1
|
Gluhovschi C, Gadalean F, Velciov S, Nistor M, Petrica L. Three Diseases Mediated by Different Immunopathologic Mechanisms-ANCA-Associated Vasculitis, Anti-Glomerular Basement Membrane Disease, and Immune Complex-Mediated Glomerulonephritis-A Common Clinical and Histopathologic Picture: Rapidly Progressive Crescentic Glomerulonephritis. Biomedicines 2023; 11:2978. [PMID: 38001978 PMCID: PMC10669599 DOI: 10.3390/biomedicines11112978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 11/02/2023] [Accepted: 11/04/2023] [Indexed: 11/26/2023] Open
Abstract
Immune mechanisms play an important role in the pathogenesis of glomerulonephritis (GN), with autoimmunity being the main underlying pathogenetic process of both primary and secondary GN. We present three autoimmune diseases mediated by different autoimmune mechanisms: glomerulonephritis in vasculitis mediated by anti-neutrophil cytoplasmic antibodies (ANCAs), glomerulonephritis mediated by anti-glomerular basement membrane antibodies (anti-GBM antibodies), and immune complex-mediated glomerulonephritis. Some of these diseases represent a common clinical and histopathologic scenario, namely rapidly progressive crescentic glomerulonephritis. This is a severe illness requiring complex therapy, with the main role being played by therapy aimed at targeting immune mechanisms. In the absence of immune therapy, the crescents, the characteristic histopathologic lesions of this common presentation, progress toward fibrosis, which is accompanied by end-stage renal disease (ESRD). The fact that three diseases mediated by different immunopathologic mechanisms have a common clinical and histopathologic picture reveals the complexity of the relationship between immunopathologic mechanisms and their clinical expression. Whereas most glomerular diseases progress by a slow process of sclerosis and fibrosis, the glomerular diseases accompanied by glomerular crescent formation can progress, if untreated, in a couple of months into whole-nephron glomerulosclerosis and fibrosis. The outcome of different immune processes in a common clinical and histopathologic phenotype reveals the complexity of the relationship of the kidney with the immune system. The aim of this review is to present different immune processes that lead to a common clinical and histopathologic phenotype, such as rapidly progressive crescentic glomerulonephritis.
Collapse
Affiliation(s)
- Cristina Gluhovschi
- Division of Nephrology, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania; (F.G.); (L.P.)
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania;
| | - Florica Gadalean
- Division of Nephrology, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania; (F.G.); (L.P.)
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania;
- Division of Nephrology, County Emergency Hospital Timisoara, 300041 Timișoara, Romania
| | - Silvia Velciov
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania;
- Division of Nephrology, County Emergency Hospital Timisoara, 300041 Timișoara, Romania
| | - Mirabela Nistor
- Division of Nephrology, County Emergency Hospital Timisoara, 300041 Timișoara, Romania
| | - Ligia Petrica
- Division of Nephrology, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania; (F.G.); (L.P.)
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania;
- Division of Nephrology, County Emergency Hospital Timisoara, 300041 Timișoara, Romania
| |
Collapse
|
2
|
Abstract
Basement membrane components are targets of autoimmune attack in diverse diseases that destroy kidneys, lungs, skin, mucous membranes, joints, and other organs in man. Epitopes on collagen and laminin, in particular, are targeted by autoantibodies and T cells in anti-glomerular basement membrane glomerulonephritis, Goodpasture's disease, rheumatoid arthritis, post-lung transplant bronchiolitis obliterans syndrome, and multiple autoimmune dermatoses. This review examines major diseases linked to basement membrane autoreactivity, with a focus on investigations in patients and animal models that advance our understanding of disease pathogenesis. Autoimmunity to glomerular basement membrane type IV is discussed in depth as a prototypic organ-specific autoimmune disease yielding novel insights into the complexity of anti-basement membrane immunity and the roles of genetic and environmental susceptibility.
Collapse
|
3
|
Munni A. Production and Characterization of Recombinant Rat Non-Collagen Domain of <i>α</i>3 Chain of Type IV Collagen <i>α</i>3 (IV) NC1 Antigen. Cell 2016. [DOI: 10.4236/cellbio.2016.53003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
4
|
Jog NR, Caricchio R. The role of necrotic cell death in the pathogenesis of immune mediated nephropathies. Clin Immunol 2014; 153:243-53. [PMID: 24845790 DOI: 10.1016/j.clim.2014.05.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 04/30/2014] [Accepted: 05/03/2014] [Indexed: 02/08/2023]
Abstract
Necrosis, an inflammatory form of cell death, has been considered to be an accidental death and/or cell death due to injury. However, the literature in the last decade has established that necrosis is a regulated form of cell death, and that inhibition of specific molecular pathways leading to necrosis can block it and reduce inflammation. Since necrotic lesions are observed in several immune mediated human pathologies, in this review we will discuss the impact that this form of programmed cellular demise has in the pathology of immune mediated nephropathies.
Collapse
Affiliation(s)
- Neelakshi R Jog
- Rheumatology Section, Department of Medicine, Temple Autoimmunity Center, Temple University School of Medicine, Philadelphia, PA, USA
| | - Roberto Caricchio
- Rheumatology Section, Department of Medicine, Temple Autoimmunity Center, Temple University School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
5
|
Abstract
Goodpasture's disease, or anti-glomerular basement membrane (anti-GBM) disease, is a systemic autoimmune disorder defined by anti-GBM antibody-mediated damage (mainly immunoglobulin G-1) resulting in progressive crescentic glomerulonephritis and, frequently, diffuse pulmonary alveolar hemorrhage. It may be regarded as a "conformeropathy" where the quaternary structure of the α345NC1 hexamer that constitutes GBM undergoes a conformational change, exposing pathogenic epitopes on the α3 and α5 chains, eliciting a pathogenic autoantibody anti-GBM response. Goodpasture's disease accounts for 20% of all patients presenting with a pulmonary-renal syndrome and may be associated with detectable perinuclear antineutrophil cytoplasmic autoantibody positivity in up to a third of patients. Associated triggers may include tobacco smoking, hydrocarbon solvent exposure, and cocaine abuse. Cough, hemoptysis, and dyspnea with fatigue are the commonest presenting features. It is critical to rapidly distinguish Goodpasture's disease from other causes of pulmonary-renal syndromes such as Wegener's granulomatosis. Early and intensive treatment with plasmapheresis and immunosuppression with systemic corticosteroids pending results of diagnostic testing, and later cyclophosphamide, is often beneficial, with 90% of patients surviving the acute presentation of Goodpasture's disease. The need for hemodialysis on initial presentation, a serum creatinine >5 mg/dL, and 50% to 100% crescents on renal biopsy, portend the necessity of long-term hemodialysis. Further elucidation of the molecular pathobiology of Goodpasture's disease, particularly the regulation of involved antigen-specific T cells, may improve early diagnosis, treatment, and outcomes in this rare but potentially lethal autoimmune disorder.
Collapse
|
6
|
Reynolds J, Sando GS, Marsh OB, Salama AD, Evans DJ, Cook HT, Pusey CD. Stimulation of the PD-1/PDL-1 T-cell co-inhibitory pathway is effective in treatment of experimental autoimmune glomerulonephritis. Nephrol Dial Transplant 2011; 27:1343-50. [DOI: 10.1093/ndt/gfr529] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
7
|
Goodpasture's disease: molecular architecture of the autoantigen provides clues to etiology and pathogenesis. Curr Opin Nephrol Hypertens 2011; 20:290-6. [PMID: 21378566 DOI: 10.1097/mnh.0b013e328344ff20] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
PURPOSE OF REVIEW Goodpasture's disease is an autoimmune disorder characterized by the deposition of pathogenic autoantibodies in basement membranes of kidney and lung, which induces rapidly progressive glomerulonephritis and pulmonary hemorrhage. The target antigen is the α3NC1 domain of collagen IV, which is expressed in target organs as an α345 network. Recent studies of specificity and epitopes of Goodpasture's autoantibodies and discovery of novel posttranslational modification of the antigen, a sulfilimine bond, provide further insight into mechanisms of initiation and progression of Goodpasture's disease. RECENT FINDINGS Analysis of the specificity of Goodpasture's autoantibodies revealed a distinct subset of circulating and kidney-bound antiα5NC1 antibody, which is associated with loss of kidney function. Structural integrity of the α345NC1 hexamer is stabilized by the novel sulfilimine crosslinks conferring immune privilege to the Goodpasture's autoantigen. Native antibodies may contribute to establishment of immune tolerance to autoantigen. Structural analysis of epitopes for autoantibodies and alloantibodies indicates a critical role of conformational change in the α345NC1 hexamer in eliciting an autoimmune response in Goodpasture's disease. SUMMARY Understanding of the quaternary structure of the Goodpasture's autoantigen continues to provide insights into autoimmune mechanisms that serve as a basis for development of novel diagnostic tools and therapies for Goodpasture's disease.
