1
|
Lee JO, Lee JM, Kim Y, Park AY, Yoon D, Kim SY, Heo J, Han S, Nam H, Shin HJ, Jeong K, Im M, Kim BJ. Effects of natural killer cell‑conditioned medium on UVB‑induced photoaging in human keratinocytes and a human reconstructed skin model. Mol Med Rep 2025; 31:123. [PMID: 40084708 PMCID: PMC11920773 DOI: 10.3892/mmr.2025.13488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 02/10/2025] [Indexed: 03/16/2025] Open
Abstract
Natural killer (NK) cells produce various cytokines, including interleukin (IL)‑1β, IL‑6, IL‑10, IL‑12, interferon γ, tumor necrosis factor α and transforming growth factor β, which are critical in modulating immune responses. NK cell‑conditioned medium (NK‑CdM), rich in cytokines, has potential applications in therapy and healing. The present study aimed to investigate the protective effect of NK‑CdM against ultraviolet B (UVB)‑mediated photoaging using in vitro and ex vivo models. In human keratinocyte cell line (HaCaT cells), NK‑CdM mitigated UVB‑induced cytotoxicity and suppressed the production of reactive oxygen species. NK‑CdM enhanced the mRNA expression levels of superoxide dismutase 1 (SOD1) and catalase (CAT) and inhibited the reduction in SOD1 and CAT expression levels caused by UVB irradiation. Furthermore, NK‑CdM inhibited the UVB‑mediated nuclear translocation of nuclear factor erythroid 2‑related factor 2. NK‑CdM also prevented UVB‑induced downregulation of filaggrin and involucrin and attenuated the UVB‑induced reduction in hyaluronan synthase (HAS)1, HAS2, HAS3, aquaporin‑3 and hyaluronan levels. Notably, NK‑CdM upregulated the expression of elongation of very long chain fatty acids (ELOVL) enzymes, including ELOVL1, ELOVL5 and ELOVL6, as well as ceramide synthases (CerS), specifically CerS2 and CerS3. Furthermore, NK‑CdM inhibited the UVB‑induced reduction in the levels of these proteins. Overall, these findings suggested that NK‑CdM has the potential to prevent UVB‑mediated photoaging and promote skin health.
Collapse
Affiliation(s)
- Jung Ok Lee
- Department of Dermatology, College of Medicine, Chung‑Ang University, Seoul 06974, Republic of Korea
| | - Jung Min Lee
- Department of Dermatology, College of Medicine, Chung‑Ang University, Seoul 06974, Republic of Korea
| | - Yujin Kim
- Department of Dermatology, College of Medicine, Chung‑Ang University, Seoul 06974, Republic of Korea
| | - A Yeon Park
- Department of Dermatology, College of Medicine, Chung‑Ang University, Seoul 06974, Republic of Korea
| | - Daewon Yoon
- Department of Dermatology, College of Medicine, Chung‑Ang University, Seoul 06974, Republic of Korea
| | - Su Young Kim
- Department of Dermatology, College of Medicine, Chung‑Ang University, Seoul 06974, Republic of Korea
| | - Jihye Heo
- Department of Dermatology, College of Medicine, Chung‑Ang University, Seoul 06974, Republic of Korea
| | - Seungryel Han
- GC Cell Co., Ltd., Yongin, Seoul 16924, Republic of Korea
| | - Hyungjin Nam
- GC Cell Co., Ltd., Yongin, Seoul 16924, Republic of Korea
| | - Hye Jin Shin
- GC Cell Co., Ltd., Yongin, Seoul 16924, Republic of Korea
| | - Kyeongsoo Jeong
- Green Cross Wellbeing Co., Ltd., Yongin, Seoul 16950, Republic of Korea
| | - Minju Im
- Green Cross Wellbeing Co., Ltd., Yongin, Seoul 16950, Republic of Korea
| | - Beom Joon Kim
- Department of Dermatology, College of Medicine, Chung‑Ang University, Seoul 06974, Republic of Korea
| |
Collapse
|
2
|
Engelmann C, Zhang IW, Clària J. Mechanisms of immunity in acutely decompensated cirrhosis and acute-on-chronic liver failure. Liver Int 2025; 45:e15644. [PMID: 37365995 PMCID: PMC11815630 DOI: 10.1111/liv.15644] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/26/2023] [Accepted: 05/31/2023] [Indexed: 06/28/2023]
Abstract
The identification of systemic inflammation (SI) as a central player in the orchestration of acute-on-chronic liver failure (ACLF) has opened new avenues for the understanding of the pathophysiological mechanisms underlying this disease condition. ACLF, which develops in patients with acute decompensation of cirrhosis, is characterized by single or multiple organ failure and high risk of short-term (28-day) mortality. Its poor outcome is closely associated with the severity of the systemic inflammatory response. In this review, we describe the key features of SI in patients with acutely decompensated cirrhosis and ACLF, including the presence of a high blood white cell count and increased levels of inflammatory mediators in systemic circulation. We also discuss the main triggers (i.e. pathogen- and damage-associated molecular patterns), the cell effectors (i.e. neutrophils, monocytes and lymphocytes), the humoral mediators (acute phase proteins, cytokines, chemokines, growth factors and bioactive lipid mediators) and the factors that influence the systemic inflammatory response that drive organ failure and mortality in ACLF. The role of immunological exhaustion and/or immunoparalysis in the context of exacerbated inflammatory responses that predispose ACLF patients to secondary infections and re-escalation of end-organ dysfunction and mortality are also reviewed. Finally, several new potential immunogenic therapeutic targets are debated.
Collapse
Affiliation(s)
- Cornelius Engelmann
- Medical Department, Division of Hepatology and Gastroenterology, Campus Virchow‐KlinikumCharité ‐ Universitätsmedizin BerlinBerlinGermany
- Berlin Institute of HealthBerlinGermany
- Institute for Liver and Digestive HealthUniversity College LondonLondonUK
| | - Ingrid W. Zhang
- Medical Department, Division of Hepatology and Gastroenterology, Campus Virchow‐KlinikumCharité ‐ Universitätsmedizin BerlinBerlinGermany
- Berlin Institute of HealthBerlinGermany
- European Foundation for the Study of Chronic Liver Failure (EF CLIF) and Grifols ChairBarcelonaSpain
| | - Joan Clària
- European Foundation for the Study of Chronic Liver Failure (EF CLIF) and Grifols ChairBarcelonaSpain
- Biochemistry and Molecular Genetics ServiceHospital Clínic‐IDIBAPS CIBERehdBarcelonaSpain
- Department of Biomedical SciencesUniversity of BarcelonaBarcelonaSpain
| |
Collapse
|
3
|
Guldan M, Unlu S, Abdel-Rahman SM, Ozbek L, Gaipov A, Covic A, Soler MJ, Covic A, Kanbay M. Understanding the Role of Sex Hormones in Cardiovascular Kidney Metabolic Syndrome: Toward Personalized Therapeutic Approaches. J Clin Med 2024; 13:4354. [PMID: 39124622 PMCID: PMC11312746 DOI: 10.3390/jcm13154354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Cardiovascular kidney metabolic (CKM) syndrome represents a complex interplay of cardiovascular disease (CVD), chronic kidney disease (CKD), and metabolic comorbidities, posing a significant public health challenge. Gender exerts a critical influence on CKM syndrome, affecting the disease severity and onset through intricate interactions involving sex hormones and key physiological pathways such as the renin-angiotensin system, oxidative stress, inflammation, vascular disease and insulin resistance. It is widely known that beyond the contribution of traditional risk factors, men and women exhibit significant differences in CKM syndrome and its components, with distinct patterns observed in premenopausal women and postmenopausal women compared to men. Despite women generally experiencing a lower incidence of CVD, their outcomes following cardiovascular events are often worse compared to men. The disparities also extend to the treatment approaches for kidney failure, with a higher prevalence of dialysis among men despite women exhibiting higher rates of CKD. The impact of endogenous sex hormones, the correlations between CKM and its components, as well as the long-term effects of treatment modalities using sex hormones, including hormone replacement therapies and gender-affirming therapies, have drawn attention to this topic. Current research on CKM syndrome is hindered by the scarcity of large-scale studies and insufficient integration of gender-specific considerations into treatment strategies. The underlying mechanisms driving the gender disparities in the pathogenesis of CKM syndrome, including the roles of estrogen, progesterone and testosterone derivatives, remain poorly understood, thus limiting their application in personalized therapeutic interventions. This review synthesizes existing knowledge to clarify the intricate relationship between sex hormones, gender disparities, and the progression of CVD within CKM syndrome. By addressing these knowledge gaps, this study aims to guide future research efforts and promote tailored approaches for effectively managing CKD syndrome.
Collapse
Affiliation(s)
- Mustafa Guldan
- Department of Medicine, Koç University School of Medicine, 34450 Istanbul, Turkey; (M.G.); (S.U.); (S.M.A.-R.); (L.O.)
| | - Selen Unlu
- Department of Medicine, Koç University School of Medicine, 34450 Istanbul, Turkey; (M.G.); (S.U.); (S.M.A.-R.); (L.O.)
| | - Sama Mahmoud Abdel-Rahman
- Department of Medicine, Koç University School of Medicine, 34450 Istanbul, Turkey; (M.G.); (S.U.); (S.M.A.-R.); (L.O.)
| | - Laşin Ozbek
- Department of Medicine, Koç University School of Medicine, 34450 Istanbul, Turkey; (M.G.); (S.U.); (S.M.A.-R.); (L.O.)
| | - Abduzhappar Gaipov
- Department of Medicine, School of Medicine, Nazarbayev University, Astana 010000, Kazakhstan;
| | - Andreea Covic
- Department of Nephrology, Grigore T. Popa University of Medicine, 700115 Iasi, Romania;
| | - Maria José Soler
- Nephrology Department, Vall d’Hebron University Hospital, Vall d’Hebron Institute of Research, 08035 Barcelona, Spain;
- Centro de Referencia en Enfermedad, Glomerular Compleja del Sistema Nacional de Salud de España (CSUR), RICORS2040 (Kidney Disease), 08003 Barcelona, Spain
- GEENDIAB (Grupo Español de Estudio de la Nefropatía Diabética), 39008 Santander, Spain
| | - Adrian Covic
- Department of Nephrology, Grigore T. Popa University of Medicine, 700115 Iasi, Romania;
| | - Mehmet Kanbay
- Division of Nephrology, Department of Medicine, Koç University School of Medicine, 34450 Istanbul, Turkey;
| |
Collapse
|
4
|
Neugarten J, Golestaneh L. Gender-dependent mechanisms of injury and repair. REGENERATIVE NEPHROLOGY 2022:303-318. [DOI: 10.1016/b978-0-12-823318-4.00023-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
5
|
Ankle-brachial index predicts renal outcomes and all-cause mortality in high cardiovascular risk population: a nationwide prospective cohort study in CORE project. Int Urol Nephrol 2021; 54:1641-1652. [PMID: 34724144 DOI: 10.1007/s11255-021-03049-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 10/24/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Low ankle-brachial index (ABI) related ischemic events are common among individuals with chronic kidney disease (CKD). It is also associated with an increased risk of rapid renal function decline. The presence of peripheral artery disease (PAD) with low ABI among patients with high cardiovascular (CV) risk increases limb loss and mortality. AIMS To estimate the association between abnormal ABI and renal endpoints and all-cause mortality. METHODS A multicenter prospective cohort study was conducted among subjects with high CV risk or established CV diseases in Thailand. The subjects were divided into 3 groups based on ABI at baseline > 1.3, 0.91-1.3, and ≤ 0.9, respectively. Primary composite outcome consisted of estimated glomerular filtration rate (eGFR) decline over 40%, eGFR less than 15 mL/min/1.73 m2, doubling of serum creatinine and initiation of dialysis. The secondary outcome was all-cause mortality. Cox regression analysis and Kaplan-Meier curve were performed. RESULTS A total of 5543 subjects (3005 men and 2538 women) were included. Cox proportional hazards model showed a significant relationship of low ABI (ABI ≤ 0.9) and primary composite outcome and all-cause mortality. Compared with the normal ABI group (ABI 0.91-1.3), subjects with low ABI at baseline significantly had 1.42-fold (95% CI 1.02-1.97) and 2.03-fold (95% CI 1.32-3.13) risk for the primary composite outcome and all-cause mortality, respectively, after adjusting for variable factors. CONCLUSION Our study suggested that PAD independently predicts the incidence of renal progression and all-cause mortality among Thai patients with high CV risk.
