1
|
Zhang J, Zhu YD, Li CQ, Fan YM, Huo H, Sun CG, Zhou J, Sun L, Qian XK, Zou LW. A sensitive fluorescence assay of serum dipeptidyl peptidase IV activity to predict the suitability of its inhibitors in patients with type 2 diabetes mellitus. J Pharm Biomed Anal 2024; 249:116382. [PMID: 39098293 DOI: 10.1016/j.jpba.2024.116382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/06/2024]
Abstract
DPP-IV inhibitors, which are close to the natural hypoglycemic pathway of human physiology and have few side effects, have been extensively employed in the management of type 2 diabetes mellitus (T2DM). However, there are currently no specific blood indicators that can indicate or predict a patient's suitability for DPP-IV inhibitors. In this study, based on the self-developed high-specificity fluorescent substrate glycyl-prolyl-N-butyl-4-amino-1, 8-naphthimide (GP-BAN), a detection method of human serum DPP-IV activity was established and optimized. The method demonstrates a favorable lower limit of detection (LOD) at 0.32 ng/mL and a satisfactory lower limit of quantification (LOQ) of 1.12 ng/mL, and can be used for the detection of DPP-IV activity in trace serum (2 μL). In addition, Vitalliptin and Sitagliptin showed similar IC50 values when human recombinant DPP-IV and human serum were used as enzyme sources, and the intra-day and inter-day precision obtained by the microplate analyzer were less than 15 %. These results indicate that the microplate reader based detection technique has good accuracy, repeatability and reproducibility. A total of 700 volunteers were recruited, and 646 serum samples were tested for DPP-IV activity. The results showed that serum DPP-IV activity was higher in patients with T2DM than in controls (P < 0.01). However, the statistical data of family history of diabetes, gender and age of diabetic patients showed no statistical significance, and there was no contrast difference. The DPP-IV activity of serum in T2DM patients ranged from 2.4 μmol/min/L to 78.6 μmol/min/L, with a huge difference of up to 32-fold. These results suggest that it is necessary to test DPP-IV activity in patients with T2DM when taking DPP-IV inhibitors to determine the applicability of DPP-IV inhibitors in T2DM patients. These results suggest that it is necessary to detect the activity of DPP-IV in blood before taking DPP-IV inhibitors in patients with T2DM to judge the applicability of DPP-IV inhibitors in patients with T2DM.
Collapse
Affiliation(s)
- Jing Zhang
- Translational Medicine Research Center, Guizhou Medical University, Guiyang, Guizhou 550025, China; Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ya-Di Zhu
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Ci-Qin Li
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yi-Ming Fan
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hong Huo
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Cheng-Gong Sun
- The Second Hospital of Dalian Medical University, Dalian 116023, China
| | - Jing Zhou
- Translational Medicine Research Center, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Lei Sun
- The Second Hospital of Dalian Medical University, Dalian 116023, China.
| | - Xing-Kai Qian
- Translational Medicine Research Center, Guizhou Medical University, Guiyang, Guizhou 550025, China; Department of Cardiac Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550001, China.
| | - Li-Wei Zou
- Translational Medicine Research Center, Guizhou Medical University, Guiyang, Guizhou 550025, China; Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
2
|
Hossain A, Rahman ME, Faruqe MO, Saif A, Suhi S, Zaman R, Hirad AH, Matin MN, Rabbee MF, Baek KH. Characterization of Plant-Derived Natural Inhibitors of Dipeptidyl Peptidase-4 as Potential Antidiabetic Agents: A Computational Study. Pharmaceutics 2024; 16:483. [PMID: 38675143 PMCID: PMC11053753 DOI: 10.3390/pharmaceutics16040483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/20/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Diabetes, characterized by elevated blood sugar levels, poses significant health and economic risks, correlating with complications like cardiovascular disease, kidney failure, and blindness. Dipeptidyl peptidase-4 (DPP-4), also referred to as T-cell activation antigen CD26 (EC 3.4.14.5.), plays a crucial role in glucose metabolism and immune function. Inhibiting DPP-4 was anticipated as a potential new therapy for diabetes. Therefore, identification of plant-based natural inhibitors of DPP-4 would help in eradicating diabetes worldwide. Here, for the identification of the potential natural inhibitors of DPP-4, we developed a phytochemicals library consisting of over 6000 phytochemicals detected in 81 medicinal plants that exhibited anti-diabetic potency. The library has been docked against the target proteins, where isorhamnetin, Benzyl 5-Amino-5-deoxy-2,3-O-isopropyl-alpha-D-mannofuranoside (DTXSID90724586), and 5-Oxo-7-[4-(trifluoromethyl) phenyl]-4H,6H,7H-[1,2]thiazolo[4,5-b]pyridine 3-carboxylic acid (CHEMBL3446108) showed binding affinities of -8.5, -8.3, and -8.3 kcal/mol, respectively. These compounds exhibiting strong interactions with DPP-4 active sites (Glu205, Glu206, Tyr547, Trp629, Ser630, Tyr662, His740) were identified. ADME/T and bioactivity predictions affirmed their pharmacological safety. Density functional theory calculations assessed stability and reactivity, while molecular dynamics simulations demonstrated persistent stability. Analyzing parameters like RMSD, RG, RMSF, SASA, H-bonds, MM-PBSA, and FEL confirmed stable protein-ligand compound formation. Principal component analysis provided structural variation insights. Our findings suggest that those compounds might be possible candidates for developing novel inhibitors targeting DPP-4 for treating diabetes.
Collapse
Affiliation(s)
- Alomgir Hossain
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh; (A.H.); (M.E.R.); (R.Z.); (M.N.M.)
| | - Md Ekhtiar Rahman
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh; (A.H.); (M.E.R.); (R.Z.); (M.N.M.)
| | - Md Omar Faruqe
- Department of Computer Science and Engineering, University of Rajshahi, Rajshahi 6205, Bangladesh;
| | - Ahmed Saif
- Department of Pharmacy, University of Rajshahi, Rajshahi 6205, Bangladesh;
| | - Suzzada Suhi
- Department of Zoology, University of Rajshahi, Rajshahi 6205, Bangladesh;
| | - Rashed Zaman
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh; (A.H.); (M.E.R.); (R.Z.); (M.N.M.)
| | - Abdurahman Hajinur Hirad
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Mohammad Nurul Matin
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh; (A.H.); (M.E.R.); (R.Z.); (M.N.M.)
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Gyeongsangbuk-do, Republic of Korea
| | - Muhammad Fazle Rabbee
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Gyeongsangbuk-do, Republic of Korea
| | - Kwang-Hyun Baek
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Gyeongsangbuk-do, Republic of Korea
| |
Collapse
|
3
|
Mathur V, Alam O, Siddiqui N, Jha M, Manaithiya A, Bawa S, Sharma N, Alshehri S, Alam P, Shakeel F. Insight into Structure Activity Relationship of DPP-4 Inhibitors for Development of Antidiabetic Agents. Molecules 2023; 28:5860. [PMID: 37570832 PMCID: PMC10420935 DOI: 10.3390/molecules28155860] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 07/13/2023] [Accepted: 07/15/2023] [Indexed: 08/13/2023] Open
Abstract
This article sheds light on the various scaffolds that can be used in the designing and development of novel synthetic compounds to create DPP-4 inhibitors for the treatment of type 2 diabetes mellitus (T2DM). This review highlights a variety of scaffolds with high DPP-4 inhibition activity, such as pyrazolopyrimidine, tetrahydro pyridopyrimidine, uracil-based benzoic acid and esters, triazole-based, fluorophenyl-based, glycinamide, glycolamide, β-carbonyl 1,2,4-triazole, and quinazoline motifs. The article further explains that the potential of the compounds can be increased by substituting atoms such as fluorine, chlorine, and bromine. Docking of existing drugs like sitagliptin, saxagliptin, and vildagliptin was done using Maestro 12.5, and the interaction with specific residues was studied to gain a better understanding of the active sites of DPP-4. The structural activities of the various scaffolds against DPP-4 were further illustrated by their inhibitory concentration (IC50) values. Additionally, various synthesis schemes were developed to make several commercially available DPP4 inhibitors such as vildagliptin, sitagliptin and omarigliptin. In conclusion, the use of halogenated scaffolds for the development of DPP-4 inhibitors is likely to be an area of increasing interest in the future.
Collapse
Affiliation(s)
- Vishal Mathur
- Medicinal Chemistry and Molecular Modelling Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; (V.M.); (N.S.); (M.J.); (A.M.); (S.B.)
| | - Ozair Alam
- Medicinal Chemistry and Molecular Modelling Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; (V.M.); (N.S.); (M.J.); (A.M.); (S.B.)
| | - Nadeem Siddiqui
- Medicinal Chemistry and Molecular Modelling Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; (V.M.); (N.S.); (M.J.); (A.M.); (S.B.)
| | - Mukund Jha
- Medicinal Chemistry and Molecular Modelling Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; (V.M.); (N.S.); (M.J.); (A.M.); (S.B.)
| | - Ajay Manaithiya
- Medicinal Chemistry and Molecular Modelling Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; (V.M.); (N.S.); (M.J.); (A.M.); (S.B.)
| | - Sandhya Bawa
- Medicinal Chemistry and Molecular Modelling Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; (V.M.); (N.S.); (M.J.); (A.M.); (S.B.)
| | - Naveen Sharma
- Division of Bioinformatics, Indian Council of Medical Research, New Delhi 110029, India;
| | - Sultan Alshehri
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia
| | - Prawez Alam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| | - Faiyaz Shakeel
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| |
Collapse
|
4
|
Stentz FB, Lawson D, Tucker S, Christman J, Sands C. Decreased cardiovascular risk factors and inflammation with remission of type 2 diabetes in adults with obesity using a high protein diet: Randomized control trial. OBESITY PILLARS (ONLINE) 2022; 4:100047. [PMID: 37990670 PMCID: PMC10661976 DOI: 10.1016/j.obpill.2022.100047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 11/23/2023]
Abstract
Objective The study objective was to determine the effects a high protein (HP) vs. a high carbohydrate (HC) diet on cardiovascular risk factors (CVR), inflammation, metabolic parameters, oxidative stress, weight loss, lean and fat body mass, and remission of Type 2 Diabetes (T2DM) in subjects with obesity. Research design and methods Twelve women and men with T2D were recruited and randomized to either a HP (30%protein, 30%fat, 40%carbohydrate) (n = 6) or HC (15%protein, 30%fat, 55%carbohydrate) (n = 6) diet feeding study for 6 months in this randomized controlled trial. All meals were purchased at local grocery stores and provided to subjects for 6 months with daily food menus for HP or HC compliance with weekly food pick-up and weight measurements. Oral glucose tolerance and meal tolerance tests with glucose and insulin measurements and DXA scans were done at baseline and after 6 months on the respective diets. Results After 6 months on the HP diet, 100% of the subjects had remission of their T2DM to Normal Glucose Tolerance (NGT), whereas only 16.6% of subjects on the HC diet had remission of their T2DM. The HP diet group exhibited significant improvement in a) cardiovascular risk factors (p = 0.004, b) inflammatory cytokines(p = 0.001), c) insulin sensitivity(p = 0.001), d) oxidative stress(p = 0.001), e) increased %lean body mass(p = 0.001) compared to the HC diet group at 6 months. Conclusions A significant improvement in cardiovascular risk factors, inflammation, metabolic parameters and 100% remission of T2DM to NGT was achieved with a HP diet compared to a HC diet at 6 months. Clinicaltrialsgov identifier NCT01642849.
Collapse
Affiliation(s)
- Frankie B. Stentz
- Departments of Medicine, Endocrinology, Diabetes and Metabolism Division, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Damon Lawson
- Departments of Medicine, Endocrinology, Diabetes and Metabolism Division, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Sidney Tucker
- Departments of Medicine, Endocrinology, Diabetes and Metabolism Division, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - John Christman
- Departments of Medicine, Endocrinology, Diabetes and Metabolism Division, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Chris Sands
- Departments of Medicine, Endocrinology, Diabetes and Metabolism Division, The University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
5
|
Manavi MA. Neuroprotective effects of glucagon-like peptide-1 (GLP-1) analogues in epilepsy and associated comorbidities. Neuropeptides 2022; 94:102250. [PMID: 35561568 DOI: 10.1016/j.npep.2022.102250] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/04/2022] [Accepted: 05/04/2022] [Indexed: 10/18/2022]
Abstract
Epilepsy is a common neurological condition induced by losing equilibrium of different pathway as well as neurotransmitters that affects over 50 million people globally. Furthermore, long-term administration of anti-seizure medications has been associated with psychological adverse effects. Also, epilepsy has been related to an increased prevalence of obesity and called type 2 diabetes mellitus. On the other hand, GLP-1 receptors are located throughout the brain, including the hippocampus, which have been associated to majority of neurological conditions, such as epilepsy and psychiatric disorders. Moreover, the impact of different GLP-1 analogues on diverse neurotransmitter systems and associated cellular and molecular pathways as a potential therapeutic target for epilepsy and associated comorbidities has piqued curiosity. In this regard, the anticonvulsant effects of GLP-1 analogues have been investigated in various animal models and promising results such as anticonvulsants as well as cognitive improvements have been observed. For instance, GLP-1 analogues like liraglutide in addition to their possible anticonvulsant benefits, could be utilized to alleviate mental cognitive problems caused by both epilepsy and anti-seizure medication side effects. In this review and growing protective function of GLP-1 in epilepsy induced by disturbed neurotransmitter pathways and the probable mechanisms of action of GLP-1 analogues as well as the GLP-1 receptor in these effects have been discussed.
