1
|
Park SO, Nanda N. Long COVID: A Systematic Review of Preventive Strategies. Infect Dis Rep 2025; 17:56. [PMID: 40407658 PMCID: PMC12101273 DOI: 10.3390/idr17030056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Revised: 05/02/2025] [Accepted: 05/08/2025] [Indexed: 05/26/2025] Open
Abstract
Background: Since the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in December 2019, long COVID (LC) has become a significant global health burden. While knowledge about LC is accumulating, studies on its prevention are still lacking. Methods: We conducted a systematic review following the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines to investigate prevention options for LC. We identified fifteen articles on vaccines, seven on antivirals, and six on other interventions after searching for articles in the PubMed/MEDLINE database using the MeSH terms. Results: Most vaccine-related studies demonstrated a protective effect of COVID-19 vaccines against developing LC. Our review found an equivocal effect of antivirals, while metformin had a protective effect in outpatients and corticosteroids were protective in hospitalized patients against LC. Conversely, COVID-19 convalescent plasma and multiple micronutrient supplement did not confer any protection against LC. Conclusions: COVID-19 vaccination is vital as it not only prevents COVID-19 but also reduces the severity of illness and may help prevent LC. Further studies are warranted to shed light on preventive strategies for long COVID.
Collapse
Affiliation(s)
| | - Neha Nanda
- Division of Infectious Disease, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
2
|
Vallée A, Arutkin M, Ceccaldi PF, Feki A, Ayoubi JM. Long COVID and endometriosis: a systematic review and meta-analysis. BMC Womens Health 2025; 25:229. [PMID: 40375203 PMCID: PMC12079877 DOI: 10.1186/s12905-025-03761-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/29/2025] [Indexed: 05/18/2025] Open
Abstract
Long COVID conditions entail the persistence of COVID-19-related symptoms for at least eight weeks following SARS-CoV-2 infection. The prevalence of long COVID is estimated to range from 10 to 30% among individuals infected with SARS-CoV-2. Despite its growing impact on healthcare systems, long COVID remains poorly understood. In parallel, endometriosis, a chronic inflammatory condition affecting around 10% of reproductive-age women, is marked by symptoms such as pelvic pain and infertility. The aim of this study was to assess the association between endometriosis and long COVID. We performed a systematic review of long COVID among endometriosis patients in Pubmed/Medline, Cochran Library and Science Direct databases from inception to August 2023. We independently selected studies, extracted data, assessed risk of bias, and compared endometriosis versus non endometriosis patients for long. Pooled analyses were based on random-effect models, and the I2 statistic was used to quantify heterogeneity across studies. A total of 2 cross-sectional studies (N = 216,095 participants) were included. The pooled analysis comparing endometriosis to non-endometriosis patients significantly showed association for long COVID (pooled RR = 1.41 [1.31-1.52], I2 = 29%, p < 0.001). Women, who are disproportionately affected by long COVID, particularly those with endometriosis, may face compounded health challenges. While our findings suggest a possible association between endometriosis and long COVID, the evidence is currently limited to two observational studies. Further research involving diverse populations and robust study designs is needed to confirm this relationship and clarify underlying mechanisms.
Collapse
Affiliation(s)
- Alexandre Vallée
- Department of Epidemiology and Public Health, Foch hospital, Suresnes, France.
- Territoires (SPOT), Département Universitaire de Santé Publique, University of Versailles, Saint-Quentin-en-Yvelines (UVSQ), Prévention, Versailles, Observation, France.
| | - Maxence Arutkin
- Department of Epidemiology and Public Health, Foch hospital, Suresnes, France
- School of Chemistry, Center for the Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv-Yafo, Israel
| | | | - Anis Feki
- Department of Gynecology and Obstetrics, University Hospital of Fribourg, Fribourg, Switzerland
| | - Jean-Marc Ayoubi
- Department of Obstetrics, Gynecology and Reproductive Medicine, Foch Hospital, Suresnes, France
- Medical School, University of Versailles, Saint-Quentin-en-Yvelines (UVSQ), Versailles, France
| |
Collapse
|
3
|
Rohrhofer J, Wolflehner V, Schweighardt J, Koidl L, Stingl M, Zehetmayer S, Séneca J, Pjevac P, Untersmayr E. Gastrointestinal Barrier Disruption in Post-COVID Syndrome Fatigue Patients. Allergy 2025. [PMID: 40372110 DOI: 10.1111/all.16593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 02/05/2025] [Accepted: 03/28/2025] [Indexed: 05/16/2025]
Abstract
BACKGROUND Post-COVID Syndrome (PCS) is the term for a condition with persistent symptoms in a proportion of COVID-19 patients after asymptomatic, mild, or severe disease courses. Numbers vary, but the current estimate is that after COVID-19 approximately 10% develop PCS. The aim of our study was to evaluate the impact of SARS-CoV-2 infection on the gastrointestinal (GI) tract and associations with the development of PCS with fatigue, post-exertional malaise (PEM), orthostatic dysregulation, autonomous dysregulation, and/or neurocognitive dysregulation. METHODS By combining medical record data from a prospective observational study with symptom analysis before, during, and after SARS-CoV-2 infection, we aimed to identify potential risk factors and predictive markers for PCS. Additionally, we analyzed blood, saliva, and stool samples from this well-characterized PCS patient cohort to biologically validate our findings. RESULTS We identified significant associations between pre-existing GI complaints and the development of PCS Fatigue. PCS patients showed higher LBP/sCD14 ratios, lower IL-33 levels, and higher IL-6 levels compared to control groups. Our results highlight the critical role of the GI tract in PCS development of post-viral Fatigue. CONCLUSION We propose that the viral infection disrupts pathways related to the innate immune response and GI barrier function, evidenced by intestinal low-grade inflammation and GI barrier leakage. Monitoring GI symptoms and markers before, during, and after SARS-CoV-2 infection is crucial for identifying predictive clinical phenotypes in PCS. Understanding the interaction between viral infections, immune responses, and gut integrity could lead to more effective diagnostic and treatment strategies, ultimately reducing the burden on PCS patients.
Collapse
Affiliation(s)
- Johanna Rohrhofer
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Viktoria Wolflehner
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Johannes Schweighardt
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Larissa Koidl
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | | | - Sonja Zehetmayer
- Institute of Medical Statistics, Center for Medical Data Science, Medical University of Vienna, Vienna, Austria
| | - Joana Séneca
- Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Vienna, Austria
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
- Division of Clinical Microbiology, Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Petra Pjevac
- Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Vienna, Austria
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
| | - Eva Untersmayr
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
4
|
Ignacio-Mejía I, Bandala C, González-Zamora JF, Chavez-Galan L, Buendia-Roldan I, Pérez-Torres K, Rodríguez-Díaz MZ, Pacheco-Tobón DX, Quintero-Fabián S, Vargas-Hernández MA, Carrasco-Vargas H, Falfán-Valencia R, Pérez-Rubio G, Hernández-Lara KA, Gómez-Manzo S, Ortega-Cuellar D, Ignacio-Mejía F, Cárdenas-Rodríguez N. Association of Vitamin D Supplementation with Glutathione Peroxidase (GPx) Activity, Interleukine-6 (IL-6) Levels, and Anxiety and Depression Scores in Patients with Post-COVID-19 Condition. Int J Mol Sci 2025; 26:4582. [PMID: 40429727 PMCID: PMC12110956 DOI: 10.3390/ijms26104582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Revised: 05/07/2025] [Accepted: 05/08/2025] [Indexed: 05/29/2025] Open
Abstract
Coronavirus disease 2019 (COVID-19) presents with various symptoms, and some patients develop post-COVID-19 condition (PCC). Vitamin D has shown therapeutic potential in COVID-19 and may offer benefits for PCC. The aim of this study was to evaluate the differences associated with two supplementation strategies (bolus and daily) on interleukin-6 (IL-6) levels, glutathione peroxidase (GPx) activity, and clinical outcomes in PCC patients, regardless of whether target 25 (OH) D levels reached the ideal range. We conducted a self-controlled study in which 54 participants with PCC were supplemented with vitamin D3 (n = 28 bolus and n = 26 daily) for 2 months. Blood samples were collected to measure IL-6 levels and GPx activity using spectrophotometric methods. The Hospital Anxiety and Depression Scale (HADS) was used to assess mental function. Both bolus and daily vitamin D supplementation were significantly associated with increased GPx activity and decreased IL-6 levels. Daily supplementation was additionally associated with a significant reduction in anxiety and depression scores. However, neither regimen was associated with improvements in cough, dyspnea, or fatigue. These findings suggest a potential association between vitamin D supplementation and improvements in antioxidant and neuropsychiatric parameters in PCC, possibly mediated by its immunomodulatory and antioxidant properties. Further placebo-controlled trials are warranted to determine whether these observed associations reflect causal relationships.
Collapse
Affiliation(s)
- Iván Ignacio-Mejía
- Laboratorio de Medicina Traslacional, Escuela Militar de Graduados de Sanidad, Universidad del Ejército y Fuerza Aérea, Mexico City 11200, Mexico; (I.I.-M.); (S.Q.-F.)
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico;
| | - Cindy Bandala
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico;
| | | | - Leslie Chavez-Galan
- Laboratorio de Inmunología Integrativa, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City 14080, Mexico;
| | - Ivette Buendia-Roldan
- Laboratorio de Investigación Traslacional en Envejecimiento y Enfermedades Fibróticas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City 14080, Mexico; (I.B.-R.); (K.P.-T.); (M.Z.R.-D.); (D.X.P.-T.)
| | - Karina Pérez-Torres
- Laboratorio de Investigación Traslacional en Envejecimiento y Enfermedades Fibróticas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City 14080, Mexico; (I.B.-R.); (K.P.-T.); (M.Z.R.-D.); (D.X.P.-T.)
| | - María Zobeida Rodríguez-Díaz
- Laboratorio de Investigación Traslacional en Envejecimiento y Enfermedades Fibróticas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City 14080, Mexico; (I.B.-R.); (K.P.-T.); (M.Z.R.-D.); (D.X.P.-T.)
| | - Denilson Xipe Pacheco-Tobón
- Laboratorio de Investigación Traslacional en Envejecimiento y Enfermedades Fibróticas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City 14080, Mexico; (I.B.-R.); (K.P.-T.); (M.Z.R.-D.); (D.X.P.-T.)
| | - Saray Quintero-Fabián
- Laboratorio de Medicina Traslacional, Escuela Militar de Graduados de Sanidad, Universidad del Ejército y Fuerza Aérea, Mexico City 11200, Mexico; (I.I.-M.); (S.Q.-F.)
| | - Marco Antonio Vargas-Hernández
- Subdirección de Investigación, Escuela Militar de Graduados de Sanidad, Universidad del Ejército y Fuerza Aérea, Mexico City 11200, Mexico;
| | - Humberto Carrasco-Vargas
- Dirección de la Escuela Militar de Medicina, Universidad del Ejército y Fuerza Aérea, Mexico City 11200, Mexico;
| | - Ramcés Falfán-Valencia
- Laboratorio de HLA, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City 14080, Mexico; (R.F.-V.)
| | - Gloria Pérez-Rubio
- Laboratorio de HLA, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City 14080, Mexico; (R.F.-V.)
| | - Kevin Alexis Hernández-Lara
- Laboratorio de Neurociencias, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City 04530, Mexico;
| | - Saúl Gómez-Manzo
- Laboratorio de Bioquímica Genética, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City 04530, Mexico;
| | - Daniel Ortega-Cuellar
- Laboratorio de Nutrición Experimental, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City 04530, Mexico;
| | | | - Noemí Cárdenas-Rodríguez
- Laboratorio de Neurociencias, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City 04530, Mexico;
| |
Collapse
|
5
|
Proal AD, Aleman S, Bomsel M, Brodin P, Buggert M, Cherry S, Chertow DS, Davies HE, Dupont CL, Deeks SG, Ely EW, Fasano A, Freire M, Geng LN, Griffin DE, Henrich TJ, Hewitt SM, Iwasaki A, Krumholz HM, Locci M, Marconi VC, Mehandru S, Muller-Trutwin M, Painter MM, Pretorius E, Price DA, Putrino D, Qian Y, Roan NR, Salmon D, Tan GS, VanElzakker MB, Wherry EJ, Van Weyenbergh J, Yonker LM, Peluso MJ. Targeting the SARS-CoV-2 reservoir in long COVID. THE LANCET. INFECTIOUS DISEASES 2025; 25:e294-e306. [PMID: 39947217 DOI: 10.1016/s1473-3099(24)00769-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/28/2024] [Accepted: 11/12/2024] [Indexed: 03/15/2025]
Abstract
There are no approved treatments for post-COVID-19 condition (also known as long COVID), a debilitating disease state following SARS-CoV-2 infection that is estimated to affect tens of millions of people. A growing body of evidence shows that SARS-CoV-2 can persist for months or years following COVID-19 in a subset of individuals, with this reservoir potentially driving long-COVID symptoms or sequelae. There is, therefore, an urgent need for clinical trials targeting persistent SARS-CoV-2, and several trials of antivirals or monoclonal antibodies for long COVID are underway. However, because mechanisms of SARS-CoV-2 persistence are not yet fully understood, such studies require important considerations related to the mechanism of action of candidate therapeutics, participant selection, duration of treatment, standardisation of reservoir-associated biomarkers and measurables, optimal outcome assessments, and potential combination approaches. In addition, patient subgroups might respond to some interventions or combinations of interventions, making post-hoc analyses crucial. Here, we outline these and other key considerations, with the goal of informing the design, implementation, and interpretation of trials in this rapidly growing field. Our recommendations are informed by knowledge gained from trials targeting the HIV reservoir, hepatitis C, and other RNA viruses, as well as precision oncology, which share many of the same hurdles facing long-COVID trials.
Collapse
Affiliation(s)
- Amy D Proal
- PolyBio Research Foundation, Medford, MA, USA.
| | - Soo Aleman
- Department of Infectious Diseases and Unit of Post-COVID Huddinge, Karolinska University Hospital, Stockholm, Sweden; Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Morgane Bomsel
- HIV entry and Laboratory of Mucosal Immunity, Institut Cochin, Paris, France; Université Paris Cité, CNRS, INSERM, Institut Cochin, Paris, France
| | - Petter Brodin
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden; Department of Immunology and Inflammation, Imperial College London, London, UK; Medical Research Council Laboratory of Medical Sciences, Imperial College London, London, UK
| | - Marcus Buggert
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Huddinge, Sweden
| | - Sara Cherry
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Daniel S Chertow
- Emerging Pathogens Section, Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, USA; Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Helen E Davies
- Department of Respiratory Medicine, University Hospital Llandough, Cardiff, UK; University School of Medicine, University Hospital of Wales, Cardiff, UK
| | - Christopher L Dupont
- Division of Genomic Medicine, Environment & Sustainability, J Craig Venter Institute, University of California San Diego, La Jolla, CA, USA
| | - Steven G Deeks
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, CA, USA
| | - E Wes Ely
- The Critical Illness, Brain Dysfunction, Survivorship Center at Vanderbilt University Medical Center, Nashville, TN, USA; Veteran's Affairs Tennessee Valley Geriatric Research Education Clinical Center, Nashville, TN, USA
| | - Alessio Fasano
- Department of Pediatrics, Massachusetts General Hospital, Boston, MA, USA; Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Marcelo Freire
- Department of Infectious Diseases, J Craig Venter Institute, University of California San Diego, La Jolla, CA, USA
| | - Linda N Geng
- J Craig Venter Institute, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Diane E Griffin
- W Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Timothy J Henrich
- Division of Experimental Medicine, University of California, San Francisco, CA, USA
| | - Stephen M Hewitt
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Akiko Iwasaki
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA; Center for Infection and Immunity, Yale University School of Medicine, New Haven, CT, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Harlan M Krumholz
- Center for Infection and Immunity, Yale University School of Medicine, New Haven, CT, USA; Center for Outcomes Research and Evaluation, Yale New Haven Hospital, New Haven, CT, USA; Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA; Department of Health Policy and Management, Yale School of Public Health, New Haven, CT, USA
| | - Michela Locci
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Vincent C Marconi
- Emory University School of Medicine and Rollins School of Public Health, Atlanta, GA, USA; Atlanta Veterans Affairs Medical Center, Decatur, GA, USA
| | - Saurabh Mehandru
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Henry D Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michaela Muller-Trutwin
- Institut Pasteur, Université Paris-Cité, HIV, Inflammation and Persistence Unit, Paris, France
| | - Mark M Painter
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Etheresia Pretorius
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa; Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK
| | - David A Price
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Cardiff, UK; Systems Immunity Research Institute, Cardiff University School of Medicine, University Hospital of Wales, Cardiff, UK
| | - David Putrino
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yu Qian
- Department of Informatics, J Craig Venter Institute, University of California San Diego, La Jolla, CA, USA
| | - Nadia R Roan
- Gladstone Institutes, University of California, San Francisco, CA, USA; Department of Urology, University of California, San Francisco, CA, USA
| | - Dominique Salmon
- Department of Infectious Diseases, Institut Fournier, Paris, France; Direction of International Relations Assistance Publique Hôpitaux de Paris, Paris, France
| | - Gene S Tan
- Department of Infectious Diseases, J Craig Venter Institute, University of California San Diego, La Jolla, CA, USA
| | - Michael B VanElzakker
- PolyBio Research Foundation, Medford, MA, USA; Division of Neurotherapeutics, Massachusetts General Hospital, Boston, MA, USA
| | - E John Wherry
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Johan Van Weyenbergh
- Laboratory of Clinical and Epidemiological Virology, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Lael M Yonker
- Department of Pediatrics, Massachusetts General Hospital, Boston, MA, USA; Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Michael J Peluso
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, CA, USA.
| |
Collapse
|
6
|
Sigal A, Neher RA, Lessells RJ. The consequences of SARS-CoV-2 within-host persistence. Nat Rev Microbiol 2025; 23:288-302. [PMID: 39587352 DOI: 10.1038/s41579-024-01125-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2024] [Indexed: 11/27/2024]
Abstract
SARS-CoV-2 causes an acute respiratory tract infection that resolves in most people in less than a month. Yet some people with severely weakened immune systems fail to clear the virus, leading to persistent infections with high viral titres in the respiratory tract. In a subset of cases, persistent SARS-CoV-2 replication results in an accelerated accumulation of adaptive mutations that confer escape from neutralizing antibodies and enhance cellular infection. This may lead to the evolution of extensively mutated SARS-CoV-2 variants and introduce an element of chance into the timing of variant evolution, as variant formation may depend on evolution in a single person. Whether long COVID is also caused by persistence of replicating SARS-CoV-2 is controversial. One line of evidence is detection of SARS-CoV-2 RNA and proteins in different body compartments long after SARS-CoV-2 infection has cleared from the upper respiratory tract. However, thus far, no replication competent virus has been cultured from individuals with long COVID who are immunocompetent. In this Review, we consider mechanisms of viral persistence, intra-host evolution in persistent infections, the connection of persistent infections with SARS-CoV-2 variants and the possible role of SARS-CoV-2 persistence in long COVID. Understanding persistent infections may therefore resolve much of what is still unclear in COVID-19 pathophysiology, with possible implications for other emerging viruses.
