1
|
Robertson FP, Cuff AO, Male V, Wright GP, Pallett LJ, Fuller BJ, Davidson BR. Inflammatory Monocytes Are Rapidly Recruited to the Post-Ischaemic Liver in Patients Undergoing Liver Transplantation and Cytokines Associated with Their Activation Correlate with Graft Outcomes. Curr Issues Mol Biol 2025; 47:49. [PMID: 39852164 PMCID: PMC11763458 DOI: 10.3390/cimb47010049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/31/2024] [Accepted: 01/07/2025] [Indexed: 01/26/2025] Open
Abstract
Liver ischaemia-reperfusion (IR) injury remains a major cause of morbidity and mortality following liver transplantation and resection. CD4+ T cells have been shown to play a key role in murine models; however, there is currently a lack of data that support their role in human patients. Methods: Data on clinical outcomes and complications were documented prospectively in 28 patients undergoing first elective liver transplant surgery. Peripheral blood samples were collected at baseline (pre-op), 2 h post graft reperfusion, immediately post-op, and 24 h post-op. A post-reperfusion biopsy was analysed in all patients, and in five patients, a donor liver biopsy was available pre-implantation. Circulating cytokines were measured, and T cells were analysed for activation markers and cytokine production. Results: Circulating levels of cytokines associated with innate immune cell recruitment and activation were significantly elevated in the peri-transplant period. High circulating IL-10 levels corresponded with the development of graft-specific complications. The proportion of CD4+ T cells in the peripheral circulation fell throughout the peri-operative period, suggesting CD4+ T cell recruitment to the graft. Although TNFα was the predominant cytokine produced by CD4+ T cells in the intrahepatic environment, the production of IFNγ was significantly upregulated by circulating CD4+ T cells. Furthermore, we demonstrated clear recruitment of inflammatory monocytes in the peri-operative period. In donor-and-recipient pairs with a mismatch at the HLA-A2 or A3 allele, we demonstrated that inflammatory monocytes in the liver are recipient-derived. Discussion: This is the first study to our knowledge that tracks early immune cell responses in humans undergoing liver transplantation. The recruitment of inflammatory monocytes from the recipient and their cytokine release is associated with liver-specific complications. Inflammatory monocytes would be an attractive target to ameliorate ischaemia-reperfusion injury.
Collapse
Affiliation(s)
- Francis P. Robertson
- Division of Interventional and Surgical Science, Royal Free Campus, University College London, London NW3 2QG, UK; (B.J.F.); (B.R.D.)
- Department of Surgery, School of Medicine, Gilmorehill Campus, University of Glasgow Medical School, Glasgow G12 8QQ, UK
| | - Antonia O. Cuff
- Division of Biomedical Sciences, Warwick Medical School, Gibbet Hill Campus, University of Warwick, Coventry CV4 7AL, UK;
| | - Victoria Male
- Department of Metabolism, Digestion and Reproduction, Chelsea and Westminster Hospital Campus, Imperial College London, London W12 0NN, UK;
| | - Graham P. Wright
- School of Applied Science, Edinburgh Napier University, Edinburgh EH11 4BN, UK;
| | - Laura J. Pallett
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, London NW3 2PP, UK;
| | - Barry J. Fuller
- Division of Interventional and Surgical Science, Royal Free Campus, University College London, London NW3 2QG, UK; (B.J.F.); (B.R.D.)
| | - Brian R. Davidson
- Division of Interventional and Surgical Science, Royal Free Campus, University College London, London NW3 2QG, UK; (B.J.F.); (B.R.D.)
- Department of HPB and Liver Transplant Surgery, Royal Free Hospital, London NW3 2QG, UK
| |
Collapse
|
2
|
Neri AA, Dontas IA, Iliopoulos DC, Karatzas T. Pathophysiological Changes During Ischemia-reperfusion Injury in Rodent Hepatic Steatosis. In Vivo 2021; 34:953-964. [PMID: 32354880 DOI: 10.21873/invivo.11863] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/03/2020] [Accepted: 02/07/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND/AIM Ischemia and reperfusion injuries may produce deleterious effects on hepatic tissue after liver surgery and transplantation. The impact of ischemia-reperfusion injury (IRI) on the liver depends on its substrate, the percentage of liver ischemic tissue subjected to IRI and the ischemia time. The consequences of IRI are more evident in pathologic liver substrates, such as steatotic livers. This review is the result of an extended bibliographic PubMed search focused on the last 20 years. It highlights basic differences encountered during IRI in lean and steatotic livers based on studies using rodent experimental models. CONCLUSION The main difference in cell death between lean and steatotic livers is the prevalence of apoptosis in the former and necrosis in the latter. There are also major changes in the effect of intracellular mediators, such as TNFα and IL-1β. Further experimental studies are needed in order to increase current knowledge of IRI effects and relevant mechanisms in both lean and steatotic livers, so that new preventive and therapeutic strategies maybe developed.
Collapse
Affiliation(s)
- Anna-Aikaterini Neri
- Laboratory for Research of the Musculoskeletal System "Th. Garofalidis", KAT Hospital, School of Medicine, National & Kapodistrian University of Athens, Kifissia, Greece
| | - Ismene A Dontas
- Laboratory for Research of the Musculoskeletal System "Th. Garofalidis", KAT Hospital, School of Medicine, National & Kapodistrian University of Athens, Kifissia, Greece
| | - Dimitrios C Iliopoulos
- Laboratory of Experimental Surgery & Surgical Research "N.S. Christeas", School of Medicine, National & Kapodistrian University of Athens, Athens, Greece
| | - Theodore Karatzas
- Laboratory of Experimental Surgery & Surgical Research "N.S. Christeas", School of Medicine, National & Kapodistrian University of Athens, Athens, Greece.,2 Department of Propedeutic Surgery, School of Medicine, National & Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
3
|
The "Fonds Georges Brohée": a longstanding Belgian national initiative to stimulate research in hepatogastroenterology. Acta Gastroenterol Belg 2021; 84:91-94. [PMID: 33639699 DOI: 10.51821/84.1.324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The Fonds Brohée/Brohée fund was created in 1964 at the initiative of 16 Belgian physicians, in the memory of Georges Brohée, the founder of the Belgian Society of Gastroenterology in 1928 and of its Journal in 1933, first published under the name "Le Journal Belge de Gastro-entérologie", then until today as "Acta Gastro-Enterologica Belgica". The goal of the Fonds is to stimulate research in the field of gastroenterology in Belgium, by awarding a young researcher (< 40 years) for an outstanding work in the clinical, translational or fundamental setting. Since 1966, 26 remarkable works have been awarded in various areas of interest in gastrointestinal diseases, whether in IBD, functional disorders, digestive oncology and, last but not least, hepatology. Since the recognition of their work, many of the awardees have become recognized for their expertise well beyond Belgium. Hopefully, the Foundation will continue to thrive and flourish after 55 years, as the members of its board and its healthy finances will allow to continue to promote and encourage high-quality research by young hepato-gastroenterologists in Belgium.
Collapse
|
4
|
Wang H, Xi Z, Deng L, Pan Y, He K, Xia Q. Macrophage Polarization and Liver Ischemia-Reperfusion Injury. Int J Med Sci 2021; 18:1104-1113. [PMID: 33526969 PMCID: PMC7847630 DOI: 10.7150/ijms.52691] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 12/19/2020] [Indexed: 12/29/2022] Open
Abstract
Ischemia-reperfusion injury refers to organ damage caused by the previous insufficient supply of oxygen and nutrients and the involvement of metabolic by-products after blood flow is restored. Liver ischemia-reperfusion injury (IRI) has become a hot research in recent years, because it occurs in many clinical scenarios. After the introduction of liver transplantation and vascular control techniques in liver surgery, liver ischemia-reperfusion injury is considered to be an important factor affecting postoperative mortality and morbidity. As the largest immune organ in the human body, liver contain a lot of immune cells such as resident macrophages (Kupffer cells), dendritic cells, natural killer cells, and natural killer T cells which play a key role in ischemia-reperfusion injury. Among those, macrophage-mediated excessive inflammatory response is considered to be an important factor in liver ischemia-reperfusion injury. The prominent feature of liver injury is an increase in the number of macrophages in liver due to the infiltration of blood monocytes and differentiation into monocyte-derived macrophages. Liver macrophages can be divided into M1 macrophages which can promote inflammation progress and M2 macrophages that inhibit inflammation progress according to their different phenotypes and functions. Both of them can regulate liver aseptic inflammation, and play an important role in triggering, maintaining, and improving liver ischemia-reperfusion injury. This review summarizes studies of macrophage polarization on liver ischemia-reperfusion injury in recent years, to provide potential ideas for translation application in future clinical management.
Collapse
Affiliation(s)
- Hai Wang
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhifeng Xi
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lu Deng
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yixiao Pan
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Kang He
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qiang Xia
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
5
|
El-Sayed LA, Osama E, Mehesen MN, Rashed LA, Aboulkhair AG, Omar AI, Shams Eldeen AM. Contribution of angiotensin II in hepatic ischemia /reperfusion induced lung injury: Acute versus chronic usage of captopril. Pulm Pharmacol Ther 2020; 60:101888. [PMID: 31923459 DOI: 10.1016/j.pupt.2020.101888] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 01/04/2020] [Accepted: 01/04/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Acute lung injury is one of the most popular consequences of hepatic ischemia/reperfusion (I/R) injury. Recently it was documented that renin-angiotensin system plays a key role in tissue inflammation, generation of reactive oxygen species (ROS) and tumor necrosis factor-alpha (TNF-α) (the principal liver injury mediators) during I/R. MATERIAL AND METHODS We investigated the effect of acute versus chronic usage of angiotensin converting enzyme inhibitor (captopril) on liver inflammation and lung injury caused by hepatic ischemia for 1h followed by 24h reperfusion. Forty adult Wistar male rats were divided into sham, I/R, I/R-acute captopril (100 mg/kg, 24 and 1.5 h before surgery) and I/R-chronic captopril (10 mg/kg/day for 28 days before surgery) groups. RESULTS We found captopril pretreatment significantly decreased liver damage indices, adhesion molecules, and TNF-α level in hepatic and tracheal tissues. Histologically, acute captopril pretreatment significantly decreased hepatic Kupffer cells number and lung α-smooth muscle actin expression more than chronic pretreatment. Increased tracheal tone, in response to acetylcholine, was suppressed by acute and chronic captopril pretreatment. CONCLUSION Angiotensin II plays a key role in tissue inflammation and airway hyperresponsiveness (AHR) via enhancing production of TNF-α. With more protection observed in lung, acute captopril could attenuate liver-induced lung injury via lowering TNF-α; a suggested possible mediator of airway hyperreactivity.