Collapse
|
8
|
Chafin C, Muse S, Hontecillas R, Bassaganya-Riera J, Caudell DL, Shimp SK, Rylander MN, Zhang J, Li L, Reilly CM. Deletion of PPAR-γ in immune cells enhances susceptibility to antiglomerular basement membrane disease. J Inflamm Res 2010; 3:127-34. [PMID: 22096362 PMCID: PMC3218741 DOI: 10.2147/jir.s13394] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Activation of the nuclear hormone receptor peroxisome proliferator-activated receptor gamma (PPAR-γ) has been shown to be immunoregulatory in autoimmune diseases by inhibiting production of a number of inflammatory mediators. We investigated whether PPAR-γ gene deletion in hematopoietic cells would alter disease pathogenesis in the antiglomerular basement membrane (anti-GBM) mouse model. PPAR-γ+/+ and PPAR-γ−/− mice were immunized with rabbit antimouse GBM antibodies and lipopolysaccharide and evaluated for two weeks. Although both the PPAR-γ+/+ and PPAR-γ−/− mice had IgG deposition in the glomerulus and showed proteinuria two weeks after injection, glomerular and tubulointerstitial disease in PPAR-γ−/− mice were significantly more severe compared with the PPAR-γ+/+ animals. We observed that the PPAR-γ−/− mice had decreased CD4+CD25+ regulatory T cells and an increased CD8+:CD4+ ratio as compared with the PPAR-γ+/+ mice, suggesting that PPAR-γ has a role in the regulation of T cells. Furthermore, plasma interleukin-6 levels were significantly increased in the PPAR-γ−/− mice at two weeks as compared with the PPAR-γ+/+ animals. Taken together, these studies show that the lack of PPAR-γ expression enhances inflammatory renal disease in the anti-GBM antibody-induced glomerulonephritis mouse model and suggests targeting PPAR-γ may have therapeutic efficacy.
Collapse
Affiliation(s)
- Cristen Chafin
- Department of Biomedical Sciences and Pathobiology, Virginia- Maryland Regional College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Pedchenko V, Bondar O, Fogo AB, Vanacore R, Voziyan P, Kitching AR, Wieslander J, Kashtan C, Borza DB, Neilson EG, Wilson CB, Hudson BG. Molecular architecture of the Goodpasture autoantigen in anti-GBM nephritis. N Engl J Med 2010; 363:343-54. [PMID: 20660402 PMCID: PMC4144421 DOI: 10.1056/nejmoa0910500] [Citation(s) in RCA: 227] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND In Goodpasture's disease, circulating autoantibodies bind to the noncollagenous-1 (NC1) domain of type IV collagen in the glomerular basement membrane (GBM). The specificity and molecular architecture of epitopes of tissue-bound autoantibodies are unknown. Alport's post-transplantation nephritis, which is mediated by alloantibodies against the GBM, occurs after kidney transplantation in some patients with Alport's syndrome. We compared the conformations of the antibody epitopes in Goodpasture's disease and Alport's post-transplantation nephritis with the intention of finding clues to the pathogenesis of anti-GBM glomerulonephritis. METHODS We used an enzyme-linked immunosorbent assay to determine the specificity of circulating autoantibodies and kidney-bound antibodies to NC1 domains. Circulating antibodies were analyzed in 57 patients with Goodpasture's disease, and kidney-bound antibodies were analyzed in 14 patients with Goodpasture's disease and 2 patients with Alport's post-transplantation nephritis. The molecular architecture of key epitope regions was deduced with the use of chimeric molecules and a three-dimensional model of the alpha345NC1 hexamer. RESULTS In patients with Goodpasture's disease, both autoantibodies to the alpha3NC1 monomer and antibodies to the alpha5NC1 monomer (and fewer to the alpha4NC1 monomer) were bound in the kidneys and lungs, indicating roles for the alpha3NC1 and alpha5NC1 monomers as autoantigens. High antibody titers at diagnosis of anti-GBM disease were associated with ultimate loss of renal function. The antibodies bound to distinct epitopes encompassing region E(A) in the alpha5NC1 monomer and regions E(A) and E(B) in the alpha3NC1 monomer, but they did not bind to the native cross-linked alpha345NC1 hexamer. In contrast, in patients with Alport's post-transplantation nephritis, alloantibodies bound to the E(A) region of the alpha5NC1 subunit in the intact hexamer, and binding decreased on dissociation. CONCLUSIONS The development of Goodpasture's disease may be considered an autoimmune "conformeropathy" that involves perturbation of the quaternary structure of the alpha345NC1 hexamer, inducing a pathogenic conformational change in the alpha3NC1 and alpha5NC1 subunits, which in turn elicits an autoimmune response. (Funded by the National Institute of Diabetes and Digestive and Kidney Diseases.)
Collapse
Affiliation(s)
- Vadim Pedchenko
- Center for Matrix Biology, Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Aoyagi D, Nakazawa K, Kaneyama T, Masumoto J, Otani M, Shigematsu H. Granulomatous transformation of capillary lesions in pulmonary-renal syndrome autologously induced anti-glomerular basement membrane disease in Wistar-Kyoto rats. Clin Exp Nephrol 2010; 14:123-31. [PMID: 20058160 DOI: 10.1007/s10157-009-0260-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2009] [Accepted: 12/11/2009] [Indexed: 10/20/2022]
Abstract
BACKGROUND Pulmonary-renal syndrome is characterized by pulmonary hemorrhage and rapidly progressive glomerulonephritis in various immunological states. Histopathological analysis of pulmonary-renal syndrome is not yet complete. METHODS Wistar-Kyoto (WKY) rats were sensitized using the noncollagenous (NC1) domain of type IV collagen from bovine kidney as an antigen. Histopathology of the kidneys and lungs was investigated with light microscopy, immunohistochemistry and electromicroscopy. Expression levels of cytokine mRNA were determined by real-time RT-PCR using renal tissue of rats. RESULTS Macrophage-rich granulomatous glomerulonephritis and alveolar capillaritis accompanied with pulmonary hemorrhage were induced by the sensitization. The humoral antibody against NC1 was detected on the glomerular and alveolar capillary walls. Th2 cytokine IL-10 was dominant over Th1 cytokine IFN-gamma in renal tissues of WKY rats. CONCLUSION The granulomatous transformation seemed to be induced by macrophage conspicuous capillaritis under dominant cellular immune reactions in WKY rats. In addition to Th1 cytokines, Th2 cytokines may also participate in the formation of granulomatous lesions.
