1
|
Lin H, Bai Z, Wu D, Yang Q, Qu S. Association of omega-3, omega-6 fatty acids intakes and omega-6: omega-3 ratio with the prevalence of suicidal ideation: mediating role of C-reactive protein. Lipids Health Dis 2025; 24:178. [PMID: 40375235 PMCID: PMC12083151 DOI: 10.1186/s12944-025-02587-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Accepted: 04/29/2025] [Indexed: 05/18/2025] Open
Abstract
BACKGROUND Although dietary omega fatty acids have been recognized for positive effects on mental health, the specific association between omega fatty acids intake and suicidal ideation remains ambiguous. This study aims to explore the potential association between the prevalence of suicidal ideation and dietary omega fatty acids intake in American adults. METHODS The data of 27,944 American adults collected from National Health and Nutrition Examination Survey (NHANES) were analyzed in this study. To assess the association between dietary omega fatty acids intake and suicidal ideation as measured by Item 9 of PHQ-9, logistic regression, restricted cubic spline regression, and stratified analyses, mediation analyses were employed. RESULTS Logistic regression analyses indicate that the intakes of omega-3 and omega-6 fatty acids were inversely associated with the prevalence of suicidal ideation, and dietary omega-6/omega-3 ratio was positively associated with the prevalence of suicidal ideation. Subgroup analyses further revealed a stronger association between suicidal ideation and omega fatty acids intake in individuals with a history of stroke. Furthermore, a saturation effect and non-linear association were identified between omega-3 and omega-6 fatty acids intake and the prevalence of suicidal ideation, characterized by an L-shaped curve with an inflection point at 1.36 g/d, 13.69 g/d, respectively. Notably, C-reactive protein (CRP) partially mediated the association between omega-6, omega-3 fatty acids intake and suicidal ideation by a proportion of 3.8% and 4.0%. CONCLUSION The findings of this study suggest that higher omega-3 and omega-6 fatty acids intake and lower omega-6/omega-3 ratio is associated with a declined prevalence of suicidal ideation. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- Hao Lin
- Department of Gastroenterology, Pingyang Hospital of Wenzhou Medical University, Wenzhou City, China
| | - Zhibin Bai
- Department of Gastroenterology, Pingyang Hospital of Wenzhou Medical University, Wenzhou City, China
| | - Daoke Wu
- Digestive Endoscopy Center, Pingyang Hospital of Wenzhou Medical University, Wenzhou City, China
| | - Qi Yang
- Department of Gastroenterology, Pingyang Hospital of Wenzhou Medical University, Wenzhou City, China
| | - Shuangshuang Qu
- Department of Nursing, Pingyang Hospital of Wenzhou Medical University, Wenzhou City, China.
| |
Collapse
|
2
|
Bodur M, Yilmaz B, Ağagündüz D, Ozogul Y. Immunomodulatory Effects of Omega-3 Fatty Acids: Mechanistic Insights and Health Implications. Mol Nutr Food Res 2025; 69:e202400752. [PMID: 40159804 PMCID: PMC12087734 DOI: 10.1002/mnfr.202400752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/23/2024] [Accepted: 12/05/2024] [Indexed: 04/02/2025]
Abstract
Omega-3 fatty acids play a significant role in immunomodulation, with nutrigenomic approaches highlighting their impact on gene expression related to immune responses. Research indicates that omega-3 fatty acids can modulate inflammatory pathways, potentially reducing chronic inflammation and enhancing immune function. This review discusses the intersection of nutrigenomics and nutriepigenomics, focusing on how omega-3 fatty acids influence gene expression, immune function, and overall health. The immune system is a complex network responsible for defending the body against pathogens and maintaining internal balance. Comprised of innate and adaptive immunity, the system involves various cells, tissues, and organs working together to combat infections and prevent diseases. Omega-3 polyunsaturated fatty acids (PUFAs), particularly eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), play a significant role in modulating the immune system. These fatty acids influence immune cell function, membrane fluidity, and signaling processes, enhancing immune responses and reducing inflammation. Furthermore, EPA and DHA affect several signaling pathways, reducing the expression of proinflammatory cytokines and inhibiting nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) activation, a critical transcription factor in the inflammatory response. Additionally, they activate PPAR-γ, further diminishing inflammatory gene expression. As precursors to specialized proresolving lipid mediators, EPA and DHA help shift the lipid mediator profile from proinflammatory to antiinflammatory derivatives, thus aiding in the resolution of inflammation.
Collapse
Affiliation(s)
- Mahmut Bodur
- Faculty of Health SciencesDepartment of Nutrition and DieteticsAnkara UniversityAnkaraTurkey
| | - Birsen Yilmaz
- Department of Biological SciencesTata Institute of Fundamental ResearchHyderabadIndia
- Faculty of Health SciencesDepartment of Nutrition and DieteticsCukurova UniversityAdanaTurkey
| | - Duygu Ağagündüz
- Faculty of Health SciencesDepartment of Nutrition and DieteticsGazi UniversityAnkaraTurkey
| | - Yeşim Ozogul
- Faculty of FisheriesDepartment of Seafood Processing TechnologyCukurova UniversityAdanaTurkey
| |
Collapse
|
3
|
Jiang Y, He Y, Pei R, Chen L, Liu Q, Hu Z. Ecotoxicological mechanism of glyphosate on Moerella iridescens: Evidence from enzyme, histology and metabolome. MARINE POLLUTION BULLETIN 2025; 213:117680. [PMID: 39955984 DOI: 10.1016/j.marpolbul.2025.117680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/22/2024] [Accepted: 02/11/2025] [Indexed: 02/18/2025]
Abstract
This study aimed to elucidate the regulatory mechanisms underlying the toxic effects of glyphosate (GLY) on rainbow clam (M. iridescens), with implications for their culture and conservation. GLY residues in aquatic systems raise significant environmental and public health concerns, yet the underlying mechanisms remain largely elusive. In this study, M. iridescens were acutely exposed to GLY at various concentrations (0, 2.34, 5.45, 12.74, 29.74, and 69.46 mg/L) for 7 days. Gill and hepatopancreas samples were collected to assess oxidative stress status and histopathological examination. Additionally, three concentration groups low concentration (LC) group at 2.34 mg/L, medium concentration (MC) group at 12.74 mg/L, and high concentration (HC) group at 69.46 mg/L were selected for metabolomic analysis. The findings indicated that GLY exposure led to oxidative stress and structural changes in tissues. The metabolomic analysis suggested that GLY exposure exacerbates inflammatory responses and disrupts endocrine function, and sex hormones.
Collapse
Affiliation(s)
- Yuhan Jiang
- Centre for Research on Environmental Ecology and Fish Nutrition of the Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, PR China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, PR China
| | - Yuhang He
- Department of Biosystems Engineering Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, PR China
| | - Ruihua Pei
- Centre for Research on Environmental Ecology and Fish Nutrition of the Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, PR China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, PR China
| | - Liping Chen
- Centre for Research on Environmental Ecology and Fish Nutrition of the Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, PR China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, PR China
| | - Qigen Liu
- Centre for Research on Environmental Ecology and Fish Nutrition of the Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, PR China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, PR China
| | - Zhongjun Hu
- Centre for Research on Environmental Ecology and Fish Nutrition of the Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, PR China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, PR China.
| |
Collapse
|
4
|
Florio M, Crudele L, Sallustio F, Moschetta A, Cariello M, Gadaleta RM. Disentangling the nutrition-microbiota liaison in inflammatory bowel disease. Mol Aspects Med 2025; 102:101349. [PMID: 39922085 DOI: 10.1016/j.mam.2025.101349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 10/24/2024] [Accepted: 01/24/2025] [Indexed: 02/10/2025]
Abstract
Inflammatory Bowel Disease (IBD) is a set of chronic intestinal inflammatory disorders affecting the gastrointestinal (GI) tract. Beside compromised intestinal barrier function and immune hyperactivation, a common IBD feature is dysbiosis, characterized by a reduction of some strains of Firmicutes, Bacteroidetes, Actinobacteria and an increase in Proteobacteria and pathobionts. Emerging evidence points to diet and nutrition-dependent gut microbiota (GM) modulation, as etiopathogenetic factors and adjuvant therapies in IBD. Currently, no nutritional regimen shows universal efficacy, and advice are controversial, especially those involving restrictive diets potentially resulting in malnutrition. This review provides an overview of the role of macronutrients, dietary protocols and GM modulation in IBD patients. A Western-like diet contributes to an aberrant mucosal immune response to commensal bacteria and impairment of the intestinal barrier integrity, thereby triggering intestinal inflammation. Conversely, a Mediterranean nutritional pattern appears to be one of the most beneficial dietetic regimens able to restore the host intestinal physiology, by promoting eubiosis and preserving the intestinal barrier and immune function, which in turn create a virtuous cycle improving patient adherence to the pattern. Further clinical studies are warranted, to corroborate current IBD nutritional guidelines, and develop more accurate models to move forward precision nutrition and ameliorate patients' quality of life.
Collapse
Affiliation(s)
- Marilina Florio
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Piazza Giulio Cesare 11, 70124, Bari, Italy
| | - Lucilla Crudele
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Piazza Giulio Cesare 11, 70124, Bari, Italy; INBB National Institute for Biostructure and Biosystems, Viale delle Medaglie D'Oro 305, 00136, Rome, Italy
| | - Fabio Sallustio
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Piazza Giulio Cesare n. 11, 70124, Bari, Italy
| | - Antonio Moschetta
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Piazza Giulio Cesare 11, 70124, Bari, Italy; INBB National Institute for Biostructure and Biosystems, Viale delle Medaglie D'Oro 305, 00136, Rome, Italy.
| | - Marica Cariello
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Piazza Giulio Cesare 11, 70124, Bari, Italy; INBB National Institute for Biostructure and Biosystems, Viale delle Medaglie D'Oro 305, 00136, Rome, Italy.
| | - Raffaella M Gadaleta
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Piazza Giulio Cesare 11, 70124, Bari, Italy; INBB National Institute for Biostructure and Biosystems, Viale delle Medaglie D'Oro 305, 00136, Rome, Italy.
| |
Collapse
|
5
|
Therdyothin A, Phiphopthatsanee N. The Effect of Omega-3 on Mitigating Exercise-Induced Muscle Damage. Cureus 2025; 17:e81559. [PMID: 40313441 PMCID: PMC12044634 DOI: 10.7759/cureus.81559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2025] [Indexed: 05/03/2025] Open
Abstract
Exercise-induced muscle damage (EIMD) refers to muscle injuries following exercises involving repetitive eccentric muscle contractions. The resultant inflammation and muscle protein leakage into the circulation lead to muscle pain and strength deficit, compromising athletic performance. This narrative review summarizes the current evidence on the effect and mechanism of omega-3 polyunsaturated fatty acids (n-3 PUFA) in potentially mitigating EIMD. Several studies suggested n-3 PUFA's role in alleviating delayed-onset muscle soreness, particularly in untrained individuals and those receiving higher doses of continuous supplementation. However, its impact on muscle strength attenuation and the reduction of performance post-exercise remains inconclusive. Also unclear are n-3 PUFA's effects on the reduction of circulating pro-inflammatory substances and muscle proteins. One of the possible mechanisms is its anti-inflammatory property, which involves its ability to incorporate into cell membranes and displace prostaglandin precursor. n-3 PUFA also decreases cyclooxygenase production and can be converted into specialized pro-resolving mediators (SPMs), further reducing inflammation. Moreover, n-3 PUFA's incorporation into cell membranes alters cell membrane properties, diminishing protein release during muscle breakdown. n-3 PUFA exhibits analgesic effects through SPM-induced modulation of receptors and ion channels, reducing both peripheral and central sensitization. n-3 PUFA also diminishes mitochondrial free radical production and accelerates nerve conduction, thereby improving voluntary muscle activation.