Collapse
Affiliation(s)
- Alex Sigal
- The Lautenberg Center for Immunology and Cancer Research, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.
- Africa Health Research Institute, Durban, South Africa.
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa.
| | - Richard A Neher
- Biozentrum, University of Basel, Basel, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Richard J Lessells
- KwaZulu-Natal Research Innovation & Sequencing Platform, School of Laboratory Medicine & Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
- Centre for the AIDS Programme of Research in South Africa, Durban, South Africa
| |
Collapse
|
7
|
de Melo BP, da Silva JAM, Rodrigues MA, Palmeira JDF, Saldanha-Araujo F, Argañaraz GA, Argañaraz ER. SARS-CoV-2 Spike Protein and Long COVID-Part 1: Impact of Spike Protein in Pathophysiological Mechanisms of Long COVID Syndrome. Viruses 2025; 17:617. [PMID: 40431629 PMCID: PMC12115690 DOI: 10.3390/v17050617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/06/2025] [Accepted: 04/23/2025] [Indexed: 05/29/2025] Open
Abstract
SARS-CoV-2 infection has resulted in more than 700 million cases and nearly 7 million deaths worldwide. Although vaccination efforts have effectively reduced mortality and transmission rates, a significant proportion of recovered patients-up to 40%-develop long COVID syndrome (LC) or post-acute sequelae of COVID-19 infection (PASC). LC is characterized by the persistence or emergence of new symptoms following initial SARS-CoV-2 infection, affecting the cardiovascular, neurological, respiratory, gastrointestinal, reproductive, and immune systems. Despite the broad range of clinical symptoms that have been described, the risk factors and pathogenic mechanisms behind LC remain unclear. This review, the first of a two-part series, is distinguished by the discussion of the role of the SARS-CoV-2 spike protein in the primary mechanisms underlying the pathophysiology of LC.
Collapse
Affiliation(s)
- Bruno Pereira de Melo
- Laboratory of Molecular Neurovirology, Department of Pharmacy, Faculty of Health Science, University of Brasília, Brasilia 70910-900, DF, Brazil
| | - Jhéssica Adriane Mello da Silva
- Laboratory of Molecular Neurovirology, Department of Pharmacy, Faculty of Health Science, University of Brasília, Brasilia 70910-900, DF, Brazil
| | - Mariana Alves Rodrigues
- Laboratory of Molecular Neurovirology, Department of Pharmacy, Faculty of Health Science, University of Brasília, Brasilia 70910-900, DF, Brazil
| | - Julys da Fonseca Palmeira
- Laboratory of Molecular Neurovirology, Department of Pharmacy, Faculty of Health Science, University of Brasília, Brasilia 70910-900, DF, Brazil
| | - Felipe Saldanha-Araujo
- Laboratory of Hematology and Stem Cells (LHCT), Faculty of Health Sciences, University of Brasília, Brasilia 70910-900, DF, Brazil
| | - Gustavo Adolfo Argañaraz
- Laboratory of Molecular Neurovirology, Department of Pharmacy, Faculty of Health Science, University of Brasília, Brasilia 70910-900, DF, Brazil
| | - Enrique Roberto Argañaraz
- Laboratory of Molecular Neurovirology, Department of Pharmacy, Faculty of Health Science, University of Brasília, Brasilia 70910-900, DF, Brazil
| |
Collapse
|
8
|
Abbas AH, Haji MR, Shimal AA, Kurmasha YH, Al-Janabi AAH, Azeez ZT, Al-Ali ARS, Al-Najati HMH, Al-Waeli ARA, Abdulhadi NASA, Al-Tuaama AZH, Al-Ashtary MM, Hussin OA. A multidisciplinary review of long COVID to address the challenges in diagnosis and updated management guidelines. Ann Med Surg (Lond) 2025; 87:2105-2117. [PMID: 40212158 PMCID: PMC11981394 DOI: 10.1097/ms9.0000000000003066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 02/04/2025] [Indexed: 04/13/2025] Open
Abstract
Long COVID has emerged as a significant challenge since the COVID-19 pandemic, which was declared as an outbreak in March 2020, marked by diverse symptoms and prolonged duration of disease. Defined by the WHO as symptoms persisting or emerging for at least two months post-SARS-CoV-2 infection without an alternative cause, its prevalence varies globally, with estimates of 10-20% in Europe, 7.3% in the USA, and 3.0% in the UK. The condition's etiology remains unclear, involving factors, such as renin-angiotensin system overactivation, persistent viral reservoirs, immune dysregulation, and autoantibodies. Reactivated viruses, like EBV and HSV-6, alongside epigenetic alterations, exacerbate mitochondrial dysfunction and energy imbalance. Emerging evidence links SARS-CoV-2 to chromatin and gut microbiome changes, further influencing long-term health impacts. Diagnosis of long COVID requires detailed systemic evaluation through medical history and physical examination. Management is highly individualized, focusing mainly on the patient's symptoms and affected systems. A multidisciplinary approach is essential, integrating diverse perspectives to address systemic manifestations, underlying mechanisms, and therapeutic strategies. Enhanced understanding of long COVID's pathophysiology and clinical features is critical to improving patient outcomes and quality of life. With a growing number of cases expected globally, advancing research and disseminating knowledge on long COVID remain vital for developing effective diagnostic and management frameworks, ultimately supporting better care for affected individuals.
Collapse
Affiliation(s)
- Abbas Hamza Abbas
- Department of Internal Medicine, Collage of Medicine, University of Basra, Basra, Iraq
| | - Maryam Razzaq Haji
- Department of Internal Medicine, Collage of Medicine, University of Kufa, Najaf, Iraq
| | - Aya Ahmed Shimal
- Department of Internal Medicine, College of Medicine, University of Baghdad, Baghdad, Iraq
| | | | | | - Zainab Tawfeeq Azeez
- Department of Internal Medicine, Al-Zahraa College of Medicine, University of Basra, Basra, Iraq
| | | | | | | | | | | | - Mustafa M. Al-Ashtary
- Department of Internal Medicine, College of Medicine, University of Baghdad, Baghdad, Iraq
| | - Ominat Amir Hussin
- Department of Internal Medicine, Almanhal Academy for Science, Khartoum, Sudan
| |
Collapse
|
9
|
Wee LE, Lim JT, Tan JYJ, Chiew C, Yung CF, Chong CY, Lye DC, Tan KB. Long-term Sequelae Following Dengue Infection vs SARS-CoV-2 Infection in a Pediatric Population: A Retrospective Cohort Study. Open Forum Infect Dis 2025; 12:ofaf134. [PMID: 40160345 PMCID: PMC11953018 DOI: 10.1093/ofid/ofaf134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 03/05/2025] [Indexed: 04/02/2025] Open
Abstract
Background Long-term postacute sequelae following SARS-CoV-2 infection in children have been extensively documented. However, while persistence of chronic symptoms following pediatric dengue infection has been documented in small prospective cohorts, population-based studies are limited. We evaluated the risk of multisystemic complications following dengue infection in contrast to that after SARS-CoV-2 infection in a multiethnic pediatric Asian population. Methods This retrospective population-based cohort study utilized national COVID-19/dengue registries to construct cohorts of Singaporean children aged 1 to 17 years with either laboratory-confirmed dengue infection from 1 January 2017 to 31 October 2022 or confirmed SARS-CoV-2 infection from 1 July 2021 to 31 October 2022. Cox regression was utilized to estimate risks of new-incident cardiovascular, neurologic, gastrointestinal, autoimmune, and respiratory complications, as identified by national health care claims data, at 31 to 300 days after dengue infection vs COVID-19. Risks were reported by 2 measures: adjusted hazard ratio (aHR) and excess burden. Results This study included 6452 children infected with dengue and 260 749 cases of COVID-19. Among children infected with dengue, there was increased risk of any postacute gastrointestinal sequelae (aHR, 2.98; 95% CI, 1.18-7.18), specifically appendicitis (aHR, 3.50; 95% CI, 1.36-8.99), when compared with children infected with SARS-CoV-2. In contrast to cases of unvaccinated COVID-19, children infected with dengue demonstrated lower risk (aHR, 0.42; 95% CI, .29-.61) and excess burden (-6.50; 95% CI, -9.80 to -3.20) of any sequelae, as well as lower risk of respiratory sequelae (aHR, 0.17; 95% CI, .09-.31). Conclusions Lower overall risk of postacute complications was observed in children following dengue infection vs COVID-19; however, higher risk of appendicitis was reported 31 to 300 days after dengue infection vs SARS-CoV-2. Public health strategies to mitigate the impact of dengue and COVID-19 in children should consider the possibility of chronic postinfectious sequelae.
Collapse
Affiliation(s)
- Liang En Wee
- National Centre for Infectious Diseases, Singapore
- Duke-NUS Graduate Medical School, National University of Singapore, Singapore
- Department of Infectious Diseases, Singapore General Hospital, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Jue Tao Lim
- National Centre for Infectious Diseases, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | | | - Calvin Chiew
- National Centre for Infectious Diseases, Singapore
- Ministry of Health, Singapore
| | - Chee-Fu Yung
- Duke-NUS Graduate Medical School, National University of Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
- Infectious Disease Service, Department of Pediatrics, KK Women's and Children's Hospital, Singapore
| | - Chia Yin Chong
- Duke-NUS Graduate Medical School, National University of Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
- Infectious Disease Service, Department of Pediatrics, KK Women's and Children's Hospital, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - David Chien Lye
- National Centre for Infectious Diseases, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Infectious Diseases, Tan Tock Seng Hospital, Singapore
| | - Kelvin Bryan Tan
- National Centre for Infectious Diseases, Singapore
- Duke-NUS Graduate Medical School, National University of Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
- Ministry of Health, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore
| |
Collapse
|
10
|
Skevaki C, Moschopoulos CD, Fragkou PC, Grote K, Schieffer E, Schieffer B. Long COVID: Pathophysiology, current concepts, and future directions. J Allergy Clin Immunol 2025; 155:1059-1070. [PMID: 39724975 DOI: 10.1016/j.jaci.2024.12.1074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/02/2024] [Accepted: 12/06/2024] [Indexed: 12/28/2024]
Abstract
Long COVID, an umbrella term referring to a variety of symptoms and clinical presentations that emerges in a subset of patients after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, has a significant effect on quality of life and places a substantial burden on health care systems worldwide, straining financial and human resources. The pathophysiology of long COVID remains incompletely understood, though several hypotheses have been proposed to explain different aspects of this complex condition. SARS-CoV-2 persistence, direct organ damage, innate and adaptive immune system perturbation, autoimmunity, latent virus reactivation, endothelial dysfunction, and microbiome disturbances are among the most relevant avenues for elucidating the evolution, complexity, and mechanisms of long COVID. Active investigation regarding potential biomarkers for long COVID and its associated disease endotypes highlights the role of inflammatory mediators, immunophenotyping, and multiomics approaches. Further advances in understanding long COVID are needed to inform current and future therapeutics.
Collapse
Affiliation(s)
- Chrysanthi Skevaki
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, University of Marburg, Marburg, Germany; German Center for Lung Research (DZL), University of Giessen, Marburg Lung Center (UGMLC), Giessen, Germany; European Society of Clinical Microbiology and Infectious Diseases (ESCMID) Study Group for Respiratory Viruses (ESGREV), Basel, Switzerland.
| | - Charalampos D Moschopoulos
- European Society of Clinical Microbiology and Infectious Diseases (ESCMID) Study Group for Respiratory Viruses (ESGREV), Basel, Switzerland; Fourth Department of Internal Medicine, Medical School of Athens, National and Kapodistrian University of Athens, Attikon University Hospital, Athens, Greece
| | - Paraskevi C Fragkou
- European Society of Clinical Microbiology and Infectious Diseases (ESCMID) Study Group for Respiratory Viruses (ESGREV), Basel, Switzerland; First Department of Critical Care Medicine and Pulmonary Services, Evangelismos General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Karsten Grote
- Department of Cardiology, Angiology and Intensive Care Medicine, University Hospital, Philipps University of Marburg, Marburg, Germany
| | - Elisabeth Schieffer
- Department of Cardiology, Angiology and Intensive Care Medicine, University Hospital, Philipps University of Marburg, Marburg, Germany
| | - Bernhard Schieffer
- Department of Cardiology, Angiology and Intensive Care Medicine, University Hospital, Philipps University of Marburg, Marburg, Germany
| |
Collapse
|
11
|
Visvanathan R, Houghton MJ, Williamson G. Impact of Glucose, Inflammation and Phytochemicals on ACE2, TMPRSS2 and Glucose Transporter Gene Expression in Human Intestinal Cells. Antioxidants (Basel) 2025; 14:253. [PMID: 40227199 PMCID: PMC11939507 DOI: 10.3390/antiox14030253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/05/2025] [Accepted: 02/18/2025] [Indexed: 04/15/2025] Open
Abstract
Inflammation is associated with the pathophysiology of type 2 diabetes and COVID-19. Phytochemicals have the potential to modulate inflammation, expression of SARS-CoV-2 viral entry receptors (angiotensin-converting enzyme 2 (ACE2) and transmembrane protease, serine 2 (TMPRSS2)) and glucose transport in the gut. This study assessed the impact of phytochemicals on these processes. We screened 12 phytochemicals alongside 10 pharmaceuticals and three plant extracts, selected for known or hypothesised effects on the SARS-CoV-2 receptors and COVID-19 risk, for their effects on the expression of ACE2 or TMPRSS2 in differentiated Caco-2/TC7 human intestinal epithelial cells. Genistein, apigenin, artemisinin and sulforaphane were the most promising ones, as assessed by the downregulation of TMPRSS2, and thus they were used in subsequent experiments. The cells were then co-stimulated with pro-inflammatory cytokines interleukin-1 beta (IL-1β) and tumour necrosis factor-alpha (TNF-α) for ≤168 h to induce inflammation, which are known to induce multiple pathways, including the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathway. Target gene expression (ACE2, TMPRSS2, SGLT1 (sodium-dependent glucose transporter 1) and GLUT2 (glucose transporter 2)) was measured by droplet digital PCR, while interleukin-1 (IL-6), interleukin-1 (IL-8) and ACE2 proteins were assessed using ELISA in both normal and inflamed cells. IL-1β and TNF-α treatment upregulated ACE2, TMPRSS2 and SGLT1 gene expression. ACE2 increased with the duration of cytokine exposure, coupled with a significant decrease in IL-8, SGLT1 and TMPRSS2 over time. Pearson correlation analysis revealed that the increase in ACE2 was strongly associated with a decrease in IL-8 (r = -0.77, p < 0.01). The regulation of SGLT1 gene expression followed the same pattern as TMPRSS2, implying a common mechanism. Although none of the phytochemicals decreased inflammation-induced IL-8 secretion, genistein normalised inflammation-induced increases in SGLT1 and TMPRSS2. The association between TMPRSS2 and SGLT1 gene expression, which is particularly evident in inflammatory conditions, suggests a common regulatory pathway. Genistein downregulated the inflammation-induced increase in SGLT1 and TMPRSS2, which may help lower the postprandial glycaemic response and COVID-19 risk or severity in healthy individuals and those with metabolic disorders.