Collapse
|
6
|
Garate-Carrillo A, Gonzalez J, Ceballos G, Ramirez-Sanchez I, Villarreal F. Sex related differences in the pathogenesis of organ fibrosis. Transl Res 2020; 222:41-55. [PMID: 32289256 PMCID: PMC7721117 DOI: 10.1016/j.trsl.2020.03.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/05/2020] [Accepted: 03/09/2020] [Indexed: 12/11/2022]
Abstract
The development of organ fibrosis has garnered rising attention as multiple diseases of increasing and/or high prevalence appear to progress to the chronic stage. Such is the case for heart, kidney, liver, and lung where diseases such as diabetes, idiopathic/autoimmune disorders, and nonalcoholic liver disease appear to notably drive the development of fibrosis. Noteworthy is that the severity of these pathologies is characteristically compounded by aging. For these reasons, research groups and drug companies have identified fibrosis as a therapeutic target for which currently, there are essentially no effective options. Although a limited body of published studies are available, most literature indicates that in multiple organs, premenopausal women are protected from developing severe forms of fibrosis suggesting an important role for sex hormones in mitigating this process. Investigators have implemented relevant animal models of organ disease linked to fibrosis supporting in general, these observations. In vitro studies and transgenic animals models have also been used in an attempt to understand the role that sex hormones and related receptors play in the development of fibrosis. However, in the setting of chronic disease in some organs such as the heart older (postmenopausal) women within a few years can quickly approach men in disease severity and develop significant degrees of fibrosis. This review summarizes the current body of relevant literature and highlights the imperative need for a major focus to be placed on understanding the manner in which sex and the presence or absence of related hormones modulates cell phenotypes so as to allow for fibrosis to develop.
Collapse
Affiliation(s)
- Alejandra Garate-Carrillo
- Department of Medicine, School of Medicine, University of California, San Diego, California; Seccion de Estudios de Posgrado e Investigacion, Escuela Superior de Medicina, Instituto Politecnico Nacional, Mexico city, Mexico
| | - Julisa Gonzalez
- Department of Medicine, School of Medicine, University of California, San Diego, California
| | - Guillermo Ceballos
- Seccion de Estudios de Posgrado e Investigacion, Escuela Superior de Medicina, Instituto Politecnico Nacional, Mexico city, Mexico
| | - Israel Ramirez-Sanchez
- Department of Medicine, School of Medicine, University of California, San Diego, California; Seccion de Estudios de Posgrado e Investigacion, Escuela Superior de Medicina, Instituto Politecnico Nacional, Mexico city, Mexico
| | - Francisco Villarreal
- Department of Medicine, School of Medicine, University of California, San Diego, California; VA San Diego Health Care, San Diego, California.
| |
Collapse
|
7
|
Sabbatini AR, Kararigas G. Estrogen-related mechanisms in sex differences of hypertension and target organ damage. Biol Sex Differ 2020; 11:31. [PMID: 32487164 PMCID: PMC7268741 DOI: 10.1186/s13293-020-00306-7] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 05/04/2020] [Indexed: 12/13/2022] Open
Abstract
Hypertension (HTN) is a primary risk factor for cardiovascular (CV) events, target organ damage (TOD), premature death and disability worldwide. The pathophysiology of HTN is complex and influenced by many factors including biological sex. Studies show that the prevalence of HTN is higher among adults aged 60 and over, highlighting the increase of HTN after menopause in women. Estrogen (E2) plays an important role in the development of systemic HTN and TOD, exerting several modulatory effects. The influence of E2 leads to alterations in mechanisms regulating the sympathetic nervous system, renin-angiotensin-aldosterone system, body mass, oxidative stress, endothelial function and salt sensitivity; all associated with a crucial inflammatory state and influenced by genetic factors, ultimately resulting in cardiac, vascular and renal damage in HTN. In the present article, we discuss the role of E2 in mechanisms accounting for the development of HTN and TOD in a sex-specific manner. The identification of targets with therapeutic potential would contribute to the development of more efficient treatments according to individual needs.
Collapse
Affiliation(s)
| | - Georgios Kararigas
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany.
| |
Collapse
|
8
|
Dworatzek E, Mahmoodzadeh S, Schriever C, Kusumoto K, Kramer L, Santos G, Fliegner D, Leung YK, Ho SM, Zimmermann WH, Lutz S, Regitz-Zagrosek V. Sex-specific regulation of collagen I and III expression by 17β-Estradiol in cardiac fibroblasts: role of estrogen receptors. Cardiovasc Res 2020; 115:315-327. [PMID: 30016401 DOI: 10.1093/cvr/cvy185] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 07/12/2018] [Indexed: 12/23/2022] Open
Abstract
Aims Sex differences in cardiac fibrosis point to the regulatory role of 17β-Estradiol (E2) in cardiac fibroblasts (CF). We, therefore, asked whether male and female CF in rodent and human models are differentially susceptible to E2, and whether this is related to sex-specific activation of estrogen receptor alpha (ERα) and beta (ERβ). Methods and results In female rat CF (rCF), 24 h E2-treatment (10-8 M) led to a significant down-regulation of collagen I and III expression, whereas both collagens were up-regulated in male rCF. E2-induced sex-specific collagen regulation was also detected in human CF, indicating that this regulation is conserved across species. Using specific ERα- and ERβ-agonists (10-7 M) for 24 h, we identified ERα as repressive and ERβ as inducing factor in female and male rCF, respectively. In addition, E2-induced ERα phosphorylation at Ser118 only in female rCF, whereas Ser105 phosphorylation of ERβ was exclusively found in male rCF. Further, in female rCF we found both ER bound to the collagen I and III promoters using chromatin immunoprecipitation assays. In contrast, in male rCF only ERβ bound to both promoters. In engineered connective tissues (ECT) from rCF, collagen I and III mRNA were down-regulated in female ECT and up-regulated in male ECT by E2. This was accompanied by an impaired condensation of female ECT, whereas male ECT showed an increased condensation and stiffness upon E2-treatment, analysed by rheological measurements. Finally, we confirmed the E2-effect on both collagens in an in vivo mouse model with ovariectomy for E2 depletion, E2 substitution, and pressure overload by transverse aortic constriction. Conclusion The mechanism underlying the sex-specific regulation of collagen I and III in the heart appears to involve E2-mediated differential ERα and ERβ signaling in CFs.
Collapse
Affiliation(s)
- Elke Dworatzek
- Charité-Universitätsmedizin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Gender in Medicine, Center for Cardiovascular Research, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Shokoufeh Mahmoodzadeh
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany.,Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Cindy Schriever
- Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Kana Kusumoto
- Charité-Universitätsmedizin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Gender in Medicine, Center for Cardiovascular Research, Berlin, Germany
| | - Lisa Kramer
- Charité-Universitätsmedizin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Gender in Medicine, Center for Cardiovascular Research, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Gabriela Santos
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Göttingen, Germany.,DZHK, partner site Göttingen, Göttingen, Germany
| | | | - Yuet-Kin Leung
- Division of Environmental Genetics and Molecular Toxicology, Department of Environmental Health, University of Cincinnati Medical Center, Cincinnati, OH, USA
| | - Shuk-Mei Ho
- Division of Environmental Genetics and Molecular Toxicology, Department of Environmental Health, University of Cincinnati Medical Center, Cincinnati, OH, USA
| | - Wolfram-Hubertus Zimmermann
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Göttingen, Germany.,DZHK, partner site Göttingen, Göttingen, Germany
| | - Susanne Lutz
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Göttingen, Germany.,DZHK, partner site Göttingen, Göttingen, Germany
| | - Vera Regitz-Zagrosek
- Charité-Universitätsmedizin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Gender in Medicine, Center for Cardiovascular Research, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
| |
Collapse
|
9
|
Menopause-Related Estrogen Decrease and the Pathogenesis of HFpEF. J Am Coll Cardiol 2020; 75:1074-1082. [DOI: 10.1016/j.jacc.2019.12.049] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 12/13/2019] [Accepted: 12/13/2019] [Indexed: 01/27/2023]
|
10
|
Kattah AG, Smith CY, Gazzuola Rocca L, Grossardt BR, Garovic VD, Rocca WA. CKD in Patients with Bilateral Oophorectomy. Clin J Am Soc Nephrol 2018; 13:1649-1658. [PMID: 30232136 PMCID: PMC6237067 DOI: 10.2215/cjn.03990318] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 08/20/2018] [Indexed: 12/28/2022]
Abstract
BACKGROUND AND OBJECTIVES Premenopausal women who undergo bilateral oophorectomy are at a higher risk of morbidity and mortality. Given the potential benefits of estrogen on kidney function, we hypothesized that women who undergo bilateral oophorectomy are at higher risk of CKD. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS We performed a population-based cohort study of 1653 women residing in Olmsted County, Minnesota who underwent bilateral oophorectomy before age 50 years old and before the onset of menopause from 1988 to 2007. These women were matched by age (±1 year) to 1653 referent women who did not undergo oophorectomy. Women were followed over a median of 14 years to assess the incidence of CKD. CKD was primarily defined using eGFR (eGFR<60 ml/min per 1.73 m2 on two occasions >90 days apart). Hazard ratios were derived using Cox proportional hazards models, and absolute risk increases were derived using Kaplan-Meier curves at 20 years. All analyses were adjusted for 17 chronic conditions present at index date, race, education, body mass index, smoking, age, and calendar year. RESULTS Women who underwent bilateral oophorectomy had a higher risk of eGFR-based CKD (211 events for oophorectomy and 131 for referent women; adjusted hazard ratio, 1.42; 95% confidence interval, 1.14 to 1.77; absolute risk increase, 6.6%). The risk was higher in women who underwent oophorectomy at age ≤45 years old (110 events for oophorectomy and 60 for referent women; adjusted hazard ratio, 1.59; 95% confidence interval, 1.15 to 2.19; absolute risk increase, 7.5%). CONCLUSIONS Premenopausal women who undergo bilateral oophorectomy, particularly those ≤45 years old, are at higher risk of developing CKD, even after adjusting for multiple chronic conditions and other possible confounders present at index date. PODCAST This article contains a podcast at https://www.asn-online.org/media/podcast/CJASN/2018_10_11_CJASNPodcast_18_1.
Collapse
Affiliation(s)
- Andrea G. Kattah
- Division of Nephrology and Hypertension, Department of Internal Medicine
| | | | | | | | - Vesna D. Garovic
- Division of Nephrology and Hypertension, Department of Internal Medicine
| | - Walter A. Rocca
- Epidemiology, Department of Health Sciences Research, and
- Department of Neurology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
11
|
Fanelli C, Dellê H, Cavaglieri RC, Dominguez WV, Noronha IL. Gender Differences in the Progression of Experimental Chronic Kidney Disease Induced by Chronic Nitric Oxide Inhibition. BIOMED RESEARCH INTERNATIONAL 2017; 2017:2159739. [PMID: 29181390 PMCID: PMC5664248 DOI: 10.1155/2017/2159739] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 08/11/2017] [Accepted: 09/10/2017] [Indexed: 12/14/2022]
Abstract
Chronic kidney disease (CKD) is considered a public health problem, assuming epidemic proportions worldwide. In this context, the preponderance of CKD prevalence in male over age-matched female patients is of note. In the present study, we investigated the impact of the gender on the development of experimental CKD induced by chronic nitric oxide (NO) inhibition in Wistar male and female rats through the administration of L-NAME. CKD model induced by L-NAME is characterized by systemic vasoconstriction, resulting in severe hypertension, albuminuria, renal ischemia, glomerulosclerosis, interstitial expansion, and macrophage infiltration. After 30 days of CKD induction, male NAME rats exhibited remarkable albuminuria, augmented cortical histological damage, interstitial inflammation, and fibrosis. Age-matched female NAME rats showed significantly lower albuminuria, diminished glomerular ischemia, and glomerulosclerosis, as well as a significant reduction in the expression of α-smooth muscle actin renal interstitial Ang II+ cells. Thus, the present study demonstrated that female rats submitted to the NAME model developed less severe CKD than males. Female renoprotection could be promoted by both the estrogen anti-inflammatory activity and/or by the lack of testosterone, related to renin-angiotensin-aldosterone system hyperactivation and fibrogenesis. However, the influence of sex hormones on the progression of CKD needs to be further investigated.
Collapse
Affiliation(s)
- Camilla Fanelli
- Laboratory of Cellular, Genetic, and Molecular Nephrology, Renal Division, University of São Paulo, São Paulo, SP, Brazil
- Laboratory of Renal Pathophysiology, University of São Paulo Medical School, São Paulo, SP, Brazil
| | - Humberto Dellê
- Laboratory of Cellular, Genetic, and Molecular Nephrology, Renal Division, University of São Paulo, São Paulo, SP, Brazil
| | - Rita Cassia Cavaglieri
- Laboratory of Cellular, Genetic, and Molecular Nephrology, Renal Division, University of São Paulo, São Paulo, SP, Brazil
| | - Wagner Vasques Dominguez
- Laboratory of Renal Pathophysiology, University of São Paulo Medical School, São Paulo, SP, Brazil
| | - Irene L. Noronha
- Laboratory of Cellular, Genetic, and Molecular Nephrology, Renal Division, University of São Paulo, São Paulo, SP, Brazil
- NETCEM (Cell and Molecular Therapy Center), University of São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
12
|
Coutinho JVS, Freitas-Lima LC, Freitas FFCT, Freitas FPS, Podratz PL, Magnago RPL, Porto ML, Meyrelles SS, Vasquez EC, Brandão PAA, Carneiro MTWD, Paiva-Melo FD, Miranda-Alves L, Silva IV, Gava AL, Graceli JB. Tributyltin chloride induces renal dysfunction by inflammation and oxidative stress in female rats. Toxicol Lett 2016; 260:52-69. [PMID: 27521499 DOI: 10.1016/j.toxlet.2016.08.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Revised: 07/09/2016] [Accepted: 08/08/2016] [Indexed: 11/17/2022]
Abstract
Tributyltin chloride (TBT) is an organometallic pollutant that is used as a biocide in antifouling paints. TBT induces several toxic and endocrine-disrupting effects. However, studies evaluating the effects of TBT on renal function are rare. This study demonstrates that TBT exposure is responsible for improper renal function as well as the development of abnormal morphophysiology in mammalian kidneys. Female rats were treated with TBT, and their renal morphophysiology was assessed. Morphophysiological abnormalities such as decreased glomerular filtration rate and increased proteinuria levels were observed in TBT rats. In addition, increases in inflammation, collagen deposition and α-smooth muscle actin (α-SMA) protein expression were observed in TBT kidneys. A disrupted cellular redox balance and apoptosis in kidney tissue were also observed in TBT rats. TBT rats demonstrated reduced serum estrogen levels and estrogen receptor-α (ERα) protein expression in renal cortex. Together, these data provide in vivo evidence that TBT is toxic to normal renal function and that these effects may be associated with renal histopathology complications, such as inflammation and fibrosis.