Collapse
|
6
|
Kim J, Cho HJ, Kim Z, Youn HJ, Cho J, Min JW, Kim YS, Lee JE. Intakes of saturated and unsaturated fat and circulating levels of inflammatory markers among breast cancer survivors. Sci Rep 2025; 15:9481. [PMID: 40108240 PMCID: PMC11923270 DOI: 10.1038/s41598-025-92951-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 03/04/2025] [Indexed: 03/22/2025] Open
Abstract
We investigated whether dietary intakes of saturated fat (SFA), monounsaturated fat (MUFA), or polyunsaturated fat (PUFA) were associated with plasma inflammatory markers among breast cancer survivors in Korea. This cross-sectional study included 419 female breast cancer survivors aged 30 to 78 years. Dietary intake was assessed using 3-day dietary records (DRs) or food frequency questionnaires (FFQs). Plasma levels of adiponectin, high-sensitivity C-reactive protein (hs-CRP), interleukin (IL)-6, IL-8, and tumor necrosis factor (TNF)-α were measured. We calculated an inflammatory composite score by summing the z-scores of each inflammatory marker, with adiponectin assigned a negative sign. Least-squares means (LS-means) and 95% confidence intervals (CIs) of inflammatory markers were estimated according to SFA, MUFA, and PUFA intakes using the generalized linear models. We found that increasing dietary MUFA intake was associated with increasing levels of adiponectin, but decreasing levels of hs-CRP (p for trend = 0.042 and 0.032, respectively). Similarly, higher dietary PUFA intake was associated with higher levels of adiponectin (p for trend = 0.023), but lower levels of hs-CRP and inflammatory composite score (p for trend < 0.001 and 0.036, respectively). However, no significant associations were found between SFA intake and plasma inflammatory markers. In conclusion, our results suggest that a higher intake of MUFA or PUFA is associated with a more favorable inflammatory profile among Korean female breast cancer survivors, which may potentially help in managing chronic inflammation.
Collapse
Affiliation(s)
- Jiwoo Kim
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Hyun Jeong Cho
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Zisun Kim
- Department of Surgery, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon, Republic of Korea
| | - Hyun Jo Youn
- Department of Surgery, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Jihyoung Cho
- Department of Surgery, Keimyung University School of Medicine, Daegu, Republic of Korea
| | - Jun Won Min
- Department of Surgery, Dankook University College of Medicine, Cheonan, Republic of Korea
| | - Yoo Seok Kim
- Department of Surgery, Chosun University College of Medicine, Gwangju, Republic of Korea
| | - Jung Eun Lee
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
- Research Institute of Human Ecology, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
7
|
Lacasse É, Dubuc I, Gudimard L, Andrade ACDSP, Gravel A, Greffard K, Chamberland A, Oger C, Galano JM, Durand T, Philipe É, Blanchet MR, Bilodeau JF, Flamand L. Delayed viral clearance and altered inflammatory responses affect severity of SARS-CoV-2 infection in aged mice. Immun Ageing 2025; 22:11. [PMID: 40075368 PMCID: PMC11899864 DOI: 10.1186/s12979-025-00503-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 02/17/2025] [Indexed: 03/14/2025]
Abstract
Epidemiological investigations consistently demonstrate an overrepresentation of the elderly in COVID-19 hospitalizations and fatalities, making the advanced age as a major predictor of disease severity. Despite this, a comprehensive understanding of the cellular and molecular mechanisms explaining how old age represents a major risk factor remain elusive. To investigate this, we compared SARS-CoV-2 infection outcomes in young adults (2 months) and geriatric (15-22 months) mice. Both groups of K18-ACE2 mice were intranasally infected with 500 TCID50 of SARS-CoV-2 Delta variant with analyses performed on days 3, 5, and 7 post-infection (DPI). Analyses included pulmonary cytokines, lung RNA-seq, viral loads, lipidomic profiles, and histological assessments, with a concurrent evaluation of the percentage of mice reaching humane endpoints. The findings unveiled notable differences, with aged mice exhibiting impaired viral clearance, reduced survival, and failure to recover weight loss due to infection. RNA-seq data suggested greater lung damage and reduced respiratory function in infected aged mice. Additionally, elderly-infected mice exhibited a deficient antiviral response characterized by reduced Th1-associated mediators (IFNγ, CCL2, CCL3, CXCL9) and diminished number of macrophages, NK cells, and T cells. Furthermore, mass-spectrometry analysis of the lung lipidome indicated altered expression of several lipids with immunomodulatory and pro-resolution effects in aged mice such as Resolvin, HOTrEs, and NeuroP, but also DiHOMEs-related ARDS. These findings indicate that aging affects antiviral immunity, leading to prolonged infection, greater lung damage, and poorer clinical outcomes. This underscores the potential efficacy of immunomodulatory treatments for elderly subjects experiencing symptoms of severe COVID-19.
Collapse
Affiliation(s)
- Émile Lacasse
- Axe Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier, Universitaire de Québec- Université Laval, Québec, QC, Canada
- Département de Microbiologie, Infectiologie et d'Immunologie, Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - Isabelle Dubuc
- Axe Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier, Universitaire de Québec- Université Laval, Québec, QC, Canada
| | - Leslie Gudimard
- Axe Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier, Universitaire de Québec- Université Laval, Québec, QC, Canada
| | - Ana Claudia Dos S P Andrade
- Axe Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier, Universitaire de Québec- Université Laval, Québec, QC, Canada
| | - Annie Gravel
- Axe Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier, Universitaire de Québec- Université Laval, Québec, QC, Canada
| | - Karine Greffard
- Axe Endocrinologie et Néphrologie, Centre de Recherche du Centre Hospitalier, Universitaire de Québec- Université Laval, Québec, QC, Canada
| | | | - Camille Oger
- Institut Des Biomolécules Max Mousseron, UMR 5247, Pôle Chimie Balard Recherche, Université de Montpellier, CNRS, ENSCM, Montpellier, France
| | - Jean-Marie Galano
- Institut Des Biomolécules Max Mousseron, UMR 5247, Pôle Chimie Balard Recherche, Université de Montpellier, CNRS, ENSCM, Montpellier, France
| | - Thierry Durand
- Institut Des Biomolécules Max Mousseron, UMR 5247, Pôle Chimie Balard Recherche, Université de Montpellier, CNRS, ENSCM, Montpellier, France
| | - Éric Philipe
- Département de Chirurgie, Faculté de Médecine, Université, Québec, QC, Canada
| | - Marie-Renée Blanchet
- Département de Médecine, Faculté de Médecine, Université, Québec, QC, Canada
- Centre de Recherche de L'Institut de Cardiologie de Québec, Université, Québec, QC, Canada
| | - Jean-François Bilodeau
- Axe Endocrinologie et Néphrologie, Centre de Recherche du Centre Hospitalier, Universitaire de Québec- Université Laval, Québec, QC, Canada
- Département de Médecine, Faculté de Médecine, Université, Québec, QC, Canada
| | - Louis Flamand
- Axe Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier, Universitaire de Québec- Université Laval, Québec, QC, Canada.
- Département de Microbiologie, Infectiologie et d'Immunologie, Faculté de Médecine, Université Laval, Québec, QC, Canada.
| |
Collapse
|
8
|
Ebbini M, Wang Z, Zhang H, Lu KH, Huang P, Kaminsky CJ, Puglielli L, Li L. On-Tissue Chemical Derivatization for Mass Spectrometry Imaging of Fatty Acids with Enhanced Detection Sensitivity. Biomolecules 2025; 15:366. [PMID: 40149902 PMCID: PMC11940502 DOI: 10.3390/biom15030366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/16/2025] [Accepted: 02/18/2025] [Indexed: 03/29/2025] Open
Abstract
The dysregulation of fatty acid (FA) metabolism is linked to various brain diseases, including Alzheimer's disease (AD). Mass spectrometry imaging (MSI) allows for the visualization of FA distribution in brain tissues but is often limited by low detection sensitivity and high background interference. In this work, we introduce a novel on-tissue chemical derivatization method for FAs using Girard's Reagent T (GT) as a derivatization reagent combined with 2-chloro-1-methylpyridinium iodide (CMPI) as a coupling reagent and triethylamine (TEA) to provide a basic environment for the reaction. This method significantly enhances the detection sensitivity of FAs, achieving a 1000-fold improvement over traditional negative ion mode analysis. Our method enabled us to observe a notable depletion of oleic acid in the corpus callosum of AD mouse model brain tissue sections compared to wild-type control brain tissue sections. The reliability of our method was validated using LC-MS/MS, which confirmed the presence of eight distinct GT-labeled FAs across various tissue locations. This approach not only improves FA detection in brain tissues but also has the potential to provide a deeper understanding of FA dynamics associated with AD pathogenesis.
Collapse
Affiliation(s)
- Malik Ebbini
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA; (M.E.); (Z.W.)
| | - Zicong Wang
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA; (M.E.); (Z.W.)
| | - Hua Zhang
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA; (M.E.); (Z.W.)
| | - Kelly H. Lu
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; (K.H.L.); (P.H.)
| | - Penghsuan Huang
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; (K.H.L.); (P.H.)
| | - Cameron J. Kaminsky
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; (K.H.L.); (P.H.)
| | - Luigi Puglielli
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA;
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
- Geriatric Research Education Clinical Center, Veterans Affairs Medical Center, Madison, WI 53705, USA
| | - Lingjun Li
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA; (M.E.); (Z.W.)
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; (K.H.L.); (P.H.)
- Lachman Institute for Pharmaceutical Development, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
- Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
9
|
Ebrahimi E, Motamedi-Tehrani J, Peyghan R. Effect of Short-Term Stress and Interaction of Salinity and Ammonia-N Levels, Associated With Food Deprivation on Fatty Acid Profile and Body Composition in Nile Tilapia ( Oreochromis niloticus). AQUACULTURE NUTRITION 2025; 2025:8840365. [PMID: 39816907 PMCID: PMC11730019 DOI: 10.1155/anu/8840365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 12/18/2024] [Indexed: 01/18/2025]
Abstract
High levels of nitrogen compounds can lead to acute toxicity in aquatic organisms. Ammonia, a by-product of protein breakdown, is the most prevalent contaminant in freshwater environments. Increasing salinity in water sources can cause fluctuations in salinity levels within breeding ponds. The interaction of these elements can occur in breeding ponds, significantly impacting the physiology and quality of the aquatic products. The purpose of this study was to examine the relationship between salinity and ammonia-N stress and their effects on the quality and fatty acid profile of tilapia fish (Oreochromis niloticus). The fish were divided into 12 distinct treatment groups, each characterized by varying salinity levels (0, 4, 8, and 12 ppt) and different concentrations of ammonia-N (0, 50% of 50% lethal concentration [LC50]-96 h, and 30% of LC50-96 h) arranged in a factorial design. The calculated LC50-96 h for ammonia-N was 0.86 mg/L. Significant increases were observed in cortisol and glucose levels associated with various salinity treatments and ammonia levels. The levels of carcass protein in the salinity treatments (4, 8, and 12 ppt) did not show any significant differences when compared to the control treatment. However, the protein percentage at 50% of LC50-96 h of ammonia-N was lower than that of the control treatment. In salinity treatments and ammonia levels (50% and 30% of LC50-96 h of ammonia-N), a significant increase in the percentage of lipid, highly unsaturated fatty acids (HUFA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA) was observed. To draw the conclusion, our assessment indicates that a salinity concentration of 8 ppt over a 96-h period without feeding has produced positive effects on the quality of tilapia carcasses.
