1
|
Safaei S, Derakhshan-sefidi M, Karimi A. Wolbachia: A bacterial weapon against dengue fever- a narrative review of risk factors for dengue fever outbreaks. New Microbes New Infect 2025; 65:101578. [PMID: 40176883 PMCID: PMC11964561 DOI: 10.1016/j.nmni.2025.101578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 01/10/2025] [Accepted: 03/06/2025] [Indexed: 04/05/2025] Open
Abstract
Arboviruses constitute the largest known group of viruses and are responsible for various infections that impose significant socioeconomic burdens worldwide, particularly due to their link with insect-borne diseases. The increasing incidence of dengue fever in non-endemic regions underscores the urgent need for innovative strategies to combat this public health threat. Wolbachia, a bacterium, presents a promising biological control method against mosquito vectors, offering a novel approach to managing dengue fever. We systematically investigated biomedical databases (PubMed, Web of Science, Google Scholar, Science Direct, and Embase) using "AND" as a Boolean operator with keywords such as "dengue fever," "dengue virus," "risk factors," "Wolbachia," and "outbreak." We prioritized articles that offered significant insights into the risk factors contributing to the outbreak of dengue fever and provided an overview of Wolbachia's characteristics and functions in disease management, considering studies published until December 25, 2024. Field experiments have shown that introducing Wolbachia-infected mosquitoes can effectively reduce mosquito populations and lower dengue transmission rates, signifying its potential as a practical approach for controlling this disease.
Collapse
Affiliation(s)
- Sahel Safaei
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | | | |
Collapse
|
2
|
Jiravejchakul N, Chan-In W, Thuncharoen W, Sungnak W, Charoensawan V, Vacharathit V, Matangkasombut P. Cytokine and chemokine kinetics in natural human dengue infection as predictors of disease outcome. Sci Rep 2025; 15:15612. [PMID: 40320430 PMCID: PMC12050306 DOI: 10.1038/s41598-025-99628-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 04/22/2025] [Indexed: 05/08/2025] Open
Abstract
Dengue is an important tropical disease with considerable global impact. Despite this, there remains an urgent need for reliable biomarkers to predict disease severity, as well as effective antiviral drugs and targeted treatments. In this study, we conducted a comprehensive profiling of 41 plasma mediators in patients with asymptomatic dengue (AD) and symptomatic dengue (SD), which includes mild dengue fever (DF) and severe dengue hemorrhagic fever (DHF). Our findings revealed that the levels of nearly all measured mediators were consistently lower in AD compared to SD patients, suggesting a potential protective cytokine response signature. Time-course cytokine analysis in SD shown significantly elevated levels of pro-inflammatory cytokines and chemokines associated with inflammation and viral clearance upon the acute phase, while various growth factors were elevated during the convalescence. Notably, we identified elevated IL-15 levels in DHF patients three days before fever subsidence, highlighting its potential as an early prognostic biomarker for severe disease outcomes. Furthermore, prolonged high levels of IL-8 and IP-10 in DHF during the critical period may contribute to dengue immunopathogenesis. This study advances the understanding of cytokine dynamics in the natural course of human dengue infection, providing valuable insights for the development of targeted treatments and prognostic biomarkers.
Collapse
Affiliation(s)
- Natnicha Jiravejchakul
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Wilawan Chan-In
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
- Department of Clinical Pathology, Faculty of Medicine Vajira Hospital, Navamindradhiraj University, Bangkok, Thailand
| | - Walairat Thuncharoen
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Waradon Sungnak
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
- Integrative Computational BioScience (ICBS) Center, Mahidol University, Nakhon Pathom, 73170, Thailand
- Single-Cell Omics and Systems Biology of Diseases Research Unit, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Varodom Charoensawan
- Integrative Computational BioScience (ICBS) Center, Mahidol University, Nakhon Pathom, 73170, Thailand
- Single-Cell Omics and Systems Biology of Diseases Research Unit, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
- Division of Medical Bioinformatics, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
- Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
- Siriraj Genomics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Vimvara Vacharathit
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
- Single-Cell Omics and Systems Biology of Diseases Research Unit, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Ponpan Matangkasombut
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.
- Single-Cell Omics and Systems Biology of Diseases Research Unit, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.
| |
Collapse
|
3
|
Green A, Wu S, Di Pasquale A, Pang T. The Role of Digital Opinion Leaders in Dengue Prevention Through Health Promotion and Public Health Collaboration: Qualitative Semistructured Interview Study. J Med Internet Res 2025; 27:e70997. [PMID: 40279576 DOI: 10.2196/70997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/13/2025] [Accepted: 03/18/2025] [Indexed: 04/27/2025] Open
Abstract
BACKGROUND Dengue fever is a significant public health concern. The advent of social media has introduced digital opinion leaders (DOLs), health care professionals with substantial online followings who play a pivotal role in disseminating health information and combating misinformation. OBJECTIVE We aimed to investigate the role of DOLs in dengue prevention and explore their preferences for collaboration with health sector entities to strengthen dengue prevention initiatives. METHODS A qualitative study was conducted using semistructured interviews with 37 purposively selected DOLs from 8 countries in Latin America and Southeast Asia. They were selected based on their active online presence, dissemination of dengue-related content, and substantial social media followings. Interviews took place either in person or online, according to the participants' chosen languages. Each session, lasting approximately 60 minutes, was audio recorded, transcribed verbatim, and subjected to thematic analysis to identify recurring themes. RESULTS The thematic analysis led to several key findings. First, DOLs used social media to enhance public health communication, focusing on raising awareness (16/37, 43%), correcting misconceptions (17/37, 46%), and modeling preventive behaviors (8/37, 22%) for infectious diseases. They educated audiences on disease symptoms and prevention, addressed vaccine hesitancy, and shared personal practices to encourage similar actions among followers. Second, 35% (13/37) of the DOLs reported a widespread lack of public knowledge about dengue and its prevention, with even less awareness of vaccine availability. In addition, 27% (10/37) of them identified challenges due to antivaccination sentiments and misinformation, while 8% (3/37) noted obstacles from perceived inadequate government leadership in dengue prevention. In response, DOLs leveraged their social media influence to educate the public. A significant number (22/37, 59%) of the DOLs emphasized the importance of regular promotion of vector control measures as the cornerstone of dengue prevention and 68% (25/37) highlighted the critical role of vaccines, particularly among vulnerable groups. Finally, collaboration was essential for expanding DOLs' reach and credibility, with 54% (20/37) of them partnering with pharmaceutical companies, 43% (16/37) with government agencies, and 27% (10/37) with nongovernmental organizations. In these collaborations, 38% (14/37) of the DOLs emphasized the importance of adhering to ethical standards, and 57% (21/37) prioritized projects aligning with their personal values and professional standards, avoiding producing content that contradicted their beliefs or goals. CONCLUSIONS DOLs are essential in disseminating dengue prevention information. They recognize their responsibility to raise awareness about dengue vaccines and dispel related misconceptions to combat vaccine hesitancy. Unlike nonmedical social media influencers, whose content may lack medical accuracy and be driven by monetization, DOLs provide evidence-based information, enhancing their credibility. Collaborations between DOLs and health sector stakeholders, although currently limited, hold significant potential for effective dengue prevention, provided they adhere to ethical standards and are supported by credible scientific evidence.
Collapse
Affiliation(s)
- Andrew Green
- Regional Medical Affairs Vaccines, Growth and Emerging Markets, Takeda Pharmaceuticals International AG Singapore Branch, Singapore, Singapore
| | - Shishi Wu
- IQVIA Real World Solutions Asia-Pacific, Singapore, Singapore
| | - Alberta Di Pasquale
- Regional Medical Affairs Vaccines, Growth and Emerging Markets, Takeda Pharmaceuticals International AG Singapore Branch, Singapore, Singapore
| | - Tikki Pang
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
4
|
Agrupis KA, Crisostomo MV, Daag JV, Sarol J, Lopez MHJ, Florendo KL, de Guzman C, Sy AK, Yurango Z, Dandan O, Balabat J, Deen J, Ylade M. Effectiveness of a single-dose mass dengue vaccination in Cebu, Philippines: Final results of a 5-year case-control study. Vaccine 2025; 56:127142. [PMID: 40279922 DOI: 10.1016/j.vaccine.2025.127142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/06/2025] [Accepted: 04/13/2025] [Indexed: 04/29/2025]
Abstract
BACKGROUND In mid-2017, the Philippine Department of Health launched a vaccination program of nine- to fourteen-year-old children using CYD-TDV (Dengvaxia, Sanofi) in Cebu province. The vaccination program was discontinued after only one dose was given. Until 2020, the interim vaccine effectiveness against hospitalized virologically confirmed dengue (VCD) and dengue with warning signs was 26 % and 51 %, respectively. In this report, we assess vaccine protection through February 2023. METHODS From 15 February 2018 to 28 February 2023, we conducted a case-control study in Cebu province. Children residing in Cebu who were eligible to participate in the dengue mass vaccination in mid-2017 and subsequently admitted to any of four participating public hospitals with suspected dengue were enrolled. A blood sample was collected for dengue RT-PCR and clinical and socio-demographic information were obtained. Children hospitalized with VCD were followed until discharge and their illness classified according to WHO 2009 criteria as dengue, dengue with warning signs and severe dengue. To estimate the level of vaccine protection, vaccination status was compared between VCD cases and neighborhood controls of the same sex and age-group. FINDINGS We included 584 VCD cases and 1168 controls in the analysis. Of the 584 cases, 397 (67·8 %) presented as dengue with warning sign (DWS), 8 (1·4 %) had severe dengue, and 1 (0·2 %) died. All four dengue virus serotypes were detected, but serotype 3 was the most common (287/584 or 49·1 %). Receipt of one dose of CYD-TDV was associated with 21 % (95 % CI, -7 to 41 %; p = 0·1129) overall protection against hospitalized VCD and 31 % (95 % CI, 6 to 49 %; p < 0·0001) protection against more severe presentations of dengue (dengue with warning signs and severe dengue). CONCLUSION A single dose of CYD-TDV conferred extended protection against more severe presentations of dengue. The study is limited by an absence of baseline dengue serostatus of the participants prior to vaccination but a large majority in this this cohort were likely dengue seropositive.
Collapse
Affiliation(s)
- Kristal An Agrupis
- Institute of Child Health and Human Development, University of the Philippines - National Institutes of Health, Manila, Philippines.
| | - Maria Vinna Crisostomo
- Institute of Child Health and Human Development, University of the Philippines - National Institutes of Health, Manila, Philippines
| | - Jedas Veronica Daag
- Institute of Child Health and Human Development, University of the Philippines - National Institutes of Health, Manila, Philippines
| | - Jesus Sarol
- Interdisciplinary Health Sciences Institute, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - March Helena Jane Lopez
- Institute of Child Health and Human Development, University of the Philippines - National Institutes of Health, Manila, Philippines
| | - Kiarah Louise Florendo
- Institute of Child Health and Human Development, University of the Philippines - National Institutes of Health, Manila, Philippines
| | - Clarissa de Guzman
- Institute of Child Health and Human Development, University of the Philippines - National Institutes of Health, Manila, Philippines
| | - Ava Kristy Sy
- Department of Virology, Research Institute for Tropical Medicine, Muntinlupa, Philippines
| | - Zoraida Yurango
- Cebu Provincial Hospital - Bogo, Bogo City, Cebu, Philippines
| | - Olivia Dandan
- Cebu Provincial Hospital - Balamban, Balamban, Cebu, Philippines
| | - Jean Balabat
- Eversley Childs Sanitarium and General Hospital, Mandaue City, Cebu, Philippines
| | - Jacqueline Deen
- Institute of Child Health and Human Development, University of the Philippines - National Institutes of Health, Manila, Philippines
| | - Michelle Ylade
- Institute of Child Health and Human Development, University of the Philippines - National Institutes of Health, Manila, Philippines
| |
Collapse
|
5
|
Ahmad LCRQ, Gill BS, Sulaiman LH, Muhamad NA, Singh S, Tee KK, Sasongko TH, Voon KGL, Mohd Ghazali S, Maamor NH, Ahmad NAR, Ahamad Zambri NI, Lim MC. Molecular epidemiology of dengue in Southeast Asia (SEA): Protocol of systematic review and meta-analysis. BMJ Open 2025; 15:e088890. [PMID: 40262958 PMCID: PMC12015693 DOI: 10.1136/bmjopen-2024-088890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 03/28/2025] [Indexed: 04/24/2025] Open
Abstract
INTRODUCTION Dengue fever is a major global public health challenge caused by the Arbovirus and transmitted by Aedes mosquitoes. The increasing incidence of dengue, particularly in the Southeast Asia (SEA) region, including Malaysia, highlights the urgent need for a comprehensive understanding of dengue molecular epidemiology. This study aims to systematically review various aspects of dengue molecular epidemiology to gain insights into the disease's dynamics, transmission and circulation. Providing evidence-based insights is crucial for the prevention and control of dengue. METHODS AND ANALYSIS A systematic review and meta-analysis will be conducted following the Preferred Reporting Items for Systematic Review and Meta-Analysis Protocols guidelines. Eligible studies will include observational designs from the inception of time to 31 December 2024, in the SEA region. The review will encompass various molecular epidemiology domains as the exposures and assess the outcomes, such as confirmed dengue cases and severity. Descriptive and meta-analytical methods will determine prevalence, genetic changes and associations. Grading of Recommendations Assessment, Development, and Evaluation methodology will evaluate the quality of evidence, and reporting biases will be addressed. This review aims to bridge the gap in dengue molecular epidemiology in the SEA region by providing comprehensive insights crucial for effective dengue prevention and control. ETHICS AND DISSEMINATION No primary data will be collected; thus, the ethical exemption was obtained from Medical Research Ethics Committee with reference number 23-03212-AE6 and ethics approval from the IMU University Joint Committee. The results will be disseminated through a peer-reviewed publication and conference presentation. PROSPERO REGISTRATION NUMBER CRD42023480417.