Collapse
Affiliation(s)
- João V S Coutinho
- Department of Morphology, Federal University of Espírito Santo, Brazil
| | | | | | - Flávia P S Freitas
- Department of Physiological Sciences, Federal University of Espírito Santo, Brazil
| | | | | | - Marcella L Porto
- Department of Physiological Sciences, Federal University of Espírito Santo, Brazil
| | - Silvana S Meyrelles
- Department of Physiological Sciences, Federal University of Espírito Santo, Brazil
| | - Elisardo C Vasquez
- Department of Physiological Sciences, Federal University of Espírito Santo, Brazil
| | | | | | - Francisca D Paiva-Melo
- Experimental Endocrinology Research Group, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Brazil
| | - Leandro Miranda-Alves
- Experimental Endocrinology Research Group, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Brazil; Postgraduate Program in Endocrinology, School of Medicine, Federal University of Rio de Janeiro, Brazil
| | - Ian V Silva
- Department of Morphology, Federal University of Espírito Santo, Brazil
| | - Agata L Gava
- Department of Physiological Sciences, Federal University of Espírito Santo, Brazil.
| | - Jones B Graceli
- Department of Morphology, Federal University of Espírito Santo, Brazil.
| |
Collapse
|
13
|
Jennings BL, Moore JA, Pingili AK, Estes AM, Fang XR, Kanu A, Gonzalez FJ, Malik KU. Disruption of the cytochrome P-450 1B1 gene exacerbates renal dysfunction and damage associated with angiotensin II-induced hypertension in female mice. Am J Physiol Renal Physiol 2015; 308:F981-92. [PMID: 25694484 DOI: 10.1152/ajprenal.00597.2014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 02/11/2015] [Indexed: 11/22/2022] Open
Abstract
Recently, we demonstrated in female mice that protection against ANG II-induced hypertension and associated cardiovascular changes depend on cytochrome P-450 (CYP)1B1. The present study was conducted to determine if Cyp1b1 gene disruption ameliorates renal dysfunction and organ damage associated with ANG II-induced hypertension in female mice. ANG II (700 ng·kg(-1)·min(-1)) infused by miniosmotic pumps for 2 wk in female Cyp1b1(+/+) mice did not alter water consumption, urine output, Na(+) excretion, osmolality, or protein excretion. However, in Cyp1b1(-/-) mice, ANG II infusion significantly increased (P < 0.05) water intake (5.50 ± 0.42 ml/24 h with vehicle vs. 8.80 ± 0.60 ml/24 h with ANG II), urine output (1.44 ± 0.37 ml/24 h with vehicle vs. 4.30 ± 0.37 ml/24 h with ANG II), and urinary Na(+) excretion (0.031 ± 0.016 mmol/24 h with vehicle vs. 0.099 ± 0.010 mmol/24 h with ANG II), decreased osmolality (2,630 ± 79 mosM/kg with vehicle vs. 1,280 ± 205 mosM/kg with ANG II), and caused proteinuria (2.60 ± 0.30 mg/24 h with vehicle vs. 6.96 ± 0.55 mg/24 h with ANG II). Infusion of ANG II caused renal fibrosis, as indicated by an accumulation of renal interstitial α-smooth muscle actin, collagen, and transforming growth factor-β in Cyp1b1(-/-) but not Cyp1b1(+/+) mice. ANG II also increased renal production of ROS and urinary excretion of thiobarburic acid-reactive substances and reduced the activity of antioxidants and urinary excretion of nitrite/nitrate and the 17β-estradiol metabolite 2-methoxyestradiol in Cyp1b1(-/-) but not Cyp1b1(+/+) mice. These data suggest that Cyp1b1 plays a critical role in female mice in protecting against renal dysfunction and end-organ damage associated with ANG II-induced hypertension, in preventing oxidative stress, and in increasing activity of antioxidant systems, most likely via generation of 2-methoxyestradiol from 17β-estradiol.
Collapse
Affiliation(s)
- Brett L Jennings
- Department of Pharmacology, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Joseph A Moore
- Department of Pharmacology, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Ajeeth K Pingili
- Department of Pharmacology, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Anne M Estes
- Department of Pharmacology, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Xiao R Fang
- Department of Pharmacology, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Alie Kanu
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee; and
| | - Frank J Gonzalez
- Laboratory of Metabolism, National Cancer Institute, Bethesda, Maryland
| | - Kafait U Malik
- Department of Pharmacology, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee;
| |
Collapse
|
14
|
Li YC, Ding XS, Li HM, Zhang Y, Bao J. Role of G protein-coupled estrogen receptor 1 in modulating transforming growth factor-β stimulated mesangial cell extracellular matrix synthesis and migration. Mol Cell Endocrinol 2014; 391:50-9. [PMID: 24793639 DOI: 10.1016/j.mce.2014.04.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2013] [Revised: 04/18/2014] [Accepted: 04/23/2014] [Indexed: 12/25/2022]
Abstract
Estrogen has been demonstrated to exert beneficial effects on kidney; however, the role of G protein-coupled estrogen receptor 1 (GPER) is still uncertain. In the present study, we investigated the effect of 17β-estradiol and GPER agonist Fulvestrant on extracellular matrix production under transforming growth factor-β1 (TGF-β1) stimulation in human and rat mesangial cells. As a result, 17β-estradiol and Fulvestrant inhibit TGF-β1-induced type IV collagen and fibronectin expression in a dose-dependent manner, by suppressing acute Smad2/3 phosphorylation and Smad4 complex formation. Furthermore, estrogen and Fulvestrant also down-regulate Smad signaling by promoting ubiquitin/proteasome-dependent Smad2 degradation. These effects could be abrogated by receptor antagonist G-15 or GPER gene knockdown. GPER is also required for estrogen and Fulvestrant to regulate mesangial cell migration in response to TGF-β1. To conclude, GPER is crucial in modulating glomerular mesangial cell function including extracellular matrix production and migration.
Collapse
Affiliation(s)
- Yi-Chen Li
- Department of Pharmacy, Drum Tower Hospital Affiliated to Nanjing University Medical School, 321 Zhongshan Road, Nanjing, Jiangsu Province 210008, PR China; Department of Clinical Pharmacy, School of Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, Jiangsu Province 210009, PR China.
| | - Xuan-Sheng Ding
- Department of Clinical Pharmacy, School of Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, Jiangsu Province 210009, PR China.
| | - Hui-Mei Li
- Department of Clinical Pharmacy, School of Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, Jiangsu Province 210009, PR China.
| | - Ying Zhang
- Department of Clinical Pharmacy, School of Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, Jiangsu Province 210009, PR China.
| | - Jing Bao
- Department of Clinical Pharmacy, School of Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, Jiangsu Province 210009, PR China.
| |
Collapse
|
15
|
Bertolo A, Baur M, Aebli N, Ferguson SJ, Stoyanov J. Physiological testosterone levels enhance chondrogenic extracellular matrix synthesis by male intervertebral disc cells in vitro, but not by mesenchymal stem cells. Spine J 2014; 14:455-68. [PMID: 24184643 DOI: 10.1016/j.spinee.2013.10.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 09/11/2013] [Accepted: 10/17/2013] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Testosterone (T) is a hormone and regulator involved in the processes of development of the organism (ie, promoting development of bone and muscle mass). Although T effects on the mesenchyme-derived muscle, bone, and adipose tissues are well studied, T effects on intervertebral disc (IVD) have not been reported. PURPOSE The aim was to test the following hypothesis: if a physiological concentration of T (∼30 nM) can improve in vitro chondrogenesis of human IVD cells and mesenchymal stem cells (MSCs). STUDY DESIGN/SETTING Human IVD cells and MSCs were differentiated to chondrogenic lineage on gelatin scaffolds for 4 weeks, in the presence or absence of T. METHODS Chondrogenesis was assessed by cell viability, by measuring gene expression with quantitative polymerase chain reaction and extracellular matrix (ECM) accumulation with immunoblotting, immunohistochemical, and biochemical methods. RESULTS Supplementation of T to chondrogenic culture did not affect viability. In male IVD cells, T had a beneficial impact on chondrogenesis, particularly in nucleus pulposus cells, demonstrated by an increased expression of aggrecan, collagen type I, and especially collagen type II. Conversely, T had no effects on chondrogenesis of female IVD cells or MSCs from both genders. A gene expression array of transforming growth factor β/bone morphogenetic protein signaling cascade showed that in male IVD cells, T promoted a stable general but nonsignificant increase in gene expression. Furthermore, aromatase inhibitor anastrazole repressed the effect of T on ECM expression by IVD cells. The results suggest that T increased ECM accumulation in male IVD cells in combination with its conversion to estradiol by the enzyme aromatase. CONCLUSIONS We demonstrated that T effectively enhances in vitro chondrogenesis in male IVD cells, rising the interest in the possible role of sex hormones in IVD degeneration. Nevertheless, T does not affect chondrogenic differentiation of female IVD cells and MSCs from both genders.
Collapse
Affiliation(s)
- Alessandro Bertolo
- Biomedical Laboratories, Swiss Paraplegic Research, G.A. Zaech Strasse 4, 6207 Nottwil, Switzerland
| | - Martin Baur
- Cantonal Hospital of Lucerne, Spitalstrasse 16, 6000 Lucerne, Switzerland
| | - Niklaus Aebli
- Swiss Paraplegic Centre, Zaechstrasse 1, 6207 Nottwil, Switzerland; School of Medicine, Griffith University, University Drive, 4131 Meadowbrook Qld, Brisbane, Queensland, Australia
| | - Stephen J Ferguson
- Institute for Biomechanics, Schafmattstrasse 30, 8093 ETH Zurich, Switzerland
| | - Jivko Stoyanov
- Biomedical Laboratories, Swiss Paraplegic Research, G.A. Zaech Strasse 4, 6207 Nottwil, Switzerland; Institute for Surgical Technology and Biomechanics, University of Bern, Stauffacherstrasse 78, 3014 Bern, Switzerland.
| |
Collapse
|
16
|
Pujols L, Fernández-Bertolín L, Fuentes-Prado M, Alobid I, Roca-Ferrer J, Agell N, Mullol J, Picado C. Proteasome inhibition reduces proliferation, collagen expression, and inflammatory cytokine production in nasal mucosa and polyp fibroblasts. J Pharmacol Exp Ther 2012; 343:184-97. [PMID: 22787116 DOI: 10.1124/jpet.111.190710] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Proteasome inhibitors, used in cancer treatment for their proapoptotic effects, have anti-inflammatory and antifibrotic effects on animal models of various inflammatory and fibrotic diseases. Their effects in cells from patients affected by either inflammatory or fibrotic diseases have been poorly investigated. Nasal polyposis is a chronic inflammatory disease of the sinus mucosa characterized by tissue inflammation and remodeling. We tested the hypothesis that proteasome inhibition of nasal polyp fibroblasts might reduce their proliferation and inflammatory and fibrotic response. Accordingly, we investigated the effect of the proteasome inhibitor Z-Leu-Leu-Leu-B(OH)(2) (MG262) on cell viability and proliferation and on the production of collagen and inflammatory cytokines in nasal polyp and nasal mucosa fibroblasts obtained from surgery specimens. MG262 reduced the viability of nasal mucosa and polyp fibroblasts concentration- and time-dependently, with marked effects after 48 h of treatment. The proteasome inhibitor bortezomib provoked a similar effect. MG262-induced cell death involved loss of mitochondrial membrane potential, caspase-3 and poly(ADP-ribose) polymerase activation, induction of c-Jun phosphorylation, and mitogen-activated protein kinase phosphatase-1 expression. Low concentrations of MG262 provoked growth arrest, inhibited DNA replication and retinoblastoma phosphorylation, and increased expression of the cell cycle inhibitors p21 and p27. MG262 concentration-dependently inhibited basal and transforming growth factor-β-induced collagen mRNA expression and interleukin (IL)-1β-induced production of IL-6, IL-8, monocyte chemoattractant protein-1, regulated on activation normal T cell expressed and secreted, and granulocyte/macrophage colony-stimulating factor in both fibroblast types. MG262 inhibited IL-1β/tumor necrosis factor-α-induced activation of nuclear factor-κB. We conclude that noncytotoxic treatment with MG262 reduces the proliferative, fibrotic, and inflammatory response of nasal fibroblasts, whereas high MG262 concentrations induce apoptosis.