Collapse
Affiliation(s)
- Eisa Ebrahimi
- Department of Natural Resources, Isfahan University of Technology, Isfahan 84156–8311, Iran
| | | | - Rahim Peyghan
- Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| |
Collapse
|
10
|
Tan EY, Muthiah MD, Sanyal AJ. Metabolomics at the cutting edge of risk prediction of MASLD. Cell Rep Med 2024; 5:101853. [PMID: 39657668 PMCID: PMC11722125 DOI: 10.1016/j.xcrm.2024.101853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/12/2024] [Accepted: 11/14/2024] [Indexed: 12/12/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a major public health threat globally. Management of patients afflicted with MASLD and research in this domain are limited by the lack of robust well-established non-invasive biomarkers for diagnosis, prognostication, and monitoring. The circulating metabolome reflects both the systemic metabo-inflammatory milieu and changes in the liver in affected individuals. In this review we summarize the available literature on changes in the different components of the metabolome in MASLD with a focus on changes that are linked to the presence of underlying steatohepatitis, severity of disease activity, and fibrosis stage. We further summarize the existing literature around biomarker panels that are derived from interrogation of the metabolome. Their relevance to disease biology and utility in practice are also discussed. We further highlight potential direction for future studies particularly to ensure they are fit for purpose and suitable for widespread use.
Collapse
Affiliation(s)
- En Ying Tan
- Division of Gastroenterology and Hepatology, Department of Medicine, National University Health System, Singapore, Singapore.
| | - Mark D Muthiah
- Division of Gastroenterology and Hepatology, Department of Medicine, National University Health System, Singapore, Singapore; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Arun J Sanyal
- Stravitz-Sanyal Institute for Liver Disease and Metabolic Health, Virginia Commonwealth University School of Medicine, Richmond, VA, USA.
| |
Collapse
|
11
|
Khanum S, Gupta S, Maurya MR, Raja R, Aboulmouna L, Subramaniam S, Ramkrishna D. Modeling enzyme competition in eicosanoid metabolism in macrophage cells using a cybernetic framework. J Lipid Res 2024; 65:100666. [PMID: 39395792 PMCID: PMC11728974 DOI: 10.1016/j.jlr.2024.100666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 09/21/2024] [Accepted: 09/24/2024] [Indexed: 10/14/2024] Open
Abstract
Cellular metabolism is a complex process involving the consumption and production of metabolites, as well as the regulation of enzyme synthesis and activity. Modeling of metabolic processes is important to understand the underlying mechanisms, with a wide range of applications in metabolic engineering and health sciences. Cybernetic modeling is a powerful technique that accounts for unknown intricate regulatory mechanisms in complex cellular processes. It models regulation as goal-oriented, where the levels and activities of enzymes are modulated by the cybernetic control variables to achieve the cybernetic objective. This study used cybernetic model to study the enzyme competition between arachidonic acid (AA) and eicosapentaenoic acid (EPA) metabolism in murine macrophages. AA and EPA compete for the shared enzyme cyclooxygenase. Upon external stimuli, AA produces proinflammatory 2-series prostaglandins and EPA metabolizes to antiinflammatory 3-series prostaglandins, where proinflammatory and antiinflammatory responses are necessary for homeostasis. The cybernetic model adequately captured the experimental data for control and EPA-supplemented conditions. The model is validated by performing an F-test, conducting leave-one-out-metabolite cross-validation, and predicting an unseen experimental condition. The cybernetic variables provide insights into the competition between AA and EPA for the cyclooxygenase enzyme. Predictions from our model suggest that the system undergoes a switch from a predominantly proinflammatory state in the control to an antiinflammatory state with EPA-supplementation. The model can also be used to analytically determine the AA and EPA concentrations required for the switch to occur. The quantitative outcomes enhance understanding of proinflammatory and antiinflammatory metabolism in RAW 264.7 macrophages.
Collapse
Affiliation(s)
- Sana Khanum
- The Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, USA
| | - Shakti Gupta
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Mano R Maurya
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Rubesh Raja
- The Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, USA
| | - Lina Aboulmouna
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Shankar Subramaniam
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA; Departments of Computer Science and Engineering, Cellular and Molecular Medicine, San Diego Supercomputer Center, and the Graduate Program in Bioinformatics and Systems Biology, University of California San Diego, La Jolla, CA, USA.
| | - Doraiswami Ramkrishna
- The Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
12
|
Yang W, Xiao W, Liu H. Genetically predicted circulating linoleic acid levels and risk of osteoarthritis: a two-sample mendelian randomization study. BMC Musculoskelet Disord 2024; 25:903. [PMID: 39563274 DOI: 10.1186/s12891-024-08018-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 11/02/2024] [Indexed: 11/21/2024] Open
Abstract
OBJECTIVES This study aimed to provide insight into the effect of genetically predicted linoleic acid (LA) levels on osteoarthritis (OA). METHODS The LA dataset was obtained from the UK Biobank (UKBB) consortium and contained 114,999 samples. The OA discovery dataset was derived from MRC-IEU consortium and included 38,472 cases and 424,461 controls. The OA validation set was derived from a summary-level genome-wide association study (GWAS) and included 39,427 cases and 378,169 controls. Genetic variants strongly associated with LA (p < 5 × 10- 8) were extracted as instrumental variables (IVs). The inverse variance weighted (IVW) approach was adopted as the primary analysis method in this study. In addition, multiple sensitivity analysis methods were used to assess the reliability of our results. RESULTS The IVW approach showed that circulating LA levels were negatively associated with OA risk in the discovery set (odds ratio (OR) = 0.993, 95% confidence interval (95% CI): 0.988-0.998, p = 0.011). A consistent result was obtained in the validation set (OR = 0.904, 95%CI: 0.845-0.967, p = 0.003). These results were validated by sensitivity analysis. CONCLUSION This study provides new evidence for the causal relationship between LA and OA, which provides new insights for the treatment of OA.
Collapse
Affiliation(s)
- Wen Yang
- Department of Rehabilitation Medicine, Affiliated Renhe Hospital of China Three Gorges University, Yichang, 443001, Hubei, China.
| | - Wenwu Xiao
- Department of Rehabilitation Medicine, Affiliated Renhe Hospital of China Three Gorges University, Yichang, 443001, Hubei, China
- Department of Rehabilitation Medicine, the First Affiliated Hospital of Sun Yat- sen University, Guangzhou, 510080, Guangdong, China
| | - Hailong Liu
- Department of Joint Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Guangdong, China.
| |
Collapse
|
13
|
Peng D, Wang Y, Yao Y, Yang Z, Wu S, Zeng K, Hu X, Zhao Y. Long-chain polyunsaturated fatty acids influence colorectal cancer progression via the interactions between the intestinal microflora and the macrophages. Mol Cell Biochem 2024; 479:2895-2906. [PMID: 38217838 DOI: 10.1007/s11010-023-04904-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/15/2023] [Indexed: 01/15/2024]
Abstract
The metabolism of long-chain polyunsaturated fatty acids (LCPUFAs) is closely associated with the risk and progression of colorectal cancer (CRC). This paper aims to investigate the role of LCPUFA in the crosstalk between intestinal microflora and macrophages, as well as the effects of these three parties on the progression of CRC. The metabolism and function of LCPUFA play important roles in regulating the composition of the human gut microflora and participating in the regulation of inflammation, ultimately affecting macrophage function and polarization, which is crucial in the tumor microenvironment. The effects of LCPUFA on cellular interactions between the two species can ultimately influence the progression of CRC. In this review, we explore the molecular mechanisms and clinical applications of LCPUFA in the interactions between intestinal microflora and intestinal macrophages, as well as its significance for CRC progression. Furthermore, we reveal the role of LCPUFA in the construction of the CRC microenvironment and explore the key nodes of the interactions between intestinal flora and intestinal macrophages in the environment. It provides potential targets for the metabolic diagnosis and treatment of CRC.
Collapse
Affiliation(s)
- Duo Peng
- Pathology Department of The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523713, China
- School of Medical Technology, Guangdong Medical University, Dongguan, 523808, China
| | - Yan Wang
- Pathology Department of The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523713, China
- Microbiology and Immunology Department, Guangdong Medical University, Dongguan, 523808, China
| | - Yunhong Yao
- Pathology Department of The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523713, China
- Pathology Department, Guangdong Medical University, Dongguan, 523808, China
| | - Zisha Yang
- School of Medical Technology, Guangdong Medical University, Dongguan, 523808, China
| | - Shuang Wu
- Pathology Department, Guangdong Medical University, Dongguan, 523808, China
| | - Kaijing Zeng
- Pathology Department, Guangdong Medical University, Dongguan, 523808, China
| | - Xinrong Hu
- Pathology Department of The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523713, China.
- Pathology Department, Guangdong Medical University, Dongguan, 523808, China.
| | - Yi Zhao
- Pathology Department of The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523713, China.
- Microbiology and Immunology Department, Guangdong Medical University, Dongguan, 523808, China.
- School of Medical Technology, Guangdong Medical University, Dongguan, 523808, China.
| |
Collapse
|
14
|
Shahgoli VK, Noorolyai S, Ahmadpour Youshanlui M, Saeidi H, Nasiri H, Mansoori B, Holmskov U, Baradaran B. Inflammatory bowel disease, colitis, and cancer: unmasking the chronic inflammation link. Int J Colorectal Dis 2024; 39:173. [PMID: 39465427 PMCID: PMC11513726 DOI: 10.1007/s00384-024-04748-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/22/2024] [Indexed: 10/29/2024]
Abstract
BACKGROUND Chronic inflammation is a significant driver in the development of various diseases, including cancer. Colitis-associated colorectal cancer (CA-CRC) refers to the increased risk of colorectal cancer in individuals with chronic inflammatory bowel diseases (IBD) such as ulcerative colitis and Crohn's disease. METHODS This narrative review examines the link between chronic inflammation and CA-CRC. A comprehensive literature search was conducted using PubMed, Scopus, and Web of Science, focusing on studies published between 2000 and 2024. Studies were selected based on relevance to the role of inflammation in CA-CRC, specifically targeting molecular pathways and clinical implications. Both clinical and mechanistic studies were reviewed. CONCLUSION Sustained inflammation in the colon fosters a pro-tumorigenic environment, leading to the initiation and progression of CA-CRC. Prevention strategies must focus on controlling chronic inflammation, optimizing IBD management, and implementing regular screenings. Emerging therapies targeting key inflammatory pathways and immune responses, along with microbiome modulation, hold promise for reducing CA-CRC risk. Understanding these molecular mechanisms provides a path toward personalized treatment and better outcomes for patients with IBD at risk of colorectal cancer.
