1
|
Demcsák A, Tran T, Sahin-Tóth M, Geisz-Fremy A. Strain-specific differences in cerulein-induced acute and recurrent acute murine pancreatitis. Sci Rep 2025; 15:16030. [PMID: 40341748 PMCID: PMC12062244 DOI: 10.1038/s41598-025-98914-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 04/15/2025] [Indexed: 05/11/2025] Open
Abstract
Hyperstimulation with the secretagogue cerulein is a commonly used experimental model to study acute, recurrent acute and chronic pancreatitis in mice. Earlier studies showed that inbred mouse strains had different susceptibility to cerulein-induced pancreatitis. Here, we confirm and extend these findings by characterizing the severity of acute and recurrent acute pancreatitis in the C57BL/6N and FVB/N strains. When acute pancreatitis was induced with repeated cerulein injections, FVB/N mice had more severe pancreatic edema, higher plasma amylase levels, increased inflammatory cell infiltration, and more extensive acinar cell necrosis relative to the C57BL/6N strain. Cerulein elicited higher and more sustained trypsin activity in FVB/N mice relative to C57BL/6N animals, which was likely due to the lower expression of the SPINK1 trypsin inhibitor and the trypsinogen-degrading lysosomal protease cathepsin L. In C57BL/6N mice, we previously showed that pancreatitis responses were more severe during a second attack compared with the initial, sentinel episode. In FVB/N mice, we now found that the second episode was associated with lower pancreas edema and plasma amylase but higher inflammatory cell infiltration than the first attack. The observations reinforce the notion that inbred mouse strains exhibit differences in their pathological responses during acute and recurrent acute pancreatitis.
Collapse
Affiliation(s)
- Alexandra Demcsák
- Department of Surgery, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Thanh Tran
- Department of Surgery, Boston University, 700 Albany Street, W408G, Boston, MA, 02118, USA
| | - Miklós Sahin-Tóth
- Department of Surgery, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Andrea Geisz-Fremy
- Department of Surgery, Boston University, 700 Albany Street, W408G, Boston, MA, 02118, USA.
| |
Collapse
|
2
|
Zhao M, Cui M, Fan M, Huang C, Wang J, Zeng Y, Wang X, Lu Y. Octreotide attenuates experimental severe acute pancreatitis through inhibiting pyroptosis and modulating intestinal homeostasis. Eur J Pharmacol 2025; 994:177314. [PMID: 39922420 DOI: 10.1016/j.ejphar.2025.177314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 02/10/2025]
Abstract
Severe acute pancreatitis (SAP) is a common clinical condition characterized by acute abdominal symptoms. Octreotide (OCT) is a commonly prescribed treatment for acute pancreatitis (AP). Recent research shows that pyroptosis and intestinal homeostasis significantly contribute to the progression of AP. However, it remains unclear whether OCT treats SAP through modulating pyroptosis and intestinal microbiota. Our study aimed to investigate and validate the potential therapeutic effects of OCT on SAP and underlying mechanisms. The inhibition of pyroptosis in mice using disulfiram was investigated to elucidate the role of pyroptosis in AP. Molecular biology experiments confirmed that OCT effectively inhibited the expression of pyroptosis-related markers. Additionally, the composition, abundance, and functionality of the intestinal microbiota were analyzed using 16S rRNA sequencing, while short-chain fatty acids (SCFAs) were quantified by targeted metabolomics. Our study demonstrated that the administration of OCT significantly mitigated the severity of SAP in a dose-dependent manner. Furthermore, the inhibition of pyroptosis in mice attenuated SAP, thereby highlighting the critical role of pyroptosis in this condition. OCT administration was observed to suppress the expression of key pyroptosis markers. Additionally, there was a notable reduction in intestinal permeability and bacterial translocation. OCT reverses gut dysbiosis caused by SAP, increasing beneficial bacteria while inhibiting pathogenic strains. Furthermore, OCT administration enhanced the levels of SCFAs, including propanoic acid, acetic acid, and butyric acid. Our findings indicate OCT has the potential to alleviate SAP by suppressing pyroptosis and restoring intestinal homeostasis.
Collapse
Affiliation(s)
- Mengqi Zhao
- Shanghai Key Laboratory of Pancreatic Disease, Shanghai Jiaotong University School of Medicine, Shanghai, 201620, China; Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 201620, China
| | - Mengyan Cui
- Shanghai Key Laboratory of Pancreatic Disease, Shanghai Jiaotong University School of Medicine, Shanghai, 201620, China; Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 201620, China
| | - Miaoyan Fan
- Shanghai Key Laboratory of Pancreatic Disease, Shanghai Jiaotong University School of Medicine, Shanghai, 201620, China; Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 201620, China
| | - Chunlan Huang
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 201620, China
| | - Jingjing Wang
- Shanghai Key Laboratory of Pancreatic Disease, Shanghai Jiaotong University School of Medicine, Shanghai, 201620, China
| | - Yue Zeng
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 201620, China
| | - Xingpeng Wang
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 201620, China.
| | - Yingying Lu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 201620, China.
| |
Collapse
|
3
|
Bertola L, Pepe G, Dolce A, Lecchi C, Borroni EM, Savino B, Canesi S, Sala L, Moretti P, Giordano A, Ressel L, Scanziani E, Vegeto E, Recordati C. Sex-dependent modulation of caerulein-induced acute pancreatitis in C57BL/6J mice. Vet Pathol 2025; 62:382-396. [PMID: 39878085 DOI: 10.1177/03009858241312606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Acute pancreatitis (AP) is a life-threatening condition, with a higher mortality rate in men than women and in which estrogens might play a protective role. This study aimed to investigate sex-dependent differences in a mouse model of caerulein-induced AP. Thirty-six C57BL/6J mice (19 females and 17 males) were treated intraperitoneally with phosphate-buffered saline or caerulein, and sacrificed 12 hours, 2 days, or 7 days after the last injection. Blood was collected for amylase, lipase, and glucose determination. Severity and extent of inflammation, apoptosis, and acinar to ductal metaplasia (ADM) in pancreatic tissue were scored histologically and total macrophages, major histocompatibility complex (MHC)-II+ cells, M2 macrophages, T and B cells, neutrophils, apoptosis, and ADM were marked immunohistochemically and quantified by digital image analysis. Serum amylase had a peak at 12 hours, without differences between the sexes. In females, pancreatitis reached a peak at 12 hours with a fast recovery while, in males, the peak was delayed to day 2 with residual apoptosis still present. Macrophages were the main inflammatory cell population, followed by T cells, B cells and neutrophils, without differences between sexes. In males, CD206+ cells and apoptosis were higher at both days 2 and 7, and cytokeratin-19+ (CK19+) ADM was higher at day 7 compared with females. The results of this study revealed a faster onset and resolution of caerulein-induced AP in female mice compared with male mice, supporting a sex-dependent modulation of acute pancreatitis.
Collapse
Affiliation(s)
- Luca Bertola
- University of Milan, Lodi, Italy
- Fondazione UNIMI, Milan, Italy
| | | | | | | | - Elena Monica Borroni
- University of Milan, Milan, Italy
- IRCCS Humanitas Research Hospital, Rozzano, MI, Italy
| | - Benedetta Savino
- University of Milan, Milan, Italy
- IRCCS Humanitas Research Hospital, Rozzano, MI, Italy
| | - Simone Canesi
- University of Milan, Lodi, Italy
- Fondazione UNIMI, Milan, Italy
| | - Laura Sala
- University of Milan, Lodi, Italy
- Fondazione UNIMI, Milan, Italy
| | | | | | | | | | | | | |
Collapse
|
4
|
Yi F, Tao S, Wu H. Bilirubin metabolism in relation to cancer. Front Oncol 2025; 15:1570288. [PMID: 40291905 PMCID: PMC12021636 DOI: 10.3389/fonc.2025.1570288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Accepted: 03/11/2025] [Indexed: 04/30/2025] Open
Abstract
Bilirubin, a metabolite of hemoglobin, was long thought to be a harmful waste product, but recent studies have found it to have antioxidant and anti-tumor effects. With the extensive research on the mechanism of malignant tumor development, the antioxidant effect of bilirubin is increasingly becoming a hotspot in anti-cancer research. At present, there are two main views on the relationship between bilirubin and cancer, namely, its pro-cancer and anti-cancer effects, and in recent years, studies on the relationship between bilirubin and cancer have not been systematically summarized, which is not conducive to the further investigation of the role of bilirubin on cancer. To understand the multifaceted role of bilirubin in tumorigenesis as well as to develop more effective and affordable antitumor therapies, this review provides an overview of the effects of bilirubin on tumors in terms of oxidative, inflammatory, and cellular signaling pathways, as well as the resulting therapeutic ideas and approaches.
Collapse
Affiliation(s)
- Fengyun Yi
- Department of Traditional Chinese Medicine, Jiujiang Hospital of Traditional Chinese Medicine, Jiujiang, Jiangxi, China
- The Second School of Clinical Medicine, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Siyu Tao
- The Second School of Clinical Medicine, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Hongze Wu
- Department of Traditional Chinese Medicine, Jiujiang Hospital of Traditional Chinese Medicine, Jiujiang, Jiangxi, China
| |
Collapse
|
5
|
Zhang Q, Shen Y, Zhang C, Zhang H, Li X, Yang S, Dai C, Yu X, Lou J, Feng J, Hu C, Lin Z, Li X, Zhou X. Immunoengineered mitochondria for efficient therapy of acute organ injuries via modulation of inflammation and cell repair. SCIENCE ADVANCES 2025; 11:eadj1896. [PMID: 40106554 DOI: 10.1126/sciadv.adj1896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 02/11/2025] [Indexed: 03/22/2025]
Abstract
Acute organ injuries represent a major public health concern, driven by inflammation and mitochondrial dysfunction, leading to cell damage and organ failure. In this study, we engineered neutrophil membrane-fused mitochondria (nMITO), which combine the injury-targeting and anti-inflammatory properties of neutrophil membrane proteins with the cell repairing function of mitochondria. nMITO effectively blocked inflammatory cascades and restored mitochondrial function, targeting both key mechanisms in acute organ injuries. In addition, nMITO selectively targeted damaged endothelial cells via β-integrins and were delivered to injured tissues through tunneling nanotubes, enhancing their regulatory effects on inflammation and cell damage. In mouse models of acute myocardial injury, liver injury, and pancreatitis, nMITO notably reduced inflammatory responses and repaired tissue damage. These findings suggest that nMITO is a promising therapeutic strategy for managing acute organ injuries.
Collapse
Affiliation(s)
- Qing Zhang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, PR China
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine & Rehabilitation School, Kunming Medical University, Kunming 650500, PR China
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, PR China
| | - Yan Shen
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, PR China
| | - Chengyuan Zhang
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine & Rehabilitation School, Kunming Medical University, Kunming 650500, PR China
| | - Hanyi Zhang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, PR China
| | - Xuemei Li
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, PR China
| | - Shengqian Yang
- Institute of Materia Medica College of Pharmacy, Army Medical University, Chongqing 400038, PR China
| | - Chen Dai
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, PR China
| | - Xiuyan Yu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, PR China
| | - Jie Lou
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, PR China
| | - Jinwei Feng
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, PR China
| | - Chenglu Hu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, PR China
| | - Zhihua Lin
- Chongqing University of Chinese Medicine, Chongqing 402760, PR China
| | - Xiaohui Li
- Institute of Materia Medica College of Pharmacy, Army Medical University, Chongqing 400038, PR China
| | - Xing Zhou
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine & Rehabilitation School, Kunming Medical University, Kunming 650500, PR China
- School of Pharmaceutical Sciences & Yunnan Provincial Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan 650500, PR China
| |
Collapse
|
6
|
Dahiya S, Arbujas JR, Hajihassani A, Amini S, Wageley M, Gurbuz K, Ma Z, Copeland C, Saleh M, Gittes GK, Koo BK, DelGiorno KE, Esni F. The Stmn1-lineage contributes to acinar regeneration but not to neoplasia upon oncogenic Kras expression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.18.643944. [PMID: 40166191 PMCID: PMC11957014 DOI: 10.1101/2025.03.18.643944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
BACKGROUND & AIMS The exocrine pancreas has a limited regenerative capacity, but to what extent all acinar cells are involved in this process is unclear. Nevertheless, the heterogenous nature of acinar cells suggests that cells exhibiting higher plasticity might play a more prominent role in acinar regeneration. In that regard, Stmn1 -expressing acinar cells have been identified as potential facultative progenitor-like cells in the adult pancreas. Here, we studied Stmn1-progeny under physiological conditions, during regeneration, and in the context of Kras G12D expression. METHODS We followed the fate of Stmn1-progenies both under baseline conditions, following caerulein-induced acute or chronic pancreatitis, pancreatic duct ligation, and in the context of Kras G12D expression. RESULTS The Stmn1-lineage contributes to baseline acinar cell turnover under physiological conditions. Furthermore, these cells rapidly proliferate and repopulate the acinar compartment in response to acute injury in an ADM-independent manner. Moreover, acinar regeneration during chronic pancreatitis progression is in conjunction with a decline in the proliferative capacity of the Stmn1-lineage. Interestingly, newly generated acinar cells display increased susceptibility to additional injury during recurrent acute pancreatitis (RAP). Finally, given their inability to form ADMs, the Stmn1-lineage fails to form PanINs upon oncogenic Kras expression. CONCLUSIONS Our findings establish the Stmn1-lineage as a pivotal subpopulation for acinar tissue homeostasis and regeneration. The ability of these cells to restore acinar tissue in an ADM-independent manner distinguishes them as a critical regenerative population. This study presents a new paradigm for acinar regeneration and repair in the context of pancreatitis and neoplasia.
Collapse
|
7
|
Wu D, Cai W, Wu Z, Huang Y, Mukherjee R, Peng J, Huang W, Li Q, Xia Q, Jiang K. Multi-omics profiles reveal immune microenvironment alterations associated with PD-L1 checkpoint in acute pancreatitis in the early phase. Biochem Biophys Res Commun 2025; 751:151451. [PMID: 39922059 DOI: 10.1016/j.bbrc.2025.151451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 02/03/2025] [Accepted: 02/04/2025] [Indexed: 02/10/2025]
Abstract
BACKGROUND Acute pancreatitis (AP) initiates as primarily sterile local inflammation that triggers pro-inflammatory response, which is subsequently counterbalanced by an anti-inflammatory response. Immune checkpoints, such as PD-1/PD-L1, play a pivotal role in modulating these responses to prevent excessive immune activation and associated inflammatory damage. This study aimed to investigate the underlying mechanisms of these processes in both murine and human AP. METHODS We conducted a comprehensive integration of data from cerulein-induced AP mouse models (CER-AP), utilizing single-cell RNA sequencing and digital spatial profiling for pancreatic samples, as well as single-cell Cytometry by Time Of Flight (CyTOF) for blood samples. Additionally, bulk-RNA sequencing performed on blood samples from AP patients was employed to investigate innate and adaptive immune changes at early stage of the disease. RESULTS Across the four analytical approaches, we observed consistent immune cell type distributions. Our integrative analysis revealed a significant imbalance between increased innate immune cells, including neutrophils, macrophages, and monocytes, and decreased adaptive immune cells, including CD4+ and CD8+ T cells, in early-stage AP. Notably, the PD-1/PD-L1 related pathway exhibited substantial alterations, especially in the acinar cells, T cells, B cells, macrophages, and neutrophils at the early stage of disease. Moreover, we observed a significant reduction in PD-L1 expression in the blood and regulatory T cells of CyTOF mice at the CyTOF level. CONCLUSION This multi-omics analysis deciphers a distinct imbalance between increased innate immunity and decreased adaptive immunity during the early phase of AP. The PD-L1 checkpoint emerges as a key regulator of immune homeostasis and a critical factor in the pathogenesis of AP.
Collapse
Affiliation(s)
- Di Wu
- Pancreas Center, First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wenhao Cai
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zehao Wu
- Pancreas Center, First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yilin Huang
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Rajarshi Mukherjee
- Liverpool Pancreatitis Research Group, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Jie Peng
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wei Huang
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qiang Li
- Pancreas Center, First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Qing Xia
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Kuirong Jiang
- Pancreas Center, First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
8
|
Wang H, Ciccocioppo R, Terai S, Shoeibi S, Carnevale G, De Marchi G, Tsuchiya A, Ishii S, Tonouchi T, Furuyama K, Yang Y, Mito M, Abe H, Di Tinco R, Cardinale V. Targeted animal models for preclinical assessment of cellular and gene therapies in pancreatic and liver diseases: regulatory and practical insights. Cytotherapy 2025; 27:259-278. [PMID: 39755978 DOI: 10.1016/j.jcyt.2024.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 11/08/2024] [Accepted: 11/10/2024] [Indexed: 01/07/2025]
Abstract
Cellular and gene therapy (CGT) products have emerged as a popular approach in regenerative medicine, showing promise in treating various pancreatic and liver diseases in numerous clinical trials. Before these therapies can be tested in human clinical trials, it is essential to evaluate their safety and efficacy in relevant animal models. Such preclinical testing is often required to obtain regulatory approval for investigational new drugs. However, there is a lack of detailed guidance on selecting appropriate animal models for CGT therapies targeting specific pancreatic and liver conditions, such as pancreatitis and chronic liver diseases. In this review, the gastrointestinal committee for the International Society for Cell and Gene Therapy provides a summary of current recommendations for animal species and disease model selection, as outlined by the US Food and Drug Administration, with references to EU EMA and Japan PMDA. We discuss a range of small and large animal models, as well as humanized models, that are suitable for preclinical testing of CGT products aimed at treating pancreatic and liver diseases. For each model, we cover the associated pathophysiology, commonly used metrics for assessing disease status, the pros and limitations of the models, and the relevance of these models to human conditions. We also summarize the use and application of humanized mouse and other animal models in evaluating the safety and efficacy of CGT products. This review aims to provide comprehensive guidance for selecting appropriate animal species and models to help bridge the gap between the preclinical research and clinical trials using CGT therapies for specific pancreatic and liver diseases.