Collapse
Affiliation(s)
- Laura Pujols
- Clinical and Experimental Respiratory Immunoallergy, Institut d'Investigacions Biomèdiques August Pi i Sunyer, and Centro de Investigaciones Respiratorias en Red de Enfermedades Respiratorias, Barcelona, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Alfaro-Lira S, Pizarro-Ortiz M, Calaf GM. Malignant transformation of rat kidney induced by environmental substances and estrogen. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2012; 9:1630-48. [PMID: 22754462 PMCID: PMC3386577 DOI: 10.3390/ijerph9051630] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Revised: 01/05/2012] [Accepted: 01/11/2012] [Indexed: 11/20/2022]
Abstract
The use of organophosphorous insecticides in agricultural environments and in urban settings has increased significantly. The aim of the present study was to analyze morphological alterations induced by malathion and 17β-estradiol (estrogen) in rat kidney tissues. There were four groups of animals: control, malathion, estrogen and combination of both substances. The animals were injected for five days and sacrificed 30, 124 and 240 days after treatments. Kidney tissues were analyzed for histomorphological and immunocytochemical alterations. Morphometric analysis indicated that malathion plus estrogen-treated animals showed a significantly (p < 0.05) higher grade of glomerular hypertrophy, signs of tubular damage, atypical proliferation in cortical and hilium zone than malathion or estrogen alone-treated and control animals after 240 days. Results indicated that MFG, ER-α, ER-β, PgR, CYP1A1, Neu/ErbB2, PCNA, vimentin and Thrombospondin 1 (THB) protein expression was increased in convoluted tubules of animals treated with combination of malathion and estrogen after 240 days of 5 day treatment. Malignant proliferation was observed in the hilium zone. In summary, the combination of malathion and estrogen induced pathological lesions in glomeruli, convoluted tubules, atypical cell proliferation and malignant proliferation in hilium zone and immunocytochemical alterations in comparison to control animals or animals treated with either substance alone. It can be concluded that an increased risk of kidney malignant transformation can be induced by exposure to environmental and endogenous substances.
Collapse
Affiliation(s)
- Susana Alfaro-Lira
- Instituto de Alta Investigación, Universidad de Tarapacá, Calle Antofagasta 1520, Arica, Chile; (S.A.-L.); (M.P.-O.)
| | - María Pizarro-Ortiz
- Instituto de Alta Investigación, Universidad de Tarapacá, Calle Antofagasta 1520, Arica, Chile; (S.A.-L.); (M.P.-O.)
| | - Gloria M. Calaf
- Instituto de Alta Investigación, Universidad de Tarapacá, Calle Antofagasta 1520, Arica, Chile; (S.A.-L.); (M.P.-O.)
- Center for Radiological Research, Columbia University Medical Center, 630 West 168th Street, New York, NY 10032, USA
- Author to whom correspondence should be addressed; ; Tel.: +56-58-230-334
| |
Collapse
|
18
|
Mettu PS, Wielgus AR, Ong SS, Cousins SW. Retinal pigment epithelium response to oxidant injury in the pathogenesis of early age-related macular degeneration. Mol Aspects Med 2012; 33:376-98. [PMID: 22575354 DOI: 10.1016/j.mam.2012.04.006] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Accepted: 04/14/2012] [Indexed: 01/06/2023]
Abstract
Age-related macular degeneration (AMD) represents the leading cause of vision loss in the elderly. Accumulation of lipid- and protein-rich deposits under the retinal pigment epithelium (RPE) heralds the onset of early AMD, but the pathogenesis of subretinal deposit formation is poorly understood. Numerous hypothetical models of deposit formation have been proposed, including hypotheses for a genetic basis, choroidal hypoperfusion, abnormal barrier formation, and lysosomal failure. This review explore the RPE injury hypothesis, characterized by three distinct stages (1) Initial RPE oxidant injury, caused by any number of endogenous or exogenous oxidants, results in extrusion of cell membrane "blebs," together with decreased activity of matrix metalloproteinases (MMPs), promoting bleb accumulation under the RPE as basal laminar deposits (BLD). (2) RPE cells are subsequently stimulated to increase synthesis of MMPs and other molecules responsible for extracellular matrix turnover (i.e., producing decreased collagen), affecting both RPE basement membrane and Bruchs membrane (BrM). This process leads to progression of BLD into basal linear deposits (BLinD) and drusen by admixture of blebs into BrM, followed by the formation of new basement membrane under the RPE to trap these deposits within BrM. We postulate that various hormones and other plasma-derived molecules related to systemic health cofactors are implicated in this second stage. (3) Finally, macrophages are recruited to sites of RPE injury and deposit formation. The recruitment of nonactivated or scavenging macrophages may remove deposits without further injury, while the recruitment of activated or reparative macrophages, through the release of inflammatory mediators, growth factors, or other substances, may promote complications and progression to the late forms of the disease.
Collapse
Affiliation(s)
- Priyatham S Mettu
- Duke Center for Macular Diseases, Duke Eye Center, Durham, NC 27710, USA
| | | | | | | |
Collapse
|
19
|
Dellê H, Rocha JRC, Cavaglieri RC, Vieira JM, Malheiros DMAC, Noronha IL. Antifibrotic effect of tamoxifen in a model of progressive renal disease. J Am Soc Nephrol 2011; 23:37-48. [PMID: 22052053 DOI: 10.1681/asn.2011010046] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Tamoxifen, a selective estrogen receptor modulator, has antifibrotic properties; however, whether it can attenuate renal fibrosis is unknown. In this study, we tested the effects of tamoxifen in a model of hypertensive nephrosclerosis (chronic inhibition of nitric oxide synthesis with L-NAME). After 30 days, treated rats had significantly lower levels of albuminuria as well as lower histologic scores for glomerulosclerosis and interstitial fibrosis than untreated controls. Tamoxifen was renoprotective despite having no effect on the sustained, severe hypertension induced by L-NAME. Tamoxifen prevented the accumulation of extracellular matrix by decreasing the expression of collagen I, collagen III, and fibronectin mRNA and protein. These renoprotective effects associated with inhibition of TGF-β1 and plasminogen activator inhibitor-1, and with a significant reduction in α-smooth muscle actin-positive cells in the renal interstitium. Furthermore, tamoxifen abrogated IL-1β- and angiotensin-II-induced proliferation of fibroblasts from both kidney explants and from the NRK-49F cell line. Tamoxifen also inhibited the expression of extracellular matrix components and the production and release of TGF-β1 into the supernatant of these cells. In summary, tamoxifen exhibits antifibrotic effects in the L-NAME model of hypertensive nephrosclerosis, likely through the inhibition of TGF-β1, suggesting that it may have therapeutic use in CKD treatment.
Collapse
Affiliation(s)
- Humberto Dellê
- Laboratory of Cellular, Genetic, and Molecular Nephrology, University of São Paulo, Av. Dr. Arnaldo, 455, 4th Floor, Lab 4304, São Paulo, CEP 01246-903, Brazil
| | | | | | | | | | | |
Collapse
|
20
|
Gava AL, Freitas FPS, Meyrelles SS, Silva IV, Graceli JB. Gender-dependent effects of aging on the kidney. Braz J Med Biol Res 2011; 44:905-13. [PMID: 21956533 DOI: 10.1590/s0100-879x2011007500101] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Accepted: 08/05/2011] [Indexed: 11/22/2022] Open
Abstract
It is well known that the kidney plays an important role in the development of cardiovascular diseases such as hypertension. The normal aging process leads to changes in kidney morphology, hemodynamics and function, which increase the incidence of cardiovascular events in the elderly population. These disturbances are influenced by several factors, including gender. In general, females are protected by the effects of estrogens on the cardiorenal system. Several studies have demonstrated the beneficial effects of estrogens on renal function in the elderly; however, the relationships between androgens and kidney health during one's lifetime are not well understood. Sex steroids have many complex actions, and the decline in their levels during aging clearly influences kidney function, decreases the renal reserve and facilitates the development of cardiovascular disorders. Therefore, in this review, we discuss the cellular, biochemical, and molecular mechanisms by which sex hormones may influence renal function during the aging process.
Collapse
Affiliation(s)
- A L Gava
- Laboratório de Transgenes e Controle Cardiovascular, Programa de Pós-Graduação em Ciências Fisiológicas, Universidade Federal do Espírito Santo, Vitória, ES, Brasil
| | | | | | | | | |
Collapse
|
21
|
Raloxifene, a selective estrogen receptor modulator, is renoprotective: a post-hoc analysis. Kidney Int 2010; 79:241-9. [PMID: 20927038 DOI: 10.1038/ki.2010.378] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Estrogens have a protective effect on kidney fibrosis in several animal models. Here, we tested the effect of raloxifene, an estrogen receptor modulator, on the change in serum creatinine or estimated glomerular filtration rate (eGFR) and incident kidney-related adverse events. We performed a post-hoc analysis of the multiple outcomes of raloxifene evaluation trial, a double-masked, placebo-controlled randomized clinical trial encompassing 7705 post-menopausal women (aged 31-80 years) with osteoporosis. Participants were randomized to either of two doses of raloxifene, 60 or 120 mg/day, or placebo. Serum creatinine was measured at a central laboratory at baseline and annually. Adverse events were assessed every 6 months and uniformly categorized. Compared with those in the placebo group, participants on raloxifene had a slower yearly rate of increase in creatinine (significant at the low dose) and a significantly slower yearly rate of decrease in eGFR for both doses over 3 years of follow-up. Raloxifene was associated with significantly fewer kidney-related adverse events compared with placebo. Thus, treatment with raloxifene was safe and renoprotective. Clinical trials of raloxifene in post-menopausal women with kidney disease designed to look at kidney outcomes are needed to confirm these findings.
Collapse
|
22
|
Pérez-Torres I, El Hafidi M, Pavón N, Infante O, Avila-Casado MC, Baños G. Effect of gonadectomy on the metabolism of arachidonic acid in isolated kidney of a rat model of metabolic syndrome. Metabolism 2010; 59:414-23. [PMID: 19801156 DOI: 10.1016/j.metabol.2009.08.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2009] [Revised: 07/30/2009] [Accepted: 08/12/2009] [Indexed: 01/10/2023]
Abstract
Influence of sex on arachidonic acid metabolism, a pathway involved in the link between metabolic syndrome (MS) and renal damage, was studied in isolated perfused kidney. Metabolic syndrome was induced by feeding 30% sucrose solution for 24 weeks to intact and gonadectomized female (Ovx) and male (Cas) rats. Systolic blood pressure, albuminuria, as well as prostaglandin E(2) and thromboxane B(2) from urine and perfusate increased in MS male and MS ovariectomized females; castration reduced them in MS males. Perfusion of arachidonic acid in kidneys from MS males increased perfusion pressure compared with controls. No difference appeared in perfusion pressure between control and MS females. Castration diminished perfusion pressure in MS; the opposite was observed in Ovx MS. Perfusion with arachidonic acid plus indomethacin decreased perfusion pressure in MS male kidneys and in Cas MS. In Ovx MS, arachidonic acid plus indomethacin decreased perfusion pressure, but not in female control, MS, and Ovx control. Increase in perfusion pressure with arachidonic acid in both male MS and Ovx MS was related to cyclooxygenase (COX)-1 and COX-2 overexpression in kidney. Castration reduced the expression of COX-1 and COX-2 in MS to control levels. The results suggest that the alteration in arachidonic acid metabolism associated with changes in the expression of COX-1 and COX-2 induced by sucrose intake, and influenced by sex hormones, may contribute to renal damage.
Collapse
Affiliation(s)
- Israel Pérez-Torres
- Department of Pathology, Instituto Nacional de Cardiología Ignacio Chávez Juan Badiano 1, Sección XVI, Tlalpan, 14080 México DF, México
| | | | | | | | | | | |
Collapse
|
23
|
Hakimov HA, Walters S, Wright TC, Meidinger RG, Verschoor CP, Gadish M, Chiu DKY, Strömvik MV, Forsberg CW, Golovan SP. Application of iTRAQ to catalogue the skeletal muscle proteome in pigs and assessment of effects of gender and diet dephytinization. Proteomics 2009; 9:4000-16. [DOI: 10.1002/pmic.200900049] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
24
|
|
25
|
Lew SQ, Patel SS. Psychosocial and quality of life issues in women with end-stage renal disease. Adv Chronic Kidney Dis 2007; 14:358-63. [PMID: 17904503 DOI: 10.1053/j.ackd.2007.07.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
There are differences in the way men and women experience end-stage renal disease (ESRD). Women are more likely to shoulder much of the burden of adapting family environments to accommodate life with ESRD. Issues such as fertility and conception are different from women in the general population. In the ESRD population, women express more depressive affect, anxiety, and personality disorder than men. Several psychosocial parameters have been found to be linked with differential survival between men and women such as social support and marital satisfaction. Women are more likely to serve as living donors for kidney transplantation yet less likely to be recipients of a cadaveric or living kidney transplant. We review the available literature on gender differences in ESRD with a focus on chronic hemodialysis.
