and structure promises to be a useful tool for elucidating the biology of LUSC and for screening drug-candidates.
Collapse
|
16
|
Bamberger C, Pankow S, Yates JR. SMG1 and CDK12 Link ΔNp63α Phosphorylation to RNA Surveillance in Keratinocytes. J Proteome Res 2021; 20:5347-5358. [PMID: 34761935 PMCID: PMC10653645 DOI: 10.1021/acs.jproteome.1c00427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The tumor suppressor p53-like protein p63 is required for self-renewal of epidermal tissues. Loss of p63 or exposure to ultraviolet (UV) irradiation triggers terminal differentiation in keratinocytes. However, it remains unclear how p63 diverts epidermal cells from proliferation to terminal differentiation, thereby contributing to successful tissue self-renewal. Here, we used bottom-up proteomics to identify the proteome at the chromatin in normal human epidermal keratinocytes following UV irradiation and p63 depletion. We found that loss of p63 increased DNA damage and that UV irradiation recruited the cyclin-dependent kinase CDK12 and the serine/threonine protein kinase SMG1 to chromatin only in the presence of p63. A post-translational modification analysis of ΔNp63α with mass spectrometry revealed that phosphorylation of T357/S358 and S368 was dependent on SMG1, whereas CDK12 increased the phosphorylation of ΔNp63α at S66/S68 and S301. Indirect phosphorylation of ΔNp63α in the presence of SMG1 enabled ΔNp63α to bind to the tumor suppressor p53-specific DNA recognition sequence, whereas CDK12 rendered ΔNp63α less responsive to UV irradiation and was not required for specific DNA binding. CDK12 and SMG1 are known to regulate the transcription and splicing of RNAs and the decay of nonsense RNAs, respectively, and a subset of p63-specific protein-protein interactions at the chromatin also linked p63 to RNA transcription and decay. We observed that in the absence of p63, UV irradiation resulted in more ORF1p. ORF1p is the first protein product of the intronless non-LTR retrotransposon LINE-1, indicating a derailed surveillance of RNA processing and/or translation. Our results suggest that p63 phosphorylation and transcriptional activation might correspond to altered RNA processing and/or translation to protect proliferating keratinocytes from increased genotoxic stress.
Collapse
Affiliation(s)
- Casimir Bamberger
- Department for Chemical Physiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Sandra Pankow
- Department for Chemical Physiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | - John R. Yates
- Department for Chemical Physiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| |
Collapse
|
17
|
Van Sciver N, Ohashi M, Nawandar DM, Pauly NP, Lee D, Makielski KR, Bristol JA, Tsao SW, Lambert PF, Johannsen EC, Kenney SC. ΔNp63α promotes Epstein-Barr virus latency in undifferentiated epithelial cells. PLoS Pathog 2021; 17:e1010045. [PMID: 34748616 PMCID: PMC8601603 DOI: 10.1371/journal.ppat.1010045] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/18/2021] [Accepted: 10/18/2021] [Indexed: 01/27/2023] Open
Abstract
Epstein-Barr virus (EBV) is a human herpesvirus that causes infectious mononucleosis and contributes to both B-cell and epithelial-cell malignancies. EBV-infected epithelial cell tumors, including nasopharyngeal carcinoma (NPC), are largely composed of latently infected cells, but the mechanism(s) maintaining viral latency are poorly understood. Expression of the EBV BZLF1 (Z) and BRLF1 (R) encoded immediate-early (IE) proteins induces lytic infection, and these IE proteins activate each other's promoters. ΔNp63α (a p53 family member) is required for proliferation and survival of basal epithelial cells and is over-expressed in NPC tumors. Here we show that ΔNp63α promotes EBV latency by inhibiting activation of the BZLF1 IE promoter (Zp). Furthermore, we find that another p63 gene splice variant, TAp63α, which is expressed in some Burkitt and diffuse large B cell lymphomas, also represses EBV lytic reactivation. We demonstrate that ΔNp63α inhibits the Z promoter indirectly by preventing the ability of other transcription factors, including the viral IE R protein and the cellular KLF4 protein, to activate Zp. Mechanistically, we show that ΔNp63α promotes viral latency in undifferentiated epithelial cells both by enhancing expression of a known Zp repressor protein, c-myc, and by decreasing cellular p38 kinase activity. Furthermore, we find that the ability of cis-platinum chemotherapy to degrade ΔNp63α contributes to the lytic-inducing effect of this agent in EBV-infected epithelial cells. Together these findings demonstrate that the loss of ΔNp63α expression, in conjunction with enhanced expression of differentiation-dependent transcription factors such as BLIMP1 and KLF4, induces lytic EBV reactivation during normal epithelial cell differentiation. Conversely, expression of ΔNp63α in undifferentiated nasopharyngeal carcinoma cells and TAp63α in Burkitt lymphoma promotes EBV latency in these malignancies.
Collapse
Affiliation(s)
- Nicholas Van Sciver
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Makoto Ohashi
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Dhananjay M. Nawandar
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
- Currently at Ring Therapeutics, Cambridge, Massachusetts, United States of America
| | - Nicholas P. Pauly
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Denis Lee
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Kathleen R. Makielski
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Jillian A. Bristol
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Sai Wah Tsao
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Paul F. Lambert
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Eric C. Johannsen
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Shannon C. Kenney
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
18
|
Barrutia L, Martínez-García G, Santamarina-Albertos A, Garabito Solovera EL, Volo V, Ruíz-Sánchez D, Manchado López P. Differentiating pagetoid Bowen disease from Paget disease on the nipple-areola complex: Two unique, challenging cases. J Cutan Pathol 2021; 48:1416-1422. [PMID: 34164837 DOI: 10.1111/cup.14092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/01/2021] [Accepted: 06/08/2021] [Indexed: 11/29/2022]
Abstract
Pagetoid Bowen disease is a subtype of Bowen disease that accounts for 5% of Bowen disease. It is extremely rare for Bowen disease to appear on the nipple-areola complex, with only seven cases described in the previous literature. Of those seven cases, only one was of the pagetoid subtype. We report two cases of pagetoid Bowen disease on this location, one of them being the first case of pagetoid Bowen disease affecting the nipple reported to date. On this location, it is crucial to perform a meticulous differential diagnosis to rule out Paget disease, because of its contrasting therapeutic and prognostic implications. In order to do this, clinical and histopathological aspects must be considered. From a clinical point of view, previous literature has stated that nipple involvement can be a clue that points to Paget disease. However, one of our cases shows that this is not always true. Regarding histopathological analysis, a complete excision of the tumor might be necessary to observe clear features of Bowen disease, such as full-thickness atypia of the epidermis and intercellular bridges. An immunohistochemical panel comprising carcinoembryonic antigen, gross cystic disease fluid protein, epithelial membrane antigen, p63, CK34betaE12, periodic acid-Schiff, estrogen receptor, and progesterone receptor can be decisive in complicated cases.
Collapse
Affiliation(s)
- Leire Barrutia
- Dermatology Department, Clinical University Hospital of Valladolid, Valladolid, Spain
| | | | | | | | - Víctor Volo
- Dermatology Department, Clinical University Hospital of Valladolid, Valladolid, Spain
| | - Daniel Ruíz-Sánchez
- Dermatology Department, Clinical University Hospital of Valladolid, Valladolid, Spain
| | - Pilar Manchado López
- Dermatology Department, Clinical University Hospital of Valladolid, Valladolid, Spain
| |
Collapse
|
19
|
Mittal A, Wang M, Vidyarthi A, Yanez D, Pizzurro G, Thakral D, Tracy E, Colegio OR. Topical arginase inhibition decreases growth of cutaneous squamous cell carcinoma. Sci Rep 2021; 11:10731. [PMID: 34031449 PMCID: PMC8144401 DOI: 10.1038/s41598-021-90200-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 05/04/2021] [Indexed: 02/06/2023] Open
Abstract
Cutaneous squamous cell carcinomas (cSCC) are among the most commonly diagnosed malignancies, causing significant morbidity and mortality. Tumor-associated macrophage (TAM) expression of arginase is implicated in tumor progression, and therapeutic use of arginase inhibitors has been studied in various cancers. However, investigating potential cSCC immunotherapies including arginase inhibition in pre-clinical models is hampered by the lack of appropriate tumor models in immunocompetent mice. PDV is a cSCC cell line derived from chemical carcinogenesis of mouse keratinocytes. PDVC57 cells were derived from a PDV tumor in C57BL/6 (B6) mice. Unlike PDV, PDVC57 tumors grow consistently in B6 mice, and have increased TAMs, decreased dendritic and T cell intra-tumor infiltration. Arginase inhibition in cSCC tumors using Nω-hydroxy-nor-arginine (nor-NOHA) reduced tumor growth in B6 mice but not immunodeficient Rag1-deficient mice. nor-NOHA administration increased dendritic and T cell tumor-infiltration and PD-1 expression. The combination of nor-NOHA and anti-PD-1 therapy with nivolumab enhanced anti-PD-1 therapeutic efficacy. This study demonstrates the therapeutic potential of transcutaneous arginase inhibition in cSCC. A competent immune microenvironment is required for tumor growth inhibition using this arginase inhibitor. Synergistic co-inhibition of tumor growth in these results, supports further examination of transcutaneous arginase inhibition as a therapeutic modality for cSCC.