Collapse
Affiliation(s)
- Mohammad Amin Manavi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Okura T, Fujioka Y, Nakamura R, Ito Y, Kitao S, Anno M, Matsumoto K, Shoji K, Okura H, Matsuzawa K, Izawa S, Ueta E, Kato M, Imamura T, Taniguchi SI, Yamamoto K. Dipeptidyl peptidase 4 inhibitor improves insulin resistance in Japanese patients with type 2 diabetes: a single-arm study, a brief report. Diabetol Metab Syndr 2022; 14:78. [PMID: 35672759 PMCID: PMC9171964 DOI: 10.1186/s13098-022-00850-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 05/29/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Dipeptidyl peptidase 4 inhibitor (DPP4i) is an effective medicine for type 2 diabetes mellitus (T2DM). Some articles reported DPP4i improves insulin secretion and insulin resistance. However, these effects are not well established by glucose clamp test and test meal in Japanese. We investigated the effect of DPP4i on insulin resistance and insulin secretion by using the glucose clamp test and meal tolerance test (MTT). METHODS We performed a MTT, and the hyperinsulinemic-euglycemic clamp in 8 Japanese patients with T2DM. This study was a single-arm study. We measured fasting and postprandial glucose, insulin, incretins, and glucagon levels. We also measured serum adiponectin levels. RESULTS HbA1c was significantly decreased after 3 months. The fasting and postprandial glucose levels were significantly decreased. Fasting and postprandial insulin levels were not changed. The insulin resistance derived from the glucose clamp test was significantly improved. HOMA-IR was not significantly changed. GLP-1 and GIP were significantly increased but glucagon did not change. Adiponectin was not significantly changed. CONCLUSIONS Although the number of patients was very small, these results suggested that DPP4i treatment might improve insulin resistance without changing insulin secretion.
Collapse
Affiliation(s)
- Tsuyoshi Okura
- Division of Cardiovascular Medicine, Endocrinology and Metabolism, Faculty of Medicine, Tottori University, 36-1 Nishi-cho, Yonago, Tottori, 683-8504, Japan.
| | - Yohei Fujioka
- Division of Cardiovascular Medicine, Endocrinology and Metabolism, Faculty of Medicine, Tottori University, 36-1 Nishi-cho, Yonago, Tottori, 683-8504, Japan
| | - Risa Nakamura
- Division of Cardiovascular Medicine, Endocrinology and Metabolism, Faculty of Medicine, Tottori University, 36-1 Nishi-cho, Yonago, Tottori, 683-8504, Japan
| | - Yuichi Ito
- Division of Cardiovascular Medicine, Endocrinology and Metabolism, Faculty of Medicine, Tottori University, 36-1 Nishi-cho, Yonago, Tottori, 683-8504, Japan
| | - Sonoko Kitao
- Division of Cardiovascular Medicine, Endocrinology and Metabolism, Faculty of Medicine, Tottori University, 36-1 Nishi-cho, Yonago, Tottori, 683-8504, Japan
| | - Mari Anno
- Division of Cardiovascular Medicine, Endocrinology and Metabolism, Faculty of Medicine, Tottori University, 36-1 Nishi-cho, Yonago, Tottori, 683-8504, Japan
| | - Kazuhisa Matsumoto
- Division of Cardiovascular Medicine, Endocrinology and Metabolism, Faculty of Medicine, Tottori University, 36-1 Nishi-cho, Yonago, Tottori, 683-8504, Japan
| | - Kyoko Shoji
- Division of Cardiovascular Medicine, Endocrinology and Metabolism, Faculty of Medicine, Tottori University, 36-1 Nishi-cho, Yonago, Tottori, 683-8504, Japan
| | - Hiroko Okura
- Division of Cardiovascular Medicine, Endocrinology and Metabolism, Faculty of Medicine, Tottori University, 36-1 Nishi-cho, Yonago, Tottori, 683-8504, Japan
| | - Kazuhiko Matsuzawa
- Division of Cardiovascular Medicine, Endocrinology and Metabolism, Faculty of Medicine, Tottori University, 36-1 Nishi-cho, Yonago, Tottori, 683-8504, Japan
| | - Shoichiro Izawa
- Division of Cardiovascular Medicine, Endocrinology and Metabolism, Faculty of Medicine, Tottori University, 36-1 Nishi-cho, Yonago, Tottori, 683-8504, Japan
| | - Etsuko Ueta
- School of Health Science, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Masahiko Kato
- School of Health Science, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Takeshi Imamura
- Division of Molecular Pharmacology, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Shin-Ichi Taniguchi
- Department of Regional Medicine, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Kazuhiro Yamamoto
- Division of Cardiovascular Medicine, Endocrinology and Metabolism, Faculty of Medicine, Tottori University, 36-1 Nishi-cho, Yonago, Tottori, 683-8504, Japan
| |
Collapse
|
7
|
Nedosugova LV, Markina YV, Bochkareva LA, Kuzina IA, Petunina NA, Yudina IY, Kirichenko TV. Inflammatory Mechanisms of Diabetes and Its Vascular Complications. Biomedicines 2022; 10:biomedicines10051168. [PMID: 35625904 PMCID: PMC9138517 DOI: 10.3390/biomedicines10051168] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 12/14/2022] Open
Abstract
The main cause of death in patients with type 2 DM is cardiovascular complications resulting from the progression of atherosclerosis. The pathophysiology of the association between diabetes and its vascular complications is complex and multifactorial and closely related to the toxic effects of hyperglycemia that causes increased generation of reactive oxygen species and promotes the secretion of pro-inflammatory cytokines. Subsequent oxidative stress and inflammation are major factors of the progression of type 2 DM and its vascular complications. Data on the pathogenesis of the development of type 2 DM and associated cardiovascular diseases, in particular atherosclerosis, open up broad prospects for the further development of new diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Lyudmila V. Nedosugova
- Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (L.V.N.); (L.A.B.); (I.A.K.); (N.A.P.); (I.Y.Y.)
| | - Yuliya V. Markina
- Petrovsky National Research Center of Surgery, 119991 Moscow, Russia;
| | - Leyla A. Bochkareva
- Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (L.V.N.); (L.A.B.); (I.A.K.); (N.A.P.); (I.Y.Y.)
| | - Irina A. Kuzina
- Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (L.V.N.); (L.A.B.); (I.A.K.); (N.A.P.); (I.Y.Y.)
| | - Nina A. Petunina
- Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (L.V.N.); (L.A.B.); (I.A.K.); (N.A.P.); (I.Y.Y.)
| | - Irina Y. Yudina
- Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (L.V.N.); (L.A.B.); (I.A.K.); (N.A.P.); (I.Y.Y.)
- Petrovsky National Research Center of Surgery, 119991 Moscow, Russia;
| | - Tatiana V. Kirichenko
- Petrovsky National Research Center of Surgery, 119991 Moscow, Russia;
- Chazov National Medical Research Center of Cardiology, 121552 Moscow, Russia
- Correspondence:
| |
Collapse
|
8
|
Wang J, Liu Y, Ma C, Zhang Y, Yuan M, Li G. Ameliorative Impact of Liraglutide on Chronic Intermittent Hypoxia-Induced Atrial Remodeling. J Immunol Res 2022; 2022:8181474. [PMID: 35465349 PMCID: PMC9020937 DOI: 10.1155/2022/8181474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 12/03/2022] Open
Abstract
Atrial fibrillation (AF) is the most frequent form of clinical cardiac arrhythmias. Previous evidence proved that atrial anatomical remodeling (AAR) and atrial electrical remodeling (AER) are crucial for the progression and maintenance of AF. This study is aimed at investigating the impact of the glucagon-like peptide-1 (GLP-1) receptor agonist, Liraglutide (Lir), on atrial remodeling (AR) mouse model induced by chronic intermittent hypoxia (CIH). C57BL/6 mice were categorized randomly into the control, Lir, CIH, and CIH+Lir groups. CIH was performed in CIH and CIH+Lir groups for 12 weeks. Lir (0.3 mg/kg/day, s.c) was administered to the Lir and CIH+Lir groups for four weeks, beginning from the ninth week of CIH. Meanwhile, echocardiography and right atrial endocardial electrophysiology via jugular vein, as well as induction rate and duration of AF, were evaluated. Masson and Sirius red staining assays were utilized to assess the extent of fibrosis in the atrial tissue of the mice. Immunohistochemical staining, RT-qPCR, and Western blotting were performed to evaluate the marker levels of AAR and AER and the expression of genes and proteins of the miR-21/PTEN/PI3K/AKT signaling pathway, respectively. ELISA was also performed to evaluate the changes of serum inflammatory factor levels. The CIH group exhibited significant AR, increased atrial fibrosis, and a higher incidence rate of AF compared to the control group. Lir could significantly downregulate the protein expression level in the PI3K/p-AKT pathway and upregulated that of phosphatase and tensin homolog deleted on chromosome ten (PTEN). Moreover, Lir downregulated the expression of miR-21. However, the protein expressions of CACNA1C and KCNA5 in atrial tissue were not changed significantly. In addition, Lir significantly attenuated the levels of markers of inflammation (TNF-α and IL-6) in the serum. In the mouse model of CIH, Lir treatment could ameliorate AR by the miR-21/PTEN/PI3K/AKT signaling pathway and modulation of inflammatory responses.
Collapse
Affiliation(s)
- Jun Wang
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Yongzheng Liu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Changhui Ma
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Yue Zhang
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Meng Yuan
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Guangping Li
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| |
Collapse
|
9
|
Sun X, Zhang Z, Liu M, Zhang P, Nie L, Liu Y, Chen Y, Xu F, Liu Z, Zeng Y. Small-molecule albumin ligand modification to enhance the anti-diabetic ability of GLP-1 derivatives. Biomed Pharmacother 2022; 148:112722. [DOI: 10.1016/j.biopha.2022.112722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/11/2022] [Accepted: 02/15/2022] [Indexed: 11/02/2022] Open
|
10
|
Khanal P, Patil BM. Reversal of insulin resistance by Ficus benghalensis bark in fructose-induced insulin-resistant rats. JOURNAL OF ETHNOPHARMACOLOGY 2022; 284:114761. [PMID: 34678414 DOI: 10.1016/j.jep.2021.114761] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 10/06/2021] [Accepted: 10/18/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Bark of Ficus benghalensis L. (family: Moraceae), commonly known as Banyan is recorded as Nyagrodha in Ayurvedic Pharmacopeia of India to manage burning sensation, obesity, diabetes, bleeding disorders, thirst, skin diseases, wounds, and dysmenorrhoea. However, the effect of F. benghalensis bark over glycolysis, gluconeogenesis, and appetite regulation in insulin-resistant pathogenesis has not been reported yet. AIM OF THE STUDY The present study aimed to investigate the effect of hydroalcoholic extract of F. benghalensis bark in gluconeogenesis, glycolysis, and appetite regulation in fructose-induced insulin resistance in experimental rats. MATERIALS AND METHODS Male Wister rats were supplemented with fructose in drinking water (10% w/v for 42 days and 20% w/v for next 12 days; a total of 54 days); insulin resistance was confirmed via the elevated area under the curve of the glucose during oral glucose tolerance test after 54 days and was subjected with extract treatment for next 30 days. After 30 days of treatment, animals were fasted to perform oral glucose and insulin tolerance test to estimate glucose and insulin levels. The blood sample was collected for biochemical estimation and the liver homogenate was prepared to estimate hepatic enzymes and enzymatic and non-enzymatic anti-oxidant biomarkers followed by histopathological evaluation. Also, glycogen content was quantified in gastrocnemius muscle and liver homogenates. Further, reported bioactives from the F. benghalensis were retrieved from the ChEBI database and docked against hexokinase, phosphofructokinase, glucose-6-phosphatase, lactate dehydrogenase, and fructose-1,6-biphosphatase to identify the probable lead hits against the enzymes involved in gluconeogenesis. RESULTS Treatment with the F. benghalensis bark extract significantly increased the body weight and food intake and significantly decreased fructose supplemented water intake. Further, treatment with extract significantly increased the exogenous glucose clearance and well responded to the exogenous insulin. Further, extract treatment improved lipid metabolism, ameliorated plasma leptin, and multiple enzymatic and non-enzymatic antioxidant biomarkers. Likewise, it also improved gluconeogenesis mediated pathogenesis of non-alcoholic fatty liver injury. Additionally, molecular docking also identified mucusisoflavone A and B as lead hits in downregulating gluconeogenesis. CONCLUSION Hydroalcoholic extract of F. benghalensis bark may prevent insulin resistance by downregulating gluconeogenesis and improving the appetite in fructose-induced insulin-resistant rats.