Collapse
Affiliation(s)
- Hongjun Wang
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina, USA; Ralph H Johnson Veteran Medical Center, Charleston, South Carolina, USA.
| | - Rachele Ciccocioppo
- Department of Medicine, Gastroenterology Unit, Pancreas Institute, A.O.U.I. Policlinico G.B. Rossi & University of Verona, Verona, Italy
| | - Shuji Terai
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Sara Shoeibi
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Gianluca Carnevale
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Giulia De Marchi
- Department of Medicine, Gastroenterology Unit, Pancreas Institute, A.O.U.I. Policlinico G.B. Rossi & University of Verona, Verona, Italy
| | - Atsunori Tsuchiya
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Soichi Ishii
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Takafumi Tonouchi
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Kaito Furuyama
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Yuan Yang
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Masaki Mito
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Hiroyuki Abe
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Rosanna Di Tinco
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Vincenzo Cardinale
- Department of Translational and Precision Medicine, University of Rome, Rome, Italy.
| |
Collapse
|
9
|
Lu S, Gong Y, He P, Qi M, Dong W. 4-octyl Itaconate Attenuates Acute Pancreatitis and Associated Lung Injury by Suppressing Ferroptosis in Mice. Inflammation 2025:10.1007/s10753-025-02256-x. [PMID: 39920558 DOI: 10.1007/s10753-025-02256-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/14/2025] [Accepted: 01/24/2025] [Indexed: 02/09/2025]
Abstract
Acute pancreatitis (AP) is a common gastrointestinal emergency requiring hospitalization. In recent years, several studies have demonstrated a role for 4-octyl itaconate (4-OI) in anti-inflammatory and oxidative stress injury. However, the potential effects of 4-OI in AP have not been investigated. Caerulein and LPS were used to induce experimental AP models in mice and AR42J cells and then studied by histopathology, biochemical, and molecular analysis. Ferroptosis inhibitor ferrostatin-1 effectively improves pancreatic injury and reduces lipid peroxidation products in experimental AP mice. 4-OI treatment significantly alleviated pancreatic and AP-associated lung injury and inflammation in experimental AP mice by inhibiting ferroptosis. The ferroptosis activator Erastin blocked the protective effect of 4-OI against pancreatic injury in AP, validating that 4-OI alleviates pancreatitis injury through ferroptosis. In vitro experiments further confirmed that 4-OI treatment ameliorated AP-induced pancreatic injury by inhibiting ferroptosis. Our study, for the first time, found that 4-OI ameliorates AP and AP-related lung injury by inhibiting ferroptosis in experimental AP mice, providing a new therapeutic target for alleviating AP.
Collapse
Affiliation(s)
- Shimin Lu
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, China
- Central Laboratory of Renmin Hospital, Wuhan, 430060, Hubei Province, China
| | - Yang Gong
- Central Laboratory of Renmin Hospital, Wuhan, 430060, Hubei Province, China
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, China
| | - Pengzhan He
- Central Laboratory of Renmin Hospital, Wuhan, 430060, Hubei Province, China
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, China
| | - Mingming Qi
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, Zhejiang Province, China
| | - Weiguo Dong
- Central Laboratory of Renmin Hospital, Wuhan, 430060, Hubei Province, China.
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, China.
| |
Collapse
|
10
|
Chen X, Zhong R, Hu B. Mitochondrial dysfunction in the pathogenesis of acute pancreatitis. Hepatobiliary Pancreat Dis Int 2025; 24:76-83. [PMID: 38212158 DOI: 10.1016/j.hbpd.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 12/25/2023] [Indexed: 01/13/2024]
Abstract
The mechanism of cell damage during acute pancreatitis (AP) has not been fully elucidated, and there is still a lack of specific or effective treatments. Increasing evidence has implicated mitochondrial dysfunction as a key event in the pathophysiology of AP. Mitochondrial dysfunction is closely related to calcium (Ca2+) overload, intracellular adenosine triphosphate depletion, mitochondrial permeability transition pore openings, loss of mitochondrial membrane potential, mitophagy damage and inflammatory responses. Mitochondrial dysfunction is an early triggering event in the initiation and development of AP, and this organelle damage may precede the release of inflammatory cytokines, intracellular trypsin activation and vacuole formation of pancreatic acinar cells. This review provides further insight into the role of mitochondria in both physiological and pathophysiological aspects of AP, aiming to improve our understanding of the underlying mechanism which may lead to the development of therapeutic and preventive strategies for AP.
Collapse
Affiliation(s)
- Xia Chen
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu 610041, China; Department of Gastroenterology, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, China
| | - Rui Zhong
- Department of Gastroenterology, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, China
| | - Bing Hu
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
11
|
Lopez-Pascual A, Santamaria E, Ardaiz N, Uriarte I, Palmer T, Graham AR, Gomar C, Barbero RC, Latasa MU, Arechederra M, Urman JM, Berasain C, Fontanellas A, Del Rio CL, Fernandez-Barrena MG, Martini PGV, Schultz JR, Berraondo P, Avila MA. FGF21 and APOA1 mRNA-based therapies for the treatment of experimental acute pancreatitis. J Transl Med 2025; 23:122. [PMID: 39871339 PMCID: PMC11773771 DOI: 10.1186/s12967-025-06129-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 01/12/2025] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND Acute pancreatitis (AP) presents a significant clinical challenge with limited therapeutic options. The complex etiology and pathophysiology of AP emphasize the need for innovative treatments. This study explores mRNA-based therapies delivering fibroblast growth factor 21 (FGF21) and apolipoprotein A1 (APOA1), alone and in combination, for treating experimental AP. METHODS Liver-targeted lipid nanoparticles (LNP)-mRNA formulations encoding FGF21, APOA1, and a chimeric APOA1-FGF21, were first tested for protein expression and bioavailability in vitro and in mice fed a high-fat diet. Efficacy studies were performed in the caerulein-induced AP (Cer-AP) model, and a new AP model combining ethanol feeding with ethanol binge plus palmitoleic acid administration, the EtOH/POA-AP model. A single dose of the APOA1, FGF21, and APOA1-FGF21 LNP-mRNAs formulations was administered in both models. Serum levels of pancreatic lipase (LIPC), amylase (AMYL), and aspartate aminotransferase (AST), along with pancreatic tissue analyses using two histopathological scores were performed to evaluate treatment effects. RESULTS In vitro studies demonstrated the translation and secretion of APOA1, FGF21, and APOA1-FGF21 proteins encoded by the LNP-mRNAs. In vivo, LNP-mRNA administration increased serum levels of the respective proteins in metabolically impaired (i.e. high fat diet-fed) mice. In the Cer-AP model, serum markers of pancreatic injury were similarly reduced when mice were treated with APOA1, FGF21, and APOA1-FGF21 LNP-mRNA, and this effect was also observed in the histopathological analyses. The EtOH/POA-AP model was more aggressive than the Cer-AP model. FGF21 and APOA1-FGF21 LNP-mRNAs were protective according to LIPC and AMYL serum levels, while APOA1 LNP-mRNA had little effect. On the other hand, histological improvements were more evident in mice receiving APOA1 LNP-mRNA. In the EtOH/POA-AP model, FGF21 and APOA1-FGF21 LNP-mRNAs reduced serum AST levels, indicating hepatoprotective activity. DISCUSSION This proof-of-concept study demonstrates the potential of mRNA-based therapies delivering FGF21 and APOA1 in experimental AP. While individual treatments effectively reduced pancreatic injury, the APOA1-FGF21 fusion molecule did not exhibit superior activity. Liver-targeted LNP-mRNA administration may offer a promising approach for treating AP, leveraging endogenous production pathways for therapeutic proteins. Further research is warranted to elucidate the mechanisms underlying their therapeutic efficacy and optimize treatment regimens for clinical translation.
Collapse
Affiliation(s)
- Amaya Lopez-Pascual
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain
- Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain
| | - Eva Santamaria
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain
- CIBERehd, Madrid, Spain
| | - Nuria Ardaiz
- Immunology and Immunotherapy Program, CIMA, CCUN, University of Navarra, Pamplona, Spain
| | - Iker Uriarte
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain
- CIBERehd, Madrid, Spain
| | | | | | - Celia Gomar
- Immunology and Immunotherapy Program, CIMA, CCUN, University of Navarra, Pamplona, Spain
| | - Roberto C Barbero
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain
- CIBERehd, Madrid, Spain
| | - M Ujue Latasa
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain
- CIBERehd, Madrid, Spain
| | - Maria Arechederra
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain
- Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain
- CIBERehd, Madrid, Spain
| | - Jesus M Urman
- Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain
- Department of Gastroenterology and Hepatology, Navarra University Hospital, Pamplona, Spain
| | - Carmen Berasain
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain
- Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain
- CIBERehd, Madrid, Spain
| | - Antonio Fontanellas
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain
- Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain
- CIBERehd, Madrid, Spain
| | | | - Maite G Fernandez-Barrena
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain
- Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain
- CIBERehd, Madrid, Spain
| | | | | | - Pedro Berraondo
- Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain.
- Immunology and Immunotherapy Program, CIMA, CCUN, University of Navarra, Pamplona, Spain.
- CIBERonc, Madrid, Spain.
| | - Matias A Avila
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain.
- Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain.
- CIBERehd, Madrid, Spain.
| |
Collapse
|
12
|
Chvanov M, Voronina S, Jefferson M, Mayer U, Sutton R, Criddle DN, Wileman T, Tepikin AV. Deletion of the WD40 domain of ATG16L1 exacerbates acute pancreatitis, abolishes LAP-like non-canonical autophagy and slows trypsin degradation. Autophagy 2025; 21:210-222. [PMID: 39216469 PMCID: PMC11702947 DOI: 10.1080/15548627.2024.2392478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/07/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024] Open
Abstract
The WD40 domain (WDD) of ATG16L1 plays a pivotal role in non-canonical autophagy. This study examined the role of recently identified LAP-like non-canonical autophagy (LNCA) in acute pancreatitis. LNCA involves rapid single-membrane LC3 conjugation to endocytic vacuoles in pancreatic acinar cells. The rationale for this study was the previously observed presence of trypsin in the organelles undergoing LNCA; aberrant trypsin formation is an important factor in pancreatitis development. Here we report that the deletion of WDD (attained in ATG16L1[E230] mice) eliminated LNCA, aggravated caerulein-induced acute pancreatitis and suppressed the fast trypsin degradation observed in both a rapid caerulein-induced disease model and in caerulein-treated isolated pancreatic acinar cells. These experiments indicate that LNCA is a WDD-dependent mechanism and suggest that it plays not an activating but a protective role in acute pancreatitis. Furthermore, palmitoleic acid, another inducer of experimental acute pancreatitis, strongly inhibited LNCA, suggesting a novel mechanism of pancreatic lipotoxicity.Abbreviation: AMY: amylase; AP: acute pancreatitis; CASM: conjugation of Atg8 to single membranes; CCK: cholecystokinin; FAEE model: fatty acid and ethanol model; IL6: interleukin 6; LA: linoleic acid; LAP: LC3-associated phagocytosis; LMPO: lung myeloperoxidase; LNCA: LAP-like non-canonical autophagy; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MPO: myeloperoxidase; PMPO: pancreatic myeloperoxidase; POA: palmitoleic acid; WDD: WD40 domain; WT: wild type.
Collapse
Affiliation(s)
- Michael Chvanov
- Department of Molecular & Clinical Cancer Medicine, Institute of Systems Molecular & Integrative Biology, University of Liverpool, Liverpool, UK
| | - Svetlana Voronina
- Department of Molecular & Clinical Cancer Medicine, Institute of Systems Molecular & Integrative Biology, University of Liverpool, Liverpool, UK
| | - Matthew Jefferson
- Biomedical Research Centre, School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Ulrike Mayer
- Biomedical Research Centre, School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Robert Sutton
- Department of Molecular & Clinical Cancer Medicine, Institute of Systems Molecular & Integrative Biology, University of Liverpool, Liverpool, UK
- Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK
| | - David N. Criddle
- Department of Molecular & Clinical Cancer Medicine, Institute of Systems Molecular & Integrative Biology, University of Liverpool, Liverpool, UK
| | - Thomas Wileman
- Norwich Medical School, University of East Anglia, Norwich, UK
| | - Alexei V. Tepikin
- Department of Molecular & Clinical Cancer Medicine, Institute of Systems Molecular & Integrative Biology, University of Liverpool, Liverpool, UK
| |
Collapse
|
13
|
Swetha K, Indumathi MC, Siddappa S, Chen CH, Marathe GK. Comparative Study of Non-invasive Mouse Models of Pancreatitis. Dig Dis Sci 2025; 70:233-244. [PMID: 39604666 DOI: 10.1007/s10620-024-08771-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 11/19/2024] [Indexed: 11/29/2024]
Abstract
BACKGROUND AND AIMS Although a relevant animal model is essential for studying human diseases, one has yet to be established for mouse pancreatitis. Early non-invasive models of mouse pancreatitis have serious limitations. METHODS In this study, we compared the efficiency, consistency, and reproducibility of inducing pancreatitis in 3 non-invasive mouse models of pancreatitis in Wistar albino mice: (1) L-arginine-induced model (2 intraperitoneal injections of 4 g/kg body weight of L-arginine spaced 1 h apart), (2) caerulein-induced model (6 intraperitoneal injections of 50 µg/kg body weight of caerulein at hourly intervals), and (3) caerulein + LPS (lipopolysaccharide)-induced model (6 intraperitoneal doses of 50 µg/kg body weight of caerulein at hourly intervals, along with an LPS [10 mg/kg body weight] injection immediately after the last caerulein injection). RESULTS Our findings showed that the L-arginine-induced model was inconsistent. The levels of the pancreatic enzymes, amylase and lipase, were higher in the caerulein and caerulein + LPS groups. Histological examination showed tissue destruction in the induced groups, with varying degrees of fibrosis in the caerulein + LPS group. CONCLUSIONS The caerulein + LPS model was the most reliable model in Wistar albino mice. Our findings may be useful in helping investigators choose the most appropriate animal model for pancreatitis research.
Collapse
Affiliation(s)
- Kamatam Swetha
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri, Mysore-06, India
| | | | - Shiva Siddappa
- Division of Biochemistry, School of Life Sciences, JSS Academy of Higher Education and Research, Mysore-15, India
| | - Chu-Huang Chen
- Vascular and Medicinal Research, The Texas Heart Institute, Houston, TX, 77030, USA
| | - Gopal K Marathe
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri, Mysore-06, India.
- Department of Studies in Molecular Biology, University of Mysore, Manasagangotri, Mysore-06, India.
| |
Collapse
|
14
|
Liu XZ, Du XY, Xie WS, Ding J, Zhu MZ, Feng ZQ, Wang H, Feng Y, Yu MJ, Liu SM, Liu WT, Zhu XH, Liang JH. Redesigning Berberines and Sanguinarines to Target Soluble Epoxide Hydrolase for Enhanced Anti-Inflammatory Efficacy. J Med Chem 2024; 67:22168-22190. [PMID: 39658523 DOI: 10.1021/acs.jmedchem.4c02202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Amino-berberine has remained underexplored due to limited biological evaluation and total synthesis approaches. In inflammation therapy, soluble Epoxide Hydrolase (sEH) is a promising target, yet natural scaffolds remain underutilized. Our study advances the field by redesigning natural compounds─berberine and sanguinarine─with strategic urea modifications and hydrogenated frameworks, creating novel sEH inhibitors with enhanced in vivo efficacy. Through total synthesis and structure-activity relationship studies of amino-berberine derivatives, chiral tetrahydroberberine (R)-14i (coded LXZ-42) emerged as the most potent lead, with an IC50 value of 1.20 nM. (R)-14i showed reduced CYP enzyme impact, potent therapeutic effects on acute pancreatitis, no acute in vivo toxicity, and superior pharmacokinetic properties, with an oral bioavailability of 89.3%. Structural insights from crystallography of (R)-14i bound to sEH revealed key interactions: three with the tetrahydroberberine framework and three hydrogen bonds with the urea group, highlighting (R)-14i as a novel lead for sEH-targeted therapies in inflammation.
Collapse
Affiliation(s)
- Xing-Zhou Liu
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Xiao-Yu Du
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Wei-Song Xie
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Jing Ding
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Min-Zhen Zhu
- Research Center for Brain Health, PazhouLab, Guangzhou 510330, China
| | - Zi-Qiang Feng
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Hao Wang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yue Feng
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ming-Jia Yu
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Si-Meng Liu
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Wen-Tian Liu
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Xin-Hong Zhu
- Research Center for Brain Health, PazhouLab, Guangzhou 510330, China
| | - Jian-Hua Liang
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| |
Collapse
|
15
|
Sripadi HP, Kaur R, Manohar Koli S, Sharma N, Vijaya Sarathi UVR, Babu Nanubolu J, Balaji Andugulapati S, Sistla R. Biochanin-A co-crystal formulation improves bioavailability and ameliorates cerulein-induced pancreatitis by attenuating the inflammation. Int J Pharm 2024; 667:124874. [PMID: 39490549 DOI: 10.1016/j.ijpharm.2024.124874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/21/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
Co-crystallization of a therapeutic ingredient with an appropriate co-former is a powerful technique to augment the physicochemical and pharmacokinetic properties and the effectiveness of Active Pharmaceutical Ingredients (APIs). Biochanin A (BCA), a flavonoid with medicinal potential, is limited by poor solubility and low oral bioavailability. This study aimed to design and develop a novel BCA-nicotinamide cocrystal as BCC to enhance BCA's oral bioavailability and explore its therapeutic potential for ameliorating cerulein-induced acute pancreatitis (CIAP) by elucidating the target identification utilizing tissue/serum metabolite profiles. The cocrystal was designed by the supramolecular synthon approach and characterized by single-crystal X-ray diffraction that confirms a robust three-dimensional hydrogen-bonded network of BCA and Nicotinamide (NCT) in the crystal. FT-IR and DSC were used to analyze the cocrystal's intermolecular interactions and thermal behavior. BCC exhibited enhanced solubility and drug release compared to BCA alone, resulting in enhanced oral bioavailability and pancreatic tissue concentration. Comparing BCC to BCA in the CIAP model, BCC therapy remarkably reduced cerulein-induced pancreatitis, evidenced by significant reductions in inflammation, acinar cell atrophy, and amylase levels in pancreatic tissues. Further, the cocrystal formulation also down-regulated the oxidative stress markers, inflammatory cytokines and macrophage-related proteins. The study has identified distinct metabolomic signatures linked with AP with the help of Orbitrap Exploris mass spectrometry, which could pave the way for creating focused diagnostic tools for a better prognosis. In conclusion, these results offer new insights into exploring mechanistic pathways associated with specific biomarkers and underscore BCC cocrystal as a promising approach to enhance BCA's therapeutic potential.