Collapse
Affiliation(s)
- Daiju Aoyagi
- Department of Pathology, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
| | | | | | | | | | | |
Collapse
|
11
|
NISHIBAYASHI S, HATTORI K, HIRANO T, UEHARA K, NAKANO Y, AIHARA M, YAMADA Y, MURAGUCHI M, IWATA F, TAKIGUCHI Y. Functional and Structural Changes in End-Stage Kidney Disease due to Glomerulonephritis Induced by the Recombinant .ALPHA.3(IV)NC1 Domain. Exp Anim 2010; 59:157-70. [DOI: 10.1538/expanim.59.157] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Affiliation(s)
- Seiji NISHIBAYASHI
- Quests Research Institute, Otsuka Pharmaceutical Co., Ltd
- Department of Clinical pharmacology, Institute of Health Bioscience, The University of Tokushima Graduate School
| | - Katsuji HATTORI
- First Institute of New Drug Discovery, Otsuka Pharmaceutical Co., Ltd
| | - Takahiro HIRANO
- First Institute of New Drug Discovery, Otsuka Pharmaceutical Co., Ltd
| | - Kenji UEHARA
- First Institute of New Drug Discovery, Otsuka Pharmaceutical Co., Ltd
| | - Yoshimasa NAKANO
- First Institute of New Drug Discovery, Otsuka Pharmaceutical Co., Ltd
| | - Miki AIHARA
- First Institute of New Drug Discovery, Otsuka Pharmaceutical Co., Ltd
| | - Yoshihisa YAMADA
- First Institute of New Drug Discovery, Otsuka Pharmaceutical Co., Ltd
| | | | - Fusako IWATA
- Institute of Biomedical Innovation, Otsuka Pharmaceutical Co., Ltd
| | - Yoshiharu TAKIGUCHI
- Department of Clinical pharmacology, Institute of Health Bioscience, The University of Tokushima Graduate School
| |
Collapse
|
12
|
Nakano Y, Hirano T, Uehara K, Nishibayashi S, Hattori K, Aihara M, Yamada Y. New rat model induced by anti-glomerular basement membrane antibody shows severe glomerular adhesion in early stage and quickly progresses to end-stage renal failure. Pathol Int 2008; 58:361-70. [DOI: 10.1111/j.1440-1827.2008.02237.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Vanacore RM, Ham AJL, Cartailler JP, Sundaramoorthy M, Todd P, Pedchenko V, Sado Y, Borza DB, Hudson BG. A role for collagen IV cross-links in conferring immune privilege to the Goodpasture autoantigen: structural basis for the crypticity of B cell epitopes. J Biol Chem 2008; 283:22737-48. [PMID: 18499662 DOI: 10.1074/jbc.m803451200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The detailed structural basis for the cryptic nature (crypticity) of a B cell epitope harbored by an autoantigen is unknown. Because the immune system may be ignorant of the existence of such "cryptic" epitopes, their exposure could be an important feature in autoimmunity. Here we investigated the structural basis for the crypticity of the epitopes of the Goodpasture autoantigen, the alpha3alpha4alpha5 noncollagenous-1 (NC1) hexamer, a globular domain that connects two triple-helical molecules of the alpha3alpha4alpha5 collagen IV network. The NC1 hexamer occurs in two isoforms as follows: the M-isoform composed of monomer subunits in which the epitopes are accessible to autoantibodies, and the D-isoform composed of both monomer and dimer subunits in which the epitopes are cryptic. The D-isoform was characterized with respect to quaternary structure, as revealed by mass spectrometry of dimer subunits, homology modeling, and molecular dynamics simulation. The results revealed that the D-isoform contains two kinds of cross-links as follows: S-hydroxylysyl-methionine and S-lysyl-methionine cross-links, which stabilize the alpha3alpha5-heterodimers and alpha4alpha4-homodimers, respectively. Construction and analysis of a three-dimensional model of the D-isoform of the alpha3alpha4alpha5 NC1 hexamer revealed that crypticity is a consequence of the following: (a) sequestration of key residues between neighboring subunits that are stabilized by domain-swapping interactions, and (b) by cross-linking of subunits at the trimer-trimer interface, which stabilizes the structural integrity of the NC1 hexamer and protects against binding of autoantibodies. The sequestrated epitopes and cross-linked subunits represent a novel structural mechanism for conferring immune privilege at the level of quaternary structure. Perturbation of the quaternary structure may be a key factor in the etiology of Goodpasture disease.
Collapse
Affiliation(s)
- Roberto M Vanacore
- Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Kawaguchi T, Yamashita Y, Kanamori M, Endersby R, Bankiewicz KS, Baker SJ, Bergers G, Pieper RO. The PTEN/Akt Pathway Dictates the Direct αVβ3-Dependent Growth-Inhibitory Action of an Active Fragment of Tumstatin in Glioma Cells In vitro and In vivo. Cancer Res 2006; 66:11331-40. [PMID: 17145879 DOI: 10.1158/0008-5472.can-06-1540] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The collagen type IV cleavage fragment tumstatin and its active subfragments bind to integrin alpha(V)beta(3) and inhibit activation of focal adhesion kinase, phophoinositol-3 kinase, Akt, and mammalian target of rapamycin (mTOR) in what is thought to be an endothelial cell-specific manner. The resultant endothelial cell apoptosis accounts for the ability of tumstatin to function as an endogenous inhibitor of angiogenesis and an indirect suppressor of tumor growth. We hypothesized that the inability of tumstatin to directly suppress tumor cell growth might be the result of the constitutive activation of the Akt/mTOR pathway commonly seen in tumors. Consistent with this idea, several integrin alpha(V)beta(3)-expressing glioma cell lines with PTEN mutations and high levels of phospho-Akt (pAkt) were unaffected by exposure to an active fragment of tumstatin (T3), whereas alpha(V)beta(3)-expressing glioma cell lines with a functional PTEN/low levels of pAkt exhibited T3-induced growth suppression that could be bypassed by small interfering RNA-mediated suppression of PTEN, introduction of a constitutively expressed Akt, or introduction of the Akt and mTOR target eukaryotic translation initiation factor 4E. The direct tumor-suppressive actions of T3 were further shown in an alpha(V)beta(3)-deficient in vivo mouse model in which T3, while unable to alter the tumstatin-insensitive vasculature contributed by the alpha(V)beta(3)-deficient host, nonetheless suppressed the growth and proliferative index of i.c. implanted alpha(V)beta(3)-expressing PTEN-proficient glioma cells. These results show that tumstatin, previously considered to be only an endogenous inhibitor of angiogenesis, also directly inhibits the growth of tumors in a manner dependent on Akt/mTOR activation.
Collapse
Affiliation(s)
- Tomohiro Kawaguchi
- Brain Tumor Research Center, Department of Neurological Surgery, The University of California-San Francisco Comprehensive Cancer Center, CA 94115-0875, USA
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Robertson J, Wu J, Arends J, Glass W, Southwood S, Sette A, Lou YH. Characterization of the T-cell epitope that causes anti-GBM glomerulonephritis. Kidney Int 2006; 68:1061-70. [PMID: 16105036 DOI: 10.1111/j.1523-1755.2005.00498.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND We have demonstrated that a single T-cell epitope pCol(28-40) (SQTTANPSCPEGT) alone, which is derived from NC1 domain of alpha3 chain of type IV collagen (Col4alpha3 NC1), can induce severe glomerulonephritis in Wistar Kyoto rats. This study further characterized this T-cell epitope. METHODS A series of synthetic peptides derived from pCol (28-40) were tested in vivo and in vitro for their T-cell epitope activity and nephritogenicity. Major histocompatability complex (MHC) class II molecules in Wistar Kyoto rats were cloned, and MHC restriction of pCol(28-40) was determined. RESULTS The T-cell epitope pCol(28-40) was restricted by rat MHC class II RT.1Bl. Ten amino acid residues (29 to 38) were mapped to be the minimum core of the T-cell epitope, which was capable of inducing the T-cell response and severe glomerulonephritis. Only three residues were identified as absolutely critical for the T-cell epitope: position 31 (T) was an anchor residue to the class II molecule, and positions 33 (N) and 34 (P) contributed to the specificity of the T-cell epitope. Thus, only substitution at those positions completely abrogated nephritogenicity of the T-cell epitope. Interestingly, pCol (28-40) also bound to human MHC class II human MHC class II molecule HLA-DRB*1501, which has been linked to human anti-glomerular basement membrane (GBM) disease, suggesting that human homologue of pCol(28-40) could be a potential human T-cell epitope. CONCLUSION Our study demonstrated that only few residues in the nephritogenic T-cell epitope pCol(28-40) were critical. Our finding also revealed that pCol(28-40) is a potential nephritogenic T-cell epitope in Goodpasture's syndrome.