Collapse
Affiliation(s)
- Pukar Khanal
- Department of Pharmacology and Toxicology, KLE College of Pharmacy Belagavi, KLE Academy of Higher Education and Research (KAHER), Belagavi-590010, India.
| | - B M Patil
- Department of Pharmacology and Toxicology, KLE College of Pharmacy Belagavi, KLE Academy of Higher Education and Research (KAHER), Belagavi-590010, India.
| |
Collapse
|
11
|
Hussein HM, Elyamany MF, Rashed LA, Sallam NA. Vitamin D mitigates diabetes-associated metabolic and cognitive dysfunction by modulating gut microbiota and colonic cannabinoid receptor 1. Eur J Pharm Sci 2021; 170:106105. [PMID: 34942358 DOI: 10.1016/j.ejps.2021.106105] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 11/14/2021] [Accepted: 12/17/2021] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Obesity is associated with elevated endocannabinoid tone, gut dysbiosis, and inflammation predisposing to diabetes. The endocannabinoid system mediates the effects of gut microbiota and regulates the gut barrier integrity. We examined the effects of vitamin D (VD) on colonic cannabinoid receptor 1(CB1R), tight junction proteins, gut dysbiosis, metabolic and cognitive dysfunction in a model of type 2 diabetes compared with metformin. METHODS Rats received high-fat, high-sucrose diet (HFSD) and either VD (500 IU/kg/day; p.o.), or metformin (200 mg/kg/day; p.o.) for 8 weeks. After 6 weeks, streptozotocin (STZ) (40 mg/kg; i.p) was injected. Behavioral, cognitive, and metabolic assessments were carried out. Finally, fecal, blood, and tissue samples were collected to examine Bacteroidetes/Firmicutes ratio, colonic CB1R, zonula occludens-1 (ZO-1), occludin, and Toll-like receptor 4 (TLR4); serum lipopolysaccharides (LPS), peptidoglycan (PGN), tumor necrosis factor-alpha (TNF-ɑ), glucagon-like peptide-1 (GLP-1), lipids, and VD; hippocampal brain-derived neurotrophic factor (BDNF) and inflammatory markers. RESULTS VD ameliorated HFSD/STZ-induced dysbiosis/gut barrier dysfunction as indicated by lower circulating LPS, PGN and TNF-ɑ levels, likely by downregulating colonic CB1R and upregulating ZO-1 and occludin expressions. Additionally, VD suppressed HFSD/STZ-induced hyperglycemia, hyperinsulinemia, dyslipidemia, and hippocampal neuroinflammation. These changes culminated in improved glycemic control and cognitive function. VD was more effective than metformin in decreasing serum LPS and TNF-ɑ levels; whereas metformin resulted in better glycemic control. CONCLUSION Targeting gut microbiota by VD could be a successful strategy in the treatment of diabetes and associated cognitive deficit. The crosstalk between VD axis and the endocannabinoid system needs further exploration.
Collapse
Affiliation(s)
- Hebatallah M Hussein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Egypt
| | - Mohammed F Elyamany
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Egypt
| | - Laila A Rashed
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Egypt
| | - Nada A Sallam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Egypt.
| |
Collapse
|
12
|
Lu J, Bian Y, Zhang H, Tang D, Tian X, Zhou X, Xu Z, Xiong Y, Gu Z, Yu Z, Wang T, Ding J, Yu Q, Ding J. The Metabolism and Excretion of the Dipeptidyl Peptidase 4 Inhibitor [ 14C] Cetagliptin in Healthy Volunteers. Xenobiotica 2021; 52:38-45. [PMID: 34743655 DOI: 10.1080/00498254.2021.2002973] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
1. The metabolism and excretion of cetagliptin were investigated in healthy male subjects after a single oral dose of 100mg/50μCi [14C] cetagliptin.2. The mean concentration-time profile of cetagliptin was similar to that of total radioactivity in plasma after oral administration of [14C] cetagliptin in healthy male subjects. Cetagliptin was rapidly absorbed after oral administration. Unchanged cetagliptin was the most abundant radioactive component in all matrices investigated. Approximately 53.13% of plasma AUC of total radioactivity was accounted for by cetagliptin. Each metabolite plasma AUC was not higher than 2.93% of plasma AUC of total radioactivity. By 336 h after administration, 91.68% of the administered radioactivity was excreted, and the cumulative excretion in the urine and feces was 72.88% and 18.81%, respectively. The primary route of excretion of radioactivity was via the kidneys.3. Four metabolites were detected at trace levels, and it involved hydroxylated (M436-1 and M436-3), N- sulfate (M500), and N-carbamoyl glucuronic acid conjugates (M640B) of cetagliptin. These metabolites were detected also in plasma, urine, and feces at low levels, except that metabolite M640B was not detected in feces. All metabolites were observed with < 10% of parent compound systemic exposure after oral administration.
Collapse
Affiliation(s)
- Jinmiao Lu
- Xiangya School of Pharmaceutical Sciences, Central South University, Hunan, China.,CGeneTech (Suzhou, China) Co., Ltd, Jiangsu, China
| | - Yicong Bian
- Department of Clinical Pharmacology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Hua Zhang
- Department of Clinical Pharmacology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Dong Tang
- CGeneTech (Suzhou, China) Co., Ltd, Jiangsu, China
| | - Xusheng Tian
- CGeneTech (Suzhou, China) Co., Ltd, Jiangsu, China
| | - Xinyi Zhou
- CGeneTech (Suzhou, China) Co., Ltd, Jiangsu, China
| | - Zengyan Xu
- CGeneTech (Suzhou, China) Co., Ltd, Jiangsu, China
| | - Yating Xiong
- Value Pharmaceutical Services Co., Ltd, Jiangsu, China
| | - Zheming Gu
- Value Pharmaceutical Services Co., Ltd, Jiangsu, China
| | - Zhenwen Yu
- Value Pharmaceutical Services Co., Ltd, Jiangsu, China
| | - Tong Wang
- CGeneTech (Suzhou, China) Co., Ltd, Jiangsu, China
| | - Juping Ding
- CGeneTech (Suzhou, China) Co., Ltd, Jiangsu, China
| | - Qiang Yu
- CGeneTech (Suzhou, China) Co., Ltd, Jiangsu, China
| | - Jinsong Ding
- Xiangya School of Pharmaceutical Sciences, Central South University, Hunan, China
| |
Collapse
|
13
|
Amyloidogenicity of peptides targeting diabetes and obesity. Colloids Surf B Biointerfaces 2021; 209:112157. [PMID: 34715595 DOI: 10.1016/j.colsurfb.2021.112157] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/20/2021] [Accepted: 10/09/2021] [Indexed: 12/15/2022]
Abstract
Since the discovery of insulin, a century ago, the repertoire of therapeutic polypeptides targeting diabetes - and now also obesity - have increased substantially. The focus on quality has shifted from impure and unstable preparations of animal insulin to highly pure, homologous recombinant insulin, along with other peptide-based hormones and analogs such as amylin analogs (pramlintide, davalintide, cagrilintide), glucagon and glucagon-like peptide-1 receptor agonists (GLP-1, liraglutide, exenatide, semaglutide). Proper formulation, storage, manipulation and usage by professionals and patients are required in order to avoid agglomeration into high molecular weight products (HMWP), either amorphous or amyloid, which could result in potential loss of biological activity and short- or long-term immune reaction and silent inactivation. In this narrative review, we present perspective of the aggregation of therapeutic polypeptides used in diabetes and other metabolic diseases, covering the nature and mechanisms, analytical techniques, physical and chemical stability, strategies aimed to hamper the formation of HMWP, and perspectives on future biopharmaceutical developments.
Collapse
|
14
|
Kumar S, Mittal A, Mittal A. A review upon medicinal perspective and designing rationale of DPP-4 inhibitors. Bioorg Med Chem 2021; 46:116354. [PMID: 34428715 DOI: 10.1016/j.bmc.2021.116354] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/26/2021] [Accepted: 07/30/2021] [Indexed: 12/13/2022]
Abstract
Type 2 Diabetes Mellitus (T2DM) is one of the highly prevalence disorder and increasing day by day worldwidely. T2DM is a metabolic disorder, which is characterized by deficiency in insulin or resistance to insulin and thus increases the glucose levels in the blood. Various approaches are there to treat diabetes but still there is no cure for this disease. DPP-4 inhibitor is a privileged target in the field of drug discovery and provides various opportunities in exploring this target for development of molecules as antidiabetic agents. DPP-4 acts by inhibiting the incretin action and thus decreases the level of blood glucose by imparting minimal side effects. Sitagliptin, vildagliptin, linagliptin etc. are the different DPP-4 based drugs approved throughout the world for the treatment of diabetes mellitus. Cyanopyrrolidines, triazolopiperazine amide, pyrrolidines are basic core nucleus present in various DPP-4 inhibitors and has potential effects. In the past few years, researchers had applied various approaches to synthesize potent DPP-4 inhibitors as antidiabetic agent without side effects like weight gain, cardiovascular risks, retinopathy etc. This review will also emphasize the recent strategies and rationale utilized by researchers for the development of DPP-4 inhibitors. This review also reveals about the various other approaches like molecular modelling, ligand based drug designing, high throughput screening etc. are used by the various research group for the development of potential DPP-4 inhibitors.
Collapse
Affiliation(s)
- Shubham Kumar
- Faculty of Pharmaceutical Sciences, PCTE Group of Institutes, Campus-2, Near Baddowal Cantt. Ferozepur Road, Ludhiana 142021, India; Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T. Road (NH-1), Phagwara, Punjab 144411, India
| | - Anu Mittal
- Department of Chemistry, Guru Nanak Dev University College, Patti, Distt. Tarn Taran, India
| | - Amit Mittal
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T. Road (NH-1), Phagwara, Punjab 144411, India.
| |
Collapse
|
15
|
Narimani R, Kachuei A, Rezvanian H, Feizi A, Poorpoone M. Effect of sitagliptin on proteinuria in patients with type 2 diabetes - A renoprotective effect of sitagliptin. JOURNAL OF RESEARCH IN MEDICAL SCIENCES 2021; 26:35. [PMID: 34484367 PMCID: PMC8383993 DOI: 10.4103/jrms.jrms_78_20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 08/15/2020] [Accepted: 01/04/2021] [Indexed: 12/12/2022]
Abstract
Background: Diabetic nephropathy, the leading cause of chronic renal failure, is related to diabetes poor control. Some antihyperglycemic drugs like dipeptidyl peptidase-4 inhibitors have shown to prevent diabetic nephropathy. This study endeavors to assess the effect of sitagliptin on proteinuria in Iranian type 2 diabetics. Materials and Methods: A total of 90 type 2 diabetic patients aged between 30 and 80 years with glycated hemoglobin (HbA1C) <8.5 and normotensive under treatment of angiotensin-converting enzyme inhibitors or angiotensin receptor blockers were randomly assigned into two groups. One group received 50 mg sitagliptin per day and the other group received placebo. The two groups were evaluated for albumin–creatinine ratio (ACR) and estimated glomerular filtration rate (eGFR) at baseline and 3 months later. Results: Eighty-four patients, 38 (45%) males and 46 (55%) females, were enrolled in this study. The mean age was 58.47 ± 7.33. The two groups did not differ in baseline characteristics. After 3 months, in the sitagliptin group, HbA1C (7.89 ± 0.39 to 7.37 ± 0.61, P < 0.001), fasting blood sugar (FBS) (136.86 ± 22.51 to 130.53, P = 0.04), systolic blood pressure (BP) (124.39 ± 9.70 mmHg to 119.32 ± 9 mmHg), diastolic BP (76.44 ± 6.53 to 73.13 ± 5.34 mmHg, P < 0.001), and ACR (314.40 ± 414.64 to 293.49 ± 400.71, P < 0.001) were significantly decreased and eGFR was significantly increased (73.35 ± 10.73 to 76.86 ± 10.59, P < 0.001) at 3 months compared to the placebo group. ACR reduction was higher in macroalbuminuric (Ma) patients compared to microalbuminuric (Mi) patients in the sitagliptin group (−30.25 ± 35.57 vs. −11.12 ± 14.01, P = 0.02). No significant difference was observed between the Ma and Mi subgroups regarding changes in eGFR. Univariate analysis showed that changes in ACR correlated with FBS (r = 0.68, P < 0.0001), insulin (r = 0.44, P = 0.03), and homeostatic model assessment for insulin resistance (r = 0.69, P < 0.0001) and did not correlate with eGFR and BP. Conclusion: In conclusion, sitagliptin is a well-tolerated drug that improves glycemic control, lowers BP, and reduces urinary albumin excretion, especially in Ma type 2 diabetic patients.
Collapse
Affiliation(s)
- Rouhollah Narimani
- Isfahan Endocrine and Metabolism Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ali Kachuei
- Isfahan Endocrine and Metabolism Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hassan Rezvanian
- Isfahan Endocrine and Metabolism Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Awat Feizi
- Isfahan Endocrine and Metabolism Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.,Department of Epidemiology and Biostatistics, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohadese Poorpoone
- Isfahan Hematology and Oncology Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
16
|
Chang XM, Xiao F, Pan Q, Wang XX, Guo LX. Sitagliptin attenuates endothelial dysfunction independent of its blood glucose controlling effect. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2021; 25:425-437. [PMID: 34448460 PMCID: PMC8405439 DOI: 10.4196/kjpp.2021.25.5.425] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 01/11/2023]
Abstract
Although the contributions of sitagliptin to endothelial dysfunction in diabetes mellitus were previously reported, the mechanisms still undefined. Autophagy plays an important role in the development of diabetes mellitus, but its role in diabetic macrovascular complications is unclear. This study aims to observe the effect of sitagliptin on macrovascular endothelium in diabetes and explore the role of autophagy in this process. Diabetic rats were induced through administration of high-fat diet and intraperitoneal injection of streptozotocin. Then diabetic rats were treated with or without sitagliptin for 12 weeks. Endothelial damage and autophagy were measured. Human umbilical vein endothelial cells were cultured either in normal glucose or in high glucose medium and intervened with different concentrations of sitagliptin. Rapamycin was used to induce autophagy. Cell viability, apoptosis and autophagy were detected. The expressions of proteins in c-Jun N-terminal kinase (JNK)-Bcl-2-Beclin-1 pathway were measured. Sitagliptin attenuated injuries of endothelium in vivo and in vitro. The expression of microtubuleassociated protein 1 light chain 3 II (LC3II) and beclin-1 were increased in aortas of diabetic rats and cells cultured with high-glucose, while sitagliptin inhibited the over-expression of LC3II and beclin-1. In vitro pre-treatment with sitagliptin decreased rapamycin-induced autophagy. However, after pretreatment with rapamycin, the protective effect of sitagliptin on endothelial cells was abolished. Further studies revealed sitagliptin increased the expression of Bcl-2, while inhibited the expression of JNK in vivo. Sitagliptin attenuates injuries of vascular endothelial cells caused by high glucose through inhibiting over-activated autophagy. JNK-Bcl-2-Beclin-1 pathway may be involved in this process.