Collapse
Affiliation(s)
- Lonny Chen Rong Qi Ahmad
- Institute of Medical Research, National Institutes of Health Malaysia, Shah Alam, Selangor, Malaysia
| | - Balvinder Singh Gill
- Institute of Medical Research, National Institutes of Health Malaysia, Shah Alam, Selangor, Malaysia
| | - Lokman Hakim Sulaiman
- Institute for Research, Development and Innovation, IMU University, Kuala Lumpur, Malaysia
| | - Nor Asiah Muhamad
- Sector for Evidence Based Healthcare, National Institutes of Health Malaysia, Shah Alam, Selangor, Malaysia
| | - Sarbhan Singh
- Institute of Medical Research, National Institutes of Health Malaysia, Shah Alam, Selangor, Malaysia
| | - Kok Keng Tee
- Department of Medical Microbiology, Faculty of Medicine University Malaya, Kuala Lumpur, Malaysia
| | - Teguh Haryo Sasongko
- Institute for Research, Development and Innovation, IMU University, Kuala Lumpur, Malaysia
- Department of Physiology, School of Medicine, IMU University, Kuala Lumpur, Malaysia
| | - Kenny Gah Leong Voon
- Nottingham University Malaysia, School of Pharmacy, Malaysia Campus, Semenyih, Selangor, Malaysia
| | - Sumarni Mohd Ghazali
- Institute of Medical Research, National Institutes of Health Malaysia, Shah Alam, Selangor, Malaysia
| | - Nur Hasnah Maamor
- Sector for Evidence Based Healthcare, National Institutes of Health Malaysia, Shah Alam, Selangor, Malaysia
| | - Nur Ar Rabiah Ahmad
- Institute of Medical Research, National Institutes of Health Malaysia, Shah Alam, Selangor, Malaysia
| | - Nurul Izzah Ahamad Zambri
- Institute of Medical Research, National Institutes of Health Malaysia, Shah Alam, Selangor, Malaysia
| | - Mei Cheng Lim
- Institute of Medical Research, National Institutes of Health Malaysia, Shah Alam, Selangor, Malaysia
| |
Collapse
|
6
|
Kain MJW, Eskell M, Clark B, Lambert C, Weaver E, Holden G, A Dermont M, J Beeching N, Fletcher T, Woolley S. Arboviruses in UK Armed Forces: a review of historical cases and identification of future threats. BMJ Mil Health 2025:e002987. [PMID: 40240072 DOI: 10.1136/military-2025-002987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Accepted: 03/28/2025] [Indexed: 04/18/2025]
Abstract
INTRODUCTION Arboviruses are a diverse group of arthropod-borne pathogens and are emerging global public health threats with no approved therapeutics. Arboviruses are spreading rapidly, posing a health threat to UK Armed Forces (UKAF) service personnel (SP) through deployment to endemic regions. There are limited data on the burden of arboviral infections in UKAF SP. METHODS A retrospective service evaluation of UKAF electronic healthcare records (eHRs) and statutory notifications to the Defence Public Health Unit was conducted. Cases with possible/confirmed dengue, chikungunya or Zika virus infections between 2005 and 2023 were included. eHRs were interrogated and trends analysed. RESULTS Of 107 suspected infections between 2005 and 2023, 49 (45.8%) were laboratory-confirmed. Dengue fever was the most common (45/49) followed by chikungunya (3/49) and Zika (1/49) virus infections. The average yearly incidence of reported dengue infection increased from 0.51 cases per 100 000 UKAF SP per year in 2009-2011 to 3.85 cases per 100 000 SP per year in 2021-2023. 19/45 (42.2%) cases occurred during operational deployments and 24/45 (53.3%) during non-military activity. Dengue infection was most frequently acquired in Southeast Asia.Using WHO clinical severity criteria, 33/45 (73.3%) had dengue with warning signs and 5 (11.1%) had severe dengue. 23/45 (51.1%) dengue cases were hospitalised (median length of stay 5 days, IQR 3, range 1-9). No dengue fatalities or medical discharges occurred. Occupational impact was significant, with a median of 11 days stood down (IQR 10, range 0-45); 3/19 (15.8%) cases on operations required aeromedical evacuation (AEROMED). One deployed case of chikungunya required AEROMED and a 35-day downgrade. CONCLUSIONS Reports of arboviral infections, particularly dengue, are increasing in UKAF personnel, presenting an emerging health threat. This has implications for UKAF provision of deployed diagnostics and dengue vaccination policy. The rapid spread of arboviruses outside their traditional geographical areas, including into Europe, necessitates further surveillance and requires diagnostic and therapeutic research.
Collapse
Affiliation(s)
| | - M Eskell
- Royal Army Medical Services, Camberley, UK
| | - B Clark
- Royal Army Medical Services, Camberley, UK
| | - C Lambert
- Institute of Naval Medicine, Gosport, UK
| | - E Weaver
- Royal Air Force Medical Service, High Wycombe, UK
| | - G Holden
- Defence Public Health Unit, Defence Medical Services, Lichfield, UK
| | - M A Dermont
- Defence Public Health Unit, Defence Medical Services, Lichfield, UK
| | - N J Beeching
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - T Fletcher
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
- Liverpool University Hospitals NHS Foundation Trust, Tropical and Infectious Diseases Unit, Liverpool, UK
| | - S Woolley
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
- Royal Centre for Defence Medicine, Academic Department of Military Medicine, Birmingham, UK
| |
Collapse
|
7
|
Tang H, Evers TMJ, Babaei M, Mashaghi A. Revealing Mechanopathology Induced by Dengue NS1 Using Organ Chips and Single-Cell Force Spectroscopy. ACS Biomater Sci Eng 2025; 11:2448-2455. [PMID: 40131123 PMCID: PMC12001184 DOI: 10.1021/acsbiomaterials.4c02410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 03/17/2025] [Accepted: 03/18/2025] [Indexed: 03/26/2025]
Abstract
Capillary leakage is a hallmark of severe dengue, yet its precise mechanisms remain elusive. Emerging evidence highlights the dengue virus's targeting of mechanically active endothelial cells as a key contributor to dengue shock syndrome. The viral nonstructural protein 1 (NS1) has been identified as a central player, disrupting endothelial integrity and inducing vascular hyperpermeability independently of pro-inflammatory cytokines. This study provides a direct assessment of NS1-induced endothelial pathology by combining single-cell force spectroscopy and a microvessel-on-a-chip platform. We demonstrate that NS1 significantly alters endothelial cell mechanics, reducing cell stiffness and compromising junctional integrity, thereby directly linking these mechanical alterations to vascular dysfunction. These findings establish a framework for understanding the mechano-pathology of dengue and offer a platform for developing targeted therapeutic strategies to mitigate severe disease outcomes.
Collapse
Affiliation(s)
| | | | - Mehrad Babaei
- Medical Systems Biophysics and Bioengineering,
Leiden Academic Centre for Drug Research, Faculty of Science, Leiden University, 2334CC Leiden, The Netherlands
| | - Alireza Mashaghi
- Medical Systems Biophysics and Bioengineering,
Leiden Academic Centre for Drug Research, Faculty of Science, Leiden University, 2334CC Leiden, The Netherlands
| |
Collapse
|
8
|
Liu LT, Huang SY, Lin CH, Chen CH, Tsai CY, Lin PC, Tsai JJ. The epidemiology and identification of risk factors associated with severe dengue during the 2023 dengue outbreak in Kaohsiung City, Taiwan. Travel Med Infect Dis 2025; 65:102852. [PMID: 40220842 DOI: 10.1016/j.tmaid.2025.102852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 04/04/2025] [Accepted: 04/08/2025] [Indexed: 04/14/2025]
Abstract
After the previous major dengue fever (DF) outbreaks in 2014 and 2015 in Taiwan, the second-largest DF outbreak re-emerged in 2023. A total of 178 patients with laboratory-confirmed dengue virus (DENV) infection, including 92 DENV-1 and 86 DENV-2 cases, were enrolled in this study conducted during the 2023 dengue outbreak in Kaohsiung City, Taiwan. This study aimed to analyze epidemiological characteristics, clinical severity, and risk factors for severe dengue (SD), as well as the diagnostic implications of the non-structural protein 1 (NS1) antigen rapid test. Patients infected with DENV-2 exhibited significantly older age, higher incidence of secondary infections, diabetes mellitus (DM), hypertension (HT), and longer hospital stays than patients infected with DENV-1. Multivariate analysis revealed that older age (age ≥65), secondary dengue infection, DM, and HT were significant independent predictors of SD. Compared with non-SD cases, SD patients were significantly more likely to be older (age ≥65), to exhibit a higher incidence of secondary infections and a greater prevalence of chronic diseases, including DM and HT. Notably, dengue-confirmed patients with negative NS1 results had a shorter duration since symptom onset (p < 0.001). Our DENV-1 and DENV-2 isolates are related to strains from neighboring Asian countries. Our findings emphasize the important factors of old age, secondary infections, and chronic diseases that contributed to dengue severity. We should meticulously manage these high-risk groups to prevent dengue progression. Screening incoming travelers for DF during the epidemic season will be an important measure to prevent the introduction of DENV into Taiwan.
Collapse
Affiliation(s)
- Li-Teh Liu
- Department of Medical Laboratory Science and Biotechnology, College of Medical Technology, Chung Hwa University of Medical Technology, Tainan City, Taiwan
| | - Shi-Ya Huang
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung City, Taiwan
| | - Chen-Hsuan Lin
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung City, Taiwan
| | - Chun-Hong Chen
- National Mosquito-Borne Diseases Control Research Center, National Health Research Institutes, Miaoli County, Taiwan; National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli County, Taiwan
| | - Ching-Yi Tsai
- Tropical Medicine Center, Kaohsiung Medical University Hospital, Kaohsiung City, Taiwan
| | - Ping-Chang Lin
- Tropical Medicine Center, Kaohsiung Medical University Hospital, Kaohsiung City, Taiwan
| | - Jih-Jin Tsai
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung City, Taiwan; Tropical Medicine Center, Kaohsiung Medical University Hospital, Kaohsiung City, Taiwan; Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung City, Taiwan.
| |
Collapse
|
9
|
Bhat BA, Algaissi A, Khamjan NA, Dar TUH, Dar SA, Varadharajan V, Qasir NA, Lohani M. Exploration of comprehensive marine natural products database against dengue viral non-structural protein 1 using high-throughput computational studies. J Biomol Struct Dyn 2025; 43:3276-3285. [PMID: 38165485 DOI: 10.1080/07391102.2023.2297006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 12/13/2023] [Indexed: 01/03/2024]
Abstract
Dengue virus (DENV) non-structural protein 1 (NS1) is a versatile quasi-protein essential for the multiplication of the virus. This study applied high-throughput virtual screening (HTVS) and molecular dynamics (MD) simulation to detect the potential marine natural compounds against the NS1 of DENV. The structure of the NS1 protein was retrieved from Protein Data Bank with (PDB ID: 4O6B). Missing residues were added using modeler software. Molecular operating environment (MOE) programme was used to prepare the protein before docking. Virtual screening was performed on PyRx software to identify natural compounds retrieved from Comprehensive Marine Natural Products Database (CMNPD) against the NS1 protein, and best-docked compounds were examined by molecular docking and molecular dynamic (MD) simulation. Out of 31,561 marine compounds, the top 10 compounds showed docking scores lesser than -8.0 kcal/mol. One of the best hit compounds, CMNPD6802, was further analyzed using MD simulation study at 100 nanoseconds and Molecular Mechanics with Generalized Born and Surface Area Solvation (MM/GBSA). Based on its total binding energy, determined using the MM/GBSA approach, CMNPD6802 was ranked first. Its pharmacokinetic properties concerning the target protein NS1 were also evaluated. The results of the MD simulation showed that CMNPD6802 remained in close contact with the protein throughout the activation period, mapped using principal component analysis. These findings suggest that CMNPD6802 could serve as an NS1 inhibitor and may be a potential candidate for treating DENV infections.
Collapse
Affiliation(s)
- Basharat Ahmad Bhat
- Department of BioResources, Amar Singh College Campus, Cluster University Srinagar, India
| | - Abdullah Algaissi
- Department of Medical Laboratories Technology, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
- Emerging and Epidemic Infectious Diseases Research Unit, Medical Research Centre, Jazan University, Jazan, Saudi Arabia
| | - Nizar A Khamjan
- Department of Medical Laboratories Technology, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Tanvir Ul Hassan Dar
- Department of Biotechnology, School of Biosciences and Biotechnology, BGSB University, Rajouri, India
| | - Sajad Ahmad Dar
- Research and Scientific Studies Unit, College of Nursing, Jazan University, Jazan, Saudi Arabia
| | | | - Naif A Qasir
- Department of Medical Laboratories Technology, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
- Medical Research Centre, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Mohtashim Lohani
- Medical Research Centre, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| |
Collapse
|
10
|
Walewangko OC, Purnomo JS, Jo PA, Vidian V, Jo J. Prophylactic vaccination strategies for adult patients with diabetes: a narrative review of safety profiles and clinical effectiveness. Clin Exp Vaccine Res 2025; 14:101-115. [PMID: 40321796 PMCID: PMC12046087 DOI: 10.7774/cevr.2025.14.e11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 02/26/2025] [Indexed: 05/08/2025] Open
Abstract
This narrative review analyzed roles of several prophylactic vaccinations in adult patients with diabetes, focusing on their safety profiles and clinical effectiveness. Individuals with diabetes mellitus are at increased risk for infections, making vaccination a critical component of their healthcare. The review assessed various vaccines that are particularly relevant for this population, i.e., vaccines for pneumococcus, meningococcus, severe acute respiratory syndrome coronavirus 2, influenza, herpes zoster, human papillomavirus, and dengue. It highlighted the safety profiles and clinical effectiveness of these vaccines in preventing serious infections and improving long-term health outcomes in diabetic patients. Taken together, this review emphasized the importance of prophylactic vaccinations in reducing infection-related morbidity and mortality as well as encouraged fostering greater adoption and advocacy for immunization programs among diabetic adults.
Collapse
Affiliation(s)
- Olivia Cicilia Walewangko
- Division of Endocrinology, Metabolism and Diabetes, Department of Internal Medicine, Siloam Hospitals Manado, Manado, Indonesia
| | - Jonathan Suciono Purnomo
- Department of Biology, Faculty of Health Sciences, Universitas Pelita Harapan, Tangerang, Indonesia
| | | | - Valerie Vidian
- Department of Biology, Faculty of Health Sciences, Universitas Pelita Harapan, Tangerang, Indonesia
| | - Juandy Jo
- Department of Biology, Faculty of Health Sciences, Universitas Pelita Harapan, Tangerang, Indonesia
- Mochtar Riady Institute for Nanotechnology, Tangerang, Indonesia
| |
Collapse
|
11
|
Ansari A, Sachan S, Ahuja J, Venkadesan S, Nikam B, Kumar V, Jain S, Singh BP, Coshic P, Sikka K, Wig N, Sette A, Weiskopf D, Mohanty D, Soneja M, Gupta N. Distinct features of a peripheral T helper subset that drives the B cell response in dengue virus infection. Cell Rep 2025; 44:115366. [PMID: 40073863 PMCID: PMC12032839 DOI: 10.1016/j.celrep.2025.115366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 11/28/2024] [Accepted: 02/06/2025] [Indexed: 03/14/2025] Open
Abstract
Dengue-virus-induced humoral immunity can increase the risk of severe disease, but the factors influencing this response are poorly understood. Here, we investigate the contribution of CD4+ T cells to B cell responses in human dengue infection. We identify a dominant peripheral PD-1+ T cell subset that accumulates in severe patients and could induce B cell differentiation via interleukin-21 (IL-21)-related pathway. Single-cell analyses reveal heterogeneity within PD-1+ cells, demonstrating the coexistence of subsets with "helper" (IL-21+) or "cytotoxic" characteristics. The IL-21+ subset displays a distinct clonotypic and transcriptomic signature compared to follicular helper T cells and persists as a memory in lymph nodes. Notably, we show that the IL-21+ subset seems to majorly drive the extrafollicular B cell responses in dengue. Our study establishes the peripheral IL-21+ subset as a potential determinant of the humoral response to dengue virus infection. These findings provide important insights into the T-cell-dependent regulation of humoral responses and can inform the design of effective dengue vaccines.
Collapse
Affiliation(s)
- Asgar Ansari
- Vaccine Immunology Laboratory, National Institute of Immunology, New Delhi 110067, India
| | - Shilpa Sachan
- Vaccine Immunology Laboratory, National Institute of Immunology, New Delhi 110067, India
| | - Jatin Ahuja
- Department of Medicine, All India Institute of Medical Sciences, New Delhi 110029, India
| | | | - Bhushan Nikam
- Vaccine Immunology Laboratory, National Institute of Immunology, New Delhi 110067, India
| | - Vinod Kumar
- Department of Medicine, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Shweta Jain
- Department of Medicine, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Bhanu Pratap Singh
- Vaccine Immunology Laboratory, National Institute of Immunology, New Delhi 110067, India
| | - Poonam Coshic
- Department of Transfusion Medicine, AIIMS, New Delhi 110029, India
| | - Kapil Sikka
- Department of Otorhinolaryngology, Head and Neck Surgery, AIIMS, New Delhi 110029, India
| | - Naveet Wig
- Department of Medicine, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Alessandro Sette
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA; Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
| | - Daniela Weiskopf
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA; Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
| | - Debasisa Mohanty
- Bioinformatics Center, National Institute of Immunology, New Delhi 110067, India
| | - Manish Soneja
- Department of Medicine, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Nimesh Gupta
- Vaccine Immunology Laboratory, National Institute of Immunology, New Delhi 110067, India.
| |
Collapse
|
12
|
Haq A, Mallawarachchi S, Anderson A, Khaleghi L, Manujitha L, Fernando S. In Silico Evaluation of Potential Hit Molecules Against Multiple Serotypes of Dengue Virus Envelope Glycoprotein. Molecules 2025; 30:1268. [PMID: 40142044 PMCID: PMC11944462 DOI: 10.3390/molecules30061268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/04/2025] [Accepted: 03/10/2025] [Indexed: 03/28/2025] Open
Abstract
Dengue Fever, a widespread mosquito-borne disease caused by the dengue virus (DENV), poses a major health threat in tropical and subtropical regions worldwide, resulting in millions of infections yearly. Severe cases of dengue fever have a mortality rate of around fifteen percent. Currently, there are no antiviral treatments for this disease and the only FDA-approved vaccine has been known to have adverse effects, especially in children. Thus, there is an urgent need for new therapeutics for Dengue fever. The largest issue with developing an antiviral treatment is that DENV has four serotypes that each differ slightly enough to pose problems with one compound inhibiting all four. This study addresses that challenge to some extent by focusing on in silico screening of potential hits targeting the envelope glycoprotein, which is relatively conserved across these four serotypes. Using pharmacophore screening and in silico evaluation of ligands, we identified compounds which could potentially have high affinity to the envelope glycoprotein for two of the four DENV serotypes. These in silico results were validated experimentally using bio-layer interferometry. These findings lay a foundation for in vitro analysis and hit-to-lead studies, advancing the development of antivirals that can inhibit multiple serotypes of the dengue virus.