Collapse
Affiliation(s)
- Rizliya Visvanathan
- Department of Nutrition, Dietetics and Food, BASE Facility, Monash University, Level 1, 264 Ferntree Gully Road, Notting Hill, VIC 3168, Australia
- Victorian Heart Institute, Monash University, Level 2, Victorian Heart Hospital, 631 Blackburn Road, Clayton, VIC 3168, Australia
| | - Michael J. Houghton
- Department of Nutrition, Dietetics and Food, BASE Facility, Monash University, Level 1, 264 Ferntree Gully Road, Notting Hill, VIC 3168, Australia
- Victorian Heart Institute, Monash University, Level 2, Victorian Heart Hospital, 631 Blackburn Road, Clayton, VIC 3168, Australia
| | - Gary Williamson
- Department of Nutrition, Dietetics and Food, BASE Facility, Monash University, Level 1, 264 Ferntree Gully Road, Notting Hill, VIC 3168, Australia
- Victorian Heart Institute, Monash University, Level 2, Victorian Heart Hospital, 631 Blackburn Road, Clayton, VIC 3168, Australia
| |
Collapse
|
12
|
Fehrer A, Sotzny F, Kim L, Kedor C, Freitag H, Heindrich C, Grabowski P, Babel N, Scheibenbogen C, Wittke K. Serum Spike Protein Persistence Post COVID Is Not Associated with ME/CFS. J Clin Med 2025; 14:1086. [PMID: 40004616 PMCID: PMC11856657 DOI: 10.3390/jcm14041086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/27/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives: According to the World Health Organization (WHO) and Centers for Disease Control and Prevention (CDC), an estimated 3-6% of people suffer from post-COVID condition or syndrome (PCS). A subset meets the diagnostic criteria for myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Studies have reported that SARS-CoV-2 proteins or RNA can persist after acute infection in serum or tissues, but their role in PCS is unclear. Methods: Here, SARS-CoV-2 spike protein was analyzed in the serum of 121 PCS patients with predominant fatigue and exertional intolerance, of whom 72 met diagnostic criteria for ME/CFS, 37 post-COVID recovered healthy controls, and 32 pre-pandemic healthy controls. Results: Spike protein was detected in the serum of 11% of recovered controls, 2% of PCS patients, and 14% of ME/CFS patients between 4 and 31 months after SARS-CoV-2 infection, but not in pre-pandemic samples. The occurrence and concentration of spike protein did not correlate with infection or vaccination timepoints. In ME/CFS patients, spike protein presence was not associated with the severity of symptoms or functional disability. In 5 out of 22 patients who under-went immunoglobulin depletion, spike protein levels were reduced or undetectable after treatment, indicating binding to immunoglobulins. Conclusions: In summary, this study identified serum spike protein in a subset of patients but found no association with ME/CFS.
Collapse
Affiliation(s)
- Annick Fehrer
- Institute of Medical Immunology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Franziska Sotzny
- Institute of Medical Immunology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Laura Kim
- Institute of Medical Immunology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Claudia Kedor
- Institute of Medical Immunology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Helma Freitag
- Institute of Medical Immunology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Cornelia Heindrich
- Institute of Medical Immunology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Patricia Grabowski
- Institute of Medical Immunology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Nina Babel
- Institute of Medical Immunology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
- Center for Regenerative Therapies (BCRT), Berlin Institute of Health (BIH), Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
- Center for Translational Medicine and Immune Diagnostics Laboratory, University Hospital of the Ruhr-University Bochum, Hölkeskampring 40, 44625 Herne, Germany
| | - Carmen Scheibenbogen
- Institute of Medical Immunology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Kirsten Wittke
- Institute of Medical Immunology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| |
Collapse
|
13
|
Shahbaz S, Rezaeifar M, Syed H, Redmond D, Terveart JWC, Osman M, Elahi S. Upregulation of olfactory receptors and neuronal-associated genes highlights complex immune and neuronal dysregulation in Long COVID patients. Brain Behav Immun 2025; 124:97-114. [PMID: 39615603 DOI: 10.1016/j.bbi.2024.11.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 11/04/2024] [Accepted: 11/27/2024] [Indexed: 01/20/2025] Open
Abstract
A substantial portion of patients infected with SARS-CoV-2 experience prolonged complications, known as Long COVID (LC). A subset of these patients exhibits the most debilitating symptoms, similar to those defined in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). We performed bulk RNA sequencing (RNAseq) on the whole blood of LC with ME/CFS, at least 12 months post-onset of the acute disease, and compared them with controls. We found that LC patients had a distinct transcriptional profile compared to controls. Key findings include the upregulation of genes involved in immune dysregulation and neuronal development, such as Fezf2, BRINP2, HOXC12, MEIS2, ZFHX3, and RELN. These genes are linked to neuroinflammatory responses, cognitive impairments, and hematopoietic disturbances, suggesting ongoing neurological and immune disturbances in LC patients. RELN, encoding the Reelin protein, was notably elevated in LC patients, potentially serving as a biomarker for LC pathogenesis due to its role in inflammation and neuronal function. Immune cell analysis showed altered profiles in LC patients, with increased activated memory CD4 + T cells and neutrophils, and decreased regulatory T cells and NK cells, reflecting immune dysregulation. Changes in cytokine and chemokine expression further underscore the chronic inflammatory state in LC patients. Notably, a unique upregulation of olfactory receptors (ORs) suggest alternative roles for ORs in non-olfactory tissues. Pathway analysis revealed upregulation in ribosomal RNA processing, amino acid metabolism, protein synthesis, cell proliferation, DNA repair, and mitochondrial pathways, indicating heightened metabolic and immune demands. Conversely, downregulated pathways, such as VEGF signaling and TP53 activity, point to impaired tissue repair and cellular stress responses. Overall, our study underscores the complex interplay between immune and neuronal dysfunction in LC patients, providing insights into potential diagnostic biomarkers and therapeutic targets. Future research is needed to fully understand the roles and interactions of these genes in LC pathophysiology.
Collapse
Affiliation(s)
- Shima Shahbaz
- Mike Petryk School of Dentistry, Division of Foundational Sciences, University of Alberta, Edmonton T6G 2E1, AB, Canada
| | - Maryam Rezaeifar
- Mike Petryk School of Dentistry, Division of Foundational Sciences, University of Alberta, Edmonton T6G 2E1, AB, Canada
| | - Hussein Syed
- Department of Medicine, Division of Gastroenterology, University of Alberta, Edmonton T6G 2E1, AB, Canada
| | - Desiree Redmond
- Department of Medicine, Division of Rheumatology, University of Alberta, Edmonton T6G 2E1, AB, Canada
| | - Jan Willem Cohen Terveart
- Department of Medicine, Division of Rheumatology, University of Alberta, Edmonton T6G 2E1, AB, Canada
| | - Mohammed Osman
- Department of Medicine, Division of Rheumatology, University of Alberta, Edmonton T6G 2E1, AB, Canada; Li Ka Shing Institute of Virology, University of Alberta, Edmonton T6G 2E1, AB, Canada; Women and Children Health Research Institute, University of Alberta, Edmonton T6G 2E1, AB, Canada.
| | - Shokrollah Elahi
- Mike Petryk School of Dentistry, Division of Foundational Sciences, University of Alberta, Edmonton T6G 2E1, AB, Canada; Li Ka Shing Institute of Virology, University of Alberta, Edmonton T6G 2E1, AB, Canada; Women and Children Health Research Institute, University of Alberta, Edmonton T6G 2E1, AB, Canada; Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton T6G 2E1, AB, Canada; Glycomics Institute of Alberta, Faculty of Medicine and Dentistry, University of Alberta, Edmonton T6G 2E1, AB, Canada.
| |
Collapse
|
14
|
Zhang Y, Chen H, Li Y, Luo C, Zhu Y, Zhou X, Wang R, He J, Guo H, Xu X, Qiu M, Li J. Animal Models for Long COVID: Current Advances, Limitations, and Future Directions. J Med Virol 2025; 97:e70237. [PMID: 39981885 DOI: 10.1002/jmv.70237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 01/25/2025] [Accepted: 02/05/2025] [Indexed: 02/22/2025]
Abstract
Long COVID (LC) represents a chronic, systemic, and often disabling condition that poses a significant ongoing threat to public health. Foundational scientific studies are needed to unravel the underlying mechanisms, with the ultimate goal of developing effective preventative and therapeutic strategies. Therefore, there is an urgent demand for animal models that can accurately replicate the clinical features of LC. This review integrates clinical epidemiological data to summarize the pathological changes in extrapulmonary systems involved in LC. Additionally, it critically examines the capacity of existing animal models, including nonhuman primates, genetically modified mice, and Syrian hamsters, to exhibit enduring postinfection symptoms that align with human clinical manifestations, and identifies key areas requiring further development. The objective is to offer insights that will aid in the development of next-generation animal models, thereby accelerating our understanding of how acute respiratory viral infections transition into chronic conditions, and ensuring preparedness for future pandemics.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Biosafety, School of Basic Medicine, Army Medical University, Chongqing, China
| | - Huan Chen
- Department of Teaching Experiment Center, College of Basic Medicine, Army Medical University, Chongqing, China
| | - Yumeng Li
- Department of Biosafety, School of Basic Medicine, Army Medical University, Chongqing, China
| | - Chenxi Luo
- The Fifth Camp of Cadet Brigade, School of Basic Medicine, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yunkai Zhu
- Department of Biosafety, School of Basic Medicine, Army Medical University, Chongqing, China
| | - Xiaoyang Zhou
- Department of Biosafety, School of Basic Medicine, Army Medical University, Chongqing, China
| | - Ruixuan Wang
- Department of Biosafety, School of Basic Medicine, Army Medical University, Chongqing, China
| | - Jiuxiang He
- Department of Biosafety, School of Basic Medicine, Army Medical University, Chongqing, China
| | - Hongxia Guo
- Department of Biosafety, School of Basic Medicine, Army Medical University, Chongqing, China
| | - Xiaofeng Xu
- Department of Biosafety, School of Basic Medicine, Army Medical University, Chongqing, China
| | - Minyue Qiu
- Department of Biosafety, School of Basic Medicine, Army Medical University, Chongqing, China
| | - Jintao Li
- Department of Biosafety, School of Basic Medicine, Army Medical University, Chongqing, China
| |
Collapse
|
15
|
Fekete M, Lehoczki A, Szappanos Á, Toth A, Mahdi M, Sótonyi P, Benyó Z, Yabluchanskiy A, Tarantini S, Ungvari Z. Cerebromicrovascular mechanisms contributing to long COVID: implications for neurocognitive health. GeroScience 2025; 47:745-779. [PMID: 39777702 PMCID: PMC11872997 DOI: 10.1007/s11357-024-01487-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
Long COVID (also known as post-acute sequelae of SARS-CoV-2 infection [PASC] or post-COVID syndrome) is characterized by persistent symptoms that extend beyond the acute phase of SARS-CoV-2 infection, affecting approximately 10% to over 30% of those infected. It presents a significant clinical challenge, notably due to pronounced neurocognitive symptoms such as brain fog. The mechanisms underlying these effects are multifactorial, with mounting evidence pointing to a central role of cerebromicrovascular dysfunction. This review investigates key pathophysiological mechanisms contributing to cerebrovascular dysfunction in long COVID and their impacts on brain health. We discuss how endothelial tropism of SARS-CoV-2 and direct vascular infection trigger endothelial dysfunction, impaired neurovascular coupling, and blood-brain barrier disruption, resulting in compromised cerebral perfusion. Furthermore, the infection appears to induce mitochondrial dysfunction, enhancing oxidative stress and inflammation within cerebral endothelial cells. Autoantibody formation following infection also potentially exacerbates neurovascular injury, contributing to chronic vascular inflammation and ongoing blood-brain barrier compromise. These factors collectively contribute to the emergence of white matter hyperintensities, promote amyloid pathology, and may accelerate neurodegenerative processes, including Alzheimer's disease. This review also emphasizes the critical role of advanced imaging techniques in assessing cerebromicrovascular health and the need for targeted interventions to address these cerebrovascular complications. A deeper understanding of the cerebrovascular mechanisms of long COVID is essential to advance targeted treatments and mitigate its long-term neurocognitive consequences.
Collapse
Affiliation(s)
- Monika Fekete
- Institute of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary
| | - Andrea Lehoczki
- Institute of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary.
- Doctoral College, Health Sciences Program, Semmelweis University, Budapest, Hungary.
| | - Ágnes Szappanos
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
- Department of Rheumatology and Clinical Immunology, Semmelweis University, Budapest, Hungary
| | - Attila Toth
- Division of Clinical Physiology, Department of Cardiology, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
- Research Centre for Molecular Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Mohamed Mahdi
- Laboratory of Retroviral Biochemistry, Department of Biochemistry and Molecular Biology, University of Debrecen, 4032, Debrecen, Hungary
- Infectology Clinic, University of Debrecen Clinical Centre, 4031, Debrecen, Hungary
| | - Péter Sótonyi
- Department of Vascular and Endovascular Surgery, Heart and Vascular Centre, Semmelweis University, 1122, Budapest, Hungary
| | - Zoltán Benyó
- Institute of Translational Medicine, Semmelweis University, 1094, Budapest, Hungary
- Cerebrovascular and Neurocognitive Disorders Research Group, HUN-REN , Semmelweis University, 1094, Budapest, Hungary
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral College/Institute of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Stefano Tarantini
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral College/Institute of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Zoltan Ungvari
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral College/Institute of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
16
|
Ewing AG, Salamon S, Pretorius E, Joffe D, Fox G, Bilodeau S, Bar-Yam Y. Review of organ damage from COVID and Long COVID: a disease with a spectrum of pathology. MEDICAL REVIEW (2021) 2025; 5:66-75. [PMID: 39974559 PMCID: PMC11834749 DOI: 10.1515/mr-2024-0030] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/11/2024] [Indexed: 02/21/2025]
Abstract
Long COVID, as currently defined by the World Health Organization (WHO) and other authorities, is a symptomatic condition that has been shown to affect an estimated 10 %-30 % of non-hospitalized patients after one infection. However, COVID-19 can also cause organ damage in individuals without symptoms, who would not fall under the current definition of Long COVID. This organ damage, whether symptomatic or not, can lead to various health impacts such as heart attacks and strokes. Given these observations, it is necessary to either expand the definition of Long COVID to include organ damage or recognize COVID-19-induced organ damage as a distinct condition affecting many symptomatic and asymptomatic individuals after COVID-19 infections. It is important to consider that many known adverse health outcomes, including heart conditions and cancers, can be asymptomatic until harm thresholds are reached. Many more medical conditions can be identified by testing than those that are recognized through reported symptoms. It is therefore important to similarly recognize that while Long COVID symptoms are associated with organ damage, there are many individuals that have organ damage without displaying recognized symptoms and to include this harm in the characterization of COVID-19 and in the monitoring of individuals after COVID-19 infections.
Collapse
Affiliation(s)
- Andrew G. Ewing
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
- World Health Network, Cambridge, MA, USA
| | | | - Etheresia Pretorius
- World Health Network, Cambridge, MA, USA
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, WC, South Africa
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK
| | - David Joffe
- World Health Network, Cambridge, MA, USA
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Greta Fox
- World Health Network, Cambridge, MA, USA
| | - Stephane Bilodeau
- World Health Network, Cambridge, MA, USA
- Department of Bioengineering, McGill University, Montreal, QC, Canada
| | - Yaneer Bar-Yam
- World Health Network, Cambridge, MA, USA
- New England Complex Systems Institute, Cambridge, MA, USA
| |
Collapse
|
17
|
Bellone S, Siegel ER, Santin AD. N-acetylcysteine (NAC) supplementation improves dyspnea and may normalize von Willebrand plasma levels in gynecologic patients with Post-Acute-COVID-Sequela (PASC)/Long COVID. Gynecol Oncol Rep 2025; 57:101682. [PMID: 39944180 PMCID: PMC11814706 DOI: 10.1016/j.gore.2025.101682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/13/2025] [Accepted: 01/17/2025] [Indexed: 03/16/2025] Open
Abstract
Objectives A subset of COVID-infected cancer patients may develop post-acute sequelae of COVID-19 (PASC), also known as Long COVID (LC). While LC is considered multifactorial in its pathogenesis, growing evidence suggests that persistent microvascular inflammation (ie, spike-induced endotheliosis) causing chronically elevated levels of clotting factors including von Willebrand factor (vWF), clumping/clotting of red blood cells and platelets, and thrombotic complications may be at the root of PASC/LC symptoms. N-Acetylcysteine (NAC), a precursor of glutathione, is an inexpensive FDA-approved drug/supplement endowed with mucolytic, antioxidant, anti-inflammatory and thrombolytic properties. Multiple reports have recently demonstrated the potential clinical activity of NAC in COVID-19 patients. We retrospectively evaluated responses to NAC supplementation in a total of 9 PASC/LC patients, 3 of which reporting regular use of NAC, followed in our Gynecologic Oncology clinic. Methods Gynecologic patients using NAC supplement (3 patients) vs controls (6 patients) with persistent LC/PASC symptoms and with elevated plasmatic vWF levels were identified in our Gynecologic Oncology clinic database and evaluated for improvement/normalization in LC/PASC symptoms and vWF levels. Results Subjective improvement in shortness of breath, brain fog and fatigue with normalization of vWF levels were noted in 3 out of 3 PASC/LC patients using oral NAC (600-1200 mg BID) vs none of the randomly selected cancer control patients with PASC/LC (Fisher's exact P = 0.0119). Conclusions These preliminary results suggest that NAC may represent an inexpensive, safe and potentially effective supplement to improve many PASC/LC-related symptoms. Prospective randomized studies with NAC in PASC/LC patients are needed to confirm these findings.