Collapse
Affiliation(s)
- Xin-Miao Chang
- Department of Endocrinology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, P. R. China.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, P. R. China
| | - Fei Xiao
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, P. R. China
| | - Qi Pan
- Department of Endocrinology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, P. R. China
| | - Xiao-Xia Wang
- Department of Endocrinology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, P. R. China
| | - Li-Xin Guo
- Department of Endocrinology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, P. R. China.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, P. R. China
| |
Collapse
|
17
|
Chocolate as Carrier to Deliver Bioactive Ingredients: Current Advances and Future Perspectives. Foods 2021; 10:foods10092065. [PMID: 34574174 PMCID: PMC8472086 DOI: 10.3390/foods10092065] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/27/2021] [Accepted: 08/31/2021] [Indexed: 02/04/2023] Open
Abstract
Consumer demand for healthier foods with improved taste and convenience has urged the food industry to develop functional foods added with bioactive ingredients that can supplement basic nutrition (food supplement) or exert a pharmacological effect (nutraceuticals). Chocolate could be used as an ideal carrier to deliver bioactive ingredients, mainly due to its high acceptability by consumers. However, a drawback of using chocolate as functional food is its high sugar content, which impedes its commercialization with the diabetic population. Therefore, there is need to develop sugar-free chocolate formulations added with bioactive ingredients. Nevertheless, sugar replacement and bioactive ingredients addition is a major technological challenge that affects texture, rheology, and sensory properties of chocolate. This review is designed as a practical guide for researchers and food industries to develop the next generation of functional chocolates. Different functional chocolate formulations, including sugar-free, are reviewed as potential carriers for the delivery of bioactive compounds. The physicochemical properties and sensory acceptability of the functional chocolates presented are also highlighted. Finally, future perspectives, such as the use of nanotechnology to improve the bioaccessibility and bioavailability of active ingredients, as well as the need for clinical trials to validate the pharmacological effect of functional chocolates, are also discussed.
Collapse
|
18
|
The Emergence of Senescent Surface Biomarkers as Senotherapeutic Targets. Cells 2021; 10:cells10071740. [PMID: 34359910 PMCID: PMC8305747 DOI: 10.3390/cells10071740] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/01/2021] [Accepted: 07/06/2021] [Indexed: 02/08/2023] Open
Abstract
Senescence is linked to a wide range of age-associated diseases and physiological declines. Thus, senotherapeutics are emerging to suppress the detrimental effects of senescence either by senomorphics or senolytics. Senomorphics suppress the traits associated with senescence phenotypes, while senolytics aim to clear senescent cells by suppressing their survival and enhancing the apoptotic pathways. The main goal of these approaches is to suppress the proinflammatory senescence-associated secretory phenotype (SASP) and to promote the immune recognition and elimination of senescent cells. One increasingly attractive approach is the targeting of molecules or proteins specifically present on the surface of senescent cells. These proteins may play roles in the maintenance and survival of senescent cells and hence can be targeted for senolysis. In this review, we summarize the recent knowledge regarding senolysis with a focus on novel surface biomarkers of cellular senescence and discuss their emergence as senotherapeutic targets.
Collapse
|
19
|
Hashimoto Takigami N, Kuniyoshi S, Miki Y, Tamaki K, Kamada Y, Uehara K, Tsuchiya S, Terukina S, Iwabuchi E, Kanai A, Miyashita M, Ishida T, Tamaki N, Sasano H. Breast Cancer, Diabetes Mellitus and Glucagon-Like Peptide-1 Receptor Toward Exploring Their Possible Associations. Breast Cancer Res Treat 2021; 189:39-48. [PMID: 34213657 DOI: 10.1007/s10549-021-06288-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 06/08/2021] [Indexed: 12/29/2022]
Abstract
PURPOSE Diabetes Mellitus (DM) has been one of the well known risk factors of breast cancer (BC) development and also associated with adverse clinical outcomes of BC patients. Glucagon-like peptide-1 (GLP-1) receptor agonists have been used as antidiabetic therapeutic agents and recent epidemiological studies have reported their use to be correlated with increased BC risks. However, biological or pathological details have remained unknown. Therefore, in this study, we examined the status of GLP-1 receptor (GLP-1R) in BC with and without DM and correlated the findings with the clinicopathological factors of the patients to explore the possible involvement of GLP-1 in BC pathology. METHODS We immunolocalized GLP-1R in cancer and adjacent non-pathological breast tissues in BC patients with DM (125 cases) and without DM (58 cases). We then compared the status of GLP-1R with that of fibroblast growth factor 7 (FGF7) and fibroblast growth factor receptor 2 (FGFR2), Ki-67 labeling index (Ki-67 LI) and disease free survival (DFS) of the patients and also between cancerous and non-pathological breast tissues. RESULTS GLP-1R immunoreactivity was significantly higher (p = 0.044) in the patients with DM than without in carcinoma tissues. However, this was detected only in invasive carcinoma (p < 0.01) and not in non-invasive carcinoma nor non-pathological mammary glands. FGF7 was significantly correlated with the status of GLP-1R in BC (p = 0.045). In addition, in ER positive BC cases, those with GLP-1R positive status tended to have higher Ki-67 LI of more than 14% (p = 0.070). CONCLUSION These findings all demonstrated the possible association between GLP-1R status and biological features of BC, especially of invasive BC in DM patients.
Collapse
Affiliation(s)
- Naoko Hashimoto Takigami
- Department of Pathology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan.,Department of Breast Surgical Oncology, Nahanishi Clinic, Naha, Okinawa, Japan
| | - Shimpei Kuniyoshi
- Department of Pathology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan.,Department of Pathology, Tohoku University Hospital, Sendai, Miyagi, Japan
| | - Yasuhiro Miki
- Department of Pathology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Kentaro Tamaki
- Department of Pathology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan.,Department of Breast Surgical Oncology, Nahanishi Clinic, Naha, Okinawa, Japan
| | - Yoshihiko Kamada
- Department of Breast Surgical Oncology, Nahanishi Clinic, Naha, Okinawa, Japan
| | - Kano Uehara
- Department of Breast Surgical Oncology, Nahanishi Clinic, Naha, Okinawa, Japan
| | - Seiko Tsuchiya
- Department of Breast Surgical Oncology, Nahanishi Clinic, Naha, Okinawa, Japan
| | - Shigeharu Terukina
- Department of Breast Surgical Oncology, Nahanishi Clinic, Naha, Okinawa, Japan
| | - Erina Iwabuchi
- Department of Pathology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Ayako Kanai
- Department of Pathology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan.,Department of Breast and Endocrine Surgical Oncology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Minoru Miyashita
- Department of Breast and Endocrine Surgical Oncology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Takanori Ishida
- Department of Breast and Endocrine Surgical Oncology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Nobumitsu Tamaki
- Department of Breast Surgical Oncology, Nahanishi Clinic, Naha, Okinawa, Japan
| | - Hironobu Sasano
- Department of Pathology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan. .,Department of Pathology, Tohoku University Hospital, Sendai, Miyagi, Japan.
| |
Collapse
|
20
|
Stentz FB, Mikhael A, Kineish O, Christman J, Sands C. High protein diet leads to prediabetes remission and positive changes in incretins and cardiovascular risk factors. Nutr Metab Cardiovasc Dis 2021; 31:1227-1237. [PMID: 33549435 DOI: 10.1016/j.numecd.2020.11.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND AND AIMS High Protein diets may be associated with endocrine responses that favor improved metabolic outcomes. We studied the response to High Protein (HP) versus High Carbohydrate (HC) Diets in terms of incretin hormones GLP-1 and GIP, the hunger hormone ghrelin and BNP, which is associated with cardiac function. We hypothesized that HP diets induce more pronounced release of glucose lowering hormones, suppress hunger and improve cardiac function. METHODS AND RESULTS 24 obese women and men with prediabetes were recruited and randomized to either a High Protein (HP) (n = 12) or High Carbohydrate (HC) (n = 12) diet for 6 months with all food provided. OGTT and MTT were performed and GLP-1, GIP, Ghrelin, BNP, insulin and glucose were measured at baseline and 6 months on the respective diets. Our studies showed that subjects on the HP diet had 100% remission of prediabetes compared to only 33% on the HC diet with similar weight loss. HP diet subjects had a greater increase in (1) OGTT GLP-1 AUC(p = 0.001) and MTT GLP-1 AUC(p = 0.001), (2) OGTT GIP AUC(p = 0.005) and MTT GIP AUC(p = 0.005), and a greater decrease in OGTT ghrelin AUC(p = 0.005) and MTT ghrelin AUC(p = 0.001) and BNP(p = 0.001) compared to the HC diet at 6 months. CONCLUSIONS This study demonstrates that the HP diet increases GLP-1 and GIP which may be responsible in part for improved insulin sensitivity and β cell function compared to the HC diet. HP ghrelin results demonstrate the HP diet can reduce hunger more effectively than the HC diet. BNP and other CVRF, metabolic parameters and oxidative stress are significantly improved compared to the HC diet. CLINICALTRIALS. GOV IDENTIFIER NCT01642849.
Collapse
Affiliation(s)
- Frankie B Stentz
- Department of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA.
| | - Andrew Mikhael
- Department of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Omer Kineish
- Department of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - John Christman
- Department of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA; FiTelligence, Memphis, TN, USA
| | - Chris Sands
- Department of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
21
|
Natural Compounds for the Prevention and Treatment of Cardiovascular and Neurodegenerative Diseases. Foods 2020; 10:foods10010029. [PMID: 33374186 PMCID: PMC7824130 DOI: 10.3390/foods10010029] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/15/2020] [Accepted: 12/22/2020] [Indexed: 12/12/2022] Open
Abstract
Secondary metabolites from plants and fungi are stimulating growing interest in consumers and, consequently, in the food and supplement industries. The beneficial effects of these natural compounds are being thoroughly studied and there are frequent updates about the biological activities of old and new molecules isolated from plants and fungi. In this article, we present a review of the most recent literature regarding the recent discovery of secondary metabolites through isolation and structural elucidation, as well as the in vitro and/or in vivo evaluation of their biological effects. In particular, the possibility of using these bioactive molecules in the prevention and/or treatment of widely spread pathologies such as cardiovascular and neurodegenerative diseases is discussed.
Collapse
|
22
|
Davis EM, Sandoval DA. Glucagon‐Like Peptide‐1: Actions and Influence on Pancreatic Hormone Function. Compr Physiol 2020; 10:577-595. [DOI: 10.1002/cphy.c190025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
23
|
Tiwari P, Katyal A, Khan MF, Ashraf GM, Ahmad K. Lead Optimization Resources in Drug Discovery for Diabetes. Endocr Metab Immune Disord Drug Targets 2020; 19:754-774. [PMID: 30834844 DOI: 10.2174/1871530319666190304121826] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 12/27/2018] [Accepted: 01/05/2019] [Indexed: 12/25/2022]
Abstract
BACKGROUND Diabetes, defined as a chronic metabolic syndrome, exhibits global prevalence and phenomenal rise worldwide. The rising incidence accounts for a global health crisis, demonstrating a profound effect on low and middle-income countries, particularly people with limited healthcare facilities. METHODS Highlighting the prevalence of diabetes and its socio-economic implications on the population across the globe, the article aimed to address the emerging significance of computational biology in drug designing and development, pertaining to identification and validation of lead molecules for diabetes treatment. RESULTS The drug discovery programs have shifted the focus on in silico prediction strategies minimizing prolonged clinical trials and expenses. Despite technological advances and effective drug therapies, the fight against life-threatening, disabling disease has witnessed multiple challenges. The lead optimization resources in computational biology have transformed the research on the identification and optimization of anti-diabetic lead molecules in drug discovery studies. The QSAR approaches and ADMET/Toxicity parameters provide significant evaluation of prospective "drug-like" molecules from natural sources. CONCLUSION The science of computational biology has facilitated the drug discovery and development studies and the available data may be utilized in a rational construction of a drug 'blueprint' for a particular individual based on the genetic organization. The identification of natural products possessing bioactive properties as well as their scientific validation is an emerging prospective approach in antidiabetic drug discovery.
Collapse
Affiliation(s)
- Pragya Tiwari
- Department of Biotechnology, MG Institute of Management and Technology, Lucknow-Kanpur Road, Lucknow, India
| | - Ashish Katyal
- Department of Biotechnology, Meerut Institute of Engineering and Technology, Meerut, India
| | - Mohd F Khan
- Department of Biotechnology, Utkarsh School of Management and Technology, Bareilly, India.,Department of Plant Science, MJP Rohilkhand University, Bareilly, India
| | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Khurshid Ahmad
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, Korea
| |
Collapse
|
24
|
Icart LP, Souza FGD, Lima LMTR. Sustained release and pharmacologic evaluation of human glucagon-like peptide-1 and liraglutide from polymeric microparticles. J Microencapsul 2019; 36:747-758. [PMID: 31594428 DOI: 10.1080/02652048.2019.1677795] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The GLP1-receptor agonists exert regulatory key roles in diabetes, obesity and related complications. Here we aimed to develop polymeric microparticles loaded with homologous human GLP1 (7-37) or the analogue liraglutide. Peptide-loaded microparticles were prepared by a double emulsion and solvent evaporation process with a set of eight polymers based on lactide (PLA) or lactide-glycolide (PLGA), and evaluated for particle-size distribution, morphology, in vitro release and pharmacologic activity in mice. The resulting microparticles showed size distribution of about 30-50 μm. The in vitro kinetic release assays showed a sustained release of the peptides extending up to 30-40 days. In vivo evaluation in Swiss male mice revealed a similar extension of glycemic and body weight gain modulation for up to 25 days after a single subcutaneous administration of either hGLP1-microparticles or liraglutide-microparticles. Microparticles-loaded hGLP1 shows equivalent in vivo pharmacologic activity to the microparticles-loaded liraglutide.