Collapse
Affiliation(s)
| | - Eman Osama
- Department of Physiology, Faculty of Medicine, Cairo University, Egypt
| | - Marwa Nagi Mehesen
- Department of Pharmacology, Faculty of Medicine, Cairo University, Egypt
| | | | | | - Abeer Ibraheem Omar
- Department of Medical Histology, Faculty of Medicine, Cairo University, Egypt
| | | |
Collapse
|
6
|
Chae MS, Moon KU, Chung HS, Park CS, Lee J, Choi JH, Hong SH. Serum interleukin-6 and tumor necrosis factor-α are associated with early graft regeneration after living donor liver transplantation. PLoS One 2018; 13:e0195262. [PMID: 29649247 PMCID: PMC5896938 DOI: 10.1371/journal.pone.0195262] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 03/19/2018] [Indexed: 02/07/2023] Open
Abstract
Background Liver graft regeneration is orchestrated by specific and sequential stimuli, including hepatocyte growth factors, cytokines, and catecholamines. We evaluated the association between preoperative serum cytokines and early liver graft regeneration in human living donor liver transplantation (LDLT). Patients and methods We retrospectively reviewed the data of adult patients who underwent LDLT from January 2010 to December 2014. Serum cytokines, including interleukin (IL)-2, 6, 10, 12, 17, interferon (IFN)-γ and tumor necrosis factor (TNF)-α were measured in the recipients 1 day before surgery and on postoperative day (POD) 7. Liver graft volume was estimated using abdominal computed tomography images of the donors and recipients. Results In total, 226 patients were analyzed in this study. Median preoperative levels of serum cytokines were as follows: IL-2, 0.1 (0.1–1.6) pg/mL; IL-6, 7.3 (0.1–30.2) pg/mL; IL-10, 0.5 (0.1–11.0) pg/mL; IL-12, 0.1 (0.1–0.1) pg/mL; IL-17, 2.0 (0.1–16.4) pg/mL; IFN-γ, 3.2 (0.1–16.0) pg/mL; and TNF-α, 9.8 (5.4–17.9) pg/mL. Higher preoperative serum levels of IL-6, IL-10, and TNF-α, dichotomized at the median, were associated with increased relative liver volumes by POD 7. Multivariate analysis revealed that higher levels of serum IL-6 and TNF-α were independently associated with increased graft volume during the first 1 week after LDLT, based on the lower levels of those cytokines. Conclusions IL-6 and TNF-α were important mediators of the success of early graft regeneration in patients who underwent LDLT.
Collapse
Affiliation(s)
- Min Suk Chae
- Department of Anesthesiology and Pain Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Kwang Uck Moon
- Department of Anesthesiology and Pain Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hyun Sik Chung
- Department of Anesthesiology and Pain Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Chul Soo Park
- Department of Anesthesiology and Pain Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jaemin Lee
- Department of Anesthesiology and Pain Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jong Ho Choi
- Department of Anesthesiology and Pain Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sang Hyun Hong
- Department of Anesthesiology and Pain Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
7
|
Laing RW, Mergental H, Yap C, Kirkham A, Whilku M, Barton D, Curbishley S, Boteon YL, Neil DA, Hübscher SG, Perera MTPR, Muiesan P, Isaac J, Roberts KJ, Cilliers H, Afford SC, Mirza DF. Viability testing and transplantation of marginal livers (VITTAL) using normothermic machine perfusion: study protocol for an open-label, non-randomised, prospective, single-arm trial. BMJ Open 2017; 7:e017733. [PMID: 29183928 PMCID: PMC5719273 DOI: 10.1136/bmjopen-2017-017733] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 06/26/2017] [Accepted: 07/27/2017] [Indexed: 12/22/2022] Open
Abstract
INTRODUCTION The use of marginal or extended criteria donor livers is increasing. These organs carry a greater risk of initial dysfunction and early failure, as well as inferior long-term outcomes. As such, many are rejected due to a perceived risk of use and use varies widely between centres. Ex situ normothermic machine perfusion of the liver (NMP-L) may enable the safe transplantation of organs that meet defined objective criteria denoting their high-risk status and are currently being declined for use by all the UK transplant centres. METHODS AND ANALYSIS Viability testing and transplantation of marginal livers is an open-label, non-randomised, prospective, single-arm trial designed to determine whether currently unused donor livers can be salvaged and safely transplanted with equivalent outcomes in terms of patient survival. The procured rejected livers must meet predefined criteria that objectively denote their marginal condition. The liver is subjected to NMP-L following a period of static cold storage. Organs metabolising lactate to ≤2.5 mmol/L within 4 hours of the perfusion commencing in combination with two or more of the following parameters-bile production, metabolism of glucose, a hepatic arterial flow rate ≥150 mL/min and a portal venous flow rate ≥500 mL/min, a pH ≥7.30 and/or maintain a homogeneous perfusion-will be considered viable and transplanted into a suitable consented recipient. The coprimary outcome measures are the success rate of NMP-L to produce a transplantable organ and 90-day patient post-transplant survival. ETHICS AND DISSEMINATION The protocol was approved by the National Research Ethics Service (London-Dulwich Research Ethics Committee, 16/LO/1056), the Medicines and Healthcare Products Regulatory Agency and is endorsed by the National Health Service Blood and Transplant Research, Innovation and Novel Technologies Advisory Group. The findings of this trial will be disseminated through national and international presentations and peer-reviewed publications. TRIAL REGISTRATION NUMBER NCT02740608; Pre-results.
Collapse
Affiliation(s)
- Richard W Laing
- Department of Liver Unit, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
- Department of Liver Biomedical Research Unit, National Institute for Health Research (NIHR), Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Hynek Mergental
- Department of Liver Unit, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
- Department of Liver Biomedical Research Unit, National Institute for Health Research (NIHR), Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Christina Yap
- Department of Cancer Research UK Clinical Trials Unit, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Amanda Kirkham
- Department of Cancer Research UK Clinical Trials Unit, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Manpreet Whilku
- Department of Cancer Research UK Clinical Trials Unit, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Darren Barton
- Department of Cancer Research UK Clinical Trials Unit, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Stuart Curbishley
- Department of Liver Biomedical Research Unit, National Institute for Health Research (NIHR), Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Yuri L Boteon
- Department of Liver Unit, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
- Department of Liver Biomedical Research Unit, National Institute for Health Research (NIHR), Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Desley A Neil
- Department of Liver Unit, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Stefan G Hübscher
- Department of Liver Unit, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
- Department of Liver Biomedical Research Unit, National Institute for Health Research (NIHR), Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - M Thamara P R Perera
- Department of Liver Unit, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
- Department of Liver Biomedical Research Unit, National Institute for Health Research (NIHR), Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Paolo Muiesan
- Department of Liver Unit, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
- Department of Liver Biomedical Research Unit, National Institute for Health Research (NIHR), Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - John Isaac
- Department of Liver Unit, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Keith J Roberts
- Department of Liver Unit, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Hentie Cilliers
- Department of Liver Unit, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Simon C Afford
- Department of Liver Biomedical Research Unit, National Institute for Health Research (NIHR), Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Darius F Mirza
- Department of Liver Unit, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
- Department of Liver Biomedical Research Unit, National Institute for Health Research (NIHR), Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| |
Collapse
|
8
|
Fahrner R, Dondorf F, Ardelt M, Settmacher U, Rauchfuss F. Role of NK, NKT cells and macrophages in liver transplantation. World J Gastroenterol 2016; 22:6135-6144. [PMID: 27468206 PMCID: PMC4945975 DOI: 10.3748/wjg.v22.i27.6135] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 05/25/2016] [Accepted: 06/15/2016] [Indexed: 02/07/2023] Open
Abstract
Liver transplantation has become the treatment of choice for acute or chronic liver disease. Because the liver acts as an innate immunity-dominant organ, there are immunological differences between the liver and other organs. The specific features of hepatic natural killer (NK), NKT and Kupffer cells and their role in the mechanism of liver transplant rejection, tolerance and hepatic ischemia-reperfusion injury are discussed in this review.
Collapse
|
9
|
Halldorson JB, Bakthavatsalam R, Montenovo M, Dick A, Rayhill S, Perkins J, Reyes J. Differential rates of ischemic cholangiopathy and graft survival associated with induction therapy in DCD liver transplantation. Am J Transplant 2015; 15:251-8. [PMID: 25534449 DOI: 10.1111/ajt.12962] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 07/09/2014] [Accepted: 08/04/2014] [Indexed: 01/25/2023]
Abstract
Transplantation utilizing donation after circulatory death (DCD) donors is associated with ischemic cholangiopathy (IC) and graft loss. The University of Washington (UW) DCD experience totals 89 DCD liver transplants performed between 2003 and 2011. Overall outcome after DCD liver transplantation at UW demonstrates Kaplan-Meier estimated 5-year patient and graft survival rates of 81.6% and 75.6%, respectively, with the great majority of patient and graft losses occurring in the first-year posttransplant from IC. Our program has almost exclusively utilized either anti-thymocyte globulin (ATG) or basiliximab induction (86/89) for DCD liver transplantations. Analysis of the differential effect of induction agent on graft survival demonstrated graft survival of 96.9% at 1 year for ATG versus 75.9% for basiliximab (p = 0.013). The improved survival did not appear to be from a lower rate of rejection (21.9% vs. 22.2%) but rather a differential rate of IC, 35.2% for basiliximab versus 12.5% for ATG (p = 0.011). Multivariable analysis demonstrated induction agent to be independently associated with graft survival and IC free graft survival when analyzed against variables including donor age, fWIT, donor cold ischemia time and transplant era.
Collapse
Affiliation(s)
- J B Halldorson
- Division of Transplantation, University of California, San Diego, CA
| | | | | | | | | | | | | |
Collapse
|
10
|
Gao W, Liu D, Li D, Che X, Cui G. Effects of hypercapnia on T cells in lung ischemia/reperfusion injury after lung transplantation. Exp Biol Med (Maywood) 2014; 239:1597-605. [PMID: 25013165 DOI: 10.1177/1535370214542072] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
T cells play a key role in lung ischemia/reperfusion injury (IRI). Hypercapnia has been indicated to decrease IRI and inhibit immunity. This study aimed to evaluate the effects of hypercapnia on T cells during lung IRI and to identify the underlying mechanism of these effects. In the in vivo study, rat recipients of lung transplants were randomized into a control group M and a hypercapnia group H. Peripheral blood T cells and cytokines were analyzed during reperfusion. In the in vitro study, we analyzed the T cells and cytokine levels in culture media from phytohemagglutinin-stimulated T cells from normal rats, stimulated under the normal (group C), hypercapnic (group H), or buffer hypercapnic (group BH) condition. In the in vivo study, the CD3+/CD4+ T-cell ratio and interleukin (IL)-2, IL-8, interferon (IFN)-γ, intracellular adhesion molecule (ICAM)-1, and P-selectin levels were decreased, but the IL-4 and IL-10 levels were increased, after reperfusion in group H compared to group M. In the in vitro study, groups H and BH exhibited a decreased CD2+/CD28+ ratio and IL-2 and IFN-γ levels, but elevated IL-4 and IL-10 levels, compared to group C. The CD2+/CD28+ ratio was not different between groups BH and H; however, group H evidenced a lower IL-2 level and higher IL-4 and IL-10 levels compared to group BH. Hypercapnia decreased the CD3+/CD4+ T-cell ratio and pro-inflammatory cytokine levels, but promoted anti-inflammatory factors in lung IRI. Hypercapnia inhibits CD2 and CD28 in T cells by CO2 and modulates T-cell cytokines via acidosis.
Collapse
Affiliation(s)
- Wei Gao
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, 150000 Harbin, China
| | - Dongdong Liu
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, 150000 Harbin, China
| | - Di Li
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, 150000 Harbin, China
| | - Xiangyu Che
- Department of Anesthesiology, The Fifth Hospital of Harbin, 150000 Harbin, China
| | - Guangxiao Cui
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, 150000 Harbin, China
| |
Collapse
|
11
|
Abstract
PURPOSE OF REVIEW Recent advances in T cell biology have shed light on the role of T cell subsets in the pathogenesis of acute kidney injury (AKI). The purpose of this review is to harness our understanding of recent advances in T cell biology in tissue injury and repair and provide a mechanistic insight into the role of T cells in the inflammation of AKI. RECENT FINDINGS New specific reagents and genetic animal models have led to advances in our understanding of the role of T cell subsets involved in renal injury. Whereas some T cells promote innate renal inflammation and injury, other T cells promote protection and repair. Recent studies illuminated the pathogenic mechanisms of invariant natural killer T (NKT) cells and T helper1-type responses, and the beneficial functions of regulatory T cells and NKT cells are just beginning to be explored. Pharmacologic and cell-based therapies that influence T cell responses to experimental AKI suggest that this is a promising approach to preserve renal function. SUMMARY The recent insights gained into how T cells modulate renal injury suggest that strategies targeting specific types of T cells, to either inhibit or enhance their activity, may ameliorate renal injury in patients.