Collapse
Affiliation(s)
| | | | | | | | | | - Sandun Fernando
- Department of Biological and Agricultural Engineering, Texas A&M University, College Station, TX 77840, USA; (A.H.); (S.M.)
| |
Collapse
|
13
|
Pereira CADM, Mendes RPG, da Silva PG, Chaves EJF, Pena LJ. Vaccines Against Urban Epidemic Arboviruses: The State of the Art. Viruses 2025; 17:382. [PMID: 40143310 PMCID: PMC11945797 DOI: 10.3390/v17030382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 02/26/2025] [Accepted: 02/27/2025] [Indexed: 03/28/2025] Open
Abstract
Arboviruses represent a contemporary global challenge, prompting coordinated efforts from health organizations and governments worldwide. Dengue, chikungunya, and Zika viruses have become endemic in the tropics, resulting in the so-called "triple arbovirus epidemic". These viruses are transmitted typically through the bites of infected mosquitoes, especially A. aegypti and A. albopictus. These mosquito species are distributed across all continents and exhibit a high adaptive capacity in diverse environments. When combined with unplanned urbanization, uncontrolled population growth, and international travel-the so-called "triad of the modern world"-the maintenance and spread of these pathogens to new areas are favored. This review provides updated information on vaccine candidates targeting dengue, chikungunya, and Zika viruses. Additionally, we discuss the challenges, perspectives, and issues associated with their successful production, testing, and deployment within the context of public health.
Collapse
Affiliation(s)
| | | | | | | | - Lindomar José Pena
- Laboratory of Virology and Experimental Therapy (Lavite), Department of Virology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (Fiocruz), 50670-420 Recife, Brazil; (C.A.d.M.P.); (R.P.G.M.); (P.G.d.S.); (E.J.F.C.)
| |
Collapse
|
14
|
Liu X. Opportunities and challenges of mRNA technologies in development of dengue virus vaccine. Front Immunol 2025; 16:1520968. [PMID: 40109333 PMCID: PMC11919880 DOI: 10.3389/fimmu.2025.1520968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 02/12/2025] [Indexed: 03/22/2025] Open
Abstract
Dengue virus (DENV) is a mosquito-borne virus with a significant human health concern. With 390 million infections annually and 96 million showing clinical symptoms, severe dengue can lead to life-threatening conditions like dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). The only FDA-approved vaccine, Dengvaxia, has limitations due to antibody-dependent enhancement (ADE), necessitating careful administration. The recent pre-approval of TAK-003 by WHO in 2024 highlights ongoing efforts to improve vaccine options. This review explores recent advancements in dengue vaccine development, emphasizing potential utility of mRNA-based vaccines. By examining current clinical trial data and innovations, we aim to identify promising strategies to address the limitations of existing vaccines and enhance global dengue prevention efforts.
Collapse
Affiliation(s)
- Xiaoyang Liu
- Department of International Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
15
|
Ivanova L, Naumenko K, Varjak M, Koit S, Morozovsky Y, Merits A, Karelson M, Zusinaite E. Dengue Virus Inhibitors as Potential Broad-Spectrum Flavivirus Inhibitors. Pharmaceuticals (Basel) 2025; 18:283. [PMID: 40143061 PMCID: PMC11944514 DOI: 10.3390/ph18030283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 02/13/2025] [Accepted: 02/15/2025] [Indexed: 03/28/2025] Open
Abstract
Background. Flaviviruses spread from endemic to non-endemic areas, causing illness in millions of people worldwide. The lack of effective therapies and the rapid expansion of flaviviral infections worldwide emphasize the importance of finding effective antivirals to treat such diseases. Objectives. To find out the potential broad-spectrum flavivirus inhibitors among previously reported inhibitors of DENV2/DENV4. Methods. The cytotoxicity of compounds was tested using WST-1 assay. The compounds were tested for their ability to inhibit the infection of DENV2, ZIKV, KUNV, and TBEV, and the most active compounds were also analyzed using the replicon-based assay. Interactions of one of the identified inhibitors with possible viral targets were studied using molecular dynamics simulations. Results. Two out of eight previously reported DENV2/DENV4 inhibitors demonstrated the ability to inhibit all studied viruses at low micromolar concentrations. Compound C6 demonstrated the ability to inhibit both DENV2 and TBEV. Compounds C1 (lycorine), C3 (mycophenolic acid), and C7 (vidarabine) were demonstrated as inhibitors of TBEV infection for the first time. Conclusions. Several compounds, previously described as inhibitors of DENV, are also able to inhibit other flaviviruses. This work is the first report on the anti-TBEV activity of lycorine (C1) and mycophenolic acid (C3), as well as vidarabine (C7). In addition, this is the first experimental confirmation of the antiviral activity of compound C5 and the lack of detectable antiviral activity of compound C8, demonstrating the necessity of experimental verification of the computational predictions.
Collapse
Affiliation(s)
- Larisa Ivanova
- Institute of Chemistry, University of Tartu, Ravila 14A, 50411 Tartu, Estonia; (L.I.); (Y.M.)
| | - Krystyna Naumenko
- Institute of Bioengineering, University of Tartu, Nooruse 1, 50411 Tartu, Estonia; (K.N.); (S.K.); (A.M.)
- Zabolotny Institute of Microbiology and Virology of NASU, 154 Acad. Zabolotny St., Kyiv 03143, Ukraine
| | - Margus Varjak
- Institute of Technology, University of Tartu, Nooruse 1, 50411 Tartu, Estonia;
| | - Sandra Koit
- Institute of Bioengineering, University of Tartu, Nooruse 1, 50411 Tartu, Estonia; (K.N.); (S.K.); (A.M.)
| | - Yehudit Morozovsky
- Institute of Chemistry, University of Tartu, Ravila 14A, 50411 Tartu, Estonia; (L.I.); (Y.M.)
| | - Andres Merits
- Institute of Bioengineering, University of Tartu, Nooruse 1, 50411 Tartu, Estonia; (K.N.); (S.K.); (A.M.)
| | - Mati Karelson
- Institute of Chemistry, University of Tartu, Ravila 14A, 50411 Tartu, Estonia; (L.I.); (Y.M.)
| | - Eva Zusinaite
- Institute of Bioengineering, University of Tartu, Nooruse 1, 50411 Tartu, Estonia; (K.N.); (S.K.); (A.M.)
| |
Collapse
|
16
|
Kribs CM. Estimating per-infection cost and burden for dengue and Zika as a function of antibody-dependent enhancement. PLoS Negl Trop Dis 2025; 19:e0012876. [PMID: 40014622 PMCID: PMC11906165 DOI: 10.1371/journal.pntd.0012876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 03/13/2025] [Accepted: 01/28/2025] [Indexed: 03/01/2025] Open
Abstract
The complex immune interactions produced by the tetravalent dengue vaccine Dengvaxia have foregrounded the important role of antibody-dependent enhancement (ADE) in dengue infection. Some evidence exists that ADE may extend beyond the four dengue serotypes to Zika, a closely related flavivirus transmitted by the same mosquito species as dengue, and may also account for the increased severity of some cases. Estimates of the public health impact of dengue vaccination may then need to include its effects on the transmission of Zika in addition to dengue. This study gathers primary references to build estimates of per-case economic cost and disease burden for dengue and Zika infection with and without ADE in the ten countries where clinical trials were held for Dengvaxia, under the hypothesis that severe outcomes are associated with ADE of disease. From these estimates, per-infection weighted averages are developed (without assumptions on transmission dynamics or case totals) which will facilitate population-level estimates of the potential impact of dengue vaccination on a dual outbreak using mathematical modeling. Results estimate that ADE amplifies the per-case toll of dengue by a factor of 2-16 but increases that of a Zika case by more than two orders of magnitude due to the greater risk of severe consequences. As expected, dengue vaccination affects per-infection dengue toll much more when high prior dengue seropositivity involves a different serotype than the one(s) circulating, but that same high dengue seropositivity makes vaccination exacerbate Zika toll less.
Collapse
Affiliation(s)
- Christopher M Kribs
- Departments of Mathematics and Teacher & Administrator Preparation, University of Texas at Arlington, Arlington, Texas, United States of America
| |
Collapse
|
17
|
Anumanthan G, Sahay B, Mergia A. Current Dengue Virus Vaccine Developments and Future Directions. Viruses 2025; 17:212. [PMID: 40006967 PMCID: PMC11861685 DOI: 10.3390/v17020212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/28/2025] [Accepted: 01/30/2025] [Indexed: 02/27/2025] Open
Abstract
Dengue fever (DF), a leading arboviral disease globally, is caused by the Dengue virus (DENV) and represents a significant public health concern, with an estimated 390 million cases reported annually. Due to the complexity of the various dengue variants and the severity of the disease, vaccination emerges as the essential strategy for combating this widespread infectious disease. The absence of specific antiviral medications underscores the critical need for developing a Dengue vaccine. This review aims to present the current status and future prospects of Dengue vaccine development. Further, this review elaborates on the various strategies employed in vaccine development, including attenuated, inactivated, subunit, and viral vector vaccines. Each approach is evaluated based on its immunogenicity, safety, and efficacy, drawing on data from preclinical and clinical studies to highlight the strengths and limitations of each candidate vaccine. The current study sheds light on future directions and research priorities in developing Dengue vaccines. In conclusion, the development of a Dengue vaccine holds significant potential for reducing the global burden of DF. However, challenges remain in terms of vaccine safety, efficacy, delivery, and availability. Overcoming these challenges, coupled with advancements in vaccine technology, could lead to better control and prevention of Dengue, thereby enhancing public health and quality of life.
Collapse
Affiliation(s)
| | | | - Ayalew Mergia
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL 32611, USA (B.S.)
| |
Collapse
|
18
|
See KC. Dengue Vaccination: A Practical Guide for Clinicians. Vaccines (Basel) 2025; 13:145. [PMID: 40006692 PMCID: PMC11861165 DOI: 10.3390/vaccines13020145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 01/25/2025] [Accepted: 01/28/2025] [Indexed: 02/27/2025] Open
Abstract
Dengue is a growing global public health challenge, with rising incidence and case fatality rates fueled by urbanization and climate change. The substantial mortality, morbidity, and economic burden associated with the disease underscore the need for effective prevention strategies, including vector control, personal protective measures, and vaccination. This narrative review provides a practical guide for clinicians to ensure the appropriate administration of dengue vaccines to at-risk groups, such as individuals in endemic regions and travelers to these areas. Live-attenuated tetravalent dengue vaccines, including Dengvaxia®, Qdenga®, and Butantan-DV, have demonstrated efficacy in clinical trials but require careful use due to the risk of antibody-dependent enhancement (ADE). To mitigate this risk, guidelines recommend vaccination primarily for individuals with prior confirmed dengue infection, emphasizing the importance of accessible and affordable point-of-care rapid testing. Co-administration of dengue vaccines with other live-attenuated or inactivated vaccines has been shown to be safe and immunogenic, broadening their potential application. However, live-attenuated vaccines are contraindicated for immunocompromised individuals and pregnant women. Enhancing clinician awareness, expanding diagnostic capabilities, and prioritizing high-risk populations are critical steps to optimize vaccination strategies. Combined with robust prevention programs, these efforts are essential to reducing the global burden of dengue and mitigating its impact.
Collapse
Affiliation(s)
- Kay Choong See
- Division of Respiratory and Critical Care Medicine, Department of Medicine, National University Hospital, Singapore 119228, Singapore
| |
Collapse
|
19
|
Khalid M, Khan MS, Siddiqui E, Waafira A. Exploring the potential of Carica Papaya Leaf Extract: a perspective on its effectiveness in ameliorating thrombocytopenia in dengue patients. Infect Ecol Epidemiol 2025; 15:2456055. [PMID: 39867637 PMCID: PMC11758791 DOI: 10.1080/20008686.2025.2456055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025] Open
Abstract
BACKGROUND Dengue fever (DF) is endemic in Pakistan, posing health risks. Recent flooding in 2022 and strong monsoon rains in 2024 have increased the possibility of an epidemic. It is an infectious disease having potentially severe outcomes including thrombocytopenia. DISCUSSION Carica Papaya Leaf Extract (CPLE) has emerged as an off-label treatment option, showing promising results in increasing platelet counts and reducing hospital stays. However, a critical assessment of existing research reveals methodological flaws, hindering specific recommendations. CONCLUSION This perspective advocates for comprehensive research to evaluate the risks and benefits of CPLE as a potential remedy for thrombocytopenia associated with dengue fever. A robust investigation will inform clinical practice and guide healthcare decisions, contributing to improved patient outcomes in dengue-endemic areas.
Collapse
Affiliation(s)
- Maliha Khalid
- Department of Medicine, Jinnah Sindh Medical University, Karachi, Pakistan
| | - Muhammad Saad Khan
- Department of Medicine, Jinnah Sindh Medical University, Karachi, Pakistan
| | - Erum Siddiqui
- Department of Medicine, Jinnah Sindh Medical University, Karachi, Pakistan
| | - Aminath Waafira
- School of Medicine, The Maldives National University, Malé, Maldives
| |
Collapse
|
20
|
Shorkey SA, Zhang Y, Sharp J, Clingman S, Nguyen L, Chen J, Chen M. Tracking flaviviral protease conformational dynamics by tuning single-molecule nanopore tweezers. Biophys J 2025; 124:145-157. [PMID: 39578408 PMCID: PMC11739873 DOI: 10.1016/j.bpj.2024.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/17/2024] [Accepted: 11/18/2024] [Indexed: 11/24/2024] Open
Abstract
The flaviviral NS2B/NS3 protease is a conserved enzyme required for flavivirus replication. Its highly dynamic conformation poses major challenges but also offers opportunities for antiviral inhibition. Here, we established a nanopore tweezers-based platform to monitor NS2B/NS3 conformational dynamics in real time. Molecular simulations coupled with single-channel current recording measurements revealed that the protease could be captured in the middle of the ClyA nanopore lumen, stabilized mainly by dynamic electrostatic interactions. We designed a new Salmonella typhi ClyA nanopore with enhanced nanopore/protease interaction that can resolve the open and closed states at the single-molecule level for the first time. We demonstrated that the tailored ClyA could track the conformational transitions of the West Nile NS2B/NS3 protease and unravel the conformational energy landscape of various protease constructs through population and kinetic analysis. The new ClyA-protease platform paves a way to search for new allosteric inhibitors that target the NS2B and NS3 interface.