Collapse
Affiliation(s)
- Hari Priya Sripadi
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, Telangana, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201 002, India
| | - Rajwinder Kaur
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, Telangana, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201 002, India
| | - Saylee Manohar Koli
- Centre for X-ray Crystallography, Department of Analytical & Structural Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, Telangana, India
| | - Nidhi Sharma
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, Telangana, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201 002, India
| | - U V R Vijaya Sarathi
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201 002, India; Centre for Mass Spectrometry, Department of Analytical & Structural Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, Telangana, India
| | - Jagadeesh Babu Nanubolu
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201 002, India; Centre for X-ray Crystallography, Department of Analytical & Structural Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, Telangana, India.
| | - Sai Balaji Andugulapati
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, Telangana, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201 002, India.
| | - Ramakrishna Sistla
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, Telangana, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201 002, India.
| |
Collapse
|
16
|
Zhang ZY, Guo XL, Liu JTY, Gu YJ, Ji XW, Zhu S, Xie JY, Guo F. Conjugated bile acids alleviate acute pancreatitis through inhibition of TGR5 and NLRP3 mediated inflammation. J Transl Med 2024; 22:1124. [PMID: 39707318 DOI: 10.1186/s12967-024-05922-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 11/27/2024] [Indexed: 12/23/2024] Open
Abstract
INTRODUCTION Severe acute pancreatitis (SAP) is a crucial gastrointestinal disease characterized by systemic inflammatory responses and persistent multiple organ failure. The role of bile acids (BAs) in diverse inflammatory diseases is increasingly recognized as crucial, but the underlying role of BA conjugation remains elusive. OBJECTIVES Our study aim to investigate the potential role of conjugated bile acids in SAP and reveal the molecular mechanisms underlying its regulatory effects. We hypothesized that taurochenodeoxycholic acid (TCDCA) and glycochenodeoxycholic acid (GCDCA) could protect SAP through inhibiting the activation of NLRP3 inflammasomes via the TGR5 pathway in macrophages. METHODS To test our hypothesis, we used BA-CoA: amino acid N-acyltransferase knockout (Baat-/-) mice and established SAP mouse models using caerulein- and sodium taurocholate- induced. We utilized a range of methods, including pathology sections, qRT-PCR, immunofluorescence, Western blotting, and ELISA, to identify the mechanisms of regulation. RESULTS BA-CoA: Amino acid N-acyltransferase knockout (Baat-/-) mice significantly exacerbated pancreatitis by increasing pancreatic and systemic inflammatory responses and pancreatic damage in SAP mouse models. Moreover, the serum TCDCA levels in Baat-/- mice were lower than those in wild-type (WT) mice with or without SAP, and GCDCA and TCDCA showed stronger anti-inflammatory effects than chenodeoxycholic acid (CDCA) in vitro. TCDCA treatment alleviated SAP in a Takeda G protein-coupled receptor 5 and NOD-like receptor family, pyrin domain containing 3-dependent manner in vivo. Reinforcing our conclusions from the mouse study, clinical SAP patients exhibited decreased serum content of conjugated BAs, especially GCDCA, which was inversely correlated with the severity of systemic inflammatory responses. CONCLUSION Conjugated bile acids significantly inhibit NLRP3 inflammasome activation by activating TGR5 pathway, thereby alleviating pancreatic immunopathology. The results provide new insights into the variability of clinical outcomes and paves the way for developing more effective therapeutic interventions for AP.
Collapse
Affiliation(s)
- Zi-Yi Zhang
- Key Laboratory of Animal Virology of Ministry of Agriculture, Center for Veterinary Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Xiu-Liu Guo
- Department of Critical Care Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Jing-Tian-Yi Liu
- Key Laboratory of Animal Virology of Ministry of Agriculture, Center for Veterinary Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Yi-Jie Gu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People's Republic of China
| | - Xing-Wei Ji
- Key Laboratory of Animal Virology of Ministry of Agriculture, Center for Veterinary Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Shu Zhu
- Key Laboratory of Animal Virology of Ministry of Agriculture, Center for Veterinary Sciences, Zhejiang University, Hangzhou, People's Republic of China
- Department of Critical Care Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Jin-Yan Xie
- Department of Critical Care Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.
- Provincial Key Laboratory of Precise Diagnosis and Treatment of Abdominal Infection, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Zhejiang, People's Republic of China.
| | - Feng Guo
- Department of Critical Care Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.
- Provincial Key Laboratory of Precise Diagnosis and Treatment of Abdominal Infection, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Zhejiang, People's Republic of China.
| |
Collapse
|
17
|
Niu X, Sun W, Tang X, Chen J, Zheng H, Yang G, Yao G. Bufalin alleviates inflammatory response and oxidative stress in experimental severe acute pancreatitis through activating Keap1-Nrf2/HO-1 and inhibiting NF-κB pathways. Int Immunopharmacol 2024; 142:113113. [PMID: 39276459 DOI: 10.1016/j.intimp.2024.113113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/02/2024] [Accepted: 09/05/2024] [Indexed: 09/17/2024]
Abstract
Severe acute pancreatitis (SAP) is a prevalent acute inflammatory disease that is clinically manifested by systemic inflammation dysregulation, resulting in a significantly elevated mortality rate. Bufalin has been verified to have potent pharmacological properties, including analgesic, anti-tumor and anti-inflammatory effects. However, it remains unclear whether bufalin inhibits SAP. Thus, we aim to explore the impact of bufalin in SAP rats and to evaluate the potential mechanisms of action. In addition to analyzing serum biochemistry and pancreatic tissue pathology, we elucidated its mechanisms of action through enzyme-linked immunosorbent assay (ELISA), immunohistochemical analysis, Western blot, and quantitative real-time PCR. The results demonstrated that bufalin dose-dependently reversed the elevation of serum Amylase (Amy) and Lipase (LPS) levels in SAP rats, alleviating pancreatic tissue pathological damage. Bufalin exhibited potent antioxidant effects by reducing malondialdehyde (MDA) levels, decreasing Superoxide dismutase (SOD) and glutathione(GSH) consumption, inhibiting the interaction of Keap1-Nrf2, and increasing HO-1 expression. Furthermore, bufalin inhibited TNF-α, IL-6, IL-1β, p-NF-κB-p65, p-IκBα, and NF-κB-p65 expression, while enhancing IκBα expression, ultimately confirming its anti-inflammatory effects on SAP. In summary, our findings suggest that bufalin exerts anti-inflammatory and antioxidant actions in NaT-SAP rats by inhibiting NF-κB and activating the Keap1-Nrf2/HO-1 pathway. This study represents the inaugural application of bufalin in NaT-induced SAP rats, indicating its potential as an effective therapeutic agent for SAP patients.
Collapse
Affiliation(s)
- Xiaolong Niu
- Shanghai University of Traditional Chinese Medicine, Shanghai, China; Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wei Sun
- Shanghai University of Traditional Chinese Medicine, Shanghai, China; Center for Drug Safety Evaluation and Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaohang Tang
- Shanghai University of Traditional Chinese Medicine, Shanghai, China; Center for Drug Safety Evaluation and Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jialiang Chen
- Shanghai University of Traditional Chinese Medicine, Shanghai, China; Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Huaqun Zheng
- Shanghai University of Traditional Chinese Medicine, Shanghai, China; Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guimei Yang
- Shanghai University of Traditional Chinese Medicine, Shanghai, China; Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guangtao Yao
- Shanghai University of Traditional Chinese Medicine, Shanghai, China; Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Center for Drug Safety Evaluation and Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
18
|
Gao RR, Ma LY, Chen JW, Wang YX, Li YY, Zhou ZY, Deng ZH, Zhong J, Shu YH, Liu Y, Chen Q. ATN-161 alleviates caerulein-induced pancreatitis. J Genet Genomics 2024; 51:1447-1458. [PMID: 39396744 DOI: 10.1016/j.jgg.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 10/02/2024] [Accepted: 10/03/2024] [Indexed: 10/15/2024]
Abstract
Pancreatitis is a common gastrointestinal disorder that causes hospitalization with significant morbidity and mortality. The mechanistic pathophysiology of pancreatitis is complicated, limiting the discovery of pharmacological intervention methods. Here, we show that the administration of ATN-161, an antagonist of Integrin-α5, significantly mitigates the pathological condition of acute pancreatitis induced by caerulein. We find that CK19-positive pancreatic ductal cells align parallel to blood vessels in the pancreas. In the caerulein-induced acute pancreatitis model, the newly emergent CK19-positive cells are highly vascularized, with a significant increase in vascular density and endothelial cell number. Single-cell RNA sequencing analysis shows that ductal and endothelial cells are intimate interacting partners, suggesting the existence of a ductal-endothelial interface in the pancreas. Pancreatitis dramatically reduces the crosstalk in the ductal-endothelial interface but promotes the Spp-1/Integrin-α5 signaling. Blocking this signaling with ATN-161 significantly reduces acinar-to-ductal metaplasia, pathological angiogenesis, and restores other abnormal defects induced by caerulein. Our work reveals the therapeutic potential of ATN-161 as an uncharacterized pharmacological method to alleviate the symptoms of pancreatitis.
Collapse
Affiliation(s)
- Rong-Rong Gao
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Ji'nan, Shandong 250117, China
| | - Lan-Yue Ma
- Center for Cell Lineage Atlas, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China; University of Chinese Academy of Sciences, Beijing 101408, China; China-New Zealand Belt and Road Joint Laboratory on Biomedicine and Health, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
| | - Jian-Wei Chen
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China
| | - Yu-Xiang Wang
- Center for Cell Lineage Atlas, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China; University of Chinese Academy of Sciences, Beijing 101408, China; China-New Zealand Belt and Road Joint Laboratory on Biomedicine and Health, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
| | - Yu-Yan Li
- Center for Cell Lineage Atlas, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China; University of Chinese Academy of Sciences, Beijing 101408, China; China-New Zealand Belt and Road Joint Laboratory on Biomedicine and Health, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
| | - Zi-Yuan Zhou
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, Guangdong 518116, China
| | - Zhao-Hua Deng
- Center for Cell Lineage Atlas, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China; University of Chinese Academy of Sciences, Beijing 101408, China; China-New Zealand Belt and Road Joint Laboratory on Biomedicine and Health, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
| | - Jing Zhong
- Center for Cell Lineage Atlas, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China; University of Chinese Academy of Sciences, Beijing 101408, China; China-New Zealand Belt and Road Joint Laboratory on Biomedicine and Health, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
| | - Ya-Hai Shu
- Center for Cell Lineage Atlas, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China; China-New Zealand Belt and Road Joint Laboratory on Biomedicine and Health, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
| | - Yang Liu
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510006, China.
| | - Qi Chen
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Ji'nan, Shandong 250117, China; Center for Cell Lineage Atlas, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China; China-New Zealand Belt and Road Joint Laboratory on Biomedicine and Health, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China; Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China; Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong 511436, China.
| |
Collapse
|
19
|
Gukovskaya AS, Lerch MM, Mayerle J, Sendler M, Ji B, Saluja AK, Gorelick FS, Gukovsky I. Trypsin in pancreatitis: The culprit, a mediator, or epiphenomenon? World J Gastroenterol 2024; 30:4417-4438. [PMID: 39534420 PMCID: PMC11551668 DOI: 10.3748/wjg.v30.i41.4417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/19/2024] [Accepted: 07/16/2024] [Indexed: 10/23/2024] Open
Abstract
Pancreatitis is a common, life-threatening inflammatory disease of the exocrine pancreas. Its pathogenesis remains obscure, and no specific or effective treatment is available. Gallstones and alcohol excess are major etiologies of pancreatitis; in a small portion of patients the disease is hereditary. Pancreatitis is believed to be initiated by injured acinar cells (the main exocrine pancreas cell type), leading to parenchymal necrosis and local and systemic inflammation. The primary function of these cells is to produce, store, and secrete a variety of enzymes that break down all categories of nutrients. Most digestive enzymes, including all proteases, are secreted by acinar cells as inactive proforms (zymogens) and in physiological conditions are only activated when reaching the intestine. The generation of trypsin from inactive trypsinogen in the intestine plays a critical role in physiological activation of other zymogens. It was proposed that pancreatitis results from proteolytic autodigestion of the gland, mediated by premature/inappropriate trypsinogen activation within acinar cells. The intra-acinar trypsinogen activation is observed in experimental models of acute and chronic pancreatitis, and in human disease. On the basis of these observations, it has been considered the central pathogenic mechanism of pancreatitis - a concept with a century-old history. This review summarizes the data on trypsinogen activation in experimental and genetic rodent models of pancreatitis, particularly the more recent genetically engineered mouse models that mimic mutations associated with hereditary pancreatitis; analyzes the mechanisms mediating trypsinogen activation and protecting the pancreas against its' damaging effects; discusses the gaps in our knowledge, potential therapeutic approaches, and directions for future research. We conclude that trypsin is not the culprit in the disease pathogenesis but, at most, a mediator of some pancreatitis responses. Therefore, the search for effective therapies should focus on approaches to prevent or normalize other intra-acinar pathologic processes, such as defective autophagy leading to parenchymal cell death and unrelenting inflammation.
Collapse
Affiliation(s)
- Anna S Gukovskaya
- Department of Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90073, United States
- Department of Medicine, VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, United States
| | - Markus M Lerch
- Department of Medicine, Ludwig Maximilian University Hospital, Munich 81377, Germany
| | - Julia Mayerle
- Department of Medicine II, Ludwig Maximilian University of Munich, Munich 81377, Germany
| | - Matthias Sendler
- Department of Medicine A, University of Greifswald, Greifswald 17475, Germany
| | - Baoan Ji
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL 32224, United States
| | - Ashok K Saluja
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, United States
| | - Fred S Gorelick
- Departments of Cell Biology and Internal Medicine, Yale University School of Medicine and VA West Haven, New Haven, CT 06519, United States
| | - Ilya Gukovsky
- Department of Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90073, United States
- Department of Medicine, VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, United States
| |
Collapse
|
20
|
Zhang X, Tian X, Wang Y, Yan Y, Wang Y, Su M, Lv H, Li K, Hao X, Xing X, Song S. Application of lipopolysaccharide in establishing inflammatory models. Int J Biol Macromol 2024; 279:135371. [PMID: 39244120 DOI: 10.1016/j.ijbiomac.2024.135371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/25/2024] [Accepted: 09/04/2024] [Indexed: 09/09/2024]
Abstract
Lipopolysaccharide (LPS), a unique component of the outer membrane of Gram-negative bacteria, possesses immune-activating properties. It induces an immune response by stimulating host cells to produce a lot of inflammatory cytokines with a thermogenic effect, which may cause an inflammatory response. In the past few decades, the structure and function of LPS and its mechanism leading to inflammation have been extensively analyzed. Since LPS can cause inflammation, it is often used to establish inflammation models. These models are crucial in the study of inflammatory diseases that pose a serious threat to human health. In addition, the non-pro-inflammatory effects of LPS under certain circumstances are also being studied widely. This review summarizes the methods by which LPS has been used to establish inflammatory models at the cellular and animal levels to study related diseases. It also introduces in detail the evaluation indicators necessary for the successful establishment of these models, providing a reference for future research.
Collapse
Affiliation(s)
- Xiao Zhang
- Marine College, Shandong University, Weihai, Shandong 264209, China.
| | - Xiao Tian
- Marine College, Shandong University, Weihai, Shandong 264209, China.
| | - Yan Wang
- Marine College, Shandong University, Weihai, Shandong 264209, China.
| | - Yong Yan
- JD Berry Agricultural Development Co., Ltd, Weihai, Shandong 264209, China.
| | - Yuan Wang
- Marine College, Shandong University, Weihai, Shandong 264209, China.
| | - Meicai Su
- Marine College, Shandong University, Weihai, Shandong 264209, China.
| | - Haifei Lv
- Marine College, Shandong University, Weihai, Shandong 264209, China.
| | - Kaitao Li
- Marine College, Shandong University, Weihai, Shandong 264209, China.
| | - Xiaobin Hao
- Marine College, Shandong University, Weihai, Shandong 264209, China.
| | - Xiang Xing
- Marine College, Shandong University, Weihai, Shandong 264209, China; Weihai Research Institute of Industrial Technology, Shandong University, Weihai 264209, China.
| | - Shuliang Song
- Marine College, Shandong University, Weihai, Shandong 264209, China; Weihai Research Institute of Industrial Technology, Shandong University, Weihai 264209, China.
| |
Collapse
|
21
|
Wang P, Huang B, Liu Y, Tan X, Liu L, Zhang B, Li Z, Kang L, Hu L. Corynoline protects chronic pancreatitis via binding to PSMA2 and alleviating pancreatic fibrosis. J Gastroenterol 2024; 59:1037-1051. [PMID: 39145797 DOI: 10.1007/s00535-024-02145-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 08/07/2024] [Indexed: 08/16/2024]
Abstract
BACKGROUND Pancreatic fibrosis is the main pathological feature of chronic pancreatitis. There is a lack of medications that effectively alleviate or reverse pancreatic fibrosis and thus cure chronic pancreatitis. METHODS We screened drugs that could alleviate pancreatic fibrosis from 80 traditional Chinese medicine monomers and verified their efficacy and mechanisms. RESULTS We preliminarily identified corynoline as an antifibrotic candidate by drug screening among 80 compounds. In vitro, corynoline dose-dependently reduces collagen I synthesis in pancreatic stellate cells induced by TGF-β1 and inhibits its activation. Furthermore, we found that corynoline could alleviate the morphological disruption, such as acinar cell atrophy, collagen deposition etc., as well as reduced pancreatic weight in mice with chronic pancreatitis. We further validated the antifibrotic effect of corynoline in mRNA and protein levels. We also found that corynoline could inhibit NF-κB signaling pathway in vitro and in vivo. Next, we identified PSMA2 as the binding protein of corynoline by Lip-SMap and validated it using DARTS. Moreover, the siRNA of PSMA2 disrupts the anti-fibrotic effect of corynoline. CONCLUSION In conclusion, corynoline is a promising agent for the treatment of pancreatic fibrosis and chronic pancreatitis.
Collapse
Affiliation(s)
- Pengyuan Wang
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
- Department of Gastroenterology, The 981st Hospital of PLA, Chengde, 067000, Hebei, China
- Shanghai Institute of Pancreatic Diseases, Shanghai, 200433, China
| | - Bangwei Huang
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
- Shanghai Institute of Pancreatic Diseases, Shanghai, 200433, China
| | - Yu Liu
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
- Shanghai Institute of Pancreatic Diseases, Shanghai, 200433, China
- Department of Gastroenterology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210000, Jiangsu, China
- Department of Pharmacology, College of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Xin Tan
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
- Shanghai Institute of Pancreatic Diseases, Shanghai, 200433, China
| | - Libo Liu
- Department of Gastroenterology, The 981st Hospital of PLA, Chengde, 067000, Hebei, China
| | - Baoru Zhang
- Department of Gastroenterology, The 981st Hospital of PLA, Chengde, 067000, Hebei, China
| | - Zhaoshen Li
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
- Shanghai Institute of Pancreatic Diseases, Shanghai, 200433, China
| | - Le Kang
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
- Shanghai Institute of Pancreatic Diseases, Shanghai, 200433, China.
| | - Lianghao Hu
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
- Shanghai Institute of Pancreatic Diseases, Shanghai, 200433, China.
| |
Collapse
|
22
|
Wang M, Wang Y, Masson E, Wang Y, Yu D, Qian Y, Tang X, Deng S, Hu L, Wang L, Wang L, Rebours V, Cooper DN, Férec C, Li Z, Chen J, Zou W, Liao Z. SEC16A Variants Predispose to Chronic Pancreatitis by Impairing ER-to-Golgi Transport and Inducing ER Stress. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402550. [PMID: 39119875 PMCID: PMC11481239 DOI: 10.1002/advs.202402550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/29/2024] [Indexed: 08/10/2024]
Abstract
Chronic pancreatitis (CP) is a complex disease with genetic and environmental factors at play. Through trio exome sequencing, a de novo SEC16A frameshift variant in a Chinese teenage CP patient is identified. Subsequent targeted next-generation sequencing of the SEC16A gene in 1,061 Chinese CP patients and 1,196 controls reveals a higher allele frequency of rare nonsynonymous SEC16A variants in patients (4.90% vs 2.93%; odds ratio [OR], 1.71; 95% confidence interval [CI], 1.26-2.33). Similar enrichments are noted in a French cohort (OR, 2.74; 95% CI, 1.67-4.50) and in a biobank meta-analysis (OR, 1.16; 95% CI, 1.04-1.31). Notably, Chinese CP patients with SEC16A variants exhibit a median onset age 5 years earlier than those without (40.0 vs 45.0; p = 0.012). Functional studies using three CRISPR/Cas9-edited HEK293T cell lines show that loss-of-function SEC16A variants disrupt coat protein complex II (COPII) formation, impede secretory protein vesicles trafficking, and induce endoplasmic reticulum (ER) stress due to protein overload. Sec16a+/- mice, which demonstrate impaired zymogen secretion and exacerbated ER stress compared to Sec16a+/+, are further generated. In cerulein-stimulated pancreatitis models, Sec16a+/- mice display heightened pancreatic inflammation and fibrosis compared to wild-type mice. These findings implicate a novel pathogenic mechanism predisposing to CP.