Collapse
Affiliation(s)
- Gilbert R Kinsey
- Division of Nephrology and Center for Immunity, Inflammation and Regenerative Medicine, University of Virginia Health System, Charlottesville, Virginia, USA
| | | |
Collapse
|
12
|
Kadkhodaee M, Khastar H, Seifi B, Najafi A, Delavari F. Renal oxidative injury after leukocyte transfer from ischemia-reperfusion-induced kidney damage in Balb/c mice. ACTA PHYSIOLOGICA HUNGARICA 2013; 100:99-106. [PMID: 23471045 DOI: 10.1556/aphysiol.100.2013.1.10] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2025]
Abstract
The present study investigates the role of leukocyte transfer in the induction of kidney damage from mice that have undergone a severe renal ischemia-reperfusion insult into the intact recipient mice. First, Balb/c (inbred) mice were subjected to either sham operation (Sham donors) or bilateral renal IR injury (60 min ischemia-3 h reperfusion, IR donors). Leukocytes were isolated from blood and were transferred to two recipient groups: intact recipient mice received leukocytes from Sham donor group (Sham recipient) or from IR donor group (IR recipient). After 24 h, recipient mice were anesthetized for sample collections. Renal malondialdehyde increased and total glutathione concentration and superoxide dismutase activity decreased significantly in the IR recipient group compared to the Sham recipient group. BUN and plasma creatinine were significantly different between donor groups, but these parameters were not significantly different in the two recipient groups. In the IR donor group, there have been extensive changes in renal tissues comparing to Sham including severe destruction of the tubules, necrosis and tubular obstruction plus tubular flattening. IR recipient kidneys showed significant differences from their corresponding Sham group, demonstrating some degrees of injury including loss of brush borders from proximal tubules, cellular vacuolation and flattening of the tubules. However, less tissue damage was seen in this group comparing to IR donor kidneys. These findings showed that leucocytes transferred from post-ischemic mice induced oxidative stress and consequent damage to native kidneys, suggesting a role of leucocytes in the oxidative processes of reperfusion injury.
Collapse
Affiliation(s)
- Mehri Kadkhodaee
- Tehran University of Medical Sciences Department of Physiology, Faculty of Medicine Tehran Iran Tehran University of Medical Sciences Department of Physiology, School of Medicine Tehran 14176-13151 Iran
| | | | | | | | | |
Collapse
|
13
|
van Golen RF, Reiniers MJ, Olthof PB, van Gulik TM, Heger M. Sterile inflammation in hepatic ischemia/reperfusion injury: present concepts and potential therapeutics. J Gastroenterol Hepatol 2013; 28:394-400. [PMID: 23216461 DOI: 10.1111/jgh.12072] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/23/2012] [Indexed: 12/12/2022]
Abstract
Ischemia and reperfusion (I/R) injury is an often unavoidable consequence of major liver surgery and is characterized by a sterile inflammatory response that jeopardizes the viability of the organ. The inflammatory response results from acute oxidative and nitrosative stress and consequent hepatocellular death during the early reperfusion phase, which causes the release of endogenous self-antigens known as damage-associated molecular patterns (DAMPs). DAMPs, in turn, are indirectly responsible for a second wave of reactive oxygen and nitrogen species (ROS and RNS) production by driving the chemoattraction of various leukocyte subsets that exacerbate oxidative liver damage during the later stages of reperfusion. In this review, the molecular mechanisms underlying hepatic I/R injury are outlined, with emphasis on the interplay between ROS/RNS, DAMPs, and the cell types that either produce ROS/RNS and DAMPs or respond to them. This theoretical background is subsequently used to explain why current interventions for hepatic I/R injury have not been very successful. Moreover, novel therapeutic modalities are addressed, including MitoSNO and nilotinib, and metalloporphyrins on the basis of the updated paradigm of hepatic I/R injury.
Collapse
Affiliation(s)
- Rowan F van Golen
- Department of Experimental Surgery, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
14
|
Duarte S, Shen XD, Fondevila C, Busuttil RW, Coito AJ. Fibronectin-α4β1 interactions in hepatic cold ischemia and reperfusion injury: regulation of MMP-9 and MT1-MMP via the p38 MAPK pathway. Am J Transplant 2012; 12:2689-99. [PMID: 22812390 PMCID: PMC3459169 DOI: 10.1111/j.1600-6143.2012.04161.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Liver ischemia-reperfusion injury (IRI) remains a challenging problem in clinical settings. The expression of fibronectin (FN) by endothelial cells is a prominent feature of the hepatic response to injury. Here we investigate the effects of the connecting segment-1 (CS-1) peptide therapy, which blocks FN-α4β1 integrin leukocyte interactions, in a well-established model of 24-h cold liver IRI. CS-1 peptides significantly inhibited leukocyte recruitment and local release of proinflammatory mediators (COX-2, iNOS and TNF-α), ameliorating liver IRI and improving recipient survival rate. CS1 therapy inhibited the phosphorylation of p38 MAPK, a kinase linked to inflammatory processes. Moreover, in addition to downregulating the expression of matrix metalloproteinase-9 (MMP-9) in hepatic IRI, CS-1 peptide therapy depressed the expression of membrane type 1-matrix metalloproteinase (MT1-MMP/MMP-14) by macrophages, a membrane-tethered MMP important for focal matrix proteolysis. Inhibition of p38 MAPK activity, with its pharmacological antagonist SB203580, downregulated MMP-9 and MT1-MMP/MMP-14 expressions by FN-stimulated macrophages, suggesting that p38 MAPK kinase pathway controls FN-mediated inductions of MMP-9 and MT1-MMP/MMP-14. Hence, this study provides new insights on the role of FN in liver injury, which can potentially be applied to the development of new pharmacological strategies for the successful protection against hepatic IRI.
Collapse
Affiliation(s)
- Sergio Duarte
- The Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Xiu-Da Shen
- The Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Constantino Fondevila
- The Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Ronald W. Busuttil
- The Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Ana J. Coito
- The Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA,Address correspondence to: Dr. Ana J. Coito, The Dumont-UCLA Transplant Center, 77–120 CHS, Los Angeles, CA 90095–7054,
| |
Collapse
|
15
|
Hawksworth JS, Graybill C, Brown TS, Gillern SM, Wallace SM, Davis TA, Elster EA, Tadaki DK. Lymphocyte depletion in experimental hemorrhagic shock in Swine. JOURNAL OF INFLAMMATION-LONDON 2012; 9:34. [PMID: 23009382 PMCID: PMC3551698 DOI: 10.1186/1476-9255-9-34] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 08/31/2012] [Indexed: 11/10/2022]
Abstract
UNLABELLED BACKGROUND Hemorrhagic shock results in systemic activation of the immune system and leads to ischemia-reperfusion injury. Lymphocytes have been identified as critical mediators of the early innate immune response to ischemia-reperfusion injury, and immunomodulation of lymphocytes may prevent secondary immunologic injury in surgical and trauma patients. METHODS Yorkshire swine were anesthetized and underwent a grade III liver injury with uncontrolled hemorrhage to induce hemorrhagic shock. Experimental groups were treated with a lymphocyte depletional agent, porcine polyclonal anti-thymocyte globulin (PATG) (n = 8) and compared to a vehicle control group (n = 9). Animals were observed over a 3 day survival period. Circulating lymphocytes were examined with FACS analysis for CD3/CD4/CD8, and central lymphocytes with mesenteric lymph node and spleen staining for CD3. Circulating and lung tissue16 infiltrating neutrophils were measured. Circulating CD3 lymphocytes in the blood and in central lymphoid organs (spleen/lymph node) were stained and evaluated using FACS analysis. Immune-related gene expression from liver tissue was quantified using RT-PCR. RESULTS The overall survival was 22% (2/9) in the control and 75% (6/8) in the PATG groups, p = 0.09; during the reperfusion period (following hemorrhage) survival was 25% (2/8) in the control and 100% (6/6) in the PATG groups, p = 0.008. Mean blood loss and hemodynamic profiles were not significantly different between the experimental and control groups. Circulating CD3+CD4+ lymphocytes were significantly depleted in the PATG group compared to control. Lymphocyte depletion in the setting of hemorrhagic shock also significantly decreased circulating and lung tissue infiltrating neutrophils, and decreased expression of liver ischemia gene expression. CONCLUSIONS Lymphocyte manipulation with a depletional (PATG) strategy improves reperfusion survival in experimental hemorrhagic shock using a porcine liver injury model. This proof of principle study paves the way for further development of immunomodulation approaches to ameliorate secondary immune injury following hemorrhagic shock.
Collapse
Affiliation(s)
- Jason S Hawksworth
- Regenerative Medicine Department, Operational and Undersea Medicine Directorate, Naval Medical Research Center, Silver Spring, MD 20910, USA.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Hou HS, Liao CL, Sytwu HK, Liao NS, Huang TY, Hsieh TY, Chu HC. Deficiency of interleukin-15 enhances susceptibility to acetaminophen-induced liver injury in mice. PLoS One 2012; 7:e44880. [PMID: 23028657 PMCID: PMC3445599 DOI: 10.1371/journal.pone.0044880] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 08/09/2012] [Indexed: 12/12/2022] Open
Abstract
Hepatocytes have a direct necrotic role in acetaminophen (APAP)-induced liver injury (AILI), prolonged secondary inflammatory response through innate immune cells and cytokines also significantly contributes to APAP hepatotoxicity. Interleukin 15 (IL-15), a multifunction cytokine, regulates the adaptive immune system and influences development and function of innate immune cells. To better understand the role of IL-15 in liver injury, we treated wild-type (WT) and IL-15-knockout (Il15⁻/⁻) mice with a hepatotoxic dose of APAP to induce AILI and evaluated animal survival, liver damage, APAP metabolism in livers and the inflammatory response. Production of pro-inflammatory cytokines/chemokines was greater in Il15⁻/⁻ than WT mice. Subanalysis of hepatic infiltrated monocytes revealed greater neutrophil influx, along with greater hepatic induction of inducible nitric oxide synthase (iNOS), in Il15⁻/⁻ than WT mice. In addition, the level of hepatic hemeoxygenase 1 (HO-1) was partially suppressed in Il15⁻/⁻ mice, but not in WT mice. Interestingly, elimination of Kupffer cells and neutrophils did not alter the vulnerability to excess APAP in Il15⁻/⁻ mice. However, injection of galactosamine, a hepatic transcription inhibitor, significantly reduced the increased APAP sensitivity in Il15⁻/⁻ mice but had minor effect on WT mice. We demonstrated that deficiency of IL-15 increased mouse susceptibility to AILI. Moreover, Kupffer cell might affect APAP hepatotoxicity through IL-15.