Collapse
Affiliation(s)
- Luis Peña Icart
- Laboratory of Pharmaceutical Biotechnology (pbiotech), Faculty of Pharmacy, Federal University of Rio de Janeiro - UFRJ, CCS, Bss24, Rio de Janeiro, Brazil.,Laboratory of Biopolymers and Sensors (LaBioS), Institute of Macromolecules, Federal University of Rio de Janeiro - UFRJ, Rio de Janeiro, Brazil
| | - Fernando Gomes de Souza
- Laboratory of Biopolymers and Sensors (LaBioS), Institute of Macromolecules, Federal University of Rio de Janeiro - UFRJ, Rio de Janeiro, Brazil
| | - Luís Maurício T R Lima
- Laboratory of Pharmaceutical Biotechnology (pbiotech), Faculty of Pharmacy, Federal University of Rio de Janeiro - UFRJ, CCS, Bss24, Rio de Janeiro, Brazil.,Laboratory of Macromolecules (LAMAC/DIMAV), National Institute for Metrology, Quality and Technology (INMETRO), Rio de Janeiro, Brazil
| |
Collapse
|
25
|
Glucagon-like peptide-1 receptor agonist dulaglutide prevents ox-LDL-induced adhesion of monocytes to human endothelial cells: An implication in the treatment of atherosclerosis. Mol Immunol 2019; 116:73-79. [PMID: 31630078 DOI: 10.1016/j.molimm.2019.09.021] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 09/09/2019] [Accepted: 09/29/2019] [Indexed: 02/06/2023]
Abstract
Atherosclerosis is a common comorbidity of type II diabetes and a leading cause of death worldwide. The presence of oxidized low-density lipoprotein (ox-LDL) drives atherogenesis by inducing oxidative stress, mitochondrial dysfunction, expression of proinflammatory cytokines and chemokines including interleukin (IL)-1β, IL-6, and monocyte chemoattractant protein 1 (MCP-1), adhesion molecules including vascular cellular adhesion molecule 1 (VCAM-1) and E-selectin, and downregulating expression of the Krüppel-like factor 2 (KLF2) transcription factor. Importantly, ox-LDL induced the attachment of THP-1 monocytes to endothelial cells. In the present study, we demonstrate for the first time that the specific glucagon-like peptide 1 receptor (GLP-1R) agonist dulaglutide may prevent these atherosclerotic effects of ox-LDL by preventing suppression of KLF2 by p53 protein in human aortic endothelial cells. KLF2 has been shown to play a major role in protecting vascular endothelial cells from damage induced by ox-LDL and oscillatory shear, and therefore, therapies capable of mediating KLF2 signaling may be an attractive treatment option for preventing the development and progression of atherosclerosis.
Collapse
|
26
|
Younan N, Elattar S, Farouk M, Rashed L, Estaphan S. Dipeptidyl peptidase-4 inhibitors and aerobic exercise synergistically protect against liver injury in ovariectomized rats. Physiol Rep 2019; 7:e14191. [PMID: 31496048 PMCID: PMC6732505 DOI: 10.14814/phy2.14191] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 07/05/2019] [Accepted: 07/10/2019] [Indexed: 12/17/2022] Open
Abstract
Menopause increases the risk of non-alcoholic fatty liver disease (NAFLD). We investigated the effect of incretin and/ or exercise on the hepatic fat accumulation in ovariectomized rats. Rats were divided into five groups: Group 1: Control rats, Group 2: Ovariectomized rats, Group 3: Ovariectomized rats + Dipeptidyl peptidase-4 inhibitor (DPPi) (30 mg/kg/day, orally), Group 4: Ovariectomized rats + swimming, and Group 5: Ovariectomized rats + swimming + DPPi. After 6 weeks, Alanine aminotransferase (ALT), glucose, insulin, HOMA IR (Homeostatic Model Assessment for Insulin Resistance), FFA (free fatty acids), Tumor necrosis factor alpha (TNF α), IL6, IL1B levels were measured in blood. The livers were collected for Hematoxylin and eosin (H&E) examination and evaluation of hepatic gene expression of SREBP (sterol regulatory element-binding protein1c), PPAR α (peroxisome proliferator-activated receptor alpha), ACC 1 (acetyl-CoA carboxylase), LC3 (microtubule-associated protein 1 light chain 3), SIRT (sirtuin), hepatic triglycerides, IL6, IL10, caspase 3 and AMPK (adenosine monophosphate-activated protein kinase). A significant increase in ALT level and area of liver tissue defects with a significant increase in glucose HOMA IR, serum FFA, IL6, IL1B, TNF α, liver TGs (triglycerides), inflammation, apoptosis, SREBP1c, ACC1 were found in ovariectomized rats as compared to control group with a significant decrease in PPAR α, LC3, AMPK and SIRT1. DPPi treated rats with and without exercise showed a significant improvement in ALT and area of liver tissue defects, inflammation and apoptosis and serum IL6, IL1B, TNF α, FFA, liver LC3, SIRT1, AMPK, TGs, PPAR α, ACC1 and SREBP1c as compared to the ovariectomized group. Findings from the study confirm the derangement of fat metabolism in the ovariectomized rats and showed that incretin-based therapy and exercise synergistically improved liver fat metabolism, achieved significant beneficial metabolic effects and offer full protection against NAFLD.
Collapse
Affiliation(s)
- Nagat Younan
- Physiology Department, Faculty of MedicineCairo UniversityCairoEgypt
| | - Samah Elattar
- Physiology Department, Faculty of MedicineCairo UniversityCairoEgypt
| | - Mira Farouk
- Histology Department, Faculty of MedicineCairo UniversityCairoEgypt
| | - Laila Rashed
- Biochemistry Department, Faculty of MedicineCairo UniversityCairoEgypt
| | - Suzanne Estaphan
- Physiology Department, Faculty of MedicineCairo UniversityCairoEgypt
- ANU Medical SchoolAustralian National UniversityCanberraAustralian Capital TerritoryAustralia
| |
Collapse
|
27
|
The Dipeptidyl Peptidase-4 Inhibitor Linagliptin Ameliorates High-fat Induced Cognitive Decline in Tauopathy Model Mice. Int J Mol Sci 2019; 20:ijms20102539. [PMID: 31126115 PMCID: PMC6566831 DOI: 10.3390/ijms20102539] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 05/03/2019] [Accepted: 05/21/2019] [Indexed: 12/18/2022] Open
Abstract
Vascular risk factors, such as type 2 diabetes mellitus (T2DM), are associated with the increased risk of Alzheimer's disease. One of the common T2DM medications, dipeptidyl peptidase (DPP)-4 inhibitors, have a minimum risk for hypoglycemia and have recently been suggested to ameliorate β-amyloid pathology. However, conflicting results have been reported regarding the effects of DPP-4 inhibition on cognitive function and tau pathology. Thus, we investigated whether inhibiting DPP-4 affects tau pathology and cognition in a mouse model of tauopathy with hyperglycemia. Male mice overexpressing the P301S mutant human microtubule-associated protein tau gene (PS19) were fed either a low or high-fat diet. PS19 mice were then administered either linagliptin, a DPP-4 inhibitor, or vehicle, from 6 weeks to 8 months of age. Linagliptin-treated mice exhibited higher levels of glucagon-like peptide-1 and decreased fasting blood glucose, compared with the vehicle-treated mice at 8 months. Linagliptin treatment significantly restored spatial reference memory and increased cerebral blood flow without affecting phosphorylation levels of tau or endothelial nitric oxide synthase (eNOS) in the brain. Linagliptin may ameliorate HFD-induced cognitive worsening in tauopathy, at least partially, by increasing cerebral perfusion via the eNOS-independent pathway.
Collapse
|
28
|
Pappachan JM, Fernandez CJ, Chacko EC. Diabesity and antidiabetic drugs. Mol Aspects Med 2019; 66:3-12. [PMID: 30391234 DOI: 10.1016/j.mam.2018.10.004] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 10/10/2018] [Accepted: 10/30/2018] [Indexed: 02/06/2023]
Abstract
The prevalence of "diabesity" - diabetes related to obesity - has increased tremendously over the past few decades because of the global obesity epidemic. Although bariatric surgery is the best treatment option for patients with diabesity, a majority of patients are managed only with antidiabetic drugs for various reasons. Diabetes control with antidiabetic agents may affect diabesity outcomes positively or negatively because of their effects on body weight and other metabolic parameters. For this reason, rational use of anti-diabetic medications is imperative to optimise long-term management of diabesity. Understanding the molecular mechanisms of antidiabetic drugs and/or drug combinations on diabesity outcomes are therefore important not only for the basic scientists but also for clinicians. This review explores the molecular signalling cascades of antidiabetic medications in the management of diabesity.
Collapse
Affiliation(s)
- Joseph M Pappachan
- Department of Endocrinology, Diabetes& Metabolism, Pilgrim Hospital, United Lincolnshire Hospitals NHS Trust, LE21 9QS, United Kingdom.
| | - Cornelius J Fernandez
- Department of Endocrinology, Diabetes& Metabolism, Pilgrim Hospital, United Lincolnshire Hospitals NHS Trust, LE21 9QS, United Kingdom
| | - Elias C Chacko
- Department of Endocrinology & Diabetes, Jersey Hospital, Jersey, JE1 4SE, United Kingdom
| |
Collapse
|
29
|
Zhong X, Chen Z, Chen Q, Zhao W, Chen Z. Novel Site-Specific Fatty Chain-Modified GLP-1 Receptor Agonist with Potent Antidiabetic Effects. Molecules 2019; 24:molecules24040779. [PMID: 30795583 PMCID: PMC6412877 DOI: 10.3390/molecules24040779] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/15/2019] [Accepted: 02/15/2019] [Indexed: 11/30/2022] Open
Abstract
Glucagon-like peptide-1 receptor (GLP-1R) agonists have emerged as treatment options for type 2 diabetes mellitus (T2DM). Here, we designed a high-throughput GLP-1R extracellular domain (ECD)-based system that enabled the screening of high-potency receptor-biased GLP-1R agonists demonstrating new pharmacological virtues. Firstly, six 12-mer peptides (termed PEP01–06), screened from a large phage displayed peptide library were fused to the N-terminus of Exendin-4 (29–39) to generate PEP07–12. By the use of four lysine-altered PEP07 (PEP13–16) as the starting point, a series of fatty chain conjugates (PEP17–20) were synthesized and evaluated by in vitro GLP-1R-based cell assays. In addition, the acute and long-term in vivo effects on diet-induced obesity (DIO) mice were further evaluated. All four conjugates showed good receptor activation efficacy, and PEP20 was selected to undergo further assessment. Preclinical experiments in DIO mice demonstrated that PEP20 had significant insulinotropic activities and glucose-lowering abilities. Moreover, a prolonged antidiabetic effect of PEP20 was also observed by the hypoglycemic test in DIO mice. Furthermore, long-term treatment with PEP20 achieved beneficial effects on the food intake, weight gain, hemoglobin A1C (HbA1C) lowering activity, and glucose tolerance compared with the control and was similar to the Liraglutide. In conclusion, PEP20, a GLP-1R ECD-biased agonist, may provide a novel therapeutic approach to T2DM.
Collapse
Affiliation(s)
- Xia Zhong
- College of Life Science and Technology, Jinan University, Guangzhou 510000, China.
- Reyoung Biopharmaceuticals Co., Ltd, Suzhou 215000, China.
| | - Zhu Chen
- Reyoung Biopharmaceuticals Co., Ltd, Suzhou 215000, China.
- East China University of Science and Technology, Shanghai 200000, China.
| | - Qiong Chen
- Reyoung Biopharmaceuticals Co., Ltd, Suzhou 215000, China.
| | - Wei Zhao
- Reyoung Biopharmaceuticals Co., Ltd, Suzhou 215000, China.
| | - Zhi Chen
- East China University of Science and Technology, Shanghai 200000, China.
| |
Collapse
|
30
|
Tasyurek HM, Altunbas HA, Balci MK, Griffith TS, Sanlioglu S. Therapeutic Potential of Lentivirus-Mediated Glucagon-Like Peptide-1 Gene Therapy for Diabetes. Hum Gene Ther 2018; 29:802-815. [PMID: 29409356 DOI: 10.1089/hum.2017.180] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Postprandial glucose-induced insulin secretion from the islets of Langerhans is facilitated by glucagon-like peptide-1 (GLP-1)-a metabolic hormone with insulinotropic properties. Among the variety of effects it mediates, GLP-1 induces delta cell secretion of somatostatin, inhibits alpha cell release of glucagon, reduces gastric emptying, and slows food intake. These events collectively contribute to weight loss over time. During type 2 diabetes (T2DM), however, the incretin response to glucose is reduced and accompanied by a moderate reduction in GLP-1 secretion. To compensate for the reduced incretin effect, a human immunodeficiency virus-based lentiviral vector was generated to deliver DNA encoding human GLP-1 (LentiGLP-1), and the anti-diabetic efficacy of LentiGLP-1 was tested in a high-fat diet/streptozotocin-induced model of T2DM. Therapeutic administration of LentiGLP-1 reduced blood glucose levels in obese diabetic Sprague Dawley rats, along with improving insulin sensitivity and glucose tolerance. Normoglycemia was correlated with increased blood GLP-1 and pancreatic beta cell regeneration in LentiGLP-1-treated rats. Plasma triglyceride levels were also normalized after LentiGLP-1 injection. Collectively, these data suggest the clinical potential of GLP-1 gene transfer therapy for the treatment of T2DM.