Collapse
Affiliation(s)
- Amit Mittal
- grid.47100.320000000419368710Department of Dermatology, Yale School of Medicine, New Haven, USA
| | - Mike Wang
- grid.47100.320000000419368710Department of Dermatology, Yale School of Medicine, New Haven, USA ,grid.32224.350000 0004 0386 9924Department of Medicine, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114 USA ,grid.240614.50000 0001 2181 8635Department of Dermatology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY 14263 USA
| | - Aurobind Vidyarthi
- grid.47100.320000000419368710Department of Dermatology, Yale School of Medicine, New Haven, USA
| | - Diana Yanez
- grid.47100.320000000419368710Department of Dermatology, Yale School of Medicine, New Haven, USA
| | - Gabriela Pizzurro
- grid.47100.320000000419368710Department of Dermatology, Yale School of Medicine, New Haven, USA
| | - Durga Thakral
- grid.47100.320000000419368710Department of Dermatology, Yale School of Medicine, New Haven, USA
| | - Erin Tracy
- grid.240614.50000 0001 2181 8635Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, USA
| | - Oscar R. Colegio
- grid.240614.50000 0001 2181 8635Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, USA ,grid.240614.50000 0001 2181 8635Department of Dermatology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY 14263 USA
| |
Collapse
|
20
|
Su P, Qiao Q, Ji G, Zhang Z. CircAMD1 regulates proliferation and collagen synthesis via sponging miR-27a-3p in P63-mutant human dermal fibroblasts. Differentiation 2021; 119:10-18. [PMID: 33991897 DOI: 10.1016/j.diff.2021.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/20/2021] [Accepted: 04/27/2021] [Indexed: 10/21/2022]
Abstract
Transcription factor p63 has critical functions in epidermal, hindgut/anorectal, and limb development. Human mutations in P63 correlate with congenital syndromes affecting the skin, anorectal, and limbs. Nevertheless, less are detected regarding networks and functions controlled by P63 mutations in dermal fibroblasts, which are closely related to skin physiology. To screen for new targets, we employed microarray technology to investigate the R226Q P63 mutation with regards to the resulting circular RNA (circRNA) profiles from P63 point mutations in human dermal fibroblasts (HDFs). In this study, we show that P63-mutant HDFs display reduced proliferation, collagen synthesis, and myofibroblast differentiation; circAMD1 was also downregulated in P63-mutant HDFs compared with wild-type HDFs. Furthermore, overexpressing circAMD1 rescued the functional and phenotypic alterations of p63-mutant HDFs. We as well determined that miR-27a-3p was circAMD1 target involved in effects of circAMD1 in P63-mutant HDFs. Collectively, our data show that circAMD1 functions as a miR-27a-3p sponge that inhibits the functional and phenotypical alteration of P63-mutant HDFs and may be a critical marker in pathogenesis regarding P63-associated traits.
Collapse
Affiliation(s)
- Pengjun Su
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Qi Qiao
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Gengfeng Ji
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhibo Zhang
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
21
|
TP63 Is Significantly Upregulated in Diabetic Kidney. Int J Mol Sci 2021; 22:ijms22084070. [PMID: 33920782 PMCID: PMC8071143 DOI: 10.3390/ijms22084070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/24/2021] [Accepted: 04/12/2021] [Indexed: 11/17/2022] Open
Abstract
The role of tumor protein 63 (TP63) in regulating insulin receptor substrate 1 (IRS-1) and other downstream signal proteins in diabetes has not been characterized. RNAs extracted from kidneys of diabetic mice (db/db) were sequenced to identify genes that are involved in kidney complications. RNA sequence analysis showed more than 4- to 6-fold increases in TP63 expression in the diabetic mice’s kidneys, compared to wild-type mice at age 10 and 12 months old. In addition, the kidneys from diabetic mice showed significant increases in TP63 mRNA and protein expression compared to WT mice. Mouse proximal tubular cells exposed to high glucose (HG) for 48 h showed significant decreases in IRS-1 expression and increases in TP63, compared to cells grown in normal glucose (NG). When TP63 was downregulated by siRNA, significant increases in IRS-1 and activation of AMP-activated protein kinase (AMPK (p-AMPK-Th172)) occurred under NG and HG conditions. Moreover, activation of AMPK by pretreating the cells with AICAR resulted in significant downregulation of TP63 and increased IRS-1 expression. Ad-cDNA-mediated over-expression of tuberin resulted in significantly decreased TP63 levels and upregulation of IRS-1 expression. Furthermore, TP63 knockdown resulted in increased glucose uptake, whereas IRS-1 knockdown resulted in a decrease in the glucose uptake. Altogether, animal and cell culture data showed a potential role of TP63 as a new candidate gene involved in regulating IRS-1 that may be used as a new therapeutic target to prevent kidney complications in diabetes.
Collapse
|
22
|
Tian X, Tang L, Wei F, Chen H, Sheng L, Yang Y, Zhou X, Li Y, Xu X, Zhang B, Liu Z, Lei Y, Yu B, Bai C, He X, Huang Z. Pentacyclic triterpene compounds from loquat leaves reduce skin inflammation and epidermal hyperplasia in psoriasis via inhibiting the Th17 cells. Mol Immunol 2021; 132:30-40. [PMID: 33540227 DOI: 10.1016/j.molimm.2021.01.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 12/25/2020] [Accepted: 01/18/2021] [Indexed: 02/07/2023]
Abstract
Psoriasis is a refractory inflammatory skin disease affecting 2 %-3 % of the world population, characterized by the infiltration and hyper-proliferation of inflammatory cells and aberrant differentiation of keratinocytes. Targeting the IL-23/ Th17 axis has been well recognized as a promising therapeutic strategy, as the IL-23/ Th17 signal plays a vital role in the pathology of psoriasis. Three pentacyclic triterpene compounds isolated from loquat leaves have been reported with significant inhibitory effects on RORγt transcription activity and Th17 cell differentiation, and excellent performance in preventing lupus nephritis pathogenesis. However, the potential effects of these pentacyclic triterpene compounds on psoriasis remain unknown. In this study, we demonstrated the potent therapeutic effects of these pentacyclic triterpene compounds on psoriasis. These three pentacyclic triterpene compounds significantly alleviated skin inflammation as well as aberrant keratinocyte proliferation in an imiquimod-induced mouse psoriasis model. These compounds also inhibited the infiltration of immune cells and the level of pro-inflammatory cytokine in the dermis, as well as the cells number and changed the cytokine profiling expression of Th17 cells. These compounds could reduce the amount of CD4+ and CD8+ T cells in local lymph node, but not in spleen, which is different from hydrocortisone, the positive control treatment. These results suggest better performance of these compounds than steroids on treating psoriasis with less side effects on the integrated immune system. In summary, our findings uncover the potent therapeutic effects of pentacyclic triterpene compounds on psoriasis, providing potential candidate compounds for drug development.
Collapse
Affiliation(s)
- Xuyan Tian
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, China
| | - Lipeng Tang
- Department of Pharmacology of Traditional Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Fengjiao Wei
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, China
| | - Huanpeng Chen
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, China
| | - Longxiang Sheng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, China
| | - Yuying Yang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, China
| | - Xiaoqing Zhou
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, China
| | - Yongchao Li
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaoting Xu
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Boyang Zhang
- Animal Experiment Center, South China Agricultural University, Guangzhou, China
| | - Zhonghua Liu
- Animal Experiment Center, South China Agricultural University, Guangzhou, China
| | - Yu Lei
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Bolan Yu
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Chuan Bai
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, China
| | - Xixin He
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Zhaofeng Huang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, China.
| |
Collapse
|
23
|
Bakhshandeh H, Atyabi F, Soleimani M, Taherzadeh ES, Shahhoseini S, Cohan RA. Biocompatibility improvement of artificial cornea using chitosan-dextran nanoparticles containing bioactive macromolecules obtained from human amniotic membrane. Int J Biol Macromol 2020; 169:492-499. [PMID: 33358948 DOI: 10.1016/j.ijbiomac.2020.12.125] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 10/22/2022]
Abstract
Corneal transplantation, by which the damaged cornea is replaced by a new one, suffers from limited access to HLA-compatible-donors and high maintenance and surgical costs. Therefore, artificial corneas are considered as alternative tools with promising prospects. In our previous study, a two-part-polymeric artificial cornea was composed of enhanced hydrophilic surface electrospun poly(ε-caprolactone) nanofibrous scaffold that is thermally connected to a polyvinyl alcohol-based hydrogel disk was prepared. Characterization tests revealed the prepared artificial cornea had similar biocompatible and structural characteristics regarding the natural cornea. In current study, human amniotic membrane extract containing growth factors, cytokines, anti-inflammatory factors, and anti-angiogenic factors was prepared, nano-encapsulated in chitosan-dextran nanoparticles, and physically decorated on the poly(ε-caprolactone)-polyvinyl-alcohol artificial cornea. Physicochemical and biological characterizations revealed the nano-decorated artificial cornea has more biocompatibility than the unmodified one. Our study demonstrated the bioactive macromolecules loaded on chitosan-dextran nanoparticles enhanced the anti-angiogenic property of artificial cornea through the sustained release of anti-angiogenic factors such as thrombospondin-1, endostatin, and heparin sulfate proteoglycan. Real-time-PCR and flow-cytometry assessments elucidated the vascularization was inhibited through a decrease in the expression of cluster of differentiation 31 and von-Willebrand-Factor. Our study proposed the use of biocompatible artificial cornea could be a promising strategy in corneal transplantation.
Collapse
Affiliation(s)
- Haleh Bakhshandeh
- Department of Pharmaceutics, School of Pharmacy, Shaheed Beheshti University of Medical Sciences, Tehran, Iran; Nanobiotechnology Department, New Technologies Research Group, Pasteur Institute of Iran, Tehran, Iran.
| | - Fatemeh Atyabi
- Department of Pharmaceutics, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoud Soleimani
- Hematology and Cell Therapy Department, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Elham Sadat Taherzadeh
- Hematology and Cell Therapy Department, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran; Department of Clinical Biochemistry, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran; Stem Cell Technology Research Center, Tehran, Iran
| | | | - Reza Ahangari Cohan
- Nanobiotechnology Department, New Technologies Research Group, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
24
|
Guan Y, Yang YJ, Nagarajan P, Ge Y. Transcriptional and signalling regulation of skin epithelial stem cells in homeostasis, wounds and cancer. Exp Dermatol 2020; 30:529-545. [PMID: 33249665 DOI: 10.1111/exd.14247] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 10/10/2020] [Accepted: 11/13/2020] [Indexed: 02/06/2023]
Abstract
The epidermis and skin appendages are maintained by their resident epithelial stem cells, which undergo long-term self-renewal and multilineage differentiation. Upon injury, stem cells are activated to mediate re-epithelialization and restore tissue function. During this process, they often mount lineage plasticity and expand their fates in response to damage signals. Stem cell function is tightly controlled by transcription machineries and signalling transductions, many of which derail in degenerative, inflammatory and malignant dermatologic diseases. Here, by describing both well-characterized and newly emerged pathways, we discuss the transcriptional and signalling mechanisms governing skin epithelial homeostasis, wound repair and squamous cancer. Throughout, we highlight common themes underscoring epithelial stem cell plasticity and tissue-level crosstalk in the context of skin physiology and pathology.