Collapse
Affiliation(s)
- Stefania Bellone
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Eric R. Siegel
- Department of Biostatistics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Alessandro D. Santin
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
18
|
Vanderheiden A, Diamond MS. Animal Models of Non-Respiratory, Post-Acute Sequelae of COVID-19. Viruses 2025; 17:98. [PMID: 39861887 PMCID: PMC11768974 DOI: 10.3390/v17010098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/10/2025] [Accepted: 01/12/2025] [Indexed: 01/27/2025] Open
Abstract
Post-acute sequelae of COVID-19 (PASC) are a diverse set of symptoms and syndromes driven by dysfunction of multiple organ systems that can persist for years and negatively impact the quality of life for millions of individuals. We currently lack specific therapeutics for patients with PASC, due in part to an incomplete understanding of its pathogenesis, especially for non-pulmonary sequelae. Here, we discuss three animal models that have been utilized to investigate PASC: non-human primates (NHPs), hamsters, and mice. We focus on neurological, gastrointestinal, and cardiovascular PASC and highlight advances in mechanistic insight that have been made using these animal models, as well as discussing the sequelae that warrant continued and intensive research.
Collapse
Affiliation(s)
- Abigail Vanderheiden
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA;
| | - Michael S. Diamond
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA;
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO 63110, USA
- Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
19
|
Zhou X, Wu Y, Zhu Z, Lu C, Zhang C, Zeng L, Xie F, Zhang L, Zhou F. Mucosal immune response in biology, disease prevention and treatment. Signal Transduct Target Ther 2025; 10:7. [PMID: 39774607 PMCID: PMC11707400 DOI: 10.1038/s41392-024-02043-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 09/05/2024] [Accepted: 10/27/2024] [Indexed: 01/11/2025] Open
Abstract
The mucosal immune system, as the most extensive peripheral immune network, serves as the frontline defense against a myriad of microbial and dietary antigens. It is crucial in preventing pathogen invasion and establishing immune tolerance. A comprehensive understanding of mucosal immunity is essential for developing treatments that can effectively target diseases at their entry points, thereby minimizing the overall impact on the body. Despite its importance, our knowledge of mucosal immunity remains incomplete, necessitating further research. The outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has underscored the critical role of mucosal immunity in disease prevention and treatment. This systematic review focuses on the dynamic interactions between mucosa-associated lymphoid structures and related diseases. We delve into the basic structures and functions of these lymphoid tissues during disease processes and explore the intricate regulatory networks and mechanisms involved. Additionally, we summarize novel therapies and clinical research advances in the prevention of mucosal immunity-related diseases. The review also addresses the challenges in developing mucosal vaccines, which aim to induce specific immune responses while maintaining tolerance to non-pathogenic microbes. Innovative therapies, such as nanoparticle vaccines and inhalable antibodies, show promise in enhancing mucosal immunity and offer potential for improved disease prevention and treatment.
Collapse
Affiliation(s)
- Xiaoxue Zhou
- School of Medicine, Hangzhou City University, Hangzhou, China
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Yuchen Wu
- The First School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhipeng Zhu
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Chu Lu
- The First Affiliated Hospital, the Institutes of Biology and Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Chunwu Zhang
- The First School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Linghui Zeng
- School of Medicine, Hangzhou City University, Hangzhou, China
| | - Feng Xie
- The First Affiliated Hospital, the Institutes of Biology and Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China.
| | - Long Zhang
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China.
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Fangfang Zhou
- The First Affiliated Hospital, the Institutes of Biology and Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
20
|
Brambilla M, Fumoso F, Conti M, Becchetti A, Bozzi S, Mencarini T, Agostoni P, Mancini ME, Cosentino N, Bonomi A, Nallio K, Galotta A, Pengo M, Tortorici E, Bosco M, Cernigliaro F, Pinna C, Andreini D, Camera M. Low-Grade Inflammation in Long COVID Syndrome Sustains a Persistent Platelet Activation Associated With Lung Impairment. JACC Basic Transl Sci 2025; 10:20-39. [PMID: 39958473 PMCID: PMC11830264 DOI: 10.1016/j.jacbts.2024.09.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 09/20/2024] [Accepted: 09/20/2024] [Indexed: 02/18/2025]
Abstract
In the present study, we provide evidence on the potential mechanisms involved in the residual pulmonary impairment described in long COVID syndrome. Data highlight that lung damage is significantly associated with a proinflammatory platelet phenotype, characterized mainly by the formation of platelet-leukocyte aggregates. In ex vivo experiments, long COVID plasma reproduces the platelet activation observed in vivo and highlights low-grade inflammation as a potential underpinning mechanism, exploiting a synergistic activity between C-reactive protein and subthreshold concentrations of interleukin-6. The platelet-activated phenotype is blunted by anti-inflammatory and antiplatelet drugs, suggesting a potential therapeutic option in this clinical setting.
Collapse
Affiliation(s)
| | | | - Maria Conti
- Centro Cardiologico Monzino IRCCS, Milan, Italy
| | | | - Silvia Bozzi
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Tatiana Mencarini
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Piergiuseppe Agostoni
- Centro Cardiologico Monzino IRCCS, Milan, Italy
- Department of Clinical Sciences and Community Medicine, Università degli Studi di Milano, Milan, Italy
| | | | | | | | | | | | | | | | | | | | - Chistian Pinna
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, Milan, Italy
| | - Daniele Andreini
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Milan, Italy
- Division of University Cardiology, IRCCS Ospedale Galeazzi Sant’Ambrogio, Milan, Italy
| | - Marina Camera
- Centro Cardiologico Monzino IRCCS, Milan, Italy
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
21
|
Hou Z, Ming Y, Liu J, Wang Z. Potential Biomarkers for Predicting the Risk of Developing Into Long COVID After COVID-19 Infection. Immun Inflamm Dis 2025; 13:e70137. [PMID: 39853911 PMCID: PMC11760981 DOI: 10.1002/iid3.70137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 11/17/2024] [Accepted: 01/10/2025] [Indexed: 01/26/2025] Open
Abstract
BACKGROUND Long COVID, a heterogeneous condition characterized by a range of physical and neuropsychiatric presentations, can be presented with a proportion of COVID-19-infected individuals. METHODS Transcriptomic data sets of those within gene expression profiles of COVID-19, long COVID, and healthy controls were retrieved from the GEO database. Differentially expressed genes (DEGs) falling under COVID-19 and long COVID were identified with R packages, and contemporaneously conducted module detection was performed with the Modular Pharmacology Platform (http://112.86.129.72:48081/). The integration of both DEGs and differentially expressed module-genes (DEMGs) regarding long COVID and COVID-19 was intersected by following Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Set Enrichment Analysis (GSEA). RESULTS There were 11 and 62 differentially expressed modules, 1837 and 179 DEGs, as well as 103 and 508 DEMGs acquiring identified for both COVID-19 and long COVID, notably enriched in the immune-correlated signaling pathways. The immune infiltrating cells of long COVID and COVID-19 were comparatively and respectively assessed via CIBERSORT, ssGSEA, and xCell algorithms. Subsequently, the screening of hub genes involved employing the SVM-RFE, RF, XGBoost algorithms, and logistic regression analysis. Among the 67 candidate genes were processed with machine learning algorithms and logistic regression, a subgroup consisting of CEP55, CDCA2, MELK, and DEPDC1B, was at last identified as potential biomarkers for predicting the risk of the progression into long COVID after COVID-19 infections. The predicting performance of the potential biomarkers was quantified with a ROC value of 0.8762542, which proved the combination of potential biomarkers provided the highest performance. CONCLUSIONS In summary, we identified a subgroup of potential biomarkers for predicting the risk of the progression into long COVID after COVID-19 infection, which could be partly elucidation of the associated molecular mechanisms for long COVID.
Collapse
Affiliation(s)
- Zhiyong Hou
- Institute of Basic Research in Clinical MedicineChina Academy of Chinese Medical SciencesBeijingChina
| | - Yu Ming
- Institute of Basic Research in Clinical MedicineChina Academy of Chinese Medical SciencesBeijingChina
| | - Jun Liu
- Institute of Basic Research in Clinical MedicineChina Academy of Chinese Medical SciencesBeijingChina
| | - Zhong Wang
- Institute of Basic Research in Clinical MedicineChina Academy of Chinese Medical SciencesBeijingChina
| |
Collapse
|
22
|
An Y, He L, Xu X, Piao M, Wang B, Liu T, Cao H. Gut microbiota in post-acute COVID-19 syndrome: not the end of the story. Front Microbiol 2024; 15:1500890. [PMID: 39777148 PMCID: PMC11703812 DOI: 10.3389/fmicb.2024.1500890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
The coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), has led to major global health concern. However, the focus on immediate effects was assumed as the tip of iceberg due to the symptoms following acute infection, which was defined as post-acute COVID-19 syndrome (PACS). Gut microbiota alterations even after disease resolution and the gastrointestinal symptoms are the key features of PACS. Gut microbiota and derived metabolites disorders may play a crucial role in inflammatory and immune response after SARS-CoV-2 infection through the gut-lung axis. Diet is one of the modifiable factors closely related to gut microbiota and COVID-19. In this review, we described the reciprocal crosstalk between gut and lung, highlighting the participation of diet and gut microbiota in and after COVID-19 by destroying the gut barrier, perturbing the metabolism and regulating the immune system. Therefore, bolstering beneficial species by dietary supplements, probiotics or prebiotics and fecal microbiota transplantation (FMT) may be a novel avenue for COVID-19 and PACS prevention. This review provides a better understanding of the association between gut microbiota and the long-term consequences of COVID-19, which indicates modulating gut dysbiosis may be a potentiality for addressing this multifaceted condition.
Collapse
Affiliation(s)
| | | | | | | | | | - Tianyu Liu
- Tianjin Key Laboratory of Digestive Diseases, Department of Gastroenterology and Hepatology, Tianjin Institute of Digestive Diseases, National Key Clinical Specialty, General Hospital, Tianjin Medical University, Tianjin, China
| | - Hailong Cao
- Tianjin Key Laboratory of Digestive Diseases, Department of Gastroenterology and Hepatology, Tianjin Institute of Digestive Diseases, National Key Clinical Specialty, General Hospital, Tianjin Medical University, Tianjin, China
| |
Collapse
|
23
|
Scoullar MJL, Khoury G, Majumdar SS, Tippett E, Crabb BS. Towards a cure for long COVID: the strengthening case for persistently replicating SARS-CoV-2 as a driver of post-acute sequelae of COVID-19. Med J Aust 2024; 221:587-590. [PMID: 39580703 PMCID: PMC11625527 DOI: 10.5694/mja2.52517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 10/01/2024] [Indexed: 11/26/2024]
Affiliation(s)
| | | | | | - Emma Tippett
- Burnet InstituteMelbourneVIC
- Clinic NineteenMelbourneVIC
| | - Brendan S Crabb
- Burnet InstituteMelbourneVIC
- Monash UniversityMelbourneVIC
- University of MelbourneMelbourneVIC
| |
Collapse
|
24
|
Swank Z, Borberg E, Chen Y, Senussi Y, Chalise S, Manickas-Hill Z, Yu XG, Li JZ, Alter G, Henrich TJ, Kelly JD, Hoh R, Goldberg SA, Deeks SG, Martin JN, Peluso MJ, Talla A, Li X, Skene P, Bumol TF, Torgerson TR, Czartoski JL, McElrath MJ, Karlson EW, Walt DR. Measurement of circulating viral antigens post-SARS-CoV-2 infection in a multicohort study. Clin Microbiol Infect 2024; 30:1599-1605. [PMID: 39389851 PMCID: PMC11578795 DOI: 10.1016/j.cmi.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 10/12/2024]
Abstract
OBJECTIVES To determine the proportion of individuals with detectable antigen in plasma or serum after SARS-CoV-2 infection and the association of antigen detection with postacute sequelae of COVID-19 (PASC) symptoms. METHODS Plasma and serum samples were collected from adults participating in four independent studies at different time points, ranging from several days up to 14 months post-SARS-CoV-2 infection. The primary outcome measure was to quantify SARS-CoV-2 antigens, including the S1 subunit of spike, full-length spike, and nucleocapsid, in participant samples. The presence of 34 commonly reported PASC symptoms during the postacute period was determined from participant surveys or chart reviews of electronic health records. RESULTS Of the 1569 samples analysed from 706 individuals infected with SARS-CoV-2, 21% (95% CI, 18-24%) were positive for either S1, spike, or nucleocapsid. Spike was predominantly detected, and the highest proportion of samples was spike positive (20%; 95% CI, 18-22%) between 4 and 7 months postinfection. In total, 578 participants (82%) reported at least one of the 34 PASC symptoms included in our analysis ≥1 month postinfection. Cardiopulmonary, musculoskeletal, and neurologic symptoms had the highest reported prevalence in over half of all participants, and among those participants, 43% (95% CI, 40-45%) on average were antigen-positive. Among the participants who reported no ongoing symptoms (128, 18%), antigen was detected in 28 participants (21%). The presence of antigen was associated with the presence of one or more PASC symptoms, adjusting for sex, age, time postinfection, and cohort (OR, 1.8; 95% CI, 1.4-2.2). DISCUSSION The findings of this multicohort study indicate that SARS-CoV-2 antigens can be detected in the blood of a substantial proportion of individuals up to 14 months after infection. While approximately one in five asymptomatic individuals was antigen-positive, roughly half of all individuals reporting ongoing cardiopulmonary, musculoskeletal, and neurologic symptoms were antigen-positive.
Collapse
Affiliation(s)
- Zoe Swank
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA; Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Ella Borberg
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA; Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Yulu Chen
- Harvard Medical School, Boston, MA, USA; Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Yasmeen Senussi
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA; Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Sujata Chalise
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA; Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | | | - Xu G Yu
- Harvard Medical School, Boston, MA, USA; Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA; Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA
| | - Jonathan Z Li
- Harvard Medical School, Boston, MA, USA; Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA
| | - Galit Alter
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA; Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Timothy J Henrich
- Division of Experimental Medicine, University of California, San Francisco, CA, USA
| | - J Daniel Kelly
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA; Department of Medicine, University of California, San Francisco, CA, USA; San Francisco VA Medical Center, San Francisco, CA, USA
| | - Rebecca Hoh
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, CA, USA
| | - Sarah A Goldberg
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
| | - Steven G Deeks
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, CA, USA
| | - Jeffrey N Martin
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
| | - Michael J Peluso
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, CA, USA
| | - Aarthi Talla
- Allen Institute for Immunology, Seattle, WA, USA
| | - Xiaojun Li
- Allen Institute for Immunology, Seattle, WA, USA
| | - Peter Skene
- Allen Institute for Immunology, Seattle, WA, USA
| | | | | | | | | | - Elizabeth W Karlson
- Harvard Medical School, Boston, MA, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - David R Walt
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA; Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA; Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
25
|
Zollner A, Meyer M, Jukic A, Adolph T, Tilg H. The Intestine in Acute and Long COVID: Pathophysiological Insights and Key Lessons. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2024; 97:447-462. [PMID: 39703608 PMCID: PMC11650913 DOI: 10.59249/pmie8461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Post-Acute Sequelae of SARS-CoV-2 infection (PASC), commonly known as Long COVID, represents a significant and complex health challenge with a wide range of symptoms affecting multiple organ systems. This review examines the emerging evidence suggesting a critical role of the gut and gut-brain axis in the pathophysiology of Long COVID. It explores how changes in the gut microbiome, disruption of gut barrier integrity, and the persistence of SARS-CoV-2 antigens within the gastrointestinal tract may contribute to the prolonged and varied symptoms seen in Long COVID, including chronic inflammation and neuropsychiatric disturbances. The review also summarizes key insights gained about Long COVID, highlighting its multifactorial nature, which involves immune dysregulation, microvascular damage, and autonomic nervous system dysfunction, with the gut playing a central role in these processes. While progress has been made in understanding these mechanisms, current evidence remains inconclusive. The challenges of establishing causality, standardizing research methodologies, and addressing individual variations in the microbiome are discussed, emphasizing the need for further longitudinal studies and more comprehensive approaches to enhance our understanding of these complex interactions. This review underscores the importance of personalized approaches in developing effective diagnostic and therapeutic strategies for Long COVID, while also acknowledging the significant gaps in our current understanding. Future research should aim to further unravel the complex interplay between the gut and Long COVID, ultimately improving outcomes for those affected by this condition.
Collapse
Affiliation(s)
- Andreas Zollner
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology
& Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Moritz Meyer
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology
& Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Almina Jukic
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology
& Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Timon Adolph
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology
& Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology
& Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
26
|
Russell SJ, Parker K, Lehoczki A, Lieberman D, Partha IS, Scott SJ, Phillips LR, Fain MJ, Nikolich JŽ. Post-acute sequelae of SARS-CoV-2 infection (Long COVID) in older adults. GeroScience 2024; 46:6563-6581. [PMID: 38874693 PMCID: PMC11493926 DOI: 10.1007/s11357-024-01227-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 05/26/2024] [Indexed: 06/15/2024] Open
Abstract
Long COVID, also known as PASC (post-acute sequelae of SARS-CoV-2), is a complex infection-associated chronic condition affecting tens of millions of people worldwide. Many aspects of this condition are incompletely understood. Among them is how this condition may manifest itself in older adults and how it might impact the older population. Here, we briefly review the current understanding of PASC in the adult population and examine what is known on its features with aging. Finally, we outline the major gaps and areas for research most germane to older adults.