Collapse
Affiliation(s)
- Spencer A Shorkey
- Molecular and Cellular Biology Program, University of Massachusetts Amherst, Amherst, Massachusetts
| | - Yumeng Zhang
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts
| | - Jacqueline Sharp
- Molecular and Cellular Biology Program, University of Massachusetts Amherst, Amherst, Massachusetts
| | - Sophia Clingman
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts
| | - Ly Nguyen
- Molecular and Cellular Biology Program, University of Massachusetts Amherst, Amherst, Massachusetts
| | - Jianhan Chen
- Molecular and Cellular Biology Program, University of Massachusetts Amherst, Amherst, Massachusetts; Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts.
| | - Min Chen
- Molecular and Cellular Biology Program, University of Massachusetts Amherst, Amherst, Massachusetts; Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts.
| |
Collapse
|
21
|
Lee MF, Long CM, Poh CL. Current status of the development of dengue vaccines. Vaccine X 2025; 22:100604. [PMID: 39830640 PMCID: PMC11741033 DOI: 10.1016/j.jvacx.2024.100604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 11/01/2024] [Accepted: 12/15/2024] [Indexed: 01/22/2025] Open
Abstract
Dengue fever is caused by the mosquito-borne dengue virus (DENV), which is endemic in more than 100 countries. Annually, there are approximately 390 million dengue cases, with a small subset manifesting into severe illnesses, such as dengue haemorrhagic fever or dengue shock syndrome. Current treatment options for dengue infections remain supportive management due to the lack of an effective vaccine and clinically approved antiviral. Although the CYD-TDV (Dengvaxia®) vaccine with an overall vaccine efficacy of 60 % has been licensed for clinical use since 2015, it poses an elevated risk of severe dengue infections especially in dengue-naïve children below 9 years of age. The newly approved Qdenga vaccine was able to achieve an overall vaccine efficacy of 80 % after 12 months, but it was not able to provide a protective effect against DENV-3 in dengue naïve individuals. The Butantan-DV vaccine candidate is still undergoing phase 3 clinical trials for safety and efficacy evaluations in humans. Apart from live-attenuated vaccines, various other vaccine types are also currently being studied in preclinical and clinical studies. This review discusses the current status of dengue vaccine development.
Collapse
Affiliation(s)
- Michelle Felicia Lee
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Selangor 47500, Malaysia
| | - Chiau Ming Long
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Selangor 47500, Malaysia
| | - Chit Laa Poh
- ALPS Global Holding Berhad, The ICON, East Wing Tower, No. 1, Jalan 1/68F, Off Jalan Tun Razak, Kuala Lumpur 50400, Malaysia
| |
Collapse
|
22
|
Pourzangiabadi M, Najafi H, Fallah A, Goudarzi A, Pouladi I. Dengue virus: Etiology, epidemiology, pathobiology, and developments in diagnosis and control - A comprehensive review. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2025; 127:105710. [PMID: 39732271 DOI: 10.1016/j.meegid.2024.105710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/17/2024] [Accepted: 12/23/2024] [Indexed: 12/30/2024]
Abstract
Dengue flavivirus (DENV) is the virus that causes dengue, one of the most dangerous and common viral diseases in humans that are carried by mosquitoes and can lead to fatalities. Every year, there are over 400 million cases of dengue fever worldwide, and 22,000 fatalities. It has been documented in tropical and subtropical climates in over 100 nations. Unfortunately, there is no specific treatment approach, but prevention, adequate awareness, diagnosis in the early stages of viral infection and proper medical care can reduce the mortality rate. The first licensed vaccine for dengue virus (CYD Denvaxia) was quadrivalent, but it is not approved in all countries. The primary barriers to vaccine development include inadequate animal models, inadequate etiology mechanistic studies, and adverse drug events. This study provides current knowledge and a comprehensive view of the biology, production and reproduction, transmission, pathogenesis and diagnosis, epidemiology and control measures of dengue virus.
Collapse
Affiliation(s)
- Masoud Pourzangiabadi
- Department of Microbiology, Faculty of Science, Kerman Branch, Islamic Azad University, Kerman, Iran
| | - Hamideh Najafi
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Arezoo Fallah
- Department of Bacteriology and Virology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Aida Goudarzi
- Department of Clinical Science, Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Iman Pouladi
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| |
Collapse
|
23
|
Rosado-Santiago C, Pérez-Guerra CL, Vélez-Agosto NM, Colón-Burgos C, Marrero-Santos KM, Partridge SK, Lockwood AE, Young C, Waterman SH, Paz-Bailey G, Cardona-Gerena I, Rivera A, Adams LE, Wong JM. Perceptions of dengue risk and acceptability of a dengue vaccine in residents of Puerto Rico. Hum Vaccin Immunother 2024; 20:2323264. [PMID: 38599678 PMCID: PMC11008542 DOI: 10.1080/21645515.2024.2323264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/22/2024] [Indexed: 04/12/2024] Open
Abstract
Dengvaxia is the first dengue vaccine recommended in the United States (U.S.). It is recommended for children aged 9-16 y with laboratory-confirmed previous dengue infection and living in areas where dengue is endemic. We conducted focus groups with parents and in-depth interviews with key informants (i.e. practicing pediatricians, physicians from immunization clinics, university researchers, and school officials) in Puerto Rico (P.R.) to examine acceptability, barriers, and motivators to vaccinate with Dengvaxia. We also carried out informal meetings and semi-structured interviews to evaluate key messages and educational materials with pediatricians and parents. Barriers to vaccination included lack of information, distrust toward new vaccines, vaccine side effects and risks, and high cost of/lack of insurance coverage for laboratory tests and vaccines. Motivators included clear information about the vaccine, a desire to prevent future dengue infections, the experience of a previous dengue infection or awareness of dengue fatality, vaccine and laboratory tests covered by health insurance, availability of rapid test results and vaccine appointments. School officials and parents agreed parents would pay a deductible of $5-20 for Dengvaxia. For vaccine information dissemination, parents preferred an educational campaign through traditional media and social media, and one-on-one counseling of parents by healthcare providers. Education about this vaccine to healthcare providers will help them answer parents' questions. Dengvaxia acceptability in P.R. will increase by addressing motivators and barriers to vaccination and by disseminating vaccine information in plain language through spokespersons from health institutions in P.R.
Collapse
Affiliation(s)
- Coral Rosado-Santiago
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, San Juan, PR, USA
| | - Carmen L. Pérez-Guerra
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, San Juan, PR, USA
| | - Nicole M. Vélez-Agosto
- Department of Clinical Psychology, The University of Texas Rio Grande Valley, Edinburg, TX, USA
| | - Claudia Colón-Burgos
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, San Juan, PR, USA
| | - Karla M. Marrero-Santos
- National Center for HIV, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Susanna K. Partridge
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, USA
| | - Amy E. Lockwood
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, USA
| | - Cathy Young
- National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Steve H. Waterman
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, San Juan, PR, USA
| | - Gabriela Paz-Bailey
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, San Juan, PR, USA
| | | | - Angel Rivera
- Puerto Rico Department of Health, San Juan, PR, USA
- Immunization Program, Puerto Rico Department of Health, San Juan, PR, USA
| | - Laura E. Adams
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, San Juan, PR, USA
| | - Joshua M. Wong
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, San Juan, PR, USA
| |
Collapse
|
24
|
Baric TJ, Reneer ZB. Animal Models, Therapeutics, and Vaccine Approaches to Emerging and Re-Emerging Flaviviruses. Viruses 2024; 17:1. [PMID: 39861790 PMCID: PMC11769264 DOI: 10.3390/v17010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/18/2024] [Accepted: 12/20/2024] [Indexed: 01/27/2025] Open
Abstract
Flaviviruses are arthropod-borne viruses primarily transmitted through the mosquito Aedes aegypti or Culex genus of mosquitos. These viruses are predominantly found in tropical and subtropical regions of the world with their geographical spread predicted to increase as global temperatures continue to rise. These viruses cause a variety of diseases in humans with the most prevalent being caused by dengue, resulting in hemorrhagic fever and associated sequala. Current approaches for therapeutic control of flavivirus infections are limited, and despite recent advances, there are no approved drugs. Vaccines, available for a few circulating flaviviruses, still have limited potential for controlling contemporary and future outbreaks. Mouse models provide us with a valuable tool to test the effectiveness of drugs and vaccines, yet for many flaviviruses, well-established mouse models are lacking. In this review, we highlight the current state of flavivirus vaccines and therapeutics, as well as our current understanding of mouse models for various flaviviruses.
Collapse
Affiliation(s)
| | - Z. Beau Reneer
- Department of Epidemiology, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3500, USA;
| |
Collapse
|
25
|
Ding J, Mairiang D, Prayongkul D, Puttikhunt C, Noisakran S, Kaewjiw N, Songjaeng A, Prommool T, Tangthawornchaikul N, Angkasekwinai N, Suputtamongkol Y, Lapphra K, Chokephaibulkit K, White NJ, Avirutnan P, Tarning J. In-host modeling of dengue virus and non-structural protein 1 and the effects of ivermectin in patients with acute dengue fever. CPT Pharmacometrics Syst Pharmacol 2024; 13:2196-2209. [PMID: 39308445 DOI: 10.1002/psp4.13233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 12/17/2024] Open
Abstract
The increased incidence of dengue poses a substantially global public health challenge. There are no approved antiviral drugs to treat dengue infections. Ivermectin, an old anti-parasitic drug, had no effect on dengue viremia, but reduced the dengue non-structural protein 1 (NS1) in a clinical trial. This is potentially important, as NS1 may play a causal role in the pathogenesis of severe dengue. This study established an in-host model to characterize the plasma kinetics of dengue virus and NS1 with host immunity and evaluated the effects of ivermectin, using a population pharmacokinetic-pharmacodynamic (PK-PD) modeling approach, based on two studies in acute dengue fever: a placebo-controlled ivermectin study in 250 adult patients and an ivermectin PK-PD study in 24 pediatric patients. The proposed model described adequately the observed ivermectin pharmacokinetics, viral load, and NS1 data. Bodyweight was a significant covariate on ivermectin pharmacokinetics. We found that ivermectin reduced NS1 with an EC50 of 67.5 μg/mL. In silico simulations suggested that ivermectin should be dosed within 48 h after fever onset, and that a daily dosage of 800 μg/kg could achieve substantial NS1 reduction. The in-host dengue model is useful to assess the drug effect in antiviral drug development for dengue fever.
Collapse
Affiliation(s)
- Junjie Ding
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Dumrong Mairiang
- Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Molecular Biology of Dengue and Flaviviruses Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, Thailand
| | - Dararat Prayongkul
- Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Division of Dengue Hemorrhagic Fever Research, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Chunya Puttikhunt
- Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Molecular Biology of Dengue and Flaviviruses Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, Thailand
| | - Sansanee Noisakran
- Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Molecular Biology of Dengue and Flaviviruses Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, Thailand
| | - Nattapong Kaewjiw
- Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Division of Dengue Hemorrhagic Fever Research, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Adisak Songjaeng
- Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Division of Dengue Hemorrhagic Fever Research, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Tanapan Prommool
- Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Molecular Biology of Dengue and Flaviviruses Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, Thailand
| | - Nattaya Tangthawornchaikul
- Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Molecular Biology of Dengue and Flaviviruses Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, Thailand
| | - Nasikarn Angkasekwinai
- Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Yupin Suputtamongkol
- Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Keswadee Lapphra
- Department of Pediatrics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Kulkanya Chokephaibulkit
- Department of Pediatrics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Nicholas J White
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Panisadee Avirutnan
- Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Division of Dengue Hemorrhagic Fever Research, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Joel Tarning
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Infectious Diseases Data Observatory, University of Oxford, Oxford, UK
| |
Collapse
|
26
|
Francelino EDO, Puccioni-Sohler M. Dengue and severe dengue with neurological complications: a challenge for prevention and control. ARQUIVOS DE NEURO-PSIQUIATRIA 2024; 82:1-6. [PMID: 39626875 PMCID: PMC11614563 DOI: 10.1055/s-0044-1792091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/17/2024] [Indexed: 01/30/2025]
Abstract
Dengue is the main urban arbovirus in the Americas. The disease manifests in a varied spectrum: from asymptomatic cases to those with neurological involvement, which is considered a severe form of the disease. Its annual reemergence represents a serious public health problem. The rise in the number of cases causes an increase in the number of patients with neurological manifestations of the disease, which can range from headaches to more serious conditions such as encephalitis and Guillain-Barré syndrome, with high potential of death or sequelae. Dengue prevention and control strategies should also be a concern for neurologists. The aim of the present study is to carry out a narrative review of the current methods to prevent dengue fever and its severe forms, such as cases with neurological complications. The main control measures include vaccination, which is still carried out on a small scale, vector control, and individual protection. The CYD-TDV/Dengvaxia and TAK-003/DENVax vaccines, licensed for use by the Brazilian National Health Regulatory Agency (Agência Nacional de Vigilância Sanitária, ANVISA, in Portuguese), show efficacy against hospitalizations of 72.7% (95% confidence interval [95%CI]: 62.3-80.3%) and of 90.4% (95%CI: 82.6-94.7%) respectively. The TV003/TV005 vaccine, which is being studied by Intituto Butantan in Brazil, shows promising results, with an efficacy of 79.6% for symptomatic dengue. Vector control is based on biotechnological and behavioral measures, as well as on the improvement of basic sanitation conditions. The main individual protection measure is the use of topical repellents (icaridin). All of these actions represent important tools for the prevention of dengue fever and its neurological complications.
Collapse
Affiliation(s)
| | - Marzia Puccioni-Sohler
- Universidade Federal do Estado do Rio de Janeiro, Escola de Medicina e Cirurgia, Rio de Janeiro RJ, Brazil.
- Universidade Federal do Rio de Janeiro, Faculdade de Medicina, Programa de Pós-Graduação em Doenças Infecciosas e Parasitárias, Rio de Janeiro RJ, Brazil.
| |
Collapse
|
27
|
Seth A, Sevdalis N, Ismail Z, Hadinegoro SR, Larson HJ, Pangestu T. Antiscience, Vaccine Hesitancy, and Pandemic Responses: Highlights from the Asia Pacific Summit on Infectious Diseases and Immunization. Vaccines (Basel) 2024; 12:1336. [PMID: 39771999 PMCID: PMC11680259 DOI: 10.3390/vaccines12121336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/15/2024] [Accepted: 11/25/2024] [Indexed: 01/11/2025] Open
Abstract
The recent resurgence of mpox highlights the urgent need for rethinking vaccination strategies globally, underscored by the painful memories of past public health crises where delayed responses and inequitable vaccine distribution exacerbated the spread of infectious diseases. The inaugural APIC-ADVA Asia Pacific Summit on Infectious Diseases and Immunization, themed "Vaccination for All: Access, Confidence and Equity (ACE)", was held in Singapore from 31 October to 1 November 2023 in an attempt to present best practices and hard-won insights from battling COVID-19 and other pandemics in the Asia-Pacific region. This summit was co-convened by the Asia-Pacific Immunization Coalition (APIC) and Asia Dengue Voice and Action (ADVA). Local, regional, and international experts from academia, research and representatives from the Ministries of Health, the World Health Organization (WHO), and the International Vaccine Institute (IVI) participated in the 2 day summit. With more than 230 speakers and delegates from over 15 countries, and 4 symposia over 2 full days, the first APIC-ADVA Asia Pacific Summit on Infectious Diseases and Immunization highlighted critical issues affecting vaccine access, confidence, and equity, and emphasized the importance of safeguarding the world from existing infections and future pandemics through immunization.
Collapse
Affiliation(s)
- Ananta Seth
- Asia-Pacific Immunization Coalition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore; (H.J.L.)
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Nick Sevdalis
- Centre for Behavioural and Implementation Science Interventions, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Zulkifli Ismail
- Department of Pediatrics, KPJ Selangor Specialist Hospital, Shah Alam 40300, Malaysia
- Asia Dengue Voice and Action Group, Hong Kong SAR, China
| | - Sri Rezeki Hadinegoro
- Asia Dengue Voice and Action Group, Hong Kong SAR, China
- Department of Child Health, Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia
| | - Heidi J. Larson
- Asia-Pacific Immunization Coalition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore; (H.J.L.)