Collapse
Affiliation(s)
- Yinglu Guan
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Youn Joo Yang
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Priyadharsini Nagarajan
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yejing Ge
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
25
|
Sanz Ressel BL, Massone AR, Barbeito CG. Expression of the epidermal stem cell marker p63/CK5 in cutaneous papillomas and cutaneous squamous cell carcinomas of dogs. Res Vet Sci 2020; 135:366-370. [PMID: 33162109 DOI: 10.1016/j.rvsc.2020.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 10/16/2020] [Accepted: 10/20/2020] [Indexed: 11/25/2022]
Abstract
Cutaneous papillomas (CPs) and cutaneous squamous cell carcinomas (CSCCs) are usual epidermal tumours in dogs. CPs and CSCCs probably arise from the neoplastic transformation of the keratinocytes within the stem cell compartment, since these cells are the only keratinocytes that would reside long enough to accumulate the number of molecular alterations to drive the progression towards a tumour cell phenotype. However, the role of these cells in common epidermal tumours in dogs is still unknown. Thus, the purpose of this study was to evaluate the immunohistochemical expression pattern of p63 together with CK5, molecular markers of epidermal stem cells, on sections of tissue microarrays constructed from canine samples of CP and CSCC to investigate the contribution of stem cells in those canine tumours. p63/CK5 coexpression was retained in most basal and some suprabasal cells in CPs and CSCCs. In addition, increased coexpression of these molecules was observed in a group of CPs and CSCCs, as a result of a higher p63 expression. These results suggest that the coexpression of p63/CK5 may mark epidermal keratinocytes that possess self-renewal capacity rather than only stem cells, and suggest that transit amplifying cells, and even differentiated keratinocytes, may also contribute to the pathogenesis of epidermal tumours in dogs.
Collapse
Affiliation(s)
- B L Sanz Ressel
- Laboratorio de Histología y Embriología Descriptiva, Experimental y Comparada (LHYEDEC), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina; Facultad de Ciencias Veterinarias, Consejo nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina.
| | - A R Massone
- Laboratorio de Patología Especial Veterinaria Dr. Bernardo Epstein, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - C G Barbeito
- Laboratorio de Histología y Embriología Descriptiva, Experimental y Comparada (LHYEDEC), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina; Facultad de Ciencias Veterinarias, Consejo nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| |
Collapse
|
26
|
Phillips MA, Cánovas A, Rea MA, Islas-Trejo A, Medrano JF, Durbin-Johnson B, Rocke DM, Rice RH. Deducing signaling pathways from parallel actions of arsenite and antimonite in human epidermal keratinocytes. Sci Rep 2020; 10:2890. [PMID: 32076005 PMCID: PMC7031270 DOI: 10.1038/s41598-020-59577-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 01/29/2020] [Indexed: 11/09/2022] Open
Abstract
Inorganic arsenic oxides have been identified as carcinogens in several human tissues, including epidermis. Due to the chemical similarity between trivalent inorganic arsenic (arsenite) and antimony (antimonite), we hypothesized that common intracellular targets lead to similarities in cellular responses. Indeed, transcriptional and proteomic profiling revealed remarkable similarities in differentially expressed genes and proteins resulting from exposure of cultured human epidermal keratinocytes to arsenite and antimonite in contrast to comparisons of arsenite with other metal compounds. These data were analyzed to predict upstream regulators and affected signaling pathways following arsenite and antimonite treatments. A majority of the top findings in each category were identical after treatment with either compound. Inspection of the predicted upstream regulators led to previously unsuspected roles for oncostatin M, corticosteroids and ephrins in mediating cellular response. The influence of these predicted mediators was then experimentally verified. Together with predictions of transcription factor effects more generally, the analysis has led to model signaling networks largely accounting for arsenite and antimonite action. The striking parallels between responses to arsenite and antimonite indicate the skin carcinogenic risk of exposure to antimonite merits close scrutiny.
Collapse
Affiliation(s)
- Marjorie A Phillips
- Department of Environmental Toxicology, University of California, Davis, CA, USA
| | - Angela Cánovas
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Miguel A Rea
- Department of Chemistry, Universidad Autónoma Querétaro, Querétaro, Mexico
| | - Alma Islas-Trejo
- Department of Animal Science, University of California, Davis, CA, USA
| | - Juan F Medrano
- Department of Animal Science, University of California, Davis, CA, USA
| | - Blythe Durbin-Johnson
- Division of Biostatistics, Department of Public Health Sciences, Clinical and Translational Science Center Biostatistics Core, University of California, Davis, CA, USA
| | - David M Rocke
- Division of Biostatistics, Department of Public Health Sciences, Clinical and Translational Science Center Biostatistics Core, University of California, Davis, CA, USA
| | - Robert H Rice
- Department of Environmental Toxicology, University of California, Davis, CA, USA.
| |
Collapse
|
27
|
Guan Y, Wang G, Fails D, Nagarajan P, Ge Y. Unraveling cancer lineage drivers in squamous cell carcinomas. Pharmacol Ther 2020; 206:107448. [PMID: 31836455 PMCID: PMC6995404 DOI: 10.1016/j.pharmthera.2019.107448] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 12/03/2019] [Indexed: 12/12/2022]
Abstract
Cancer hijacks embryonic development and adult wound repair mechanisms to fuel malignancy. Cancer frequently originates from de-regulated adult stem cells or progenitors, which are otherwise essential units for postnatal tissue remodeling and repair. Cancer genomics studies have revealed convergence of multiple cancers across organ sites, including squamous cell carcinomas (SCCs), a common group of cancers arising from the head and neck, esophagus, lung, cervix and skin. In this review, we summarize our current knowledge on the molecular drivers of SCCs, including these five major organ sites. We especially focus our discussion on lineage dependent driver genes and pathways, in the context of squamous development and stratification. We then use skin as a model to discuss the notion of field cancerization during SCC carcinogenesis, and cancer as a wound that never heals. Finally, we turn to the idea of context dependency widely observed in cancer driver genes, and outline literature support and possible explanations for their lineage specific functions. Through these discussions, we aim to provide an up-to-date summary of molecular mechanisms driving tumor plasticity in squamous cancers. Such basic knowledge will be helpful to inform the clinics for better stratifying cancer patients, revealing novel drug targets and providing effective treatment options.
Collapse
Affiliation(s)
- Yinglu Guan
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Guan Wang
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Danielle Fails
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Priyadharsini Nagarajan
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Yejing Ge
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA.
| |
Collapse
|
28
|
Vanoni S, Zeng C, Marella S, Uddin J, Wu D, Arora K, Ptaschinski C, Que J, Noah T, Waggoner L, Barski A, Kartashov A, Rochman M, Wen T, Martin L, Spence J, Collins M, Mukkada V, Putnam P, Naren A, Chehade M, Rothenberg ME, Hogan SP. Identification of anoctamin 1 (ANO1) as a key driver of esophageal epithelial proliferation in eosinophilic esophagitis. J Allergy Clin Immunol 2020; 145:239-254.e2. [PMID: 31647967 PMCID: PMC7366251 DOI: 10.1016/j.jaci.2019.07.049] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 07/13/2019] [Accepted: 07/29/2019] [Indexed: 12/24/2022]
Abstract
BACKGROUND The pathology of eosinophilic esophagitis (EoE) is characterized by eosinophil-rich inflammation, basal zone hyperplasia (BZH), and dilated intercellular spaces, and the underlying processes that drive the pathologic manifestations of the disease remain largely unexplored. OBJECTIVE We sought to investigate the involvement of the calcium-activated chloride channel anoctamin 1 (ANO1) in esophageal proliferation and the histopathologic features of EoE. METHODS We examined mRNA and protein expression of ANO1 in esophageal biopsy samples from patients with EoE and in mice with EoE. We performed molecular and cellular analyses and ion transport assays on an in vitro esophageal epithelial 3-dimensional model system (EPC2-ALI) and murine models of EoE to define the relationship between expression and function of ANO1 and esophageal epithelial proliferation in patients with EoE. RESULTS We observed increased ANO1 expression in esophageal biopsy samples from patients with EoE and in mice with EoE. ANO1 was expressed within the esophageal basal zone, and expression correlated positively with disease severity (eosinophils/high-power field) and BZH. Using an in vitro esophageal epithelial 3-dimensional model system revealed that ANO1 undergoes chromatin modification and rapid upregulation of expression after IL-13 stimulation, that ANO1 is the primary apical IL-13-induced Cl- transport mechanism within the esophageal epithelium, and that loss of ANO1-dependent Cl- transport abrogated esophageal epithelial proliferation. Mechanistically, ANO1-dependent regulation of basal cell proliferation was associated with modulation of TP63 expression and phosphorylated cyclin-dependent kinase 2 levels. CONCLUSIONS These data identify a functional role for ANO1 in esophageal cell proliferation and BZH in patients with EoE and provide a rationale for pharmacologic intervention of ANO1 function in patients with EoE.