Collapse
Affiliation(s)
- Samantha J Russell
- Division of General Internal Medicine, Geriatrics, and Palliative Medicine, Department of Medicine, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA
- Arizona Center of Aging, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA
- Banner University Medicine-Tucson, Tucson, AZ, USA
| | - Karen Parker
- Division of General Internal Medicine, Geriatrics, and Palliative Medicine, Department of Medicine, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA
- Arizona Center of Aging, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA
- Banner University Medicine-Tucson, Tucson, AZ, USA
| | - Andrea Lehoczki
- Doctoral College, Health Sciences Program, Semmelweis University, Budapest, Hungary
- Department of Haematology and Stem Cell Transplantation, National Institute for Haematology and Infectious Diseases, South Pest Central Hospital, 1097, Budapest, Hungary
- Department of Public Health, Semmelweis University, Budapest, Hungary
| | - David Lieberman
- Division of General Internal Medicine, Geriatrics, and Palliative Medicine, Department of Medicine, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA
- Arizona Center of Aging, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA
- Banner University Medicine-Tucson, Tucson, AZ, USA
| | - Indu S Partha
- Division of General Internal Medicine, Geriatrics, and Palliative Medicine, Department of Medicine, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA
- Banner University Medicine-Tucson, Tucson, AZ, USA
| | - Serena J Scott
- Division of General Internal Medicine, Geriatrics, and Palliative Medicine, Department of Medicine, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA
- Arizona Center of Aging, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA
- Banner University Medicine-Tucson, Tucson, AZ, USA
| | - Linda R Phillips
- Division of General Internal Medicine, Geriatrics, and Palliative Medicine, Department of Medicine, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA
- Arizona Center of Aging, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA
- College of Nursing, University of Arizona, Tucson, AZ, USA
| | - Mindy J Fain
- Division of General Internal Medicine, Geriatrics, and Palliative Medicine, Department of Medicine, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA.
- Arizona Center of Aging, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA.
- Banner University Medicine-Tucson, Tucson, AZ, USA.
- College of Nursing, University of Arizona, Tucson, AZ, USA.
| | - Janko Ž Nikolich
- Arizona Center of Aging, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA.
- Department of Immunobiology, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA.
- The Aegis Consortium for Pandemic-Free Future, University of Arizona Health Sciences, Tucson, AZ, USA.
| |
Collapse
|
27
|
Horvath A, Haller R, Feldbacher N, Habisch H, Žukauskaitė K, Madl T, Stadlbauer V. Probiotic Therapy of Gastrointestinal Symptoms During COVID-19 Infection: A Randomized, Double-Blind, Placebo-Controlled, Remote Study. Nutrients 2024; 16:3970. [PMID: 39599756 PMCID: PMC11597392 DOI: 10.3390/nu16223970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/02/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND The novel coronavirus (SARS-CoV-2) led to gastrointestinal manifestations in up to 50% of cases, with diarrhea being common, and probiotics have been suggested as a potential treatment. AIM This study aimed to assess changes in the microbiome and the effects of a multispecies probiotic in patients with COVID-19 in home quarantine through a fully remote telemedical approach. METHODS Thirty patients were randomized to receive either the Ecologic AAD probiotic (Winclove Probiotics, Amsterdam, The Netherlands), on the market as OMNi-BiOTiC 10 (Allergosan, Austria), or a placebo for 30 days in a 2:1 ratio. Respiratory and gastrointestinal symptoms were monitored in 2-10-day intervals via online surveys, and five stool samples were collected during the 30-day study period for microbiome and metabolomics analyses. Twenty-four healthy volunteers served as controls. RESULTS Of the 30 patients, 26 completed this study (10 placebo, 16 probiotic). Patients reported respiratory symptoms and a diminished gastrointestinal quality of life, both of which improved significantly during the study period, irrespective of the intervention. Compared to controls, infected patients showed significant alterations in the fecal microbiome (p = 0.002), including an increase in Bacteroidetes and decreases in Christensenellaceae, Ruminococcaceae, and Gammaproteobacteria, along with metabolomic changes. Probiotic treatment significantly modulated the patients' microbiome beta diversity (p = 0.001) and introduced the Enterococcus faecium W54 strain. Symptoms, COVID-19-related taxa, and the fecal metabolome were not affected by the intervention. CONCLUSIONS Patients with mild COVID-19 disease in home quarantine exhibited respiratory symptoms, a reduced gastrointestinal quality of life, and changes in the fecal microbiome and metabolome.
Collapse
Affiliation(s)
- Angela Horvath
- Division for Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, 8010 Graz, Austria; (A.H.)
- Center for Biomarker Research in Medicine (CBmed), Division Translational Precision Medicine, 8010 Graz, Austria
| | - Rosa Haller
- Division for Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, 8010 Graz, Austria; (A.H.)
- Center for Biomarker Research in Medicine (CBmed), Division Translational Precision Medicine, 8010 Graz, Austria
| | - Nicole Feldbacher
- Division for Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, 8010 Graz, Austria; (A.H.)
- Center for Biomarker Research in Medicine (CBmed), Division Translational Precision Medicine, 8010 Graz, Austria
| | - Hansjörg Habisch
- Otto Loewi Research Center, Medicinal Chemistry, Medical University of Graz, 8010 Graz, Austria
| | - Kristina Žukauskaitė
- Division for Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, 8010 Graz, Austria; (A.H.)
- Institute of Biosciences, Life Sciences Center, Vilnius University, 01513 Vilnius, Lithuania
| | - Tobias Madl
- Otto Loewi Research Center, Medicinal Chemistry, Medical University of Graz, 8010 Graz, Austria
- BioTechMed-Graz, 8010 Graz, Austria
| | - Vanessa Stadlbauer
- Division for Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, 8010 Graz, Austria; (A.H.)
- Center for Biomarker Research in Medicine (CBmed), Division Translational Precision Medicine, 8010 Graz, Austria
| |
Collapse
|
28
|
King LR. Gastrointestinal manifestations of long COVID. Life Sci 2024; 357:123100. [PMID: 39357795 DOI: 10.1016/j.lfs.2024.123100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/15/2024] [Accepted: 09/28/2024] [Indexed: 10/04/2024]
Abstract
Long COVID is estimated to have affected 6.9 % of US adults, 17.8 million people in the US alone, as of early 2023. While SARS-CoV-2 is primarily considered a respiratory virus, gastrointestinal (GI) symptoms are also frequent in patients with coronavirus disease 2019 (COVID-19) and in patients with Long COVID. The risk of developing GI symptoms is increased with increasing severity of COVID-19, the presence of GI symptoms in the acute infection, and psychological distress both before and after COVID-19. Persistence of the virus in the GI tract, ensuing inflammation, and alteration of the microbiome are all likely mediators of the effects of SARS Co-V-2 virus on the gut. These factors may all increase intestinal permeability and systemic inflammation. GI inflammation and dysbiosis can change the absorption and metabolism of tryptophan, an important neurotransmitter. Long COVID GI symptoms resemble a Disorder of Gut Brain Interaction (DGBI) such as post infection Irritable Bowel Syndrome (IBS). Current standards of treatment for IBS can guide our treatment of Long COVID patients. Dysautonomia, a frequent Long COVID condition affecting the autonomic nervous system, can also affect the GI tract, and must be considered in Long COVID patients with GI symptoms. Long COVID symptoms fall within the broader category of Infection Associated Chronic Conditions (IACCs). Research into the GI symptoms of Long COVID may further our understanding of other post infection chronic GI conditions, and elucidate the roles of therapeutic options including antivirals, probiotics, neuromodulators, and treatments of dysautonomia.
Collapse
Affiliation(s)
- Louise R King
- University of North Carolina School of Medicine, Department of Medicine, Division of General Medicine and Clinical Epidemiology, 5034 Old Clinic Building, 101 Manning Drive, Chapel Hill, NC 27599, United States of America.
| |
Collapse
|
29
|
Antar AAR, Cox AL. Translating insights into therapies for Long Covid. Sci Transl Med 2024; 16:eado2106. [PMID: 39536116 DOI: 10.1126/scitranslmed.ado2106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024]
Abstract
Long Covid is defined by a wide range of symptoms that persist after the acute phase of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Commonly reported symptoms include fatigue, weakness, postexertional malaise, and cognitive dysfunction, with many other symptoms reported. Symptom range, duration, and severity are highly variable and partially overlap with symptoms of myalgic encephalomyelitis/chronic fatigue syndrome and other post-acute infectious syndromes, highlighting opportunities to define shared mechanisms of pathogenesis. Potential mechanisms of Long Covid are diverse, including persistence of viral reservoirs, dysregulated immune responses, direct viral damage of tissues targeted by SARS-CoV-2, inflammation driven by reactivation of latent viral infections, vascular endothelium activation or dysfunction, and subsequent thromboinflammation, autoimmunity, metabolic derangements, microglial activation, and microbiota dysbiosis. The heterogeneity of symptoms and baseline characteristics of people with Long Covid, as well as the varying states of immunity and therapies given at the time of acute infection, have made etiologies of Long Covid difficult to determine. Here, we examine progress on preclinical models for Long Covid and review progress being made in clinical trials, highlighting the need for large human studies and further development of models to better understand Long Covid. Such studies will inform clinical trials that will define treatments to benefit those living with this condition.
Collapse
Affiliation(s)
- Annukka A R Antar
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Andrea L Cox
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
30
|
Dos Reis RS, Selvam S, Ayyavoo V. Neuroinflammation in Post COVID-19 Sequelae: Neuroinvasion and Neuroimmune Crosstalk. Rev Med Virol 2024; 34:e70009. [PMID: 39558491 DOI: 10.1002/rmv.70009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 10/24/2024] [Accepted: 11/03/2024] [Indexed: 11/20/2024]
Abstract
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in December 2019 triggered a swift global spread, leading to a devastating pandemic. Alarmingly, approximately one in four individuals diagnosed with coronavirus disease 2019 (COVID-19) experience varying degrees of cognitive impairment, raising concerns about a potential increase in neurological sequelae cases. Neuroinflammation seems to be the key pathophysiological hallmark linking mild respiratory COVID-19 to cognitive impairment, fatigue, and neurological sequelae in COVID-19 patients, highlighting the interaction between the nervous and immune systems following SARS-CoV-2 infection. Several hypotheses have been proposed to explain how the virus disrupts physiological pathways to trigger inflammation within the CNS, potentially leading to neuronal damage. These include neuroinvasion, systemic inflammation, disruption of the lung and gut-brain axes, and reactivation of latent viruses. This review explores the potential origins of neuroinflammation and the underlying neuroimmune cross-talk, highlighting important unanswered questions in the field. Addressing these fundamental issues could enhance our understanding of the virus's impact on the CNS and inform strategies to mitigate its detrimental effects.
Collapse
Affiliation(s)
- Roberta S Dos Reis
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Sathish Selvam
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Velpandi Ayyavoo
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
31
|
Vitus ES, Mann S, Lees CW, Jess T, Elmahdi R. A Systematic Review and Meta-Analysis: Adverse Inflammatory Bowel Disease Outcomes Following Acute COVID-19. GASTRO HEP ADVANCES 2024; 4:100581. [PMID: 39926204 PMCID: PMC11803825 DOI: 10.1016/j.gastha.2024.10.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 10/18/2024] [Indexed: 02/11/2025]
Abstract
Background and Aims Respiratory viral infections have been implicated in the exacerbation of immune-mediated inflammatory diseases such as inflammatory bowel disease (IBD). To understand the impact of early SARS-CoV-2 variants on the risk of adverse IBD outcomes, we aimed to perform a meta-analysis of high-quality studies. Methods Cohort studies investigating adverse IBD outcomes (IBD flares, change in disease activity, change in medication, IBD-related hospitalization, and surgery) following COVID-19 were retrieved from MEDLINE and Embase. The Risk Of Bias In Nonrandomized Studies-of Exposure tool was used to assess risk of bias. Random effects model meta-analysis was used to calculate the hazard ratio (HR) for risk of adverse outcomes. Subgroup analysis was performed to estimate risk of outcomes for ulcerative colitis and Crohn's disease patients. Metaregression was performed for sex and duration of follow-up. Results Of the 3119 identified studies, 5 were included in the meta-analysis. A total of 34,977 IBD patients with COVID-19 and 53,270 IBD patients without recorded COVID-19 infection were identified. Two of the studies showed a high risk of bias. The random effects model did not show a statistically significant increase in the risk of adverse IBD outcomes following COVID infection (HR:1.05 [0.75-1.46]). There was no significant difference in adverse outcomes between Crohn's disease (HR: 0.91 [0.82-1.02]) and ulcerative colitis patients (HR: 0.83 [0.76-0.90]). Neither the proportion of male participants nor the mean duration of follow-up were found to be significant predictors of effect size. Conclusion In this systematic review and meta-analysis, we find that COVID-19 did not increase the risk of adverse IBD outcomes.
Collapse
Affiliation(s)
- Evangelin Shaloom Vitus
- Department of Clinical Medicine, PREDICT Center for Molecular Prediction of Inflammatory Bowel Disease, Aalborg University, Copenhagen, Denmark
| | - Simran Mann
- Department of Anesthetics, St Peter’s Hospital, Ashford and St Peter’s NHS Trust, Chertsey, UK
| | - Charlie W. Lees
- Centre for Genomics and Experimental Medicine, University of Edinburgh, Edinburgh, Scotland
- Department of Gastroenterology and Hepatology, the Western General Hospital, Edinburgh, Scotland
| | - Tine Jess
- Department of Clinical Medicine, PREDICT Center for Molecular Prediction of Inflammatory Bowel Disease, Aalborg University, Copenhagen, Denmark
- Department of Gastroenterology and Hepatology, Aalborg University Hospital, Aalborg, Denmark
| | - Rahma Elmahdi
- Department of Clinical Medicine, PREDICT Center for Molecular Prediction of Inflammatory Bowel Disease, Aalborg University, Copenhagen, Denmark
- Department of Gastroenterology and Hepatology, Aalborg University Hospital, Aalborg, Denmark
| |
Collapse
|
32
|
Matula Z, Király V, Bekő G, Gönczi M, Zóka A, Steinhauser R, Uher F, Vályi-Nagy I. High prevalence of long COVID in anti-TPO positive euthyroid individuals with strongly elevated SARS-CoV-2-specific T cell responses and moderately raised anti-spike IgG levels 23 months post-infection. Front Immunol 2024; 15:1448659. [PMID: 39450181 PMCID: PMC11499158 DOI: 10.3389/fimmu.2024.1448659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
Introduction Severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) infection, the causative agent of coronavirus disease 2019 (COVID-19), causes post-acute infection syndrome in a surprisingly large number of cases worldwide. This condition, also known as long COVID or post-acute sequelae of COVID-19, is characterized by extremely complex symptoms and pathology. There is a growing consensus that this condition is a consequence of virus-induced immune activation and the inflammatory cascade, with its prolonged duration caused by a persistent virus reservoir. Methods In this cross-sectional study, we analyzed the SARS-CoV-2-specific T cell response against the spike, nucleocapsid, and membrane proteins, as well as the levels of spike-specific IgG antibodies in 51 healthcare workers, categorized into long COVID or convalescent control groups based on the presence or absence of post-acute symptoms. Additionally, we compared the levels of autoantibodies previously identified during acute or critical COVID-19, including anti-dsDNA, anti-cardiolipin, anti-β2-glycoprotein I, anti-neutrophil cytoplasmic antibodies, and anti-thyroid peroxidase (anti-TPO). Furthermore, we analyzed the antibody levels targeting six nuclear antigens within the ENA-6 S panel, as positivity for certain anti-nuclear antibodies has recently been shown to associate not only with acute COVID-19 but also with long COVID. Finally, we examined the frequency of diabetes in both groups. Our investigations were conducted at an average of 18.2 months (convalescent control group) and 23.1 months (long COVID group) after confirmed acute COVID-19 infection, and an average of 21 months after booster vaccination. Results Our results showed significant differences between the two groups regarding the occurrence of acute infection relative to administering the individual vaccine doses, the frequency of acute symptoms, and the T cell response against all structural SARS-CoV-2 proteins. A statistical association was observed between the incidence of long COVID symptoms and highly elevated anti-TPO antibodies based on Pearson's chi-squared test. Although patients with long COVID showed moderately elevated anti-SARS-CoV-2 spike IgG serum antibody levels compared to control participants, and further differences were found regarding the positivity for anti-nuclear antibodies, anti-dsDNA, and HbA1c levels between the two groups, these differences were not statistically significant. Disscussion This study highlights the need for close monitoring of long COVID development in patients with elevated anti-TPO titers, which can be indicated by strongly elevated SARS-CoV-2-specific T cell response and moderately raised anti-spike IgG levels even long after the acute infection. However, our results do not exclude the possibility of new-onset thyroid autoimmunity after COVID-19, and further investigations are required to clarify the etiological link between highly elevated anti-TPO titers and long COVID.