- London School of Hygiene & Tropical Medicine, London WC1E 7HT, UK
- Institute for Health Metrics & Evaluation, University of Washington, Seattle, WA 98195, USA
| | - Tikki Pangestu
- Asia-Pacific Immunization Coalition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore; (H.J.L.)
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| |
Collapse
|
28
|
Lee Y, Seo M, Yun SH, Yu M, Kim HJ, Cho HW, Byeon HW, Park SO, Uyangaa E, Jeon H, Lee M, Kwon YD, Eo SK. Inhibitory peptides derived from Hepatitis C virus NS5A for reducing clinical symptoms of dengue virus infection. Antiviral Res 2024; 231:106018. [PMID: 39389166 DOI: 10.1016/j.antiviral.2024.106018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/23/2024] [Accepted: 10/04/2024] [Indexed: 10/12/2024]
Abstract
Lethal Dengue Hemorrhagic Fever (DHF) and Dengue Shock Syndrome (DSS) caused by Dengue virus (DENV) infection necessitate the development of effective treatments. Peptides derived from the N-terminal amphipathic α-helix of hepatitis C virus (HCV) NS5A exhibit antiviral activity by disrupting liposomes with high curvatures, such as virus envelopes. This study engineered five peptides from HCV genotype 3a NS5A N-terminal α-helix and screened them for neutralizing efficacy against three DENV serotypes. Two peptides, 3a 3/20 and DS-05, showed superior therapeutic efficacy against DENV and were further evaluated in treating DHF/DSS induced by mouse-adapted DENV infection. Administration of 3a 3/20 and DS-05 post-infection significantly improved mortality and weight loss associated with DHF/DSS in AG6 mice. These peptides reduced viral load in internal organs and viremia to levels comparable with the positive control drug, JNJ-A07, a DENV NS3-NS4B inhibitor. Additionally, they attenuated the cytokine storm in the blood and expression of inflammatory cytokines in internal organ tissues, ameliorating liver and kidney dysfunction after DENV infection. Histopathological analysis revealed significant suppression of damages in internal organs. These findings suggest that the 3a 3/20 and DS-05 peptides improve clinical symptoms of DHF/DSS induced by DENV infection, indicating their potential for clinical application.
Collapse
Affiliation(s)
- Younghoon Lee
- College of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan, 54596, Republic of Korea
| | - Minjun Seo
- College of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan, 54596, Republic of Korea
| | - Suk-Hyun Yun
- College of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan, 54596, Republic of Korea
| | - Minyeong Yu
- College of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan, 54596, Republic of Korea
| | - Hyo Jin Kim
- College of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan, 54596, Republic of Korea
| | - Hye Won Cho
- College of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan, 54596, Republic of Korea
| | - Hee Won Byeon
- College of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan, 54596, Republic of Korea
| | - Seong Ok Park
- College of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan, 54596, Republic of Korea
| | - Erdenebileg Uyangaa
- College of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan, 54596, Republic of Korea
| | - Hyunjin Jeon
- BIO R&D Center, DaehanNupharm Co. Ltd., 20, Changeop-ro 57beon-gil, Sujeong-gu, Seongnam-si, Gyeonggi-do, 13449, Republic of Korea
| | - Minhyeong Lee
- BIO R&D Center, DaehanNupharm Co. Ltd., 20, Changeop-ro 57beon-gil, Sujeong-gu, Seongnam-si, Gyeonggi-do, 13449, Republic of Korea
| | - Young Do Kwon
- BIO R&D Center, DaehanNupharm Co. Ltd., 20, Changeop-ro 57beon-gil, Sujeong-gu, Seongnam-si, Gyeonggi-do, 13449, Republic of Korea
| | - Seong Kug Eo
- College of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan, 54596, Republic of Korea.
| |
Collapse
|
29
|
Aynekulu Mersha DG, van der Sterren I, van Leeuwen LPM, Langerak T, Hakim MS, Martina B, van Lelyveld SFL, van Gorp ECM. The role of antibody-dependent enhancement in dengue vaccination. Trop Dis Travel Med Vaccines 2024; 10:22. [PMID: 39482727 PMCID: PMC11529159 DOI: 10.1186/s40794-024-00231-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/31/2024] [Indexed: 11/03/2024] Open
Abstract
Dengue is the most rapidly spreading vector-borne disease worldwide, with over half the global population at risk for an infection. Antibody-dependent enhancement (ADE) is associated with increased disease severity and may also be attributable to the deterioration of disease in vaccinated people. Two dengue vaccines are approved momentarily, with more in development. The increasing use of vaccines against dengue, combined with the development of more, makes a thorough understanding of the processes behind ADE more important than ever. Above that, due to the lack of treatment options, this method of prevention is of great importance. This review aims to explore the impact of ADE in dengue vaccinations, with the goal of enhancing potential vaccination strategies in the fight against dengue.
Collapse
Affiliation(s)
- D G Aynekulu Mersha
- Department of Viroscience, Erasmus Medical Center, Dr. Molewaterplein 40, PO Box Ee-1722, Rotterdam, 3015 GD, the Netherlands.
| | - I van der Sterren
- Department of Viroscience, Erasmus Medical Center, Dr. Molewaterplein 40, PO Box Ee-1722, Rotterdam, 3015 GD, the Netherlands
| | - L P M van Leeuwen
- Department of Viroscience, Erasmus Medical Center, Dr. Molewaterplein 40, PO Box Ee-1722, Rotterdam, 3015 GD, the Netherlands
| | - T Langerak
- Department of Viroscience, Erasmus Medical Center, Dr. Molewaterplein 40, PO Box Ee-1722, Rotterdam, 3015 GD, the Netherlands
| | - M S Hakim
- Postgraduate School of Molecular Medicine, Erasmus Medical Center, Rotterdam, the Netherlands
| | - B Martina
- Artemis Bioservices and Athenavax B.V, Delft, the Netherlands
| | - S F L van Lelyveld
- Department of internal medicine, Spaarne Gasthuis, Haarlem/Hoofddorp, the Netherlands
| | - E C M van Gorp
- Department of Viroscience, Erasmus Medical Center, Dr. Molewaterplein 40, PO Box Ee-1722, Rotterdam, 3015 GD, the Netherlands
| |
Collapse
|
30
|
Nogueira ML, Cintra MAT, Moreira JA, Patiño EG, Braga PE, Tenório JCV, de Oliveira Alves LB, Infante V, Silveira DHR, de Lacerda MVG, Pereira DB, da Fonseca AJ, Gurgel RQ, Coelho ICB, Fontes CJF, Marques ETA, Romero GAS, Teixeira MM, Siqueira AM, Boaventura VS, Ramos F, Júnior EE, de Moraes JC, Whitehead SS, Esteves-Jaramillo A, Shekar T, Lee JJ, Macey J, Kelner SG, Coller BAG, Boulos FC, Kallás EG. Efficacy and safety of Butantan-DV in participants aged 2-59 years through an extended follow-up: results from a double-blind, randomised, placebo-controlled, phase 3, multicentre trial in Brazil. THE LANCET. INFECTIOUS DISEASES 2024; 24:1234-1244. [PMID: 39116904 DOI: 10.1016/s1473-3099(24)00376-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/07/2024] [Accepted: 06/10/2024] [Indexed: 08/10/2024]
Abstract
BACKGROUND A single-dose dengue vaccine that protects individuals across a wide age range and regardless of dengue serostatus is an unmet need. We assessed the safety and efficacy of the live, attenuated, tetravalent Butantan-dengue vaccine (Butantan-DV) in adults, adolescents, and children. We previously reported the primary and secondary efficacy and safety endpoints in the initial 2 years of follow-up. Here we report the results through an extended follow-up period, with an average of 3·7 years of follow-up. METHODS In this double-blind, randomised, placebo-controlled, phase 3, multicentre trial in Brazil, healthy participants (aged 2-59 years) who had not previously received a dengue vaccine were enrolled and randomly assigned 2:1 (stratified by age 18-59 years, 7-17 years, and 2-6 years) using a central electronic randomisation system to receive 0·5 mL of Butantan-DV (containing approximately 103 plaque-forming units of each of the four vaccine virus strains) or placebo, administered subcutaneously. Syringes containing vaccine or placebo were prepared by an unmasked trial pharmacist who was not involved in any subsequent participant assessments; other site staff and the participants remained unaware of the group allocations. Vaccine efficacy was calculated with the accrual of virologically confirmed dengue (VCD) cases (by RT-PCR) at least 28 days after vaccination up until the cutoff (at least 2 years of follow-up from the last participant enrolled). The primary endpoint was vaccine efficacy against VCD after day 28 by any dengue virus (DENV) serotype regardless of dengue serostatus at baseline in the per-protocol population. The primary and secondary safety endpoints up until day 21 were previously reported; secondary safety endpoints include the frequency of unsolicited vaccine-related adverse events after day 22. Safety analyses were done on all participants as treated. This trial is registered with ClinicalTrials.gov (NCT02406729) and is ongoing. FINDINGS Of 16 363 participants assessed for eligibility, 16 235 were randomly assigned between Feb 22, 2016, and July 5, 2019, and received single-dose Butantan-DV (10 259 participants) or placebo (5976 participants). 16 162 participants (Butantan-DV n=10 215; placebo n=5947) were included in the per-protocol population and 16 235 (Butantan-DV n=10 259; placebo n=5976) in the safety population. At the data cutoff (July 13, 2021), participants had 2-5 years of follow-up (mean 3·7 years [SD 1·0], median 4·0 years [IQR 3·2-4·5]). 356 VCD cases were captured through the follow-up (128 in the vaccine group and 228 in the placebo group). Vaccine efficacy against VCD caused by any DENV serotype was 67·3% (95% CI 59·4-73·9); cases caused by DENV-3 or DENV-4 were not observed. The proportions of participants who had serious adverse events were similar between treatment groups (637 [6·2%] in the vaccine group and 395 [6·6%] in the placebo group) up until the cutoff. INTERPRETATION A single dose of Butantan-DV was generally well tolerated and efficacious against symptomatic VCD (caused by DENV-1 and DENV-2) for a mean of 3·7 years. These findings support the continued development of Butantan-DV to prevent dengue disease in children, adolescents, and adults regardless of dengue serostatus. FUNDING Instituto Butantan and Merck Sharp & Dohme LLC, a subsidiary of Merck & Co. TRANSLATIONS For the Spanish and Portuguese translations of the abstract see Supplementary Materials section.
Collapse
Affiliation(s)
- Mauricio L Nogueira
- Faculdade de Medicina de São José do Rio Preto (FAMERP), São José do Rio Preto, Brazil; Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | | | | | | | | | | | | | | | | | | | | | | | - Ricardo Queiroz Gurgel
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal de Sergipe, Aracaju, Brazil
| | | | | | - Ernesto T A Marques
- Institute Aggeu Magalhães, Fundação Oswaldo Cruz, Recife, Brazil; School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Mauro Martins Teixeira
- Centre for Advanced and Innovative Therapies, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; INCT-Dengue, Brazil
| | - André M Siqueira
- Instituto Nacional de Infectologia Evandro Chagas, Rio de Janeiro, Brazil
| | - Viviane Sampaio Boaventura
- Medicina e Saúde pública de Precisão, Fundação Oswaldo Cruz-Instituto Gonçalo Moniz (IGM/FIOCRUZ), Salvador, Brazil
| | - Fabiano Ramos
- Hospital São Lucas da PUC do Rio Grande do Sul, Porto Alegre, Brazil
| | - Erivaldo Elias Júnior
- Faculdade de Medicina da Universidade Federal de Mato Grosso do Sul (UFMS), Campo Grande, Brazil
| | - José Cassio de Moraes
- Departamento de Saúde Coletiva, Faculdade de Ciências Médicas Santa Casa de São Paulo, São Paulo, Brazil
| | - Stephen S Whitehead
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | | | | | | | | - Esper G Kallás
- Instituto Butantan, São Paulo, Brazil; Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
31
|
Liu X, Li Z, Li X, Wu W, Jiang H, Zheng Y, Zhou J, Ye X, Lu J, Wang W, Yu L, Li Y, Qu L, Wang J, Li F, Chen L, Wu L, Feng L. A single-dose circular RNA vaccine prevents Zika virus infection without enhancing dengue severity in mice. Nat Commun 2024; 15:8932. [PMID: 39414822 PMCID: PMC11484855 DOI: 10.1038/s41467-024-53242-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 10/07/2024] [Indexed: 10/18/2024] Open
Abstract
Antibody-dependent enhancement (ADE) is a potential concern for the development of Zika virus (ZIKV) vaccines. Cross-reactive but poorly neutralizing antibodies, usually targeting viral pre-membrane or envelope (E) proteins, can potentially enhance dengue virus (DENV) infection. Although E domain III (EDIII) contains ZIKV-specific epitopes, its immunogenicity is poor. Here, we show that dimeric EDIII, fused to human IgG1 Fc fragment (EDIII-Fc) and encoded by circular RNA (circRNA), induces better germinal center reactions and higher neutralizing antibodies compared to circRNAs encoding monomeric or trimeric EDIII. Two doses of circRNAs encoding EDIII-Fc and ZIKV nonstructural protein NS1, another protective antigen, prevent lethal ZIKV infection in neonates born to immunized C57BL/6 mice and in interferon-α/β receptor knockout adult C57BL/6 mice. Importantly, a single-dose optimized circRNA vaccine with improved antigen expression confers potent and durable protection without inducing obvious DENV ADE in mice, laying the groundwork for developing flavivirus vaccines based on circRNAs encoding EDIII-Fc and NS1.
Collapse
Affiliation(s)
- Xinglong Liu
- State Key Laboratory of Respiratory Disease, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhengfeng Li
- State Key Laboratory of Respiratory Disease, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Xiaoxia Li
- State Key Laboratory of Respiratory Disease, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Weixuan Wu
- State Key Laboratory of Respiratory Disease, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huadong Jiang
- State Key Laboratory of Respiratory Disease, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- School of Life Science, University of Science and Technology of China, Hefei, 230026, China
| | - Yufen Zheng
- State Key Laboratory of Respiratory Disease, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junjie Zhou
- State Key Laboratory of Respiratory Disease, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Xianmiao Ye
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Junnan Lu
- State Key Laboratory of Respiratory Disease, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Wei Wang
- Bioland Laboratory, Guangzhou, 510005, China
| | - Lei Yu
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, 510440, China
| | - Yiping Li
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 501180, China
| | - Linbing Qu
- State Key Laboratory of Respiratory Disease, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Jianhua Wang
- State Key Laboratory of Respiratory Disease, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Feng Li
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, 510440, China
| | - Ling Chen
- State Key Laboratory of Respiratory Disease, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- Guangzhou National Laboratory, Guangzhou, 510005, China.
| | - Linping Wu
- State Key Laboratory of Respiratory Disease, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Liqiang Feng
- State Key Laboratory of Respiratory Disease, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
32
|
Spreng RL, Seaton KE, Lin L, Hilliard S, Horn GQ, Abraha M, Deal AW, Li K, Carnacchi AJ, Feeney E, Shabbir S, Zhang L, Bekker V, Mudrak SV, Dutta S, Mercer LD, Gregory S, King CR, Wille-Reece U, Jongert E, Kisalu NK, Tomaras GD, Dennison SM. Identification of RTS,S/AS01 vaccine-induced humoral biomarkers predictive of protection against controlled human malaria infection. JCI Insight 2024; 9:e178801. [PMID: 39377226 PMCID: PMC11466194 DOI: 10.1172/jci.insight.178801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 08/23/2024] [Indexed: 10/09/2024] Open
Abstract
BACKGROUNDThe mechanism(s) responsible for the efficacy of WHO-recommended malaria vaccine RTS,S/AS01 are not completely understood. We previously identified RTS,S vaccine-induced Plasmodium falciparum circumsporozoite protein-specific (PfCSP-specific) antibody measures associated with protection from controlled human malaria infection (CHMI). Here, we tested the protection-predicting capability of these measures in independent CHMI studies.METHODSVaccine-induced total serum antibody (immunoglobulins, Igs) and subclass antibody (IgG1 and IgG3) responses were measured by biolayer interferometry and the binding antibody multiplex assay, respectively. Immune responses were compared between protected and nonprotected vaccinees using univariate and multivariate logistic regression.RESULTSBlinded prediction analysis showed that 5 antibody binding measures, including magnitude-avidity composite of serum Ig specific for PfCSP, major NANP repeats and N-terminal junction, and PfCSP- and NANP-specific IgG1 subclass magnitude, had good prediction accuracy (area under the receiver operating characteristic curves [ROC AUC] > 0.7) in at least 1 trial. Furthermore, univariate analysis showed a significant association between these antibody measures and protection (odds ratios 2.6-3.1). Multivariate modeling of combined data from 3 RTS,S CHMI trials identified the combination of IgG1 NANP binding magnitude plus serum NANP and N-junction Ig binding magnitude-avidity composite as the best predictor of protection (95% confidence interval for ROC AUC 0.693-0.834).CONCLUSIONThese results reinforce our previous findings and provide a tool for predicting protection in future trials.TRIAL REGISTRATIONClinicalTrials.gov NCT03162614, NCT03824236, NCT01366534, and NCT01857869.FUNDINGThis study was supported by Bill & Melinda Gates Foundation's Global Health-Discovery Collaboratory grants (INV-008612 and INV-043419) to GDT.