Collapse
Affiliation(s)
- Simone Vanoni
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; PharmGenetix Gmbh, Niederalm-Anif, Austria
| | - Chang Zeng
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Sahiti Marella
- Mary H Weiser Food Allergy Center and Department of Pathology, Ann Arbor, Mich
| | - Jazib Uddin
- Mary H Weiser Food Allergy Center and Department of Pathology, Ann Arbor, Mich
| | - David Wu
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Kavisha Arora
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | | | - Jianwen Que
- Department of Medicine, Columbia University Medical Center, New York, NY
| | - Taeko Noah
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Mary H Weiser Food Allergy Center and Department of Pathology, Ann Arbor, Mich
| | - Lisa Waggoner
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Artem Barski
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Andrey Kartashov
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Mark Rochman
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Ting Wen
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Lisa Martin
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Jason Spence
- Departments of Biomedical Engineering, Internal Medicine and Cell and Developmental Biology, University of Michigan, Ann Arbor, Mich
| | - Margaret Collins
- Division of Pathology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Vincent Mukkada
- Division of Gastroenterology, Nutrition and Hepatology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Phillip Putnam
- Division of Gastroenterology, Nutrition and Hepatology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Anjaparavanda Naren
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Mirna Chehade
- Mount Sinai Center for Eosinophilic Disorders, Jaffe Food Allergy Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Marc E Rothenberg
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Simon P Hogan
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Mary H Weiser Food Allergy Center and Department of Pathology, Ann Arbor, Mich.
| |
Collapse
|
29
|
Wong CW, LeGrand CF, Kinnear BF, Sobota RM, Ramalingam R, Dye DE, Raghunath M, Lane EB, Coombe DR. In Vitro Expansion of Keratinocytes on Human Dermal Fibroblast-Derived Matrix Retains Their Stem-Like Characteristics. Sci Rep 2019; 9:18561. [PMID: 31811191 PMCID: PMC6897920 DOI: 10.1038/s41598-019-54793-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 11/19/2019] [Indexed: 01/07/2023] Open
Abstract
The long-term expansion of keratinocytes under conditions that avoid xenogeneic components (i.e. animal serum- and feeder cell-free) generally causes diminished proliferation and increased terminal differentiation. Here we present a culture system free of xenogeneic components that retains the self-renewal capacity of primary human keratinocytes. In vivo the extracellular matrix (ECM) of the tissue microenvironment has a major influence on a cell's fate. We used ECM from human dermal fibroblasts, cultured under macromolecular crowding conditions to facilitate matrix deposition and organisation, in a xenogeneic-free keratinocyte expansion protocol. Phospholipase A2 decellularisation produced ECM whose components resembled the core matrix composition of natural dermis by proteome analyses. Keratinocytes proliferated rapidly on these matrices, retained their small size, expressed p63, lacked keratin 10 and rarely expressed keratin 16. The colony forming efficiency of these keratinocytes was enhanced over that of keratinocytes grown on collagen I, indicating that dermal fibroblast-derived matrices maintain the in vitro expansion of keratinocytes in a stem-like state. Keratinocyte sheets formed on such matrices were multi-layered with superior strength and stability compared to the single-layered sheets formed on collagen I. Thus, keratinocytes expanded using our xenogeneic-free protocol retained a stem-like state, but when triggered by confluence and calcium concentration, they stratified to produce epidermal sheets with a potential clinical use.
Collapse
Affiliation(s)
- Chee-Wai Wong
- School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin University, Bentley, WA, 6102, Australia
- Curtin Health Innovation Research Institute, Faculty of Health Science, Curtin University, Bentley, WA, 6102, Australia
| | - Catherine F LeGrand
- School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin University, Bentley, WA, 6102, Australia
- Curtin Health Innovation Research Institute, Faculty of Health Science, Curtin University, Bentley, WA, 6102, Australia
| | - Beverley F Kinnear
- School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin University, Bentley, WA, 6102, Australia
- Curtin Health Innovation Research Institute, Faculty of Health Science, Curtin University, Bentley, WA, 6102, Australia
| | - Radoslaw M Sobota
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, No. 07-48A Proteos, Singapore, 138673, Singapore
| | - Rajkumar Ramalingam
- Skin Research Institute of Singapore and Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, 06-06 Immunos, Singapore, 138648, Singapore
| | - Danielle E Dye
- School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin University, Bentley, WA, 6102, Australia
- Curtin Health Innovation Research Institute, Faculty of Health Science, Curtin University, Bentley, WA, 6102, Australia
| | - Michael Raghunath
- Centre for Cell Biology and Tissue Engineering, Competence Centre for Tissue Engineering and Substance Testing (TEDD), Institute for Chemistry and Biotechnology, ZHAW School of Life Science and Facility Management, Zurich University of Applied Science, Winterthur, Switzerland
| | - E Birgitte Lane
- Skin Research Institute of Singapore and Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, 06-06 Immunos, Singapore, 138648, Singapore
| | - Deirdre R Coombe
- School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin University, Bentley, WA, 6102, Australia.
- Curtin Health Innovation Research Institute, Faculty of Health Science, Curtin University, Bentley, WA, 6102, Australia.
- Centre for Cell Therapy and Regenerative Medicine, School of Biomedical Sciences, The University of Western Australia, Crawley, WA, Australia.
| |
Collapse
|
30
|
Reneker LW, Irlmeier RT, Shui YB, Liu Y, Huang AJW. Histopathology and selective biomarker expression in human meibomian glands. Br J Ophthalmol 2019; 104:999-1004. [PMID: 31585964 PMCID: PMC7361036 DOI: 10.1136/bjophthalmol-2019-314466] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 09/09/2019] [Accepted: 09/21/2019] [Indexed: 12/17/2022]
Abstract
Background/aims Meibomian gland dysfunction (MGD) is the most common form of evaporative dry eye disease, but its pathogenesis is poorly understood. This study examined the histopathological features of meibomian gland (MG) tissue from cadaver donors to identify potential pathogenic processes that underlie MGD in humans. Methods Histological analyses was performed on the MGs in the tarsal plates dissected from four cadaver donors, two young and two old adults, including a 36-year-old female (36F) and three males aged 30, 63 and 64 years (30M, 63M and 64M). Results The MGs of 36F displayed normal anatomy and structure, whereas the MGs of 30M showed severe ductal obstruction with mild distortion. The obstruction was caused by increased cytokeratin levels in association with hyperproliferation, but not hyperkeratinisation. In two older males, moderate to severe MG atrophy was noted. Cell proliferation was significantly reduced in the MG acini of the two older donors as measured by Ki67 labelling index (6.0%±3.4% and 7.9%±2.8% in 63M and 64M, respectively) when compared with that of the two younger donors (23.2%±5.5% and 16.9%±4.8% in 30M and 36F, respectively) (p<0.001). The expression patterns of meibocyte differentiation biomarkers were similar in the older and younger donors. Conclusion Our histopathological study, based on a small sample size, suggests potentially distinct pathogenic mechanisms in MGD. In the young male adult, hyperproliferation and aberrant differentiation of the central ductal epithelia may lead to the obstruction by overproduced cytokeratins. In contrast, in older adults, decreased cell proliferation in acinar basal epithelia could be a contributing factor leading to MG glandular atrophy.
Collapse
Affiliation(s)
- Lixing W Reneker
- Department of Ophthalmology, University of Missouri School of Medicine, Columbia, Missouri, USA
| | - Rebecca T Irlmeier
- Department of Ophthalmology, University of Missouri School of Medicine, Columbia, Missouri, USA
| | - Ying-Bo Shui
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Ying Liu
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Andrew J W Huang
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
31
|
Molecular Mechanisms of p63-Mediated Squamous Cancer Pathogenesis. Int J Mol Sci 2019; 20:ijms20143590. [PMID: 31340447 PMCID: PMC6678256 DOI: 10.3390/ijms20143590] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/12/2019] [Accepted: 07/15/2019] [Indexed: 12/20/2022] Open
Abstract
The p63 gene is a member of the p53/p63/p73 family of transcription factors and plays a critical role in development and homeostasis of squamous epithelium. p63 is transcribed as multiple isoforms; ΔNp63α, the predominant p63 isoform in stratified squamous epithelium, is localized to the basal cells and is overexpressed in squamous cell cancers of multiple organ sites, including skin, head and neck, and lung. Further, p63 is considered a stem cell marker, and within the epidermis, ΔNp63α directs lineage commitment. ΔNp63α has been implicated in numerous processes of skin biology that impact normal epidermal homeostasis and can contribute to squamous cancer pathogenesis by supporting proliferation and survival with roles in blocking terminal differentiation, apoptosis, and senescence, and influencing adhesion and migration. ΔNp63α overexpression may also influence the tissue microenvironment through remodeling of the extracellular matrix and vasculature, as well as by enhancing cytokine and chemokine secretion to recruit pro-inflammatory infiltrate. This review focuses on the role of ΔNp63α in normal epidermal biology and how dysregulation can contribute to cutaneous squamous cancer development, drawing from knowledge also gained by squamous cancers from other organ sites that share p63 overexpression as a defining feature.
Collapse
|
32
|
King KE, George AL, Sakakibara N, Mahmood K, Moses MA, Weinberg WC. Intersection of the p63 and NF-κB pathways in epithelial homeostasis and disease. Mol Carcinog 2019; 58:1571-1580. [PMID: 31286584 DOI: 10.1002/mc.23081] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/13/2019] [Accepted: 06/14/2019] [Indexed: 12/12/2022]
Abstract
Overexpression of ΔNp63α, a member of the p53/p63/p73 family of transcription factors, is a molecular attribute of human squamous cancers of the head and neck, lung and skin. The TP63 gene plays important roles in epidermal morphogenesis and homeostasis, regulating diverse biological processes including epidermal fate decisions and keratinocyte proliferation and survival. When overexpressed experimentally in primary mouse keratinocytes, ΔNp63α maintains a basal cell phenotype including the loss of normal calcium-mediated growth arrest, at least in part through the activation and enhanced nuclear accumulation of the c-rel subunit of NF-κB (Nuclear Factor-kappa B). Initially identified for its role in the immune system and hematopoietic cancers, c-Rel has increasingly been associated with solid tumors and other pathologies. ΔNp63α and c-Rel have been shown to be associated in the nuclei of ΔNp63α overexpressing human squamous carcinoma cells. Together, these transcription factors cooperate in the transcription of genes regulating intrinsic keratinocyte functions, as well as the elaboration of factors that influence the tumor microenvironment (TME). This review provides an overview of the roles of ΔNp63α and c-Rel in normal epidermal homeostasis and elaborates on how these pathways may intersect in pathological conditions such as cancer and the associated TME.