Collapse
Affiliation(s)
- Vahid Khaze Shahgoli
- Faculty of Medicine, Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Saeed Noorolyai
- Faculty of Medicine, Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Hossein Saeidi
- Faculty of Medicine, Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hadi Nasiri
- Faculty of Medicine, Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Mansoori
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA, USA
| | - Uffe Holmskov
- Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Behzad Baradaran
- Faculty of Medicine, Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
15
|
Tang R, Harasymowicz NS, Wu CL, Choi YR, Lenz K, Oswald SJ, Guilak F. Gene therapy for fat-1 prevents obesity-induced metabolic dysfunction, cellular senescence, and osteoarthritis. Proc Natl Acad Sci U S A 2024; 121:e2402954121. [PMID: 39401356 PMCID: PMC11513907 DOI: 10.1073/pnas.2402954121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 08/16/2024] [Indexed: 10/18/2024] Open
Abstract
Obesity is one of the primary risk factors for osteoarthritis (OA), acting through cross talk among altered biomechanics, metabolism, adipokines, and dietary free fatty acid (FA) composition. Obesity and aging have been linked to cellular senescence in various tissues, resulting in increased local and systemic inflammation and immune dysfunction. We hypothesized that obesity and joint injury lead to cellular senescence that is typically associated with increased OA severity or with aging and that the ratio of omega-6 (ω-6) to omega-3 (ω-3) FAs regulates these pathologic effects. Mice were placed on an ω-6-rich high-fat diet or a lean control diet and underwent destabilization of the medial meniscus to induce OA. Obesity and joint injury significantly increased cellular senescence in subcutaneous and visceral fat as well as joint tissues such as synovium and cartilage. Using adeno-associated virus (AAV) gene therapy for fat-1, a fatty acid desaturase that converts ω-6 to ω-3 FAs, decreasing the serum ω-6:ω-3 FA ratio had a strong senomorphic and therapeutic effect, mitigating metabolic dysfunction, cellular senescence, and joint degeneration. In vitro coculture of bone marrow-derived macrophages and chondrocytes from control and AAV8-fat1-treated mice were used to examine the roles of various FA mediators in regulating chondrocyte senescence. Our results suggest that obesity and joint injury result in a premature "aging" of the joint as measured by senescence markers, and these changes can be ameliorated by altering FA composition using fat-1 gene therapy. These findings support the potential for fat-1 gene therapy to treat obesity- and/or injury-induced OA clinically.
Collapse
Affiliation(s)
- Ruhang Tang
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO63110
- Shriners Hospitals for Children, St. Louis, MO63110
- Center of Regenerative Medicine, Washington University, St. Louis, MO63110
| | - Natalia S. Harasymowicz
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO63110
- Shriners Hospitals for Children, St. Louis, MO63110
- Center of Regenerative Medicine, Washington University, St. Louis, MO63110
| | - Chia-Lung Wu
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO63110
- Shriners Hospitals for Children, St. Louis, MO63110
| | - Yun-Rak Choi
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO63110
- Shriners Hospitals for Children, St. Louis, MO63110
- Center of Regenerative Medicine, Washington University, St. Louis, MO63110
- Department of Orthopaedic Surgery, Yonsei University College of Medicine, Seoul03722, South Korea
| | - Kristin Lenz
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO63110
- Shriners Hospitals for Children, St. Louis, MO63110
- Center of Regenerative Medicine, Washington University, St. Louis, MO63110
| | - Sara J. Oswald
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO63110
- Shriners Hospitals for Children, St. Louis, MO63110
- Center of Regenerative Medicine, Washington University, St. Louis, MO63110
| | - Farshid Guilak
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO63110
- Shriners Hospitals for Children, St. Louis, MO63110
- Center of Regenerative Medicine, Washington University, St. Louis, MO63110
| |
Collapse
|
16
|
Chen L, Brustad N, Luo Y, Wang T, Ali M, Ebrahimi P, Schoos AMM, Vahman N, Lovrić M, Rasmussen MA, Kolmert J, Wheelock CE, Lasky-Su JA, Stokholm J, Bønnelykke K, Chawes B. Prenatal Fish Oil Supplementation, Maternal COX1 Genotype, and Childhood Atopic Dermatitis: A Secondary Analysis of a Randomized Clinical Trial. JAMA Dermatol 2024; 160:1082-1090. [PMID: 39196551 PMCID: PMC11359109 DOI: 10.1001/jamadermatol.2024.2849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 06/25/2024] [Indexed: 08/29/2024]
Abstract
Importance Eicosanoids have a pathophysiological role in atopic dermatitis (AD), but it is unknown whether this is affected by prenatal ω-3 long-chain polyunsaturated fatty acid (n-3 LCPUFA; ie, fish oil) supplementation and genetic variations in the cyclooxygenase-1 (COX1) pathway. Objective To explore the association of n-3 LCPUFA supplementation during pregnancy with risk of childhood AD overall and by maternal COX1 genotype. Design, Setting, and Participants This prespecified secondary analysis of a randomized clinical trial included mother-child pairs from the Danish Copenhagen Prospective Studies on Asthma in Childhood 2010 birth cohort, with prospective follow-up until children were aged 10 years. In the trial, maternal and child COX1 genotypes were determined, and urinary eicosanoids were quantified when the child was 1 year of age. The present study was conducted from January 2019 to December 2021, and data were analyzed from January to September 2023. Intervention A total of 736 pregnant women at 24 weeks' gestation were randomized 1:1 to 2.4 g of n-3 LCPUFA (fish oil) or placebo (olive oil) per day until 1 week post partum. Main Outcomes and Measures Risk of childhood AD until age 10 years overall and by maternal COX1 genotype. Results At age 10 years, 635 children (91%; 363 [57%] female) completed the clinical follow-up, and these mother-child pairs were included in this study; 321 (51%) were in the intervention group and 314 (49%) in the control group. Pregnancy n-3 LCPUFA supplementation was associated with lower urinary thromboxane A2 metabolites at age 1 year (β, -0.46; 95% CI, -0.80 to -0.13; P = .006), which was also associated with COX1 rs1330344 genotype (β per C allele, 0.47; 95% CI, 0.20-0.73; P = .001). Although neither n-3 LCPUFA supplementation (hazard ratio [HR], 1.00; 95% CI, 0.76-1.33; P = .97) nor maternal COX1 genotype (HR, 0.94; 95% CI, 0.74-1.19; P = .60) was associated with risk of childhood AD until age 10 years, there was evidence of an interaction between these variables (P < .001 for interaction). Among mothers with the TT genotype, risk of AD was reduced in the n-3 LCPUFA group compared with the placebo group (390 mother-child pairs [61%]; HR, 0.70; 95% CI, 0.50-0.98; P = .04); there was no association for mothers with the CT genotype (209 [33%]; HR, 1.29; 95% CI, 0.79-2.10; P = .31), and risk was increased among offspring of mothers with the CC genotype (37 [6%]; HR, 5.77; 95% CI, 1.63-20.47; P = .007). There was a significant interaction between n-3 LCPUFA supplementation and child COX1 genotype and development of AD (P = .002 for interaction). Conclusions and Relevance In this secondary analysis of a randomized clinical trial, the association of prenatal n-3 LCPUFA supplementation with risk of childhood AD varied by maternal COX1 genotype. The findings could be used to inform a personalized prevention strategy of providing supplementation only to pregnant individuals with the TT genotype. Trial Registration ClinicalTrials.gov: NCT00798226.
Collapse
Affiliation(s)
- Liang Chen
- Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Nicklas Brustad
- Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Yang Luo
- Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Tingting Wang
- Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Mina Ali
- Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Parvaneh Ebrahimi
- Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
- Food Microbiology, Gut Health, and Fermentation, Department of Food Science, University of Copenhagen, Frederiksberg C, Denmark
| | - Ann-Marie M. Schoos
- Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Pediatrics, Slagelse Hospital, Slagelse, Denmark
| | - Nilo Vahman
- Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Mario Lovrić
- Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
- Centre for Applied Bioanthropology, Institute for Anthropological Research, Zagreb, Croatia
- Faculty of Electrical Engineering, Computer Science and Information Technology Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Morten A. Rasmussen
- Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
- Food Microbiology, Gut Health, and Fermentation, Department of Food Science, University of Copenhagen, Frederiksberg C, Denmark
| | - Johan Kolmert
- Unit of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| | - Craig E. Wheelock
- Unit of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| | - Jessica A. Lasky-Su
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts
| | - Jakob Stokholm
- Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
- Food Microbiology, Gut Health, and Fermentation, Department of Food Science, University of Copenhagen, Frederiksberg C, Denmark
- Department of Pediatrics, Slagelse Hospital, Slagelse, Denmark
| | - Klaus Bønnelykke
- Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bo Chawes
- Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
17
|
Tan C, Peng K, Lim T, Liu J, Ye Y, Lim L, Gao P, Oblong JE, Lam T. The combination of allantoin, bisabolol, D-panthenol and dipotassium glycyrrhizinate mitigates UVB-induced PGE 2 synthesis by keratinocytes. Int J Cosmet Sci 2024; 46:691-701. [PMID: 38433250 DOI: 10.1111/ics.12951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/19/2024] [Indexed: 03/05/2024]
Abstract
OBJECTIVE Erythema, characterized by the redness of the skin, is a common skin reaction triggered by various endogenous and exogenous factors. This response is often a result of the activation of underlying inflammatory mechanisms within the skin. The objective of this study is to investigate the potential benefits of applying a combination of skincare ingredients, namely allantoin, bisabolol, D-panthenol and dipotassium glycyrrhizinate (AB5D), in the modulation of inflammatory factors associated with erythema. Additionally, the study aims to elucidate the mechanisms by which these ingredients exert their combined actions to alleviate erythema-associated inflammation. METHODS Human epidermal keratinocytes were exposed to UVB and subsequently treated with AB5D. Transcriptomics profiling was performed to analyse the dose-response effect of AB5D treatment on keratinocytes. The quantitation of inflammatory mediators, including PGE2, IL-1α, IL-6, IL-8, IL-1RA and TNFα, was performed on cultured media. Additionally, the oxygen radical absorbance capacity (ORAC) assay was carried out to evaluate the total antioxidant capacity of both individual ingredients and the AB5D combination. To assess the in-vitro antioxidant effects of AB5D against UVB-induced oxidative stress in hTERT keratinocytes, real-time quantitation of mitochondrial superoxide was measured through live-cell imaging. RESULTS The application of AB5D to UVB-exposed keratinocytes downregulated gene sets associated with inflammatory responses, highlighting the anti-inflammatory properties of AB5D. Specifically, AB5D effectively reduced the production of PGE2, leading to the downregulation of inflammatory cytokines. Moreover, our findings indicate that AB5D exhibits antioxidative capabilities, functioning as both an antioxidant agent and a regulator of antioxidant enzyme expression to counteract the detrimental effects of cellular oxidative stress. CONCLUSION We demonstrated that AB5D can reduce UVB-induced PGE2, IL-1α, IL-6, IL-8, IL-1RA and TNFα as well as mitochondrial superoxide. These findings suggest that AB5D may alleviate erythema by modulating inflammation via PGE2 and through antioxidation mechanisms.