Collapse
Affiliation(s)
- Min‐Jun Wang
- Department of GastroenterologyShanghai Institute of Pancreatic DiseasesShanghai Key Laboratory of Nautical Medicine and Translation of Drugs and Medical DevicesChanghai HospitalNational Key Laboratory of Immunity and InflammationNaval Medical UniversityShanghai200433China
- Department of Cell BiologyCenter for Stem Cell and MedicineNaval Medical UniversityShanghai200433China
| | - Yuan‐Chen Wang
- Department of GastroenterologyShanghai Institute of Pancreatic DiseasesShanghai Key Laboratory of Nautical Medicine and Translation of Drugs and Medical DevicesChanghai HospitalNational Key Laboratory of Immunity and InflammationNaval Medical UniversityShanghai200433China
| | - Emmanuelle Masson
- InsermEFSUMR 1078GGBUniv BrestBrestF‐29200France
- Service de Génétique Médicale et de Biologie de la ReproductionCHRU BrestBrestF‐29200France
| | - Ya‐Hui Wang
- Department of GastroenterologyShanghai Institute of Pancreatic DiseasesShanghai Key Laboratory of Nautical Medicine and Translation of Drugs and Medical DevicesChanghai HospitalNational Key Laboratory of Immunity and InflammationNaval Medical UniversityShanghai200433China
| | - Dong Yu
- Center for Translational MedicineNaval Medical UniversityShanghai200433China
| | - Yang‐Yang Qian
- Department of GastroenterologyShanghai Institute of Pancreatic DiseasesShanghai Key Laboratory of Nautical Medicine and Translation of Drugs and Medical DevicesChanghai HospitalNational Key Laboratory of Immunity and InflammationNaval Medical UniversityShanghai200433China
| | - Xin‐Ying Tang
- Department of Prevention and Health CareEastern Hepatobiliary Surgery HospitalNaval Medical UniversityShanghai200438China
| | - Shun‐Jiang Deng
- Department of GastroenterologyShanghai Institute of Pancreatic DiseasesShanghai Key Laboratory of Nautical Medicine and Translation of Drugs and Medical DevicesChanghai HospitalNational Key Laboratory of Immunity and InflammationNaval Medical UniversityShanghai200433China
| | - Liang‐Hao Hu
- Department of GastroenterologyShanghai Institute of Pancreatic DiseasesShanghai Key Laboratory of Nautical Medicine and Translation of Drugs and Medical DevicesChanghai HospitalNational Key Laboratory of Immunity and InflammationNaval Medical UniversityShanghai200433China
| | - Lei Wang
- Department of GastroenterologyShanghai Institute of Pancreatic DiseasesShanghai Key Laboratory of Nautical Medicine and Translation of Drugs and Medical DevicesChanghai HospitalNational Key Laboratory of Immunity and InflammationNaval Medical UniversityShanghai200433China
| | - Li‐Juan Wang
- Department of GastroenterologyShanghai Institute of Pancreatic DiseasesShanghai Key Laboratory of Nautical Medicine and Translation of Drugs and Medical DevicesChanghai HospitalNational Key Laboratory of Immunity and InflammationNaval Medical UniversityShanghai200433China
| | - Vinciane Rebours
- Pancreatology and Digestive Oncology DepartmentBeaujon HospitalAPHP – ClichyUniversité Paris CitéParis92110France
| | - David N. Cooper
- Institute of Medical GeneticsSchool of MedicineCardiff UniversityCardiffCF14 4XNUnited Kingdom
| | - Claude Férec
- InsermEFSUMR 1078GGBUniv BrestBrestF‐29200France
| | - Zhao‐Shen Li
- Department of GastroenterologyShanghai Institute of Pancreatic DiseasesShanghai Key Laboratory of Nautical Medicine and Translation of Drugs and Medical DevicesChanghai HospitalNational Key Laboratory of Immunity and InflammationNaval Medical UniversityShanghai200433China
| | | | - Wen‐Bin Zou
- Department of GastroenterologyShanghai Institute of Pancreatic DiseasesShanghai Key Laboratory of Nautical Medicine and Translation of Drugs and Medical DevicesChanghai HospitalNational Key Laboratory of Immunity and InflammationNaval Medical UniversityShanghai200433China
| | - Zhuan Liao
- Department of GastroenterologyShanghai Institute of Pancreatic DiseasesShanghai Key Laboratory of Nautical Medicine and Translation of Drugs and Medical DevicesChanghai HospitalNational Key Laboratory of Immunity and InflammationNaval Medical UniversityShanghai200433China
| |
Collapse
|
23
|
Qin A, Shi K, Tindall RR, Li J, Cheng B, Li J, Yang B, Yu Q, Zhang Y, Hong B, Kaur B, Younes M, Shen Q, Bailey-Lundberg JM, Cao Y, Ko TC. Characterization of Pancreatic Collagen-Expressing Fibroblasts in Mouse Acute Pancreatitis. GASTRO HEP ADVANCES 2024; 4:100557. [PMID: 39866719 PMCID: PMC11761323 DOI: 10.1016/j.gastha.2024.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 09/16/2024] [Indexed: 01/28/2025]
Abstract
Background and Aims Pancreatic stellate cells (PSCs) are critical mediators in chronic pancreatitis with an undefined role in acute pancreatitis (AP). PSCs consist of a heterogenous group of cells and are considered interchangeable with pancreatic fibroblasts. This study explored the heterogeneous nature of PSCs by characterizing pancreatic collagen-expressing fibroblasts (PCFs) via lineage tracing in mouse normal and AP pancreas and determining the effect of PCF depletion in AP. Methods Tandem dimer Tomato (tdTom+) PCFs in collagen type 1 (Col1)a2CreERtdTomato (Tom) mice receiving tamoxifen were characterized via fluorescence, Oil Red staining, and flow cytometry. AP was induced by cerulein, AP injury was assessed, and tdTom+ PCFs were monitored. The effect of PCF depletion on AP injury was evaluated in Col1a2CreERdiphtheria toxin A mice. Results Approximately 13% of pancreatic cells in Col1a2CreERTom mice were labeled by tdTom (tdTom+ PCFs), which surrounded acini, ducts, and blood vessels, and stained with Oil Red, collagen type I, vimentin, and desmin. tdTom+ PCFs increased 2-fold during AP, correlating with AP score, amylase, and alpha-smooth muscle actin+ and Ki67+ staining. PCF depletion in Col1a2CreERdiphtheria toxin A mice receiving tamoxifen resulted in enhanced inflammation compared to control. Conclusion PCFs may constitute a subset of PSCs and can be activated during AP. PCF depletion aggravates AP, suggesting a protective role for PCFs.
Collapse
Affiliation(s)
- Amy Qin
- Department of Surgery, UTHealth at Houston, Houston, Texas
| | - Kevin Shi
- Department of Surgery, UTHealth at Houston, Houston, Texas
| | | | - Jiajing Li
- Department of Surgery, UTHealth at Houston, Houston, Texas
| | - Binglu Cheng
- Department of Surgery, UTHealth at Houston, Houston, Texas
| | - Jing Li
- Department of Surgery, UTHealth at Houston, Houston, Texas
| | - Baibing Yang
- Department of Surgery, UTHealth at Houston, Houston, Texas
| | - Qiang Yu
- Department of Surgery, UTHealth at Houston, Houston, Texas
| | - Yinjie Zhang
- Department of Surgery, UTHealth at Houston, Houston, Texas
| | - Bangxing Hong
- Department of Pathology, Georgia Cancer Center, Augusta University, Augusta, Georgia
| | - Balveen Kaur
- Department of Pathology, Georgia Cancer Center, Augusta University, Augusta, Georgia
| | - Mamoun Younes
- Department of Pathology, George Washington University, Washington, District of Columbia
| | - Qiang Shen
- Department of Interdisciplinary Oncology, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | | | - Yanna Cao
- Department of Surgery, UTHealth at Houston, Houston, Texas
| | - Tien C. Ko
- Department of Surgery, UTHealth at Houston, Houston, Texas
| |
Collapse
|
24
|
Liu L, Liu H, Zhao M, Wen J, Liu J, Lv G, Xiao Z, Wang W, Zu S, Sun W, Zhang X, Gong L. Functional Upregulation of TRPM3 Channels Contributes to Acute Pancreatitis-associated Pain and Inflammation. Inflammation 2024:10.1007/s10753-024-02138-8. [PMID: 39259394 DOI: 10.1007/s10753-024-02138-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/11/2024] [Accepted: 08/27/2024] [Indexed: 09/13/2024]
Abstract
Transient receptor potential melastatin M3 (TRPM3) channels have been recognized as a pain transducer in dorsal root ganglion (DRG) neurons in recent years. TRPM3 activation initiates neurogenic inflammation and is required for the development of inflammatory hyperalgesia. We aimed to evaluate the role of TRPM3 in pancreas sensory afferents in pancreatic nociception, neurogenic inflammation, and acute pancreatitis (AP)-associated pain. AP was induced by intraperitoneal (i.p.) injection of L-arginine in rats. TRPM3 expression in pancreatic DRG neurons, spontaneous or mechanical-stimulation-evoked pain behaviors, and the extent of inflammation were evaluated. We found that TRPM3 channels were expressed on pancreatic primary afferent nerve terminals containing calcitonin gene-related peptide (CGRP). Activation of TRPM3 in the pancreas by injection of its specific agonist CIM0216 (10 μM) induced pain, CGRP and substance P release, and neurogenic inflammation, as evidenced by edema, plasma extravasation, and inflammatory cell accumulation in the pancreas. Increased TRPM3 functional expression was detected in pancreatic DRG neurons from AP rats, and blocking TRPM3 activity with its antagonist (Primidone, 5 mg/kg, i.p.) attenuated AP-associated pain behaviors and pancreatic inflammation. Pre-incubation of pancreatic DRG neurons with nerve growth factor (NGF) enhanced the increase in intracellular Ca2+ induced by the TRPM3 agonist (CIM0216, 1 μM). Our findings indicate that, in addition to TRPV1 and TRPA1 channels, TRPM3 is another pain channel that has a critical role in pancreatic nociception, neurogenic inflammation, and AP-associated pain behaviors. TRPM3 may be a promising pharmaceutical target for AP pain treatment.
Collapse
Affiliation(s)
- Lei Liu
- Department of Urology, The Second Hospital of Shandong University, Shandong, PR, China
| | - Hanwen Liu
- Department of Urology, The Second Hospital of Shandong University, Shandong, PR, China
| | - Mengmeng Zhao
- Department of Urology, The Second Hospital of Shandong University, Shandong, PR, China
| | - Jiliang Wen
- Department of Urology, The Second Hospital of Shandong University, Shandong, PR, China
| | - Jiaxin Liu
- Department of Urology, The Second Hospital of Shandong University, Shandong, PR, China
| | - Guangda Lv
- Department of Urology, The Second Hospital of Shandong University, Shandong, PR, China
| | - Zhiying Xiao
- Department of Urology, The Second Hospital of Shandong University, Shandong, PR, China
| | - Wenzhen Wang
- Department of Urology, The Second Hospital of Shandong University, Shandong, PR, China
| | - Shulu Zu
- Department of Urology, The Second Hospital of Shandong University, Shandong, PR, China
| | - Wendong Sun
- Department of Urology, The Second Hospital of Shandong University, Shandong, PR, China
| | - Xiulin Zhang
- Department of Urology, The Second Hospital of Shandong University, Shandong, PR, China
| | - Liping Gong
- Department of Academic Research, The Second Hospital of Shandong University, Shandong, PR, China.
| |
Collapse
|
25
|
Wu Y, Qin K, Xu Y, Rajhans S, Vo T, Lopez KM, Liu J, Nipper MH, Deng J, Yin X, Ramjit LR, Ye Z, Luan Y, Arda HE, Wang P. Hippo pathway-mediated YAP1/TAZ inhibition is essential for proper pancreatic endocrine specification and differentiation. eLife 2024; 13:e84532. [PMID: 39051998 PMCID: PMC11272159 DOI: 10.7554/elife.84532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 06/15/2024] [Indexed: 07/27/2024] Open
Abstract
The Hippo pathway plays a central role in tissue development and homeostasis. However, the function of Hippo in pancreatic endocrine development remains obscure. Here, we generated novel conditional genetically engineered mouse models to examine the roles of Hippo pathway-mediated YAP1/TAZ inhibition in the development stages of endocrine specification and differentiation. While YAP1 protein was localized to the nuclei in bipotent progenitor cells, Neurogenin 3 expressing endocrine progenitors completely lost YAP1 expression. Using genetically engineered mouse models, we found that inactivation of YAP1 requires both an intact Hippo pathway and Neurogenin 3 protein. Gene deletion of Lats1 and 2 kinases (Lats1&2) in endocrine progenitor cells of developing mouse pancreas using Neurog3Cre blocked endocrine progenitor cell differentiation and specification, resulting in reduced islets size and a disorganized pancreas at birth. Loss of Lats1&2 in Neurogenin 3 expressing cells activated YAP1/TAZ transcriptional activity and recruited macrophages to the developing pancreas. These defects were rescued by deletion of Yap1/Wwtr1 genes, suggesting that tight regulation of YAP1/TAZ by Hippo signaling is crucial for pancreatic endocrine specification. In contrast, deletion of Lats1&2 using β-cell-specific Ins1CreER resulted in a phenotypically normal pancreas, indicating that Lats1&2 are indispensable for differentiation of endocrine progenitors but not for that of β-cells. Our results demonstrate that loss of YAP1/TAZ expression in the pancreatic endocrine compartment is not a passive consequence of endocrine specification. Rather, Hippo pathway-mediated inhibition of YAP1/TAZ in endocrine progenitors is a prerequisite for endocrine specification and differentiation.
Collapse
Affiliation(s)
- Yifan Wu
- Department of Cell Systems & Anatomy, University of Texas Health Science Center at San AntonioSan AntonioUnited States
- Department of Obstetrics, The Second Xiangya Hospital, Central South UniversityChangshaChina
| | - Kunhua Qin
- Department of Cell Systems & Anatomy, University of Texas Health Science Center at San AntonioSan AntonioUnited States
- Department of Molecular Medicine, University of Texas Health Science Center at San AntonioSan AntonioUnited States
| | - Yi Xu
- Department of Cell Systems & Anatomy, University of Texas Health Science Center at San AntonioSan AntonioUnited States
| | - Shreya Rajhans
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, NIHBethesdaUnited States
| | - Truong Vo
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, NIHBethesdaUnited States
| | - Kevin M Lopez
- Department of Cell Systems & Anatomy, University of Texas Health Science Center at San AntonioSan AntonioUnited States
| | - Jun Liu
- Department of Cell Systems & Anatomy, University of Texas Health Science Center at San AntonioSan AntonioUnited States
| | - Michael H Nipper
- Department of Cell Systems & Anatomy, University of Texas Health Science Center at San AntonioSan AntonioUnited States
| | - Janice Deng
- Department of Cell Systems & Anatomy, University of Texas Health Science Center at San AntonioSan AntonioUnited States
| | - Xue Yin
- Department of Cell Systems & Anatomy, University of Texas Health Science Center at San AntonioSan AntonioUnited States
| | - Logan R Ramjit
- Department of Cell Systems & Anatomy, University of Texas Health Science Center at San AntonioSan AntonioUnited States
| | - Zhenqing Ye
- Department of Population Health Sciences, University of Texas Health Science Center at San AntonioSan AntonioUnited States
| | - Yu Luan
- Department of Cell Systems & Anatomy, University of Texas Health Science Center at San AntonioSan AntonioUnited States
| | - H Efsun Arda
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, NIHBethesdaUnited States
| | - Pei Wang
- Department of Cell Systems & Anatomy, University of Texas Health Science Center at San AntonioSan AntonioUnited States
| |
Collapse
|
26
|
Zhang R, Zhu Z, Ma Y, Tang T, Wu J, Huang F, Xu L, Wang Y, Zhou J. Rhizoma Alismatis Decoction improved mitochondrial dysfunction to alleviate SASP by enhancing autophagy flux and apoptosis in hyperlipidemia acute pancreatitis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155629. [PMID: 38677271 DOI: 10.1016/j.phymed.2024.155629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 03/24/2024] [Accepted: 04/09/2024] [Indexed: 04/29/2024]
Abstract
BACKGROUND Acute pancreatitis (AP) is an inflammatory disorder of the exocrine pancreas, especially hyperlipidemia acute pancreatitis (HLAP) is the third leading cause of acute pancreatitis which is more severe with a greater incidence of persistent multiorgan failure. HLAP inflicts injury upon the organelles within the acinar cell, particularly mitochondria, the endolysosomal-autophagy system, and is accompanied by senescence-associated secretory phenotype (SASP). RAD, only two consists of Rhizoma Alismatis and Atractylodes macrocephala Rhizoma, which is best known for its ability to anti-inflammatory and lipid-lowering. Nevertheless, the mechanism by which RAD alleviates HLAP remains obscure, necessitating further investigation. PURPOSE The study aimed to assess the effects of the RAD on HLAP and to elucidate the underlying mechanism in vivo and in vitro, offering a potential medicine for clinical treatment for HLAP. STUDY DESIGN AND METHODS C57BL/6 mice with hyperlipidemia acute pancreatitis were induced by HFD and CER, then administrated with RAD. AR42J were stimulated by cerulein or conditioned medium and then cultured with RAD. Serums were analyzed to evaluate potential pancreas and liver damage. Furthermore, tissue samples were obtained for histological, and protein investigations by H&E, Oil red staining, and Western blot. In addition, western blot and immunofluorescent staining were utilized to estimate the effect of RAD on mitochondrial function, autophagy flux, and SASP. RESULTS In vivo, RAD considerably alleviated systemic inflammation while attenuating TC, TG, AMY, LPS, inflammatory cytokines, histopathology changes, oxidative damage, mitochondrial fission, and autophagy markers in HLAP mice. Impaired autophagy flux and mitochondrial dysfunction resulted in a significant enhancement of NLRP3 and IL-1β in the pancreas. RAD could reverse these changes. In vitro, RAD significantly restored mitochondrial membrane potential and oxidative phosphorylation levels. RAD decreased Beclin-1 and LC3-II expression and increased LAMP-1 and Parkin-Pink expression, which showed that RAD significantly ameliorated HLAP-induced damage to the mitochondria function by suppressing mitochondrial oxidative damage and enhancing autophagy flux and mitophagy to remove the damaged mitochondria. In addition, we found that RAD could up-regulate the expression of BAX, and Bad and down-regulate the expression of p16, and p21, indicating that RAD could promote damaged cell apoptosis and alleviate SASP. CONCLUSIONS This study revealed that RAD ameliorates mitochondrial function to alleviate SASP through enhancing autophagy flux, mitophagy, and apoptosis which provided a molecular basis for the advancement and development of protection strategies against HLAP.