Collapse
Affiliation(s)
- Julie Robertson
- Department of Diagnostic Sciences, Dental Branch, University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Reynolds J, Prodromidi EI, Juggapah JK, Abbott DS, Holthaus KA, Kalluri R, Pusey CD. Nasal Administration of Recombinant Rat α3(IV)NC1 Prevents the Development of Experimental Autoimmune Glomerulonephritis in the WKY Rat. J Am Soc Nephrol 2005; 16:1350-9. [PMID: 15814836 DOI: 10.1681/asn.2004121026] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Experimental autoimmune glomerulonephritis (EAG), an animal model of Goodpasture's disease, can be induced in Wistar Kyoto (WKY) rats by immunization with either collagenase-solubilized rat glomerular basement membrane (GBM) or the recombinant NC1 domain of the alpha3 chain of type IV collagen [alpha3(IV)NC1]. EAG is characterized by circulating and deposited anti-glomerular basement membrane antibodies, focal necrotizing glomerulonephritis with crescent formation, and glomerular infiltration by T cells and macrophages. Previous studies have demonstrated that oral administration of collagenase-solubilized GBM to WKY rats prevented the development of EAG. Nasal administration of specific autoantigens has been reported to be more effective than oral administration in other models of autoimmune disease. The main aim of this study was to investigate further the concept of mucosal tolerance in EAG by examining the effect of nasal administration of recombinant rat alpha3(IV)NC1. Groups of WKY rats with EAG, induced by immunization with recombinant rat alpha3(IV)NC1, were given alpha3(IV)NC1 nasally on 3 consecutive days before immunization, at total cumulative doses of 25, 100, or 250 microg per rat. A dose-dependent effect was observed on the development of EAG. A dose of 25 microg had no effect on disease; 100 microg resulted in a moderate reduction in the severity of nephritis; and 250 microg led to a marked reduction in circulating and deposited antibodies, albuminuria, severity of glomerular abnormalities, and numbers of glomerular CD8+ T cells and macrophages. In addition, there was a reduction in the proliferative response of splenocytes from rats in the high dose group (250 microg) to alpha3(IV)NC1 in vitro. The results from this study clearly demonstrate for the first time that mucosal tolerance in EAG can be induced by nasal administration of recombinant rat alpha3(IV)NC1 and that this approach is effective in the prevention of crescentic glomerulonephritis. Further work using new antigen-specific treatment strategies may provide a novel approach to the treatment of patients with anti-glomerular basement membrane disease.
Collapse
Affiliation(s)
- John Reynolds
- Renal Section, Division of Medicine, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 ONN, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
17
|
Walters G, Habib AM, Reynolds J, Wu H, Knight JF, Pusey CD. Glomerular T Cells Are of Restricted Clonality and Express Multiple CDR3 Motifs across Different Vβ T-Cell Receptor Families in Experimental Autoimmune Glomerulonephritis. ACTA ACUST UNITED AC 2004; 98:e71-81. [PMID: 15528947 DOI: 10.1159/000080682] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2003] [Accepted: 05/11/2004] [Indexed: 11/19/2022]
Abstract
Experimental autoimmune glomerulonephritis (EAG) is an animal model of Goodpasture's disease which can be induced in Wistar-Kyoto (WKY) rats by a single intramuscular injection of collagenase-digested rat glomerular basement membrane (GBM) in adjuvant. This model is characterised by anti-GBM antibody production, accompanied by focal necrotising glomerulonephritis with crescent formation and glomerular infiltration by T cells and macrophages. Previous work has shown that EAG is a T-cell-dependent disease. We proposed that intraglomerular T cells might be directly involved in pathogenesis and would be oligoclonal. In this study, EAG was induced by standard methods, the kidneys perfused with saline at week 2 and week 4, and the glomeruli separated by a sieving method. Glomerular RNA was extracted and reverse transcribed. RT-PCR showed overexpression of an average of two Vbeta families in each kidney analysed. However, no predominant single Vbeta family was overexpressed in any of the experimental animals. CDR3 spectratyping of Fam-labelled PCR products showed a marked restriction involving different Vbeta families. Sequencing demonstrated multiple CDR3 motifs, each expressed in association with different Vbeta gene segments. Our results show that glomerular T cells are of restricted clonality and suggest a role for antigen-specific effector T cells in the pathogenesis of EAG.
Collapse
Affiliation(s)
- Giles Walters
- Centre for Kidney Research, The Children's Hospital, Westmead, Australia
| | | | | | | | | | | |
Collapse
|
18
|
Borza DB, Neilson EG, Hudson BG. Pathogenesis of Goodpasture syndrome: a molecular perspective. Semin Nephrol 2004; 23:522-31. [PMID: 14631560 DOI: 10.1053/s0270-9295(03)00131-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Goodpasture (GP) syndrome is a form of anti-glomerular basement membrane (GBM) disease, in which autoantibodies bind to alpha3(IV) collagen in GBM causing rapidly progressive glomerulonephritis and pulmonary hemorrhage. The conformational GP epitopes have been mapped to 2 regions within the noncollagenous (NC1) domain of the alpha3(IV) chain. Recently, we described the molecular organization of the autoantigen in the native alpha3alpha4alpha5(IV) collagen network of the GBM. The crystal structure of the NC1 domain has revealed how the GP epitopes are sequestered in the native GBM. Further insight into the pathogenesis of disease has been obtained from better animal models. These advances provide a foundation for the development of new specific therapies.
Collapse
Affiliation(s)
- Dorin-Bogdan Borza
- Deparment of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232-2372, USA.
| | | | | |
Collapse
|
19
|
Wu J, Arends J, Borillo J, Zhou C, Merszei J, McMahon J, Lou YH. A Self T Cell Epitope Induces Autoantibody Response: Mechanism for Production of Antibodies to Diverse Glomerular Basement Membrane Antigens. THE JOURNAL OF IMMUNOLOGY 2004; 172:4567-74. [PMID: 15034074 DOI: 10.4049/jimmunol.172.7.4567] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The anti-glomerular basement membrane (GBM) Ab has been regarded as a prototypical example of pathogenic autoantibodies. However, the mechanism for elicitation of this Ab remains unknown. In the present paper, we report that the Ab to diverse GBM Ags was induced by a single nephritogenic T cell epitope in a rat model. The T cell epitope pCol(28-40) of noncollagen domain 1 of collagen type IV alpha3 chain not only uniformly induced severe glomerulonephritis but also elicited anti-GBM Ab in 76% of the immunized rats after prominent glomerular injury. Furthermore, we demonstrated that the anti-GBM Ab was not related to the peptidic B cell epitope nested in pCol(28-40); that is, 1) elimination of the B cell epitope, either by substitution of the critical residues of the B cell epitope or by truncation, failed to abrogate anti-GBM Ab production, and 2) the anti-GBM Ab, eluted from the diseased kidneys, reacted only with native GBM, but not with pCol(28-40). Confocal microscopy and immunoprecipitation further demonstrated that the eluted anti-GBM Ab recognized conformational B cell epitope(s) of multiple native GBM proteins. We conclude that autoantibody response to diverse native GBM Ags was induced by a single nephritogenic T cell epitope. Thus, anti-GBM Ab may actually be a consequence of T cell-mediated glomerulonephritis.
Collapse
Affiliation(s)
- Jean Wu
- Department of Diagnostic Sciences, Dental Branch, Medical School, University of Texas Health Science Center at Houston, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Chen L, Hellmark T, Wieslander J, Bolton WK. Immunodominant epitopes of α3(IV)NC1 induce autoimmune glomerulonephritis in rats. Kidney Int 2003; 64:2108-20. [PMID: 14633133 DOI: 10.1046/j.1523-1755.2003.00332.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND The major Goodpasture antibody binding epitopes have been localized to the amino-terminal third of the noncollagenous domain (NC1) of the alpha3 chain of type IV collagen [alpha3(IV)NC1]. The present study determined whether the same epitopes induce glomerulonephritis in rats. METHODS We immunized Wistar Kyoto (WKY) rats with human alpha3(IV)/alpha1(IV)NC1 chimeric proteins or full-length recombinant alpha3(IV)NC1 (alpha3732). Chimeric protein constructs were thirds of alpha3(IV)NC1 (CP333) replaced by corresponding sequences of homologous nonreactive alpha1(IV)NC1 (CP111). All chimeric proteins contained 30 amino acids of type X collagen at the amino terminus except alpha3732. Two other constructs, T195 EA (EA) and T194 EB (EB), were entirely alpha1(IV)NC1, except for antibody-immunodominant amino acids from the first and second thirds of alpha3(IV)NC1. RESULTS Construct immunized animals developed specific antibody responses to recombinant proteins and native human, bovine and rat NC1. CP311 immunized rats, as well as alpha3732 rats, had glomerular IgG, fibrin, and glomerulonephritis with proteinuria by 3 weeks. CP331 produced more severe disease, comparable to positive controls. CP111 produced no disease. EA, but not EB, induced severe glomerulonephritis. Half-dose each of EA plus EB induced disease identical to full-dose EA alone. CONCLUSION The amino third of alpha3(IV)NC1 which contains the major epitope for Goodpasture antibody binding, also induces glomerulonephritis in rats. The middle third of alpha3(IV)NC1 does not induce glomerulonephritis but appears to enhance disease with the amino terminal third. Finally, the presence of the collagen X leader sequence appears to convey greater nephritogenicity. These studies suggest that not only the nephritogenic epitope itself, but flanking sequences and the conformational context of the nephritogenic epitope may influence its ability to cause glomerulonephritis.