Collapse
Affiliation(s)
- Hale M Tasyurek
- 1 Human Gene and Cell Therapy Center of Akdeniz University Hospitals , Antalya, Turkey
| | - Hasan Ali Altunbas
- 2 Department of Internal Medicine, Division of Endocrinology and Metabolism, Akdeniz University Faculty of Medicine, Antalya, Turkey
| | - Mustafa Kemal Balci
- 2 Department of Internal Medicine, Division of Endocrinology and Metabolism, Akdeniz University Faculty of Medicine, Antalya, Turkey
| | - Thomas S Griffith
- 3 Department of Urology, University of Minnesota , School of Medicine, Minneapolis, Minnesota
| | - Salih Sanlioglu
- 1 Human Gene and Cell Therapy Center of Akdeniz University Hospitals , Antalya, Turkey
| |
Collapse
|
31
|
Angelopoulou E, Piperi C. DPP-4 inhibitors: a promising therapeutic approach against Alzheimer's disease. ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:255. [PMID: 30069457 DOI: 10.21037/atm.2018.04.41] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Alzheimer's disease (AD), the commonest cause of dementia in ageing adults, is characterized by gradual cognitive impairment and severe functional disability. Key pathophysiological hallmarks involve amyloid-β (Aβ) accumulation, tau hyper-phosphorylation and neuronal loss. Despite extensive basic and clinical investigations, the etiology of the disease remains elusive, although several risk factors have been associated with its development. Current pharmacotherapies including achetylocholinesterase inhibitors and memantine fail to halt disease progression. Interestingly, type 2 diabetes mellitus (T2DM) and AD share several common characteristics, including Aβ deposition, insulin resistance, degeneration, mitochondrial dysfunction, oxidative stress and excessive inflammation. Recent experimental and clinical evidence indicates that dipeptidyl peptidase-4 (DPP-4) inhibitors, being currently used for T2DM therapy, may also prove effective for AD treatment. They may specifically suppress Aβ accumulation, tau hyper-phosphorylation, neuroinflammation, mitochondrial dysfunction and reactive oxygen species (ROS) formation, resulting in the inhibition of cognitive impairment. In this review, we discuss the encouraging current data regarding the molecular and clinical effects of DPP-4 inhibitors in AD, highlighting the need of future studies elucidating their functional role in addressing this incurable disease.
Collapse
Affiliation(s)
- Efthalia Angelopoulou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
32
|
Li YK, Ma DX, Wang ZM, Hu XF, Li SL, Tian HZ, Wang MJ, Shu YW, Yang J. The glucagon-like peptide-1 (GLP-1) analog liraglutide attenuates renal fibrosis. Pharmacol Res 2018. [DOI: 10.1016/j.phrs.2018.03.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
33
|
Zhang D, Lv G. Therapeutic potential of spinal GLP-1 receptor signaling. Peptides 2018; 101:89-94. [PMID: 29329976 DOI: 10.1016/j.peptides.2018.01.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 12/24/2017] [Accepted: 01/08/2018] [Indexed: 12/16/2022]
Abstract
GLP-1 signaling pathway has been well studied for its role in regulating glucose homeostasis, as well as its beneficial effects in energy and nutrient metabolism. A number of drugs based on GLP-1 have been used to treat type 2 diabetes mellitus. GLP-1R is expressed in multiple organs and numerous experimental studies have demonstrated that GLP-1 signaling pathway exhibits pro-survival functions in various disorders. In the central nervous system, stimulation of GLP-1R produces neuroprotective effects in specific neurodegenerative disorders, such as Alzheimer's disease and Parkinson's disease. The preproglucagon neurons located in the brainstem can also produce GLP-1. GLP-1 analogs have a long-acting effect and are able to pass the blood-brain barrier, which probably extends the therapeutic efficacy of GLP-1R activation. Neurodegenerative or traumatic conditions can damage the spinal cord and result in motor and sensory dysfunction. Evidence supports that GLP-1R activation in the spinal cord possesses beneficial effects and significant therapeutic potential. Herein, we review studies that have focused on GLP-1 and the spinal cord, and summarize the expression of GLP-1R and the innervation of PPG neurons in the spinal cord, as well as the potential therapeutic benefits of GLP-1R activation.
Collapse
Affiliation(s)
- Dongao Zhang
- Department of Orthopaedics, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Gang Lv
- Department of Orthopaedics, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
34
|
Zhong VW, Juhaeri J, Cole SR, Shay CM, Gordon-Larsen P, Kontopantelis E, Mayer-Davis EJ. HbA 1C variability and hypoglycemia hospitalization in adults with type 1 and type 2 diabetes: A nested case-control study. J Diabetes Complications 2018; 32:203-209. [PMID: 29242016 DOI: 10.1016/j.jdiacomp.2017.10.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 10/19/2017] [Accepted: 10/20/2017] [Indexed: 11/26/2022]
Abstract
AIMS To determine association between HbA1C variability and hypoglycemia requiring hospitalization (HH) in adults with type 1 diabetes (T1D) and type 2 diabetes (T2D). METHODS Using nested case-control design in electronic health record data in England, one case with first or recurrent HH was matched to one control who had not experienced HH in incident T1D and T2D adults. HbA1C variability was determined by standard deviation of ≥3 HbA1C results. Conditional logistic models were applied to determine association of HbA1C variability with first and recurrent HH. RESULTS In T1D, every 1.0% increase in HbA1C variability was associated with 90% higher first HH risk (95% CI, 1.25-2.89) and 392% higher recurrent HH risk (95% CI, 1.17-20.61). In T2D, a 1.0% increase in HbA1C variability was associated with 556% higher first HH risk (95% CI, 3.88-11.08) and 573% higher recurrent HH risk (95% CI,1.59-28.51). In T2D for first HH, the association was the strongest in non-insulin non-sulfonylurea users (P<0.0001); for recurrent HH, the association was stronger in insulin users than sulfonylurea users (P=0.07). The HbA1C variability-HH association was stronger in more recent years in T2D (P≤0.004). CONCLUSIONS HbA1C variability is a strong predictor for HH in T1D and T2D.
Collapse
Affiliation(s)
- Victor W Zhong
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA; Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Juhaeri Juhaeri
- Global Pharmacovigilance and Epidemiology, Sanofi, Bridgewater, NJ, USA
| | - Stephen R Cole
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Christina M Shay
- Center for Health Metrics and Evaluation, the American Heart Association, Dallas, TX, USA
| | - Penny Gordon-Larsen
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA; Carolina Population Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | | | - Elizabeth J Mayer-Davis
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA; Department of Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
35
|
Zhong VW, Juhaeri J, Cole SR, Kontopantelis E, Shay CM, Gordon-Larsen P, Mayer-Davis EJ. Incidence and Trends in Hypoglycemia Hospitalization in Adults With Type 1 and Type 2 Diabetes in England, 1998-2013: A Retrospective Cohort Study. Diabetes Care 2017; 40:1651-1660. [PMID: 28716781 DOI: 10.2337/dc16-2680] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 06/02/2017] [Indexed: 02/03/2023]
Abstract
OBJECTIVE To determine trends in hospitalization for hypoglycemia in adults with type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM) in England. RESEARCH DESIGN AND METHODS Adults with T1DM or T2DM were identified from 398 of the 684 practices within the Clinical Practice Research Datalink, for which linkage to the Hospital Episode Statistics was possible. Hypoglycemia as the primary reason for hospitalization between 1998 and 2013 was extracted. Trends were estimated using joinpoint regression models for adults with T1DM, young and middle-aged adults with T2DM (18-64 years), and elderly adults with T2DM (≥65 years), respectively. RESULTS Among 23,246 adults with T1DM, 1,591 hypoglycemia hospitalizations occurred during 121,262 person-years. Among 241,441 adults with T2DM, 3,738 hypoglycemia hospitalizations occurred during 1,344,818 person-years. In adults with T1DM, the incidence increased 3.74% (95% CI 1.70-5.83) annually from 1998 to 2013. In young and middle-aged adults with T2DM, the annual incidence increase was 4.12% (0.61-7.75) from 1998 to 2013. In elderly adults with T2DM, the incidence increased 8.59% (5.76-11.50) annually from 1998 to 2009, and decreased 8.05% (-14.48 to -1.13) annually from 2009 to 2013, but the incidence was still higher in 2013 than 1998 (adjusted rate ratio 3.01 [1.76-5.14]). Trends in HbA1c level did not parallel trends of hypoglycemia hospitalization for both diabetes types. A possible reason for declined hypoglycemia trend in 2009-2013 in elderly adults with T2DM may be continuously decreased sulfonylurea use after 2009, which was not seen in young and middle-aged adults with T2DM. CONCLUSIONS Hypoglycemia requiring hospitalization has been an increasing burden in adults with T1DM and T2DM in England in the previous two decades, with the exception of the decline in elderly adults with T2DM starting in 2009.
Collapse
Affiliation(s)
- Victor W Zhong
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Juhaeri Juhaeri
- Global Pharmacovigilance and Epidemiology, Sanofi, Bridgewater, NJ
| | - Stephen R Cole
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | | | - Christina M Shay
- Center for Health Metrics and Evaluation, American Heart Association, Dallas, TX
| | - Penny Gordon-Larsen
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC.,Carolina Population Center, University of North Carolina at Chapel Hill, Chapel Hill, NC.,Department of Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Elizabeth J Mayer-Davis
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC .,Department of Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC
| |
Collapse
|
36
|
Nomoto H, Miyoshi H, Sugawara H, Ono K, Yanagiya S, Oita M, Nakamura A, Atsumi T. A randomized controlled trial comparing the effects of dapagliflozin and DPP-4 inhibitors on glucose variability and metabolic parameters in patients with type 2 diabetes mellitus on insulin. Diabetol Metab Syndr 2017; 9:54. [PMID: 28725273 PMCID: PMC5514514 DOI: 10.1186/s13098-017-0255-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 07/12/2017] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Dipeptidyl peptidase-4 (DPP-4) inhibitors and sodium-glucose co-transporter 2 (SGLT2) inhibitors improve hyperglycemia, and the usefulness of co-administration of DPP-4 inhibitors and insulin therapy has been well established. However, it has been still uncertain whether combination therapy of SGLT2 inhibitors and insulin is superior to that of DPP-4 inhibitors and the latter. Therefore, we investigated the superiority of dapagliflozin on glucose fluctuation compared with DPP-4 inhibitors in patients with type 2 diabetes mellitus (T2DM) on insulin using a continuous glucose monitoring (CGM) system. METHODS In this prospective, randomized, open-label controlled trial, 36 patients with T2DM and treated with DPP-4 inhibitors and insulin therapy, were enrolled and allocated into two groups. The patients either switched their DPP-4 inhibitors to dapagliflozin 5 mg for 12 weeks, or continued their DPP-4 inhibitors for the same period. CGM analyses and metabolic markers were assessed before and after treatment periods. RESULTS In total, data from 29 patients were analyzed. There were no significant differences in the mean amplitude of glycemic excursions and other CGM profiles in either group after treatment. Within the dapagliflozin treatment group, significant reductions of body mass index and albuminuria, and increases of HbA1c, hemoglobin and hematocrit were observed, but improvement of albuminuria was not significant if compared with the DPP-4 continuation group. CONCLUSIONS Combination therapy of dapagliflozin and insulin was not superior in glucose fluctuation to DPP-4 inhibitors on insulin. However, dapagliflozin may in part provide favorable effects on metabolism in patients with T2DM treated with insulin therapy. Trial registration UMIN-CTR: UMIN000015033. Registered 2 September 2014.
Collapse
Affiliation(s)
- Hiroshi Nomoto
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, North 15, West 7, Kita-ku, Sapporo, Hokkaido 060-8638 Japan
| | - Hideaki Miyoshi
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, North 15, West 7, Kita-ku, Sapporo, Hokkaido 060-8638 Japan
| | - Hajime Sugawara
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, North 15, West 7, Kita-ku, Sapporo, Hokkaido 060-8638 Japan
| | - Kota Ono
- Clinical Research and Medical Innovation Center, Hokkaido University Hospital, North 14, West 5, Kita-ku, Sapporo, Hokkaido 060-8648 Japan
| | - Shingo Yanagiya
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, North 15, West 7, Kita-ku, Sapporo, Hokkaido 060-8638 Japan
| | - Mayuko Oita
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, North 15, West 7, Kita-ku, Sapporo, Hokkaido 060-8638 Japan
| | - Akinobu Nakamura
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, North 15, West 7, Kita-ku, Sapporo, Hokkaido 060-8638 Japan
| | - Tatsuya Atsumi
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, North 15, West 7, Kita-ku, Sapporo, Hokkaido 060-8638 Japan
| |
Collapse
|
37
|
Activation of Glucagon-Like Peptide-1 Receptor Promotes Neuroprotection in Experimental Autoimmune Encephalomyelitis by Reducing Neuroinflammatory Responses. Mol Neurobiol 2017; 55:3007-3020. [PMID: 28456941 DOI: 10.1007/s12035-017-0550-2] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 04/07/2017] [Indexed: 12/25/2022]
Abstract
The signaling axis of glucagon-like peptide-1 (GLP-1)/GLP-1 receptor (GLP-1R) has been an important component in overcoming diabetes, and recent reports have uncovered novel beneficial roles of this signaling axis in central nervous system (CNS) disorders, such as Alzheimer's disease, Parkinson's disease, and cerebral ischemia, accelerating processes for exendin-4 repositioning. Here, we studied whether multiple sclerosis (MS) could be a complement to the CNS disorders that are associated with the GLP-1/GLP-1R signaling axis. Both components of the signaling axis, GLP-1 and GLP-1R proteins, are expressed in neurons, astrocytes, and microglia in the spinal cord of normal mice. In particular, they are abundant in Iba1-positive microglia. Upon challenge by experimental autoimmune encephalomyelitis (EAE), an animal model of MS, the mRNA expression of both GLP-1 and GLP-1R was markedly downregulated in EAE-symptomatic spinal cords, indicating attenuated activity of GLP-1/GLP-1R signaling in EAE. Such a downregulation obviously occurred in LPS-stimulated rat primary microglia, a main cell type to express both GLP-1 and GLP-1R, further indicating attenuated activity of GLP-1/GLP-1R signaling in activated microglia. To investigate whether increased activity of GLP-1R has a therapeutic benefit, exendin-4 (5 μg/kg, i.p.), a GLP-1R agonist, was administered daily to EAE-symptomatic mice. Exendin-4 administration to symptomatic EAE mice significantly improved the clinical signs of the disease, along with the reversal of histopathological sequelae such as cell accumulation, demyelination, astrogliosis, microglial activation, and morphological transformation of activated microglia in the injured spinal cord. Such an improvement by exendin-4 was comparable to that by FTY720 (3 mg/kg, i.p.), a drug for MS. The neuroprotective effects of exendin-4 against EAE were also associated with decreased mRNA expression of proinflammatory cytokines, such as interleukin (IL)-17, IL-1β, IL-6, and tumor necrosis factor (TNF)-α, all of which are usually upregulated in injured sites of the EAE spinal cord. Interestingly, exendin-4 exposure similarly reduced mRNA levels of IL-1β and TNF-α in LPS-stimulated microglia. Furthermore, exendin-4 administration significantly attenuated activation of NF-κB signaling in EAE spinal cord and LPS-stimulated microglia. Collectively, the current study demonstrates the therapeutic potential of exendin-4 for MS by reducing immune responses in the CNS, highlighting the importance of the GLP-1/GLP-1R signaling axis in the development of a novel therapeutic strategy for MS.