Collapse
Affiliation(s)
- Susie Q Lew
- Department of Medicine, Division of Renal Diseases and Hypertension, George Washington University, Washington, DC, USA.
| | | |
Collapse
|
26
|
Dixon A, Maric C. 17beta-Estradiol attenuates diabetic kidney disease by regulating extracellular matrix and transforming growth factor-beta protein expression and signaling. Am J Physiol Renal Physiol 2007; 293:F1678-90. [PMID: 17686959 PMCID: PMC3179625 DOI: 10.1152/ajprenal.00079.2007] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
We previously showed that supplementation with 17beta-estradiol (E2) from the onset of diabetes attenuates the development of diabetic renal disease. The aim of the present study was to examine whether E2 can also attenuate the disease process once it has developed. The present study was performed in nondiabetic and streptozotocin-induced diabetic Sprague-Dawley rats. E2 supplementation began after 9 wk of diabetes and continued for 8 wk. Diabetes was associated with an increase in urine albumin excretion, glomerulosclerosis, tubulointerstitial fibrosis, renal cortical collagen type I and IV, laminin, plasminogen activator inhibitor-1, tissue inhibitors of metalloproteinase-1 and -2, transforming growth factor (TGF)-beta, TGF-beta receptor type I and II, Smad2/3, phosphorylated Smad2/3, and Smad4 protein expression, and CD68-positive cell abundance. Decreases in matrix metalloproteinase (MMP)-2 protein expression and activity and decreases in Smad6 and Smad7 protein expression were also associated with diabetes. E2 supplementation completely or partially attenuated all these changes, except Smad4 and fibronectin, on which E2 supplementation had no effect. These data suggest that E2 attenuates the progression of diabetic renal disease once it has developed by regulating extracellular matrix, TGF-beta, and expression of its downstream regulatory proteins. These findings support the notion that sex hormones in general, and E2 in particular, are important regulators of renal function and may be novel targets for the treatment and prevention of diabetic renal disease.
Collapse
Affiliation(s)
- Alexis Dixon
- Department of Medicine, Georgetown University Medical Center, Washington, DC 20057
| | - Christine Maric
- Department of Medicine, Georgetown University Medical Center, Washington, DC 20057
- Center for the Study of Sex Differences: in Health, Aging and Disease, Georgetown University Medical Center, Washington, DC 20057
| |
Collapse
|
27
|
Elliot SJ, Berho M, Korach K, Doublier S, Lupia E, Striker GE, Karl M. Gender-specific effects of endogenous testosterone: female alpha-estrogen receptor-deficient C57Bl/6J mice develop glomerulosclerosis. Kidney Int 2007; 72:464-72. [PMID: 17495854 DOI: 10.1038/sj.ki.5002328] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Young female mice on a C57Bl/6J (B6) background are considered glomerulosclerosis (GS)-resistant but aging B6 mice develop mild GS. Estrogen deficiency accelerates while estrogen replacement retards GS in young sclerosis-prone oligosyndactyly mutant mice on an ROP background. To explore the effects of sex hormones on glomerular structure and function in the context of gender and genetic background, we studied mice in which the estrogen-receptor (ER) genes alpha- or -beta were deleted (alpha- or betaER knockout (KO)) and crossed into the B6 background. We also studied ovariectomized (Ovx) B6 mice given testosterone. Male and female betaERKO and male alphaERKO mice had no glomerular dysfunction at 9 months of age; however, alphaERKO female mice displayed albuminuria and GS. Ovx prevented glomerular dysfunction in alphaERKO female mice by eliminating endogenous testosterone production while exogenous testosterone induced GS in Ovx B6 mice. Androgen receptor (AR) expression and function was found in microdissected glomeruli and cultured mesangial cells. Testosterone compared to placebo increased both AR expression and TGF-beta1 mRNA levels in glomeruli isolated from female B6 mice. Estrogen deficiency had no deleterious effects on the glomeruli in B6 mice. Our study shows that genetic traits strongly influence the GS-promoting effects of estrogen deficiency while testosterone induces GS in a gender-specific manner.
Collapse
MESH Headings
- Albuminuria/genetics
- Albuminuria/metabolism
- Albuminuria/pathology
- Albuminuria/physiopathology
- Animals
- Body Weight
- Cells, Cultured
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Estradiol/metabolism
- Estrogen Receptor alpha/deficiency
- Estrogen Receptor alpha/genetics
- Estrogen Receptor alpha/metabolism
- Estrogen Receptor beta/deficiency
- Estrogen Receptor beta/genetics
- Estrogen Receptor beta/metabolism
- Extracellular Matrix Proteins/metabolism
- Female
- Genetic Predisposition to Disease
- Glomerulosclerosis, Focal Segmental/complications
- Glomerulosclerosis, Focal Segmental/genetics
- Glomerulosclerosis, Focal Segmental/metabolism
- Glomerulosclerosis, Focal Segmental/pathology
- Glomerulosclerosis, Focal Segmental/physiopathology
- Kidney Glomerulus/drug effects
- Kidney Glomerulus/metabolism
- Kidney Glomerulus/pathology
- Kidney Glomerulus/physiopathology
- Male
- Mesangial Cells/metabolism
- Mesangial Cells/pathology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Organ Size
- Ovariectomy
- Promoter Regions, Genetic
- RNA, Messenger/metabolism
- Receptors, Androgen/genetics
- Receptors, Androgen/metabolism
- Sex Factors
- Signal Transduction
- Testosterone/metabolism
- Testosterone/pharmacology
- Transfection
- Transforming Growth Factor beta1/genetics
- Transforming Growth Factor beta1/metabolism
Collapse
Affiliation(s)
- S J Elliot
- Department of Medicine, Study Group and Laboratory on Sex and Gender Differences in Health and Disease, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida 33136, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Dixon A, Corinne CW, Singh S, Babayan R, Maric C. Renoprotective effects of a selective estrogen receptor modulator, raloxifene, in an animal model of diabetic nephropathy. Am J Nephrol 2007; 27:120-8. [PMID: 17308373 PMCID: PMC3179626 DOI: 10.1159/000099837] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2006] [Accepted: 01/19/2007] [Indexed: 11/19/2022]
Abstract
BACKGROUND/AIMS Our previous studies have shown that supplementation with 17beta-estradiol (E2) from the onset of diabetes attenuates diabetic nephropathy. However, E2 is accompanied by feminizing effects as well as adverse side effects on other organs. The current study examined the renoprotective effects of a selective estrogen receptor modulator, raloxifene (RAL), in an experimental model of diabetic nephropathy. RAL activates estrogen receptors and estrogen-receptor-mediated cellular events without the side effects of E2. METHODS The study was performed in Sprague-Dawley nondiabetic (ND), streptozotocin-induced diabetic (D) and streptozotocin-induced D + RAL rats (n = 6/group). RESULTS After 12 weeks of treatment, D was associated with increased urine albumin excretion (ND: 4.2 +/- 0.4; D: 41.3 +/- 9.0 mg/day), glomerulosclerosis [glomerulosclerotic index; ND: 0.26 +/- 0.04; D: 1.86 +/- 0.80 arbitrary units (AU)], tubulointerstitial fibrosis (tubulointerstitial fibrosis index; ND: 0.37 +/- 0.05; D: 2.12 +/- 0.50 AU), increased collagen type I [ND: 1.31 +/- 0.07; D: 4.65 +/- 0.09 relative optical density (ROD)], collagen type IV (ND: 0.64 +/- 0.03; D: 1.37 +/- 0.11 ROD) and transforming growth factor beta (TGF-beta) protein expression (ND: 0.65 +/- 0.08; D: 1.25 +/- 0.10 ROD), increased density of CD68-positive cells (ND: 1.37 +/- 3.02; D: 29.2 +/- 1.74 cells/mm2) and increased plasma levels of interleukin-6 (ND: 14.8 +/- 5.0; D: 51.3 +/- 14.0 pg/ml). Treatment with RAL partially or fully attenuated these processes (urine albumin excretion: 21.0 +/- 5.0 mg/day; glomerulosclerotic index: 0.40 +/- 0.06 AU; tubulointerstitial fibrosis index: 0.20 +/- 0.04 AU; collagen type I: 2.55 +/- 0.49 ROD; collagen type IV: 0.70 +/- 0.09 ROD; TGF-beta: 0.91 +/- 0.08 ROD; CD68: 6.03 +/- 2.38 cells/mm2; interleukin-6: 31.2 +/- 5.0 pg/ml). CONCLUSIONS Our data indicate that treatment with RAL attenuates albuminuria and renal structural changes associated with diabetes.
Collapse
Affiliation(s)
- Alexis Dixon
- Department of Medicine, Georgetown University Medical Center, Washington, DC 20057
| | - C. Wells Corinne
- Department of Medicine, Georgetown University Medical Center, Washington, DC 20057
| | - Sandhya Singh
- Department of Medicine, Georgetown University Medical Center, Washington, DC 20057
| | - Regina Babayan
- Department of Medicine, Georgetown University Medical Center, Washington, DC 20057
| | - Christine Maric
- Department of Medicine, Georgetown University Medical Center, Washington, DC 20057
- Center for the Study of Sex Differences: in Health, Aging and Disease, Georgetown University Medical Center, Washington, DC 20057
| |
Collapse
|
29
|
Zylberberg C, Seamon V, Ponomareva O, Vellala K, Deighan M, Azzarolo AM. Estrogen up-regulation of metalloproteinase-2 and -9 expression in rabbit lacrimal glands. Exp Eye Res 2007; 84:960-72. [PMID: 17399702 DOI: 10.1016/j.exer.2007.02.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2006] [Revised: 11/03/2006] [Accepted: 02/02/2007] [Indexed: 11/21/2022]
Abstract
Increased levels of the matrix metalloproteinases (MMPs)-2 and -9 have been found in tear fluids of patients with dry eye disease, suggesting that these MMPs may be implicated in the pathogenesis of this disease. One of the main causes of dry eye disease is lacrimal gland insufficiency. However, the contribution of the lacrimal gland (LG) to the expression and production of MMP-2 and MMP-9 in tears is not known. Since dry eye disease occurs more frequently in women, sex hormones, especially estrogens, have also been implicated in the pathogenesis of this disease. Estrogens have been shown to regulate the synthesis levels of MMP-2 and MMP-9 in several tissues, Thus, the purpose of these studies was to determine if: (1) rabbit lacrimal glands secrete MMP-2 and MMP-9; (2) MMP-2 and MMP-9 are produced by lacrimal epithelial cells and/or lacrimal lymphocytes; and (3) the expression, activity and level of these enzymes are regulated by sex hormones. Lacrimal epithelial cells (LEC) and lacrimal lymphocytes (LL) from sexually mature New Zealand White female rabbits were isolated, purified and cultured with and without 10(-6)M dihydrotestosterone (DHT) or 10(-6), 10(-8), 10(-9) and 10(-10)M 17beta-estradiol (E2). The culture supernatants were analyzed by zymography and western blotting (WB) using polyclonal anti-human MMP-2 and MMP-9 antibodies. LGs were also collected from rabbits 7 days after being sham-operated, ovariectomized (OVX), OVX treated with 4 mg/kg DHT, and OVX treated with 0.5 mg/kg of E2. LGs were collected and processed for RNA extraction as well as protein determination using WB and immunocytochemistry. The pro-forms of MMP-2 and MMP-9 were detected in primary LEC and LL culture medium by zymography and WB. Pro-MMP-2 and pro-MMP-9 were also detected at the gene and protein levels in the lacrimal glands of all four treatment groups, with the highest levels and gene expression found in the estrogen-treated group. These results suggest that both pro-MMP-2 and pro-MMP-9 are secreted by the lacrimal gland and appear to be up-regulated by estrogen. The role of the lacrimal MMPs in the pathogenesis of dry eye disease needs to be further investigated.
Collapse
Affiliation(s)
- Claudia Zylberberg
- Department of Biomedical Science, Florida Atlantic University, Charles E. Schmidt College of Science, Boca Raton, FL, USA
| | | | | | | | | | | |
Collapse
|
30
|
Regitz-Zagrosek V, Brokat S, Tschope C. Role of Gender in Heart Failure with Normal Left Ventricular Ejection Fraction. Prog Cardiovasc Dis 2007; 49:241-51. [PMID: 17185112 DOI: 10.1016/j.pcad.2006.08.011] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Heart failure with normal ejection fraction (HF-NEF) is frequently believed to be more common in women than in men. However, the interaction of gender and age has rarely been analyzed in detail, and knowledge of the distinction between pre- and postmenopausal women is lacking. Some of the studies that have described a higher prevalence of HF-NEF in women relied on clinical diagnoses of HF together with normal systolic function and did not measure diastolic function. This applies to the analysis of patients hospitalized for HF and some epidemiological investigations that agree on the greater prevalence of HF-NEF in women. Population-based studies with echocardiographic determination of diastolic function have suggested equal or greater prevalence of diastolic dysfunction in men. Major risk factors for HF-NEF include hypertension, aging, obesity, diabetes, and ischemia. Hypertension is more frequent in women and can contribute to left ventricular and arterial stiffening in a gender-specific way. Aging, obesity, and diabetes affect myocardial and vascular stiffness differently and lead to different forms of myocardial hypertrophy in women and men. In contrast, ischemia may play a greater role in men. Gender differences in ventricular diastolic distensibility, in vascular stiffness and ventricular/vascular coupling, in skeletal muscle adaptation to HF, and in the perception of symptoms may contribute to a greater rate of HF-NEF in women. The underlying molecular mechanisms include gender differences in calcium handling, in the NO system, and in natriuretic peptides. Estrogen affects collagen synthesis and degradation and inhibits the renin-angiotensin system. Effects of estrogen may provide benefit to premenopausal women, and the loss of its protective mechanisms may render the heart of postmenopausal women more vulnerable. Thus, a number of molecular mechanisms can contribute to the gender differences in HF-NEF.