Collapse
Affiliation(s)
- Kathryn E King
- Laboratory of M olecular Oncology, Division of Biotechnology Review and Research 1, Office of Biotechnology Products, FDA Center for Drug Evaluation and Research, Silver Spring, Maryland
| | - Andrea L George
- Laboratory of M olecular Oncology, Division of Biotechnology Review and Research 1, Office of Biotechnology Products, FDA Center for Drug Evaluation and Research, Silver Spring, Maryland
| | - Nozomi Sakakibara
- Laboratory of M olecular Oncology, Division of Biotechnology Review and Research 1, Office of Biotechnology Products, FDA Center for Drug Evaluation and Research, Silver Spring, Maryland
| | - Kanwal Mahmood
- Laboratory of M olecular Oncology, Division of Biotechnology Review and Research 1, Office of Biotechnology Products, FDA Center for Drug Evaluation and Research, Silver Spring, Maryland
| | - Michael A Moses
- Laboratory of M olecular Oncology, Division of Biotechnology Review and Research 1, Office of Biotechnology Products, FDA Center for Drug Evaluation and Research, Silver Spring, Maryland
| | - Wendy C Weinberg
- Laboratory of M olecular Oncology, Division of Biotechnology Review and Research 1, Office of Biotechnology Products, FDA Center for Drug Evaluation and Research, Silver Spring, Maryland
| |
Collapse
|
33
|
Koda T, Shirato K, Takanari J, Imai H. Effects of a Standardized Extract of Asparagus officinalisStem on Photoaging in the Epidermal Layer of the Skin Using Cultured Keratinocytes. Nat Prod Commun 2019. [DOI: 10.1177/1934578x19857345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Tomoko Koda
- Division of Nursing, Faculty of Nursing, Tokyo Healthcare University, Tokyo, Japan
| | - Ken Shirato
- Department of Molecular Predictive Medicine and Sport Science, Kyorin University School of Medicine, Tokyo, Japan
| | | | - Hideki Imai
- Division of Nursing, Faculty of Nursing, Tokyo Healthcare University, Tokyo, Japan
| |
Collapse
|
34
|
Gupta R, Chaudhary M, Patil S, Fating C, Hande A, Suryawanshi H. Expression of p63 in tooth germ, dentigerous cyst and ameloblastoma. J Oral Maxillofac Pathol 2019; 23:43-48. [PMID: 31110415 PMCID: PMC6503805 DOI: 10.4103/jomfp.jomfp_125_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Context: To assess the role of p63, a p53 homolog, in the cytodifferentiation (odontogenesis) and oncogenesis of odontogenic epithelium. Aim: The present study aimed to compare the expression pattern of p63 in the epithelium of tooth germ, dentigerous cyst (DC) and ameloblastoma (AB). Materials and Methods: Tissue specimens of thirty tooth germs, thirty ABs and thirty DCs were examined by immunohistochemistry for the expression of p63. Results: p63 labeling index (LI) was observed in descending order in epithelial cells of ABs, tooth germs and DCs. p63 LI was statistically nonsignificant among all the three groups. ABs revealed the highest p63 expression, but, surprisingly, tooth germs showed higher expression than DCs. Conclusion: p63 plays a role in the cytodifferentiation and proliferation of odontogenic epithelial cells irrespective of the tissue (normal developing or lesional tissue). This implies that p63 cannot be used as a diagnostic marker. However, our results indicate p63 overexpression as a mark of increased proliferation. Thus, it can be stipulated that p63 can be used as a prognostic marker in odontogenic lesions with more aggressive and invasive phenotype. Our results also suggest the differential function of p63 in both developing and lesional odontogenic tissues, which, however, depends on p63 isoform predominantly being expressed. Therefore, identification of p63-predominant isoform in a particular lesion is more important than the presence or absence of p63. Consequently, we suggest the performance of polymerase chain reaction analysis along with immunohistochemical evaluation in further studies.
Collapse
Affiliation(s)
- Rolly Gupta
- Department of Oral Pathology and Microbiology, Chhattisgarh Dental College and Research Institute, Rajnandgaon, Chhattisgarh, India
| | - Minal Chaudhary
- Department of Oral Pathology and Microbiology, Sharad Pawar Dental College, Wardha, Maharashtra, India
| | - Swati Patil
- Department of Oral Pathology and Microbiology, Sharad Pawar Dental College, Wardha, Maharashtra, India
| | - Chinar Fating
- Department of Oral Medicine and Radiology, Chhattisgarh Dental College and Research Institute, Rajnandgaon, Chhattisgarh, India
| | - Alka Hande
- Department of Oral Pathology and Microbiology, Sharad Pawar Dental College, Wardha, Maharashtra, India
| | - Hema Suryawanshi
- Department of Oral Pathology and Microbiology, Chhattisgarh Dental College and Research Institute, Rajnandgaon, Chhattisgarh, India
| |
Collapse
|
35
|
Sonam S, Srnak JA, Perry KJ, Henry JJ. Molecular markers for corneal epithelial cells in larval vs. adult Xenopus frogs. Exp Eye Res 2019; 184:107-125. [PMID: 30981716 DOI: 10.1016/j.exer.2019.04.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 04/08/2019] [Indexed: 12/14/2022]
Abstract
Corneal Epithelial Stem Cells (CESCs) and their proliferative progeny, the Transit Amplifying Cells (TACs), are responsible for maintaining the integrity and transparency of the cornea. These stem cells (SCs) are widely used in corneal transplants and ocular surface reconstruction. Molecular markers are essential to identify, isolate and enrich for these cells, yet no definitive CESC marker has been established. An extensive literature survey shows variability in the expression of putative CESC markers among vertebrates; being attributed to species-specific variations, or other differences in developmental stages of these animals, approaches used in these studies and marker specificity. Here, we expanded the search for CESC markers using the amphibian model Xenopus laevis. In previous studies we found that long-term label retaining cells (suggestive of CESCs and TACs) are present throughout the larval basal corneal epithelium. In adult frogs, these cells become concentrated in the peripheral cornea (limbal region). Here, we used immunofluorescence to characterize the expression of nine proteins in the corneas of both Xenopus larvae and adults (post-metamorphic). We found that localization of some markers change between larval and adult stages. Markers such as p63, Keratin 19, and β1-integrin are restricted to basal corneal epithelial cells of the larvae. After metamorphosis their expression is found in basal and intermediate layer cells of the adult frog corneal epithelium. Another protein, Pax6 was expressed in the larval corneas, but surprisingly it was not detected in the adult corneal epithelium. For the first time we report that Tcf7l2 can be used as a marker to differentiate cornea vs. skin in frogs. Tcf7l2 is present only in the frog skin, which differs from reports indicating that the protein is expressed in the human cornea. Furthermore, we identified the transition between the inner, and the outer surface of the adult frog eyelid as a key boundary in terms of marker expression. Although these markers are useful to identify different regions and cellular layers of the frog corneal epithelium, none is unique to CESCs or TACs. Our results confirm that there is no single conserved CESC marker in vertebrates. This molecular characterization of the Xenopus cornea facilitates its use as a vertebrate model to understand the functions of key proteins in corneal homeostasis and wound repair.
Collapse
Affiliation(s)
- Surabhi Sonam
- Department of Cell and Developmental Biology, University of Illinois, 601 S. Goodwin Avenue, Urbana, IL, 61801, USA
| | - Jennifer A Srnak
- Department of Cell and Developmental Biology, University of Illinois, 601 S. Goodwin Avenue, Urbana, IL, 61801, USA
| | - Kimberly J Perry
- Department of Cell and Developmental Biology, University of Illinois, 601 S. Goodwin Avenue, Urbana, IL, 61801, USA
| | - Jonathan J Henry
- Department of Cell and Developmental Biology, University of Illinois, 601 S. Goodwin Avenue, Urbana, IL, 61801, USA.
| |
Collapse
|
36
|
Pfeifer JP, Santos VH, Rosa G, Souza JB, Watanabe MJ, Fonseca-Alves CE, Deffune E, Alves AL. Isolation, cultivation and immunofluorescence characterization of lamellar keratinocytes from equine hoof by using explants. PESQUISA VETERINÁRIA BRASILEIRA 2019; 39:292-298. [DOI: 10.1590/1678-5150-pvb-5747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
ABSTRACT: The importance of the hoof to the horse health is clear, and the current knowledge regarding the cellular aspects of hoof keratinocytes is poor. Studies on equine keratinocyte culture are scarce. Developing keratinocyte cultures in vitro is a condition for studies on molecular biology, cell growth and differentiation. Some methods have already been established, such as those for skin keratinocyte culture. However, few methodologies are found for lamellar keratinocytes. The objective of this study was to standardize the equine hoof keratinocyte isolation and cultivation, and then characterize the cell immunophenotype. For this, the primary culture method used was through explants obtained from three regions of the equine hoof (medial dorsal, dorsal, and lateral dorsal). After the cell isolation and cultivation, the cell culture and its explants were stained with anti-pan cytokeratin (pan-CK) (AE1/AE3), vimentin (V9), p63 (4A4), and Ki-67 (MIB-1) antibodies. Cells were grown to third passage, were positive for pan-CK, p63 and Ki-67, and few cells had vimentin positive expression. As for the explants, the epidermal laminae were not stained for vimentin or Ki-67. However, some cells presented positive pan-CK and p63 expression. This study demonstrated the viability of lamellar explants of equine hooves as a form of isolating keratinocytes in primary cultures, as well as characterized the proliferation ability of such keratinocytes in monolayers.