Collapse
Affiliation(s)
- Lanlin Chen
- Department of Medicine, University of Virginia Health Sciences Center, Charlottesville, Virginia 22908-0133, USA
| | | | | | | |
Collapse
|
21
|
Wu J, Borillo J, Glass WF, Hicks J, Ou CN, Lou YH. T-cell epitope of alpha3 chain of type IV collagen induces severe glomerulonephritis. Kidney Int 2003; 64:1292-301. [PMID: 12969147 DOI: 10.1046/j.1523-1755.2003.00227.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Anti-glomerular basement membrane (GBM) glomerulonephritis is among the earliest recognized human autoimmune diseases. However, the etiology of anti-GBM glomerulonephritis remains unclear. We have previously shown that CD4+ T cells, specific to alpha3 NC1 of type IV collagen (Col4alpha3NC1), were able to induce anti-GBM glomerulonephritis in Wistar-Kyoto (WKY) rats. In the present study, we continued to map the nephritogenic T cell epitope in Col4alpha3NC1. METHODS Synthetic peptides, which covered Col4alpha3NC1, were used as immunogens to induce glomerulonephritis in WKY rats. T-cell and B-cell responses to the peptides in the animals were analyzed. RESULTS One potent nephritogenic T-cell epitope, pCol(28-40) (SQTTANPSCPEGT), was identified. A single immunization with pCol(28-40) induced extremely severe glomerulonephritis in all 23 rats. Renal pathology revealed nearly 100% of glomeruli with crescentic lesions or tuft necrosis in 21 animals. pCol(28-40) elicited a T-cell response to the peptide; T cells isolated from rats immunized with recombinant Col4alpha3NC1 reacted with pCol(28-40). pCol(28-40) elicited a peptide specific antibody response, which did not react with polypeptide Col4alpha3NC1 or native GBM. An 11-mer peptide, pCol(a30-40) (Ac-TTANPSCPEGT), was further mapped to be the core of the T-cell epitope in pCol(28-40). As expected, immunization with pCol(a30-40) induced severe glomerulonephritis in 10 out of 19 rats. CONCLUSION Our study not only demonstrated that a single T-cell epitope of Col4alpha3NC1 is sufficient to induce severe glomerulonephritis, but also provides a unique model for studying T-cell-mediated mechanisms in anti-GBM glomerulonephritis pathogenesis.
Collapse
Affiliation(s)
- Jean Wu
- Department of Basic Science, Dental Branch, University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | | | | | | | | | | |
Collapse
|
22
|
McDonald GA, Sarkar P, Rennke H, Unemori E, Kalluri R, Sukhatme VP. Relaxin increases ubiquitin-dependent degradation of fibronectin in vitro and ameliorates renal fibrosis in vivo. Am J Physiol Renal Physiol 2003; 285:F59-67. [PMID: 12820641 DOI: 10.1152/ajprenal.00157.2002] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Fibronectin, a large adhesive glycoprotein, is a prominent constituent of the extracellular matrix. Abnormalities in fibronectin homeostasis occur in numerous disease states, ranging from primary fibrosing conditions to neoplastic transformation. We demonstrate that fibronectin is a target protein substrate for ubiquitin-dependent degradation. Coimmunoprecipitation experiments and confocal microscopy demonstrated ubiquitin-fibronectin interaction. In an in vitro model of renal fibrosis, relaxin, an insulin-like growth factor, increased ubiquitin-dependent fibronectin degradation. Relaxin also was evaluated in an anti-glomerular basement membrane model of renal fibrosis. Animals treated with relaxin experienced renoprotection, manifested by decreased serum creatinine and proteinuria. Histological evaluation of kidney sections from animals treated with relaxin showed decreased glomerulosclerosis and interstitial fibrosis. We conclude that relaxin might be developed as a useful agent for the treatment of renal fibrosis.
Collapse
Affiliation(s)
- Glenn A McDonald
- Division of Renal Diseases and Hypertension, The University of Texas Medical School at Houston, Houston, Texas 77030, USA.
| | | | | | | | | | | |
Collapse
|
23
|
Hopfer H, Maron R, Butzmann U, Helmchen U, Weiner HL, Kalluri R. The importance of cell-mediated immunity in the course and severity of autoimmune anti-glomerular basement membrane disease in mice. FASEB J 2003; 17:860-8. [PMID: 12724345 DOI: 10.1096/fj.02-0746com] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Anti-glomerular basement membrane (GBM) disease is a rapidly progressive glomerulonephritis (GN) resulting from autoimmunity against the Goodpasture antigen alpha3(IV)NC1. In addition to the well-characterized antibody contribution, a T helper 1 (Th1) response has been suspected as the culprit for glomerular injury. We induced anti-GBM disease in DBA/1, C57BL/6, AKR, and NOD mice with recombinant human alpha3(IV)NC1 to investigate the involvement of humoral and cellular autoimmunity. DBA/1 mice had crescentic GN 11 wk postimmunization with alpha3(IV)NC1. C57BL/6 and AKR mice developed a chronic disease course resulting in comparable kidney injury to DBA/1 mice within 6 months. NOD revealed only minor glomerular changes. The rapid course and the severity of the disease in DBA/1 mice can be explained by our immunological findings in their sera and splenocytes: 1) high antibody titers specific for the putative clinically relevant epitope of alpha3(IV)NC1 with Th1-type isotypes, and 2) a strong proliferative response and high amounts of the inflammatory cytokine IFN-gamma, secreted by splenocytes stimulated in vitro with alpha3(IV)NC1, with only low amounts of the anti-inflammatory cytokine IL-10. Our in vivo and in vitro results provide direct evidence that the balance between Th1 and Th2 responses associates with the outcome of anti-GBM disease in mice.
Collapse
Affiliation(s)
- Helmut Hopfer
- Program in Matrix Biology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Ave., Dana 514, Boston Massachusetts 02215, USA
| | | | | | | | | | | |
Collapse
|
24
|
Reynolds J, Moss J, Duda MA, Smith J, Karkar AM, Macherla V, Shore I, Evans DJ, Woodrow DF, Pusey CD. The evolution of crescentic nephritis and alveolar haemorrhage following induction of autoimmunity to glomerular basement membrane in an experimental model of Goodpasture's disease. J Pathol 2003; 200:118-29. [PMID: 12692850 DOI: 10.1002/path.1336] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Goodpasture's, or anti-glomerular basement membrane (GBM), disease presents with rapidly progressive glomerulonephritis and lung haemorrhage, and is caused by autoimmunity to the NC1 domain of the alpha3 chain of type IV collagen (alpha3(IV)NC1). This study examines the development of crescentic nephritis and alveolar haemorrhage in a model of Goodpasture's disease, experimental autoimmune glomerulonephritis (EAG), induced in WKY rats by immunization with rat GBM in adjuvant. An increase in circulating anti-GBM antibodies and albuminuria was observed by week 2, which increased further by weeks 3 and 4, while a decrease in creatinine clearance was observed by week 2, which decreased further by weeks 3 and 4. The kidneys of animals with EAG showed linear deposits of IgG on the GBM and a transient glomerular infiltration by CD4+ T cells at week 2. By week 3 there were large deposits of fibrin in Bowman's space, and glomerular infiltration by CD8+ T cells and macrophages, accompanied by focal necrotizing glomerulonephritis with crescent formation. Ultrastructural studies showed glomerular endothelial cell swelling and epithelial cell foot process effacement at week 2. As the lesion progressed, capillary loops became occluded and the mesangium became expanded by mononuclear cells. By week 3 there was detachment of the endothelium from the GBM, and accumulation of fibrin beneath the disrupted endothelial cells and in Bowman's space. Occasional breaks were observed in the continuity of the basement membrane, and cytoplasmic projections from infiltrating mononuclear cells could be seen crossing the capillary wall between the lumen and the crescent. The lungs of animals with EAG showed patchy binding of IgG to the alveolar basement membrane (ABM) at week 2, and infiltration of the interstitium by CD8+ T cells and macrophages by weeks 3 and 4, accompanied by both interstitial and alveolar haemorrhage. Ultrastructural studies showed focal mononuclear cell infiltrates in alveolar walls at week 2. Occasional breaks were observed in the basement membrane and adjacent endothelium by weeks 3 and 4, together with accumulation of surfactant and erythrocytes within the alveolar spaces. This study defines for the first time the relationship between the immunological and pathological events during the evolution of EAG, and provides the basis for further work on the pathogenesis of Goodpasture's disease.