Collapse
Affiliation(s)
- Chelsea Tan
- Singapore Innovation Center, Procter & Gamble, Singapore, Singapore
| | - Ke Peng
- Tian Zhu Kong Gang Development Zone, Beijing Innovation Center, Procter & Gamble, Beijing, China
| | - TianYong Lim
- Singapore Innovation Center, Procter & Gamble, Singapore, Singapore
| | - Jiaxin Liu
- Procter & Gamble (Guangzhou), Guangzhou, China
| | - Yang Ye
- Tian Zhu Kong Gang Development Zone, Beijing Innovation Center, Procter & Gamble, Beijing, China
| | - Linda Lim
- Singapore Innovation Center, Procter & Gamble, Singapore, Singapore
| | - Pei Gao
- Procter & Gamble (Guangzhou), Guangzhou, China
| | | | - TzeHau Lam
- Singapore Innovation Center, Procter & Gamble, Singapore, Singapore
| |
Collapse
|
18
|
Prasanth T, Singh H, Krishna A, Saravanan S, Satisha T, Anand K, Bahal V. Clinico-immunological evaluation of use of omega-3 fatty acids as nutraceutical approach in management of patients with chronic periodontitis: A randomized clinical trial. Med J Armed Forces India 2024; 80:449-457. [PMID: 39071748 PMCID: PMC11280262 DOI: 10.1016/j.mjafi.2024.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/12/2024] [Indexed: 07/30/2024] Open
Abstract
Background Subgingival bacterial colonization and biofilm formation are known to be the main etiology of periodontal disease progression. This biofilm elicits host response and the interaction between host defence mechanisms with plaque microorganisms and their products results in periodontal disease. Host modulatory therapy (HMT) is a form of treatment of periodontitis that focuses on treatment of the host in the host-bacteria interaction. Omega-3 fatty acids have emerged as a potential HMT agent to treat inflammation associated with periodontal disease. Methods A total of 60 cases of chronic periodontitis were allocated into two groups; the test group (n = 30) were treated with scaling and root planing (SRP) and given a dietary supplementation of omega-3 fatty acid while the control group were treated with SRP alone. Clinical parameters carried out were plaque index (PI), gingival bleeding index (GBI), pocket probing depth (PPD) and clinical attachment level (CAL) and immunological parameter included interleukin-1β level in saliva at baseline, 3 months and 6 months after therapy. Results At 6 months, both the groups showed significant improvements with regards to all clinical and immunological parameters compared to baseline (all p < 0.05). However, test group presented with more favourable statistically significant results. Conclusion The use of omega-3 fatty acid as nutraceutical agent to conventional method acted as beneficial therapeutic measures and effective in patients with chronic periodontitis when compared with SRP alone.
Collapse
Affiliation(s)
- T. Prasanth
- Senior Specialist & Professor (Periodontology), Army Dental Centre (Research & Referral), New Delhi, India
| | - H. Singh
- Associate Professor (Periodontology), Army Dental Centre (Research & Referral), New Delhi, India
| | - A. Krishna
- Resident, Department of Dental Surgery, Armed Forces Medical College, Pune, India
| | - S.P. Saravanan
- Assistant Professor (Periodontology), Army Dental Centre (Research & Referral), New Delhi, India
| | - T.S. Satisha
- Classified Specialist (Periodontology), Command Military Dental Centre, Lucknow, India
| | - K.B. Anand
- Professor, Department of Microbiology, Armed Forces Medical College, Pune, India
| | - V.A. Bahal
- Professor (Pathology), Army Hospital (Research & Referral), New Delhi, India
| |
Collapse
|
19
|
Masle AM, Kibel A, Jukić I, Čičak P, Selthofer-Relatić K, Stupin A, Mihaljević Z, Šušnjara P, Breškić Ćurić Ž, Bačun T, Drenjančević I. Enhancing Endothelial Function with Nutrient-Enriched Table Hen Eggs: A Randomized Study in Patients Recovering from Acute Coronary Syndrome. Clin Interv Aging 2024; 19:953-970. [PMID: 38807636 PMCID: PMC11131953 DOI: 10.2147/cia.s461821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/15/2024] [Indexed: 05/30/2024] Open
Abstract
Purpose This study investigated the effect of consumption of table eggs enriched with n-3 polyunsaturated fatty acids (n-3 PUFA), lutein, vitamin E and selenium on microvascular function, oxidative stress and inflammatory mediators in patients after acute coronary syndrome (ACS). Patients and Methods In a prospective, randomized, interventional, double-blind clinical trial, ACS patients were assigned to either the Nutri4 (N=15, mean age: 57.2 ± 9.2 years), or the Control group (N=13; mean age 56.8 ± 9.6 years). The Nutri4 group consumed three enriched hen eggs daily for three weeks, providing approximately 1.785 mg of vitamin E, 0.330 mg of lutein, 0.054 mg of selenium and 438 mg of n-3 PUFAs. Biochemical parameters, including serum lipids, liver enzymes, nutrient concentrations, serum antioxidant enzyme activity (catalase (CAT), glutathione peroxidase (GPx), superoxide dismutase (SOD)), and markers of oxidative stress (thiobarbituric acid reactive substances (TBARS) and ferric reducing ability (FRAP)), were assessed before and after the dietary interventions. Additionally, arterial blood pressure, heart rate, body composition, fluid status, anthropometric measurements, and skin microvascular blood flow responses to various stimuli (postocclusive reactive hyperemia (PORH), acetylcholine- (Ach ID), and sodium nitroprusside- (SNP ID)) were measured using laser Doppler flowmetry (LDF) throughout the study. Results The intake of Nutri4 eggs led to a significant reduction in LDL cholesterol levels, while the levels of total cholesterol remained within the established reference values. Consuming Nutri4 eggs resulted in a 12.7% increase in serum vitamin E levels, an 8.6% increase in selenium levels, and demonstrated a favorable impact on microvascular reactivity, as evidenced by markedly improved PORH and ACh ID. Nutri4 eggs exerted a significant influence on the activity of GPx and SOD, with no observed changes in TBARS or FRAP values. Conclusion The consumption of Nutri4 eggs positively influenced microvascular function in individuals with ACS, without eliciting adverse effects on oxidative stress.
Collapse
Affiliation(s)
- Ana Marija Masle
- Department of Rheumatology, Clinical Immunology and Allergology, University Hospital Osijek, Osijek, Croatia
- Faculty of Medicine Osijek, J. J. Strossmayer University of Osijek, Osijek, Croatia
- Scientific Center of Excellence for Personalized Health Care, J. J. Strossmayer University of Osijek, Osijek, Croatia
| | - Aleksandar Kibel
- Scientific Center of Excellence for Personalized Health Care, J. J. Strossmayer University of Osijek, Osijek, Croatia
- Department of Physiology and Immunology, Faculty of Medicine Osijek, J. J. Strossmayer University of Osijek, Osijek, Croatia
- Department of Heart and Vascular Diseases, University Hospital Osijek, Osijek, Croatia
- Department of Clinical Medicine, Faculty of Dental Medicine and Health Osijek, J.J. Strossmayer University of Osijek, Osijek, Croatia
| | - Ivana Jukić
- Scientific Center of Excellence for Personalized Health Care, J. J. Strossmayer University of Osijek, Osijek, Croatia
- Department of Physiology and Immunology, Faculty of Medicine Osijek, J. J. Strossmayer University of Osijek, Osijek, Croatia
| | - Petra Čičak
- Faculty of Medicine Osijek, J. J. Strossmayer University of Osijek, Osijek, Croatia
- Department of Pulmonology, University Hospital Osijek, Osijek, Croatia
| | - Kristina Selthofer-Relatić
- Scientific Center of Excellence for Personalized Health Care, J. J. Strossmayer University of Osijek, Osijek, Croatia
- Department of Heart and Vascular Diseases, University Hospital Osijek, Osijek, Croatia
- Department of Pathophysiology, Faculty of Medicine Osijek, J. J. Strossmayer University of Osijek, Osijek, Croatia
| | - Ana Stupin
- Scientific Center of Excellence for Personalized Health Care, J. J. Strossmayer University of Osijek, Osijek, Croatia
- Department of Physiology and Immunology, Faculty of Medicine Osijek, J. J. Strossmayer University of Osijek, Osijek, Croatia
| | - Zrinka Mihaljević
- Scientific Center of Excellence for Personalized Health Care, J. J. Strossmayer University of Osijek, Osijek, Croatia
- Department of Physiology and Immunology, Faculty of Medicine Osijek, J. J. Strossmayer University of Osijek, Osijek, Croatia
| | - Petar Šušnjara
- Scientific Center of Excellence for Personalized Health Care, J. J. Strossmayer University of Osijek, Osijek, Croatia
- Department of Physiology and Immunology, Faculty of Medicine Osijek, J. J. Strossmayer University of Osijek, Osijek, Croatia
| | - Željka Breškić Ćurić
- Scientific Center of Excellence for Personalized Health Care, J. J. Strossmayer University of Osijek, Osijek, Croatia
- Department of Internal Medicine, General Hospital Vinkovci, Vinkovci, Croatia
| | - Tatjana Bačun
- Department of Internal Medicine, University Hospital Osijek, Osijek, Croatia
- Department of Internal Medicine, Faculty of Medicine Osijek, J. J. Strossmayer University of Osijek, Osijek, Croatia
| | - Ines Drenjančević
- Scientific Center of Excellence for Personalized Health Care, J. J. Strossmayer University of Osijek, Osijek, Croatia
- Department of Physiology and Immunology, Faculty of Medicine Osijek, J. J. Strossmayer University of Osijek, Osijek, Croatia
| |
Collapse
|
20
|
Baldacchino F, Spagnoletta A, Lamaj F, Vitale ML, Verrastro V. Validation of Diets with Tomato Pomace in Complete Cycle Breeding of Tenebrio molitor (L.) (Coleoptera: Tenebrionidae). INSECTS 2024; 15:287. [PMID: 38667417 PMCID: PMC11050266 DOI: 10.3390/insects15040287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024]
Abstract
By-product-based diets have the potential to improve the environmental and economic sustainability of Tenebrio molitor (Linnaeus, 1758) production. However, evaluations of the efficacy of new diets are generally focused on larval performance, while the effect on adults is poorly understood. This aim of this study was to evaluate diets enriched with tomato pomace over a complete breeding cycle. The results showed that when used as an oviposition substrate, all the tested diets, including tomato pomace (T), outperformed the control bran-yeast diet (WY, 95:5 ratio), possibly due to the presence of cholesterol and linoleic acid. The adults fed with the bran-tomato pomace-brewer's spent grain diet (WTB, 50:27:23 ratio), the bran-tomato pomace-yeast diet (WTY, 50:41:9 ratio), and the bran-tomato pomace diet (WT, 50:50 ratio) produced significantly more larvae than those fed with the WY diet. The WTB diet (despite being yeast-free) performed similarly to the WY control diet during the subsequent larval growth phase, making it suitable for the entire production cycle. In conclusion, the results show that tomato pomace can be used a valid by-product in the formulation of efficient diets for the breeding of T. molitor and also provide an alternative to expensive yeast.
Collapse
Affiliation(s)
- Ferdinando Baldacchino
- Laboratory of Bioproducts and Bioprocess, ENEA-. Trisaia Research Centre, S.S. Jonica 106, km 419.5, I-75026 Rotondella, Italy
| | - Anna Spagnoletta
- Laboratory of Bioproducts and Bioprocess, ENEA-. Trisaia Research Centre, S.S. Jonica 106, km 419.5, I-75026 Rotondella, Italy
| | - Flutura Lamaj
- CIHEAM-Bari, Mediterranean Agronomic Institute of Bari, Via Ceglie, 9, I-70100 Valenzano, Italy; (F.L.); (M.L.V.); (V.V.)
| | - Maria Luisa Vitale
- CIHEAM-Bari, Mediterranean Agronomic Institute of Bari, Via Ceglie, 9, I-70100 Valenzano, Italy; (F.L.); (M.L.V.); (V.V.)
| | - Vincenzo Verrastro
- CIHEAM-Bari, Mediterranean Agronomic Institute of Bari, Via Ceglie, 9, I-70100 Valenzano, Italy; (F.L.); (M.L.V.); (V.V.)
| |
Collapse
|
21
|
Lin C, Lee SH, Huang CM, Wu YW, Chang YX, Liu HL, Ng SH, Cheng YC, Chiu CC, Wu SC. Cognitive protection and brain entropy changes from omega-3 polyunsaturated fatty acids supplement in late-life depression: A 52-week randomized controlled trial. J Affect Disord 2024; 351:15-23. [PMID: 38281596 DOI: 10.1016/j.jad.2024.01.205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 01/30/2024]
Abstract
BACKGROUND Late-life depression (LLD) is associated with risk of dementia, yet intervention of LLD provides an opportunity to attenuate subsequent cognitive decline. Omega-3 polyunsaturated fatty acids (PUFAs) supplement is a potential intervention due to their beneficial effect in depressive symptoms and cognitive function. To explore the underlying neural mechanism, we used resting-state functional MRI (rs-fMRI) before and after omega-3 PUFAs supplement in older adults with LLD. METHODS A 52-week double-blind randomized controlled trial was conducted. We used multi-scale sample entropy to analyze rs-fMRI data. Comprehensive cognitive tests and inflammatory markers were collected to correlate with brain entropy changes. RESULTS A total of 20 patients completed the trial with 11 under omega-3 PUFAs and nine under placebo. While no significant global cognitive improvement was observed, a marginal enhancement in processing speed was noted in the omega-3 PUFAs group. Importantly, participants receiving omega-3 PUFAs exhibited decreased brain entropy in left posterior cingulate gyrus (PCG), multiple visual areas, the orbital part of the right middle frontal gyrus, and the left Rolandic operculum. The brain entropy changes of the PCG in the omega-3 PUFAs group correlated with improvement of language function and attenuation of interleukin-6 levels. LIMITATIONS Sample size is small with only marginal clinical effect. CONCLUSION These findings suggest that omega-3 PUFAs supplement may mitigate cognitive decline in LLD through anti-inflammatory mechanisms and modulation of brain entropy. Larger clinical trials are warranted to validate the potential therapeutic implications of omega-3 PUFAs for deterring cognitive decline in patients with late-life depression.