Collapse
|
37
|
Kammergruber E, Rahn C, Nell B, Gabner S, Egerbacher M. Morphological and immunohistochemical characteristics of the equine corneal epithelium. Vet Ophthalmol 2019; 22:778-790. [PMID: 30767359 PMCID: PMC6900071 DOI: 10.1111/vop.12651] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 01/18/2019] [Accepted: 01/21/2019] [Indexed: 12/13/2022]
Abstract
Objective The morphology of the corneal epithelium in two age groups of horses is described. Distribution patterns of proliferation‐, differentiation‐, stem cell‐associated markers and cell junction proteins were assessed. Methods Corneal samples from 12 horses (six foals and six adult horses) were analyzed after H&E staining and immunohistochemistry using the following antibodies: E‐cadherin, β‐catenin, Connexin 43 (Cx43), tight junction protein 1 (TJP1), cytokeratin (CK) 14, CK 19, CK 3, CK 10, vimentin, Ki67, p63, nerve growth factor (NGF), ABCG2, and epithelial growth factor receptor. Semiquantitative analysis of crypt, limbal, peripheral, and central zone was performed. Semithin and ultrathin sections were used for ultrastructural evaluation of the epithelium. Results The height of the epithelium varied between age groups and crypts were consistently present. In the peripheral and central epithelium, three types of basal cells resembling a pseudostratified epithelium were characterized. Potential stem cell markers (CK 14, p63, NGF, and ABCG2) were present in all zones with decreasing frequency toward the center. Cornea‐specific differentiation marker CK 3 was not expressed in the most basal cell layer of the limbal epithelium. E‐cadherin, β‐catenin, and Cx43 revealed a similar apico‐lateral signal pattern throughout the entire epithelium; only TJP1 was additionally seen at the basal surface. Conclusions This study presents a systematic semiquantitative evaluation of the equine corneal epithelium, showing the presence of crypts as potential stem cell niche with CK 14, p63, NGF, and ABCG2 as relevant markers for cells with regenerative capacity. The pseudostratified arrangement of the basal layer was a unique finding.
Collapse
Affiliation(s)
- Eva Kammergruber
- Histology and Embryology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Carolin Rahn
- Histology and Embryology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Barbara Nell
- Department of Companion Animals and Horses, University of Veterinary Medicine, Vienna, Austria
| | - Simone Gabner
- Histology and Embryology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Monika Egerbacher
- Histology and Embryology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
38
|
Stadnikova A, Trosan P, Skalicka P, Utheim TP, Jirsova K. Interleukin-13 maintains the stemness of conjunctival epithelial cell cultures prepared from human limbal explants. PLoS One 2019; 14:e0211861. [PMID: 30742646 PMCID: PMC6370187 DOI: 10.1371/journal.pone.0211861] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 01/23/2019] [Indexed: 11/18/2022] Open
Abstract
To use human limbal explants as an alternative source for generating conjunctival epithelium and to determine the effect of interleukin-13 (IL-13) on goblet cell number, mucin expression, and stemness. Human limbal explants prepared from 17 corneoscleral rims were cultured with or without IL-13 (IL-13+ and IL-13-, respectively) and followed up to passage 2 (primary culture [P0]-P2). Cells were characterized by alcian blue/periodic acid-Schiff (AB/PAS) staining (goblet cells); immunofluorescent staining for p63α (progenitor cells), Ki-67 (proliferation), MUC5AC (mucin, goblet cells), and keratin 7 (K7, conjunctival epithelial and goblet cells); and by quantitative real-time polymerase chain reaction for expression of the p63α (TP63), MUC5AC, MUC4 (conjunctival mucins), K3, K12 (corneal epithelial cells), and K7 genes. Clonogenic ability was determined by colony-forming efficiency (CFE) assay. Using limbal explants, we generated epithelium with conjunctival phenotype and high viability in P0, P1, and P2 cultures under IL-13+ and IL-13- conditions, i.e., epithelium with strong K7 positivity, high K7 and MUC4 expression and the presence of goblet cells (AB/PAS and MUC5AC positivity; MUC5AC expression). p63α positivity was similar in IL-13+ and IL-13- cultures and was decreased in P2 cultures; however, there was increased TP63 expression in the presence of IL-13 (especially in the P1 cultures). Similarly, IL-13 increased proliferative activity in P1 cultures and significantly promoted P0 and P1 culture CFE. IL-13 did not increase goblet cell number in the P0-P2 cultures, nor did it influence MUC5AC and MUC4 expression. By harvesting unattached cells on day 1 of P1 we obtained goblet cell rich subpopulation showing AB/PAS, MUC5AC, and K7 positivity, but with no growth potential. In conclusion, limbal explants were successfully used to develop conjunctival epithelium with the presence of putative stem and goblet cells and with the ability to preserve the stemness of P0 and P1 cultures under IL-13 influence.
Collapse
Affiliation(s)
- Andrea Stadnikova
- Laboratory of the Biology and Pathology of the Eye, Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Peter Trosan
- Laboratory of the Biology and Pathology of the Eye, Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Pavlina Skalicka
- Department of Ophthalmology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Tor Paaske Utheim
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
- Department of Plastic and Reconstructive Surgery, Oslo University Hospital, Oslo, Norway
| | - Katerina Jirsova
- Laboratory of the Biology and Pathology of the Eye, Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
- * E-mail:
| |
Collapse
|
39
|
Limbal Stem Cell Transplantation: Clinical Results, Limits, and Perspectives. Stem Cells Int 2018; 2018:8086269. [PMID: 30405723 PMCID: PMC6201383 DOI: 10.1155/2018/8086269] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 07/10/2018] [Accepted: 08/27/2018] [Indexed: 12/13/2022] Open
Abstract
Limbal stem cell deficiency (LSCD) is a clinical condition characterized by damage of cornea limbal stem cells, which results in an impairment of corneal epithelium turnover and in an invasion of the cornea by the conjunctival epithelium. In these patients, the conjunctivalization of the cornea is associated with visual impairment and cornea transplantation has poor prognosis for recurrence of the conjunctivalization. Current treatments of LSCD are aimed at replacing the damaged corneal stem cells in order to restore a healthy corneal epithelium. The autotransplantation of limbal tissue from the healthy, fellow eye is effective in unilateral LSCD but leads to depauperation of the stem cell reservoir. In the last decades, novel techniques such as cultivated limbal epithelial transplantation (CLET) have been proposed in order to reduce the damage of the healthy fellow eye. Clinical and experimental evidence showed that CLET is effective in inducing long-term regeneration of a healthy corneal epithelium in patients with LSCD with a success rate of 70%–80%. Current limitations for the treatment of LSCD are represented by the lack of a marker able to unequivocally identify limbal stem cells and the treatment of total, bilateral LSCD which requires other sources of stem cells for ocular surface reconstruction.
Collapse
|
40
|
Patruno M, Perazzi A, Martinello T, Gomiero C, Maccatrozzo L, Iacopetti I. Investigations of the corneal epithelium in Veterinary Medicine: State of the art on corneal stem cells found in different mammalian species and their putative application. Res Vet Sci 2018; 118:502-507. [PMID: 29758534 DOI: 10.1016/j.rvsc.2018.05.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/29/2018] [Accepted: 05/07/2018] [Indexed: 02/08/2023]
Abstract
The existence of progenitor cells that can readily differentiate into a specific cell type is a common cellular strategy for physiological tissue growth and repair mechanisms. In the mammalian cornea, many aspects regarding the nature and location of these cells are still unclear. In the human limbus (peripheral area of the cornea) progenitor cells have been found and characterized but in non-human mammals, the picture is not so clear. In this review, we examine current knowledge about the morphology of limbus and the localization of corneal epithelial stem cells in all species studied so far, comparing data with humans. We have also explored different research directions in the veterinary field in order to discuss the: i) currently used protocols and ii) best range of treatments for ocular pathologies in which corneal stem cells are involved.
Collapse
Affiliation(s)
- M Patruno
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, 35020, Legnaro - Agripolis, Padova, Italy.
| | - A Perazzi
- Department of Animal Medicine, Production and Health, University of Padova, Viale dell'Università 16, 35020, Legnaro - Agripolis, Padova, Italy
| | - T Martinello
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, 35020, Legnaro - Agripolis, Padova, Italy
| | - C Gomiero
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, 35020, Legnaro - Agripolis, Padova, Italy
| | - L Maccatrozzo
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, 35020, Legnaro - Agripolis, Padova, Italy
| | - I Iacopetti
- Department of Animal Medicine, Production and Health, University of Padova, Viale dell'Università 16, 35020, Legnaro - Agripolis, Padova, Italy
| |
Collapse
|
41
|
Miyazawa A, Kuo S, Feinberg SE. Production of progenitor cells from primary human epithelial cell monolayer cultures. In Vitro Cell Dev Biol Anim 2018; 54:413-422. [PMID: 29725883 DOI: 10.1007/s11626-018-0259-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 04/13/2018] [Indexed: 11/28/2022]
Abstract
Primary keratinocytes derived from human epidermis are widely used in tissue engineering and regenerative medicine. An important aspect in clinical applications is the preservation of human skin keratinocyte stem cells. However, it is difficult to expand the number of human skin keratinocyte stem cells, which are undifferentiated and highly proliferative in culture by using standard cell culture methods. It is even more difficult to identify them, since universal specific markers for human skin keratinocyte stem cells have not been identified. In this paper, we show a method to produce a large number of primary progenitor human skin keratinocytes by using our novel culture techniques. Primary human skin keratinocyte monolayers are cultured using twice the volume of medium without serum and lacking essential fatty acids. Once the cells reach 70-80% confluence, they begin to float up into the overlying medium and are called "epithelial pop-up keratinocytes (ePUKs)" allowing the cells to be passaged without the use of trypsin. We analyzed the properties of ePUKs by cell size, cell viability, immunocytofluorescence biomarker staining, and cell cycle phase distribution by fluorescence-activated cell sorting (FACS). Our results showed that these ePUKs appear to be progenitor epithelial cells, which are small in size, undifferentiated, and have a high proliferative capacity. We believe that ePUKs are suitable for use in medical applications requiring a large number of primary human progenitor skin keratinocytes.