Collapse
Affiliation(s)
- John Reynolds
- Renal Section, Faculty of Medicine, Imperial College of Science, Technology and Medicine, Hammersmith Hospital, London, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Reynolds J, Cook PR, Ryan JJ, Norsworthy PJ, Glazier AM, Duda MA, Evans DJ, Aitman TJ, Pusey CD. Segregation of experimental autoimmune glomerulonephritis as a complex genetic trait and exclusion of Col4a3 as a candidate gene. EXPERIMENTAL NEPHROLOGY 2003; 10:402-7. [PMID: 12381925 DOI: 10.1159/000065297] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Experimental autoimmune glomerulonephritis (EAG), an animal model of Goodpasture's disease, can be induced in Wistar-Kyoto (WKY) rats (RT1-l) by immunization with rat glomerular basement membrane (GBM) in adjuvant. The model in this rat strain is characterized by anti-GBM antibody production accompanied by focal necrotizing glomerulonephritis with crescent formation. The main autoantigen in humans and rats has been identified as the non-collagenous domain of the alpha3 chain of type IV collagen (alpha3(IV)NC1). By contrast, Lewis (LEW) rats with the same MHC background (RT1-l), immunized with the same antigen, develop similar levels of circulating anti-GBM antibodies, but no histological evidence of nephritis. In order to investigate the genetic basis of susceptibility to EAG, we examined the response of both F1 (WKY x LEW) and backcross (BC1; WKY x F1) rats to immunization with rat GBM. F1 animals were completely resistant to the development of EAG, while BC1 animals showed a range of responses from severe crescentic glomerulonephritis to no histological evidence of disease. The results indicate that EAG is inherited as a complex trait under the control of WKY genes unlinked to the MHC. cDNA sequence analysis of alpha3(IV)NC1 in the two parental strains was identical, indicating no predicted amino acid sequence variation in the alpha3(IV)NC1 domain between these strains. Radiation hybrid mapping, using two separate PCR amplicons from rat alpha3(IV)NC1, localized rat Col4a3 to a region of chromosome 9. Since Col4a3 (encoding the autoantigen) is a candidate for susceptibility to EAG, we screened the region of rat chromosome 9 where Col4a3 is localized, using polymorphic microsatellite markers in segregating BC1 progeny. No significant linkage was detected. These results exclude Col4a3 as a recessive susceptibility gene for EAG in the BC1 progeny.
Collapse
Affiliation(s)
- John Reynolds
- Renal Section, Division of Medicine, MRC Clinical Sciences Centre and Imperial College Genetics and Genomics Research Institute, Imperial College, Hammersmith Hospital, London, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Stevens DB, Gold DP, Sercarz EE, Moudgil KD. The Wistar Kyoto (RT1(l)) rat is resistant to myelin basic protein-induced experimental autoimmune encephalomyelitis: comparison with the susceptible Lewis (RT1(l)) strain with regard to the MBP-directed CD4+ T cell repertoire and its regulation. J Neuroimmunol 2002; 126:25-36. [PMID: 12020954 DOI: 10.1016/s0165-5728(02)00045-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Here, we demonstrate that the Wistar Kyoto (WKY/NHsd) rat, which bears the same RT1(l) haplotype as the experimental autoimmune encephalomyelitis (EAE)-susceptible Lewis rat strain, is highly resistant to myelin basic protein (MBP)-induced EAE. No differences between Lewis and WKY strains were found in T cell proliferative specificity or the use of Vbeta8.2 T cell receptors in response to MBP. A Th2 cytokine bias correlated with WKY's EAE resistance. MBP challenge of WKY-into-Lewis adoptive transfer recipients produced a novel biepisodic EAE. The WKY strain should be useful in studies of many tissue-specific autoimmune diseases to which the Lewis rat is susceptible.
Collapse
Affiliation(s)
- David B Stevens
- Division of Immune Regulation, La Jolla Institute for Allergy and Immunology, San Diego, CA 92121, USA
| | | | | | | |
Collapse
|
27
|
Abstract
Anti-glomerular basement membrane disease is a form of autoimmune glomerulonephritis often accompanied by lung haemorrhage. It is characterized by circulating and deposited antibodies that bind basement membrane components in the glomerulus and lung alveolus. Since early descriptions of the deposition of immunoglobulin on the glomerular basement membrane, work has focused on the binding properties of the autoantibodies, and this has led to the identification of the autoantigen as the non-collagenous region of the alpha 3 chain of type IV collagen. Despite being thought of as a prototypic antibody mediated autoimmune disease, it is becoming apparent that both humoral and cellular immune mechanisms act in concert to initiate and perpetuate disease. Recent data have shed light on the molecular pathogenesis of anti-glomerular basement membrane disease and provided a more complete framework on which to build our understanding of autoimmune renal disease. This should lead to novel approaches to immunotherapy for patients with glomerulonephritis.
Collapse
Affiliation(s)
- Alan D Salama
- Renal Section, Faculty of Medicine, Imperial College of Science, Technology and Medicine, Hammersmith Hospital, London, UK.
| | | |
Collapse
|
28
|
Wu J, Hicks J, Borillo J, Glass WF, Lou YH. CD4(+) T cells specific to a glomerular basement membrane antigen mediate glomerulonephritis. J Clin Invest 2002; 109:517-24. [PMID: 11854324 PMCID: PMC150874 DOI: 10.1172/jci13876] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Ab-mediated mechanisms have been considered the major causes of glomerulonephritis (GN). However, recent studies suggest that T cells may be more important in mediating GN. To investigate the effects of antigen-specific CD4(+) T cells, we generated Th1 cell lines specific for this antigen from rats that had been immunized with a recombinant form of the glomerular basement membrane (GBM) antigen, Col4alpha3NC1. Upon the transfer of in vitro-activated T cell lines to pertussis toxin-primed, naive syngeneic rats, the recipients developed severe proteinuria/albuminuria, which plateaued after approximately 35 days. Although no IgG binding to GBM or C3 deposition could be detected by immunofluorescence, five out of eleven rats exhibited severe GN, as judged by the formation of characteristic crescent-shaped lesions in the glomeruli, whereas the others exhibited modest GN. Thus Col4alpha3NC1-specific T cells directly initiated glomerular injury in the recipients. One notable difference from GN induced by active immunization was a T cell infiltration in the renal interstitium, which affected some tubules. We therefore injected fluorescence-labeled Col4alpha3NC1-specific into naive rats, and we found that they were enriched 4.5-fold in the kidney cortex relative to nonspecific control T cells 24 hours later. Many of the T cells were located in the Bowman's space and had a flattened shape, suggesting that the primary target for the T cells was in or adjacent to the Bowman's capsule.