Collapse
Affiliation(s)
- Chemin Lin
- Department of Psychiatry, Keelung Chang Gung Memorial Hospital, Keelung City, Taiwan; College of Medicine, Chang Gung University, Taoyuan County, Taiwan.; Community Medicine Research Center, Chang Gung Memorial Hospital, Keelung, Keelung, Taiwan
| | - Shwu-Hua Lee
- College of Medicine, Chang Gung University, Taoyuan County, Taiwan.; Department of Psychiatry, Linkou Chang Gung Memorial Hospital, Taoyuan County, Taiwan
| | - Chih-Mao Huang
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Yu-Wen Wu
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu, Taiwan
| | - You-Xun Chang
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Ho-Ling Liu
- Department of Imaging Physics, University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Shu-Hang Ng
- Department of Head and Neck Oncology Group, Linkou Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan; Department of Diagnostic Radiology, Linkou Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
| | - Ying-Chih Cheng
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan; Department of Psychiatry, China Medical University Hsinchu Hospital, China Medical University, Hsinchu, Taiwan; Research Center of Big Data and Meta-analysis, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Chih-Chiang Chiu
- Department of Psychiatry, Taipei City Psychiatric Center, Taipei City Hospital, Taipei, Taiwan; Department of Psychiatry, Taipei Medical University, Taipei, Taiwan.
| | - Shun-Chi Wu
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan.
| |
Collapse
|
22
|
Plath M, Plath K. [Medical examination: Preparation for ENT specialisation : Part 71]. HNO 2024; 72:283-290. [PMID: 38448664 DOI: 10.1007/s00106-024-01439-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2023] [Indexed: 03/08/2024]
Affiliation(s)
- M Plath
- Kopfklinik, Hals‑, Nasen- und Ohrenklinik, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Deutschland.
| | - K Plath
- HNO-Praxis Bensheim, Bensheim, Deutschland
| |
Collapse
|
23
|
Catherine Prater M, Polley KR, Cooper JA. Improvements in markers of inflammation and coagulation potential following a 5-day high-fat diet rich in cottonseed oil vs. Olive oil in healthy males. Cytokine 2024; 175:156494. [PMID: 38171039 DOI: 10.1016/j.cyto.2023.156494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/14/2023] [Accepted: 12/26/2023] [Indexed: 01/05/2024]
Abstract
Low-grade inflammation is believed to be a risk factor for chronic diseases and is nutritionally responsive. Cottonseed oil (CSO), which is rich in n-6 polyunsaturated fats, has been shown to lower cholesterol and other chronic disease risk factors. The purpose of this secondary analysis was to determine the comparative responses of markers of inflammation and coagulation potential of healthy adult males consuming diets rich in CSO vs. olive oil (OO). METHODS Fifteen normal-weight males, ages 21.7 ± 2.58y, completed a randomized crossover trial. Each intervention consisted of a 3-day lead-in diet and a 5-day outpatient, controlled feeding intervention (CSO or OO). There was a 2 to 4-week washout period between interventions. The 5-day intervention diets were 35 % carbohydrate, 15 % protein, and 50 % fat, enriched with either CSO or OO (44 % of total energy from oil). At pre- and post- diet intervention visits, a fasting blood draw was collected for analysis of markers of inflammation (Tumor Necrosis Factor Alpha (TNF-α), Interleukin-6 (IL-6), C-Reactive Protein (CRP)) and coagulation potential (Tissue Factor (TF), Plasminogen Activator Inhibitor-1 (PAI-1)). RESULTS The CSO-enriched diets reduced TNF-α (CSO: -0.12 ± 0.02 pg/ml, OO: -0.01 ± 0.05 pg/ml; p < 0.01) and TF (CSO: -0.59 ± 0.68 pg/ml, OO: 1.13 ± 0.83 pg/ml; p = 0.02) compared to OO diets. There were no differences in IL-6, CRP, or PAI-1 between diets. CONCLUSION A 5-day, CSO-enriched diet may be sufficient to reduce inflammation and coagulation potential compared to OO-enriched diets in a healthy male population which could have implications in chronic disease prevention.
Collapse
Affiliation(s)
- M Catherine Prater
- Department of Nutritional Sciences, University of Georgia, 305 Sanford Drive, Athens, GA 30602, USA
| | - Kristine R Polley
- Department of Nutritional Sciences, University of Georgia, 305 Sanford Drive, Athens, GA 30602, USA
| | - Jamie A Cooper
- Department of Kinesiology, University of Georgia, 330 River Road, Athens, GA 30602, USA.
| |
Collapse
|
24
|
Potter DA, Guo Z, Lei J, Antonarakis ES. Cooling inflammation while potentiating immune checkpoint inhibition: Enhancing the benefit-risk ratio of immuno-oncology therapy. Proc Natl Acad Sci U S A 2024; 121:e2400431121. [PMID: 38354255 PMCID: PMC10907316 DOI: 10.1073/pnas.2400431121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024] Open
Affiliation(s)
- David A. Potter
- Department of Medicine, Division of Hematology, Oncology, and Transplantation and Masonic Cancer Center, University of Minnesota, Minneapolis, MN55455
- Masonic Cancer Center, Minneapolis, MN55455
| | - Zhijun Guo
- Department of Medicine, Division of Hematology, Oncology, and Transplantation and Masonic Cancer Center, University of Minnesota, Minneapolis, MN55455
| | - Jianxun Lei
- Department of Medicine, Division of Hematology, Oncology, and Transplantation and Masonic Cancer Center, University of Minnesota, Minneapolis, MN55455
| | - Emmanuel S. Antonarakis
- Department of Medicine, Division of Hematology, Oncology, and Transplantation and Masonic Cancer Center, University of Minnesota, Minneapolis, MN55455
- Masonic Cancer Center, Minneapolis, MN55455
| |
Collapse
|
25
|
Prater MC, Scheurell AR, Paton CM, Cooper JA. No Observed Difference in Inflammatory and Coagulation Markers Following Diets Rich in n-6 Polyunsaturated Fat vs Monounsaturated Fat in Adults With Untreated Hypercholesterolemia: A Randomized Trial. J Acad Nutr Diet 2024; 124:205-214.e1. [PMID: 37619782 DOI: 10.1016/j.jand.2023.08.127] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 08/08/2023] [Accepted: 08/17/2023] [Indexed: 08/26/2023]
Abstract
BACKGROUND Inflammatory and prothrombotic responses are hallmark to the progression of cardiovascular disease and may be influenced by the type of dietary fat. Cottonseed oil (CSO) is rich in n-6 polyunsaturated fats and improves traditional cardiovascular disease risk factors such as cholesterol profiles. However, some clinicians are still hesitant to promote n-6 polyunsaturated fats consumption despite growing evidence suggesting they may not be independently pro-inflammatory. OBJECTIVE To investigate the inflammatory and coagulation marker responses to an 8-week diet intervention rich in either CSO or olive oil (OO) (OO is rich in monounsaturated fat) in adults with untreated hypercholesterolemia. DESIGN This was a secondary analysis of a parallel-arm randomized clinical trial with the main outcome of cholesterol measures. PARTICIPANTS/SETTING Participants included in this analysis were 42 sedentary adults aged 30 to 75 years (62% women) in the Athens, GA, area, between May 2018 and June 2021, with untreated hypercholesterolemia or elevated blood lipids and body mass index >18.5. Hypercholesterolemia was defined as at least two blood lipid levels in a borderline undesirable/at risk range (total cholesterol level ≥180 mg/dL, low-density lipoprotein cholesterol level ≥110 mg/dL, high-density lipoprotein cholesterol level <50 mg/dL, or triglyceride level ≥130 mg/dL), or at least one in an undesirable range (total cholesterol level ≥240 mg/dL, low-density lipoprotein cholesterol level ≥160 mg/dL, high-density lipoprotein cholesterol level <40 mg/dL, or triglyceride level ≥200 mg/dL). INTERVENTION Participants were randomly assigned to either the CSO or OO group in a partial outpatient feeding trial. Meals from the study provided approximately 60% of their energy needs with 30% of energy needs from either CSO or OO for 8 weeks. Participants fulfilled their remaining energy needs with meals of their choosing. MAIN OUTCOME MEASURES Fasting plasma concentrations of inflammatory markers, including C-reactive protein, tumor necrosis factor-α, interleukin-6, and interleukin-1β were measured at baseline and 8 weeks. Markers of coagulation potential, including plasminogen activator inhibitor-1, and tissue factor were measured at the same time points. STATISTICAL ANALYSES PERFORMED Repeated measures linear mixed models were used with treatment and visit in the model for analyses of all biochemical markers. RESULTS There were no significant differences in fasting C-reactive protein (P = 0.70), tumor necrosis factor-α (P = 0.98), interleukin-6 (P = 0.21), interleukin-1β (P = 0.13), plasminogen activator inhibitor-1 (P = 0.29), or tissue factor (P = 0.29) between groups across the intervention. CONCLUSIONS Inflammation and coagulation marker responses to diets rich in CSO vs OO were not significantly different between groups, and neither group showed changes in these markers in adults with untreated hypercholesterolemia. This provides additional evidence suggesting that dietary n-6 polyunsaturated fats may not promote inflammation compared with monounsaturated fatty acids, even in adults at increased risk for cardiovascular disease.