Collapse
Affiliation(s)
- Rongzhan Zhang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Zhiyong Zhu
- Wuxi Huishan District People's Hospital, Wuxi, 214187, China; Affiliated Hushan Hospital of Xingling College, Nantong University, 226019, China
| | - Yumei Ma
- Digestive Department of Qinghai Provincial People's Hospital, Xining, 810007, China
| | - Tiantian Tang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Jiejie Wu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Fang Huang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Luzhou Xu
- Gastroenterology Department, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210004, China
| | - Yaping Wang
- Wuxi Huishan District People's Hospital, Wuxi, 214187, China; Affiliated Hushan Hospital of Xingling College, Nantong University, 226019, China.
| | - Jia Zhou
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
27
|
Wang YC, Mao XT, Sun C, Wang YH, Zheng YZ, Xiong SH, Liu MY, Mao SH, Wang QW, Ma GX, Wu D, Li ZS, Chen JM, Zou WB, Liao Z. Pancreas-directed AAV8 -hSPINK1 gene therapy safely and effectively protects against pancreatitis in mice. Gut 2024; 73:1142-1155. [PMID: 38553043 DOI: 10.1136/gutjnl-2023-330788] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 03/19/2024] [Indexed: 06/15/2024]
Abstract
OBJECTIVE Currently, there is no cure for chronic pancreatitis (CP). Germline loss-of-function variants in SPINK1 (encoding trypsin inhibitor) are common in patients with CP and are associated with acute attacks and progression of the disease. This preclinical study was conducted to explore the potential of adeno-associated virus type 8 (AAV8)-mediated overexpression of human SPINK1 (hSPINK1) for pancreatitis therapy in mice. DESIGN A capsid-optimised AAV8-mediated hSPINK1 expression vector (AAV8-hSPINK1) to target the pancreas was constructed. Mice were treated with AAV8-hSPINK1 by intraperitoneal injection. Pancreatic transduction efficiency and safety of AAV8-hSPINK1 were dynamically evaluated in infected mice. The effectiveness of AAV8-hSPINK1 on pancreatitis prevention and treatment was studied in three mouse models (caerulein-induced pancreatitis, pancreatic duct ligation and Spink1 c.194+2T>C mouse models). RESULTS The constructed AAV8-hSPINK1 vector specifically and safely targeted the pancreas, had low organ tropism for the heart, lungs, spleen, liver and kidneys and had a high transduction efficiency (the optimal expression dose was 2×1011 vg/animal). The expression and efficacy of hSPINK1 peaked at 4 weeks after injection and remained at significant level for up to at least 8 weeks. In all three mouse models, a single dose of AAV8-hSPINK1 before disease onset significantly alleviated the severity of pancreatitis, reduced the progression of fibrosis, decreased the levels of apoptosis and autophagy in the pancreas and accelerated the pancreatitis recovery process. CONCLUSION One-time injection of AAV8-hSPINK1 safely targets the pancreas with high transduction efficiency and effectively ameliorates pancreatitis phenotypes in mice. This approach is promising for the prevention and treatment of CP.
Collapse
Affiliation(s)
- Yuan-Chen Wang
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
- Shanghai Institute of Pancreatic Diseases, Shanghai, China
- National Key Laboratory of Immunity and Inflammation, Naval Medical University, Shanghai, China
- Shanghai Key Laboratory of Nautical Medicine and Translation of Drugs and Medical Devices, Shanghai, China
| | - Xiao-Tong Mao
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
- Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - Chang Sun
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Ya-Hui Wang
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
- Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - Yi-Zhou Zheng
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
- Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - Si-Huai Xiong
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
- Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - Mu-Yun Liu
- Department of Gastroenterology, No. 905 Hospital of PLA Navy Affiliated to Naval Medical University, Shanghai, China
| | - Sheng-Han Mao
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
- Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - Qi-Wen Wang
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
- Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - Guo-Xiu Ma
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
- Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - Di Wu
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
- Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - Zhao-Shen Li
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
- Shanghai Institute of Pancreatic Diseases, Shanghai, China
- National Key Laboratory of Immunity and Inflammation, Naval Medical University, Shanghai, China
- Shanghai Key Laboratory of Nautical Medicine and Translation of Drugs and Medical Devices, Shanghai, China
| | - Jian-Min Chen
- Univ Brest, Inserm, EFS, UMR 1078, GGB, Brest, France
| | - Wen-Bin Zou
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
- Shanghai Institute of Pancreatic Diseases, Shanghai, China
- National Key Laboratory of Immunity and Inflammation, Naval Medical University, Shanghai, China
- Shanghai Key Laboratory of Nautical Medicine and Translation of Drugs and Medical Devices, Shanghai, China
| | - Zhuan Liao
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
- Shanghai Institute of Pancreatic Diseases, Shanghai, China
- National Key Laboratory of Immunity and Inflammation, Naval Medical University, Shanghai, China
- Shanghai Key Laboratory of Nautical Medicine and Translation of Drugs and Medical Devices, Shanghai, China
| |
Collapse
|
28
|
Aney KJ, Jeong WJ, Vallejo AF, Burdziak C, Chen E, Wang A, Koak P, Wise K, Jensen K, Pe'er D, Dougan SK, Martelotto L, Nissim S. Novel Approach for Pancreas Transcriptomics Reveals the Cellular Landscape in Homeostasis and Acute Pancreatitis. Gastroenterology 2024; 166:1100-1113. [PMID: 38325760 PMCID: PMC11102849 DOI: 10.1053/j.gastro.2024.01.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 01/27/2024] [Accepted: 01/30/2024] [Indexed: 02/09/2024]
Abstract
BACKGROUND & AIMS Acinar cells produce digestive enzymes that impede transcriptomic characterization of the exocrine pancreas. Thus, single-cell RNA-sequencing studies of the pancreas underrepresent acinar cells relative to histological expectations, and a robust approach to capture pancreatic cell responses in disease states is needed. We sought to innovate a method that overcomes these challenges to accelerate study of the pancreas in health and disease. METHODS We leverage FixNCut, a single-cell RNA-sequencing approach in which tissue is reversibly fixed with dithiobis(succinimidyl propionate) before dissociation and single-cell preparation. We apply FixNCut to an established mouse model of acute pancreatitis, validate findings using GeoMx whole transcriptome atlas profiling, and integrate our data with prior studies to compare our method in both mouse and human pancreas datasets. RESULTS FixNCut achieves unprecedented definition of challenging pancreatic cells, including acinar and immune populations in homeostasis and acute pancreatitis, and identifies changes in all major cell types during injury and recovery. We define the acinar transcriptome during homeostasis and acinar-to-ductal metaplasia and establish a unique gene set to measure deviation from normal acinar identity. We characterize pancreatic immune cells, and analysis of T-cell subsets reveals a polarization of the homeostatic pancreas toward type-2 immunity. We report immune responses during acute pancreatitis and recovery, including early neutrophil infiltration, expansion of dendritic cell subsets, and a substantial shift in the transcriptome of macrophages due to both resident macrophage activation and monocyte infiltration. CONCLUSIONS FixNCut preserves pancreatic transcriptomes to uncover novel cell states during homeostasis and following pancreatitis, establishing a broadly applicable approach and reference atlas for study of pancreas biology and disease.
Collapse
Affiliation(s)
- Katherine J Aney
- Biological and Biomedical Sciences Program, Harvard Medical School, Boston, Massachusetts; Health Sciences & Technology Program, Harvard-MIT, Boston, Massachusetts; Genetics Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Woo-Jeong Jeong
- Genetics Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; Dana-Farber Cancer Institute, Boston, Massachusetts
| | | | - Cassandra Burdziak
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ethan Chen
- Genetics Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Austin Wang
- Harvard University, Cambridge, Massachusetts
| | - Pal Koak
- Genetics Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Kellie Wise
- Adelaide Centre for Epigenetics (ACE), University of Adelaide, South Australia, Australia; South Australian immunoGENomics Cancer Institute (SAiGENCI), University of Adelaide, South Australia, Australia
| | - Kirk Jensen
- Adelaide Centre for Epigenetics (ACE), University of Adelaide, South Australia, Australia; South Australian immunoGENomics Cancer Institute (SAiGENCI), University of Adelaide, South Australia, Australia; Australian Genome Research Facility, Melbourne, Victoria, Australia
| | - Dana Pe'er
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York; Howard Hughes Medical Institute, Chevy Chase, Maryland
| | - Stephanie K Dougan
- Dana-Farber Cancer Institute, Boston, Massachusetts; Department of Immunology, Harvard Medical School, Boston, Massachusetts
| | - Luciano Martelotto
- Adelaide Centre for Epigenetics (ACE), University of Adelaide, South Australia, Australia; South Australian immunoGENomics Cancer Institute (SAiGENCI), University of Adelaide, South Australia, Australia.
| | - Sahar Nissim
- Biological and Biomedical Sciences Program, Harvard Medical School, Boston, Massachusetts; Health Sciences & Technology Program, Harvard-MIT, Boston, Massachusetts; Genetics Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; Dana-Farber Cancer Institute, Boston, Massachusetts; Gastroenterology Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
29
|
Mei W, Zhang X, Niu M, Li L, Guo X, Wang G, Pandol S, Wen L, Cao F. Deletion of myeloid-specific Orai1 calcium channel does not affect pancreatic tissue damage in experimental acute pancreatitis. Pancreatology 2024; 24:528-537. [PMID: 38637233 DOI: 10.1016/j.pan.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/29/2024] [Accepted: 04/04/2024] [Indexed: 04/20/2024]
Abstract
BACKGROUND Store-operated Ca2+ entry (SOCE) mediated by ORAI1 channel plays a crucial role in acute pancreatitis (AP). Macrophage is an important regulator in amplifying pancreatic tissue damage, but little is known about the role of ORAI1 in macrophages. In this study, we examined the effects of macrophage-specific ORAI1 on pancreatic tissue damage in AP. METHOD Myeloid-specific Orai1 deficient mice was generated by crossing a LysM-Cre mouse line with Orai1f/f mice. Bone marrow-derived macrophages (BMDMs) were isolated, cultured, and stimulated to induce M1 or M2 macrophage polarization. Intracellular Ca2+ signals were measured by time-lapse confocal microscope imaging, with a Ca2+ indicator (Fluo 4). Experimental AP was induced by hourly intraperitoneal injections of caerulein or retrograde biliopancreatic infusion of sodium taurocholate. Pancreatic tissue damage was assessed by histopathological scoring and immunostaining. Sepsis was induced by intraperitoneal injection of lipopolysaccharide; organ damage and serum pro-inflammatory cytokines were measured. RESULT Myeloid-specific Orai1 deletion exhibited minimal effect on SOCE in M0 macrophages and promoted M2 macrophage polarization ex vivo. Myeloid-specific Orai1 deletion did not affect pancreatic tissue damage, nor neutrophil or macrophage infiltration in two models of AP. Similarly, myeloid-specific Orai1 deletion did not influence overall survival rate in a model of sepsis, nor lung, kidney, and liver damage; while serum pro-inflammatory cytokines, including IL-6, TNF-α, and IL-1β were higher in Orai1ΔLysM mice, but were largely reduced in mice with Orai1 inhibitor. CONCLUSION Our data suggest that ORAI1 may not be a predominant SOCE channel in macrophages and play a limited role in mediating pancreatic tissue damage in AP.
Collapse
Affiliation(s)
- Wentong Mei
- Department of General Surgery, Xuanwu Hospital Capital Medical University, Beijing 100053, China
| | - Xiuli Zhang
- Center for Biomarker Discovery and Validation, National Infrastructures for Translational Medicine (PUMCH), Institute of Clinical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100730, China; State Key Laboratory of Complex, Severe, and Rare Diseases, Institute of Clinical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing 100730, China; Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100730, China
| | - Mengya Niu
- Department of Gastroenterology and Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201600, China
| | - Liang Li
- Department of Gastroenterology and Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201600, China
| | - Xiaoyu Guo
- Center for Biomarker Discovery and Validation, National Infrastructures for Translational Medicine (PUMCH), Institute of Clinical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100730, China; State Key Laboratory of Complex, Severe, and Rare Diseases, Institute of Clinical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing 100730, China; Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100730, China; Department of Gastroenterology and Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201600, China; Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Gang Wang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Stephen Pandol
- Department of Medicine, Cedars-Sinai Medical Center, Los Angel, CA, 90048, USA
| | - Li Wen
- Center for Biomarker Discovery and Validation, National Infrastructures for Translational Medicine (PUMCH), Institute of Clinical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100730, China; State Key Laboratory of Complex, Severe, and Rare Diseases, Institute of Clinical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing 100730, China.
| | - Feng Cao
- Department of General Surgery, Xuanwu Hospital Capital Medical University, Beijing 100053, China.
| |
Collapse
|
30
|
Deng G, Wen B, Jia L, Liu J, Yan Q. Clostridium butyricum upregulates GPR109A/AMPK/PGC-1α and ameliorates acute pancreatitis-associated intestinal barrier injury in mice. Arch Microbiol 2024; 206:265. [PMID: 38761195 DOI: 10.1007/s00203-024-04001-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/07/2024] [Accepted: 05/11/2024] [Indexed: 05/20/2024]
Abstract
Acute pancreatitis frequently causes intestinal barrier damage, which aggravates pancreatitis. Although Clostridium butyricum exerts anti-inflammatory and protective effects on the intestinal barrier during acute pancreatitis, the underlying mechanism is unclear. The G protein-coupled receptors 109 A (GPR109A) and adenosine monophosphate-activated protein kinase (AMPK)/ peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1α) signaling pathways can potentially influence the integrity of the intestinal barrier. Our study generated acute pancreatitis mouse models via intraperitoneal injection of cerulein and lipopolysaccharides. After intervention with Clostridium butyricum, the model mice showed reduced small intestinal and colonic intestinal barrier damage, dysbiosis amelioration, and increased GPR109A/AMPK/PGC-1α expression. In conclusion, Clostridium butyricum could improve pancreatic and intestinal inflammation and pancreatic injury, and relieve acute pancreatitis-induced intestinal barrier damage in the small intestine and colon, which may be associated with GPR109A/AMPK/PGC-1α.
Collapse
Affiliation(s)
- Guiqing Deng
- Department of Gastroenterology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China
| | - Biyan Wen
- Department of Gastroenterology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China
| | - Lin Jia
- Department of Gastroenterology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China.
| | - Jiaxin Liu
- Department of Gastroenterology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China
| | - Qingqing Yan
- Department of Gastroenterology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China
- Department of Gastroenterology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, 510180, China
| |
Collapse
|
31
|
Han X, Bao J, Ni J, Li B, Song P, Wan R, Wang X, Hu G, Chen C. Qing Xia Jie Yi Formula granules alleviated acute pancreatitis through inhibition of M1 macrophage polarization by suppressing glycolysis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 325:117750. [PMID: 38216100 DOI: 10.1016/j.jep.2024.117750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/28/2023] [Accepted: 01/09/2024] [Indexed: 01/14/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Herbal formulas from Traditional Chinese Medicine are common and well-established practice for treating acute pancreatitis (AP) patients. However, little is known about their bioactive ingredients and mechanisms, such as their targets and pathways to inhibit inflammation. AIM OF THE STUDY This study aimed to evaluate the effect of Qing Xia Jie Yi Formula (QXJYF) granules on AP and discuss the molecular mechanisms involved. MATERIALS AND METHODS Major compounds in QXJYF granules were identified using UPLC-quadrupole-Orbitrap mass spectrometry (UPLC-Q-Orbitrap MS). The effect of QXJYF granules on experimental AP models both in vitro and in vivo, and detailed mechanisms were clarified. Two AP models were induced in mice by intraperitoneally injections of caerulein or L-arginine, and QXJYF granules were used to treat AP mice in vivo. Histological evaluation of pancreas and lung, serum amylase and lipase levels, serum inflammatory cytokines, inflammatory cell infiltration and macrophage phenotype were assessed. Bone marrow derived macrophages (BMDMs) were cultured and treated with QXJYF granules in vitro. BMDM phenotype and glycolysis levels were measured. Lastly, clinical effect of QXJYF granules on AP patients was verified. Predicted severe AP (pSAP) patients eligible for inclusion were assessed for enrollment. RESULTS Nine major compounds were identified in QXJYF granules. Data showed that QXJYF granules significantly alleviated AP severity both in caerulein and L-arginine-induced AP models in vivo, pancreatic injury and inflammatory cell infiltration, systematic inflammation, lung injury and inflammatory cell infiltration were all improved after QXJYF treatment. QXJYF granules significantly reduced M1 macrophages during AP both in vivo and in vitro; besides, the mRNA expression levels of M1 genes such as inos, Tnfα, Il1β and Il6 were significantly lower after QXJYF treatment in M1 macrophages. Mechanistically, we found that HK2, PFKFB3, PKM, LDHα levels were increased in M1 macrophages, but significantly decreased after QXJYF treatment. Clinical data indicated that QXJYF granules could significantly reduce CRP levels and shorten the duration of organ failure, thereby reducing the incidence of SAP and preventing pSAP patients from progressing to SAP. CONCLUSION QXJYF granules alleviated AP through the inhibition of M1 macrophage polarization by suppressing glycolysis.
Collapse
Affiliation(s)
- Xiao Han
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingpiao Bao
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianbo Ni
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bin Li
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Pengli Song
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rong Wan
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xingpeng Wang
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guoyong Hu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Congying Chen
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
32
|
Fathema K, Karim B, Al-Azad S, Rukunuzzaman M, Ahmed M, Rifah TJ, Saha D, Benzamin M. Computed Tomography Assessment of Severity of Acute Pancreatitis in Bangladeshi Children. Pediatr Gastroenterol Hepatol Nutr 2024; 27:176-185. [PMID: 38818279 PMCID: PMC11134178 DOI: 10.5223/pghn.2024.27.3.176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 09/10/2023] [Accepted: 10/30/2023] [Indexed: 06/01/2024] Open
Abstract
Purpose Acute pancreatitis (AP) is common among children in Bangladesh. Its management depends mainly on risk stratification. This study aimed to assess the severity of pediatric AP using computed tomography (CT). Methods This cross-sectional, descriptive study was conducted in pediatric patients with AP at the Department of Pediatric Gastroenterology and Nutrition, BSMMU, Dhaka, Bangladesh. Results Altogether, 25 patients with AP were included, of whom 18 (mean age, 10.27±4.0 years) were diagnosed with mild AP, and 7 (mean age, 10.54±4.0 years) with severe AP. Abdominal pain was present in all the patients, and vomiting was present in 88% of the patients. Etiology was not determined. No significant differences in serum lipase, serum amylase, BUN, and CRP levels were observed between the mild and severe AP groups. Total and platelet counts as well as hemoglobin, hematocrit, serum creatinine, random blood sugar, and serum alanine aminotransferase levels (p>0.05) were significantly higher in the mild AP group than in the severe AP group (p=0.001). The sensitivity, specificity, positive predictive value, and negative predictive value of CT severity index (CTSI) were 71.4%, 72.2%, 50%, and 86.7%, respectively. In addition, significant differences in pancreatic appearance and necrosis were observed between the two groups on CT. Conclusion CT can be used to assess the severity of AP. In the present study, the CTSI effectively assessed the severity of AP in pediatric patients.