Collapse
Affiliation(s)
- Jean Wu
- Department of Basic Science, Dental Branch, University of Texas Houston Health Science Center, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
29
|
Reynolds J, Norgan VA, Bhambra U, Smith J, Cook HT, Pusey CD. Anti-CD8 monoclonal antibody therapy is effective in the prevention and treatment of experimental autoimmune glomerulonephritis. J Am Soc Nephrol 2002; 13:359-369. [PMID: 11805163 DOI: 10.1681/asn.v132359] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Experimental autoimmune glomerulonephritis (EAG), which is an animal model of Goodpasture's disease, can be induced in Wistar Kyoto rats by a single injection of rat glomerular basement membrane (GBM) in adjuvant. EAG is characterized by circulating and deposited anti-GBM antibodies, focal necrotizing glomerulonephritis with crescent formation, and glomerular infiltration by T cells and macrophages. Our hypothesis was that T cell-mediated immunity, in addition to humoral immunity, was necessary for the development of crescentic nephritis in this model. To investigate the role of CD8+ T cells in the pathogenesis of EAG, the in vivo effects of an anti-CD8 monoclonal antibody (OX8) were examined, with administration starting at the time of immunization (prevention) or 2 wk after immunization, when glomerular abnormalities were first detected (treatment). When administered intraperitoneally at 5 mg/kg, three times per week, from week 0 to week 4 (prevention), OX8 completely inhibited the development of albuminuria, deposits of fibrin in the glomeruli, glomerular and interstitial abnormalities, the influx of CD8+ T cells and macrophages, and glomerular expression of granzyme B and inducible nitric oxide synthase. Circulating anti-GBM antibody levels were not reduced, but there was a reduction in the intensity of antibody deposition on the GBM. When administered at the same dose from week 2 to week 4 (treatment), OX8 greatly reduced the severity of EAG; in particular, the formation of crescents was prevented. These studies demonstrate that anti-CD8 monoclonal antibody therapy is effective in both the prevention and treatment of EAG. They confirm the importance of T cell-mediated immunity in the pathogenesis of this model of Goodpasture's disease. Similar therapeutic approaches may be worth investigating in human crescentic glomerulonephritis.
Collapse
Affiliation(s)
- John Reynolds
- *Renal Section, Division of Medicine, and Department of Histopathology, Faculty of Medicine, Imperial College of Science, Technology and Medicine, Hammersmith Hospital, London, United Kingdom
| | - Vicki A Norgan
- *Renal Section, Division of Medicine, and Department of Histopathology, Faculty of Medicine, Imperial College of Science, Technology and Medicine, Hammersmith Hospital, London, United Kingdom
| | - Upinder Bhambra
- *Renal Section, Division of Medicine, and Department of Histopathology, Faculty of Medicine, Imperial College of Science, Technology and Medicine, Hammersmith Hospital, London, United Kingdom
| | - Jennifer Smith
- *Renal Section, Division of Medicine, and Department of Histopathology, Faculty of Medicine, Imperial College of Science, Technology and Medicine, Hammersmith Hospital, London, United Kingdom
| | - H Terence Cook
- *Renal Section, Division of Medicine, and Department of Histopathology, Faculty of Medicine, Imperial College of Science, Technology and Medicine, Hammersmith Hospital, London, United Kingdom
| | - Charles D Pusey
- *Renal Section, Division of Medicine, and Department of Histopathology, Faculty of Medicine, Imperial College of Science, Technology and Medicine, Hammersmith Hospital, London, United Kingdom
| |
Collapse
|
30
|
|
31
|
Wu J, Hicks J, Ou C, Singleton D, Borillo J, Lou YH. Glomerulonephritis induced by recombinant collagen IV alpha 3 chain noncollagen domain 1 is not associated with glomerular basement membrane antibody: a potential T cell-mediated mechanism. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:2388-95. [PMID: 11490029 DOI: 10.4049/jimmunol.167.4.2388] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Glomerulonephritis is believed to result commonly from Ab-mediated glomerular injury. However, Ab-associated mechanisms alone cannot explain many cases of human glomerulonephritis. We developed a rat model of human anti-glomerular basement membrane (GBM) disease to investigate T cell and Ab response, and their associations with the disease. A single immunization of highly denatured recombinant mouse collagen IV alpha3 chain noncollagen domain 1 (rCol4alpha3NC1) induced severe glomerulonephritis in 100% of Wistar Kyoto rats, 33% of which died of this disease around day 35 postimmunization. The renal pathology demonstrated widespread glomerular damage and a mononuclear cell infiltration within the interstitial tissue. T cells from immunized rats responded not only to rCol4alpha3NC1, but also to isolated rat GBM. Sera Abs to rCol4alpha3NC1 were detectable in 100% of the rats, but only 20% of the rats had low levels of Ab to isolated rat GBM by Western blot, and none by immunofluorescence. Furthermore, IgG/M binding to or C3 deposition on endogenous GBM in immunized rats were not detected in most of the experimental rats, and showed no statistical correlation with disease severity. Additionally, no electronic dense deposition in the glomeruli was detected in all rats. Those data revealed a disassociation between the disease and anti-GBM Ab. T cell-mediated mechanisms, which are currently under our investigation, may be responsible for the glomerular disease.
Collapse
Affiliation(s)
- J Wu
- Department of Basic Sciences, Dental Branch, University of Texas Houston Health Science Center, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
32
|
Ryan JJ, Reynolds J, Norgan VA, Pusey CD. Expression and characterization of recombinant rat alpha 3(IV)NC1 and its use in induction of experimental autoimmune glomerulonephritis. Nephrol Dial Transplant 2001; 16:253-61. [PMID: 11158397 DOI: 10.1093/ndt/16.2.253] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The autoantigen in Goodpasture's disease is known to be the non-collagenous domain of the alpha3 chain of type IV collagen, alpha 3(IV)NC1. There is mounting evidence that alpha 3(IV)NC1 is also a target of autoimmunity in experimental autoimmune glomerulonephritis (EAG). Sado et al. [Kidney Int 1998; 53, 664-671] have reported that recombinant human alpha 3(IV)NC1 and alpha4(IV)NC1 are nephritogenic in WKY rats. We have proposed that immunization with homologous antigen is more appropriate for detailed investigation of autoimmunity in EAG. METHODS To this end, we have cloned and sequenced rat alpha 3(IV)NC1 and expressed it in COS-7 cells. Recombinant rat alpha 3(IV)NC1, secreted into the COS-7 cell supernatant, was purified on an anti-M2 FLAG affinity column and characterized by western blotting. Recombinant antigen was then used to immunize WKY rats, in order to induce EAG. RESULTS The recombinant material was antigenic as judged by binding to sera from patients with Goodpasture's disease and a mAb to alpha 3(IV)NC1. Immunization of WKY rats (n=5), with recombinant rat alpha 3(IV)NC1 in FCA at a dose of 1 mg/kg resulted in circulating anti-GBM antibodies directed towards alpha 3(IV)NC1, linear deposits of IgG on the GBM, albuminuria, deposits of fibrin in the glomeruli, severe focal necrotizing glomerulonephritis with crescent formation, and glomerular influx of CD8+ T cells and macrophages. Western blot analysis demonstrated that sera from these rats bound strongly to recombinant rat alpha 3(IV)NC1, as well as to collagenase-solubilized human and rat GBM. The pattern of binding was indistinguishable from that of sera from patients with Goodpasture's disease. CONCLUSIONS This purified recombinant rat alpha 3(IV)NC1, which is both antigenic and nephritogenic, will be of value in analysing autoimmune responses in experimental anti-GBM disease.
Collapse
Affiliation(s)
- J J Ryan
- Renal Section, Division of Medicine, Imperial College School of Medicine, Hammersmith Hospital, London, UK
| | | | | | | |
Collapse
|
33
|
Reynolds J, Pusey CD. Oral administration of glomerular basement membrane prevents the development of experimental autoimmune glomerulonephritis in the WKY rat. J Am Soc Nephrol 2001; 12:61-70. [PMID: 11134251 DOI: 10.1681/asn.v12161] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Experimental autoimmune glomerulonephritis (EAG), an animal model of Goodpasture's disease, can be induced in Wistar Kyoto (WKY) rats by a single injection of collagenase-solubilized rat glomerular basement membrane (GBM) in adjuvant. EAG is characterized by circulating and deposited anti-GBM antibodies, accompanied by focal necrotizing glomerulonephritis with crescent formation. The inhibitory effect of orally administered antigens has been reported in various animal models of autoimmunity but not in EAG in the rat. The effects of feeding rat GBM by gavage, at total doses of 0.5, 2.5, or 5 mg, before immunization were examined. A dose-dependent effect was observed on the development of EAG. A dose of 0.5 mg of GBM had no effect on disease, 2.5 mg resulted in a moderate reduction in the severity of nephritis but no change in anti-GBM antibody production, and 5 mg resulted in a marked reduction in circulating and deposited anti-GBM antibodies, albuminuria, deposits of fibrin in the glomeruli, severity of glomerular abnormalities, and numbers of infiltrating T cells and macrophages. Animals that were fed 5 mg of GBM showed a significant reduction in IgG2a but not IgG1, anti-GBM antibody levels, suggesting downregulation of Th1 responses. There was also a dose-dependent reduction in the proliferative responses of splenic T cells from treated animals to GBM antigen in vitro. These results clearly demonstrate that mucosal tolerance can be induced by oral administration of GBM antigen and that this approach is effective in preventing EAG.