Collapse
Affiliation(s)
| | - Kelly E. Seaton
- Center for Human Systems Immunology
- Department of Surgery, and
| | - Lin Lin
- Center for Human Systems Immunology
- Department of Biostatistics and Bioinformatics, Duke University, Durham, North Carolina, USA
| | | | - Gillian Q. Horn
- Center for Human Systems Immunology
- Department of Surgery, and
| | - Milite Abraha
- Center for Human Systems Immunology
- Department of Surgery, and
| | - Aaron W. Deal
- Center for Human Systems Immunology
- Department of Surgery, and
| | - Kan Li
- Center for Human Systems Immunology
- Department of Surgery, and
| | | | | | - Siam Shabbir
- Center for Human Systems Immunology
- Department of Surgery, and
| | - Lu Zhang
- Center for Human Systems Immunology
- Department of Surgery, and
| | - Valerie Bekker
- Center for Human Systems Immunology
- Department of Surgery, and
| | - Sarah V. Mudrak
- Center for Human Systems Immunology
- Department of Surgery, and
| | - Sheetij Dutta
- Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Laina D. Mercer
- Center for Vaccine Innovation and Access, PATH, Seattle, Washington, USA
| | - Scott Gregory
- Center for Vaccine Innovation and Access, PATH, Washington, DC, USA
| | - C. Richter King
- Center for Vaccine Innovation and Access, PATH, Washington, DC, USA
| | | | | | | | - Georgia D. Tomaras
- Duke Human Vaccine Institute
- Center for Human Systems Immunology
- Department of Surgery, and
- Department of Integrative Immunobiology and
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, USA
| | | |
Collapse
|
33
|
Phuong HT, Vy NHT, Thanh NTL, Tan M, de Bruin E, Koopmans M, Boni MF, Clapham HE. Estimating the force of infection of four dengue serotypes from serological studies in two regions of Vietnam. PLoS Negl Trop Dis 2024; 18:e0012568. [PMID: 39374298 PMCID: PMC11521262 DOI: 10.1371/journal.pntd.0012568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 10/29/2024] [Accepted: 09/24/2024] [Indexed: 10/09/2024] Open
Abstract
Dengue is endemic in Vietnam with circulation of all four serotypes (DENV1-4) all year-round. It is hard to estimate the disease's true serotype-specific transmission patterns from cases due to its high asymptomatic rate, low reporting rate and complex immunity and transmission dynamics. Seroprevalence studies have been used to great effect for understanding patterns of dengue transmission. We tested 991 population serum samples (ages 1-30 years, collected 2013 to 2017), 531 from Ho Chi Minh City and 460 from Khanh Hoa in Vietnam, using a flavivirus protein microarray assay. By applying our previously developed inference framework to the antibody profiles from this assay, we can (1) determine proportions of a population that have not been infected or infected, once, or more than once, and (2) infer the infecting serotype in those infected once. With these data, we then use mathematical models to estimate the force of infection (FOI) for all four DENV serotypes in HCMC and KH over 35 years up to 2017. Models with time-varying or serotype-specific DENV FOI assumptions fit the data better than constant FOI. Annual dengue FOI ranged from 0.005 (95%CI: 0.003-0.008) to 0.201 (95%CI: 0.174-0.228). FOI varied across serotypes, higher for DENV1 (95%CI: 0.033-0.048) and DENV2 (95%CI: 0.018-0.039) than DENV3 (95%CI: 0.007-0.010) and DENV4 (95%CI: 0.010-0.016). The use of the PMA on serial age-stratified cross-sectional samples increases the amount of information on transmission and population immunity, and should be considered for future dengue serological surveys, particularly to understand population immunity given vaccines with differential efficacy against serotypes, however, there remains limits to what can be inferred even using this assay.
Collapse
Affiliation(s)
- Huynh Thi Phuong
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Programme, Ho Chi Minh City, Vietnam
- Institute of Epidemiology and Social Medicine, University of Münster, Münster, Germany
| | - Nguyen Ha Thao Vy
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Programme, Ho Chi Minh City, Vietnam
| | - Nguyen Thi Le Thanh
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Programme, Ho Chi Minh City, Vietnam
| | - Maxine Tan
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
| | - Erwin de Bruin
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Marion Koopmans
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Maciej F. Boni
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Programme, Ho Chi Minh City, Vietnam
- Department of Viroscience, Erasmus MC, Rotterdam, Netherlands
- Center for Infectious Disease Dynamics, Department of Biology, Pennsylvania State University, University Park, Pennsylvania, Unites States of America
| | - Hannah E. Clapham
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Programme, Ho Chi Minh City, Vietnam
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
- Department of Viroscience, Erasmus MC, Rotterdam, Netherlands
| |
Collapse
|
34
|
Wang C, Castillo A, Cortes-Bejarano F, Lopez E, de Souza EC, Wu L. An update on the ocular manifestations of dengue. Taiwan J Ophthalmol 2024; 14:540-547. [PMID: 39803411 PMCID: PMC11717331 DOI: 10.4103/tjo.tjo-d-23-00106] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/28/2023] [Indexed: 01/16/2025] Open
Abstract
Dengue is the most common arboviral disease. It is typically spread by the bite of an infected female Aedes aegypti or Aedes albopictus mosquitoes. Dengue is endemic in subtropical and tropical regions, but its geographic reach keeps expanding. Ophthalmic manifestations of dengue are common and may present with a wide spectrum of ophthalmic findings. These may range from conjunctival petechiae, retinal hemorrhage, retinal vasculitis to panophthalmitis. Some of these may be vision threatening and may require urgent ophthalmic evaluation. The precise pathophysiologic mechanisms involved in dengue infection involve a complex interplay between host immune responses, virus, and host genes. There is no specific treatment for ocular dengue. Therefore, treatment is supportive. Despite the lack of proven efficacy, corticosteroids have been used in vision-threatening dengue-related ocular complications. Dengue must be considered in endemic areas, and a careful travel history needs to be elicited in nonendemic areas.
Collapse
Affiliation(s)
- Christina Wang
- Asociados de Macula, Vitreo y Retina de Costa Rica, Primer Piso Torre Mercedes Paseo Colon, San Jose, Costa Rica
| | - Arturo Castillo
- Asociados de Macula, Vitreo y Retina de Costa Rica, Primer Piso Torre Mercedes Paseo Colon, San Jose, Costa Rica
| | - Federico Cortes-Bejarano
- Asociados de Macula, Vitreo y Retina de Costa Rica, Primer Piso Torre Mercedes Paseo Colon, San Jose, Costa Rica
| | - Eduardo Lopez
- Asociados de Macula, Vitreo y Retina de Costa Rica, Primer Piso Torre Mercedes Paseo Colon, San Jose, Costa Rica
| | - Eduardo Cunha de Souza
- Asociados de Macula, Vitreo y Retina de Costa Rica, Primer Piso Torre Mercedes Paseo Colon, San Jose, Costa Rica
| | - Lihteh Wu
- Asociados de Macula, Vitreo y Retina de Costa Rica, Primer Piso Torre Mercedes Paseo Colon, San Jose, Costa Rica
| |
Collapse
|
35
|
Songprakhon P, Panya A, Choomee K, Limjindaporn T, Noisakran S, Tarasuk M, Yenchitsomanus PT. Cordycepin exhibits both antiviral and anti-inflammatory effects against dengue virus infection. iScience 2024; 27:110711. [PMID: 39262808 PMCID: PMC11387592 DOI: 10.1016/j.isci.2024.110711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/26/2024] [Accepted: 08/08/2024] [Indexed: 09/13/2024] Open
Abstract
Cordycepin, a natural derivative of adenosine from Cordyceps militaris, can inhibit the replication of the dengue virus (DENV). Here, we investigated its antiviral and anti-inflammatory effects in DENV infected cells. Cordycepin significantly inhibited DENV-2 infection, virion production, and viral protein synthesis. It also reduced DENV-induced cytokine/chemokine production, including RANTES, IP-10, IL-6, and TNF-α. Mechanistically, cordycepin targeted the DENV NS5 protein, suppressing RANTES expression and hindering viral replication. Additionally, it inhibited the NF-κB pathway, leading to reduced nuclear translocation and signaling deactivation. PCR array analysis revealed cordycepin's suppression of 46 genes associated with DENV-induced inflammation. These findings highlight cordycepin's dual potential as an antiviral and anti-inflammatory agent against DENV, making it as a promising candidate for dengue treatment, targeting both viral and host factors.
Collapse
Affiliation(s)
- Pucharee Songprakhon
- Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Aussara Panya
- Natural Extracts and Innovative Products for Alternative Healthcare Research Group, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Kornkan Choomee
- Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Thawornchai Limjindaporn
- Department of Anatomy, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Sansanee Noisakran
- Molecular Biology of Dengue and Flaviviruses Research Team, Medical Molecular Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok 10700, Thailand
- Division of Dengue Hemorrhagic Fever Research, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Mayuri Tarasuk
- Graduate Program in Bioclinical Sciences, Chulabhorn International College of Medicine, Thammasat University, Pathum Thani 12120, Thailand
| | - Pa-Thai Yenchitsomanus
- Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| |
Collapse
|
36
|
Roy D, Manumol M, Alagarasu K, Parashar D, Cherian S. Phytochemicals of Different Medicinal Herbs as Potential Inhibitors Against Dengue Serotype 2 Virus: A Computational Approach. Mol Biotechnol 2024:10.1007/s12033-024-01282-8. [PMID: 39264526 DOI: 10.1007/s12033-024-01282-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 08/29/2024] [Indexed: 09/13/2024]
Abstract
Dengue is one of the major mosquito-borne infectious diseases of the present century, reported to affect about 100-400 million people globally. The lack of effective therapeutic options has inspired several in vitro and in silico studies for the search of antivirals. Our previous study revealed the anti-dengue activity of different plant extracts from Plumeria alba, Bacopa monnieri, Vitex negundo, and Ancistrocladus heyneanus. Therefore, the current in silico study was designed to identify the phytochemicals present in the aforementioned plants, which are possibly responsible for the anti-dengue activity. Different plant databases as well as relevant literature were explored to find out the major compounds present in the above-stated plants followed by screening of the retrieved phytochemicals for the assessment of their binding affinity against different dengue viral proteins via molecular docking. The best poses of protein-ligand complexes obtained after molecular docking were selected for the calculation of binding free energy via MM-GBSA method. Based on the highest docking score and binding energy, six complexes were considered for further analysis. To analyze the stability of the complex, 100 ns molecular dynamics (MD) simulations were carried out using Desmond module in the Schrodinger suite. The MD simulation analysis showed that four compounds viz. liriodendrin, bacopaside VII, isoorientin, and cynaroside exhibited stability with viral targets including the RdRp, NS3 helicase, and E protein indicating their potential as novel anti-dengue antivirals.
Collapse
Affiliation(s)
- Diya Roy
- Bioinformatics Group, ICMR-National Institute of Virology, 20-A, Dr. Ambedkar Road, Pune, Maharashtra, 411001, India
| | - M Manumol
- Bioinformatics Group, ICMR-National Institute of Virology, 20-A, Dr. Ambedkar Road, Pune, Maharashtra, 411001, India
| | - Kalichamy Alagarasu
- Dengue & Chikungunya Group, ICMR-National Institute of Virology, 20-A, Dr. Ambedkar Road, Pune, Maharashtra, 411001, India
| | - Deepti Parashar
- Dengue & Chikungunya Group, ICMR-National Institute of Virology, 20-A, Dr. Ambedkar Road, Pune, Maharashtra, 411001, India
| | - Sarah Cherian
- Bioinformatics Group, ICMR-National Institute of Virology, 20-A, Dr. Ambedkar Road, Pune, Maharashtra, 411001, India.
| |
Collapse
|
37
|
Kayesh MEH, Nazneen H, Kohara M, Tsukiyama-Kohara K. An effective pan-serotype dengue vaccine and enhanced control strategies could help in reducing the severe dengue burden in Bangladesh-A perspective. Front Microbiol 2024; 15:1423044. [PMID: 39228383 PMCID: PMC11368799 DOI: 10.3389/fmicb.2024.1423044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/06/2024] [Indexed: 09/05/2024] Open
Abstract
Dengue is an important vector-borne disease occurring globally. Dengue virus (DENV) infection can result in a potentially life-threatening disease. To date, no DENV-specific antiviral treatment is available. Moreover, an equally effective pan-serotype dengue virus vaccine is not available. Recently, two DENV vaccines, Dengvaxia and Qdenga, were licensed for limited use. However, none of them have been approved in Bangladesh. DENV is transmitted by Aedes mosquitoes, and global warming caused by climate change favoring Aedes breeding plays an important role in increasing DENV infections in Bangladesh. Dengue is a serious public health concern in Bangladesh. In the year 2023, Bangladesh witnessed its largest dengue outbreak, with the highest number of dengue cases (n = 321,179) and dengue-related deaths (n = 1,705) in a single epidemic year. There is an increased risk of severe dengue in individuals with preexisting DENV-specific immunoglobulin G if the individuals become infected with different DENV serotypes. To date, vector control has remained the mainstay for controlling dengue; therefore, an immediate, strengthened, and effective vector control program is critical and should be regularly performed for controlling dengue outbreaks in Bangladesh. In addition, the use of DENV vaccine in curbing dengue epidemics in Bangladesh requires more consideration and judgment by the respective authority of Bangladesh. This review provides perspectives on the control and prevention of dengue outbreaks. We also discuss the challenges of DENV vaccine use to reduce dengue epidemics infection in Bangladesh.
Collapse
Affiliation(s)
- Mohammad Enamul Hoque Kayesh
- Department of Microbiology and Public Health, Faculty of Animal Science and Veterinary Medicine, Patuakhali Science and Technology University, Barishal, Bangladesh
| | - Humayra Nazneen
- Department of Haematology, Dhaka Medical College Hospital, Dhaka, Bangladesh
| | - Michinori Kohara
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Kyoko Tsukiyama-Kohara
- Joint Faculty of Veterinary Medicine, Transboundary Animal Diseases Centre, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
38
|
Iqtadar S, Akram J, Khan A. The Urgent Need for Dengue Vaccination: Combating an Escalating Public Health Crisis in Pakistan. Vaccines (Basel) 2024; 12:913. [PMID: 39204037 PMCID: PMC11360665 DOI: 10.3390/vaccines12080913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 09/03/2024] Open
Abstract
Dengue fever, caused by the dengue virus (DENV), poses a significant global health threat, with a dramatic increase in cases driven by climate change, urbanization, and mosquito resistance. In Pakistan, a country with a population of 240 million, the world's fifth largest, dengue has emerged as an escalating public health crisis, with seasonal outbreaks severely straining the healthcare system. Despite decades of vector control efforts, there has not been much success, necessitating the introduction of dengue vaccination to boost population immunity. Recent advancements in vaccine development demonstrate promising efficacy and safety profiles, even in dengue-naive individuals. Implementing a dengue vaccination program in Pakistan could significantly reduce the disease burden, lower healthcare costs, and prevent future outbreaks. Integrating vaccination with existing public health initiatives can achieve high coverage and improve overall public health outcomes.