Collapse
Affiliation(s)
- Atsuko Miyazawa
- Department of Oral and Maxillofacial Surgery, School of Dentistry, University of Michigan, Ann Arbor, MI, USA.,Department of Oral and Maxillofacial Surgery, School of Life dentistry at Tokyo, The Nippon Dental University, Tokyo, Japan
| | - Shiuhyang Kuo
- Department of Oral and Maxillofacial Surgery, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Stephen E Feinberg
- Department of Oral and Maxillofacial Surgery, School of Dentistry, University of Michigan, Ann Arbor, MI, USA. .,Department of Surgery, Medical School, University of Michigan, 1150 W Medical Center Drive, MSRB 2, A560B, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
42
|
Koda T, Shirato K, Takanari J, Imai H. Enzyme-Treated Asparagus Extract (ETAS) Facilitates the Turnover of UV-B-Irradiated Keratinocytes. J Nutr Sci Vitaminol (Tokyo) 2018; 64:138-142. [PMID: 29710031 DOI: 10.3177/jnsv.64.138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Enzyme-treated asparagus extract (ETAS) is prepared from the lower, residual parts of asparagus, and some functionalities, such as anti-oxidative and neuroprotective activities, have been suggested. The purpose of the present study was to investigate the effects of ETAS on photoaging in the epidermal layer of the skin using cultured keratinocytes. Normal human epidermal keratinocytes were irradiated or left unirradiated with UV-B (10 mJ/cm2) and incubated with ETAS (0.5 or 2 mg/mL) or vehicle. After 3 or 13 h, molecular examinations were performed, and after 24 or 48 h, cell viabilities were determined by a CCK-8 assay. ETAS addition may induce keratinocyte migration and proliferation as well as apoptosis under molecular examination. These results suggest that ETAS might accelerate turnover of keratinocytes.
Collapse
Affiliation(s)
- Tomoko Koda
- Division of Nursing, Faculty of Nursing, Tokyo Healthcare University
| | - Ken Shirato
- Department of Molecular Predictive Medicine and Sport Science, Kyorin University School of Medicine
| | | | - Hideki Imai
- Division of Nursing, Faculty of Nursing, Tokyo Healthcare University
| |
Collapse
|
43
|
Park HR, Kim YW, Park JH, Maeng YH, Nojima T, Hashimoto H, Park YK. Low Expression of P63 and P73 in Osteosarcoma. TUMORI JOURNAL 2018; 90:239-43. [PMID: 15237589 DOI: 10.1177/030089160409000214] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background The recent discovery of two p53-related genes, p63 and p73, has revealed an additional level of complexity to the study of p53 function. Both genes encode multiple proteins arising from alternative promoter usage and splicing, with transactivation, DNA-binding, and tetramerization domains. Recent data support a role for p63 in squamous and transitional cell carcinomas, as well as in certain lymphomas and thymomas. Methods To characterize the involvement of p63 and p73 in the development of osteosarcoma, we analyzed the expression and mutation of TAp63 and TAp73 in six osteosarcoma cell lines and twelve osteosarcoma specimens. Results Semiquantitative DNA/PCR analysis revealed that eight (67%) and six (50%) out of twelve osteosarcoma specimens showed significantly reduced levels of p63 and p73 transcription, respectively. Direct sequencing of the entire coding region detected no mutations in cell lines or osteosarcoma specimens. Conclusions Our data suggest that low expression of p63 and p73 is relatively common in osteosarcomas and might contribute to their molecular pathogenesis.
Collapse
Affiliation(s)
- Hye-Rim Park
- Department of Pathology, College of Medicine, Hallym University, Anyang, Korea
| | | | | | | | | | | | | |
Collapse
|
44
|
Cieślar-Pobuda A, Rafat M, Knoflach V, Skonieczna M, Hudecki A, Małecki A, Urasińska E, Ghavami S, Łos MJ. Human induced pluripotent stem cell differentiation and direct transdifferentiation into corneal epithelial-like cells. Oncotarget 2018; 7:42314-42329. [PMID: 27275539 PMCID: PMC5173137 DOI: 10.18632/oncotarget.9791] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 05/13/2016] [Indexed: 11/25/2022] Open
Abstract
The corneal epithelium is maintained by a small pool of tissue stem cells located at the limbus. Through certain injuries or diseases this pool of stem cells may get depleted. This leads to visual impairment. Standard treatment options include autologous or allogeneic limbal stem cell (LSC) transplantation, however graft rejection and chronic inflammation lowers the success rate over long time. Induced pluripotent stem (iPS) cells have opened new possibilities for treating various diseases with patient specific cells, eliminating the risk of immune rejection. In recent years, several protocols have been developed, aimed at the differentiation of iPS cells into the corneal epithelial lineage by mimicking the environmental niche of limbal stem cells. However, the risk of teratoma formation associated with the use of iPS cells hinders most applications from lab into clinics. Here we show that the differentiation of iPS cells into corneal epithelial cells results in the expression of corneal epithelial markers showing a successful differentiation, but the process is long and the level of gene expression for the pluripotency markers does not vanish completely. Therefore we set out to determine a direct transdifferentiation approach to circumvent the intermediate state of pluripotency (iPS-stage). The resulting cells, obtained by direct transdifferentiation of fibroblasts into limbal cells, exhibited corneal epithelial cell morphology and expressed corneal epithelial markers. Hence we shows for the first time a direct transdifferentiation of human dermal fibroblasts into the corneal epithelial lineage that may serve as source for corneal epithelial cells for transplantation approaches.
Collapse
Affiliation(s)
- Artur Cieślar-Pobuda
- Stem Cell Group, Nordic EMBL Partnership, Centre for Molecular Medicine Norway (NCMM), University of Oslo, Oslo, Norway.,Institute of Automatic Control, Silesian University of Technology, Gliwice, Poland
| | - Mehrdad Rafat
- LinkoCare Life Sciences AB, Mjärdevi Science Park, Linköping, Sweden
| | - Viktoria Knoflach
- Unit of Molecular Neurobiology, Department of Medical Biochemistry & Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Magdalena Skonieczna
- Institute of Automatic Control, Silesian University of Technology, Gliwice, Poland.,Center for Biotechnology, Bioengineering and Bioinformatics, Silesian University of Technology, Gliwice, Poland
| | | | - Andrzej Małecki
- Laboratory of Molecular Biology, Faculty of Physiotherapy, The Jerzy Kukuczka Academy of Physical Education in Katowice, Katowice, Poland
| | - Elżbieta Urasińska
- Department of Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Seaid Ghavami
- Department of Human Anatomy and Cell Science, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Marek J Łos
- LinkoCare Life Sciences AB, Mjärdevi Science Park, Linköping, Sweden.,Laboratory of Molecular Biology, Faculty of Physiotherapy, The Jerzy Kukuczka Academy of Physical Education in Katowice, Katowice, Poland
| |
Collapse
|
45
|
Pellegrini G, Ardigò D, Milazzo G, Iotti G, Guatelli P, Pelosi D, De Luca M. Navigating Market Authorization: The Path Holoclar Took to Become the First Stem Cell Product Approved in the European Union. Stem Cells Transl Med 2017; 7:146-154. [PMID: 29280318 PMCID: PMC5746151 DOI: 10.1002/sctm.17-0003] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 07/18/2017] [Indexed: 01/29/2023] Open
Abstract
Gene therapy, cell therapy, and tissue engineering have the potential to revolutionize the treatment of disease and injury. Attaining marketing authorization for such advanced therapy medicinal products (ATMPs) requires a rigorous scientific evaluation by the European Medicines Agency—authorization is only granted if the product can fulfil stringent requirements for quality, safety, and efficacy. However, many ATMPs are being provided to patients under alternative means, such as “hospital exemption” schemes. Holoclar (ex vivo expanded autologous human corneal epithelial cells containing stem cells), a novel treatment for eye burns, is one of the few ATMPs to have been granted marketing authorization and is the first containing stem cells. This review highlights the differences in standards between an authorized and unauthorized medicinal product, and specifically discusses how the manufacture of Holoclar had to be updated to achieve authorization. The result is that patients will have access to a therapy that is manufactured to high commercial standards, and is supported by robust clinical safety and efficacy data. stemcellstranslationalmedicine2018;7:146–154
Collapse
Affiliation(s)
- Graziella Pellegrini
- Center for Regenerative Medicine ''Stefano Ferrari'', University of Modena and Reggio Emilia, Modena, Italy.,Holostem Terapie Avanzate, Modena, Italy
| | | | | | | | | | | | - Michele De Luca
- Center for Regenerative Medicine ''Stefano Ferrari'', University of Modena and Reggio Emilia, Modena, Italy.,Holostem Terapie Avanzate, Modena, Italy
| |
Collapse
|
46
|
Full-Length Isoforms of Kaposi's Sarcoma-Associated Herpesvirus Latency-Associated Nuclear Antigen Accumulate in the Cytoplasm of Cells Undergoing the Lytic Cycle of Replication. J Virol 2017; 91:JVI.01532-17. [PMID: 28978712 DOI: 10.1128/jvi.01532-17] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 09/29/2017] [Indexed: 01/09/2023] Open
Abstract
The latency-associated nuclear antigen (LANA) of the Kaposi's sarcoma-associated herpesvirus (KSHV) performs a variety of functions to establish and maintain KSHV latency. During latency, LANA localizes to discrete punctate spots in the nucleus, where it tethers viral episomes to cellular chromatin and interacts with nuclear components to regulate cellular and viral gene expression. Using highly sensitive tyramide signal amplification, we determined that LANA localizes to the cytoplasm in different cell types undergoing the lytic cycle of replication after de novo primary infection and after spontaneous, tetradecanoyl phorbol acetate-, or open reading frame 50 (ORF50)/replication transactivator (RTA)-induced activation. We confirmed the presence of cytoplasmic LANA in a subset of cells in lytically active multicentric Castleman disease lesions. The induction of cellular migration by scratch-wounding confluent cell cultures, culturing under subconfluent conditions, or induction of cell differentiation in primary cultures upregulated the number of cells permissive for primary lytic KSHV infection. The induction of lytic replication was characterized by high-level expression of cytoplasmic LANA and nuclear ORF59, a marker of lytic replication. Subcellular fractionation studies revealed the presence of multiple isoforms of LANA in the cytoplasm of ORF50/RTA-activated Vero cells undergoing primary infection. Mass spectrometry analysis demonstrated that cytoplasmic LANA isoforms were full length, containing the N-terminal nuclear localization signal. These results suggest that trafficking of LANA to different subcellular locations is a regulated phenomenon, which allows LANA to interact with cellular components in different compartments during both the latent and the replicative stages of the KSHV life cycle.IMPORTANCE Kaposi's sarcoma-associated herpesvirus (KSHV) causes AIDS-related malignancies, including lymphomas and Kaposi's sarcoma. KSHV establishes lifelong infections using its latency-associated nuclear antigen (LANA). During latency, LANA localizes to the nucleus, where it connects viral and cellular DNA complexes and regulates gene expression, allowing the virus to maintain long-term infections. Our research shows that intact LANA traffics to the cytoplasm of cells undergoing permissive lytic infections and latently infected cells in which the virus is induced to replicate. This suggests that LANA plays important roles in the cytoplasm and nuclear compartments of the cell during different stages of the KSHV life cycle. Determining cytoplasmic function and mechanism for regulation of the nuclear localization of LANA will enhance our understanding of the biology of this virus, leading to therapeutic approaches to eliminate infection and block its pathological effects.