Collapse
Affiliation(s)
- Vera Regitz-Zagrosek
- Center for Cardiovascular Research, (CCR), Department of Cardiology and Pneumology, University Hospital Benjamin Franklin, Charite - Universitaetsmedizin Berlin, Berlin, Germany.
| | | | | |
Collapse
|
31
|
Karl M, Berho M, Pignac-Kobinger J, Striker GE, Elliot SJ. Differential effects of continuous and intermittent 17beta-estradiol replacement and tamoxifen therapy on the prevention of glomerulosclerosis: modulation of the mesangial cell phenotype in vivo. THE AMERICAN JOURNAL OF PATHOLOGY 2006; 169:351-61. [PMID: 16877338 PMCID: PMC1698782 DOI: 10.2353/ajpath.2006.051255] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Female ROP Os/+ mice are partially protected by endogenous estrogens against progressive glomerulosclerosis (GS) during their reproductive period; however, ovariectomy accelerates GS progression. We examined the effects of continuous and intermittent 17beta-estradiol (E(2)) replacement and tamoxifen therapy on the development of GS in ovariectomized (Ovx) ROP Os/+ mice. Continuous E(2) replacement (CE(2)) throughout 9 months prevented microalbuminuria and excess extracellular matrix accumulation in Ovx ROP Os/+, not only compared to placebo-treated Ovx mice but also in comparison to intact female ROP Os/+. Tamoxifen had a similar effect, but of lesser magnitude. Intermittent 3-month on-off-on E(2) did not reduce the kidney changes. Mesangial cells (MCs) from CE(2) mice maintained their estrogen responsiveness. E(2) in vitro prevented transforming growth factor-beta1 stimulation of a Smad-responsive reporter construct and increased MMP-2 expression and activity in MCs isolated from CE(2) mice. MCs from mice on either placebo or intermittent E(2) treatment did not respond to added E(2), consistent with a stable alteration of their estrogen responsiveness. Tamoxifen protection against GS was less pronounced in ROP Os/+ mice. Thus, prolonged estrogen deficiency promotes GS and renders MCs insensitive to subsequent estrogen treatment. This underscores the importance of continuous estrogen exposure for maintaining glomerular function and structure in females susceptible to progressive GS.
Collapse
Affiliation(s)
- Michael Karl
- Vascular Biology Institute, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA.
| | | | | | | | | |
Collapse
|
32
|
Mankhey RW, Wells CC, Bhatti F, Maric C. 17beta-Estradiol supplementation reduces tubulointerstitial fibrosis by increasing MMP activity in the diabetic kidney. Am J Physiol Regul Integr Comp Physiol 2006; 292:R769-77. [PMID: 16931652 DOI: 10.1152/ajpregu.00375.2006] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We previously reported that supplementation with 17beta-estradiol (E2) attenuates albuminuria, glomerulosclerosis, and tubulointerstitial fibrosis in diabetic nephropathy. The present study examined the mechanisms by which E2 regulates extracellular matrix (ECM) metabolism, a process that contributes to the development of glomerulosclerosis and tubulointerstitial fibrosis. The study was performed in female nondiabetic (ND), streptozotocin-induced diabetic (D), and diabetic with E2 supplementation (D+E2) Sprague-Dawley rats for 12 wk. Diabetes was associated with an increase in the renal expression of collagen alpha type IV [ND, 0.22 +/- 0.02; D, 0.99 +/- 0.09 relative optical density (ROD); P < 0.05] and fibronectin protein (ND, 0.36 +/- 0.08; D, 1.47 +/- 0.08 ROD; P < 0.05), as measured by Western blot analysis. E2 supplementation partially attenuated this increase in collagen alpha type IV (D+E2, 0.47 +/- 0.10 ROD) and fibronectin (D+E2, 0.71 +/- 0.16 ROD) protein expression associated with D. Diabetes was also associated with a decrease in the expression of matrix metalloproteinase (MMP) isoform MMP-2 (ND, 0.79 +/- 0.01; D, 0.62 +/- 0.06 ROD; P < 0.05) and MMP-9 protein (ND, 0.49 +/- 0.02; D, 0.33 +/- 0.03 ROD; P < 0.05). E2 supplementation restored MMP-2 and MMP-9 protein to levels similar or even greater than in the ND kidneys (MMP-2, 0.75 +/- 0.06; MMP-9, 0.73 +/- 0.01 ROD). The activities of MMP-2 (ND, 7.88 +/- 0.44; D, 5.60 +/- 0.54 ROD; P < 0.05) and MMP-9 (ND, 29.9 +/- 1.8; D, 12.9 +/- 2.3 ROD; P < 0.05), as measured by zymography, were also decreased with D. E2 supplementation restored MMP-2 and MMP-9 activity to levels similar to that in ND kidneys (MMP-2, 7.66 +/- 0.35; MMP-9, 21.4 +/- 2.9 ROD). We conclude that E2 supplementation is renoprotective by attenuating glomerulosclerosis and tubulointerstitial fibrosis by reducing ECM synthesis and increasing ECM degradation.
Collapse
Affiliation(s)
- Richard W Mankhey
- Department of Medicine, Georgetown Univ. Medical Center, 394 Bldg D, 4000 Reservoir Rd., NW, Washington, DC 20057, USA
| | | | | | | |
Collapse
|
33
|
Wells CC, Riazi S, Mankhey RW, Bhatti F, Ecelbarger C, Maric C. Diabetic nephropathy is associated with decreased circulating estradiol levels and imbalance in the expression of renal estrogen receptors. ACTA ACUST UNITED AC 2006; 2:227-37. [PMID: 16464734 DOI: 10.1016/s1550-8579(05)80052-x] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/25/2005] [Indexed: 11/18/2022]
Abstract
BACKGROUND The incidence of cardiovascular and renal disease is lower in premenopausal women than in aged-matched men. However, in the setting of diabetes mellitus (DM), this "female advantage" no longer exists: the incidence and progression of DM and its associated end-organ complications are equal in men and women, regardless of age. We have recently reported that estrogen supplementation attenuates the progression of diabetic nephropathy, suggesting that lack of estrogen may nullify female sex as a protective factor against DM. OBJECTIVE This study examined circulating levels of estradiol in DM and expression of estrogen receptor subtypes (ERa and ERP) in the nondiabetic (ND) and diabetic (D) kidney. METHODS : The study was performed in ND and streptozotocin-induced D Sprague-Dawley rats after 2 weeks (male and female) and 12 weeks (female) of DM. The animals (N = 8/group) were kept either intact, ovariectomized (OVX), or OVX with 17beta-estradiol (E(2)) supplementation (OVX + E(2), 5 mug/kg/d). Plasma estradiol levels were measured by enzyme-linked immunosorbent assay, and expression of renal ERalpha and ERbeta was measured by immunohistochemistry and Western blot analysis. RESULTS DM was associated with reduced circulating estradiol levels (ND: mean [SEM] 37.1 [7.2]; D: 24.5 [9.3] pg/mL; P < 0.05). The diabetic kidney exhibited increased expression of ERalpha protein (ND: 0.82 [0.06]; D: 1.15 [0.09] arbitrary units; P < 0.05), but no differences in ERP were observed. This resulted in an overall increase in the ratio of ERalpha/ERbeta protein expression in the diabetic kidney. No differences in the expression of ERa were observed in either females or males with similar glycemic levels after 2 weeks of DM. CONCLUSIONS Reduced circulating levels of estradiol and imbalance in the expression of estrogen receptor subtypes in the diabetic kidney may explain why female sex is no longer a protective factor in the setting of DM. Thus, estradiol supplementation may be an effective regimen in attenuating the onset and progression of diabetic renal complications.
Collapse
Affiliation(s)
- Corinne C Wells
- Department of Medicine, Georgetown University Medical Center, Washington, DC 20057, USA.
| | | | | | | | | | | |
Collapse
|
34
|
Delbecchi L, Miller N, Prud'homme C, Petitclerc D, Wagner G, Lacasse P. 17β-estradiol reduces milk synthesis and increases stanniocalcin gene expression in the mammary gland of lactating cows. ACTA ACUST UNITED AC 2005. [DOI: 10.1016/j.livprodsci.2005.10.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
35
|
Abstract
Gender differences exist in hypertension, the prevalence of several renal diseases, progression of established renal disease, and within the ESRD program, including renal transplantation. Sex hormones play key roles in the pathogenesis and outcome of disease processes. Observational data suggest gender differences in the prevalence and outcome of several renal diseases. The molecular mechanisms associated with physiologic phenomena needed to explain gender differences in renal disorders, however, remain largely obscure. The interaction of psychosocial, economic, medical, and genetic differences associated with discrepancies between the genders in the process of receiving a renal transplant and sustaining graft function are currently unclear. Additional studies are needed in these and other areas to explain gender differences in the incidence, prevalence, and outcome of renal disease.
Collapse
Affiliation(s)
- Daisy Reyes
- Division of Renal Diseases and Hypertension, Department of Medicine, George Washington University Medical Center, 2150 Pennsylvania Avenue, NW, Room 4-425, Washington, DC 20037, USA
| | | | | |
Collapse
|
36
|
Mankhey RW, Bhatti F, Maric C. 17beta-Estradiol replacement improves renal function and pathology associated with diabetic nephropathy. Am J Physiol Renal Physiol 2004; 288:F399-405. [PMID: 15454392 DOI: 10.1152/ajprenal.00195.2004] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The protective factor of female gender appears to be lost in diabetes; the incidence of diabetes and its complications, including diabetic nephropathy, are equal in women and men. This study examined the effects of estrogen deficiency by ovariectomy (OVX) and replacement with 17beta-estradiol (OVX+E2) on renal function and pathology in the nondiabetic (ND) and streptozotocin (STZ)-induced diabetic (D) rat kidneys for 12 wk. Diabetes was associated with an increase in urine albumin excretion (UAE; ND, 0.39 +/- 0.03; D, 5.9 +/- 0.8 mg/day; P < 0.001), decrease in creatinine clearance (CrCl; ND, 0.69 +/- 0.03; D, 0.43 +/- 0.09 mg x min(-1) x 100 g body wt(-1); P < 0.05), increase in the index of glomerulosclerosis [GSI; ND, 0.01 +/- 0.01; D, 0.15 +/- 0.04 arbitrary units (AU); P < 0.01], tubulointerstitial fibrosis (TIFI; ND, 0.04 +/- 0.04; D, 0.68 +/- 0.2 AU; P < 0.01), and transforming growth factor-beta (TGF-beta) protein expression (ND, 0.61 +/- 0.02; D, 1.25 +/- 0.07 AU; P < 0.01). In the D group, the severity of these changes was augmented with OVX (UAE, 8.1 +/- 0.6 mg/day; CrCl, 0.40 +/- 0.04 mg x min(-1) x 100 g body wt(-1); GSI, 0.29 +/- 0.04 AU; TIFI, 0.90 +/- 0.06 AU; TGF-beta, 1.26 +/- 0.10 AU), whereas E2 replacement attenuated these changes (UAE, 6.3 +/- 0.8 mg/day; CrCl, 0.66 +/- 0.03 mg x min(-1) x 100 g body wt(-1); GSI, 0.06 +/- 0.02 AU; TIFI, 0.36 +/- 0.08 AU; TGF-beta, 0.57 +/- 0.08 AU). We conclude that E2 deficiency increases the severity of renal disease in a diabetic animal model and that E2 replacement is renoprotective by attenuating the decline in renal function and pathology associated with diabetes.
Collapse
Affiliation(s)
- Richard W Mankhey
- Department of Medicine, Georgetown University Medical Center, Washington, DC 20057, USA
| | | | | |
Collapse
|
37
|
Elliot SJ, Karl M, Berho M, Potier M, Zheng F, Leclercq B, Striker GE, Striker LJ. Estrogen deficiency accelerates progression of glomerulosclerosis in susceptible mice. THE AMERICAN JOURNAL OF PATHOLOGY 2003; 162:1441-8. [PMID: 12707027 PMCID: PMC1851210 DOI: 10.1016/s0002-9440(10)64277-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Estrogen deficiency may contribute to the development and progression of glomerulosclerosis in postmenopausal women. The responsiveness to estrogens could be controlled by genetic traits related to those that determine the susceptibility to glomerular scarring. This study was undertaken to determine whether the intensity of the sclerotic response was modified by the estrogen status in sclerosis-prone ROP Os/+ mice. Ovariectomized ROP Os/+ mice developed more severe renal dysfunction and glomerulosclerosis than intact, ie, estrogen sufficient age-matched female mice. Ovariectomized ROP Os/+ exhibited increased accumulation of extracellular matrix, predominantly of laminin, and a marked distortion of the glomerular architecture. We found an increase in macrophage infiltration in the mesangium of ovariectomized ROP Os/+. Estrogen deficiency decreased glomerular estrogen receptor expression in ROP Os/+ mice, which we had previously found to be low in the parental ROP strain. Thus, although physiological estrogen levels in young ROP Os/+ mice could not prevent the development of glomerulosclerosis, estrogen deficiency accelerated the progression of glomerular scarring in this mouse strain. This suggests that estrogen replacement will slow but not prevent the progression of glomerulosclerosis. It underscores the importance of the genetic composition of individuals that determines the susceptibility to diseases as well as the response to treatment.