Collapse
Affiliation(s)
- Zsolt Matula
- Laboratory for Experimental Cell Therapy, Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, Budapest, Hungary
| | - Viktória Király
- Central Laboratory of Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, Budapest, Hungary
| | - Gabriella Bekő
- Central Laboratory of Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, Budapest, Hungary
| | - Márton Gönczi
- Central Laboratory of Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, Budapest, Hungary
| | - András Zóka
- Central Laboratory of Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, Budapest, Hungary
| | - Róbert Steinhauser
- Central Laboratory of Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, Budapest, Hungary
| | - Ferenc Uher
- Laboratory for Experimental Cell Therapy, Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, Budapest, Hungary
| | - István Vályi-Nagy
- Department of Hematology and Stem Cell Transplantation, Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, Budapest, Hungary
| |
Collapse
|
33
|
Peluso MJ, Deeks SG. Mechanisms of long COVID and the path toward therapeutics. Cell 2024; 187:5500-5529. [PMID: 39326415 PMCID: PMC11455603 DOI: 10.1016/j.cell.2024.07.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 07/30/2024] [Accepted: 07/30/2024] [Indexed: 09/28/2024]
Abstract
Long COVID, a type of post-acute sequelae of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (PASC) defined by medically unexplained symptoms following infection with SARS-CoV-2, is a newly recognized infection-associated chronic condition that causes disability in some people. Substantial progress has been made in defining its epidemiology, biology, and pathophysiology. However, there is no cure for the tens of millions of people believed to be experiencing long COVID, and industry engagement in developing therapeutics has been limited. Here, we review the current state of knowledge regarding the biology and pathophysiology of long COVID, focusing on how the proposed mechanisms explain the physiology of the syndrome and how they provide a rationale for the implementation of a broad experimental medicine and clinical trials agenda. Progress toward preventing and curing long COVID and other infection-associated chronic conditions will require deep and sustained investment by funders and industry.
Collapse
Affiliation(s)
- Michael J Peluso
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, San Francisco, CA, USA.
| | - Steven G Deeks
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
34
|
Guo M, Shang S, Li M, Cai G, Li P, Chen X, Li Q. Understanding autoimmune response after SARS-CoV-2 infection and the pathogenesis/mechanisms of long COVID. MEDICAL REVIEW (2021) 2024; 4:367-383. [PMID: 39444797 PMCID: PMC11495526 DOI: 10.1515/mr-2024-0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/04/2024] [Indexed: 10/25/2024]
Abstract
COVID-19 posed a major challenge to the healthcare system and resources worldwide. The popularization of vaccines and the adoption of numerous prevention and control measures enabled the gradual end of the COVID-19 pandemic. However, successive occurrence of autoimmune diseases in patients with COVID-19 cannot be overlooked. Long COVID has been the major focus of research due to the long duration of different symptoms and the variety of systems involved. Autoimmunity may play a crucial role in the pathogenesis of long COVID. Here, we reviewed several autoimmune disorders occurring after COVID-19 infection and the pathogenesis of long COVID.
Collapse
Affiliation(s)
- Ming Guo
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing 100853, China
| | - Shunlai Shang
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing 100853, China
- Department of Nephrology, China-Japan Friendship Hospital, Beijing, China
| | - Mengfei Li
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing 100853, China
| | - Guangyan Cai
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing 100853, China
| | - Ping Li
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing 100853, China
| | - Xiangmei Chen
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing 100853, China
- Haihe Laboratory of CellEcosystem, China
| | - Qinggang Li
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing 100853, China
| |
Collapse
|
35
|
Elahi S, Rezaeifar M, Osman M, Shahbaz S. Exploring the role of galectin-9 and artemin as biomarkers in long COVID with chronic fatigue syndrome: links to inflammation and cognitive function. Front Immunol 2024; 15:1443363. [PMID: 39386210 PMCID: PMC11461188 DOI: 10.3389/fimmu.2024.1443363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/03/2024] [Indexed: 10/12/2024] Open
Abstract
This study aimed to assess plasma galectin-9 (Gal-9) and artemin (ARTN) concentrations as potential biomarkers to differentiate individuals with Long COVID (LC) patients with myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) from SARS-CoV-2 recovered (R) and healthy controls (HCs). Receiver operating characteristic (ROC) curve analysis determined a cut-off value of plasma Gal-9 and ARTN to differentiate LC patients from the R group and HCs in two independent cohorts. Positive correlations were observed between elevated plasma Gal-9 levels and inflammatory markers (e.g. SAA and IP-10), as well as sCD14 and I-FABP in LC patients. Gal-9 also exhibited a positive correlation with cognitive failure scores, suggesting its potential role in cognitive impairment in LC patients with ME/CFS. This study highlights plasma Gal-9 and/or ARTN as sensitive screening biomarkers for discriminating LC patients from controls. Notably, the elevation of LPS-binding protein in LC patients, as has been observed in HIV infected individuals, suggests microbial translocation. However, despite elevated Gal-9, we found a significant decline in ARTN levels in the plasma of people living with HIV (PLWH). Our study provides a novel and important role for Gal-9/ARTN in LC pathogenesis.
Collapse
Affiliation(s)
- Shokrollah Elahi
- School of Dentistry, Division of Foundational Sciences, Edmonton, AB, Canada
- Li Ka Shing Institute of Virology, Edmonton, AB, Canada
- Women and Children Health Research Institute, Edmonton, AB, Canada
- Cancer Research Institute of Northern Alberta, Edmonton, AB, Canada
- Glycomics Institute of Alberta, Edmonton, AB, Canada
- Alberta Transplant Institute, Edmonton, AB, Canada
| | - Maryam Rezaeifar
- School of Dentistry, Division of Foundational Sciences, Edmonton, AB, Canada
| | - Mohammed Osman
- Li Ka Shing Institute of Virology, Edmonton, AB, Canada
- Women and Children Health Research Institute, Edmonton, AB, Canada
- Department of Medicine, Division of Rheumatology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Shima Shahbaz
- School of Dentistry, Division of Foundational Sciences, Edmonton, AB, Canada
| |
Collapse
|
36
|
Mohammed I, Podhala S, Zamir F, Shiyam S, Salameh AR, Salahuddin Z, Salameh H, Kim C, Sinan Z, Kim J, Al-Abdulla D, Laws S, Mushannen M, Zakaria D. Gastrointestinal Sequelae of COVID-19: Investigating Post-Infection Complications-A Systematic Review. Viruses 2024; 16:1516. [PMID: 39459851 PMCID: PMC11512271 DOI: 10.3390/v16101516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/29/2024] [Accepted: 09/09/2024] [Indexed: 10/28/2024] Open
Abstract
Gastrointestinal (GI) complications are significant manifestations of COVID-19 and are increasingly being recognized. These complications range from severe acute pancreatitis to colitis, adding complexity to diagnosis and management. A comprehensive database search was conducted using several databases. Our inclusion criteria encompassed studies reporting severe and long-term GI complications of COVID-19. Digestive disorders were categorized into infections, inflammatory conditions, vascular disorders, structural abnormalities, other diagnoses, and undiagnosed conditions. Of the 73 studies that were selected for full-text review, only 24 met our inclusion criteria. The study highlights a broad range of gastrointestinal complications following COVID-19 infection (excluding liver complications, which are examined separately), including inflammatory conditions, such as ulcerative colitis (UC), acute pancreatitis, and multisystem inflammatory syndrome in children (MIS-C). Other GI complications were reported such as vascular disorders, including diverse thrombotic events and structural abnormalities, which ranged from bowel perforations to adhesions. Additionally, undiagnosed conditions like nausea and abdominal pain were prevalent across different studies involving 561 patients. The findings emphasize the substantial impact of COVID-19 on the GI tract. Ongoing research and monitoring are crucial to understanding the long-term effects and developing effective management strategies for these complications.
Collapse
Affiliation(s)
- Ibrahim Mohammed
- Department of Medicine, Albany Medical College, New York, NY 12208, USA;
| | - Sudharsan Podhala
- Department of Medical Education, Weill Cornell Medicine-Qatar, Doha P.O. Box 24144, Qatar (Z.S.); (Z.S.)
| | - Fariha Zamir
- Department of Medical Education, Weill Cornell Medicine-Qatar, Doha P.O. Box 24144, Qatar (Z.S.); (Z.S.)
| | - Shamha Shiyam
- Department of Medical Education, Weill Cornell Medicine-Qatar, Doha P.O. Box 24144, Qatar (Z.S.); (Z.S.)
| | - Abdel Rahman Salameh
- School of Medicine, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland;
| | - Zoya Salahuddin
- Department of Medical Education, Weill Cornell Medicine-Qatar, Doha P.O. Box 24144, Qatar (Z.S.); (Z.S.)
| | - Huda Salameh
- Department of Medical Education, Weill Cornell Medicine-Qatar, Doha P.O. Box 24144, Qatar (Z.S.); (Z.S.)
| | - Chaehyun Kim
- Department of Medical Education, Weill Cornell Medicine-Qatar, Doha P.O. Box 24144, Qatar (Z.S.); (Z.S.)
| | - Zena Sinan
- Department of Medical Education, Weill Cornell Medicine-Qatar, Doha P.O. Box 24144, Qatar (Z.S.); (Z.S.)
| | - Jeongyeon Kim
- Department of Medical Education, Weill Cornell Medicine-Qatar, Doha P.O. Box 24144, Qatar (Z.S.); (Z.S.)
| | - Deema Al-Abdulla
- Department of Medical Education, Weill Cornell Medicine-Qatar, Doha P.O. Box 24144, Qatar (Z.S.); (Z.S.)
| | - Sa’ad Laws
- Health Sciences Library, Weill Cornell Medicine-Qatar, Doha P.O. Box 24144, Qatar
| | - Malik Mushannen
- Department of Medicine, New York-Presbyterian Brooklyn Methodist Hospital, New York, NY 11215, USA
| | - Dalia Zakaria
- Department of Premedical Education, Weill Cornell Medicine-Qatar, Doha P.O. Box 24144, Qatar
| |
Collapse
|
37
|
Geng LN, Bonilla H, Hedlin H, Jacobson KB, Tian L, Jagannathan P, Yang PC, Subramanian AK, Liang JW, Shen S, Deng Y, Shaw BJ, Botzheim B, Desai M, Pathak D, Jazayeri Y, Thai D, O’Donnell A, Mohaptra S, Leang Z, Reynolds GZM, Brooks EF, Bhatt AS, Shafer RW, Miglis MG, Quach T, Tiwari A, Banerjee A, Lopez RN, De Jesus M, Charnas LR, Utz PJ, Singh U. Nirmatrelvir-Ritonavir and Symptoms in Adults With Postacute Sequelae of SARS-CoV-2 Infection: The STOP-PASC Randomized Clinical Trial. JAMA Intern Med 2024; 184:1024-1034. [PMID: 38848477 PMCID: PMC11161857 DOI: 10.1001/jamainternmed.2024.2007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 03/30/2024] [Indexed: 06/09/2024]
Abstract
Importance There is an urgent need to identify treatments for postacute sequelae of SARS-CoV-2 infection (PASC). Objective To assess the efficacy of a 15-day course of nirmatrelvir-ritonavir in reducing the severity of select PASC symptoms. Design, Setting, and Participants This was a 15-week blinded, placebo-controlled, randomized clinical trial conducted from November 2022 to September 2023 at Stanford University (California). The participants were adults with moderate to severe PASC symptoms of 3 months or longer duration. Interventions Participants were randomized 2:1 to treatment with oral nirmatrelvir-ritonavir (NMV/r, 300 mg and 100 mg) or with placebo-ritonavir (PBO/r) twice daily for 15 days. Main Outcomes and Measures Primary outcome was a pooled severity of 6 PASC symptoms (fatigue, brain fog, shortness of breath, body aches, gastrointestinal symptoms, and cardiovascular symptoms) based on a Likert scale score at 10 weeks. Secondary outcomes included symptom severity at different time points, symptom burden and relief, patient global measures, Patient-Reported Outcomes Measurement Information System (PROMIS) measures, orthostatic vital signs, and sit-to-stand test change from baseline. Results Of the 155 participants (median [IQR] age, 43 [34-54] years; 92 [59%] females), 102 were randomized to the NMV/r group and 53 to the PBO/r group. Nearly all participants (n = 153) had received the primary series for COVID-19 vaccination. Mean (SD) time between index SARS-CoV-2 infection and randomization was 17.5 (9.1) months. There was no statistically significant difference in the model-derived severity outcome pooled across the 6 core symptoms at 10 weeks between the NMV/r and PBO/r groups. No statistically significant between-group differences were found at 10 weeks in the Patient Global Impression of Severity or Patient Global Impression of Change scores, summative symptom scores, and change from baseline to 10 weeks in PROMIS fatigue, dyspnea, cognitive function, and physical function measures. Adverse event rates were similar in NMV/r and PBO/r groups and mostly of low grade. Conclusions and Relevance The results of this randomized clinical trial showed that a 15-day course of NMV/r in a population of patients with PASC was generally safe but did not demonstrate a significant benefit for improving select PASC symptoms in a mostly vaccinated cohort with protracted symptom duration. Further studies are needed to determine the role of antivirals in the treatment of PASC. Trial Registration ClinicalTrials.gov Identifier: NCT05576662.
Collapse
Affiliation(s)
- Linda N. Geng
- Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Hector Bonilla
- Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Haley Hedlin
- Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Karen B. Jacobson
- Department of Medicine, Stanford University School of Medicine, Stanford, California
- Kaiser Permanente Northern California Division of Research, Oakland
| | - Lu Tian
- Department of Biomedical Data Science, Stanford School of Medicine, Stanford, California
| | - Prasanna Jagannathan
- Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Phillip C. Yang
- Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Aruna K. Subramanian
- Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Jane W. Liang
- Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Sa Shen
- Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Yaowei Deng
- Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Blake J. Shaw
- Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Bren Botzheim
- Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Manisha Desai
- Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Divya Pathak
- Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Yasmin Jazayeri
- Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Daniel Thai
- Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Andrew O’Donnell
- Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Sukanya Mohaptra
- Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Zenita Leang
- Department of Medicine, Stanford University School of Medicine, Stanford, California
| | | | - Erin F. Brooks
- Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Ami S. Bhatt
- Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Robert W. Shafer
- Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Mitchell G. Miglis
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California
| | - Tom Quach
- Stanford University, Stanford, California
| | | | - Anindita Banerjee
- Pfizer Research and Development, Pfizer Inc, Cambridge, Massachusetts
| | - Rene N. Lopez
- Clinical Research Collaborations COE, Worldwide Medical and Safety, Pfizer Inc, Groton, Connecticut
| | - Magdia De Jesus
- Strategic Planning, Worldwide Medical and Safety, Pfizer Inc, New York, New York
| | - Lawrence R. Charnas
- Clinical Research Collaborations COE, Worldwide Medical and Safety, Pfizer Inc, Groton, Connecticut
| | - Paul J. Utz
- Department of Medicine, Stanford University School of Medicine, Stanford, California
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, California
| | - Upinder Singh
- Department of Medicine, Stanford University School of Medicine, Stanford, California
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
38
|
Griffin DO. Postacute Sequelae of COVID (PASC or Long COVID): An Evidenced-Based Approach. Open Forum Infect Dis 2024; 11:ofae462. [PMID: 39220656 PMCID: PMC11363684 DOI: 10.1093/ofid/ofae462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024] Open
Abstract
While the acute manifestations of infectious diseases are well known, in some individuals, symptoms can either persist or appear after the acute period. Postviral fatigue syndromes are recognized with other viral infections and are described after coronavirus disease 2019 (COVID-19). We have a growing number of individuals with symptoms that persist for weeks, months, and years. Here, we share the evidence regarding the abnormalities associated with postacute sequelae of COVID-19 (PASC) and therapeutics. We describe physiological and biochemical abnormalities seen in individuals reporting PASC. We describe the several evidence-based interventions to offer patients. It is expected that this growing understanding of the mechanisms driving PASC and the benefits seen with certain therapeutics may not only lead to better outcomes for those with PASC but may also have the potential for understanding and treating other postinfectious sequelae.
Collapse
Affiliation(s)
- Daniel O Griffin
- Division of Infectious Diseases, Department of Medicine, Columbia University, College of Physicians and Surgeons, New York, New York, USA
| |
Collapse
|
39
|
Kratzer B, Gattinger P, Trapin D, Ettel P, Körmöczi U, Rottal A, Stieger RB, Sehgal ANA, Feichter M, Borochova K, Tulaeva I, Grabmeier-Pfistershammer K, Tauber PA, Perkmann T, Fae I, Wenda S, Kundi M, Fischer GF, Valenta R, Pickl WF. Differential decline of SARS-CoV-2-specific antibody levels, innate and adaptive immune cells, and shift of Th1/inflammatory to Th2 serum cytokine levels long after first COVID-19. Allergy 2024; 79:2482-2501. [PMID: 39003594 DOI: 10.1111/all.16210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/23/2024] [Accepted: 05/25/2024] [Indexed: 07/15/2024]
Abstract
BACKGROUND SARS-CoV-2 has triggered a pandemic and contributes to long-lasting morbidity. Several studies have investigated immediate cellular and humoral immune responses during acute infection. However, little is known about long-term effects of COVID-19 on the immune system. METHODS We performed a longitudinal investigation of cellular and humoral immune parameters in 106 non-vaccinated subjects ten weeks (10 w) and ten months (10 m) after their first SARS-CoV-2 infection. Peripheral blood immune cells were analyzed by multiparametric flow cytometry, serum cytokines were examined by multiplex technology. Antibodies specific for the Spike protein (S), the receptor-binding domain (RBD) and the nucleocapsid protein (NC) were determined. All parameters measured 10 w and 10 m after infection were compared with those of a matched, noninfected control group (n = 98). RESULTS Whole blood flow cytometric analyses revealed that 10 m after COVID-19, convalescent patients compared to controls had reduced absolute granulocyte, monocyte, and lymphocyte counts, involving T, B, and NK cells, in particular CD3+CD45RA+CD62L+CD31+ recent thymic emigrant T cells and non-class-switched CD19+IgD+CD27+ memory B cells. Cellular changes were associated with a reversal from Th1- to Th2-dominated serum cytokine patterns. Strong declines of NC- and S-specific antibody levels were associated with younger age (by 10.3 years, p < .01) and fewer CD3-CD56+ NK and CD19+CD27+ B memory cells. Changes of T-cell subsets at 10 m such as normalization of effector and Treg numbers, decline of RTE, and increase of central memory T cell numbers were independent of antibody decline pattern. CONCLUSIONS COVID-19 causes long-term reduction of innate and adaptive immune cells which is associated with a Th2 serum cytokine profile. This may provide an immunological mechanism for long-term sequelae after COVID-19.