Collapse
Affiliation(s)
- John Reynolds
- Renal Section, Division of Medicine, Imperial College School of Medicine, Hammersmith Hospital, London, United Kingdom
| | - Charles D Pusey
- Renal Section, Division of Medicine, Imperial College School of Medicine, Hammersmith Hospital, London, United Kingdom
| |
Collapse
|
34
|
Abstract
The production of pathogenic autoantibodies in organ-specific autoimmune diseases is largely T cell dependent. For many of these diseases, the precise specificities and cytokine profiles of the T cells that respond to the corresponding autoantigens have now been identified. This knowledge has been exploited to treat some models of antibody-mediated autoimmunity using peptides corresponding to the dominant helper epitopes, giving impetus to the development of a similar approach in the equivalent human diseases.
Collapse
Affiliation(s)
- C J Elson
- Department of Pathology and Microbiology, School of Medical Sciences, University of Bristol, Bristol BS8 1TD, UK.
| | | |
Collapse
|
35
|
Nakamura A, Yuasa T, Ujike A, Ono M, Nukiwa T, Ravetch JV, Takai T. Fcgamma receptor IIB-deficient mice develop Goodpasture's syndrome upon immunization with type IV collagen: a novel murine model for autoimmune glomerular basement membrane disease. J Exp Med 2000; 191:899-906. [PMID: 10704470 PMCID: PMC2195851 DOI: 10.1084/jem.191.5.899] [Citation(s) in RCA: 171] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The combination of hemorrhagic pneumonitis and rapidly progressive glomerulonephritis is a characteristic feature of Goodpasture's syndrome (GPS), an autoimmune disease resulting from the interaction of pathogenic anti-collagen type IV (C-IV) antibodies with alveolar and glomerular basement membranes. Lack of a suitable animal model for this fatal disease has hampered both a basic understanding of its etiology and the development of therapeutic strategies. We now report a novel model for GPS using mice deficient in a central regulatory receptor for immunoglobulin (Ig)G antibody expression and function, the type IIB Fc receptor for IgG (FcgammaRIIB). Mutant mice immunized with bovine C-IV reproducibly develop massive pulmonary hemorrhage with neutrophil and macrophage infiltration and crescentic glomerulonephritis. The distinctive linear, ribbon-like deposition of IgG immune complex seen in GPS was observed along the glomerular and tubulointerstitial membranes of diseased animals. These results highlight the role of FcgammaRIIB in maintaining tolerance and suggest that it may play a role in the pathogenesis of human GPS.
Collapse
Affiliation(s)
- Akira Nakamura
- Department of Experimental Immunology, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
- Department of Respiratory Oncology and Molecular Medicine, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Corporation (JST), Tokyo 101-0062, Japan
| | - Takae Yuasa
- Department of Experimental Immunology, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Corporation (JST), Tokyo 101-0062, Japan
| | - Azusa Ujike
- Department of Experimental Immunology, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Corporation (JST), Tokyo 101-0062, Japan
| | - Masao Ono
- Department of Experimental Immunology, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Corporation (JST), Tokyo 101-0062, Japan
| | - Toshihiro Nukiwa
- Department of Respiratory Oncology and Molecular Medicine, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
| | - Jeffrey V. Ravetch
- Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York, New York 10021
| | - Toshiyuki Takai
- Department of Experimental Immunology, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Corporation (JST), Tokyo 101-0062, Japan
| |
Collapse
|
36
|
Okada H, Moriwaki K, Kalluri R, Imai H, Ban S, Takahama M, Suzuki H. Inhibition of monocyte chemoattractant protein-1 expression in tubular epithelium attenuates tubulointerstitial alteration in rat Goodpasture syndrome. Kidney Int 2000; 57:927-36. [PMID: 10720946 DOI: 10.1046/j.1523-1755.2000.00909.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND To examine the role of monocyte chemoattractant protein-1 (MCP-1) expressed by tubular epithelium in tubulointerstitial alterations in situ, the level of MCP-1 mRNA in tubular epithelium was lowered selectively in the rat model of Goodpasture syndrome (GPS). METHODS Intravenously administered antisense oligodeoxynucleotide (ODN) is taken up by renal tubular epithelium and has been found to block expression of target genes in rats. MCP-1 antisense ODN was injected into GPS rats every second day from days 27 to 35 after immunization (this represents the time when renal MCP-1 mRNA level was increased and interstitial mononuclear cell infiltration was aggravated). RESULTS In addition to a reduction in the level of tubular MCP-1 mRNA, antisense ODN treatment attenuated monocyte infiltration significantly and preserved renal function in GPS rats. However, ODN injection did not affect glomerular MCP-1 expression and glomerular histopathology, and there were no significant changes in the urinary protein excretion rate. CONCLUSION Our findings provide direct evidence that MCP-1, expressed by tubular epithelium, plays a pivotal role in mediating secondary tubulointerstitial alterations in the GPS model.
Collapse
Affiliation(s)
- H Okada
- Department of Nephrology, Saitama Medical College, Japan
| | | | | | | | | | | | | |
Collapse
|
37
|
Reynolds J, Tam FW, Chandraker A, Smith J, Karkar AM, Cross J, Peach R, Sayegh MH, Pusey CD. CD28-B7 blockade prevents the development of experimental autoimmune glomerulonephritis. J Clin Invest 2000; 105:643-51. [PMID: 10712436 PMCID: PMC289170 DOI: 10.1172/jci6710] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/1999] [Accepted: 01/25/2000] [Indexed: 12/12/2022] Open
Abstract
Experimental autoimmune glomerulonephritis (EAG), an animal model of Goodpasture's disease, can be induced in Wistar Kyoto (WKY) rats by a single injection of rat glomerular basement membrane (GBM) in adjuvant. EAG is characterized by circulating and deposited anti-GBM antibodies, accompanied by focal necrotizing glomerulonephritis with crescent formation. The role of T cells in the pathogenesis of EAG remains unclear. T-cell costimulation is provided by ligation of CD28 with either B7.1 (CD80) or B7.2 (CD86) on antigen-presenting cells, and can be inhibited by a soluble form of CTLA4 (CTLA4-Ig) that binds to both B7.1 and B7.2. We examined the effect of CD28-B7 blockade on the development of EAG using native CTLA4-Ig or mutant CTLA4-Ig (Y100F-Ig), which selectively blocks B7.1. Native CTLA4-Ig treatment ameliorated EAG by several measures, including the levels of circulating anti-GBM antibodies, albuminuria, the deposition of IgG and fibrin in the glomeruli, the severity of glomerular abnormalities, and the numbers of infiltrating T cells and macrophages. Y100F-Ig resulted in a similar reduction in the severity of nephritis, but produced no overall reduction in circulating anti-GBM antibodies, although there was a reduction in IgG2a antibodies. We concluded that CD28-B7 blockade reduced autoantibody production and cellular infiltration of glomeruli, and prevented target organ injury. Our results suggest a key role for B7. 1 in costimulation of Th1-like autoimmune responses in the rat, and show that glomerular injury in EAG is largely dependent on cell-mediated mechanisms.
Collapse
Affiliation(s)
- J Reynolds
- Division of Medicine, Imperial College School of Medicine, Hammersmith Hospital, London W12 ONN, United Kingdom.
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Tipping PG, Kitching AR, Cunningham MA, Holdsworth SR. Immunopathogenesis of crescentic glomerulonephritis. Curr Opin Nephrol Hypertens 1999; 8:281-6. [PMID: 10456257 DOI: 10.1097/00041552-199905000-00002] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Crescentic glomerulonephritis provides an important therapeutic challenge because of its rapidly progressive course and poor outcome. Studies in animal models have elucidated some of the pivotal pathogenetic mechanisms, and human studies increasingly support the clinical relevance of these animal data. Accumulating evidence suggests that crescentic glomerulonephritis results from a complex cell-mediated nephritogenic immune response. Interruption of a number of immune and inflammatory mediators can improve the outcome of this disease.
Collapse
Affiliation(s)
- P G Tipping
- Monash University, Department of Medicine, Monash Medical Centre, Clayton, Victoria, Australia.
| | | | | | | |
Collapse
|