Collapse
Affiliation(s)
- Sharon J Elliot
- Vascular Biology Institute and Departments of Medicine and Surgery, University of Miami School of Medicine, Miami, Florida 33136, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Silbiger SR, Neugarten J. The role of gender in the progression of renal disease. ADVANCES IN RENAL REPLACEMENT THERAPY 2003; 10:3-14. [PMID: 12616458 DOI: 10.1053/jarr.2003.50001] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The rate of progression of certain renal diseases in animals is greater in men than in women. In various animal models of renal disease, investigators have concluded that the presence of testosterone explains the worse course in men compared with women, whereas in other diseases, estrogen seems to confer protection for women. The gender disparity in renal disease progression found in animals is seen in certain human renal diseases, including chronic renal disease, membranous nephropathy, immunoglobin A nephropathy, and polycystic kidney disease. In humans, the differences between the genders in renal disease progression cannot be fully explained by differences in blood pressure or serum cholesterol levels. The underlying mechanisms for this gender disparity are potentially related to differences between the sexes in glomerular structure, glomerular hemodynamics, diet, variations in the production and activity of local cytokines and hormones, and/or the direct effect of sex hormones on kidney cells. Further investigation into the contribution of gender to renal disease progression may aid us in developing strategies for slowing this pathological process.
Collapse
Affiliation(s)
- Sharon R Silbiger
- Department of Medicine, Division of Nephrology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA.
| | | |
Collapse
|
39
|
Cheng J, Grande JP. Transforming growth factor-beta signal transduction and progressive renal disease. Exp Biol Med (Maywood) 2002; 227:943-56. [PMID: 12486204 DOI: 10.1177/153537020222701102] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Transforming growth factor-beta (TGF-beta) superfamily members are multifunctional growth factors that play pivotal roles in development and tissue homeostasis. Recent studies have underscored the importance of TGF-beta in regulation of cell proliferation and extracellular matrix synthesis and deposition. TGF-beta signaling is initiated by ligand binding to a membrane-associated receptor complex that has serine/threonine kinase activity. This receptor complex phosphorylates specific Smad proteins, which then transduce the ligand-activated signal to the nucleus. Smad complexes regulate target gene transcription either by directly binding DNA sequences, or by complexing with other transcription factors or co-activators. There is extensive crosstalk between the TGF-beta signaling pathway and other signaling systems, including the mitogen-activated protein kinase pathways. The importance of TGF-beta in regulation of cell growth has been emphasized by recent observations that mutations of critical elements of the TGF-beta signaling system are associated with tumor progression in patients with many different types of epithelial neoplasms. TGF-beta has emerged as a predominant mediator of extracellular matrix production and deposition in progressive renal disease and in other forms of chronic tissue injury. In this overview, recent advances in our understanding of TGF-beta signaling, cell cycle regulation by TGF-beta, and the role of TGF-beta in progressive renal injury are highlighted.
Collapse
Affiliation(s)
- Jingfei Cheng
- Renal Pathophysiology Laboratory, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | | |
Collapse
|
40
|
McGaha TL, Kodera T, Spiera H, Stan AC, Pines M, Bona CA. Halofuginone inhibition of COL1A2 promoter activity via a c-Jun-dependent mechanism. ARTHRITIS AND RHEUMATISM 2002; 46:2748-61. [PMID: 12384935 DOI: 10.1002/art.10549] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The naturally occurring compound halofuginone has been shown to antagonize collagen synthesis by fibroblasts both in vitro and in vivo. We previously demonstrated that this inhibitory property was related to the ability of halofuginone to disrupt transforming growth factor beta signal transduction. The present study further analyzed the ability of halofuginone to affect transcription factors that can regulate type I collagen gene expression by examining its effect on c-Jun, the negative regulator of collagen gene transcription. METHODS The phosphorylation state of c-Jun in the presence of halofuginone was examined via direct Western blotting, and the transcriptional activity of the activator protein 1 (AP-1) binding element via electrophoretic mobility shift assay and luciferase reporter assay. We determined whether the effect of halofuginone on collagen synthesis was dependent on the presence of c-Jun by ectopic expression of a wild-type or dominant-negative c-Jun construct in the presence of halofuginone and assaying alpha2(I) collagen promoter strength via luciferase reporter assay. The effect of halofuginone on alpha2(I) collagen message levels in fibroblasts when wild-type or dominant-negative c-Jun was overexpressed was determined. We also determined whether halofuginone had an effect on the phosphorylation state of c-Jun in the skin of TSK/+ mice via immunohistochemistry. RESULTS Treatment of fibroblasts with 10(-8)M halofuginone enhanced basal and mitogen-mediated phosphorylation of c-Jun in culture. This elevated phosphorylation of c-Jun correlated with enhanced DNA binding and transcriptional activation of an AP-1 complex consisting of c-Jun and Fos but lacking the c-Jun antagonist JunB. Overexpression of c-Jun enhanced in a dose-dependent manner the ability of halofuginone to inhibit the activity of a luciferase reporter construct under control of the -3200-bp to +54-bp COL1A2 promoter, whereas the expression of a dominant-negative c-Jun construct abolished this effect. Northern blotting showed that overexpression of c-Jun enhanced the ability of halofuginone to reduce collagen alpha2(I) messenger RNA levels in fibroblasts, whereas expression of the dominant-negative c-Jun abolished this effect. Topical administration of a halofuginone-containing cream for 20 days to TSK mice, which spontaneously develop dermal fibrosis, greatly increased the phosphorylated form of c-Jun in the skin; this was followed by a decrease in skin thickness and type I collagen messenger RNA expression. CONCLUSION Our findings illustrate the powerful down-regulatory property of c-Jun toward type I collagen and establish that halofuginone exerts its effect on collagen synthesis in a c-Jun-dependent manner.
Collapse
Affiliation(s)
- Tracy L McGaha
- Department of Microbiology, The Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029, USA
| | | | | | | | | | | |
Collapse
|
41
|
Potier M, Karl M, Zheng F, Elliot SJ, Striker GE, Striker LJ. Estrogen-related abnormalities in glomerulosclerosis-prone mice: reduced mesangial cell estrogen receptor expression and prosclerotic response to estrogens. THE AMERICAN JOURNAL OF PATHOLOGY 2002; 160:1877-85. [PMID: 12000739 PMCID: PMC1850880 DOI: 10.1016/s0002-9440(10)61134-0] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/11/2002] [Indexed: 10/18/2022]
Abstract
The development and progression of glomerulosclerosis (GS) is determined by the genetic background. The incidence of end-stage renal disease is increased in postmenopausal women, suggesting that estrogen deficiency may play a role in the accumulation of extracellular matrix by mesangial cells (MCs), which are primarily responsible for the synthesis and degradation of this matrix. Using mouse models that are prone or resistant to the development of GS, we compared the expression of estrogen receptor (ER)-alpha and ER-beta subtypes in GS-prone and GS-resistant glomeruli and isolated MCs, and examined the effects of estrogens on ER, collagen, and matrix metalloproteinase (MMP) expression in MCs. Glomeruli and MCs from GS-prone mice had decreased expression of ER-alpha and ER-beta subtypes and ER transcriptional activity was also decreased in their MCs. Importantly, although 17 beta-estradiol treatment resulted in decreased collagen accumulation and increased MMP-9 expression and activity in MCs from GS-resistant mice, there was, paradoxically, no effect on collagen accumulation and decreased MMP-9 expression and activity in MCs from GS-prone mice. Thus, GS susceptibility is associated with diminished ER expression in MCs. The renal protective effects of estrogens, including decreased collagen accumulation and increased MMP-9 expression, seem to be blunted in GS-prone MCs.
Collapse
MESH Headings
- Animals
- Blotting, Western
- Cells, Cultured
- Collagen Type IV/metabolism
- Estradiol/pharmacology
- Estrogen Receptor alpha
- Estrogen Receptor beta
- Estrogens/metabolism
- Estrogens/pharmacology
- Female
- Gene Expression Regulation/drug effects
- Glomerular Mesangium/cytology
- Glomerular Mesangium/drug effects
- Glomerular Mesangium/metabolism
- Glomerulosclerosis, Focal Segmental/metabolism
- Glomerulosclerosis, Focal Segmental/pathology
- Glomerulosclerosis, Focal Segmental/prevention & control
- Matrix Metalloproteinase 9/genetics
- Matrix Metalloproteinase 9/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Inbred Strains
- RNA, Messenger/drug effects
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Estrogen/genetics
- Receptors, Estrogen/metabolism
- Species Specificity
- Transcription, Genetic
- Up-Regulation/drug effects
Collapse
Affiliation(s)
- Mylène Potier
- Vascular Biology Institute, Department of Medicine, University of Miami School of Medicine, Miami, Florida 33101, USA
| | | | | | | | | | | |
Collapse
|
42
|
Ghosh AK. Factors involved in the regulation of type I collagen gene expression: implication in fibrosis. Exp Biol Med (Maywood) 2002; 227:301-14. [PMID: 11976400 DOI: 10.1177/153537020222700502] [Citation(s) in RCA: 191] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Type I collagen, the major component of extracellular matrix in skin and other tissues, is a heterotrimer of two alpha1 and one alpha2 collagen polypeptides. The synthesis of both chains is highly regulated by different cytokines at the transcriptional level. Excessive synthesis and deposition of collagen in the dermal region causes thick and hard skin, a clinical manifestation of scleroderma. To better understand the causes of scleroderma or other tissue fibrosis, it is very important to investigate the molecular mechanisms that cause upregulation of the Type I collagen synthesis in these tissues. Several cis-acting regulatory elements and trans-acting protein factors, which are involved in basal as well as cytokine-modulated Type I collagen gene expression, have been identified and characterized. Hypertranscription of Type I collagen in scleroderma skin fibroblasts may be due to abnormal activities of different positive or negative transcription factors in response to different abnormally induced signaling pathways. In this review, I discuss the present day understanding about the involvement of different factors in the regulation of basal as well as cytokine-modulated Type I collagen gene expression and its implication in scleroderma research.
Collapse
Affiliation(s)
- Asish K Ghosh
- Section of Rheumatology, Department of Medicine, 1158 Molecular Biology Research Building, University of Illinois, 900 South Ashland Avenue, Chicago, IL 60607, USA.
| |
Collapse
|
43
|
Jones DR, Schmidt RJ, Pickard RT, Foxworthy PS, Eacho PI. Estrogen receptor-mediated repression of human hepatic lipase gene transcription. J Lipid Res 2002. [DOI: 10.1016/s0022-2275(20)30144-9] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
44
|
Yashiro M, Muso E, Kamata T, Oyama A, Sasayama S, Yoshida H. Altered cultured mesangial cell phenotypes from RF/J mice: a spontaneous immune complex mediated glomerulonephritis with progressive glomerulosclerosis. EXPERIMENTAL NEPHROLOGY 2002; 9:420-7. [PMID: 11702002 DOI: 10.1159/000052641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND/AIM RF/J mice are a model of spontaneous immune complex mediated glomerulonephritis showing massive extracellular matrix accumulation and progressive glomerulosclerosis. The aim of this study was to investigate whether there is an altered cultured mesangial cell (MC) phenotype in RF/J mice associated with these glomerular changes. METHODS The nature of cultured MCs from RF/J mice in the proliferative response to platelet-derived growth factor (PDGF) BB was compared with that of normal mice (BALB/c) by 3H-thymidine incorporation. The binding of PDGF-BB was examined with Scatchard analysis, and the messenger RNAs (mRNAs) of PDGF beta-receptor, collagen I, collagen IV, and fibronectin were detected using Northern blot analysis in the MCs of each mouse. RESULTS The 3H-thymidine incorporation of MCs from RF/J mice showed significantly lower responses to PDGF-BB stimulations with concentrations ranging from 0.5 to 10.0 ng/ml in comparison with those of BALB/c mice which exhibited a proportional dose- dependent increase of the incorporation (p < 0.05 for 0.5 ng/ml PDGF-BB, p < 0.01 for 1.0-10.0 ng/ml). According to the Scatchard analysis, MCs from BALB/c mice showed aKD of 105 pM of PDGF-BB binding to its receptors, and the density of receptors was 5.82 fmol/10(5) cells. However, no binding PDGF-BB site on the surface of MCs from RF/J mice was noted. Northern blot analysis of MCs from RF/J mice indicated negative expression of detectable PDGF-beta receptor mRNA. As for matrix protein messages, MCs from RF/J mice did not express mRNA of type I collagen, but did express a higher amount of type IV collagen and fibronectin in comparison with MCs from normal BALB/c mice. CONCLUSIONS An altered phenotype in MCs of RF/J mice was demonstrated, possibly contributing to the characteristic pathological glomerular changes. However, the precise association remains to be clarified.