Collapse
|
47
|
Lee HJ, Wolosin JM, Chung SH. Divergent effects of Wnt/β-catenin signaling modifiers on the preservation of human limbal epithelial progenitors according to culture condition. Sci Rep 2017; 7:15241. [PMID: 29127331 PMCID: PMC5681568 DOI: 10.1038/s41598-017-15454-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 10/25/2017] [Indexed: 11/10/2022] Open
Abstract
Wnt signaling plays an important role in the regulation of self-renewal in stem cells. Here we investigated the effect of CHIR99021, the primary transducer of the Wnt signaling canonical pathway, and IWP2, a wide action Wnt signal blocker, on the growth and differentiation of the limbal epithelial progenitor cells when these cells are cultured in two different, common culture approaches, outgrowth from limbal biopsy explants and isolated cell seeded in low calcium medium. Consistent with their expected effects, irrespective of the culture system, IWP2 decreased total β-catenin while CHIR99021 increased it in nuclear localization. However, IWP2 increased stem/progenitor cell marker (p63α and ABCG2) content and clonogenic capacity in the explants but had opposite effects on isolated cells. CHIR99021 reduced the growth rate, stem/progenitor cell marker content and clonogenic capacity in the explants but also had the opposite effect on the isolated cells. These results show that the outcome of Wnt/β-catenin signaling modification is dependent on the culture systems. Transplantation of limbal epithelial sheets from explant cultures is one of the standard treatments of limbal stem cell deficiency. Our study shows that Wnt-associated activity has a strong negative impact on stem/progenitor cell preservation in limbal explant cultures.
Collapse
Affiliation(s)
- Hyun Jung Lee
- Department of Ophthalmology and Visual Science, Catholic Institute of Visual Science, College of Medicine, The Catholic University of Korea, Seoul St. Mary's Hospital, Seoul, Republic of Korea
| | - J Mario Wolosin
- Department of Ophthalmology, Eye and Vison Research Institute and Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America.
| | - So-Hyang Chung
- Department of Ophthalmology and Visual Science, Catholic Institute of Visual Science, College of Medicine, The Catholic University of Korea, Seoul St. Mary's Hospital, Seoul, Republic of Korea.
| |
Collapse
|
48
|
Lichtenberger R, Simpson MA, Smith C, Barker J, Navarini AA. Genetic architecture of acne vulgaris. J Eur Acad Dermatol Venereol 2017; 31:1978-1990. [PMID: 28593717 DOI: 10.1111/jdv.14385] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 05/18/2017] [Indexed: 01/14/2023]
Abstract
Acne vulgaris is a ubiquitary skin disease characterized by chronic inflammation of the pilosebaceous unit resulting from bacterial colonization of hair follicles by Propionibacterium acnes, androgen-induced increased sebum production, altered keratinization and inflammation. Here, we review our current understanding of the genetic architecture of this intriguing disease. We analysed genomewide association studies (GWAS) and candidate genes studies for acne vulgaris. Moreover, we included GWAS studies for the associated disease polycystic ovary syndrome (PCOS). Overall, the available data revealed sixteen genetic loci flagged by single nucleotide polymorphisms (SNPs), none of which has been confirmed yet by independent studies. Moreover, a GWAS for PCOS identified 21 susceptible loci. The genetic architecture is complex which has been revealed by GWAS. Further and larger studies in different populations are required to confirm or disprove results from candidate gene studies as well to identify signals that may overlap between different populations. Finally, studies on rare genetic variants in acne and associated diseases like PCOS may deepen our understanding of its pathogenesis.
Collapse
Affiliation(s)
- R Lichtenberger
- Department of Dermatology, University Hospital of Zurich, Zurich, Switzerland
| | - M A Simpson
- Division of Genetics and Molecular Medicine, King's College, London, UK
| | - C Smith
- Division of Genetics and Molecular Medicine, King's College, London, UK
| | - J Barker
- Division of Genetics and Molecular Medicine, King's College, London, UK
| | - A A Navarini
- Department of Dermatology, University Hospital of Zurich, Zurich, Switzerland.,Division of Genetics and Molecular Medicine, King's College, London, UK
| |
Collapse
|
49
|
Kranjec C, Holleywood C, Libert D, Griffin H, Mahmood R, Isaacson E, Doorbar J. Modulation of basal cell fate during productive and transforming HPV-16 infection is mediated by progressive E6-driven depletion of Notch. J Pathol 2017; 242:448-462. [PMID: 28497579 PMCID: PMC5601300 DOI: 10.1002/path.4917] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 04/13/2017] [Accepted: 04/24/2017] [Indexed: 11/10/2022]
Abstract
In stratified epithelia such as the epidermis, homeostasis is maintained by the proliferation of cells in the lower epithelial layers and the concomitant loss of differentiated cells from the epithelial surface. These differentiating keratinocytes progressively stratify and form a self‐regenerating multi‐layered barrier that protects the underlying dermis. In such tissue, the continual loss and replacement of differentiated cells also limits the accumulation of oncogenic mutations within the tissue. Inactivating mutations in key driver genes, such as TP53 and NOTCH1, reduce the proportion of differentiating cells allowing for the long‐term persistence of expanding mutant clones in the tissue. Here we show that through the expression of E6, HPV‐16 prevents the early fate commitment of human keratinocytes towards differentiation and confers a strong growth advantage to human keratinocytes. When E6 is expressed either alone or with E7, it promotes keratinocyte proliferation at high cell densities, through the combined inactivation of p53 and Notch1. In organotypic raft culture, the activity of E6 is restricted to the basal layer of the epithelium and is enhanced during the progression from productive to abortive or transforming HPV‐16 infection. Consistent with this, the expression of p53 and cleaved Notch1 becomes progressively more disrupted, and is associated with increased basal cell density and reduced commitment to differentiation. The expression of cleaved Notch1 is similarly disrupted also in HPV‐16‐positive cervical lesions, depending on neoplastic grade. When taken together, these data depict an important role of high‐risk E6 in promoting the persistence of infected keratinocytes in the basal and parabasal layers through the inactivation of gene products that are commonly mutated in non‐HPV‐associated neoplastic squamous epithelia. © 2017 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Christian Kranjec
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, UK.,The Francis Crick Institute Mill Hill Laboratory, The Ridgeway, Mill Hill, London, UK
| | - Christina Holleywood
- The Francis Crick Institute Mill Hill Laboratory, The Ridgeway, Mill Hill, London, UK
| | - Diane Libert
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, UK
| | - Heather Griffin
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, UK.,The Francis Crick Institute Mill Hill Laboratory, The Ridgeway, Mill Hill, London, UK
| | - Radma Mahmood
- The Francis Crick Institute Mill Hill Laboratory, The Ridgeway, Mill Hill, London, UK
| | - Erin Isaacson
- The Francis Crick Institute Mill Hill Laboratory, The Ridgeway, Mill Hill, London, UK
| | - John Doorbar
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, UK.,The Francis Crick Institute Mill Hill Laboratory, The Ridgeway, Mill Hill, London, UK
| |
Collapse
|
50
|
Optimization of Storage Temperature for Retention of Undifferentiated Cell Character of Cultured Human Epidermal Cell Sheets. Sci Rep 2017; 7:8206. [PMID: 28811665 PMCID: PMC5557837 DOI: 10.1038/s41598-017-08586-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 07/17/2017] [Indexed: 11/11/2022] Open
Abstract
Cultured epidermal cell sheets (CES) containing undifferentiated cells are useful for treating skin burns and have potential for regenerative treatment of other types of epithelial injuries. The undifferentiated phenotype is therefore important for success in both applications. This study aimed to optimize a method for one-week storage of CES for their widespread distribution and use in regenerative medicine. The effect of storage temperatures 4 °C, 8 °C, 12 °C, 16 °C, and 24 °C on CES was evaluated. Analyses included assessment of viability, mitochondrial reactive oxygen species (ROS), membrane damage, mitochondrial DNA (mtDNA) integrity, morphology, phenotype and cytokine secretion into storage buffer. Lowest cell viability was seen at 4 °C. Compared to non-stored cells, ABCG2 expression increased between temperatures 8–16 °C. At 24 °C, reduced ABCG2 expression coincided with increased mitochondrial ROS, as well as increased differentiation, cell death and mtDNA damage. P63, C/EBPδ, CK10 and involucrin fluorescence combined with morphology observations supported retention of undifferentiated cell phenotype at 12 °C, transition to differentiation at 16 °C, and increased differentiation at 24 °C. Several cytokines relevant to healing were upregulated during storage. Importantly, cells stored at 12 °C showed similar viability and undifferentiated phenotype as the non-stored control suggesting that this temperature may be ideal for storage of CES.
Collapse
|