Collapse
|
38
|
Preiss D, Dawed A, Welsh P, Heggie A, Jones AG, Dekker J, Koivula R, Hansen TH, Stewart C, Holman RR, Franks PW, Walker M, Pearson ER, Sattar N. Sustained influence of metformin therapy on circulating glucagon-like peptide-1 levels in individuals with and without type 2 diabetes. Diabetes Obes Metab 2017; 19:356-363. [PMID: 27862873 PMCID: PMC5330429 DOI: 10.1111/dom.12826] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 10/31/2016] [Accepted: 11/08/2016] [Indexed: 12/20/2022]
Abstract
AIMS To investigate, in the Carotid Atherosclerosis: Metformin for Insulin Resistance (CAMERA) trial (NCT00723307), whether the influence of metformin on the glucagon-like peptide (GLP)-1 axis in individuals with and without type 2 diabetes (T2DM) is sustained and related to changes in glycaemia or weight, and to investigate basal and post-meal GLP-1 levels in patients with T2DM in the cross-sectional Diabetes Research on Patient Stratification (DIRECT) study. MATERIALS AND METHODS CAMERA was a double-blind randomized placebo-controlled trial of metformin in 173 participants without diabetes. Using 6-monthly fasted total GLP-1 levels over 18 months, we evaluated metformin's effect on total GLP-1 with repeated-measures analysis and analysis of covariance. In the DIRECT study, we examined active and total fasting and 60-minute post-meal GLP-1 levels in 775 people recently diagnosed with T2DM treated with metformin or diet, using Student's t-tests and linear regression. RESULTS In CAMERA, metformin increased total GLP-1 at 6 (+20.7%, 95% confidence interval [CI] 4.7-39.0), 12 (+26.7%, 95% CI 10.3-45.6) and 18 months (+18.7%, 95% CI 3.8-35.7), an overall increase of 23.4% (95% CI 11.2-36.9; P < .0001) vs placebo. Adjustment for changes in glycaemia and adiposity, individually or combined, did not attenuate this effect. In the DIRECT study, metformin was associated with higher fasting active (39.1%, 95% CI 21.3-56.4) and total GLP-1 (14.1%, 95% CI 1.2-25.9) but not post-meal incremental GLP-1. These changes were independent of potential confounders including age, sex, adiposity and glycated haemoglobin. CONCLUSIONS In people without diabetes, metformin increases total GLP-1 in a sustained manner and independently of changes in weight or glycaemia. Metformin-treated patients with T2DM also have higher fasted GLP-1 levels, independently of weight and glycaemia.
Collapse
Affiliation(s)
- David Preiss
- MRC Population Health Research Unit, Clinical Trial Service Unit and Epidemiological Studies Unit, University of Oxford, Oxford, UK
| | - Adem Dawed
- Molecular and Clinical Medicine, University of Dundee, Dundee, UK
| | - Paul Welsh
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Alison Heggie
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Angus G Jones
- NIHR Exeter Clinical Research Facility, University of Exeter Medical School, Exeter, UK
| | - Jacqueline Dekker
- VU Medical Center, Dept Epidemiology and Biostatistics, Amsterdam, Netherlands
| | - Robert Koivula
- Department of Clinical Sciences, Lund University, Genetic and Molecular Epidemiology, Malmö, Sweden
| | - Tue H Hansen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, Faculty of Health Sciences, University of Copenhagen, Denmark
| | | | - Caitlin Stewart
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Rury R Holman
- Diabetes Trials Unit, University of Oxford, Oxford, UK
| | - Paul W Franks
- Department of Clinical Sciences, Lund University, Genetic and Molecular Epidemiology, Malmö, Sweden
| | - Mark Walker
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Ewan R Pearson
- Molecular and Clinical Medicine, University of Dundee, Dundee, UK
| | - Naveed Sattar
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
39
|
Pan Y, Shi S, Lao X, Zhang J, Tan S, Wu Z, Huang J. A novel GLP-1 analog, a dimer of GLP-1 via covalent linkage by a lysine, prolongs the action of GLP-1 in the treatment of type 2 diabetes. Peptides 2017; 88:46-54. [PMID: 27965024 DOI: 10.1016/j.peptides.2016.11.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 10/28/2016] [Accepted: 11/17/2016] [Indexed: 01/29/2023]
Abstract
GLP-1 is an incretin hormone that can effectively lower blood glucose, however, the short time of biological activity and the side effect limit its therapeutic application. Many methods have been tried to optimize GLP-1 to extend its in vivo half-time, reduce its side effect and enhance its activity. Here we have chosen the idea to dimerize GLP-1 with a C-terminal lysine to form a new GLP-1 analog, DLG3312. We have explored the structure and the biological property of DLG3312, and the results indicated that DLG3312 not only remained the ability to activate the GLP-1R, but also strongly stimulated Min6 cell to secrete insulin. The in vivo bioactivities have been tested on two kinds of animal models, the STZ induced T2DM mice and the db/db mice, respectively. DLG3312 showed potent anti-diabetic ability in glucose tolerance assay and single-dose administration of DLG3312 could lower blood glucose for at least 10 hours. Long-term treatment with DLG3312 can reduce fasted blood glucose, decrease water consumption and food intake and significantly reduce the HbA1c level by 1.80% and 2.37% on STZ induced T2DM mice and the db/db mice, respectively. We also compared DLG3312 with liraglutide to investigate its integrated control of the type 2 diabetes. The results indicated that DLG3312 almost has the same effect as liraglutide but with a much simpler preparation process. In conclusion, we, by using C-terminal lysine as a linker, have synthesized a novel GLP-1 analog, DLG3312. With simplified preparation and improved physiological characterizations, DLG3312 could be considered as a promising candidate for the type 2 diabetes therapy.
Collapse
Affiliation(s)
- Yingying Pan
- School of Life Science, East China Normal University, Shanghai, China
| | - Siwei Shi
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Xun Lao
- School of Life Science, East China Normal University, Shanghai, China
| | - Jinlong Zhang
- School of Life Science, East China Normal University, Shanghai, China
| | - Shiming Tan
- School of Life Science, East China Normal University, Shanghai, China
| | - Zirong Wu
- School of Life Science, East China Normal University, Shanghai, China
| | - Jing Huang
- School of Life Science, East China Normal University, Shanghai, China.
| |
Collapse
|
40
|
Mietlicki-Baase EG, McGrath LE, Koch-Laskowski K, Krawczyk J, Pham T, Lhamo R, Reiner DJ, Hayes MR. Hindbrain DPP-IV inhibition improves glycemic control and promotes negative energy balance. Physiol Behav 2017; 173:9-14. [PMID: 28119159 DOI: 10.1016/j.physbeh.2017.01.038] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 01/20/2017] [Accepted: 01/20/2017] [Indexed: 02/06/2023]
Abstract
The beneficial glycemic and food intake-suppressive effects of glucagon-like peptide-1 (GLP-1) have made this neuroendocrine system a leading target for pharmacological approaches to the treatment of diabetes and obesity. One strategy to increase the activity of endogenous GLP-1 is to prevent the rapid degradation of the hormone by the enzyme dipeptidyl peptidase-IV (DPP-IV). However, despite the expression of both DPP-IV and GLP-1 in the brain, and the clear importance of central GLP-1 receptor (GLP-1R) signaling for glycemic and energy balance control, the metabolic effects of central inhibition of DPP-IV activity are unclear. To test whether hindbrain DPP-IV inhibition suppresses blood glucose, feeding, and body weight gain, the effects of 4th intracerebroventricular (ICV) administration of the FDA-approved DPP-IV inhibitor sitagliptin were evaluated. Results indicate that hindbrain delivery of sitagliptin improves glycemic control in a GLP-1R-dependent manner, suggesting that this effect is due at least in part to increased endogenous brainstem GLP-1 activity after sitagliptin administration. Furthermore, 4th ICV injection of sitagliptin reduced 24h body weight gain and energy intake, with a selective suppression of high-fat diet, but not chow, intake. These data reveal a novel role for hindbrain GLP-1R activation in glycemic control and also demonstrate that DPP-IV inhibition in the caudal brainstem promotes negative energy balance.
Collapse
Affiliation(s)
- Elizabeth G Mietlicki-Baase
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Lauren E McGrath
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Kieran Koch-Laskowski
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Joanna Krawczyk
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Tram Pham
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Rinzin Lhamo
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - David J Reiner
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Matthew R Hayes
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States.
| |
Collapse
|
41
|
Gut commensal Bacteroides acidifaciens prevents obesity and improves insulin sensitivity in mice. Mucosal Immunol 2017; 10:104-116. [PMID: 27118489 DOI: 10.1038/mi.2016.42] [Citation(s) in RCA: 316] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 03/09/2016] [Accepted: 03/10/2016] [Indexed: 02/04/2023]
Abstract
In humans, the composition of gut commensal bacteria is closely correlated with obesity. The bacteria modulate metabolites and influence host immunity. In this study, we attempted to determine whether there is a direct correlation between specific commensal bacteria and host metabolism. As mice aged, we found significantly reduced body weight and fat mass in Atg7ΔCD11c mice when compared with Atg7f/f mice. When mice shared commensal bacteria by co-housing or feces transfer experiments, body weight and fat mass were similar in both mouse groups. By pyrosequencing analysis, Bacteroides acidifaciens (BA) was significantly increased in feces of Atg7ΔCD11c mice compared with those of control Atg7f/f mice. Wild-type C57BL/6 (B6) mice fed with BA were significantly more likely to gain less weight and fat mass than mice fed with PBS. Of note, the expression level of peroxisome proliferator-activated receptor alpha (PPARα) was consistently increased in the adipose tissues of Atg7ΔCD11c mice, B6 mice transferred with fecal microbiota of Atg7ΔCD11c mice, and BA-fed B6 mice. Furthermore, B6 mice fed with BA showed elevated insulin levels in serum, accompanied by increased serum glucagon-like peptide-1 and decreased intestinal dipeptidyl peptidase-4. These finding suggest that BA may have potential for treatment of metabolic diseases such as diabetes and obesity.
Collapse
|
42
|
Campbell RK. Diabetes: Rationale for Dipeptidyl Peptidase 4 Inhibitors: A New Class of Oral Agents for the Treatment of Type 2 Diabetes Mellitus. Ann Pharmacother 2016; 41:51-60. [PMID: 17190843 DOI: 10.1345/aph.1h459] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Objective: To review advances in understanding the pathophysiologic basis of type 2 diabetes mellitus and the pharmacology and mechanism of action of dipeptidyl peptidase 4 (DPP-4) inhibition in correcting the underlying defects in glycemic control. Data Sources: Articles were identified through MEDLINE for the period 1966 through November 2006. Abstracts and presentations from the American Diabetes Association Scientific Sessions and the European Association for the Study of Diabetes (2002–2006) were also searched for scientific reports on DPP-4 inhibitors. Study Selection And Data Extraction: Abstracts, original clinical and preclinical research reports, and review articles published in the English language were identified for review. Literature discussing glucose regulation, incretin hormones, type 2 diabetes pathophysiology, and DPP-4 inhibition were evaluated and selected based on consideration of their support for the proof of concept, mechanistic and in vivo findings, and timeliness. Data Synthesis: The search for new and effective therapies for type 2 diabetes has led to the identification of a novel therapeutic target, the incretin hormones, which play a role in mediating glucose homeostasis via effects on glucagon and insulin secretion from pancreatic islet α- and β-cells, respectively. The incretins' glucagon-like peptide-1 and glucose-dependent insulinotropic polypeptide are rapidly inactivated by the enzyme DPP-4. DPP-4 inhibitor agents act by blocking the active site of DPP-4, thereby preventing inactivation of and prolonging the duration of action of incretins, which in turn helps to correct the defective insulin and glucagon secretion that marks type 2 diabetes. Clinical studies to date indicate that DPP-4 inhibitors effectively stimulate insulin secretion, suppress glucagon release, and improve glucose control in patients with type 2 diabetes. These agents are well tolerated and have a low incidence of adverse effects. Conclusions: The DPP-4 inhibitors are novel agents for the treatment of type 2 diabetes. Compounds under development in this new class of oral antidiabetic drugs may be free of the limitations of current therapies.