Collapse
Affiliation(s)
- Hsein-San Hou
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Ching-Len Liao
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
- Department of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
| | - Huey-Kang Sytwu
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
- Department of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
| | - Nan-Shih Liao
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Tien-Yu Huang
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Tsai-Yuan Hsieh
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Heng-Cheng Chu
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
17
|
Hawksworth JS, Graybill JC, Brown TS, Wallace SM, Davis TA, Tadaki DK, Elster EA. Lymphocyte modulation with FTY720 improves hemorrhagic shock survival in swine. PLoS One 2012; 7:e34224. [PMID: 22558085 PMCID: PMC3340389 DOI: 10.1371/journal.pone.0034224] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Accepted: 02/25/2012] [Indexed: 01/08/2023] Open
Abstract
The inflammatory response to severe traumatic injury results in significant morbidity and mortality. Lymphocytes have recently been identified as critical mediators of the early innate immune response to ischemia-reperfusion injury. Experimental manipulation of lymphocytes following hemorrhagic shock may prevent secondary immunologic injury in surgical and trauma patients. The objective of this study is to evaluate the lymphocyte sequestration agent FTY720 as an immunomodulator following experimental hemorrhagic shock in a swine liver injury model. Yorkshire swine were anesthetized and underwent a grade III liver injury with uncontrolled hemorrhage to induce hemorrhagic shock. Experimental groups were treated with a lymphocyte sequestration agent, FTY720, (n = 9) and compared to a vehicle control group (n = 9). Animals were observed over a 3 day survival period after hemorrhage. Circulating total leukocyte and neutrophil counts were measured. Central lymphocytes were evaluated with mesenteric lymph node and spleen immunohistochemistry (IHC) staining for CD3. Lung tissue infiltrating neutrophils were analyzed with myeloperoxidase (MPO) IHC staining. Relevant immune-related gene expression from liver tissue was quantified using RT-PCR. The overall survival was 22.2% in the vehicle control and 66.7% in the FTY720 groups (p = 0.081), and reperfusion survival (period after hemorrhage) was 25% in the vehicle control and 75% in the FTY720 groups (p = 0.047). CD3+ lymphocytes were significantly increased in mesenteric lymph nodes and spleen in the FTY720 group compared to vehicle control, indicating central lymphocyte sequestration. Lymphocyte disruption significantly decreased circulating and lung tissue infiltrating neutrophils, and decreased expression of liver immune-related gene expression in the FTY720 treated group. There were no observed infectious or wound healing complications. Lymphocyte sequestration with FTY720 improves survival in experimental hemorrhagic shock using a porcine liver injury model. These results support a novel and clinically relevant lymphocyte immunomodulation strategy to ameliorate secondary immune injury in hemorrhagic shock.
Collapse
Affiliation(s)
- Jason S. Hawksworth
- Regenerative Medicine Department, Operational and Undersea Medicine Directorate, Naval Medical Research Center, Silver Spring, Maryland, United States of America
- Department of Surgery, Walter Reed National Military Medical Center, Bethesda, Maryland, United States of America
| | - J. Christopher Graybill
- Regenerative Medicine Department, Operational and Undersea Medicine Directorate, Naval Medical Research Center, Silver Spring, Maryland, United States of America
- Department of Surgery, Walter Reed National Military Medical Center, Bethesda, Maryland, United States of America
| | - Trevor S. Brown
- Regenerative Medicine Department, Operational and Undersea Medicine Directorate, Naval Medical Research Center, Silver Spring, Maryland, United States of America
| | - Shannon M. Wallace
- Department of Diagnostic Pathology, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Thomas A. Davis
- Regenerative Medicine Department, Operational and Undersea Medicine Directorate, Naval Medical Research Center, Silver Spring, Maryland, United States of America
| | - Doug K. Tadaki
- Regenerative Medicine Department, Operational and Undersea Medicine Directorate, Naval Medical Research Center, Silver Spring, Maryland, United States of America
- Uniformed Services University of Health Sciences, Bethesda, Maryland, United States of America
- * E-mail: (EE); (DT)
| | - Eric A. Elster
- Regenerative Medicine Department, Operational and Undersea Medicine Directorate, Naval Medical Research Center, Silver Spring, Maryland, United States of America
- Department of Surgery, Walter Reed National Military Medical Center, Bethesda, Maryland, United States of America
- Uniformed Services University of Health Sciences, Bethesda, Maryland, United States of America
- * E-mail: (EE); (DT)
| |
Collapse
|
18
|
Selzner N, Liu H, Boehnert MU, Adeyi OA, Shalev I, Bartczak AM, Xue-Zhong M, Manuel J, Rotstein OD, McGilvray ID, Grant DR, Phillips MJ, Levy GA, Selzner M. FGL2/fibroleukin mediates hepatic reperfusion injury by induction of sinusoidal endothelial cell and hepatocyte apoptosis in mice. J Hepatol 2012; 56:153-9. [PMID: 21756857 DOI: 10.1016/j.jhep.2011.05.033] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Revised: 05/02/2011] [Accepted: 05/23/2011] [Indexed: 12/15/2022]
Abstract
BACKGROUND & AIMS Sinusoidal endothelial cell (SEC) and hepatocyte death are early, TNF-α mediated events in ischemia and reperfusion of the liver (I/Rp). We previously reported that TNF-α induced liver injury is dependent on Fibrinogen like protein 2 (FGL2/Fibroleukin) and showed that FGL2 binding to its receptor, FcγRIIB, results in lymphocyte apoptosis. In this study we examine whether I/Rp is induced by specific binding of FGL2 to FcγRIIB expressed on SEC. METHODS Hepatic ischemia and reperfusion was induced in wild type (WT) mice and in mice with deletion or inhibition of FGL2 and FcRIIB. Liver injury was determined by AST release, necrosis and animal death. Apoptosis was evaluated with caspase 3 and TUNEL staining. RESULTS FGL2 deletion or inhibition resulted in decreased liver injury as determined by a marked reduction in both levels of AST and ALT and hepatocyte necrosis. Caspase 3 staining of SEC (12% vs. 75%) and hepatocytes (12% vs. 45%) as well as TUNEL staining of SEC (13% vs. 60%, p=0.02) and hepatocytes (18% vs. 70%, p=0.03), markers of apoptosis, were lower in Fgl2(-/-) compared to WT mice. In vitro incubation of SEC with FGL2 induced apoptosis of SEC from WT mice, but not FcγRIIB(-/-) mice. Deletion of FcγRIIB fully protected mice against SEC and hepatocyte death in vivo. Survival of mice deficient in either Fgl2(-/-) (80%) or FcγRIIB(-/-) (100%) was markedly increased compared to WT mice (10%) which were subjected to 75min of total hepatic ischemia (p=0.001). CONCLUSIONS FGL2 binding to the FcγRIIB receptor expressed on SEC is a critical event in the initiation of the hepatic reperfusion injury cascade through induction of SEC and hepatocyte death.
Collapse
Affiliation(s)
- Nazia Selzner
- Multi Organ Transplant Program, Department of Surgery, University of Toronto, Toronto General Hospital, Toronto, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Wang CF, Wang ZY, Li JY. Dual protective role of HO-1 in transplanted liver grafts: A review of experimental and clinical studies. World J Gastroenterol 2011; 17:3101-8. [PMID: 21912452 PMCID: PMC3158409 DOI: 10.3748/wjg.v17.i26.3101] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Revised: 02/02/2011] [Accepted: 02/09/2011] [Indexed: 02/06/2023] Open
Abstract
Liver transplantation is considered as the most effective treatment for end-stage liver disease. However, serious complications still exist, particularly in two aspects: ischemia and subsequent reperfusion of the liver, causing postoperative hepatic dysfunction and even failure; and acute and chronic graft rejections, affecting the allograft survival. Heme oxygenase (HO), a stress-response protein, is believed to exert a protective function on both the development of ischemia-reperfusion injury (IRI) and graft rejection. In this review of current researches on allograft protection, we focused on the HO-1. We conjecture that HO-1 may link these two main factors affecting the prognosis of liver transplantations. In this review, the following aspects were emphasized: the basic biological functions of HO-1, its roles in IRI and allograft rejection, as well as methods to induce HO-1 and the prospects of a therapeutic application of HO-1 in liver transplantation.
Collapse
|
20
|
Guibert EE, Petrenko AY, Balaban CL, Somov AY, Rodriguez JV, Fuller BJ. Organ Preservation: Current Concepts and New Strategies for the Next Decade. Transfus Med Hemother 2011; 38:125-142. [PMID: 21566713 PMCID: PMC3088735 DOI: 10.1159/000327033] [Citation(s) in RCA: 206] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2011] [Accepted: 01/26/2011] [Indexed: 12/12/2022] Open
Abstract
SUMMARY: Organ transplantation has developed over the past 50 years to reach the sophisticated and integrated clinical service of today through several advances in science. One of the most important of these has been the ability to apply organ preservation protocols to deliver donor organs of high quality, via a network of organ exchange to match the most suitable recipient patient to the best available organ, capable of rapid resumption of life-sustaining function in the recipient patient. This has only been possible by amassing a good understanding of the potential effects of hypoxic injury on donated organs, and how to prevent these by applying organ preservation. This review sets out the history of organ preservation, how applications of hypothermia have become central to the process, and what the current status is for the range of solid organs commonly transplanted. The science of organ preservation is constantly being updated with new knowledge and ideas, and the review also discusses what innovations are coming close to clinical reality to meet the growing demands for high quality organs in transplantation over the next few years.
Collapse
Affiliation(s)
- Edgardo E. Guibert
- Centro Binacional (Argentina-Italia) de Investigaciones en Criobiología Clínica y Aplicada (CAIC), Universidad Nacional de Rosario, Argentina
| | - Alexander Y. Petrenko
- Department of Cryobiochemistry, Institute for Problems of Cryobiology and Cryomedicine, Ukraine Academy of Sciences, Kharkov, Ukraine
| | - Cecilia L. Balaban
- Centro Binacional (Argentina-Italia) de Investigaciones en Criobiología Clínica y Aplicada (CAIC), Universidad Nacional de Rosario, Argentina
| | - Alexander Y. Somov
- Department of Cryobiochemistry, Institute for Problems of Cryobiology and Cryomedicine, Ukraine Academy of Sciences, Kharkov, Ukraine
| | - Joaquín V. Rodriguez
- Centro Binacional (Argentina-Italia) de Investigaciones en Criobiología Clínica y Aplicada (CAIC), Universidad Nacional de Rosario, Argentina
| | - Barry J. Fuller
- Cell, Tissue and Organ Preservation Unit, Department of Surgery & Liver Transplant Unit, UCL Medical School, Royal Free Hospital Campus, London, UK
| |
Collapse
|
21
|
Li N, Zhang L, Li H, Fang B. Administration of granulocyte colony-stimulating factor ameliorates radiation-induced hepatic fibrosis in mice. Transplant Proc 2011; 42:3833-9. [PMID: 21094866 DOI: 10.1016/j.transproceed.2010.09.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2010] [Accepted: 09/07/2010] [Indexed: 12/20/2022]
Abstract
On the basis of the recent report that granulocyte colony-stimulating factor (G-CSF) treatment significantly improves survival and liver histology among chemically injured mice, we investigated whether G-CSF administration could contribute to faster recovery and promote tissue repair after local liver irradiation. Bone marrow chimeric female C57BL/6 mice were treated with G-CSF at days 7, 14, and 21 after local liver irradiation. We assessed the fibrosis index and the origin of proliferating cells reconstituting the liver at 2 or 5 weeks after radiation challenge. At day 35 after local irradiation, we observed G-CSF treatment to significantly reduce radiation-induced liver damage and collagen deposition. In addition, hepatic hydroxyproline levels and serum fibrosis markers in mice receiving G-CSF administration after radiation challenge were significantly lower compared with those of control mice. More importantly, histological examination suggested that recovery from hepatic damage was much better among the G-CSF-treated mice. Immunofluorescence and fluorescence in situ hybridization analyses revealed that donor cells engrafted into the host liver displayed epithelium-like morphology and expressed albumin, albeit at low frequency. These results suggested that G-CSF treatment initiated endogenous hepatic tissue regeneration in response to radiation injury and ameliorated its fibrogenic effects.