Collapse
Affiliation(s)
- Bernhard Kratzer
- Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | - Pia Gattinger
- Center for Pathophysiology, Infectiology and Immunology, Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Doris Trapin
- Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | - Paul Ettel
- Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | - Ulrike Körmöczi
- Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | - Arno Rottal
- Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | - Robert B Stieger
- Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | - Al Nasar Ahmed Sehgal
- Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | - Melanie Feichter
- Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | - Kristina Borochova
- Center for Pathophysiology, Infectiology and Immunology, Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Inna Tulaeva
- Center for Pathophysiology, Infectiology and Immunology, Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
- Laboratory for Immunopathology, Department of Clinical Immunology and Allergology, I. M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | | | - Peter A Tauber
- Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | - Thomas Perkmann
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Ingrid Fae
- Department of Transfusion Medicine and Cell Therapy, Medical University of Vienna, Vienna, Austria
| | - Sabine Wenda
- Department of Transfusion Medicine and Cell Therapy, Medical University of Vienna, Vienna, Austria
| | - Michael Kundi
- Center for Public Health, Department for Environmental Health, Medical University of Vienna, Vienna, Austria
| | - Gottfried F Fischer
- Department of Transfusion Medicine and Cell Therapy, Medical University of Vienna, Vienna, Austria
| | - Rudolf Valenta
- Center for Pathophysiology, Infectiology and Immunology, Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
- Laboratory for Immunopathology, Department of Clinical Immunology and Allergology, I. M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- NRC Institute of Immunology FMBA of Russia, Moscow, Russia
- Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Winfried F Pickl
- Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Medical University of Vienna, Vienna, Austria
- Karl Landsteiner University of Health Sciences, Krems, Austria
| |
Collapse
|
40
|
Ward C, Schlichtholz B. Post-Acute Sequelae and Mitochondrial Aberration in SARS-CoV-2 Infection. Int J Mol Sci 2024; 25:9050. [PMID: 39201736 PMCID: PMC11354507 DOI: 10.3390/ijms25169050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/29/2024] [Accepted: 08/16/2024] [Indexed: 09/03/2024] Open
Abstract
This review investigates links between post-acute sequelae of SARS-CoV-2 infection (PASC), post-infection viral persistence, mitochondrial involvement and aberrant innate immune response and cellular metabolism during SARS-CoV-2 infection. Advancement of proteomic and metabolomic studies now allows deeper investigation of alterations to cellular metabolism, autophagic processes and mitochondrial dysfunction caused by SARS-CoV-2 infection, while computational biology and machine learning have advanced methodologies of predicting virus-host gene and protein interactions. Particular focus is given to the interaction between viral genes and proteins with mitochondrial function and that of the innate immune system. Finally, the authors hypothesise that viral persistence may be a function of mitochondrial involvement in the sequestration of viral genetic material. While further work is necessary to understand the mechanisms definitively, a number of studies now point to the resolution of questions regarding the pathogenesis of PASC.
Collapse
Affiliation(s)
| | - Beata Schlichtholz
- Department of Biochemistry, Gdańsk University of Medicine, 80-210 Gdańsk, Poland;
| |
Collapse
|
41
|
Palmer CS, Perdios C, Abdel-Mohsen M, Mudd J, Datta PK, Maness NJ, Lehmicke G, Golden N, Hellmers L, Coyne C, Moore Green K, Midkiff C, Williams K, Tiburcio R, Fahlberg M, Boykin K, Kenway C, Russell-Lodrigue K, Birnbaum A, Bohm R, Blair R, Dufour JP, Fischer T, Saied AA, Rappaport J. Non-human primate model of long-COVID identifies immune associates of hyperglycemia. Nat Commun 2024; 15:6664. [PMID: 39164284 PMCID: PMC11335872 DOI: 10.1038/s41467-024-50339-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 07/08/2024] [Indexed: 08/22/2024] Open
Abstract
Hyperglycemia, and exacerbation of pre-existing deficits in glucose metabolism, are manifestations of the post-acute sequelae of SARS-CoV-2. Our understanding of metabolic decline after acute COVID-19 remains unclear due to the lack of animal models. Here, we report a non-human primate model of metabolic post-acute sequelae of SARS-CoV-2 using SARS-CoV-2 infected African green monkeys. Using this model, we identify a dysregulated blood chemokine signature during acute COVID-19 that correlates with elevated and persistent hyperglycemia four months post-infection. Hyperglycemia also correlates with liver glycogen levels, but there is no evidence of substantial long-term SARS-CoV-2 replication in the liver and pancreas. Finally, we report a favorable glycemic effect of the SARS-CoV-2 mRNA vaccine, administered on day 4 post-infection. Together, these data suggest that the African green monkey model exhibits important similarities to humans and can be utilized to assess therapeutic candidates to combat COVID-related metabolic defects.
Collapse
Affiliation(s)
- Clovis S Palmer
- Tulane National Primate Research Center, Covington, LA, USA.
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, USA.
| | - Chrysostomos Perdios
- Tulane National Primate Research Center, Covington, LA, USA
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, USA
| | | | - Joseph Mudd
- Tulane National Primate Research Center, Covington, LA, USA
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Prasun K Datta
- Tulane National Primate Research Center, Covington, LA, USA
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Nicholas J Maness
- Tulane National Primate Research Center, Covington, LA, USA
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, USA
| | | | - Nadia Golden
- Tulane National Primate Research Center, Covington, LA, USA
| | - Linh Hellmers
- Tulane National Primate Research Center, Covington, LA, USA
| | - Carol Coyne
- Tulane National Primate Research Center, Covington, LA, USA
| | | | - Cecily Midkiff
- Tulane National Primate Research Center, Covington, LA, USA
| | | | - Rafael Tiburcio
- Division of Experimental Medicine, Department of Medicine, University of San Francisco, CA, USA
| | | | - Kyndal Boykin
- Tulane National Primate Research Center, Covington, LA, USA
| | - Carys Kenway
- Tulane National Primate Research Center, Covington, LA, USA
| | - Kasi Russell-Lodrigue
- Tulane National Primate Research Center, Covington, LA, USA
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | | | - Rudolf Bohm
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, USA
| | - Robert Blair
- Tulane National Primate Research Center, Covington, LA, USA
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Jason P Dufour
- Tulane National Primate Research Center, Covington, LA, USA
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Tracy Fischer
- Tulane National Primate Research Center, Covington, LA, USA
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Ahmad A Saied
- Tulane National Primate Research Center, Covington, LA, USA
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Jay Rappaport
- Tulane National Primate Research Center, Covington, LA, USA.
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, USA.
| |
Collapse
|
42
|
Macleod SL, Super EH, Batt LJ, Yates E, Jones ST. Plate-Based High-Throughput Fluorescence Assay for Assessing Enveloped Virus Integrity. Biomacromolecules 2024; 25:4925-4933. [PMID: 39040021 PMCID: PMC11323024 DOI: 10.1021/acs.biomac.4c00358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/26/2024] [Accepted: 06/26/2024] [Indexed: 07/24/2024]
Abstract
Viruses are a considerable threat to global health and place major burdens on economies worldwide. Manufactured viruses are also being widely used as delivery agents to treat (gene therapies) or prevent diseases (vaccines). Therefore, it is vital to study and fully understand the infectious state of viruses. Current techniques used to study viruses are often slow or nonexistent, making the development of new techniques of paramount importance. Here we present a high-throughput and robust, cell-free plate-based assay (FAIRY: Fluorescence Assay for vIRal IntegritY), capable of differentiating intact from nonintact enveloped viruses, i.e, infectious from noninfectious. Using a thiazole orange-terminated polymer, a 99% increase in fluorescence was observed between treated (heat or virucide) and nontreated. The FAIRY assay allowed for the rapid determination of the infectivity of a range of enveloped viruses, highlighting its potential as a valuable tool for the study of viruses and interventions against them.
Collapse
Affiliation(s)
- Shannan-Leigh Macleod
- Department
of Materials and Henry Royce Institute, University of Manchester, Manchester M13 9PL, UK
| | - Elana H. Super
- Department
of Materials and Henry Royce Institute, University of Manchester, Manchester M13 9PL, UK
| | - Lauren J. Batt
- Department
of Materials and Henry Royce Institute, University of Manchester, Manchester M13 9PL, UK
| | - Eleanor Yates
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Samuel T. Jones
- Department
of Materials and Henry Royce Institute, University of Manchester, Manchester M13 9PL, UK
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| |
Collapse
|
43
|
Sumi T, Harada K. Vaccine and antiviral drug promise for preventing post-acute sequelae of COVID-19, and their combination for its treatment. Front Immunol 2024; 15:1329162. [PMID: 39185419 PMCID: PMC11341427 DOI: 10.3389/fimmu.2024.1329162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 07/17/2024] [Indexed: 08/27/2024] Open
Abstract
Introduction Most healthy individuals recover from acute SARS-CoV-2 infection, whereas a remarkable number continues to suffer from unexplained symptoms, known as Long COVID or post-acute COVID-19 syndrome (PACS). It is therefore imperative that methods for preventing and treating the onset of PASC be investigated with the utmost urgency. Methods A mathematical model of the immune response to vaccination and viral infection with SARS-CoV-2, incorporating immune memory cells, was developed. Results and discussion Similar to our previous model, persistent infection was observed by the residual virus in the host, implying the possibility of chronic inflammation and delayed recovery from tissue injury. Pre-infectious vaccination and antiviral medication administered during onset can reduce the acute viral load; however, they show no beneficial effects in preventing persistent infection. Therefore, the impact of these treatments on the PASC, which has been clinically observed, is mainly attributed to their role in preventing severe tissue damage caused by acute viral infections. For PASC patients with persistent infection, vaccination was observed to cause an immediate rapid increase in viral load, followed by a temporary decrease over approximately one year. The former was effectively suppressed by the coadministration of antiviral medications, indicating that this combination is a promising treatment for PASC.
Collapse
Affiliation(s)
- Tomonari Sumi
- Research Institute for Interdisciplinary Science, Okayama University, Okayama, Japan
- Department of Chemistry, Faculty of Science, Okayama University, Okayama, Japan
| | - Kouji Harada
- Department of Computer Science and Engineering, Toyohashi University of Technology, Toyohashi, Aichi, Japan
- Center for IT-Based Education, Toyohashi University of Technology, Toyohashi, Aichi, Japan
| |
Collapse
|
44
|
McMillan P, Turner AJ, Uhal BD. Mechanisms of Gut-Related Viral Persistence in Long COVID. Viruses 2024; 16:1266. [PMID: 39205240 PMCID: PMC11360392 DOI: 10.3390/v16081266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/31/2024] [Accepted: 08/03/2024] [Indexed: 09/04/2024] Open
Abstract
Long COVID (post-acute sequelae of COVID-19-PASC) is a consequence of infection by SARS-CoV-2 that continues to disrupt the well-being of millions of affected individuals for many months beyond their first infection. While the exact mechanisms underlying PASC remain to be defined, hypotheses regarding the pathogenesis of long COVID are varied and include (but are not limited to) dysregulated local or systemic inflammatory responses, autoimmune mechanisms, viral-induced hormonal imbalances, skeletal muscle abnormalities, complement dysregulation, novel abzymes, and long-term persistence of virus and/or fragments of viral RNA or proteins. This review article is based on a comprehensive review of the wide range of symptoms most often observed in long COVID and an attempt to integrate that information into a plausible hypothesis for the pathogenesis of PASC. In particular, it is proposed that long-term dysregulation of the gut in response to viral persistence could lead to the myriad of symptoms observed in PASC.
Collapse
Affiliation(s)
| | - Anthony J. Turner
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK;
| | - Bruce D. Uhal
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
45
|
Li H, Wen J, Zhang X, Dai Z, Liu M, Zhang H, Zhang N, Lei R, Luo P, Zhang J. Large-scale genetic correlation studies explore the causal relationship and potential mechanism between gut microbiota and COVID-19-associated risks. BMC Microbiol 2024; 24:292. [PMID: 39103761 PMCID: PMC11299294 DOI: 10.1186/s12866-024-03423-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 07/10/2024] [Indexed: 08/07/2024] Open
Abstract
Recent observational studies suggest that gut microorganisms are involved in the onset and development of coronavirus disease 2019 (COVID-19), but the potential causal relationship behind them remains unclear. Exposure data were derived from the MiBioGen consortium, encompassing 211 gut microbiota (n = 18,340). The outcome data were sourced from the COVID-19 host genetics initiative (round 7), including COVID-19 severity (n = 1,086,211), hospitalization (n = 2,095,324), and susceptibility (n = 2,597,856). First, a two-sample Mendelian randomization (TSMR) was performed to investigate the causal effect between gut microbiota and COVID-19 outcomes. Second, a two-step MR was used to explore the potential mediators and underlying mechanisms. Third, several sensitivity analyses were performed to verify the robustness of the results. Five gut microbes were found to have a potential causality with COVID-19 severity, namely Betaproteobacteria (beta = 0.096, p = 0.034), Christensenellaceae (beta = -0.092, p = 0.023), Adlercreutzia (beta = 0.072, p = 0.048), Coprococcus 1 (beta = 0.089, p = 0.032), Eisenbergiella (beta = 0.064, p = 0.024). Seven gut microbes were found to have a potential causality with COVID-19 hospitalization, namely Victivallaceae (beta = 0.037, p = 0.028), Actinomyces (beta = 0.047, p = 0.046), Coprococcus 2 (beta = -0.061, p = 0.031), Dorea (beta = 0.067, p = 0.016), Peptococcus (beta = -0.035, p = 0.049), Rikenellaceae RC9 gut group (beta = 0.034, p = 0.018), and Proteobacteria (beta = -0.069, p = 0.035). Two gut microbes were found to have a potential causality with COVID-19 susceptibility, namely Holdemanella (beta = -0.024, p = 0.023) and Lachnospiraceae FCS020 group (beta = 0.026, p = 0.027). Multi-omics mediation analyses indicate that numerous plasma proteins, metabolites, and immune factors are critical mediators linking gut microbiota with COVID-19 outcomes. Sensitivity analysis suggested no significant heterogeneity or pleiotropy. These findings revealed the causal correlation and potential mechanism between gut microbiota and COVID-19 outcomes, which may improve our understanding of the gut-lung axis in the etiology and pathology of COVID-19 in the future.
Collapse
Affiliation(s)
- He Li
- The Animal Laboratory Center, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Jie Wen
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Hypothalamic Pituitary Research Centre, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xiangbin Zhang
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ziyu Dai
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Hypothalamic Pituitary Research Centre, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Mingren Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Hypothalamic Pituitary Research Centre, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Hao Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Nan Zhang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Ruoyan Lei
- Xiangya School of Public Health, Central South University, Changsha, China
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| | - Jingwei Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.
- Hypothalamic Pituitary Research Centre, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
46
|
Baig AM, Rosko S, Jaeger B, Gerlach J, Rausch H. Unraveling the enigma of long COVID: novel aspects in pathogenesis, diagnosis, and treatment protocols. Inflammopharmacology 2024; 32:2075-2090. [PMID: 38771409 DOI: 10.1007/s10787-024-01483-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/17/2024] [Indexed: 05/22/2024]
Abstract
Long COVID, now unmistakably identified as a syndromic entity encompassing a complex spectrum of symptoms, demands immediate resolution of its elusive pathogenic underpinnings. The intricate interplay of diverse factors presents a complex puzzle, difficult to resolve, and thus poses a substantial challenge. As instances of long COVID manifest by repeated infections of SARS-CoV-2 and genetic predisposition, a detailed understanding in this regard is needed. This endeavor is a comprehensive exploration and analysis of the cascading pathogenetic events driven by viral persistence and replication. Beyond its morbidity, long COVID, more disabling than fatal, exacts one of the most substantial tolls on public health in contemporary times, with the potential to cripple national economies. The paper introduces a unified theory of long COVID, detailing a novel pathophysiological framework that interlinks persistent SARS-CoV-2 infection, autoimmunity, and systemic vascular pathology. We posit a model where viral reservoirs, immune dysregulation, and genetic predispositions converge to perpetuate disease. It challenges prevailing hypotheses with new evidence, suggesting innovative diagnostic and therapeutic approaches. The paper aims to shift the paradigm in long COVID research by providing an integrative perspective that encapsulates the multifaceted nature of the condition. We explain the immunological mechanisms, hypercoagulability states, and viral reservoirs in the skull that feed NeuroCOVID in patients with long COVID. Also, this study hints toward a patient approach and how to prioritize treatment sequences in long COVID patients in hospitals and clinics.