Collapse
Affiliation(s)
- M Catherine Prater
- Department of Nutritional Sciences, University of Georgia, Athens, Georgia
| | - Alexis R Scheurell
- Department of Nutritional Sciences, University of Georgia, Athens, Georgia
| | - Chad M Paton
- Department of Nutritional Sciences, University of Georgia, Athens, Georgia; Department of Food Science and Technology, University of Georgia, Athens, Georgia
| | - Jamie A Cooper
- Department of Kinesiology, University of Georgia, Athens, Georgia.
| |
Collapse
|
26
|
Wen J, Satyanarayanan SK, Li A, Yan L, Zhao Z, Yuan Q, Su KP, Su H. Unraveling the impact of Omega-3 polyunsaturated fatty acids on blood-brain barrier (BBB) integrity and glymphatic function. Brain Behav Immun 2024; 115:335-355. [PMID: 37914102 DOI: 10.1016/j.bbi.2023.10.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/05/2023] [Accepted: 10/22/2023] [Indexed: 11/03/2023] Open
Abstract
Alzheimer's disease (AD) and other forms of dementia represent major public health challenges but effective therapeutic options are limited. Pathological brain aging is associated with microvascular changes and impaired clearance systems. The application of omega-3 polyunsaturated fatty acids (n-3 or omega-3 PUFAs) is one of the most promising nutritional interventions in neurodegenerative disorders from epidemiological data, clinical and pre-clinical studies. As essential components of neuronal membranes, n-3 PUFAs have shown neuroprotection and anti-inflammatory effects, as well as modulatory effects through microvascular pathophysiology, amyloid-beta (Aβ) clearance and glymphatic pathways. This review meticulously explores these underlying mechanisms that contribute to the beneficial effects of n-3 PUFAs against AD and dementia, synthesizing evidence from both animal and interventional studies.
Collapse
Affiliation(s)
- Jing Wen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau
| | - Senthil Kumaran Satyanarayanan
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong Science Park, Hong Kong
| | - Ang Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau
| | - Lingli Yan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau
| | - Ziai Zhao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau
| | - Qiuju Yuan
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong Science Park, Hong Kong
| | - Kuan-Pin Su
- An-Nan Hospital, China Medical University, Tainan, Taiwan; Department of Psychiatry, China Medical University Hospital, Taichung, Taiwan; Mind-Body Interface Research Center (MBI-Lab), China Medical University Hospital, Taichung, Taiwan.
| | - Huanxing Su
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau.
| |
Collapse
|
27
|
Dhanker R, Saxena A, Tiwari A, Kumar Singh P, Kumar Patel A, Dahms HU, Hwang JS, González-Meza GM, Melchor-Martínez EM, Iqbal HMN, Parra-Saldívar R. Towards sustainable diatom biorefinery: Recent trends in cultivation and applications. BIORESOURCE TECHNOLOGY 2024; 391:129905. [PMID: 37923226 DOI: 10.1016/j.biortech.2023.129905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/22/2023] [Accepted: 10/19/2023] [Indexed: 11/07/2023]
Abstract
Diatoms, with their complex cellular architecture, have been recognized as a source of limitless potential. These microbes are common in freshwater and marine habitats and are essential for primary production and carbon sequestration. They are excellent at utilizing nutrients, providing a sustainable method of treating wastewater while also producing biomass rich in beneficial substances like vitamins, carotenoids, polysaccharides, lipids, omega-3 fatty acids, pigments, and novel bioactive molecules. Additionally, they are highly efficient organisms that can be employed to monitor the environment by acting as trustworthy indicators of water quality. This comprehensive review explores the multifaceted applications of diatoms in a variety of fields, such as bioremediation, aquaculture, value-added products, and other applications. The review set out on a path towards greener, more sustainable methods amicable to both industry and the environment by utilizing theenormous diverse biotechnological potentials of diatoms.
Collapse
Affiliation(s)
- Raunak Dhanker
- Diatom Research Laboratory Amity Institute of Biotechnology, Amity University, Noida, India
| | - Abhishek Saxena
- Diatom Research Laboratory Amity Institute of Biotechnology, Amity University, Noida, India
| | - Archana Tiwari
- Diatom Research Laboratory Amity Institute of Biotechnology, Amity University, Noida, India.
| | - Pankaj Kumar Singh
- Diatom Research Laboratory Amity Institute of Biotechnology, Amity University, Noida, India
| | - Anil Kumar Patel
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Hans-Uwe Dahms
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung City 807, Taiwan, ROC; Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung City-804, Taiwan, ROC
| | - Jiang-Shiou Hwang
- National Taiwan Ocean University, Institute of Marine Biology, Keelung 20224, Taiwan, ROC
| | - Georgia Maria González-Meza
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico; Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Elda M Melchor-Martínez
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico; Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico; Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Roberto Parra-Saldívar
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico; Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| |
Collapse
|
28
|
Akbar S, Rahman A, Ahmad N, Imran M, Hafeez Z. Understanding the Role of Polyunsaturated Fatty Acids in the Development and Prevention of Cancer. Cancer Treat Res 2024; 191:57-93. [PMID: 39133404 DOI: 10.1007/978-3-031-55622-7_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Polyunsaturated fatty acids (PUFAs), notably omega-3 (n-3) and omega-6 (n-6), have received much attention owing to their multifaceted effects not only in the management of diverse pathological conditions but also in the maintenance of overall health of an individual. A disproportionately high n-6 to n-3 ratio contributes to the development of various disorders including cancer, which ranks as a leading cause of death worldwide with profound social and economic burden. Epidemiological studies and clinical trials combined with the animal and cell culture models have demonstrated the beneficial effects of n-3 PUFAs in reducing the risk of various cancer types including breast, prostate and colon cancer. The anti-cancer actions of n-3 PUFAs are mainly attributed to their role in the modulation of a wide array of cellular processes including membrane dynamics, apoptosis, inflammation, angiogenesis, oxidative stress, gene expression and signal transduction pathways. On the contrary, n-6 PUFAs have been shown to exert pro-tumor actions; however, the inconsistent findings and controversial data emphasize upon the need to further investigation. Nevertheless, one of the biggest challenges in future is to optimize the n-6 to n-3 ratio despite the genetic predisposition, age, gender and disease severity. Moreover, a better understanding of the potential risks and benefits as well as the cellular and molecular mechanisms of the basic actions of these PUFAs is required to explore their role as adjuvants in cancer therapy. All these aspects will be reviewed in this chapter.
Collapse
Affiliation(s)
- Samina Akbar
- CALBINOTOX, Université de Lorraine, 54000, Nancy, France.
| | - Abdur Rahman
- Atta ur Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Nazir Ahmad
- Faculty of Life Sciences, Institute of Home and Food Sciences, Government College University, Faisalabad, Pakistan
| | - Muhammad Imran
- Department of Biosciences, Faculty of Sciences, COMSATS Institute of Information Technology, Park Road, Islamabad, Pakistan
| | - Zeeshan Hafeez
- CALBINOTOX, Université de Lorraine, 54000, Nancy, France
| |
Collapse
|
29
|
Morin S, Tremblay A, Dumais E, Julien P, Flamand N, Pouliot R. Eicosapentaenoic Acid Influences the Lipid Profile of an In Vitro Psoriatic Skin Model Produced with T Cells. Biomolecules 2023; 13:1413. [PMID: 37759812 PMCID: PMC10526348 DOI: 10.3390/biom13091413] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/07/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Psoriasis is a skin disease characterized by epidermal hyperplasia and an inappropriate activation of the adaptive immunity. A dysregulation of the skin's lipid mediators is reported in the disease with a predominance of the inflammatory cascade derived from n-6 polyunsaturated fatty acids (n-6 PUFAs). Bioactive lipid mediators derived from arachidonic acid (AA) are involved in the inflammatory functions of T cells in psoriasis, whereas n-3 PUFAs' derivatives are anti-inflammatory metabolites. Here, we sought to evaluate the influence of a supplementation of the culture media with eicosapentaenoic acid (EPA) on the lipid profile of a psoriatic skin model produced with polarized T cells. Healthy and psoriatic skin substitutes were produced following the auto-assembly technique. Psoriatic skin substitutes produced with or without T cells presented increased epidermal and dermal linolenic acid (LA) and AA levels. N-6 PUFA lipid mediators were strongly measured in psoriatic substitutes, namely, 13-hydroxyoctadecadienoic acid (13-HODE), prostaglandin E2 (PGE2) and 12-hydroxyeicosatetraenoic acid (12-HETE). The added EPA elevated the amounts of EPA, n-3 docosapentaenoic acid (DPA) and docosahexaenoic acid (DHA) in the epidermal and dermal phospholipids. The EPA supplementation balanced the production of epidermal lipid mediators, with an increase in prostaglandin E3 (PGE3), 12-hydroxyeicosapentaenoic acid (12-HEPE) and N-eicosapentaenoyl-ethanolamine (EPEA) levels. These findings show that EPA modulates the lipid composition of psoriatic skin substitutes by encouraging the return to a cutaneous homeostatic state.
Collapse
Affiliation(s)
- Sophie Morin
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Axe Médecine Régénératrice, Centre de Recherche du CHU de Québec-Université Laval, 1401 18e Rue, Québec, QC G1J 2Z4, Canada; (S.M.); (A.T.)
- Faculté de Pharmacie, Université Laval, Québec, QC G1V 0A6, Canada
| | - Andréa Tremblay
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Axe Médecine Régénératrice, Centre de Recherche du CHU de Québec-Université Laval, 1401 18e Rue, Québec, QC G1J 2Z4, Canada; (S.M.); (A.T.)
- Faculté de Pharmacie, Université Laval, Québec, QC G1V 0A6, Canada
| | - Elizabeth Dumais
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, QC G1V 4G5, Canada; (E.D.); (N.F.)
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec, QC G1V 0A6, Canada
| | - Pierre Julien
- Centre de Recherche du CHU de Québec-Université Laval, Axe Endocrinologie et Néphrologie, Université Laval, Québec, QC G1V 4G2, Canada;
- Département de Médecine, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Nicolas Flamand
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, QC G1V 4G5, Canada; (E.D.); (N.F.)
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec, QC G1V 0A6, Canada
- Département de Médecine, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Roxane Pouliot
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Axe Médecine Régénératrice, Centre de Recherche du CHU de Québec-Université Laval, 1401 18e Rue, Québec, QC G1J 2Z4, Canada; (S.M.); (A.T.)
- Faculté de Pharmacie, Université Laval, Québec, QC G1V 0A6, Canada
| |
Collapse
|
30
|
Donati Zeppa S, Natalucci V, Agostini D, Vallorani L, Amatori S, Sisti D, Rocchi MBL, Pazienza V, Perri F, Villani A, Binda E, Panebianco C, Mencarelli G, Ciuffreda L, Ferri Marini C, Annibalini G, Lucertini F, Bartolacci A, Imperio M, Virgili E, Catalano V, Piccoli G, Stocchi V, Emili R, Barbieri E. Changes in gut microbiota composition after 12 weeks of a home-based lifestyle intervention in breast cancer survivors during the COVID-19 lockdown. Front Oncol 2023; 13:1225645. [PMID: 37727203 PMCID: PMC10505708 DOI: 10.3389/fonc.2023.1225645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/18/2023] [Indexed: 09/21/2023] Open
Abstract
Background Breast cancer (BC) is the second-leading cause of cancer-related death worldwide. This study aimed to investigate the effects of a 12-week home-based lifestyle intervention (based on nutrition and exercise) on gut microbial composition in twenty BC survivors of the MoviS clinical trial (protocol: NCT04818359). Methods Gut microbiota analysis through 16S rRNA gene sequencing, anthropometrics, Mediterranean Diet (MD) adherence, and cardiometabolic parameters were evaluated before (Pre) and after (Post) the lifestyle intervention (LI). Results Beneficial effects of the LI were observed on MD adherence, and cardiometabolic parameters (pre vs post). A robust reduction of Proteobacteria was observed after LI, which is able to reshape the gut microbiota by modulating microorganisms capable of decreasing inflammation and others involved in improving the lipid and glycemic assets of the host. A significant negative correlation between fasting glucose and Clostridia_vadinBB60 (r = -0.62), insulin and homeostatic model assessment (HOMA) index and Butyricicoccus genera (r = -0.72 and -0.66, respectively), and HDL cholesterol and Escherichia/Shigella (r = -0.59) have been reported. Moreover, positive correlations were found between MD adherence and Lachnospiraceae_ND3007 (r = 0.50), Faecalibacterium (r = 0.38) and Butyricimonas (r = 0.39). Conclusion These data suggest that adopting a healthy lifestyle, may contribute to ameliorate several biological parameters that could be involved in the prevention of cancer relapses through the modulation of gut microbiota.