Collapse
Affiliation(s)
- N Li
- Henan Key Laboratory for Experimental Hematology, Henan Institute of Haematology, Henan Tumor Hospital, Zhengzhou University, 127 Dongming Road, Zhengzhou 450008, China
| | | | | | | |
Collapse
|
22
|
Prescher A, Mory C, Martin M, Fiedler M, Uhlmann D. Effect of FTY720 treatment on postischemic pancreatic microhemodynamics. Transplant Proc 2010; 42:3984-3985. [PMID: 21168606 DOI: 10.1016/j.transproceed.2010.09.046] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Accepted: 09/09/2010] [Indexed: 11/21/2022]
Abstract
CD4+ T cells contribute to disturbances of pancreatic microcirculation after cold and even after warm ischemia/reperfusion (I/R). The aim of this study was to investigate a possible protective role of FTY720 (fingolimod) in this setting. In an in vivo model (42 Wistar rats), ischemia of the pancreas was induced for 60 minutes under anesthesia with xylazin/ketanest. Sham-operated (SO) (I), untreated ischemic (II), and treatment group with FTY720 pre-treatment (1 mg/kg body weight i.v.) (III) were investigated. The effect of FTY720 on I/R injury was assessed by in vivo microscopy 30-90 minutes after reperfusion and by measurement of serum lipase. In the untreated ischemic group (II), capillary constriction to 85.3 ± 6.3% of SO diameters and a reduction of functional capillary density to 67% was found. After 30 minutes of reperfusion, the number of T cells in capillaries was increased (165.7%; P < .05 vs I). FTY720 pretreatment reduced this number to 54.2% of SO (P < .05 vs II). Likewise, the number of adherent leukocytes in capillaries (145.4 ± 11.2% of SO) was reduced in group III (109.3 ± 11.4%; P < .05 vs II), leading to an improvement in functional capillary density in the treatment group (98.2 ± 2% of SO; P < .05 vs II). According to improved microcirculation, lipase values were reduced in the therapy group (P < .05). In conclusion, FTY720 ameliorates the microcirculatory and biochemical manifestations of pancreatic I/R injury by preventing T-cell infiltration.
Collapse
Affiliation(s)
- A Prescher
- University of Leipzig, 2(nd) Department of Surgery, Leipzig, Germany
| | | | | | | | | |
Collapse
|
23
|
Lin NC, Liu CS, Chang CJ, Loong CC, Hsia CY, Tsai HL. Changes in mitochondrial respiratory enzyme activity after ischemia-reperfusion injury in living-donor liver transplantation. Transplant Proc 2010; 42:721-4. [PMID: 20430156 DOI: 10.1016/j.transproceed.2010.03.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Ischemia-reperfusion (I-R) injury plays an important role in the immediate graft function in living-donor liver transplantation (LDLT). There is growing evidence that mitochondria play a pivotal role in I-R injury. Our aim was to evaluate changes in mitochondrial respiratory enzyme activities after I-R injury in LDLT. METHODS Specimens from 8 donor recipient pairs enrolled in this study were obtained from the donor livers before harvest (before I-R injury) and after vascular anastomosis in the recipient (after I-R injury). Histidine-tryptophan-ketoglutarate solution was used to perfuse the organ during the cold ischemic period between harvesting and transplantation. We correlated changes in mitochondrial respiratory enzyme complex activity (succinate cytochrome c reductase [SCCR]; NADH cytochrome c reductase [NCCR]) after I-R injury with clinical data and graft status. RESULTS NCCR and SCCR activities did not uniformly decrease after I-R injury. Two of 8 recipients experienced graft dysfunction after transplantation. The decrease in neither NCCR nor SCCR activity correlated with graft dysfunction in these 2 patients. Among the clinical factors, grafts from older donors tended to show decreased NCCR activity after I-R injury. CONCLUSIONS In this study, changes in mitochondrial respiratory enzyme activity failed to predict the severity of I-R injury in LDLT. The organ preservation solution may play a protective role on mitochondrial respiratory enzymes during I-R injury.
Collapse
Affiliation(s)
- N-C Lin
- Division of Transplantation Surgery, Department of Surgery, Taipei Veterans General Hospital, National Yang-Ming University School of Medicine, Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
24
|
Abstract
PURPOSE OF REVIEW This review gives a broad overview of the key factors of ischemic injury to the liver and presents the current modifications of preservation solutions and the few strategies of biological modulation in clinical use today. RECENT FINDINGS Protective effects in human-liver transplantation were shown by methylprednisolone treatment in decreased donors, and by inhalation of a nontoxic dose of nitric oxide in recipients. In addition, recent results showed rescue of pig livers, donated after cardiac death by application of a cocktail of substances addressing several previously identified mechanisms of ischemia-reperfusion injury. SUMMARY The future of a pharmacological approach attenuating or preventing ischemia-reperfusion injury lies in a combination of drugs acting simultaneously on several steps of the injury cascades. Applying these substances during flush, before, and during implantation appears as an attractive strategy to protect extended criteria liver grafts.
Collapse
|
25
|
Uchida Y, Ke B, Freitas MCS, Ji H, Zhao D, Benjamin ER, Najafian N, Yagita H, Akiba H, Busuttil RW, Kupiec-Weglinski JW. The emerging role of T cell immunoglobulin mucin-1 in the mechanism of liver ischemia and reperfusion injury in the mouse. Hepatology 2010; 51:1363-72. [PMID: 20091883 PMCID: PMC3066468 DOI: 10.1002/hep.23442] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The T cell immunoglobulin and mucin domain-containing molecules (TIM) protein family, which is expressed by T cells, plays a crucial role in regulating host adaptive immunity and tolerance. However, its role in local inflammation, such as innate immunity-dominated organ ischemia-reperfusion injury (IRI), remains unknown. Liver IRI occurs frequently after major hepatic resection or liver transplantation. Using an antagonistic anti-TIM-1 antibody (Ab), we studied the role of TIM-1 signaling in the model of partial warm liver ischemia followed by reperfusion. Anti-TIM-1 Ab monotherapy ameliorated the hepatocellular damage and improved liver function due to IR, as compared with controls. Histological examination has revealed that anti-TIM-1 Ab treatment decreased local neutrophil infiltration, inhibited sequestration of T lymphocytes, macrophages, TIM-1 ligand-expressing TIM-4(+) cells, and reduced liver cell apoptosis. Intrahepatic neutrophil activity and induction of proinflammatory cytokines/chemokines were also reduced in the treatment group. In parallel in vitro studies, anti-TIM-1 Ab suppressed interferon-gamma (IFN-gamma) production in concanavalin A (conA)-stimulated spleen T cells, and diminished tumor necrosis factor alpha (TNF-alpha)/interleukin (IL)-6 expression in a macrophage/spleen T cell coculture system. This is the first study to provide evidence for the novel role of TIM-1 signaling in the mechanism of liver IRI. TIM-1 regulates not only T for the role of cell activation but may also affect macrophage function in the local inflammation response. These results provide compelling data for further investigation of TIM-1 pathway in the mechanism of IRI, to improve liver function, expand the organ donor pool, and improve the overall success of liver transplantation.
Collapse
Affiliation(s)
- Yoichiro Uchida
- Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Bibo Ke
- Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Maria Cecilia S Freitas
- Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Haofeng Ji
- Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Danyun Zhao
- Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Elizabeth R Benjamin
- Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Nader Najafian
- Transplantation Research Center, Children's Hospital and Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Hideo Yagita
- Department of Immunology, Juntendo University School of Medicine, Tokyo, Japan
| | - Hisaya Akiba
- Department of Immunology, Juntendo University School of Medicine, Tokyo, Japan
| | - Ronald W Busuttil
- Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Jerzy W. Kupiec-Weglinski
- Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA,Address correspondence to: Jerzy W. Kupiec-Weglinski, MD, PhD. Dumont - UCLA Transplant Center 77-120 CHS, 10833 Le Conte Ave, Los Angeles, CA 90095. Phone: (310) 825-4196; Fax: (310) 267-2358;
| |
Collapse
|
26
|
Ildefonso JÁ, Arias-Díaz J. Fisiopatología de la lesión hepática por isquemia-reperfusión. Cir Esp 2010; 87:202-9. [DOI: 10.1016/j.ciresp.2009.11.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2009] [Accepted: 11/10/2009] [Indexed: 12/18/2022]
|
27
|
Fang B, Luo S, Song Y, Li N, Li H, Zhao RC. Intermittent dosing of G-CSF to ameliorate carbon tetrachloride-induced liver fibrosis in mice. Toxicology 2010; 270:43-8. [DOI: 10.1016/j.tox.2009.12.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Accepted: 12/03/2009] [Indexed: 11/29/2022]
|
28
|
Bamboat ZM, Ocuin LM, Balachandran VP, Obaid H, Plitas G, DeMatteo RP. Conventional DCs reduce liver ischemia/reperfusion injury in mice via IL-10 secretion. J Clin Invest 2010; 120:559-69. [PMID: 20093775 DOI: 10.1172/jci40008] [Citation(s) in RCA: 157] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Accepted: 12/02/2009] [Indexed: 01/06/2023] Open
Abstract
TLRs are recognized as promoters of tissue damage, even in the absence of pathogens. TLR binding to damage-associated molecular patterns (DAMPs) released by injured host cells unleashes an inflammatory cascade that amplifies tissue destruction. However, whether TLRs possess the reciprocal ability to curtail the extent of sterile inflammation is uncertain. Here, we investigated this possibility in mice by studying the role of conventional DCs (cDCs) in liver ischemia/reperfusion (I/R) injury, a model of sterile inflammation. Targeted depletion of mouse cDCs increased liver injury after I/R, as assessed by serum alanine aminotransferase and histologic analysis. In vitro, we identified hepatocyte DNA as an endogenous ligand to TLR9 that promoted cDCs to secrete IL-10. In vivo, cDC production of IL-10 required TLR9 and reduced liver injury. In addition, we found that inflammatory monocytes recruited to the liver via chemokine receptor 2 were downstream targets of cDC IL-10. IL-10 from cDCs reduced production of TNF, IL-6, and ROS by inflammatory monocytes. Our results implicate inflammatory monocytes as mediators of liver I/R injury and reveal that cDCs respond to DAMPS during sterile inflammation, providing the host with protection from progressive tissue damage.
Collapse
Affiliation(s)
- Zubin M Bamboat
- Hepatopancreatobiliary Service, Memorial Sloan-Kettering Cancer Center (MSKCC), New York, New York 10065, USA
| | | | | | | | | | | |
Collapse
|
29
|
de Rougemont O, Lehmann K, Clavien PA. Preconditioning, organ preservation, and postconditioning to prevent ischemia-reperfusion injury to the liver. Liver Transpl 2009; 15:1172-82. [PMID: 19790166 DOI: 10.1002/lt.21876] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Ischemia and reperfusion lead to injury of the liver. Ischemia-reperfusion injury is inevitable in liver transplantation and trauma and, to a great extent, in liver resection. This article gives an overview of the mechanisms involved in this type of injury and summarizes protective and treatment strategies in clinical use today. Intervention is possible at different time points: during harvesting, during the period of preservation, and during implantation. Liver preconditioning and postconditioning can be applied in the transplant setting and for liver resection. Graft optimization is merely possible in the period between the harvest and the implantation. Given that there are 3 stages in which a surgeon can intervene against ischemia-reperfusion injury, we have structured the review as follows. The first section reviews the approaches using surgical interventions, such as ischemic preconditioning, as well as pharmacological applications. In the second section, static organ preservation and machine perfusion are addressed. Finally, the possibility of treating the recipient or postconditioning is discussed.