Collapse
Affiliation(s)
- Kaniz Fathema
- Department of Pediatric Gastroenterology and Nutrition, Sir Salimullah Medical College Mitford Hospital, Dhaka, Bangladesh
| | - Bazlul Karim
- Department of Pediatric Gastroenterology and Nutrition, Bangabandhu Sheikh Mujib Medical University, Dhaka, Bangladesh
| | - Salahuddin Al-Azad
- Department of Radiology and Imaging, Bangabandhu Sheikh Mujib Medical University, Dhaka, Bangladesh
| | - Md. Rukunuzzaman
- Department of Pediatric Gastroenterology and Nutrition, Bangabandhu Sheikh Mujib Medical University, Dhaka, Bangladesh
| | - Mizu Ahmed
- Department of Dermatology, Shahid Syed Nazrul Islam Medical College Hospital, Kishoregonj, Bangladesh
| | - Tasfia Jannat Rifah
- Department of Pediatric Gastroenterology and Nutrition, Bangabandhu Sheikh Mujib Medical University, Dhaka, Bangladesh
| | - Dipanwita Saha
- Department of Pediatric Gastroenterology and Nutrition, Comilla Medical College, Comilla, Bangladesh
| | - Md. Benzamin
- Department of Pediatric Gastroenterology and Nutrition, Sylhet MAG Osmani Medical College Hospital, Sylhet, Bangladesh
| |
Collapse
|
33
|
Zheng P, Li XY, Yang XY, Wang H, Ding L, He C, Wan JH, Ke HJ, Lu NH, Li NS, Zhu Y. Comparative transcriptomic analysis reveals the molecular changes of acute pancreatitis in experimental models. World J Gastroenterol 2024; 30:2038-2058. [PMID: 38681131 PMCID: PMC11045495 DOI: 10.3748/wjg.v30.i14.2038] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/19/2024] [Accepted: 03/01/2024] [Indexed: 04/12/2024] Open
Abstract
BACKGROUND Acute pancreatitis (AP) encompasses a spectrum of pancreatic inflammatory conditions, ranging from mild inflammation to severe pancreatic necrosis and multisystem organ failure. Given the challenges associated with obtaining human pancreatic samples, research on AP predominantly relies on animal models. In this study, we aimed to elucidate the fundamental molecular mechanisms underlying AP using various AP models. AIM To investigate the shared molecular changes underlying the development of AP across varying severity levels. METHODS AP was induced in animal models through treatment with caerulein alone or in combination with lipopolysaccharide (LPS). Additionally, using Ptf1α to drive the specific expression of the hM3 promoter in pancreatic acinar cells transgenic C57BL/6J- hM3/Ptf1α(cre) mice were administered Clozapine N-oxide to induce AP. Subsequently, we conducted RNA sequencing of pancreatic tissues and validated the expression of significantly different genes using the Gene Expression Omnibus (GEO) database. RESULTS Caerulein-induced AP showed severe inflammation and edema, which were exacerbated when combined with LPS and accompanied by partial pancreatic tissue necrosis. Compared with the control group, RNA sequencing analysis revealed 880 significantly differentially expressed genes in the caerulein model and 885 in the caerulein combined with the LPS model. Kyoto Encyclopedia of Genes and Genomes enrichment analysis and Gene Set Enrichment Analysis indicated substantial enrichment of the TLR and NOD-like receptor signaling pathway, TLR signaling pathway, and NF-κB signaling pathway, alongside elevated levels of apoptosis-related pathways, such as apoptosis, P53 pathway, and phagosome pathway. The significantly elevated genes in the TLR and NOD-like receptor signaling pathways, as well as in the apoptosis pathway, were validated through quantitative real-time PCR experiments in animal models. Validation from the GEO database revealed that only MYD88 concurred in both mouse pancreatic tissue and human AP peripheral blood, while TLR1, TLR7, RIPK3, and OAS2 genes exhibited marked elevation in human AP. The genes TUBA1A and GADD45A played significant roles in apoptosis within human AP. The transgenic mouse model hM3/Ptf1α(cre) successfully validated significant differential genes in the TLR and NOD-like receptor signaling pathways as well as the apoptosis pathway, indicating that these pathways represent shared pathological processes in AP across different models. CONCLUSION The TLR and NOD receptor signaling pathways play crucial roles in the inflammatory progression of AP, notably the MYD88 gene. Apoptosis holds a central position in the necrotic processes of AP, with TUBA1A and GADD45A genes exhibiting prominence in human AP.
Collapse
Affiliation(s)
- Pan Zheng
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Xue-Yang Li
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Xiao-Yu Yang
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Huan Wang
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Ling Ding
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Cong He
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Jian-Hua Wan
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Hua-Jing Ke
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Nong-Hua Lu
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Nian-Shuang Li
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Yin Zhu
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| |
Collapse
|
34
|
Tsvilovskyy V, Ottenheijm R, Kriebs U, Schütz A, Diakopoulos KN, Jha A, Bildl W, Wirth A, Böck J, Jaślan D, Ferro I, Taberner FJ, Kalinina O, Hildebrand S, Wissenbach U, Weissgerber P, Vogt D, Eberhagen C, Mannebach S, Berlin M, Kuryshev V, Schumacher D, Philippaert K, Camacho-Londoño JE, Mathar I, Dieterich C, Klugbauer N, Biel M, Wahl-Schott C, Lipp P, Flockerzi V, Zischka H, Algül H, Lechner SG, Lesina M, Grimm C, Fakler B, Schulte U, Muallem S, Freichel M. OCaR1 endows exocytic vesicles with autoregulatory competence by preventing uncontrolled Ca2+ release, exocytosis, and pancreatic tissue damage. J Clin Invest 2024; 134:e169428. [PMID: 38557489 PMCID: PMC10977991 DOI: 10.1172/jci169428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 02/13/2024] [Indexed: 04/04/2024] Open
Abstract
Regulated exocytosis is initiated by increased Ca2+ concentrations in close spatial proximity to secretory granules, which is effectively prevented when the cell is at rest. Here we showed that exocytosis of zymogen granules in acinar cells was driven by Ca2+ directly released from acidic Ca2+ stores including secretory granules through NAADP-activated two-pore channels (TPCs). We identified OCaR1 (encoded by Tmem63a) as an organellar Ca2+ regulator protein integral to the membrane of secretory granules that controlled Ca2+ release via inhibition of TPC1 and TPC2 currents. Deletion of OCaR1 led to extensive Ca2+ release from NAADP-responsive granules under basal conditions as well as upon stimulation of GPCR receptors. Moreover, OCaR1 deletion exacerbated the disease phenotype in murine models of severe and chronic pancreatitis. Our findings showed OCaR1 as a gatekeeper of Ca2+ release that endows NAADP-sensitive secretory granules with an autoregulatory mechanism preventing uncontrolled exocytosis and pancreatic tissue damage.
Collapse
Affiliation(s)
- Volodymyr Tsvilovskyy
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany
| | - Roger Ottenheijm
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany
| | - Ulrich Kriebs
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Aline Schütz
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Kalliope Nina Diakopoulos
- Comprehensive Cancer Center München, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Archana Jha
- Epithelial Signaling and Transport Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, USA
| | - Wolfgang Bildl
- Institute for Physiology, University of Freiburg, Freiburg, Germany
| | - Angela Wirth
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany
| | - Julia Böck
- Walther-Straub-Institut für Pharmakologie und Toxikologie, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Dawid Jaślan
- Walther-Straub-Institut für Pharmakologie und Toxikologie, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Irene Ferro
- Walther-Straub-Institut für Pharmakologie und Toxikologie, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Francisco J. Taberner
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández–Consejo Superior de Investigaciones Científicas, Sant Joan d’Alacant, Spain
| | - Olga Kalinina
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany
| | - Staffan Hildebrand
- Institut für Pharmakologie und Toxikologie, Universität Bonn, Bonn, Germany
| | - Ulrich Wissenbach
- Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University, Homburg, Germany
| | - Petra Weissgerber
- Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University, Homburg, Germany
| | - Dominik Vogt
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Carola Eberhagen
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Stefanie Mannebach
- Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University, Homburg, Germany
| | - Michael Berlin
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany
| | - Vladimir Kuryshev
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Dagmar Schumacher
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Koenraad Philippaert
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany
| | | | - Ilka Mathar
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Christoph Dieterich
- University Hospital Heidelberg, Department of Medicine III: Cardiology, Angiology and Pneumology, Heidelberg, Germany
| | - Norbert Klugbauer
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Fakultät für Medizin, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Martin Biel
- Center for Integrated Protein Science Munich (CIPS-M) and Center for Drug Research, Department of Pharmacy, Ludwig-Maximilians-Universität München, and DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Christian Wahl-Schott
- Walter Brendel Centre of Experimental Medicine, Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Medical Faculty, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Peter Lipp
- Institute for Molecular Cell Biology, Center for Molecular Signaling (PZMS), Universität des Saarlandes, Homburg, Germany
| | - Veit Flockerzi
- Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University, Homburg, Germany
| | - Hans Zischka
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Toxicology and Environmental Hygiene, Technical University Munich, School of Medicine, Munich, Germany
| | - Hana Algül
- Comprehensive Cancer Center München, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Stefan G. Lechner
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Marina Lesina
- Comprehensive Cancer Center München, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Christian Grimm
- Walther-Straub-Institut für Pharmakologie und Toxikologie, Ludwig-Maximilians-Universität München, Munich, Germany
- Immunology, Infection and Pandemic Research (IIP), Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Munich, Germany
| | - Bernd Fakler
- Institute for Physiology, University of Freiburg, Freiburg, Germany
| | - Uwe Schulte
- Institute for Physiology, University of Freiburg, Freiburg, Germany
| | - Shmuel Muallem
- Epithelial Signaling and Transport Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, USA
| | - Marc Freichel
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
35
|
Lloyd EG, Henríquez JA, Biffi G. Modelling the micro- and macro- environment of pancreatic cancer: from patients to pre-clinical models and back. Dis Model Mech 2024; 17:dmm050624. [PMID: 38639944 PMCID: PMC11051978 DOI: 10.1242/dmm.050624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a lethal malignancy with very low survival rates. Over the past 50 years, improvements in PDAC survival have significantly lagged behind the progress made in other cancers. PDAC's dismal prognosis is due to typical late-stage diagnosis combined with lack of effective treatments and complex mechanisms of disease. We propose that improvements in survival are partly hindered by the current focus on largely modelling and targeting PDAC as one disease, despite it being heterogeneous. Implementing new disease-representative pre-clinical mouse models that capture this complexity could enable the development of transformative therapies. Specifically, these models should recapitulate human PDAC late-stage biology, heterogeneous genetics, extensive non-malignant stroma, and associated risk factors and comorbidities. In this Perspective, we focus on how pre-clinical mouse models could be improved to exemplify key features of PDAC micro- and macro- environments, which would drive clinically relevant patient stratification, tailored treatments and improved survival.
Collapse
Affiliation(s)
- Eloise G. Lloyd
- University of Cambridge, Cancer Research UK Cambridge Institute, Robinson Way, Cambridge CB2 0RE, UK
| | - Joaquín Araos Henríquez
- University of Cambridge, Cancer Research UK Cambridge Institute, Robinson Way, Cambridge CB2 0RE, UK
| | - Giulia Biffi
- University of Cambridge, Cancer Research UK Cambridge Institute, Robinson Way, Cambridge CB2 0RE, UK
| |
Collapse
|
36
|
Bai Y, Gong G, Aierken R, Liu X, Cheng W, Guan J, Jiang Z. A retrospective study investigating the clinical significance of body mass index in acute pancreatitis. PeerJ 2024; 12:e16854. [PMID: 38304193 PMCID: PMC10832621 DOI: 10.7717/peerj.16854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 01/08/2024] [Indexed: 02/03/2024] Open
Abstract
Background Acute pancreatitis is an unpredictable and potentially fatal condition for which no definitive cure is currently available. Our research focused on exploring the connection between body mass index, a frequently overlooked risk factor, and both the onset and progression of acute pancreatitis. Material/Methods A total of 247 patients with acute pancreatitis admitted to Jiangsu Provincial Hospital of Chinese Medicine from January 2021 to February 2023 were retrospectively reviewed. After screening, 117 patients with complete height and body weight data were selected for detailed assessment. Additionally, 85 individuals who underwent physical examinations at our hospital during this period were compiled to create a control group. The study received ethical approval from the ethics committee of Jiangsu Province Hospital of Chinese Medicine (Ref: No.2022NL-114-02) and was conducted in accordance with the China Good Clinical Practice in Research guidelines. Results A significant difference in body mass index (BMI) was observed between the healthy group and acute pancreatitis (AP) patients (p < 0.05), with a more pronounced disparity noted in cases of hyperlipidemic acute pancreatitis (p < 0.01). A potential risk for AP was identified at a BMI greater than 23.56 kg/m2 (AUC = 0.6086, p < 0.05). Being in the obese stage I (95%CI, [1.11-1.84]) or having a BMI below 25.4 kg/m2 (95%CI, [1.82-6.48]) are identified as risk factors for adverse AP progression. Moreover, BMI effectively predicts the onset of acute edematous pancreatitis and acute necrotizing pancreatitis (AUC = 0.7893, p < 0.001, cut-off value = 25.88 kg/m2). A higher BMI correlates with increased recurrence rates within a short timeframe (r = 0.7532, p < 0.01). Conclusions Elevated BMI is a risk factor for both the occurrence and progression of AP, and underweight status may similarly contribute to poor disease outcomes. BMI is crucial for risk prediction and stratification in AP and warrants ongoing monitoring and consideration.
Collapse
Affiliation(s)
- Yuanzhen Bai
- Jiangsu Province Hospital of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Guanwen Gong
- Jiangsu Province Hospital of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Reziya Aierken
- Jiangsu Province Hospital of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xingyu Liu
- Jiangsu Province Hospital of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wei Cheng
- Jiangsu Province Hospital of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Junjie Guan
- Jiangsu Province Hospital of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhiwei Jiang
- Jiangsu Province Hospital of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
37
|
Guo F, Tao X, Wu Y, Dong D, Zhu Y, Shang D, Xiang H. Carfilzomib relieves pancreatitis-initiated pancreatic ductal adenocarcinoma by inhibiting high-temperature requirement protein A1. Cell Death Discov 2024; 10:58. [PMID: 38287020 PMCID: PMC10825157 DOI: 10.1038/s41420-024-01806-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/20/2023] [Accepted: 01/04/2024] [Indexed: 01/31/2024] Open
Abstract
Pancreatitis is a crucial risk factor for pancreatic ductal adenocarcinoma (PDAC), and our previous study had proved high-temperature requirement protein A1 (HTRA1) exacerbates pancreatitis insult; however, the function and mechanism of HTRA1 in pancreatitis-initiated PDAC is still unclear. In the present paper, we clarified the expression of HTRA1 in PDAC using bioinformatics and immunohistochemistry of tissue chip, and found that HTRA1 is significantly upregulated in PDAC. Moreover, the proliferation, migration, invasion and adhesion of PANC-1 and SW1990 cells were promoted by overexpression of HTRA1, but inhibited by knockdown of HTRA1. Meanwhile, we found that HTRA1 arrested PANC-1 and SW1990 cells at G2/M phase. Mechanistically, HTRA1 interacted with CDK1 protein, and CDK1 inhibitor reversed the malignant phenotype of PANC-1 and pancreatitis-initiated PDAC activated by HTRA1 overexpression. Finally, we discovered a small molecule drug that can inhibit HTRA1, carfilzomib, which has been proven to inhibit the biological functions of tumor cells in vitro and intercept the progression of pancreatitis-initiated PDAC in vivo. In conclusion, the activation of HTRA1-CDK1 pathway promotes the malignant phenotype of tumor cells by blocking the cell cycle at the G2/M phase, thereby accelerating pancreatitis-initiated PDAC. Carfilzomib is an innovative candidate drug that can inhibit pancreatitis-initiated PDAC through targeted inhibition of HTRA1.
Collapse
Affiliation(s)
- Fangyue Guo
- Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, 116044, China
| | - Xufeng Tao
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Yu Wu
- Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, 116044, China
| | - Deshi Dong
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Yanna Zhu
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Dong Shang
- Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China.
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, 116044, China.
- Department of General Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China.
| | - Hong Xiang
- Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China.
| |
Collapse
|
38
|
Sandoval C, Vera A, Birditt K, Godoy K, Carmine F, Caamaño J, Farías J. β-Carotene Supplementation Improves Pancreas Function during Moderate Ethanol Consumption: Initial Characterization from a Morphological Overview. Int J Mol Sci 2024; 25:1219. [PMID: 38279214 PMCID: PMC10815982 DOI: 10.3390/ijms25021219] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 01/28/2024] Open
Abstract
Alcohol is believed to harm acinar cells, pancreatic ductal epithelium, and pancreatic stellate cells. After giving ethanol and/or β-carotene to C57BL/6 mice, our goal was to evaluate their biochemistry, histology, and morpho-quantitative features. There were six groups of C57BL/6 mice: 1. Group C (control), 2. Group LA (low-dose alcohol), 3. Group MA (moderate-dose alcohol), 4. Group B (β-carotene), 5. Group LA + B (low-dose alcohol combined with β-carotene), and 6. Group MA + B (moderate-dose alcohol combined with β-carotene). After the animals were euthanized on day 28, each specimen's pancreatic tissue was taken. Lipase, uric acid, and amylase were assessed using biochemical assessment. Furthermore, the examination of the pancreatic structure was conducted using Ammann's fibrosis scoring system. Finally, the morpho-quantitative characteristics of the pancreatic islets and acinar cells were determined. In the serum of the MA + B group, there were higher amounts of total amylase (825.953 ± 193.412 U/L) and lower amounts of lipase (47.139 ± 6.099 U/L) (p < 0.05). Furthermore, Ammann's fibrosis punctuation in the pancreas revealed significant variations between the groups (p < 0.001). Finally, the stereological analysis of pancreatic islets showed that the groups were different (p < 0.001). These findings suggest that antioxidant treatments might help decrease the negative effects of ethanol exposure in animal models.