Collapse
Affiliation(s)
- Somia Iqtadar
- Dengue Expert Advisory Group, Lahore 54000, Pakistan;
- Department of Medicine, King Edward Medical University, Lahore 54000, Pakistan
- Pakistan Society of Internal Medicine (PSIM), Lahore 54000, Pakistan;
- Asia Dengue Voice & Action Next Generation (ADVA NexGen) Group, 8 Fleming Road, Wanchai, Hong Kong, China
| | - Javed Akram
- Pakistan Society of Internal Medicine (PSIM), Lahore 54000, Pakistan;
| | - Amjad Khan
- Pakistan Society of Internal Medicine (PSIM), Lahore 54000, Pakistan;
- Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| |
Collapse
|
39
|
Lyke KE, Chua JV, Koren M, Friberg H, Gromowski GD, Rapaka RR, Waickman AT, Joshi S, Strauss K, McCracken MK, Gutierrez-Barbosa H, Shrestha B, Culbertson C, Bernal P, De La Barrera RA, Currier JR, Jarman RG, Edelman R. Efficacy and immunogenicity following dengue virus-1 human challenge after a tetravalent prime-boost dengue vaccine regimen: an open-label, phase 1 trial. THE LANCET. INFECTIOUS DISEASES 2024; 24:896-908. [PMID: 38679035 DOI: 10.1016/s1473-3099(24)00100-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/26/2024] [Accepted: 02/08/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND Dengue human infection models (DHIMs) are important tools to down-select dengue vaccine candidates and establish tetravalent efficacy before advanced clinical field trials. We aimed to provide data for the safety and immunogenicity of DHIM and evaluate dengue vaccine efficacy. METHODS We performed an open-label, phase 1 trial at the University of Maryland (Baltimore, MD, USA). Eligible participants were healthy individuals aged 18-50 years who either previously received a tetravalent dengue purified inactivated vaccine prime followed by a live-attenuated vaccine boost (ie, the vaccinee group), or were unvaccinated flavivirus-naive participants (ie, the control group). Participants in the vaccinee group with detectable pre-challenge dengue virus-1 neutralising antibody titres and flavivirus-naive participants in the control group were inoculated with dengue virus-1 strain 45AZ5 in the deltoid region, 27-65 months following booster dosing. These participants were followed-up from days 4-16 following dengue virus-1 live virus human challenge, with daily real-time quantitative PCR specific to dengue virus-1 RNA detection, and dengue virus-1 solicited local and systemic adverse events were recorded. The primary outcomes were safety (ie, solicited local and systemic adverse events) and vaccine efficacy (ie, dengue virus-1 RNAaemia) following dengue challenge. This study is registered with ClinicalTrials.gov, number NCT04786457. FINDINGS In January 2021, ten eligible participants were enrolled; of whom, six (60%) were in the vaccinee group and four (40%) were in the control group. Daily quantitative PCR detected dengue virus-1 RNA in nine (90%) of ten participants (five [83%] of six in the vaccinee group and all four [100%] in the control group). The mean onset of RNAaemia occurred on day 5 (SD 1·0) in the vaccinee group versus day 8 (1·5) in the control group (95% CI 1·1-4·9; p=0·007), with a trend towards reduced RNAaemia duration in the vaccinee group compared with the control group (8·2 days vs 10·5 days; 95% CI -0·08 to 4·68; p=0·056). Mild-to-moderate symptoms (nine [90%] of ten), leukopenia (eight [89%] of nine), and elevated aminotransferases (seven [78%] of nine) were commonly observed. Severe adverse events were detected only in the vaccinee group (fever ≥38·9°C in three [50%] of six, headache in one [17%], and transient grade 4 aspartate aminotransferase elevation in one [17%]). No deaths were reported. INTERPRETATION Participants who had tetravalent dengue purified inactivated vaccine prime and live-attenuated vaccine boost were unprotected against dengue virus-1 infection and further showed increased clinical, immunological, and transcriptomic evidence for inflammation potentially mediated by pre-existing infection-enhancing antibodies. This study highlights the impact of small cohort, human challenge models studying dengue pathogenesis and downstream vaccine development. FUNDING Military Infectious Disease Research Program and Medical Technology Enterprise Consortium and Advanced Technology International.
Collapse
Affiliation(s)
- Kirsten E Lyke
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Joel V Chua
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Michael Koren
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Heather Friberg
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Gregory D Gromowski
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Rekha R Rapaka
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Adam T Waickman
- Department of Microbiology and Immunology, State University of New York Update Medical University, Syracuse, NY, USA
| | - Sudhaunshu Joshi
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kathleen Strauss
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Michael K McCracken
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | | | - Biraj Shrestha
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Christopher Culbertson
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Paula Bernal
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Rafael A De La Barrera
- Pilot Bioproduction Facility, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Jeffrey R Currier
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Richard G Jarman
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Robert Edelman
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
40
|
Morgan RN, Ismail NSM, Alshahrani MY, Aboshanab KM. Multi-epitope peptide vaccines targeting dengue virus serotype 2 created via immunoinformatic analysis. Sci Rep 2024; 14:17645. [PMID: 39085250 PMCID: PMC11291903 DOI: 10.1038/s41598-024-67553-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/12/2024] [Indexed: 08/02/2024] Open
Abstract
The Middle East has witnessed a greater spread of infectious Dengue viruses, with serotype 2 (DENV-2) being the most prevalent form. Through this work, multi-epitope peptide vaccines against DENV-2 that target E and nonstructural (NS1) proteins were generated through an immunoinformatic approach. MHC class I and II and LBL epitopes among NS1 and envelope E proteins sequences were predicted and their antigenicity, toxicity, and allergenicity were investigated. Studies of the population coverage denoted the high prevalence of NS1 and envelope-E epitopes among different countries where DENV-2 endemic. Further, both the CTL and HTL epitopes retrieved from NS1 epitopes exhibited high conservancies' percentages with other DENV serotypes (1, 3, and 4). Three vaccine constructs were created and the expected immune responses for the constructs were estimated using C-IMMSIM and HADDOCK (against TLR 2,3,4,5, and 7). Molecular dynamics simulation for vaccine construct 2 with TLR4 denoted high binding affinity and stability of the construct with the receptor which might foretell favorable in vivo interaction and immune responses.
Collapse
Affiliation(s)
- Radwa N Morgan
- Drug Radiation Research Department, National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Nasser S M Ismail
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Mohammad Y Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, P.O. Box 61413, 9088, Abha, Saudi Arabia
| | - Khaled M Aboshanab
- Microbiology and Immunology Department, Faculty of Pharmacy, Ain Shams University, Organization of African Unity St., Abbassia, POB: 11566, Cairo, 11566, Egypt.
| |
Collapse
|
41
|
Doets K, Pijlman GP. Subgenomic flavivirus RNA as key target for live-attenuated vaccine development. J Virol 2024; 98:e0010023. [PMID: 38808973 PMCID: PMC11265276 DOI: 10.1128/jvi.00100-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024] Open
Abstract
Live-attenuated flavivirus vaccines confer long-term protection against disease, but the design of attenuated flaviviruses does not follow a general approach. The non-coding, subgenomic flavivirus RNA (sfRNA) is produced by all flaviviruses and is an essential factor in viral pathogenesis and transmission. We argue that modulating sfRNA expression is a promising, universal strategy to finetune flavivirus attenuation for developing effective flavivirus vaccines of the future.
Collapse
Affiliation(s)
- Kristel Doets
- Wageningen University and Research, Laboratory of Virology, Wageningen, the Netherlands
| | - Gorben P. Pijlman
- Wageningen University and Research, Laboratory of Virology, Wageningen, the Netherlands
| |
Collapse
|
42
|
Pelletier AN, Sanchez GP, Izmirly A, Watson M, Di Pucchio T, Carvalho KI, Filali-Mouhim A, Paramithiotis E, Timenetsky MDCST, Precioso AR, Kalil J, Diamond MS, Haddad EK, Kallas EG, Sekaly RP. A pre-vaccination immune metabolic interplay determines the protective antibody response to a dengue virus vaccine. Cell Rep 2024; 43:114370. [PMID: 38900640 PMCID: PMC11404042 DOI: 10.1016/j.celrep.2024.114370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 02/05/2024] [Accepted: 05/31/2024] [Indexed: 06/22/2024] Open
Abstract
Protective immunity to dengue virus (DENV) requires antibody response to all four serotypes. Systems vaccinology identifies a multi-OMICs pre-vaccination signature and mechanisms predictive of broad antibody responses after immunization with a tetravalent live attenuated DENV vaccine candidate (Butantan-DV/TV003). Anti-inflammatory pathways, including TGF-β signaling expressed by CD68low monocytes, and the metabolites phosphatidylcholine (PC) and phosphatidylethanolamine (PE) positively correlate with broadly neutralizing antibody responses against DENV. In contrast, expression of pro-inflammatory pathways and cytokines (IFN and IL-1) in CD68hi monocytes and primary and secondary bile acids negatively correlates with broad DENV-specific antibody responses. Induction of TGF-β and IFNs is done respectively by PC/PE and bile acids in CD68low and CD68hi monocytes. The inhibition of viral sensing by PC/PE-induced TGF-β is confirmed in vitro. Our studies show that the balance between metabolites and the pro- or anti-inflammatory state of innate immune cells drives broad and protective B cell response to a live attenuated dengue vaccine.
Collapse
Affiliation(s)
- Adam-Nicolas Pelletier
- RPM Bioinfo Solutions, Sainte-Thérèse, QC, Canada; Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Gabriela Pacheco Sanchez
- Pathology Advanced Translational Research Unit, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Abdullah Izmirly
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Tiziana Di Pucchio
- Pathology Advanced Translational Research Unit, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Karina Inacio Carvalho
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
| | - Abdelali Filali-Mouhim
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada
| | | | | | | | - Jorge Kalil
- Laboratory of Immunology, Heart Institute (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brazil; Institute for Investigation in Immunology-Instituto Nacional de Ciência e Tecnologia-iii-INCT, São Paulo, SP, Brazil
| | - Michael S Diamond
- Departments of Medicine, Molecular Microbiology, and Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Elias K Haddad
- Department of Medicine and Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Esper G Kallas
- Instituto Butantan, São Paulo, Brazil; Department of Infectious and Parasitic Diseases, Hospital das Clínicas, School of Medicine, University of Sao Paulo, São Paulo 01246-903, Brazil
| | - Rafick Pierre Sekaly
- Pathology Advanced Translational Research Unit, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
43
|
Ylade M, Crisostomo MV, Daag JV, Agrupis KA, Cuachin AM, Sy AK, Kim DR, Ahn HS, Escoto AC, Katzelnick LC, Adams C, White L, de Silva AM, Deen J, Lopez AL. Effect of single-dose, live, attenuated dengue vaccine in children with or without previous dengue on risk of subsequent, virologically confirmed dengue in Cebu, the Philippines: a longitudinal, prospective, population-based cohort study. THE LANCET. INFECTIOUS DISEASES 2024; 24:737-745. [PMID: 38527474 PMCID: PMC11187693 DOI: 10.1016/s1473-3099(24)00099-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/30/2024] [Accepted: 02/07/2024] [Indexed: 03/27/2024]
Abstract
BACKGROUND A three-dose dengue vaccine (CYD-TDV) was licensed for use in children aged 9 years and older starting in 2015 in several dengue-endemic countries. In 2016, the Philippine Department of Health implemented a dengue vaccination programme, which was discontinued because of safety concerns. We assessed the relative risk of developing virologically confirmed dengue among children who did or did not receive a single dose of CYD-TDV by previous dengue virus (DENV) infections at baseline classified as none, one, and two or more infections. METHODS In this longitudinal, prospective, population-based cohort study, we enrolled healthy children (aged 9-14 years) residing in Bogo or Balamban, Cebu, Philippines, between May 2, and June 2, 2017, before a mass dengue vaccination campaign, via the Rural Health Unit in Bogo and three Rural Health Units in Balamban. We collected demographic information and sera for baseline DENV serostatus and conducted active surveillance for acute febrile illness. Children who developed acute febrile illness were identified, clinical data were collected, and blood was drawn for confirmation of dengue by RT-PCR. The primary outcome was the relative risk of developing virologically confirmed dengue among children who received or did not receive a single dose of CYD-TDV by DENV serostatus at baseline. FINDINGS A single dose of CYD-TDV did not confer protection against virologically confirmed dengue in children who had none or one previous DENV infection at baseline. One dose conferred significant protection against hospital admission for virologically confirmed dengue among participants who had two or more previous DENV infections at baseline during the first 3 years (70%, 95% CI 20-88; p=0·017) and the entire follow-up period (67%, 19-87; p=0·016). INTERPRETATION The risk of developing virologically confirmed dengue after a single dose of CYD-TDV varied by baseline DENV serostatus. Since the study assessed the effect of only a single dose, the findings cannot inform decisions on vaccination by public health officers. However, the findings have implications for children who receive an incomplete vaccination regimen and these results should prompt more detailed analyses in future trials on dengue vaccines. FUNDING The Philippine Department of Health, Hanako Foundation, WHO, Swedish International Development Cooperation Agency, International Vaccine Institute, University of North Carolina, and US National Institute of Allergy and Infectious Diseases.
Collapse
Affiliation(s)
- Michelle Ylade
- Institute of Child Health and Human Development, National Institutes of Health, University of the Philippines Manila, Manila, Philippines
| | - Maria Vinna Crisostomo
- Institute of Child Health and Human Development, National Institutes of Health, University of the Philippines Manila, Manila, Philippines
| | - Jedas Veronica Daag
- Institute of Child Health and Human Development, National Institutes of Health, University of the Philippines Manila, Manila, Philippines
| | - Kristal An Agrupis
- Institute of Child Health and Human Development, National Institutes of Health, University of the Philippines Manila, Manila, Philippines
| | - Anna Maureen Cuachin
- Institute of Child Health and Human Development, National Institutes of Health, University of the Philippines Manila, Manila, Philippines
| | - Ava Kristy Sy
- Department of Virology, Research Institute for Tropical Medicine, Muntinlupa, Philippines
| | | | | | - Ana Coello Escoto
- Viral Epidemiology and Immunity Unit, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Leah C Katzelnick
- Viral Epidemiology and Immunity Unit, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Cameron Adams
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Laura White
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Aravinda M de Silva
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Jacqueline Deen
- Institute of Child Health and Human Development, National Institutes of Health, University of the Philippines Manila, Manila, Philippines.