Collapse
Affiliation(s)
- Olivier de Rougemont
- Swiss Hepato-Pancreatico-Biliary Center, Department of Surgery, University Hospital Zurich, Zurich, Switzerland
| | | | | |
Collapse
|
30
|
Teixeira ARF, Molan NT, Bellodi-Privato M, Coelho AM, Leite KR, Seguro AC, Bacchella T, Machado MCC. Rosiglitazone-enriched diet did not protect liver ischemia-reperfusion injury in a rat model. Acta Cir Bras 2009; 23:378-83. [PMID: 18641809 DOI: 10.1590/s0102-86502008000400013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2008] [Accepted: 03/20/2008] [Indexed: 11/22/2022] Open
Abstract
PURPOSE To determine whether rosiglitazone-enriched diet offer protection in a classical model of liver ischemia-reperfusion injury in rats. METHODS Two days before the experiment, rats were divided into 2 groups: Control Group (n=13) rats fed with standard diet; Rosi Group (n=13): rats fed with a powdered standard diet supplemented with rosiglitazone. The animals were submitted to liver ischemia-reperfusion by clamping the pedicle of median and left anterolateral lobes. After 1 hour of partial hepatic ischemia, the clamp was removed for reperfusion. After 2 or 24 hours (Control and Rosi Groups), blood was collected for enzymes and cytokines analysis. Ischemic and non-ischemic liver were collected for malondialdehyde analysis and histological assessment. Lungs were removed for tissue myeloperoxidase quantification. RESULTS There were no statistical differences between groups for all analysed parameters. CONCLUSION In this model, rosiglitazone-enriched diet did not protect liver against ischemia-reperfusion injury.
Collapse
|
31
|
Lu L, Li G, Rao J, Pu L, Yu Y, Wang X, Zhang F. In vitro induced CD4+CD25+Foxp3+ Tregs attenuate hepatic ischemia–reperfusion injury. Int Immunopharmacol 2009; 9:549-52. [DOI: 10.1016/j.intimp.2009.01.020] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Accepted: 01/22/2009] [Indexed: 11/27/2022]
|
32
|
Both tacrolimus and sirolimus decrease Th1/Th2 ratio, and increase regulatory T lymphocytes in the liver after ischemia/reperfusion. J Transl Med 2009; 89:433-45. [PMID: 19188906 DOI: 10.1038/labinvest.2009.3] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The protective effects of immunosuppressants against ischemia/reperfusion (I/R) injury have been attributed to their non-specific anti-inflammatory effect. However, these effects may also depend on their effect on T lymphocytes, which are increasingly considered to be key players in I/R. Here, we studied the effects of tacrolimus and sirolimus on lymphocyte subpopulations in an I/R rat model. The animals were treated with tacrolimus, sirolimus or vehicle, before undergoing a 60-min ischemia event of the right hepatic lobe, followed by excision of the remaining liver. After 2 h, I/R rats showed increased mortality, plasma lactate dehydrogenase (LDH) levels, hepatocyte apoptosis, liver histological injury and parenchymal infiltration by neutrophils, macrophages, NK cells and T lymphocytes. Most of the changes were antagonized by both immunosuppressants. Tacrolimus augmented the proportion of cycling cells in I/R rats, whereas sirolimus showed the opposite effect. The increased Th1/Th2 ratio found in I/R livers after 2 h was reverted by immunosuppressants, which also amplified the proportion of CD4(+)CD25(+)Foxp3(+) regulatory T lymphocytes at 24 h. The protective effects of both tacrolimus and sirolimus correlated well with a decreased ratio of proinflammatory to anti-inflammatory T lymphocytes, and with an increase in the Treg proportion. This suggests a new mechanism to explain the known beneficial effect shown by immunosuppressants early after I/R.
Collapse
|
33
|
Edgerton C, Crispín JC, Moratz CM, Bettelli E, Oukka M, Simovic M, Zacharia A, Egan R, Chen J, Dalle Lucca JJ, Juang YT, Tsokos GC. IL-17 producing CD4+ T cells mediate accelerated ischemia/reperfusion-induced injury in autoimmunity-prone mice. Clin Immunol 2009; 130:313-21. [PMID: 19058762 PMCID: PMC2661238 DOI: 10.1016/j.clim.2008.09.019] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2008] [Revised: 09/20/2008] [Accepted: 09/23/2008] [Indexed: 12/31/2022]
Abstract
Elements of the innate and adaptive immune response have been implicated in the development of tissue damage after ischemic reperfusion (I/R). Here we demonstrate that T cells infiltrate the intestine of C57BL/6 mice subjected to intestinal I/R during the first hour of reperfusion. The intensity of the T cell infiltration was higher in B6.MRL/lpr mice subjected to intestinal I/R and reflected more severe tissue damage than that observed in control mice. Depletion of T cells limited I/R damage in B6.MRL/lpr mice, whereas repletion of B6.MRL/lpr lymph node-derived T cells into the I/R-resistant Rag-1(-/-) mouse reconstituted tissue injury. The tissue-infiltrating T cells were found to produce IL-17. Finally, IL-23 deficient mice, which are known not to produce IL-17, displayed significantly less intestinal damage when subjected to I/R. Our data assign T cells a major role in intestinal I/R damage by virtue of producing the pro-inflammatory cytokine IL-17.
Collapse
Affiliation(s)
- Colin Edgerton
- Department of Medicine, Uniformed Services University for the Health Sciences, Bethesda, MD 20814
| | - José C. Crispín
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115
| | - Chantal M. Moratz
- Department of Medicine, Uniformed Services University for the Health Sciences, Bethesda, MD 20814
- Department of Cellular Injury, Walter Reed Army Institute of Research, Silver Spring, MD 20910
| | - Estelle Bettelli
- Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Mohamed Oukka
- Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Milomir Simovic
- Department of Medicine, Uniformed Services University for the Health Sciences, Bethesda, MD 20814
- Department of Cellular Injury, Walter Reed Army Institute of Research, Silver Spring, MD 20910
| | - Athina Zacharia
- Department of Medicine, Uniformed Services University for the Health Sciences, Bethesda, MD 20814
| | - Ryan Egan
- Department of Cellular Injury, Walter Reed Army Institute of Research, Silver Spring, MD 20910
| | - Jie Chen
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115
| | - Jurandir J. Dalle Lucca
- Department of Cellular Injury, Walter Reed Army Institute of Research, Silver Spring, MD 20910
| | - Yuang-Taung Juang
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115
| | - George C. Tsokos
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
34
|
Boutros T, Nantel A, Emadali A, Tzimas G, Conzen S, Chevet E, Metrakos PP. The MAP kinase phosphatase-1 MKP-1/DUSP1 is a regulator of human liver response to transplantation. Am J Transplant 2008; 8:2558-68. [PMID: 19032224 DOI: 10.1111/j.1600-6143.2008.02420.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Orthotopic liver transplantation (OLT) continues to be the only remedy for end-stage liver disease. In an attempt to decrease the ever-widening gap between organ donor and recipient numbers, and ultimately make more livers amenable to transplantation, we characterized the healthy human liver's response to ischemia and reperfusion-induced injury during transplantation. This was carried out by transcriptional profiling using cDNA microarray to identify genes whose expression was modulated at the 1-h postreperfusion time point. We observed that the map kinase phosphatase-1/dual-specificity phosphatase-1 (MKP-1/DUSP1) mRNA was strongly and significantly upregulated. Validation of this observation was carried out using reverse transcriptase-polymerase chain reaction (RT-PCR), immunoblotting and immunohistochemistry. In addition, we characterized the signaling pathways regulating MKP-1 expression using the human hepatoma cell line HepG2. Finally, by combining MKP-1 silencing with reperfusion-associated stresses, we reveal the preferential role of this protein in attenuating the activity of the JNK and p38(MAPK) pathways, and the resulting apoptosis, making MKP-1 a potential target for therapeutic intervention.
Collapse
Affiliation(s)
- T Boutros
- Organelle Signalling Laboratory, Department of Surgery, McGill University, Montreal, QC, Canada
| | | | | | | | | | | | | |
Collapse
|
35
|
Significance of rosiglitazone inhibiting TLR4 expression in partial hepatic ischemia/reperfusion of mice. ACTA ACUST UNITED AC 2008; 28:564-7. [DOI: 10.1007/s11596-008-0516-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2008] [Indexed: 10/19/2022]
|
36
|
Reciprocal Activation Between CD4+ T Cells and Kupffer Cells During Hepatic Ischemia-Reperfusion. Transplantation 2008; 86:710-8. [DOI: 10.1097/tp.0b013e3181821aa7] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
37
|
Yu SJ, Oh DJ, Yu SH. The investigation of macrophage infiltration in the early phase of ischemic acute renal failure in mice. Korean J Intern Med 2008; 23:64-71. [PMID: 18646508 PMCID: PMC2686976 DOI: 10.3904/kjim.2008.23.2.64] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND/AIMS Inflammation plays a key role in ischemic acute renal failure (ARF). The present study investigated the infiltration of macrophages in the early phase of ischemic ARF in mice. METHODS Ischemic ARF was induced by renal clamping for 22 min, while the control mice underwent sham surgery (no clamping). The serum creatinine and blood urea nitrogen (BUN) levels were measured in the control and post-ischemia mice. Immunofluorescence staining was used to measure the number of CD 11b-positive cells in the kidney tissue sections to determine the amount of post-ischemic macrophage infiltration. Lipo-Cl2MBP (clodronate) for macrophages depletion was injected via a tail vein 5 d before ischemia induction and again 2 d before ischemia induction. RESULTS The study found that the post-ischemia mice had higher levels of serum creatinine and BUN at 16 and 24 h compared to the controls. Immunofluorescence staining showed there were more macrophages in the post-ischemic tissue at 2, 8, 16 and 24 h compared to the control tissue, and that most of these macrophages were located in the outer medulla. The mice treated with clodronate prior to ischemia induction were found to have lower levels of serum creatinine compared to those mice that weren't treated with clodronate. CONCLUSIONS There was significant infiltration of macrophages from the early phase of ischemic ARF, and this peaked at 16-24 h. Macrophage depletion using clodronate was protective against ischemic ARF.
Collapse
Affiliation(s)
- Soo-Jeong Yu
- Department of Internal Medicine, Incheon Christian Hospital, Korea
| | - Dong-Jin Oh
- Department of Internal Medicine, College of Medicine, Chung-Ang University, Seoul, Korea
| | - Suk-Hee Yu
- Department of Internal Medicine, College of Medicine, Chung-Ang University, Seoul, Korea
| |
Collapse
|
38
|
Zhai Y, Qiao B, Gao F, Shen X, Vardanian A, Busuttil RW, Kupiec-Weglinski JW. Type I, but not type II, interferon is critical in liver injury induced after ischemia and reperfusion. Hepatology 2008; 47:199-206. [PMID: 17935177 DOI: 10.1002/hep.21970] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We have documented the key role of toll-like receptor 4 (TLR4) activation and its signaling pathway mediated by interferon (IFN) regulatory factor 3, in the induction of inflammation leading to the hepatocellular damage during liver ischemia/reperfusion injury (IRI). Because type I IFN is the major downstream activation product of that pathway, we studied its role in comparison with IFN-gamma. Groups of type I (IFNAR), type II (IFNGR) IFN receptor-deficient mice, along with wild-type (WT) controls were subjected to partial liver warm ischemia (90 minutes) followed by reperfusion (1-6 hours). Interestingly, IFNAR knockout (KO) but not IFNGR KO mice were protected from IR-induced liver damage, as evidenced by decreased serum alanine aminotransferase and preservation of tissue architecture. IR-triggered intrahepatic pro-inflammatory response, assessed by tumor necrosis factor (TNF-alpha), interleukin 6 (IL-6), and chemokine (C-X-C motif) ligand 10 (CXCL-10) expression, was diminished selectively in IFNAR KO mice. Consistent with these findings, our in vitro cell culture studies have shown that: (1) although hepatocytes alone failed to respond to lipopolysaccharide (LPS), when co-cultured with macrophages they did respond to LPS via macrophage-derived IFN-beta; (2) macrophages required type I IFN to sustain CXCL10 production in response to LPS. This study documents that type I, but not type II, IFN pathway is required for IR-triggered liver inflammation/damage. Type I IFN mediates potential synergy between nonparenchyma and parenchyma cells in response to TLR4 activation.