Collapse
Affiliation(s)
- R Keith Campbell
- College of Pharmacy, Wegner Hall #147, PO Box 646510, Washington State University, Pullman, WA 99164, USA.
| |
Collapse
|
43
|
Nojima H, Kanou K, Terashi G, Takeda-Shitaka M, Inoue G, Atsuda K, Itoh C, Iguchi C, Matsubara H. Comprehensive analysis of the Co-structures of dipeptidyl peptidase IV and its inhibitor. BMC STRUCTURAL BIOLOGY 2016; 16:11. [PMID: 27491540 PMCID: PMC4974693 DOI: 10.1186/s12900-016-0062-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 07/29/2016] [Indexed: 12/21/2022]
Abstract
Background We comprehensively analyzed X-ray cocrystal structures of dipeptidyl peptidase IV (DPP-4) and its inhibitor to clarify whether DPP-4 alters its general or partial structure according to the inhibitor used and whether DPP-4 has a common rule for inhibitor binding. Results All the main and side chains in the inhibitor binding area were minimally altered, except for a few side chains, despite binding to inhibitors of various shapes. Some residues (Arg125, Glu205, Glu206, Tyr662 and Asn710) in the area had binding modes to fix a specific atom of inhibitor to a particular spatial position in DPP-4. We found two specific water molecules that were common to 92 DPP-4 structures. The two water molecules were close to many inhibitors, and seemed to play two roles: maintaining the orientation of the Glu205 and Glu206 side chains through a network via the water molecules, and arranging the inhibitor appropriately at the S2 subsite. Conclusions Our study based on high-quality resources may provide a necessary minimum consensus to help in the discovery of a novel DPP-4 inhibitor that is commercially useful. Electronic supplementary material The online version of this article (doi:10.1186/s12900-016-0062-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hiroyuki Nojima
- School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan.
| | - Kazuhiko Kanou
- School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan.,Present address: Infectious Disease Surveillance Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Genki Terashi
- School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Mayuko Takeda-Shitaka
- School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Gaku Inoue
- School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Koichiro Atsuda
- School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Chihiro Itoh
- School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Chie Iguchi
- School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Hajime Matsubara
- School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| |
Collapse
|
44
|
Mottalib A, Mohd-Yusof BN, Shehabeldin M, Pober DM, Mitri J, Hamdy O. Impact of Diabetes-Specific Nutritional Formulas versus Oatmeal on Postprandial Glucose, Insulin, GLP-1 and Postprandial Lipidemia. Nutrients 2016; 8:443. [PMID: 27455318 PMCID: PMC4963919 DOI: 10.3390/nu8070443] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 06/24/2016] [Accepted: 07/19/2016] [Indexed: 12/26/2022] Open
Abstract
Diabetes-specific nutritional formulas (DSNFs) are frequently used as part of medical nutrition therapy for patients with diabetes. This study aims to evaluate postprandial (PP) effects of 2 DSNFs; Glucerna (GL) and Ultra Glucose Control (UGC) versus oatmeal (OM) on glucose, insulin, glucagon-like peptide-1 (GLP-1), free fatty acids (FFA) and triglycerides (TG). After an overnight fast, 22 overweight/obese patients with type 2 diabetes were given 200 kcal of each of the three meals on three separate days in random order. Blood samples were collected at baseline and at 30, 60, 90, 120, 180 and 240 min. Glucose area under the curve (AUC0-240) after GL and UGC was lower than OM (p < 0.001 for both). Insulin positive AUC0-120 after UGC was higher than after OM (p = 0.02). GLP-1 AUC0-120 and AUC0-240 after GL and UGC was higher than after OM (p < 0.001 for both). FFA and TG levels were not different between meals. Intake of DSNFs improves PP glucose for 4 h in comparison to oatmeal of similar caloric level. This is achieved by either direct stimulation of insulin secretion or indirectly by stimulating GLP-1 secretion. The difference between their effects is probably related to their unique blends of amino acids, carbohydrates and fat.
Collapse
Affiliation(s)
| | - Barakatun-Nisak Mohd-Yusof
- Joslin Diabetes Center, Boston, MA 02215, USA.
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor 43400, Malaysia.
| | | | | | | | - Osama Hamdy
- Joslin Diabetes Center, Boston, MA 02215, USA.
| |
Collapse
|
45
|
Tomita T. Apoptosis in pancreatic β-islet cells in Type 2 diabetes. Bosn J Basic Med Sci 2016; 16:162-79. [PMID: 27209071 DOI: 10.17305/bjbms.2016.919] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 01/16/2016] [Accepted: 01/20/2016] [Indexed: 12/25/2022] Open
Abstract
Apoptosis plays important roles in the pathophysiology of Type 2 diabetes mellitus (T2DM). The etiology of T2DM is multifactorial, including obesity-associated insulin resistance, defective insulin secretion, and loss of β-cell mass through β-cell apoptosis. β-cell apoptosis is mediated through a milliard of caspase family cascade machinery in T2DM. The glucose-induced insulin secretion is the principle pathophysiology of diabetes and insufficient insulin secretion results in chronic hyperglycemia, diabetes. Recently, hyperglycemia-induced β-cell apoptosis has been extensively studied on the balance of pro-apoptotic Bcl-2 proteins (Bad, Bid, Bik, and Bax) and anti-apoptotic Bcl family (Bcl-2 and Bcl-xL) toward apoptosis in vitro isolated islets and insulinoma cell culture. Apoptosis can only occur when the concentration of pro-apoptotic Bcl-2 exceeds that of anti-apoptotic proteins at the mitochondrial membrane of the intrinsic pathway. A bulk of recent research on hyperglycemia-induced apoptosis on β-cells unveiled complex details on glucose toxicity on β-cells in molecular levels coupled with cell membrane potential by adenosine triphosphate generation through K+ channel closure, opening Ca2+ channel and plasma membrane depolarization. Furthermore, animal models using knockout mice will shed light on the basic understanding of the pathophysiology of diabetes as a glucose metabolic disease complex, on the balance of anti-apoptotic Bcl family and pro-apoptotic genes. The cumulative knowledge will provide a better understanding of glucose metabolism at a molecular level and will lead to eventual prevention and therapeutic application for T2DM with improving medications.
Collapse
|
46
|
Yule LR, Bower RL, Kaur H, Kowalczyk R, Hay DL, Brimble MA. Synthesis and amylin receptor activity of glycomimetics of pramlintide using click chemistry. Org Biomol Chem 2016; 14:5238-45. [PMID: 27139251 DOI: 10.1039/c6ob00850j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Pramlintide (Symlin®), a synthetic analogue of the neuroendocrine hormone amylin, is devoid of the tendency to form cytotoxic amyloid fibrils and is currently used in patients with type I and type II diabetes mellitus as an adjunctive therapy with insulin or insulin analogues. As part of an on-going search for a pramlintide analogue with improved pharmacokinetic properties, we herein report the synthesis of mono- and di-glycosylated analogues of pramlintide and their activity at the AMY1(a) receptor. Introduction of N-glycosylated amino acids into the pramlintide sequence afforded the native N-linked glycomimetics whilst use of Cu(i)-catalysed azide-alkyne 1,3-dipolar cycloaddition (click) chemistry delivered 1,2,3-triazole linked glycomimetics. AMY1(a) receptor activity was retained by incorporation of single or multiple GlcNAc moieties at positions 21 and 35 of native pramlintide. Importantly, no difference in AMY1(a) activity was observed between native N-linked glycomimetics and 1,2,3-triazole linked glycomimetics demonstrating that the click variants can act as surrogates for the native N-glycosides in a biological setting.
Collapse
Affiliation(s)
- Lauren R Yule
- The School of Biological Sciences, University of Auckland, 3A Symonds St, Auckland 1010, New Zealand.
| | | | | | | | | | | |
Collapse
|
47
|
Yoo JY, Kim SS. Probiotics and Prebiotics: Present Status and Future Perspectives on Metabolic Disorders. Nutrients 2016; 8:173. [PMID: 26999199 PMCID: PMC4808900 DOI: 10.3390/nu8030173] [Citation(s) in RCA: 178] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 03/09/2016] [Accepted: 03/11/2016] [Indexed: 02/06/2023] Open
Abstract
Metabolic disorders, including type 2 diabetes (T2DM) and cardiovascular disease (CVD), present an increasing public health concern and can significantly undermine an individual's quality of life. The relative risk of CVD, the primary cause of death in T2DM patients, is two to four times higher in people with T2DM compared with those who are non-diabetic. The prevalence of metabolic disorders has been associated with dynamic changes in dietary macronutrient intake and lifestyle changes over recent decades. Recently, the scientific community has considered alteration in gut microbiota composition to constitute one of the most probable factors in the development of metabolic disorders. The altered gut microbiota composition is strongly conducive to increased adiposity, β-cell dysfunction, metabolic endotoxemia, systemic inflammation, and oxidative stress. Probiotics and prebiotics can ameliorate T2DM and CVD through improvement of gut microbiota, which in turn leads to insulin-signaling stimulation and cholesterol-lowering effects. We analyze the currently available data to ascertain further potential benefits and limitations of probiotics and prebiotics in the treatment of metabolic disorders, including T2DM, CVD, and other disease (obesity). The current paper explores the relevant contemporary scientific literature to assist in the derivation of a general perspective of this broad area.
Collapse
Affiliation(s)
- Ji Youn Yoo
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea.
| | - Sung Soo Kim
- Department of Biochemistry and Molecular Biology, Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, School of Medicine, Kyung Hee University, Seoul 02447, Korea.
| |
Collapse
|
48
|
Liu Z, Chen X. Simple bioconjugate chemistry serves great clinical advances: albumin as a versatile platform for diagnosis and precision therapy. Chem Soc Rev 2016; 45:1432-56. [PMID: 26771036 PMCID: PMC5227548 DOI: 10.1039/c5cs00158g] [Citation(s) in RCA: 299] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Albumin is the most abundant circulating protein in plasma and has recently emerged as a versatile protein carrier for drug targeting and for improving the pharmacokinetic profile of peptide or protein based drugs. Three drug delivery technologies related to albumin have been developed, which include the coupling of low-molecular weight drugs to exogenous or endogenous albumin, conjugating bioactive proteins by albumin fusion technology (AFT), and encapsulation of drugs into albumin nanoparticles. This review article starts with a brief introduction of human serum albumin (HSA), and then summarizes the mainstream chemical strategies of developing HSA binding molecules for coupling with drug molecules. Moreover, we also concisely condense the recent progress of the most important clinical applications of HSA-binding platforms, and specify the current challenges that need to be met for a bright future of HSA-binding.
Collapse
Affiliation(s)
- Zhibo Liu
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
49
|
Hodge D, Glass LL, Diakogiannaki E, Pais R, Lenaghan C, Smith DM, Wedin M, Bohlooly-Y M, Gribble FM, Reimann F. Lipid derivatives activate GPR119 and trigger GLP-1 secretion in primary murine L-cells. Peptides 2016; 77:16-20. [PMID: 26144594 PMCID: PMC4788502 DOI: 10.1016/j.peptides.2015.06.012] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 06/19/2015] [Accepted: 06/23/2015] [Indexed: 02/01/2023]
Abstract
AIMS/HYPOTHESIS Glucagon-like peptide-1 (GLP-1) is an incretin hormone derived from proglucagon, which is released from intestinal L-cells and increases insulin secretion in a glucose dependent manner. GPR119 is a lipid derivative receptor present in L-cells, believed to play a role in the detection of dietary fat. This study aimed to characterize the responses of primary murine L-cells to GPR119 agonism and assess the importance of GPR119 for the detection of ingested lipid. METHODS GLP-1 secretion was measured from murine primary cell cultures stimulated with a panel of GPR119 ligands. Plasma GLP-1 levels were measured in mice lacking GPR119 in proglucagon-expressing cells and controls after lipid gavage. Intracellular cAMP responses to GPR119 agonists were measured in single primary L-cells using transgenic mice expressing a cAMP FRET sensor driven by the proglucagon promoter. RESULTS L-cell specific knockout of GPR119 dramatically decreased plasma GLP-1 levels after a lipid gavage. GPR119 ligands triggered GLP-1 secretion in a GPR119 dependent manner in primary epithelial cultures from the colon, but were less effective in the upper small intestine. GPR119 agonists elevated cAMP in ∼70% of colonic L-cells and 50% of small intestinal L-cells. CONCLUSIONS/INTERPRETATION GPR119 ligands strongly enhanced GLP-1 release from colonic cultures, reflecting the high proportion of colonic L-cells that exhibited cAMP responses to GPR119 agonists. Less GPR119-dependence could be demonstrated in the upper small intestine. In vivo, GPR119 in L-cells plays a key role in oral lipid-triggered GLP-1 secretion.
Collapse
Affiliation(s)
- Daryl Hodge
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, WT-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Leslie L Glass
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, WT-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Eleftheria Diakogiannaki
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, WT-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Ramona Pais
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, WT-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Carol Lenaghan
- AstraZeneca, Cardiovascular & Metabolic Diseases iMed, Alderley Park, Cheshire, UK
| | - David M Smith
- AstraZeneca, Cardiovascular & Metabolic Diseases iMed, Mölndal, Sweden
| | - Marianne Wedin
- AstraZeneca, Transgenics Group, Reagents & Assay Development, Discovery Sciences, Mölndal, Sweden
| | - Mohammad Bohlooly-Y
- AstraZeneca, Transgenics Group, Reagents & Assay Development, Discovery Sciences, Mölndal, Sweden
| | - Fiona M Gribble
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, WT-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK.
| | - Frank Reimann
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, WT-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK.
| |
Collapse
|
50
|
Oh DY, Olefsky JM. G protein-coupled receptors as targets for anti-diabetic therapeutics. Nat Rev Drug Discov 2016; 15:161-72. [PMID: 26822831 DOI: 10.1038/nrd.2015.4] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|