| | - Anna Lena Lopez
- Institute of Child Health and Human Development, National Institutes of Health, University of the Philippines Manila, Manila, Philippines
| |
Collapse
|
44
|
Gunale B, Farinola N, Kamat CD, Poonawalla CS, Pisal SS, Dhere RM, Miller C, Kulkarni PS. An observer-blind, randomised, placebo-controlled, phase 1, single ascending dose study of dengue monoclonal antibody in healthy adults in Australia. THE LANCET. INFECTIOUS DISEASES 2024; 24:639-649. [PMID: 38408457 DOI: 10.1016/s1473-3099(24)00030-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/10/2024] [Accepted: 01/12/2024] [Indexed: 02/28/2024]
Abstract
BACKGROUND Dengue is highly prevalent in Asia and Latin America and has no specific dengue antiviral treatment. A recombinant monoclonal antibody (VIS513) that neutralises all four serotypes of the dengue virus has been developed in India. After confirmation of safety and efficacy in preclinical studies, it was tested in a first-in-human study to assess the safety and pharmacokinetics. METHODS This was a partially blind (observer-blind), randomised, placebo-controlled, phase 1, single ascending dose study in Australia. Participants were dengue naive, healthy adults (aged 18-45 years) with no clinically significant disorders or immunosuppressive conditions. Four dose levels of dengue monoclonal antibody (ie, 1 mg/kg, 3 mg/kg, 7 mg/kg, and 12 mg/kg; n=4 for 1 mg/kg and n=10 each for 3 mg/kg, 7 mg/kg, and 12 mg/kg doses) were assessed in a dose-ascending way with a placebo control (n=2 for each dose cohort, total n=6) for each cohort except for 1 mg/kg. Within each cohort, participants were first randomly assigned (1:1) in a sentinel sub-cohort and then randomly assigned (9:1) in an expansion sub-cohort to dengue monoclonal antibody or placebo except for the 1 mg/kg cohort. Participants, investigators, and outcome assessors were masked and treatment administrators were not masked. 40 participants received a single intravenous injection or infusion of either dengue monoclonal antibody or placebo over a period of 3 min to 2 h and were followed up until day 85. The primary outcomes were proportion of participants with adverse events and serious adverse events (SAEs) up to 84 days after dosing whereas the secondary outcomes were to assess the pharmacokinetic profile of dengue monoclonal antibody and to assess the presence of anti-drug antibody (ADA) to dengue monoclonal antibody. All participants were included in the safety analysis and the pharmacokinetic population involved participants receiving dengue monoclonal antibody. This study is registered with ClinicalTrials.gov, NCT03883620. FINDINGS Between March 22 and Dec 23, 2019, 40 healthy adults were randomly assigned and all completed the study. There were no SAEs reported. None of the placebo recipients (n=6) reported any adverse events. 31 (91%) of 34 participants receiving dengue monoclonal antibody reported 143 adverse events (1 mg/kg: four [100%] of four participants; 3 mg/kg: ten [100%] of ten participants; 7 mg/kg: seven [70%] of ten participants; 12 mg/kg: ten [100%] of ten participants). Of these 143 adverse events, 80 were treatment-related adverse events in 28 (82%) of 34 participants. Headache (16 [47%] of 34), infusion reaction (11 [32%] of 34), lymphopenia (seven [21%] of 34), fatigue (five [15%] of 34), and pyrexia (four [12%] of 34) were the most common reactions. Infusion reactions were reduced in the 7 mg/kg (two [20%] of ten participants) and 12 mg/kg (three [30%] of ten) cohorts with paracetamol premedication compared with the 3 mg/kg cohort (five [50%] of ten). The majority of adverse events were grade 1 or grade 2 in severity, and resolved completely. Median maximum serum concentrations ranged from 28 μg/mL (1 mg/kg) to 525 μg/mL (12 mg/kg). The median elimination half-life ranged from 775 h (1 mg/kg) to 878 h (12 mg/kg). No ADA against dengue monoclonal antibody was detected. INTERPRETATION Dengue monoclonal antibody was safe and well tolerated. It showed a dose-proportionate increase in pharmacokinetic exposure. These data support further evaluation of dengue monoclonal antibody in patients with dengue for safety and efficacy. FUNDING Serum Institute of India.
Collapse
|
45
|
Anam V, Guerrero BV, Srivastav AK, Stollenwerk N, Aguiar M. Within-host models unravelling the dynamics of dengue reinfections. Infect Dis Model 2024; 9:458-473. [PMID: 38385021 PMCID: PMC10879676 DOI: 10.1016/j.idm.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/03/2024] [Accepted: 02/03/2024] [Indexed: 02/23/2024] Open
Abstract
Caused by four serotypes, dengue fever is a major public health concern worldwide. Current modeling efforts have mostly focused on primary and heterologous secondary infections, assuming that lifelong immunity prevents reinfections by the same serotype. However, recent findings challenge this assumption, prompting a reevaluation of dengue immunity dynamics. In this study, we develop a within-host modeling framework to explore different scenarios of dengue infections. Unlike previous studies, we go beyond a deterministic framework, considering individual immunological variability. Both deterministic and stochastic models are calibrated using empirical data on viral load and antibody (IgM and IgG) concentrations for all dengue serotypes, incorporating confidence intervals derived from stochastic realizations. With good agreement between the mean of the stochastic realizations and the mean field solution for each model, our approach not only successfully captures primary and heterologous secondary infection dynamics facilitated by antibody-dependent enhancement (ADE) but also provides, for the first time, insights into homotypic reinfection dynamics. Our study discusses the relevance of homotypic reinfections in dengue transmission at the population level, highlighting potential implications for disease prevention and control strategies.
Collapse
Affiliation(s)
- Vizda Anam
- Basque Center for Applied Mathematics, Basque Country, Spain
- Department of Mathematics and Statistics, University of Basque Country, Basque Country, Spain
| | | | | | | | - Maíra Aguiar
- Basque Center for Applied Mathematics, Basque Country, Spain
- Ikerbasque, Basque Foundation for Science, Basque Country, Spain
| |
Collapse
|
46
|
Saretzki CEB, Dobler G, Iro E, Heussen N, Küpper T. Dengue Virus and Zika Virus Seroprevalence in the South Pacific Populations of the Cook Islands and Vanuatu. Viruses 2024; 16:807. [PMID: 38793688 PMCID: PMC11125989 DOI: 10.3390/v16050807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/30/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Arboviral diseases are serious threats to global health with increasing prevalence and potentially severe complications. Significant arthropod-borne viruses are the dengue viruses (DENV 1-4), the Zika virus (ZIKV), and the chikungunya virus (CHIKV). Among the areas most affected is the South Pacific Region (SPR). Here, arboviruses not only cause a high local burden of disease, but the region has also proven to contribute to their global spread. Outpatient serum samples collected between 08/2016 and 04/2017 on three islands of the island states of Vanuatu and the Cook Islands were tested for anti-DENV- and anti-ZIKV-specific antibodies (IgG) using enzyme-linked immunosorbent assays (ELISA). ELISA test results showed 89% of all test sera from the Cook Islands and 85% of the Vanuatu samples to be positive for anti-DENV-specific antibodies. Anti-ZIKV antibodies were identified in 66% and 52%, respectively, of the test populations. Statistically significant differences in standardized immunity levels were found only at the intranational level. Our results show that in both the Cook Islands and Vanuatu, residents were exposed to significant Flavivirus transmission. Compared to other seroprevalence studies, the marked difference between ZIKV immunity levels and previously published CHIKV seroprevalence rates in our study populations is surprising. We propose the timing of ZIKV and CHIKV emergence in relation to recurrent DENV outbreaks and the impact of seasonality as explanatory external factors for this observation. Our data add to the knowledge of arboviral epidemics in the SPR and contribute to a better understanding of virus spread, including external conditions with potential influence on outbreak dynamics. These data may support preventive and rapid response measures in the affected areas, travel-related risk assessment, and infection identification in locals and returning travelers.
Collapse
Affiliation(s)
- Charlotte E. B. Saretzki
- Institute for Occupational, Social and Environmental Medicine, RWTH Aachen Technical University, 52074 Aachen, Germany;
| | - Gerhard Dobler
- Bundeswehr Institute of Microbiology, 80937 Munich, Germany;
| | - Elizabeth Iro
- Cook Islands Ministry of Health, Rarotonga P.O. Box 109, Cook Islands;
| | - Nicole Heussen
- Department of Medical Statistics, RWTH Aachen Technical University, 52074 Aachen, Germany;
- Faculty of Medicine, Sigmund Freud University, 1020 Vienna, Austria
| | - Thomas Küpper
- Institute for Occupational, Social and Environmental Medicine, RWTH Aachen Technical University, 52074 Aachen, Germany;
- Faculty for Travel Medicine, Royal College of Physicians and Surgeons of Glasgow, Glasgow G2 5RJ, UK
| |
Collapse
|
47
|
Shorkey SA, Zhang Y, Sharp J, Clingman S, Nguyen L, Chen J, Chen M. Tuning single-molecule ClyA nanopore tweezers for real-time tracking of the conformational dynamics of West Nile viral NS2B/NS3 protease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.14.594247. [PMID: 38798384 PMCID: PMC11118314 DOI: 10.1101/2024.05.14.594247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The flaviviral NS2B/NS3 protease is a conserved enzyme required for flavivirus replication. Its highly dynamic conformation poses major challenges but also offers opportunities for antiviral inhibition. Here, we established a nanopore tweezers-based platform to monitor NS2B/NS3 conformational dynamics in real-time. Molecular simulations coupled with electrophysiology revealed that the protease could be captured in the middle of the ClyA nanopore lumen, stabilized mainly by dynamic electrostatic interactions. We designed a new Salmonella typhi ClyA nanopore with enhanced nanopore/protease interaction that can resolve the open and closed states at the single-molecule level for the first time. We demonstrated that the tailored ClyA could track the conformational transitions of the West Nile NS2B/NS3 protease and unravel the conformational energy landscape of various protease constructs through population and kinetic analysis. The new ClyA-protease platform paves a way to high-throughput screening strategies for discovering new allosteric inhibitors that target the NS2B and NS3 interface.
Collapse
|
48
|
Thoresen D, Matsuda K, Urakami A, Ngwe Tun MM, Nomura T, Moi ML, Watanabe Y, Ishikawa M, Hau TTT, Yamamoto H, Suzaki Y, Ami Y, Smith JF, Matano T, Morita K, Akahata W. A tetravalent dengue virus-like particle vaccine induces high levels of neutralizing antibodies and reduces dengue replication in non-human primates. J Virol 2024; 98:e0023924. [PMID: 38647327 PMCID: PMC11092354 DOI: 10.1128/jvi.00239-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 03/22/2024] [Indexed: 04/25/2024] Open
Abstract
Dengue virus (DENV) represents a significant global health burden, with 50% of the world's population at risk of infection, and there is an urgent need for next-generation vaccines. Virus-like particle (VLP)-based vaccines, which mimic the antigenic structure of the virus but lack the viral genome, are an attractive approach. Here, we describe a dengue VLP (DENVLP) vaccine which generates a neutralizing antibody response against all four DENV serotypes in 100% of immunized non-human primates for up to 1 year. Additionally, DENVLP vaccination produced no ADE response against any of four DENV serotypes in vitro. DENVLP vaccination reduces viral replication in a non-human primate challenge model. We also show that transfer of purified IgG from immunized monkeys into immunodeficient mice protects against subsequent lethal DENV challenge, indicating a humoral mechanism of protection. These results indicate that this DENVLP vaccine is immunogenic and can be considered for clinical evaluation. Immunization of non-human primates with a tetravalent DENVLP vaccine induces high levels of neutralizing antibodies and reduces the severity of infection for all four dengue serotypes.IMPORTANCEDengue is a viral disease that infects nearly 400 million people worldwide and causes dengue hemorrhagic fever, which is responsible for 10,000 deaths each year. Currently, there is no therapeutic drug licensed to treat dengue infection, which makes the development of an effective vaccine essential. Virus-like particles (VLPs) are a safe and highly immunogenic platform that can be used in young children, immunocompromised individuals, as well as healthy adults. In this study, we describe the development of a dengue VLP vaccine and demonstrate that it induces a robust immune response against the dengue virus for over 1 year in monkeys. The immunity induced by this vaccine reduced live dengue infection in both murine and non-human primate models. These results indicate that our dengue VLP vaccine is a promising vaccine candidate.
Collapse
Affiliation(s)
| | | | | | - Mya Myat Ngwe Tun
- Department of Tropical Viral Vaccine Development, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
- Department of Virology, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Takushi Nomura
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Meng Ling Moi
- Department of Virology, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
- Department of Developmental Medical Sciences, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | | | | | - Trang Thi Thu Hau
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hiroyuki Yamamoto
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yuriko Suzaki
- Management Department of Biosafety, Laboratory Animal, and Pathogen Bank, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yasushi Ami
- Management Department of Biosafety, Laboratory Animal, and Pathogen Bank, National Institute of Infectious Diseases, Tokyo, Japan
| | | | - Tetsuro Matano
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
- Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Kouichi Morita
- Department of Tropical Viral Vaccine Development, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
- Department of Virology, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
- DEJIMA Infectious Disease Research Alliance, Nagasaki University, Nagasaki, Japan
| | | |
Collapse
|
49
|
Frazer JL, Norton R. Dengue: A review of laboratory diagnostics in the vaccine age. J Med Microbiol 2024; 73. [PMID: 38722305 DOI: 10.1099/jmm.0.001833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024] Open
Abstract
Background. Dengue is an important arboviral infection of considerable public health significance. It occurs in a wide global belt within a variety of tropical regions. The timely laboratory diagnosis of Dengue infection is critical to inform both clinical management and an appropriate public health response. Vaccination against Dengue virus is being introduced in some areas.Discussion. Appropriate diagnostic strategies will vary between laboratories depending on the available resources and skills. Diagnostic methods available include viral culture, the serological detection of Dengue-specific antibodies in using enzyme immunoassays (EIAs), microsphere immunoassays, haemagglutination inhibition or in lateral flow point of care tests. The results of antibody tests may be influenced by prior vaccination and exposure to other flaviviruses. The detection of non-structural protein 1 in serum (NS1) has improved the early diagnosis of Dengue and is available in point-of-care assays in addition to EIAs. Direct detection of viral RNA from blood by PCR is more sensitive than NS1 antigen detection but requires molecular skills and resources. An increasing variety of isothermal nucleic acid detection methods are in development. Timing of specimen collection and choice of test is critical to optimize diagnostic accuracy. Metagenomics and the direct detection by sequencing of viral RNA from blood offers the ability to rapidly type isolates for epidemiologic purposes.Conclusion. The impact of vaccination on immune response must be recognized as it will impact test interpretation and diagnostic algorithms.
Collapse
Affiliation(s)
| | - Robert Norton
- Pathology Queensland, Townsville QLD, Australia
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
50
|
Sanchez-Felipe L, Alpizar YA, Ma J, Coelmont L, Dallmeier K. YF17D-based vaccines - standing on the shoulders of a giant. Eur J Immunol 2024; 54:e2250133. [PMID: 38571392 DOI: 10.1002/eji.202250133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 02/11/2024] [Accepted: 02/16/2024] [Indexed: 04/05/2024]
Abstract
Live-attenuated yellow fever vaccine (YF17D) was developed in the 1930s as the first ever empirically derived human vaccine. Ninety years later, it is still a benchmark for vaccines made today. YF17D triggers a particularly broad and polyfunctional response engaging multiple arms of innate, humoral and cellular immunity. This unique immunogenicity translates into an extraordinary vaccine efficacy and outstanding longevity of protection, possibly by single-dose immunization. More recently, progress in molecular virology and synthetic biology allowed engineering of YF17D as a powerful vector and promising platform for the development of novel recombinant live vaccines, including two licensed vaccines against Japanese encephalitis and dengue, even in paediatric use. Likewise, numerous chimeric and transgenic preclinical candidates have been described. These include prophylactic vaccines against emerging viral infections (e.g. Lassa, Zika and SARS-CoV-2) and parasitic diseases (e.g. malaria), as well as therapeutic applications targeting persistent infections (e.g. HIV and chronic hepatitis), and cancer. Efforts to overcome historical safety concerns and manufacturing challenges are ongoing and pave the way for wider use of YF17D-based vaccines. In this review, we summarize recent insights regarding YF17D as vaccine platform, and how YF17D-based vaccines may complement as well as differentiate from other emerging modalities in response to unmet medical needs and for pandemic preparedness.
Collapse
Affiliation(s)
- Lorena Sanchez-Felipe
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Molecular Vaccinology and Vaccine Discovery, Leuven, Belgium
| | - Yeranddy A Alpizar
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Molecular Vaccinology and Vaccine Discovery, Leuven, Belgium
| | - Ji Ma
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Molecular Vaccinology and Vaccine Discovery, Leuven, Belgium
| | - Lotte Coelmont
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Molecular Vaccinology and Vaccine Discovery, Leuven, Belgium
| | - Kai Dallmeier
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Molecular Vaccinology and Vaccine Discovery, Leuven, Belgium
| |
Collapse
|