Collapse
Affiliation(s)
- Yuan Zhai
- Dumont-UCLA Transplant Center, Department of Surgery, Division of Liver and Pancreas Transplantation, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-7054, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Zhai Y, Shen XD, Gao F, Zhao A, Freitas MC, Lassman C, Luster AD, Busuttil RW, Kupiec-Weglinski JW. CXCL10 regulates liver innate immune response against ischemia and reperfusion injury. Hepatology 2008; 47:207-14. [PMID: 18041715 DOI: 10.1002/hep.21986] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
UNLABELLED We have shown that activation of toll-like receptor 4 (TLR4) and its interferon regulatory factor 3 (IRF3)-dependent downstream signaling pathway are required for the development of liver ischemia/reperfusion injury (IRI). This study focused on the role of TLR4-IRF3 activation pathway products, in particular, chemokine (C-X-C motif) ligand 10 (CXCL10). The induction of CXCL10 by liver IR was rapid (1 hour postreperfusion), restricted (ischemic lobes), and specific (no CXCL9 and CXCL11 induction). Functionally, CXCL10 was critical for IR-induced liver inflammation and hepatocellular injury. CXCL10 knockout (KO) mice were protected from IRI, as evidenced by reduced serum alanine aminotransferase (sALT) levels and preserved liver histological detail. The induction of pro-inflammatory genes, such as tumor necrosis factor alpha (TNF-alpha), interleukin 1beta (IL-1beta), IL-6, and IL-12beta was diminished, whereas the induction of the IL-10 gene remained intact in CXCL10 KO mice, indicating an altered liver response against IR. This was accompanied by selective down-regulation of extracellular signal-regulated kinase (ERK), but intact Jun N-terminal kinase (JNK), activation in the KO IR livers. This altered liver inflammation response was (1) specific to IR, because lipopolysaccharide (LPS) induced a comparable pro-inflammatory response in CXCL10 KO and wild-type (WT) mice; and (2) responsible for liver cytoprotection from IR, because neutralization of IL-10 restored local inflammation and hepatocellular damage. CONCLUSION CXCL10 regulates liver inflammation response against IRI, and its deficiency protected livers from IRI by local IL-10-mediated cytoprotection. Targeting CXCL10 may provide a novel therapeutic means to ameliorate liver IRI in clinics.
Collapse
Affiliation(s)
- Yuan Zhai
- Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Huang Y, Rabb H, Womer KL. Ischemia-reperfusion and immediate T cell responses. Cell Immunol 2007; 248:4-11. [PMID: 17942086 PMCID: PMC2211448 DOI: 10.1016/j.cellimm.2007.03.009] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2007] [Accepted: 03/30/2007] [Indexed: 12/12/2022]
Abstract
The pathogenesis of ischemia-reperfusion injury (IRI) is complex and not well understood. Inflammation plays an important role in IRI, with involvement of leukocytes, adhesion molecules, chemokines and cytokines. Emerging data suggest a role of T cells as mediators of IRI both in renal and extra-renal organs. Divergent roles of T cell subsets have also been elucidated, suggesting a more complicated role of T cells in the different phases of IRI. This review presents recent evidence from various animal models that advances our understanding of the role T cells play in IRI. These findings entertain the possibility of using immunotherapeutic agents for the prevention and treatment of IRI.
Collapse
Affiliation(s)
- Yanfei Huang
- Division of Nephrology, Johns Hopkins University School of Medicine, Ross 965, 720 Rutland Avenue, Baltimore, MD 21205, USA
| | | | | |
Collapse
|
41
|
Dinant S, Veteläinen RL, Florquin S, van Vliet AK, van Gulik TM. IL-10 attenuates hepatic I/R injury and promotes hepatocyte proliferation. J Surg Res 2007; 141:176-82. [PMID: 17543989 DOI: 10.1016/j.jss.2006.09.018] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2006] [Revised: 07/26/2006] [Accepted: 09/13/2006] [Indexed: 11/24/2022]
Abstract
BACKGROUND One of the most important determinants of the outcome of hepatic ischemia and reperfusion (I/R) injury is the onset of the inflammatory response. Interleukin-10 (IL-10) is a potent anti-inflammatory cytokine. It inhibits the production of interleukin-6 (IL-6), which however, also is involved in priming hepatocyte proliferation. The aim of this study was to examine the protective effects and the influence on the regenerative response of exogenous as well as endogenous IL-10 in a rat model of hepatic I/R injury. MATERIALS AND METHODS Seventy percent Liver I/R was induced in male Wistar rats for 60 min followed by 24 h reperfusion. One group underwent a midline laparotomy with recombinant rat (rr)IL-10 administration (SHAM + IL-10). The other groups underwent 60 min ischemia with administration of saline (I/R + saline), rrIL-10 [at two different time-points, i.e., I/R + IL-10pre(ischemia) and I/R + IL-10end(ischemia)] or anti-rat IL-10 antibody (I/R + antiIL-10). RESULTS Parenchymal damage, as assessed by plasma alanine aminotransferase and aspartate aminotransferase, was significantly reduced by rrIL-10 and by endogenous IL-10 (P < 0.05). Also, rrIL-10 significantly reduced IL-6 production and the accumulation of neutrophils in liver and lung tissue, as measured by myeloperoxidase activity. Necrosis and apoptosis were significantly reduced and hepatocyte proliferation was stimulated by rrIL-10. CONCLUSIONS RrIL-10 and, to a lesser extent, endogenous IL-10, attenuate damage and inflammation, while rrIL-10 also promotes proliferation after hepatic I/R injury in rats. Therefore, rrIL-10 has potential use to prevent I/R injury and to promote liver regeneration after partial liver resection with temporary inflow occlusion.
Collapse
Affiliation(s)
- Sander Dinant
- Department of Surgery, Surgical Laboratory, Academic Medical Center, Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
42
|
|
43
|
Xie JF, Wang G, Debonera F, Han R, Dorf ME, Hancock W, Olthoff KM. Selective neutralization of the chemokine TCA3 reduces the increased injury of partial versus whole liver transplants induced by cold preservation. Transplantation 2007; 82:1501-9. [PMID: 17164723 DOI: 10.1097/01.tp.0000243167.11566.eb] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
BACKGROUND Given the shortage of liver donors and the development of techniques for partial liver transplantation, we compared chemokine expression and inflammatory cell infiltration of partial versus whole grafts in a mouse syngeneic liver transplant model. METHODS Orthotopic liver transplantation, using whole or partial murine liver grafts, was performed following cold preservation in ViaSpan solution for periods of one to eight hours. RESULTS Partial grafts showed more severe cold ischemia/reperfusion injury and greater inflammatory cell infiltration than whole grafts, and was accompanied by the marked intrahepatic upregulation of multiple chemokines. Quantitative analysis showed that compared with expression in whole grafts harvested after the same period of cold ischemia, partial grafts had eightfold more T-cell activation gene (TCA)-3 (CCL1) chemokine messenger RNA (mRNA) expression (P<0.01) and sixfold more inducible protein (IP)-10 chemokine (CCL10) mRNA expression (P<0.01), as well as increased expression of the chemokine receptors CCR8 (receptor for TCA3) and CXCR3 (receptor for IP-10; P<0.01). Blockade of TCA3 by neutralizing monoclonal antibody significantly decreased intragraft IP-10 expression (P<0.05) but not tumor necrosis factor-alpha or interleukin-6 expression in partial grafts, and significantly decreased cold ischemia/reperfusion injury (P<0.05) and associated neutrophil and T-cell infiltration (P<0.01). CONCLUSIONS These data demonstrate that the chemokine TCA3/CCL1 is important to the pathogenesis of ischemic injury of experimental partial liver grafts, and that its therapeutic targeting within such grafts can overcome the deleterious effects of prolonged cold preservation and restore liver function to the level achieved using whole liver grafts.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/pharmacology
- Chemokine CCL1
- Chemokines, CC/antagonists & inhibitors
- Chemokines, CC/genetics
- Chemokines, CC/metabolism
- Cold Ischemia
- Cryopreservation
- Liver Transplantation
- Male
- Mice
- Neutrophil Infiltration/drug effects
- Organ Preservation
- RNA, Messenger/analysis
- RNA, Messenger/metabolism
- Receptors, CCR8
- Receptors, CXCR3
- Receptors, Chemokine/genetics
- Receptors, Chemokine/metabolism
- Receptors, Cytokine/genetics
- Receptors, Cytokine/metabolism
- Reperfusion Injury/metabolism
- Reperfusion Injury/pathology
- Reperfusion Injury/prevention & control
- T-Lymphocytes/drug effects
- Up-Regulation/drug effects
Collapse
Affiliation(s)
- Jin-Fu Xie
- Department of Surgery, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Kaudel CP, Frink M, van Griensven M, Schmiddem U, Probst C, Bergmann S, Krettek C, Klempnauer J, Winkler M. FTY720 Application Following Isolated Warm Liver Ischemia Improves Long-Term Survival and Organ Protection in a Mouse Model. Transplant Proc 2007; 39:493-8. [PMID: 17362766 DOI: 10.1016/j.transproceed.2007.01.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND Ischemia-reperfusion-Injury (I/RI) is a common complication in transplant-, liver-, and heart surgery. The I/RI is mediated and aggravated by different types of leukocytes such as lymphocytes, monocytes, and neutrophil granulocytes, with consecutive enlargement of the expression of adhesion molecules. This study shows an organ-protective effect of an intraoperative FTY720 administration following warm liver ischemia (Pringle's maneuver). METHODS Male c57BL6/J mice (n = 46, body weight [BW] 25 to 30 g) were used. Either FTY720 (1 mg/kg BW), steroids (5 mg/kg BW), or physiological saline solution was administered intraperitoneally. Liver-ischemia was applied for 30 minutes with subsequent follow-up for 48 hours. At termination, all surviving animals were sacrificed. The impact of the drugs administered on long-term survival, time of death, and development of blood T-lymphocyte concentration was determined. Follow-up of T-lymphocyte concentration in peripheral blood was examined throughout FACS-analysis. RESULTS Following 30 minutes of ischemia, FTY720, but not steroid or vehicle treatment, showed a significant protective effect on long-term survival. FACS-analysis showed significant T-lymphocyte depletion in peripheral blood following FTY720 but not steroids or vehicle treatment. CONCLUSION The improved long-term survival following FTY720 application shown in this study might be due to a protective effect of FTY720 in prevention of I/RI. This might be mediated by the T-lymphocyte depletion shown in the FACS-analysis.