Collapse
Affiliation(s)
- Cristian Sandoval
- Escuela de Tecnología Médica, Facultad de Salud, Universidad Santo Tomás, Los Carreras 753, Osorno 5310431, Chile;
- Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco 4811230, Chile
- Departamento de Medicina Interna, Facultad de Medicina, Universidad de La Frontera, Temuco 4811230, Chile
| | - Angeles Vera
- Carrera de Tecnología Médica, Facultad de Medicina, Universidad de La Frontera, Temuco 4811230, Chile;
| | - Katherine Birditt
- Physiology Development and Neuroscience Department, University of Cambridge, Cambridge CB2 1TN, UK;
| | - Karina Godoy
- Núcleo Científico y Tecnológico en Biorecursos (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile;
| | - Florencia Carmine
- Carrera de Medicina, Facultad de Medicina, Universidad de La Frontera, Temuco 4811230, Chile;
| | - José Caamaño
- Departamento de Medicina Interna, Facultad de Medicina, Universidad de La Frontera, Temuco 4811230, Chile
- Laboratorio de Inmunohematología y Medicina Transfusional, Departamento de Medicina Interna, Facultad de Medicina, Universidad de La Frontera, Temuco 4811230, Chile
| | - Jorge Farías
- Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco 4811230, Chile
| |
Collapse
|
39
|
Haapakoski M, Emelianov A, Reshamwala D, Laajala M, Tienaho J, Kilpeläinen P, Liimatainen J, Jyske T, Pettersson M, Marjomäki V. Antiviral functionalization of cellulose using tannic acid and tannin-rich extracts. Front Microbiol 2023; 14:1287167. [PMID: 38125579 PMCID: PMC10731304 DOI: 10.3389/fmicb.2023.1287167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/13/2023] [Indexed: 12/23/2023] Open
Abstract
Due to seasonally appearing viruses and several outbreaks and present pandemic, we are surrounded by viruses in our everyday life. In order to reduce viral transmission, functionalized surfaces that inactivate viruses are in large demand. Here the endeavor was to functionalize cellulose-based materials with tannic acid (TA) and tannin-rich extracts by using different binding polymers to prevent viral infectivity of both non-enveloped coxsackievirus B3 (CVB3) and enveloped human coronavirus OC43 (HCoV-OC43). Direct antiviral efficacy of TA and spruce bark extract in solution was measured: EC50 for CVB3 was 0.12 and 8.41 μg/ml and for HCoV-OC43, 78.16 and 95.49 μg/ml, respectively. TA also led to an excellent 5.8- to 7-log reduction of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus infectivity. TA functionalized materials reduced infectivity already after 5-min treatment at room temperature. All the tested methods to bind TA showed efficacy on paperboard with 0.1 to 1% (w/v) TA concentrations against CVB3 whereas material hydrophobicity decreased activities. Specific signatures for TA and HCoV-OC43 were discovered by Raman spectroscopy and showed clear co-localization on the material. qPCR study suggested efficient binding of CVB3 to the TA functionalized cellulose whereas HCoV-OC43 was flushed out from the surfaces more readily. In conclusion, the produced TA-materials showed efficient and broadly acting antiviral efficacy. Additionally, the co-localization of TA and HCoV-OC43 and strong binding of CVB3 to the functionalized cellulose demonstrates an interaction with the surfaces. The produced antiviral surfaces thus show promise for future use to increase biosafety and biosecurity by reducing pathogen persistence.
Collapse
Affiliation(s)
- Marjo Haapakoski
- Department of Biological and Environmental Sciences/Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Aleksei Emelianov
- Department of Chemistry/Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Dhanik Reshamwala
- Department of Biological and Environmental Sciences/Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Mira Laajala
- Department of Biological and Environmental Sciences/Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Jenni Tienaho
- Production Systems Unit, Natural Resources Institute Finland (Luke), Helsinki, Finland
| | - Petri Kilpeläinen
- Production Systems Unit, Natural Resources Institute Finland (Luke), Helsinki, Finland
| | - Jaana Liimatainen
- Production Systems Unit, Natural Resources Institute Finland (Luke), Helsinki, Finland
| | - Tuula Jyske
- Production Systems Unit, Natural Resources Institute Finland (Luke), Helsinki, Finland
| | - Mika Pettersson
- Department of Chemistry/Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Varpu Marjomäki
- Department of Biological and Environmental Sciences/Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
40
|
Xia H, Guo J, Shen J, Jiang S, Han S, Li L. Butyrate ameliorated the intestinal barrier dysfunction and attenuated acute pancreatitis in mice fed with ketogenic diet. Life Sci 2023; 334:122188. [PMID: 37866809 DOI: 10.1016/j.lfs.2023.122188] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/07/2023] [Accepted: 10/16/2023] [Indexed: 10/24/2023]
Abstract
Butyrate, a short-chain fatty acid (SCFA), has demonstrated significant efficacy in preventing colitis-associated inflammation. Acute pancreatitis is an acute gastrointestinal disorder characterized by increased systemic inflammation, bacterial translocation, and disrupted intestinal barrier. However, the effects and mechanisms of butyrate in attenuating acute pancreatitis remain unclear. In this study, we established two mouse models of acute pancreatitis induced by cerulein (Cer) and taurocholate (TA), which were further exacerbated by a ketogenic diet (KD). The results suggested that butyrate supplementation effectively reduced mortality rates, systemic inflammation, and intestinal barrier disruption caused by Cer- and TA-induced acute pancreatitis in mice fed a KD. Furthermore, we observed a significant reduction in gut microbiota diversity as well as overgrowth of Lachnospirales and Erysipelotrichales along with depletion of SCFAs in mice fed a KD, and these alterations were reversed by butyrate supplement. To evaluate the role of microbiota and butyrate supplement, we conducted germ-depletion trials by antibiotics. The results showed that while systemic inflammation was attenuated in mice with TA-induced pancreatitis following antibiotic treatment, the reduction in mortality remained inconclusive (p = 0.055). Importantly, the key differential change between antibiotic treatment and butyrate supplementation was found to be related to intestinal barrier dysfunction and repairment. These results suggest that butyrate plays a central role in mitigating acute pancreatitis through amelioration of intestinal barrier dysfunction.
Collapse
Affiliation(s)
- He Xia
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine,79 Qingchun Rd., Hangzhou City 310003, China
| | - Jing Guo
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine,79 Qingchun Rd., Hangzhou City 310003, China
| | - Jian Shen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine,79 Qingchun Rd., Hangzhou City 310003, China
| | - Shiman Jiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine,79 Qingchun Rd., Hangzhou City 310003, China
| | - Shengyi Han
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine,79 Qingchun Rd., Hangzhou City 310003, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine,79 Qingchun Rd., Hangzhou City 310003, China.
| |
Collapse
|
41
|
Roy RV, Means N, Rao G, Asfa S, Madka V, Dey A, Zhang Y, Choudhury M, Fung KM, Dhanasekaran DN, Friedman JE, Crawford HC, Rao CV, Bhattacharya R, Mukherjee P. Pancreatic Ubap2 deletion regulates glucose tolerance, inflammation, and protection from cerulein-induced pancreatitis. Cancer Lett 2023; 578:216455. [PMID: 37865160 PMCID: PMC10897936 DOI: 10.1016/j.canlet.2023.216455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/10/2023] [Accepted: 10/17/2023] [Indexed: 10/23/2023]
Abstract
Ubiquitin-binding associated protein 2 (UBAP2) is reported to promote macropinocytosis and pancreatic adenocarcinoma (PDAC) growth, however, its role in normal pancreatic function remains unknown. We addressed this knowledge gap by generating UBAP2 knockout (U2KO) mice under a pancreas-specific Cre recombinase (Pdx1-Cre). Pancreatic architecture remained intact in U2KO animals, but they demonstrated slight glucose intolerance compared to controls. Upon cerulein challenge to induce pancreatitis, U2KO animals had reduced levels of several pancreatitis-relevant cytokines, amylase and lipase in the serum, reduced tissue damage, and lessened neutrophil infiltration into the pancreatic tissue. Mechanistically, cerulein-challenged U2KO animals revealed reduced NF-κB activation compared to controls. In vitro promoter binding studies confirmed the reduction of NF-κB binding to its target molecules supporting UBAP2 as a new regulator of inflammation in pancreatitis and may be exploited as a therapeutic target in future to inhibit pancreatitis.
Collapse
Affiliation(s)
- Ram Vinod Roy
- Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Nicolas Means
- Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Geeta Rao
- Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Sima Asfa
- Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Venkateshwar Madka
- Center for Cancer Prevention and Drug Development, Department of Medicine, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Anindya Dey
- Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Yushan Zhang
- Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Monalisa Choudhury
- Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Kar-Ming Fung
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Danny N Dhanasekaran
- Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Cell Biology, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| | - Jacob E Friedman
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Howard C Crawford
- Department of Surgery, Henry Ford Pancreatic Cancer Center, Henry Ford Health System, Detroit, MI, USA
| | - Chinthalapally V Rao
- Center for Cancer Prevention and Drug Development, Department of Medicine, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Resham Bhattacharya
- Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Obstetrics and Gynecology, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| | - Priyabrata Mukherjee
- Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
42
|
Miao J, Kang L, Lan T, Wang J, Wu S, Jia Y, Xue X, Guo H, Wang P, Li Y. Identification of optimal reference genes in golden Syrian hamster with ethanol- and palmitoleic acid-induced acute pancreatitis using quantitative real-time polymerase chain reaction. Animal Model Exp Med 2023; 6:609-618. [PMID: 37202901 PMCID: PMC10757205 DOI: 10.1002/ame2.12321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 03/28/2023] [Indexed: 05/20/2023] Open
Abstract
BACKGROUND Acute pancreatitis (AP) is a severe disorder that leads to high morbidity and mortality. Appropriate reference genes are important for gene analysis in AP. This study sought to study the expression stability of several reference genes in the golden Syrian hamster, a model of AP. METHODS AP was induced in golden Syrian hamster by intraperitoneal injection of ethanol (1.35 g/kg) and palmitoleic acid (2 mg/kg). The expression of candidate genes, including Actb, Gapdh, Eef2, Ywhaz, Rps18, Hprt1, Tubb, Rpl13a, Nono, and B2m, in hamster pancreas at different time points (1, 3, 6, 9, and 24 h) posttreatment was analyzed using quantitative polymerase chain reaction. The expression stability of these genes was calculated using BestKeeper, Comprehensive Delta CT, NormFinder, and geNorm algorithms and RefFinder software. RESULTS Our results show that the expression of these reference genes fluctuated during AP, of which Ywhaz and Gapdh were the most stable genes, whereas Tubb, Eef2, and Actb were the least stable genes. Furthermore, these genes were used to normalize the expression of TNF-α messenger ribonucleic acid in inflamed pancreas. CONCLUSIONS In conclusion, Ywhaz and Gapdh were suitable reference genes for gene expression analysis in AP induced in Syrian hamster.
Collapse
Affiliation(s)
- Jinxin Miao
- Academy of Chinese Medicine ScienceHenan University of Chinese MedicineZhengzhouChina
| | - Le Kang
- Academy of Chinese Medicine ScienceHenan University of Chinese MedicineZhengzhouChina
| | - Tianfeng Lan
- Sino‐British Research Centre for Molecular Oncology, National Center for International Research in Cell and Gene Therapy, School of Basic Medical Sciences, Academy of Medical SciencesZhengzhou UniversityZhengzhouChina
| | - Jianyao Wang
- Sino‐British Research Centre for Molecular Oncology, National Center for International Research in Cell and Gene Therapy, School of Basic Medical Sciences, Academy of Medical SciencesZhengzhou UniversityZhengzhouChina
| | - Siqing Wu
- Academy of Chinese Medicine ScienceHenan University of Chinese MedicineZhengzhouChina
| | - Yifan Jia
- Academy of Chinese Medicine ScienceHenan University of Chinese MedicineZhengzhouChina
| | - Xia Xue
- Henan Key Laboratory of Helicobacter pylori and Microbiota and Gastrointestinal Cancer, Marshall Medical Research CenterThe Fifth Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Haoran Guo
- Sino‐British Research Centre for Molecular Oncology, National Center for International Research in Cell and Gene Therapy, School of Basic Medical Sciences, Academy of Medical SciencesZhengzhou UniversityZhengzhouChina
| | - Pengju Wang
- Sino‐British Research Centre for Molecular Oncology, National Center for International Research in Cell and Gene Therapy, School of Basic Medical Sciences, Academy of Medical SciencesZhengzhou UniversityZhengzhouChina
| | - Yan Li
- Academy of Chinese Medicine ScienceHenan University of Chinese MedicineZhengzhouChina
| |
Collapse
|
43
|
Wu L, Hu J, Yi X, Lv J, Yao J, Tang W, Zhang S, Wan M. Gut microbiota interacts with inflammatory responses in acute pancreatitis. Therap Adv Gastroenterol 2023; 16:17562848231202133. [PMID: 37829561 PMCID: PMC10566291 DOI: 10.1177/17562848231202133] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 09/01/2023] [Indexed: 10/14/2023] Open
Abstract
Acute pancreatitis (AP) is one of the most common acute abdominal conditions, and its incidence has been increasing for years. Approximately 15-20% of patients develop severe AP (SAP), which is complicated by critical inflammatory injury and intestinal dysfunction. AP-associated inflammation can lead to the gut barrier and function damage, causing dysbacteriosis and facilitating intestinal microbiota migration. Pancreatic exocrine deficiency and decreased levels of antimicrobial peptides in AP can also lead to abnormal growth of intestinal bacteria. Meanwhile, intestinal microbiota migration influences the pancreatic microenvironment and affects the severity of AP, which, in turn, exacerbates the systemic inflammatory response. Thus, the interaction between the gut microbiota (GM) and the inflammatory response may be a key pathogenic feature of SAP. Treating either of these factors or breaking their interaction may offer some benefits for SAP treatment. In this review, we discuss the mechanisms of interaction of the GM and inflammation in AP and factors that can deteriorate or even cure both, including some traditional Chinese medicine treatments, to provide new methods for studying AP pathogenesis and developing therapies.
Collapse
Affiliation(s)
- Linjun Wu
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
- Hospital of Chinese Traditional Medicine of Leshan, Leshan, China
| | - Jing Hu
- Department of Integrated Traditional Chinese and Western Medicine, West China
- Hospital, Sichuan University, Chengdu, China
- Hospital of Chinese Traditional Medicine of Leshan, Leshan, China
| | - Xiaolin Yi
- Department of Integrated Traditional Chinese and Western Medicine, West China
- Hospital, Sichuan University, Chengdu, China
- Intensive Care Unit, Suining Municipal Hospital of TCM, Suining, China
| | - Jianqin Lv
- Department of Integrated Traditional Chinese and Western Medicine, West China
- Hospital, Sichuan University, Chengdu, China
| | - Jiaqi Yao
- Department of Integrated Traditional Chinese and Western Medicine, West China
- Hospital, Sichuan University, Chengdu, China
| | - Wenfu Tang
- Department of Integrated Traditional Chinese and Western Medicine, West China
- Hospital, Sichuan University, Chengdu, China
| | - Shu Zhang
- Department of Emergency Medicine, Emergency Medical Laboratory, West China
- Hospital, Sichuan University, Guo Xue Road 37, Chengdu 610041, Sichuan, China
| | - Meihua Wan
- Department of Integrated Traditional Chinese and Western Medicine, West China
- Hospital, Sichuan University, Guo Xue Road 37, Chengdu 610041, China
| |
Collapse
|
44
|
Yin H, Zhang Z, Zhang D, Peng L, Xia C, Yang X, Wang X, Li Z, Chang J, Huang H. A new method for treating chronic pancreatitis and preventing fibrosis using bioactive calcium silicate ion solution. J Mater Chem B 2023; 11:9163-9178. [PMID: 37642526 DOI: 10.1039/d3tb01287e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Chronic pancreatitis (CP) is a multifactorial fibroinflammatory syndrome. At present, there is no effective way to treat it clinically. In this study, we proposed a new approach by application of a highly active calcium silicate ion solution derived from calcium silicate (CS) bioceramics, which effectively inhibited the development of CP. This bioceramic derived bioactive ionic solution mainly regulated pancreatic acinar cells (PACs), macrophages and pancreatic stellate cells (PSCs) by SiO32- ions to inhibit inflammation and fibrosis and promote acinar regeneration. The possible mechanism of the therapeutic effect of CS ion solution mainly includes the inhibition of PAC apoptosis by down-regulating the c-caspase3 signal pathway and promotion of the regeneration of PACs by up-regulating the WNT/β-catenin signaling pathway. In addition, the CS ion solution also effectively down-regulated the NF-κB signaling pathway to reduce macrophage infiltration and PAC inflammatory factor secretion, thereby reducing PSC mediated pancreatic fibrosis. This bioceramics-based ion solution provides a new idea for disease treatment using biomaterials, which may have the potential for the development of new therapy for CP.
Collapse
Affiliation(s)
- Hua Yin
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai 200433, People's Republic of China.
- Department of Gastroenterology, General Hospital of Ningxia Medical University, Ningxia, 750004, People's Republic of China
| | - Zhaowenbin Zhang
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, People's Republic of China
| | - Deyu Zhang
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai 200433, People's Republic of China.
| | - Lisi Peng
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai 200433, People's Republic of China.
| | - Chuanchao Xia
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai 200433, People's Republic of China.
| | - Xiaoli Yang
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai 200433, People's Republic of China.
- Department of Gastroenterology, General Hospital of Ningxia Medical University, Ningxia, 750004, People's Republic of China
| | - Xinyue Wang
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai 200433, People's Republic of China.
| | - Zhaoshen Li
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai 200433, People's Republic of China.
| | - Jiang Chang
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, People's Republic of China
| | - Haojie Huang
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai 200433, People's Republic of China.
| |
Collapse
|
45
|
Mareninova OA, Gretler SR, Lee GE, Pimienta M, Qin Y, Elperin JM, Ni J, Razga Z, Gukovskaya AS, Gukovsky I. Ethanol inhibits pancreatic acinar cell autophagy through upregulation of ATG4B, mediating pathological responses of alcoholic pancreatitis. Am J Physiol Gastrointest Liver Physiol 2023; 325:G265-G278. [PMID: 37431575 PMCID: PMC10511161 DOI: 10.1152/ajpgi.00053.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/23/2023] [Accepted: 07/01/2023] [Indexed: 07/12/2023]
Abstract
Excessive alcohol intake is a major risk factor for pancreatitis, sensitizing the exocrine pancreas to stressors by mechanisms that remain obscure. Impaired autophagy drives nonalcoholic pancreatitis, but the effects of ethanol (EtOH) and alcoholic pancreatitis on autophagy are poorly understood. Here, we find that ethanol reduces autophagosome formation in pancreatic acinar cells, both in a mouse model of alcoholic pancreatitis induced by a combination of EtOH diet and cerulein (a CCK ortholog) and in EtOH+CCK-treated acinar cells (ex vivo model). Ethanol treatments decreased pancreatic level of LC3-II, a key mediator of autophagosome formation. This was caused by ethanol-induced upregulation of ATG4B, a cysteine protease that, cell dependently, regulates the balance between cytosolic LC3-I and membrane-bound LC3-II. We show that ATG4B negatively regulates LC3-II in acinar cells subjected to EtOH treatments. Ethanol raised ATG4B level by inhibiting its degradation, enhanced ATG4B enzymatic activity, and strengthened its interaction with LC3-II. We also found an increase in ATG4B and impaired autophagy in a dissimilar, nonsecretagogue model of alcoholic pancreatitis induced by EtOH plus palmitoleic acid. Adenoviral ATG4B overexpression in acinar cells greatly reduced LC3-II and inhibited autophagy. Furthermore, it aggravated trypsinogen activation and necrosis, mimicking key responses of ex vivo alcoholic pancreatitis. Conversely, shRNA Atg4B knockdown enhanced autophagosome formation and alleviated ethanol-induced acinar cell damage. The results reveal a novel mechanism, whereby ethanol inhibits autophagosome formation and thus sensitizes pancreatitis, and a key role of ATG4B in ethanol's effects on autophagy. Enhancing pancreatic autophagy, particularly by downregulating ATG4B, could be beneficial in mitigating the severity of alcoholic pancreatitis.NEW & NOTEWORTHY Ethanol sensitizes mice and humans to pancreatitis, but the underlying mechanisms remain obscure. Autophagy is important for maintaining pancreatic acinar cell homeostasis, and its impairment drives pancreatitis. This study reveals a novel mechanism, whereby ethanol inhibits autophagosome formation through upregulating ATG4B, a key cysteine protease. ATG4B upregulation inhibits autophagy in acinar cells and aggravates pathological responses of experimental alcoholic pancreatitis. Enhancing pancreatic autophagy, particularly by down-regulating ATG4B, could be beneficial for treatment of alcoholic pancreatitis.