Collapse
Affiliation(s)
| | - Sandy Rosko
- Clinicum St. George, Rosenheimer Str. 6-8, Bad Aibling, Germany
| | - Beate Jaeger
- Clinicum St. George, Rosenheimer Str. 6-8, Bad Aibling, Germany
| | - Joachim Gerlach
- Clinicum St. George, Rosenheimer Str. 6-8, Bad Aibling, Germany
| | - Hans Rausch
- Clinicum St. George, Rosenheimer Str. 6-8, Bad Aibling, Germany
| |
Collapse
|
47
|
Zuo W, He D, Liang C, Du S, Hua Z, Nie Q, Zhou X, Yang M, Tan H, Xu J, Yu Y, Zhan Y, Zhang Y, Gu X, Zhu W, Zhang H, Li H, Sun W, Sun M, Liu X, Liu L, Cao C, Li R, Li J, Zhang Y, Zhang Y, Guo J, Zhao L, Zhang CP, Liu H, Wang S, Xiao F, Wang Y, Wang Z, Li H, Cao B. The persistence of SARS-CoV-2 in tissues and its association with long COVID symptoms: a cross-sectional cohort study in China. THE LANCET. INFECTIOUS DISEASES 2024; 24:845-855. [PMID: 38663423 DOI: 10.1016/s1473-3099(24)00171-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/04/2024] [Accepted: 03/05/2024] [Indexed: 07/28/2024]
Abstract
BACKGROUND Growing evidence suggests that symptoms associated with post-COVID-19 condition (also known as long COVID) can affect multiple organs and systems in the human body, but their association with viral persistence is not clear. The aim of this study was to investigate the persistence of SARS-CoV-2 in diverse tissues at three timepoints following recovery from mild COVID-19, as well as its association with long COVID symptoms. METHODS This single-centre, cross-sectional cohort study was done at China-Japan Friendship Hospital in Beijing, China, following the omicron wave of COVID-19 in December, 2022. Individuals with mild COVID-19 confirmed by PCR or a lateral flow test scheduled to undergo gastroscopy, surgery, or chemotherapy, or scheduled for treatment in hospital for other reasons, at 1 month, 2 months, or 4 months after infection were enrolled in this study. Residual surgical samples, gastroscopy samples, and blood samples were collected approximately 1 month (18-33 days), 2 months (55-84 days), or 4 months (115-134 days) after infection. SARS-CoV-2 was detected by digital droplet PCR and further confirmed through RNA in-situ hybridisation, immunofluorescence, and immunohistochemistry. Telephone follow-up was done at 4 months post-infection to assess the association between the persistence of SARS-CoV-2 RNA and long COVID symptoms. FINDINGS Between Jan 3 and April 28, 2023, 317 tissue samples were collected from 225 patients, including 201 residual surgical specimens, 59 gastroscopy samples, and 57 blood component samples. Viral RNA was detected in 16 (30%) of 53 solid tissue samples collected at 1 month, 38 (27%) of 141 collected at 2 months, and seven (11%) of 66 collected at 4 months. Viral RNA was distributed across ten different types of solid tissues, including liver, kidney, stomach, intestine, brain, blood vessel, lung, breast, skin, and thyroid. Additionally, subgenomic RNA was detected in 26 (43%) of 61 solid tissue samples tested for subgenomic RNA that also tested positive for viral RNA. At 2 months after infection, viral RNA was detected in the plasma of three (33%), granulocytes of one (11%), and peripheral blood mononuclear cells of two (22%) of nine patients who were immunocompromised, but in none of these blood compartments in ten patients who were immunocompetent. Among 213 patients who completed the telephone questionnaire, 72 (34%) reported at least one long COVID symptom, with fatigue (21%, 44 of 213) being the most frequent symptom. Detection of viral RNA in recovered patients was significantly associated with the development of long COVID symptoms (odds ratio 5·17, 95% CI 2·64-10·13, p<0·0001). Patients with higher virus copy numbers had a higher likelihood of developing long COVID symptoms. INTERPRETATION Our findings suggest that residual SARS-CoV-2 can persist in patients who have recovered from mild COVID-19 and that there is a significant association between viral persistence and long COVID symptoms. Further research is needed to verify a mechanistic link and identify potential targets to improve long COVID symptoms. FUNDING National Natural Science Foundation of China, National Key R&D Program of China, Chinese Academy of Medical Sciences Innovation Fund for Medical Sciences, and New Cornerstone Science Foundation. TRANSLATION For the Chinese translation of the abstract see Supplementary Materials section.
Collapse
Affiliation(s)
- Wenting Zuo
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Chaoyang District, Beijing, China; Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Di He
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Chaoyang District, Beijing, China; Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Capital Medical University, Beijing, China
| | - Chaoyang Liang
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Chaoyang District, Beijing, China; Department of General Thoracic Surgery, China-Japan Friendship Hospital, Chaoyang District, Beijing, China
| | - Shiyu Du
- Department of Gastroenterology, China-Japan Friendship Hospital, Chaoyang District, Beijing, China
| | - Zhan Hua
- Division of Gastrointestinal Surgery, China-Japan Friendship Hospital, Chaoyang District, Beijing, China
| | - Qiangqiang Nie
- Department of General Surgery, Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Chaoyang District, Beijing, China
| | - Xiaofeng Zhou
- Department of Urology, China-Japan Friendship Hospital, Chaoyang District, Beijing, China
| | - Meng Yang
- Division of Breast and Thyroid Surgery, China-Japan Friendship Hospital, Chaoyang District, Beijing, China
| | - Haidong Tan
- Second Division of Hepatopancreatobiliary Surgery, China-Japan Friendship Hospital, Chaoyang District, Beijing, China
| | - Jiuyang Xu
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Chaoyang District, Beijing, China
| | - Yanbing Yu
- Department of Neurosurgery, China-Japan Friendship Hospital, Chaoyang District, Beijing, China
| | - Yuliang Zhan
- Department of Clinical Laboratory, China-Japan Friendship Hospital, Chaoyang District, Beijing, China
| | - Ying Zhang
- Department of Anesthesiology and Operating Theatre, China-Japan Friendship Hospital, Chaoyang District, Beijing, China
| | - Xiaoying Gu
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Chaoyang District, Beijing, China; Department of Clinical Research and Data Management, Center of Respiratory Medicine, China-Japan Friendship Hospital, Chaoyang District, Beijing, China
| | - Weijie Zhu
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Chaoyang District, Beijing, China; Department of General Thoracic Surgery, China-Japan Friendship Hospital, Chaoyang District, Beijing, China
| | - Hui Zhang
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Chaoyang District, Beijing, China; Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Capital Medical University, Beijing, China
| | - Hongyan Li
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Chaoyang District, Beijing, China
| | - Weiliang Sun
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Chaoyang District, Beijing, China
| | - Mingzhi Sun
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Chaoyang District, Beijing, China; Changping Laboratory, Beijing, China
| | - Xiaolei Liu
- Second Division of Hepatopancreatobiliary Surgery, China-Japan Friendship Hospital, Chaoyang District, Beijing, China
| | - Liguo Liu
- Second Division of Hepatopancreatobiliary Surgery, China-Japan Friendship Hospital, Chaoyang District, Beijing, China
| | - Chuanzhen Cao
- Department of Urology, China-Japan Friendship Hospital, Chaoyang District, Beijing, China
| | - Rui Li
- Department of Neurosurgery, China-Japan Friendship Hospital, Chaoyang District, Beijing, China
| | - Jing Li
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Chaoyang District, Beijing, China
| | - Yun Zhang
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Chaoyang District, Beijing, China
| | - Yuting Zhang
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Chaoyang District, Beijing, China
| | - Jing Guo
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Chaoyang District, Beijing, China
| | - Ling Zhao
- Department of Pathology, China-Japan Friendship Hospital, Chaoyang District, Beijing, China
| | - Chuan-Peng Zhang
- Department of Neurosurgery, China-Japan Friendship Hospital, Chaoyang District, Beijing, China; Department of Neurosurgery, Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Hongyu Liu
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Chaoyang District, Beijing, China; Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Capital Medical University, Beijing, China
| | - Shiyao Wang
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Chaoyang District, Beijing, China
| | - Fei Xiao
- Department of General Thoracic Surgery, China-Japan Friendship Hospital, Chaoyang District, Beijing, China
| | - Yeming Wang
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Chaoyang District, Beijing, China
| | - Zai Wang
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Chaoyang District, Beijing, China.
| | - Haibo Li
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Chaoyang District, Beijing, China; Changping Laboratory, Beijing, China.
| | - Bin Cao
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Chaoyang District, Beijing, China; New Cornerstone Science Laboratory, China-Japan Friendship Hospital, Chaoyang District, Beijing, China; Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China; Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Capital Medical University, Beijing, China; Changping Laboratory, Beijing, China; Tsinghua University-Peking University Joint Center for Life Sciences, Beijing, China.
| |
Collapse
|
48
|
Zollner A, Koch R, Jukic A, Pfister A, Meyer M, Wick N, Wick G, Rössler A, Kimpel J, Adolph TE, Tilg H. Clearance of Gut Mucosal SARS-CoV-2 Antigens and Postacute COVID-19 After 2 Years in Patients With Inflammatory Bowel Disease. Gastroenterology 2024; 167:604-607.e8. [PMID: 38631418 DOI: 10.1053/j.gastro.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 03/27/2024] [Accepted: 04/03/2024] [Indexed: 04/19/2024]
Affiliation(s)
- Andreas Zollner
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, and Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Robert Koch
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, and Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Almina Jukic
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, and Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Alexandra Pfister
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, and Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Moritz Meyer
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, and Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Nikolaus Wick
- Center for Specialized Diagnostics Wick, Innsbruck, Austria
| | - Georg Wick
- Center for Specialized Diagnostics Wick, Innsbruck, Austria
| | - Annika Rössler
- Department of Hygiene, Microbiology, and Public Health, Institute of Virology, Medical University of Innsbruck, Innsbruck, Austria
| | - Janine Kimpel
- Department of Hygiene, Microbiology, and Public Health, Institute of Virology, Medical University of Innsbruck, Innsbruck, Austria
| | - Timon E Adolph
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, and Metabolism, Medical University of Innsbruck, Innsbruck, Austria.
| | - Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, and Metabolism, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
49
|
Rzymski P, Niedziela J, Poniedziałek B, Rosińska J, Zarębska-Michaluk D, Sobala-Szczygieł B, Flisiak R, Gąsior M, Jaroszewicz J. Humoral anti-SARS-CoV-2 response in patients with different long COVID phenotypes. Virology 2024; 596:110118. [PMID: 38805803 DOI: 10.1016/j.virol.2024.110118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/02/2024] [Accepted: 05/14/2024] [Indexed: 05/30/2024]
Abstract
Long COVID (LC) is characterized by persistent symptoms following SARS-CoV-2 infection, with various mechanisms offered to explain its pathogenesis. This study explored whether adaptive humoral anti-SARS-CoV-2 responses differ in LC. Unvaccinated COVID-19 convalescents (n = 200) were enrolled, with 21.5% (n = 43) presenting LC three months post-infection. LC diagnosis was based on persistent symptom(s) and alterations in biochemical/clinical markers; three phenotypes were distinguished: cardiological, pulmonary, and psychiatric LC. All three phenotypes were characterized by significantly decreased seroprevalence of IgG antibodies against nucleocapsid (anti-NP). LC was associated with decreased odds of testing positive for anti-NP (OR = 0.35, 95%CI: 0.16-0.78, p = 0.001). Seropositive LC patients had lower anti-S1 and anti-S2 levels than individuals without LC, and those with pulmonary and psychological phenotypes also revealed decreased anti-RBD concentrations. The results indicate that LC can be characterized by diminished humoral response to SARS-CoV-2. The potential implication of this phenomenon in post-acute viral sequelae is discussed.
Collapse
Affiliation(s)
- Piotr Rzymski
- Department of Environmental Medicine, Poznan University of Medical Sciences, Poznań, Poland.
| | - Jacek Niedziela
- 3rd Department of Cardiology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Barbara Poniedziałek
- Department of Environmental Medicine, Poznan University of Medical Sciences, Poznań, Poland
| | - Joanna Rosińska
- Department of Environmental Medicine, Poznan University of Medical Sciences, Poznań, Poland
| | | | | | - Robert Flisiak
- Department of Infectious Diseases and Hepatology, Medical University of Białystok, Bialystok, Poland
| | - Mariusz Gąsior
- 3rd Department of Cardiology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Jerzy Jaroszewicz
- Department of Infectious Diseases and Hepatology, Medical University of Silesia, Bytom, Poland
| |
Collapse
|
50
|
Wee LE, Lim JT, Tay AT, Chiew CJ, Ong B, Lye DCB, Lahiri M, Tan KB. Autoimmune Sequelae After Delta or Omicron Variant SARS-CoV-2 Infection in a Highly Vaccinated Cohort. JAMA Netw Open 2024; 7:e2430983. [PMID: 39212988 PMCID: PMC11364997 DOI: 10.1001/jamanetworkopen.2024.30983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/08/2024] [Indexed: 09/04/2024] Open
Abstract
Importance Studies have reported increased risk of autoimmune sequelae after SARS-CoV-2 infection. However, risk may potentially be attenuated by milder Omicron (B.1.1.529) variant infection and availability of booster vaccination. Objective To estimate the 300-day risk of new-incident autoimmune sequelae after SARS-CoV-2 Delta or Omicron BA.1 or BA.2 variant infection in adults who received COVID-19 vaccines and boosters, compared with a contemporary control group without infection. Design, Setting, and Participants This cohort study in Singapore enrolled adults from September 1, 2021, to March 7, 2022, and followed up for 300 days. Participants were adults aged 18 years or older with SARS-CoV-2 infection during the predominance of the Delta and Omicron BA.1 or BA.2 variants and were still alive at 30 days after COVID-19 diagnosis. Exposure The national SARS-CoV-2 testing registry was used to construct cohorts of adults with SARS-CoV-2 Delta or Omicron BA.1 or BA.2 variant infection (hereafter, cases) and a contemporaneous group with negative polymerase chain reaction or rapid antigen test results (hereafter, controls). Main Outcomes and Measures New-incident autoimmune diagnoses after SARS-CoV-2 infection. This information was recorded in the MediClaims national health care claims database and identified 31 to 300 days after index date of infection. Risks and excess burdens were estimated using Cox proportional hazards regression model with overlap weights applied. Results In total, 1 766 036 adults (915 096 females [51.9%]; mean [SD] age, 49 [18] years) were included in the study population, with 480 082 (27.2%) categorized as cases and 1 285 954 (72.8%) as controls. Of these adults, 73.1% had Chinese, 13.7% Malay, and 9.9% Indian ethnicity. There were 104 179 cases and 666 575 controls included during the Delta variant-predominance transmission, while 375 903 cases and 619 379 controls were included during the Omicron variant-predominance transmission. During the Delta variant period, 81.1% of cases had completed primary vaccination; during the Omicron variant period, 74.6% of cases received boosters. No significantly elevated risk of 12 prespecified autoimmune sequelae was recorded across the Omicron and Delta variant cohorts. Elevated risks of inflammatory bowel disease (adjusted hazard ratio [AHR], 2.23; 95% CI, 1.45-3.46; P < .001) and bullous skin disorders (AHR, 4.88; 95% CI, 2.47-9.66; P < .001) were observed only in the subset of COVID-19 cases requiring hospitalization during the predominance of the Omicron variant. While elevated risk of vasculitis (AHR, 5.74; 95% CI, 1.48-22.23; P = .01) was observed in vaccine-breakthrough Omicron variant infections, no increased risk of vasculitis was observed in the corresponding subgroup who received boosters. Conclusions and Relevance This cohort study observed no significantly elevated long-term risk of autoimmune sequelae after SARS-CoV-2 Delta and Omicron BA.1 or BA.2 variant infection, except for a modestly increased risk of inflammatory bowel disease and bullous skin disorders in the hospitalized subgroup during the predominance of the Omicron variant. Booster vaccination appeared to mitigate the risk of long-term autoimmune sequelae.
Collapse
Affiliation(s)
- Liang En Wee
- National Centre for Infectious Diseases, Singapore
- Duke-NUS Graduate Medical School, National University of Singapore, Singapore
- Department of Infectious Diseases, Singapore General Hospital, Singapore
| | - Jue Tao Lim
- National Centre for Infectious Diseases, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | | | - Calvin J. Chiew
- National Centre for Infectious Diseases, Singapore
- Ministry of Health, Singapore
| | - Benjamin Ong
- Ministry of Health, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - David Chien Boon Lye
- National Centre for Infectious Diseases, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Infectious Diseases, Tan Tock Seng Hospital, Singapore
| | - Manjari Lahiri
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Division of Rheumatology, Department of Medicine, National University Hospital, Singapore
| | - Kelvin Bryan Tan
- National Centre for Infectious Diseases, Singapore
- Duke-NUS Graduate Medical School, National University of Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
- Ministry of Health, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore
| |
Collapse
|