Collapse
Affiliation(s)
- C P Kaudel
- Department of Transplant Surgery, Hannover Medical School, Hannover, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Burne-Taney MJ, Liu M, Ascon D, Molls RR, Racusen L, Rabb H. Transfer of lymphocytes from mice with renal ischemia can induce albuminuria in naive mice: a possible mechanism linking early injury and progressive renal disease? Am J Physiol Renal Physiol 2006; 291:F981-6. [PMID: 16757731 DOI: 10.1152/ajprenal.00229.2005] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Severe ischemia-reperfusion injury (IRI) predisposes to long-term impairment in kidney function both in patients and experimentally through unknown mechanisms. Given emerging evidence implicating lymphocytes in the pathogenesis of early injury to kidney, liver, and lung after IRI, we hypothesized that kidney IRI would potentially release or expose normally sequestered antigens that would lead to proliferation of antigen-recognizing lymphocytes. This, in turn, would directly participate in progressive kidney injury. To test this hypothesis, we purified splenic lymphocytes from C57BL/6 mice with severe renal IRI or sham operation 6 wk postischemia and transferred these cells to normal mice. Donor mice with IRI had significant fibrosis and cellular inflammation. The recipient mice were followed for 6 or 12 wk. Donor lymphocytes were found to traffic into recipient kidney. Twelve weeks after transfer, kidneys from mice which received IRI-primed lymphocytes exhibited significantly increased urinary albumin excretion compared with lymphocytes from sham mice. Splenic CD3+, CD4+, CD3+CD25+, and CD4+CD44+ counts were significantly increased in mice after lymphocyte transfer from IRI mice vs. mice with lymphocytes from sham mice. These data demonstrate that lymphocytes from IRI mice can traffic to recipient kidney and directly mediate albuminuria. These data identify a novel mechanism by which initial kidney injury predisposes to long-term dysfunction and identify lymphocytes as potential therapeutic targets for progressive renal diseases.
Collapse
Affiliation(s)
- Melissa J Burne-Taney
- Division of Nephrology, Johns Hopkins Univ. School of Medicine, Ross 965, 720 Rutland Ave, Baltimore, MD 21205, USA
| | | | | | | | | | | |
Collapse
|
46
|
Matsumoto T, O'Malley K, Efron PA, Burger C, McAuliffe PF, Scumpia PO, Uchida T, Tschoeke SK, Fujita S, Moldawer LL, Hemming AW, Foley DP. Interleukin-6 and STAT3 protect the liver from hepatic ischemia and reperfusion injury during ischemic preconditioning. Surgery 2006; 140:793-802. [PMID: 17084723 DOI: 10.1016/j.surg.2006.04.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2006] [Revised: 04/27/2006] [Accepted: 04/28/2006] [Indexed: 12/26/2022]
Abstract
BACKGROUND Ischemic preconditioning has been shown to protect the liver from ischemia/reperfusion injury. We hypothesized that IL-6 directly modulates the protective effects of ischemic preconditioning. METHODS Three weeks after undergoing splenic transposition, wild-type C57BL/6 and IL-6 null mice underwent 75 minutes of total hepatic ischemia with or without prior ischemic preconditioning (10 minutes of ischemia followed by 15 minutes of reperfusion). After reperfusion, serum ALT, serum IL-6, hepatic IL-6 mRNA, hepatic pSTAT3, and liver histology were evaluated. RESULTS In wild-type mice, survival at 24 hours was greater in the preconditioned group compared with the non-preconditioned group (75% vs 40%, P<.05). In IL-6 null mice, however, ischemic preconditioning did not improve survival when compared with the non-preconditioned group. Preconditioning significantly reduced hepatocellular injury in wild-type mice (P<.05) when compared with IL-6 null animals. This protection was associated with significant increases in serum IL-6, hepatic IL-6 mRNA, and hepatic pSTAT3 levels (P<.05). The protective effects of ischemic preconditioning that correlated with significant increases in systemic IL-6, hepatic IL-6 mRNA abundance, and pSTAT3 levels, were not observed in IL-6 null mice. CONCLUSIONS The protective effects of ischemic preconditioning during total hepatic ischemia/reperfusion injury are dependent on IL-6 signaling and are associated with increased phosphorylation of hepatic STAT3.
Collapse
Affiliation(s)
- Tadashi Matsumoto
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, USA, and Department of Surgery, Showa University Fujigaoka Hospital, Yokohama, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Li L, Okusa MD. Blocking the immune response in ischemic acute kidney injury: the role of adenosine 2A agonists. ACTA ACUST UNITED AC 2006; 2:432-44. [PMID: 16932478 DOI: 10.1038/ncpneph0238] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2005] [Accepted: 03/17/2006] [Indexed: 12/15/2022]
Abstract
Acute kidney injury (AKI) is associated with a high degree of morbidity and mortality and its incidence is increasing. These factors, together with a lack of successful clinical trials, necessitate a comprehensive evaluation of the pathogenesis of AKI and trial design. The progress that has been made in elucidating the pathogenesis of AKI has defined inflammation as an early event and therefore a potential target for therapeutic intervention. This Review summarizes recent advances in our understanding of the role of inflammation in AKI as well as our approach to limiting inflammation using compounds that stimulate adenosine 2A receptors (A(2A)Rs). A(2A)Rs are members of a family of guanine nucleotide-binding proteins that have become a focus of interest primarily because of their ability to broadly inactivate the inflammatory cascade. An A(2A) agonist-ATL146 ester (ATL146e)-is currently being tested in a phase III clinical trial as a pharmacological stress agent in cardiac perfusion imaging studies. This study, together with extensively published preclinical data, will facilitate testing of ATL146e in human trials of AKI.
Collapse
Affiliation(s)
- Li Li
- Department of Medicine, Carter Immunology Center, University of Virginia, Charlottesville, VA, USA
| | | |
Collapse
|
48
|
Marques VP, Gonçalves GM, Feitoza CQ, Cenedeze MA, Fernandes Bertocchi AP, Damião MJ, Pinheiro HS, Antunes Teixeira VP, dos Reis MA, Pacheco-Silva A, Saraiva Câmara NO. Influence of TH1/TH2 Switched Immune Response on Renal Ischemia-Reperfusion Injury. ACTA ACUST UNITED AC 2006; 104:e48-56. [PMID: 16741373 DOI: 10.1159/000093676] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND/AIMS Recent evidence shows a critical role of the CD4+ T cell with the Th1/Th2 paradigm as a possible effector mechanism in ischemia and reperfusion injury. We hypothesize that a polarized Th1 activation response may negatively influence the renal IRI through its relationship with chemokine production (MCP-1) and with a protective tissue response (HO-1). METHODS We subjected mice to renal ischemia for 45 min using IL-4 and IL-12 knockout C57BL/6. We then measured serum urea levels, performed histomorphometric analysis for tubular necrosis and regeneration, and evaluated the mRNA expression of HO-1, t-bet, Gata-3 and MCP-1 by real-time PCR at 24, 48 and 120 h after surgery. RESULTS/CONCLUSIONS The IL-4 knockout mice had a statistically significant rise in serum urea levels post IRI compared with control animals. The IL-12-deficient mice were not affected. The IL-4-deficient mice had a statistically significant increase in tubular injury and impairment in cell regeneration. The IRI in IL-4-deficient mice was accompanied by higher levels of HO-1, t-bet and later up-regulation of MCP-1. These findings suggest that the deleterious effects of the Th1 cell involve increased production of chemokines such as MCP-1.
Collapse
Affiliation(s)
- Vilmar Paiva Marques
- Laboratório de Imunologia Clínica e Experimental, Division of Nephrology, Universidade Federal de São Paulo, Escola Paulista de Medicina, São Paulo, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
|
50
|
Xu MQ, Shuai XR, Yan ML, Zhang MM, Yan LN. Nuclear factor-kappaB decoy oligodeoxynucleotides attenuates ischemia/reperfusion injury in rat liver graft. World J Gastroenterol 2006; 11:6960-7. [PMID: 16437600 PMCID: PMC4717038 DOI: 10.3748/wjg.v11.i44.6960] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM To evaluate the protective effect of NF-kappaB decoy oligodeoxynucleotides (ODNs) on ischemia/reperfusion (I/R) injury in rat liver graft. METHODS Orthotopic syngeneic rat liver transplantation was performed with 3 h of cold preservation of liver graft in University of Wisconsin solution containing phosphorothioated double-stranded NF-kappaB decoy ODNs or scrambled ODNs. NF-kappaB decoy ODNs or scrambled ODNs were injected intravenously into donor and recipient rats 6 and 1 h before operation, respectively. Recipients were killed 0 to 16 h after liver graft reperfusion. NF-kappaB activity in the liver graft was analyzed by electrophoretic mobility shift assay (EMSA). Hepatic mRNA expression of TNF-alpha, IFN-gamma and intercellular adhesion molecule-1 (ICAM-1) were determined by semiquantitative RT-PCR. Serum levels of TNF-alpha and IFN-gamma were measured by enzyme-linked immunosorbent assays (ELISA). Serum level of alanine transaminase (ALT) was measured using a diagnostic kit. Liver graft myeloperoxidase (MPO) content was assessed. RESULTS NF-kappaB activation in liver graft was induced in a time-dependent manner, and NF-kappaB remained activated for 16 h after graft reperfusion. NF-kappaB activation in liver graft was significant at 2 to 8 h and slightly decreased at 16 h after graft reperfusion. Administration of NF-kappaB decoy ODNs significantly suppressed NF-kappaB activation as well as mRNA expression of TNF-alpha, IFN-gamma and ICAM-1 in the liver graft. The hepatic NF-kappaB DNA binding activity [presented as integral optical density (IOD) value] in the NF-kappaB decoy ODNs treatment group rat was significantly lower than that of the I/R group rat (2.16+/-0.78 vs 36.78+/-6.35 and 3.06+/-0.84 vs 47.62+/- 8.71 for IOD value after 4 and 8 h of reperfusion, respectively, P<0.001). The hepatic mRNA expression level of TNF-alpha, IFN-gamma and ICAM-1 [presented as percent of beta-actin mRNA (%)] in the NF-kappaB decoy ODNs treatment group rat was significantly lower than that of the I/R group rat (8.31+/-3.48 vs 46.37+/-10.65 and 7.46+/- 3.72 vs 74.82+/-12.25 for hepatic TNF-alpha mRNA, 5.58+/-2.16 vs 50.46+/-9.35 and 6.47+/-2.53 vs 69.72+/-13.41 for hepatic IFN-gamma mRNA, 6.79+/-2.83 vs 46.23+/-8.74 and 5.28+/-2.46 vs 67.44+/-10.12 for hepatic ICAM-1 mRNA expression after 4 and 8 h of reperfusion, respectively, P<0.001). Administration of NF-kappaB decoy ODNs almost completely abolished the increase of serum level of TNF-alpha and IFN-gamma induced by hepatic ischemia/reperfusion, the serum level (pg/mL) of TNF-alpha and IFN-gamma in the NF-kappaB decoy ODNs treatment group rat was significantly lower than that of the I/R group rat (42.7+/-13.6 vs 176.7+/-15.8 and 48.4+/-15.1 vs 216.8+/-17.6 for TNF-alpha level, 31.5+/-12.1 vs 102.1+/-14.5 and 40.2+/-13.5 vs 118.6+/-16.7 for IFN-gamma level after 4 and 8 h of reperfusion, respectively, P<0.001). Liver graft neutrophil recruitment indicated by MPO content and hepatocellular injury indicated by serum ALT level were significantly reduced by NF-kappaB decoy ODNs, the hepatic MPO content (A655) and serum ALT level (IU/L) in the NF-kappaB decoy ODNs treatment group rat was significantly lower than that of the I/R group rat (0.17+/-0.07 vs 1.12+/-0.25 and 0.46+/-0.17 vs 1.46+/-0.32 for hepatic MPO content, 71.7+/-33.2 vs 286.1+/-49.6 and 84.3+/-39.7 vs 467.8+/-62.3 for ALT level after 4 and 8 h of reperfusion, respectively, P<0.001). CONCLUSION The data suggest that NF-kappaB decoy ODNs protects against I/R injury in liver graft by suppressing NF-kappaB activation and subsequent expression of proinflammatory mediators.
Collapse
Affiliation(s)
- Ming-Qing Xu
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China.
| | | | | | | | | |
Collapse
|