Collapse
Affiliation(s)
- Olga A Mareninova
- David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California, United States
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California, United States
- Southern California Research Center for Alcoholic Liver and Pancreatic Diseases and Cirrhosis, Los Angeles, California, United States
| | - Sophie R Gretler
- David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California, United States
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California, United States
- Southern California Research Center for Alcoholic Liver and Pancreatic Diseases and Cirrhosis, Los Angeles, California, United States
| | - Grace E Lee
- David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California, United States
| | - Michael Pimienta
- David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California, United States
| | - Yueqiu Qin
- David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California, United States
- Division of Gastroenterology and Hepatology, Youjiang Medical University for Nationalities, Baise, China
| | - Jason M Elperin
- David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California, United States
| | - Jinliang Ni
- David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California, United States
- First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Zsolt Razga
- Institute of Pathology, University of Szeged, Szeged, Hungary
| | - Anna S Gukovskaya
- David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California, United States
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California, United States
- Southern California Research Center for Alcoholic Liver and Pancreatic Diseases and Cirrhosis, Los Angeles, California, United States
| | - Ilya Gukovsky
- David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California, United States
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California, United States
- Southern California Research Center for Alcoholic Liver and Pancreatic Diseases and Cirrhosis, Los Angeles, California, United States
| |
Collapse
|
46
|
Baer JM, Zuo C, Kang LI, de la Lastra AA, Borcherding NC, Knolhoff BL, Bogner SJ, Zhu Y, Yang L, Laurent J, Lewis MA, Zhang N, Kim KW, Fields RC, Yokoyama WM, Mills JC, Ding L, Randolph GJ, DeNardo DG. Fibrosis induced by resident macrophages has divergent roles in pancreas inflammatory injury and PDAC. Nat Immunol 2023; 24:1443-1457. [PMID: 37563309 PMCID: PMC10757749 DOI: 10.1038/s41590-023-01579-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/11/2023] [Indexed: 08/12/2023]
Abstract
Tissue-resident macrophages (TRMs) are long-lived cells that maintain locally and can be phenotypically distinct from monocyte-derived macrophages. Whether TRMs and monocyte-derived macrophages have district roles under differing pathologies is not understood. Here, we showed that a substantial portion of the macrophages that accumulated during pancreatitis and pancreatic cancer in mice had expanded from TRMs. Pancreas TRMs had an extracellular matrix remodeling phenotype that was important for maintaining tissue homeostasis during inflammation. Loss of TRMs led to exacerbation of severe pancreatitis and death, due to impaired acinar cell survival and recovery. During pancreatitis, TRMs elicited protective effects by triggering the accumulation and activation of fibroblasts, which was necessary for initiating fibrosis as a wound healing response. The same TRM-driven fibrosis, however, drove pancreas cancer pathogenesis and progression. Together, these findings indicate that TRMs play divergent roles in the pathogenesis of pancreatitis and cancer through regulation of stromagenesis.
Collapse
Affiliation(s)
- John M Baer
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Chong Zuo
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Liang-I Kang
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | | | - Nicholas C Borcherding
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Brett L Knolhoff
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Savannah J Bogner
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Yu Zhu
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pathology, Stanford University, Palo Alto, CA, USA
| | - Liping Yang
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Jennifer Laurent
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Mark A Lewis
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Nan Zhang
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Ki-Wook Kim
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL, USA
| | - Ryan C Fields
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Wayne M Yokoyama
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Jason C Mills
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Departments of Pathology and Immunology and Developmental Biology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Departments of Medicine, Pathology and Immunology, and Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Li Ding
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, USA
- Department of Genetics, Washington University in St. Louis, St. Louis, MO, USA
| | - Gwendalyn J Randolph
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - David G DeNardo
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA.
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
47
|
Chui JN, Sahni S, Samra JS, Mittal A. Postoperative pancreatitis and pancreatic fistulae: a review of current evidence. HPB (Oxford) 2023; 25:1011-1021. [PMID: 37301633 DOI: 10.1016/j.hpb.2023.05.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/28/2023] [Accepted: 05/09/2023] [Indexed: 06/12/2023]
Abstract
OBJECTIVES Postoperative pancreatic fistula (POPF) represents one of the most severe complications following pancreatic surgery. Despite being a leading cause of morbidity and mortality, its pathophysiology is poorly understood. In recent years, there has been growing evidence to support the role of postoperative or post-pancreatectomy acute pancreatitis (PPAP) in the development of POPF. This article reviews the contemporary literature on POPF pathophysiology, risk factors, and prevention strategies. METHODS A literature search was conducted using electronic databases, including Ovid Medline, EMBASE, and Cochrane Library, to retrieve relevant literature published between 2005 and 2023. A narrative review was planned from the outset. RESULTS A total of 104 studies fulfilled criteria for inclusion. Forty-three studies reported on technical factors predisposing to POPF, including resection and reconstruction technique and adjuncts for anastomotic reinforcement. Thirty-four studies reported on POPF pathophysiology. There is compelling evidence to suggest that PPAP plays a critical role in the development of POPF. The acinar component of the remnant pancreas should be regarded as an intrinsic risk factor; meanwhile, operative stress, remnant hypoperfusion, and inflammation represent common mechanisms for acinar cell injury. CONCLUSIONS The evidence base for PPAP and POPF is evolving. Future POPF prevention strategies should look beyond anastomotic reinforcement and target underlying mechanisms of PPAP development.
Collapse
Affiliation(s)
- Juanita N Chui
- Department of Upper Gastrointestinal Surgery, Royal North Shore Hospital, Sydney, Australia; Faculty of Medical and Health Sciences, The University of Sydney, Sydney, Australia
| | - Sumit Sahni
- Faculty of Medical and Health Sciences, The University of Sydney, Sydney, Australia; Kolling Institute of Medical Research, University of Sydney, Sydney, Australia
| | - Jaswinder S Samra
- Department of Upper Gastrointestinal Surgery, Royal North Shore Hospital, Sydney, Australia; Faculty of Medical and Health Sciences, The University of Sydney, Sydney, Australia; Australian Pancreatic Centre, Sydney, Australia
| | - Anubhav Mittal
- Department of Upper Gastrointestinal Surgery, Royal North Shore Hospital, Sydney, Australia; Faculty of Medical and Health Sciences, The University of Sydney, Sydney, Australia; Australian Pancreatic Centre, Sydney, Australia; School of Medicine, The University of Notre Dame, Sydney, Australia.
| |
Collapse
|
48
|
Lu Y, Zhang T, Yang S, Yang B, Li J, Liu H, Yao D, Ren G, Wang D. Dynamic Contrast-Enhanced MRI Assessing Antifibrotic Therapeutic Effects of Pancreatic Fibrosis with Curcumin - An Experimental Study at 11.7 T. Acad Radiol 2023; 30 Suppl 1:S230-S237. [PMID: 37453883 DOI: 10.1016/j.acra.2023.05.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/24/2023] [Accepted: 05/27/2023] [Indexed: 07/18/2023]
Abstract
RATIONALE AND OBJECTIVES Pancreatic fibrosis is the hallmark of chronic pancreatitis (CP), which is associated with microcirculatory disturbance. Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) can assess the perfusion and permeability of the pancreas by providing information about microcirculation. We hypothesize that DCE-MRI parameters can be utilized to assess pancreatic fibrosis and may furthermore provide an opportunity to evaluate response to antifibrotic treatment with curcumin. Our study was to evaluate the feasibility of quantitative DCE-MRI in assessing pancreatic fibrosis and the antifibrotic effect of curcumin in a rat model of CP. MATERIALS AND METHODS Pancreatic fibrosis was induced by injecting dibutyltin dichloride (DBTC). Seventy rats were randomized to five groups: the control group (n = 10); DBTC for 2 weeks (n = 15); DBTC for 4 weeks (n = 15); DBTC + curcumin for 2 weeks (n = 15); DBTC + curcumin for 4 weeks (n = 15). DCE-MRI was performed at an 11.7 T MR scanner. DCE-MRI quantitative parameters (Ktrans, Ve, and Vp) were derived from an extended Tofts model. Fibrosis content and DCE-MRI parameters were compared among the above groups (one-way analysis of variance). The correlations between DCE-MRI parameters and pancreatic fibrosis content as well as the expression of α-SMA were computed by Spearman correlation coefficients. RESULTS Fifty-three rats survived and underwent MR imaging. Ktrans in rats 4 weeks after DBTC injection was significantly lower than DBTC 2 weeks rats and control rats (0.30 ± 0.06 min vs 0.49 ± 0.09 vs 0.62 ± 0.09, respectively). Vp in DBTC 4 weeks rats was also significantly lower than control rats (0.048 ± 0.010 min-1 vs 0.065 ± 0.011 min-1, respectively). Ktrans and Vp significantly correlated with fibrosis content of pancreas (r = -0.619 and -0.450, all P < 0.001), and the expression of α-SMA (r = -0.688 and -0.402, all P < 0.01). Ktrans and Vp in rats with daily curcumin treatment for 4 weeks were significantly higher than DBTC 4 weeks rats (Ktrans, 0.51 ± 0.09 vs 0.30 ± 0.06; Vp, 0.064 ± 0.015 vs 0.048 ± 0.010). CONCLUSION DCE-MRI parameters (Ktrans and Vp) have the potential to noninvasively assess pancreatic fibrosis and the antifibrotic treatment response of curcumin.
Collapse
Affiliation(s)
- Yimei Lu
- Department of Radiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China (Y.L., T.Z., S.Y., J.L., H.L., D.Y., G.R., D.W.).
| | - Tingting Zhang
- Department of Radiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China (Y.L., T.Z., S.Y., J.L., H.L., D.Y., G.R., D.W.).
| | - Shuyan Yang
- Department of Radiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China (Y.L., T.Z., S.Y., J.L., H.L., D.Y., G.R., D.W.).
| | - Baofeng Yang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China (B.Y.); Human Phenome Institute, Fudan University, Shanghai 200433, China (B.Y.).
| | - Jinning Li
- Department of Radiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China (Y.L., T.Z., S.Y., J.L., H.L., D.Y., G.R., D.W.).
| | - Huanhuan Liu
- Department of Radiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China (Y.L., T.Z., S.Y., J.L., H.L., D.Y., G.R., D.W.).
| | - Defan Yao
- Department of Radiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China (Y.L., T.Z., S.Y., J.L., H.L., D.Y., G.R., D.W.).
| | - Gang Ren
- Department of Radiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China (Y.L., T.Z., S.Y., J.L., H.L., D.Y., G.R., D.W.).
| | - Dengbin Wang
- Department of Radiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China (Y.L., T.Z., S.Y., J.L., H.L., D.Y., G.R., D.W.).
| |
Collapse
|
49
|
Wang Z, Liu J, Li F, Ma S, Zhao L, Ge P, Wen H, Zhang Y, Liu X, Luo Y, Yao J, Zhang G, Chen H. Mechanisms of Qingyi Decoction in Severe Acute Pancreatitis-Associated Acute Lung Injury via Gut Microbiota: Targeting the Short-Chain Fatty Acids-Mediated AMPK/NF-κB/NLRP3 Pathway. Microbiol Spectr 2023; 11:e0366422. [PMID: 37338348 PMCID: PMC10434154 DOI: 10.1128/spectrum.03664-22] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 05/24/2023] [Indexed: 06/21/2023] Open
Abstract
The pivotal roles of gut microbiota in severe acute pancreatitis-associated acute lung injury (SAP-ALI) are increasingly revealed, and recent discoveries in the gut-lung axis have provided potential approaches for treating SAP-ALI. Qingyi decoction (QYD), a traditional Chinese medicine (TCM), is commonly used in clinical to treat SAP-ALI. However, the underlying mechanisms remain to be fully elucidated. Herein, by using a caerulein plus lipopolysaccharide (LPS)-induced SAP-ALI mice model and antibiotics (Abx) cocktail-induced pseudogermfree mice model, we tried to uncover the roles of the gut microbiota by administration of QYD and explored its possible mechanisms. Immunohistochemical results showed that the severity of SAP-ALI and intestinal barrier functions could be affected by the relative depletion of intestinal bacteria. The composition of gut microbiota was partially recovered after QYD treatment with decreased Firmicutes/Bacteroidetes ratio and increased relative abundance in short-chain fatty acids (SCFAs)-producing bacteria. Correspondingly increased levels of SCFAs (especially propionate and butyrate) in feces, gut, serum, and lungs were observed, generally consistent with changes in microbes. Western-blot analysis and RT-qPCR results indicated that the AMPK/NF-κB/NLRP3 signaling pathway was activated after oral administration of QYD, which was found to be possibly related to the regulatory effects on SCFAs in the intestine and lungs. In conclusion, our study provides new insights into treating SAP-ALI through modulating the gut microbiota and has prospective practical value for clinical use in the future. IMPORTANCE Gut microbiota affects the severity of SAP-ALI and intestinal barrier function. During SAP, a significant increase in the relative abundance of gut pathogens (Escherichia, Enterococcus, Enterobacter, Peptostreptococcus, Helicobacter) was observed. At the same time, QYD treatment decreased pathogenic bacteria and increased the relative abundance of SCFAs-producing bacteria (Bacteroides, Roseburia, Parabacteroides, Prevotella, Akkermansia). In addition, The AMPK/NF-κB/NLRP3 pathway mediated by SCFAs along the gut-lung axis may play an essential role in preventing the pathogenesis of SAP-ALI, which allows for reduced systemic inflammation and restoration of the intestinal barrier.
Collapse
Affiliation(s)
- Zhengjian Wang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, People’s Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, People’s Republic of China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, People’s Republic of China
| | - Jin Liu
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, People’s Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, People’s Republic of China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, People’s Republic of China
| | - Fan Li
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, People’s Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, People’s Republic of China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, People’s Republic of China
| | - Shurong Ma
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, People’s Republic of China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, People’s Republic of China
| | - Liang Zhao
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, People’s Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, People’s Republic of China
| | - Peng Ge
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, People’s Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, People’s Republic of China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, People’s Republic of China
| | - Haiyun Wen
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, People’s Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, People’s Republic of China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, People’s Republic of China
| | - Yibo Zhang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, People’s Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, People’s Republic of China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, People’s Republic of China
| | - Xiaojun Liu
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, People’s Republic of China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, People’s Republic of China
- Department of Anesthesiology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, People’s Republic of China
| | - Yalan Luo
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, People’s Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, People’s Republic of China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, People’s Republic of China
| | - Jiaqi Yao
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, People’s Republic of China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, People’s Republic of China
- Department of Anesthesiology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, People’s Republic of China
| | - Guixin Zhang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, People’s Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, People’s Republic of China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, People’s Republic of China
| | - Hailong Chen
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, People’s Republic of China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, People’s Republic of China
| |
Collapse
|
50
|
Wang X, Yu L, Chen Y, Xiong X, Ran H. The Kruppel-like factor 4-signal transducer and activator of transcription 5A axis promotes pancreatic fibrosis in mice with caerulein-induced chronic pancreatitis. Exp Anim 2023; 72:379-388. [PMID: 36948613 PMCID: PMC10435357 DOI: 10.1538/expanim.22-0147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 03/19/2023] [Indexed: 03/24/2023] Open
Abstract
Pancreatic fibrosis (PF) is a hallmark of chronic pancreatitis (CP), but its molecular mechanism remains unclear. This study was conducted to explore the role of Kruppel-like factor 4 (KLF4) in PF in CP mice. The CP mouse model was established using caerulein. After KLF4 interference, pathological changes in pancreatic tissues and fibrosis degree were observed by hematoxylin-eosin staining and Masson staining, and levels of Collagen I, Collagen III, and alpha-smooth muscle actin, inflammatory cytokines, KLF4, signal transducer and activator of transcription 5A (STAT5) in pancreatic tissues were measured by enzyme-linked immunosorbent assay, quantitative real-time polymerase chain reaction, Western blot assay, and immunofluorescence. The enrichment of KLF4 on the STAT5 promoter and the binding of KLF4 to the STAT5 promoter were analyzed. The rescue experiments were performed by co-injection of sh-STAT5 and sh-KLF4 to confirm the regulatory mechanism of KLF4. KLF4 was upregulated in CP mice. Inhibition of KLF4 effectively attenuated pancreatic inflammation and PF in mice. KLF4 was enriched on the STAT5 promoter and enhanced the transcriptional and protein levels of STAT5. Overexpression of STAT5 reversed the inhibitory role of silencing KLF4 in PF. In summary, KLF4 promoted the transcription and expression of STAT5, which further facilitated PF in CP mice.
Collapse
Affiliation(s)
- Xiaoxiang Wang
- Department of Gastroenterology, Chengdu First People's Hospital, No.18 Wanxiang North Road, Wuhou District, Chengdu City, Sichuan Province, 610016, P.R. China
| | - Lan Yu
- Department of Gastroenterology, Chengdu First People's Hospital, No.18 Wanxiang North Road, Wuhou District, Chengdu City, Sichuan Province, 610016, P.R. China
| | - Yao Chen
- Department of Gastroenterology, Chengdu First People's Hospital, No.18 Wanxiang North Road, Wuhou District, Chengdu City, Sichuan Province, 610016, P.R. China
| | - Xing Xiong
- Department of Gastroenterology, Chengdu First People's Hospital, No.18 Wanxiang North Road, Wuhou District, Chengdu City, Sichuan Province, 610016, P.R. China
| | - Hongmei Ran
- Department of Gastroenterology, Chengdu First People's Hospital, No.18 Wanxiang North Road, Wuhou District, Chengdu City, Sichuan Province, 610016, P.R. China
| |
Collapse
|