Collapse
Affiliation(s)
- M Yashiro
- Division of Nephrology, Kyoto City Hospital, Department of Internal Medicine, Kyoto University Hospital, Kyoto, Japan
| | | | | | | | | | | |
Collapse
|
45
|
Guccione M, Silbiger S, Lei J, Neugarten J. Estradiol upregulates mesangial cell MMP-2 activity via the transcription factor AP-2. Am J Physiol Renal Physiol 2002; 282:F164-9. [PMID: 11739124 DOI: 10.1152/ajprenal.0318.2000] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The accumulation of extracellular matrix in the glomerular mesangium reflects the net balance between the synthesis and degradation of matrix components. We have shown that estradiol suppresses the synthesis of types I and IV collagen by cultured mesangial cells (Kwan G, Neugarten J, Sherman M, Ding Q, Fotadar U, Lei J, and Silbiger S. Kidney Int 50: 1173-1179, 1996; Neugarten J, Acharya A, Lei J, and Silbiger S. Am J Physiol Renal Physiol 279: F309-F318, 2000; Neugarten J, Medve I, Lei J, and Silbiger SR. Am J Physiol Renal Physiol 277: F1-F8, 1999; Neugarten J and Silbiger S. Am J Kidney Dis 26: 147-151, 1995; Silbiger S, Lei J, and Neugarten J. Kidney Int 55: 1268-1276, 1998; Silbiger S, Lei J, Ziyadeh FN, and Neugarten J. Am J Physiol Renal Physiol 274: F1113-F1118, 1998). In the present study, we evaluated the effects of sex hormones on the activity of matrix metalloproteinase-2 (MMP-2) in murine mesangial cells, the synthesis of which is regulated by the transcription factor activator protein-2 (AP-2). Estradiol stimulated MMP-2 activity by increasing MMP-2 protein levels in a dose-dependent manner. These effects occurred at physiological concentrations of estradiol and were receptor mediated. Estradiol also increased AP-2 protein levels and increased binding of mesangial cell nuclear extracts to an AP-2 consensus binding sequence oligonucleotide. The ability of estradiol to increase AP-2 protein expression, AP-2/DNA binding activity, MMP-2 protein expression, and metalloproteinase activity was reversed by PD-98059, a selective inhibitor of the extracellular signal-regulated kinase/mitogen-activated protein kinase (ERK/MAPK) signaling cascade. We conclude that estradiol upregulates the MAPK cascade, which in turn stimulates the synthesis of AP-2 protein. The resultant increased AP-2/DNA binding activity leads to increased synthesis of MMP-2 and increased metalloproteinase activity. Stimulation of metalloproteinase activity by estradiol may contribute to the protective effect of female gender on renal disease progression.
Collapse
Affiliation(s)
- Michael Guccione
- Division of Nephrology, Department of Medicine, Montefiore Medical Center, and the Albert Einstein College of Medicine, Bronx, New York 10467, USA
| | | | | | | |
Collapse
|
46
|
Takeda K, Ichiki T, Tokunou T, Iino N, Takeshita A. 15-Deoxy-delta 12,14-prostaglandin J2 and thiazolidinediones activate the MEK/ERK pathway through phosphatidylinositol 3-kinase in vascular smooth muscle cells. J Biol Chem 2001; 276:48950-5. [PMID: 11687581 DOI: 10.1074/jbc.m108722200] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Peroxisome proliferator-activated receptor (PPAR) gamma belongs to the nuclear receptor superfamily of ligand-dependent transcription factors. Recent results have shown that the ligands for nuclear receptors have rapid effects so called "nongenomic" effects, which are observed within minutes after stimulation. We examined whether 15-deoxy-Delta(12,14)-prostaglandin J(2) (15-d-PGJ2) had rapid effects on cultured vascular smooth muscle cells. Phosphorylation of ERK and c-fos mRNA expression were determined by Western and Northern blot analyses, respectively. PPAR gamma agonists 15-d-PGJ2 and thiazolidinediones such as pioglitazone and troglitazone elicited rapid activation of ERK within 15 min and induced c-fos mRNA expression within 30 min, whereas the PPAR alpha agonist bezafibrate failed to activate ERK. 15-d-PGJ2-induced expression of c-fos mRNA was blocked by PD98059 or U0126, two ERK kinase inhibitors, suggesting that the MEK/ERK pathway mediates 15-d-PGJ2-induced c-fos gene expression. Furthermore, pretreatment with wortmannin, an inhibitor of phosphatidylinositol 3 (PI3)-kinase, inhibited 15-d-PGJ2-induced ERK activation and c-fos mRNA expression, suggesting that PI3-kinase is involved in the process. An electrophoretic mobility shift assay showed that 15-d-PGJ2 enhanced AP-1 binding activity to AP-1 consensus sequence in a time-dependent manner. 15-d-PGJ2 increased thymidine incorporation in a PI3-kinase-dependent manner. Taken together, our findings show that 15-d-PGJ2 and thiazolidinediones activate the MEK/ERK pathway through PI3-kinase and lead to c-fos mRNA expression and DNA synthesis. These findings indicate a novel regulatory mechanism of gene expression by 15-d-PGJ2 and thiazolidinediones.
Collapse
MESH Headings
- Androstadienes/pharmacology
- Animals
- Cells, Cultured
- Chromans/pharmacology
- Enzyme Activation
- Enzyme Inhibitors/pharmacology
- Immunologic Factors/metabolism
- MAP Kinase Signaling System/physiology
- Mitogen-Activated Protein Kinases/metabolism
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/enzymology
- Muscle, Smooth, Vascular/physiology
- Phosphatidylinositol 3-Kinases/metabolism
- Phosphoinositide-3 Kinase Inhibitors
- Phosphorylation
- Pioglitazone
- Prostaglandin D2/analogs & derivatives
- Prostaglandin D2/pharmacology
- Proto-Oncogene Proteins c-fos/genetics
- Proto-Oncogene Proteins c-fos/metabolism
- RNA, Messenger/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptors, Cytoplasmic and Nuclear/agonists
- Thiazoles/pharmacology
- Thiazolidinediones
- Thymidine/metabolism
- Transcription Factors/agonists
- Troglitazone
- Wortmannin
Collapse
Affiliation(s)
- K Takeda
- Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, 812-8582 Fukuoka, Japan
| | | | | | | | | |
Collapse
|
47
|
Dubey RK, Jackson EK. Estrogen-induced cardiorenal protection: potential cellular, biochemical, and molecular mechanisms. Am J Physiol Renal Physiol 2001; 280:F365-88. [PMID: 11181399 DOI: 10.1152/ajprenal.2001.280.3.f365] [Citation(s) in RCA: 175] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
A number of cellular and biochemical processes are involved in the pathophysiology of glomerular and vascular remodeling, leading to renal and vascular disorders, respectively. Although estradiol protects the renal and cardiovascular systems, the mechanisms involved remain unclear. In this review we provide a discussion of the cellular, biochemical, and molecular mechanisms by which estradiol may exert protective effects on the kidneys and vascular wall. In this regard, we consider the possible role of genomic vs. nongenomic mechanisms and estrogen receptor-dependent vs. estrogen receptor-independent mechanisms in mediating the protective effects of estradiol on the renal and cardiovascular systems.
Collapse
Affiliation(s)
- R K Dubey
- Center for Clinical Pharmacology, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA.
| | | |
Collapse
|
48
|
Abstract
Many studies of chronic renal disease have reported that men have a more rapid progression of renal insufficiency. However, other studies have found no differences between the sexes, and the true effect of sex on chronic renal disease remains a topic of controversy. There is evidence that women with non-diabetic renal diseases experience a slower progression, but in diabetic renal disease, the effect of gender is not yet established. Sex hormones may mediate the effects of gender on chronic renal disease, through alterations in the renin--angiotensin system, reduction in mesangial collagen synthesis, the modification of collagen degradation, and upregulation of nitric oxide synthesis.
Collapse
Affiliation(s)
- S L Seliger
- Division of Nephrology, University of Washington Medical Center, Seattle, Washington, USA
| | | | | |
Collapse
|
49
|
Potier M, Elliot SJ, Tack I, Lenz O, Striker GE, Striker LJ, Karl M. Expression and regulation of estrogen receptors in mesangial cells: influence on matrix metalloproteinase-9. J Am Soc Nephrol 2001; 12:241-251. [PMID: 11158214 DOI: 10.1681/asn.v122241] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Diabetic glomerulosclerosis is characterized by the accumulation of extracellular matrix (ECM) in the mesangium. Estrogens seem to retard whereas estrogen deficiency seems to accelerate progressive glomerulosclerosis. Thus, mesangial cells (MC) may be a target for estrogens. Estrogen action is mediated via estrogen receptor (ER) subtypes ERalpha and ERbeta. Both ER subtypes were expressed in human and mouse MC. Using an estrogen-responsive reporter construct in transfection assays, it also was demonstrated that the nuclear ER were transcriptionally active. In the presence of 17beta-estradiol (E2; 10(-10) to 10(-8) M), there was a progressive increase in the mRNA levels of both ERalpha (approximately 1.8-fold and approximately 2.7-fold after 24 and 72 h, respectively) and ERbeta (approximately 1.3-fold and approximately 2.2-fold after 24 and 72 h, respectively). ERalpha protein levels increased approximately 2.5-fold after 24 h (10(-10) M, E2) and up to approximately 5.4-fold after 72 h (10(-9) M, E2). ERbeta protein levels increased approximately 2.1-fold in the presence of E(2) (10(-9) M) after 24 h. Thus, estrogens positively regulate the expression of the ER subtypes, thereby maintaining or increasing MC responsiveness to estrogens. Because diabetic glomerulosclerosis may be due partly to a decrease in ECM degradation, the effects of estrogens on matrix metalloproteinases (MMP) were studied. It was found that E2 (10(-10) to 10(-8) M) increased both MMP-9 mRNA and MMP-9 activity in MC. This may be an important mechanism by which estrogens influence ECM turnover and protect against progression of diabetic glomerulosclerosis.
Collapse
Affiliation(s)
- Mylene Potier
- Renal Cell Biology Laboratory, Division of Nephrology, University of Miami School of Medicine, Miami, Florida
| | - Sharon J Elliot
- Renal Cell Biology Laboratory, Division of Nephrology, University of Miami School of Medicine, Miami, Florida
- Division of Endocrinology, Diabetes and Metabolism, University of Miami School of Medicine, Miami, Florida
| | - Ivan Tack
- Renal Cell Biology Laboratory, Division of Nephrology, University of Miami School of Medicine, Miami, Florida
| | - Oliver Lenz
- Renal Cell Biology Laboratory, Division of Nephrology, University of Miami School of Medicine, Miami, Florida
| | - Gary E Striker
- Renal Cell Biology Laboratory, Division of Nephrology, University of Miami School of Medicine, Miami, Florida
- Division of Endocrinology, Diabetes and Metabolism, University of Miami School of Medicine, Miami, Florida
- Vascular Biology Institute, University of Miami School of Medicine, Miami, Florida
| | - Liliane J Striker
- Renal Cell Biology Laboratory, Division of Nephrology, University of Miami School of Medicine, Miami, Florida
- Vascular Biology Institute, University of Miami School of Medicine, Miami, Florida
| | - Michael Karl
- Renal Cell Biology Laboratory, Division of Nephrology, University of Miami School of Medicine, Miami, Florida
- Division of Endocrinology, Diabetes and Metabolism, University of Miami School of Medicine, Miami, Florida
- Vascular Biology Institute, University of Miami School of Medicine, Miami, Florida
| |
Collapse
|
50
|
Neugarten J, Acharya A, Lei J, Silbiger S. Selective estrogen receptor modulators suppress mesangial cell collagen synthesis. Am J Physiol Renal Physiol 2000; 279:F309-18. [PMID: 10919851 DOI: 10.1152/ajprenal.2000.279.2.f309] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Estrogen receptor modulators (SERMs) are "designer drugs" that exert estrogen-like actions in some cells but not in others. We examined the effects of the SERMs LY-117018 (an analog of raloxifene) and tamoxifen on mesangial cells synthesis of type I and type IV collagen. We found that LY-117018 and tamoxifen suppressed mesangial cell type IV collagen gene transcription and type IV collagen protein synthesis in a dose-dependent manner, with a potency identical to that of estradiol. Type I collagen synthesis was also suppressed by LY-117018 in a dose-dependent manner with a potency identical to that of estradiol but greater than that of tamoxifen. Genistein, which selectively binds to estrogen receptor-beta in nanomolar concentrations, suppressed type I and type IV collagen synthesis, suggesting that estrogen receptor-beta mediates the effects of estrogen on collagen synthesis. Because matrix accumulation is central to the development of glomerulosclerosis, second-generation SERMs may prove clinically useful in ameliorating progressive renal disease without the adverse effects of estrogen on reproductive tissues.
Collapse
Affiliation(s)
- J Neugarten
- Nephrology Division, Department of Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York 10467, USA
| | | | | | | |
Collapse
|