Collapse
Affiliation(s)
- Sabrina Donati Zeppa
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Valentina Natalucci
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Deborah Agostini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Luciana Vallorani
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Stefano Amatori
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Davide Sisti
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Marco B. L. Rocchi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Valerio Pazienza
- Division of Gastroenterology, Fondazione IRCCS “Casa Sollievo della Sofferenza” Hospital, San Giovanni Rotondo, Italy
| | - Francesco Perri
- Division of Gastroenterology, Fondazione IRCCS “Casa Sollievo della Sofferenza” Hospital, San Giovanni Rotondo, Italy
| | - Annacandida Villani
- Division of Gastroenterology, Fondazione IRCCS “Casa Sollievo della Sofferenza” Hospital, San Giovanni Rotondo, Italy
| | - Elena Binda
- Cancer Stem Cells Unit, Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapeutics (ISBReMIT), IRCSS Casa Sollievo della Sofferenza, Opera di San Pio da Pietrelcina, San Giovanni Rotondo, Italy
| | - Concetta Panebianco
- Division of Gastroenterology, Fondazione IRCCS “Casa Sollievo della Sofferenza” Hospital, San Giovanni Rotondo, Italy
| | - Gandino Mencarelli
- Cancer Stem Cells Unit, Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapeutics (ISBReMIT), IRCSS Casa Sollievo della Sofferenza, Opera di San Pio da Pietrelcina, San Giovanni Rotondo, Italy
| | - Luigi Ciuffreda
- Breast Surgery Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Carlo Ferri Marini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Giosué Annibalini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Francesco Lucertini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Alessia Bartolacci
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Marta Imperio
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Edy Virgili
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Vincenzo Catalano
- U.O.C. Oncologia Medica, ASUR Area Vasta 1, Ospedale Santa Maria della Misericordia di Urbino, Urbino, Italy
| | - Giovanni Piccoli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | | | - Rita Emili
- U.O.C. Oncologia Medica, ASUR Area Vasta 1, Ospedale Santa Maria della Misericordia di Urbino, Urbino, Italy
| | - Elena Barbieri
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| |
Collapse
|
31
|
Rasaei N, Khadem A, Masihi LS, Mirzaei K. Interaction of fatty acid quality indices and genes related to lipid homeostasis on mental health among overweight and obese women. Sci Rep 2023; 13:9580. [PMID: 37311812 DOI: 10.1038/s41598-023-35810-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/24/2023] [Indexed: 06/15/2023] Open
Abstract
The aim of this study is to investigate the interaction of fatty acid quality indices and genes related to lipid homeostasis on mental health among overweight and obese women. This cross-sectional study included 279 overweight and obese women for N6/N3 ratio and 378 overweight and obese women for CSI aged 18-58 years. Mental health were evaluated using Depression Anxiety Stress Scales (DASS-21). The anthropometric indices, biochemical parameters, body composition and dietary fat quality were measured. MC4R (rs17782313) and Caveolin-1 (CAV-1) (rs3807992) were genotyped by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) technique. The results of the study showed that after adjusting for age, energy intake, thyroid disease, physical activity, and BMI, a positive interaction between TC genotype of MC4R and CSI on depression (β = 0.39, CI = 0.12, 0.66, P = 0.004), and DASS-21 (β = 0.074, CI = 0.04, 1.44, P = 0.036). Also, there were a marginal significant interactions between AG genotype of CAV-1 and N6/N3 ratio on depression in adjustment model1 (β = 16.83, CI = - 0.19, 33.85, P = 0.053). Our findings showed that increasing adherence to fatty acid quality indices by considering genes related to lipid homeostasis was related to increasing depression in our population.
Collapse
Affiliation(s)
- Niloufar Rasaei
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), P.O. Box:14155-6117, Tehran, Iran
| | - Alireza Khadem
- Department of Nutrition, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Lilit Sardari Masihi
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), P.O. Box:14155-6117, Tehran, Iran
| | - Khadijeh Mirzaei
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), P.O. Box:14155-6117, Tehran, Iran.
- Food Microbiology Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
32
|
Wang X, Liang T, Mao Y, Li Z, Li X, Zhu X, Cao F, Zhang J. Nervonic acid improves liver inflammation in a mouse model of Parkinson's disease by inhibiting proinflammatory signaling pathways and regulating metabolic pathways. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 117:154911. [PMID: 37276724 DOI: 10.1016/j.phymed.2023.154911] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/25/2023] [Accepted: 05/29/2023] [Indexed: 06/07/2023]
Abstract
BACKGROUND Nervonic acid (NA) - a type of bioactive fatty acid that is found in natural sources - can inhibit inflammatory reactions and regulate immune system balance. Therefore, the use of NA for the treatment of neurodegenerative diseases has received considerable attention. Our previous study found that NA inhibited inflammatory responses in the brain of Parkinson's disease (PD) mouse models. In addition to the brain, PD is also associated with visceral organ dysfunction, especially impaired liver function. Thus, studying the role of NA in PD-mediated inflammation of the liver is particularly important. METHODS A combined transcriptome and metabolomic approach was utilized to investigate the anti-inflammatory effects of NA on the liver of PD mice. Inflammatory signaling molecules and metabolic pathway-related genes were examined in the liver using real-time PCR and western blotting. RESULTS Liver transcriptome analysis revealed that NA exerted anti-inflammatory effects by controlling several pro-inflammatory signaling pathways, such as the down-regulation of the tumor necrosis factor and nuclear factor kappa B signaling pathways, both of which were essential in the development of inflammatory disease. In addition, liver metabolomic results revealed that metabolites related to steroid hormone biosynthesis, arachidonic acid metabolism, and linoleic acid metabolism were up-regulated and those related to valine, leucine, and isoleucine degradation pathways were down-regulated in NA treatment groups compared with the PD model. The integration of metabolomic and transcriptomic results showed NA significantly exerted its anti-inflammatory function by regulating the transcription and metabolic pathways of multiple genes. Particularly, linoleic acid metabolism, arachidonic acid metabolism, and steroid hormone biosynthesis were the crucial pathways of the anti-inflammatory action of NA. Key genes in these metabolic pathways and key molecules in inflammatory signaling pathways were also verified, which were consistent with transcriptomic results. CONCLUSION These findings provide novel insights into the liver protective effects of NA against PD mice. This study also showed that NA could be a useful dietary element for improving and treating PD-induced liver inflammation.
Collapse
Affiliation(s)
- Xueqi Wang
- College of Life Science, Northwest Normal University, Lanzhou, Gansu Province 730070, China
| | - Tingyu Liang
- College of Life Science, Northwest Normal University, Lanzhou, Gansu Province 730070, China
| | - Ying Mao
- College of Life Science, Northwest Normal University, Lanzhou, Gansu Province 730070, China
| | - Zhengdou Li
- College of Life Science, Northwest Normal University, Lanzhou, Gansu Province 730070, China
| | - Xu Li
- College of Life Science, Northwest Normal University, Lanzhou, Gansu Province 730070, China
| | - Xinliang Zhu
- College of Life Science, Northwest Normal University, Lanzhou, Gansu Province 730070, China; Bioactive Products Engineering Research Center for Gansu Distinctive Plants, Lanzhou 730070, China; Institute of Rural Development and Research, Northwest Normal University, Lanzhou, Gansu Province 730070, China
| | - Fuliang Cao
- Nanjing Forestry University, Nanjing, Jiangsu Province 210037, China.
| | - Ji Zhang
- College of Life Science, Northwest Normal University, Lanzhou, Gansu Province 730070, China; Bioactive Products Engineering Research Center for Gansu Distinctive Plants, Lanzhou 730070, China; Institute of Rural Development and Research, Northwest Normal University, Lanzhou, Gansu Province 730070, China.
| |
Collapse
|
33
|
DeBalsi KL, Newman JH, Sommerville LJ, Phillips JA, Hamid R, Cogan J, Fessel JP, Evans AM, Network UD, Kennedy AD. A Case Study of Dysfunctional Nicotinamide Metabolism in a 20-Year-Old Male. Metabolites 2023; 13:399. [PMID: 36984839 PMCID: PMC10055858 DOI: 10.3390/metabo13030399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/24/2023] [Accepted: 03/04/2023] [Indexed: 03/10/2023] Open
Abstract
We present a case study of a 20-year-old male with an unknown neurodegenerative disease who was referred to the Undiagnosed Diseases Network Vanderbilt Medical Center site. A previous metabolic panel showed that the patient had a critical deficiency in nicotinamide intermediates that are generated during the biosynthesis of NAD(H). We followed up on these findings by evaluating the patient's ability to metabolize nicotinamide. We performed a global metabolic profiling analysis of plasma samples that were collected: (1) under normal fed conditions (baseline), (2) after the patient had fasted, and (3) after he was challenged with a 500 mg nasogastric tube bolus of nicotinamide following the fast. Our findings showed that the patient's nicotinamide N-methyltransferase (NNMT), a key enzyme in NAD(H) biosynthesis and methionine metabolism, was not functional under normal fed or fasting conditions but was restored in response to the nicotinamide challenge. Altered levels of metabolites situated downstream of NNMT and in neighboring biochemical pathways provided further evidence of a baseline defect in NNMT activity. To date, this is the only report of a critical defect in NNMT activity manifesting in adulthood and leading to neurodegenerative disease. Altogether, this study serves as an important reference in the rare disease literature and also demonstrates the utility of metabolomics as a diagnostic tool for uncharacterized metabolic diseases.
Collapse
Affiliation(s)
| | - John H. Newman
- Vanderbilt University Medical Center, Nashville, TN 37235, USA
| | | | | | - Rizwan Hamid
- Vanderbilt University Medical Center, Nashville, TN 37235, USA
| | - Joy Cogan
- Vanderbilt University Medical Center, Nashville, TN 37235, USA
| | - Joshua P. Fessel
- National Institutes of Health, National Center for Advancing Translational Sciences, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
34
|
Damaiyanti DW, Tsai ZY, Masbuchin AN, Huang CY, Liu PY. Interplay between fish oil, obesity and cardiometabolic diabetes. J Formos Med Assoc 2023:S0929-6646(23)00098-0. [DOI: 10.1016/j.jfma.2023.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/24/2023] [Accepted: 03/14/2023] [Indexed: 03/31/2023] Open
|
35
|
Paik B, Tong L. Polymorphisms in Lymphotoxin-Alpha as the "Missing Link" in Prognosticating Favourable Response to Omega-3 Supplementation for Dry Eye Disease: A Narrative Review. Int J Mol Sci 2023; 24:ijms24044236. [PMID: 36835647 PMCID: PMC9965360 DOI: 10.3390/ijms24044236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/08/2023] [Accepted: 02/16/2023] [Indexed: 02/23/2023] Open
Abstract
Elements of inflammation are found in almost all chronic ocular surface disease, such as dry eye disease. The chronicity of such inflammatory disease speaks to the dysregulation of innate and adaptive immunity. There has been a rising interest in omega-3 fatty acids to attenuate inflammation. While many cell-based (in vitro) studies verify the anti-inflammatory effects of omega-3, different human trials report discordant outcomes after supplementation. This may be due to underlying inter-individual differences in inflammatory cytokine metabolism (such as tumor necrosis factor alpha (TNF-α)), in which genetic differences might play a role, such as polymorphisms in the lymphotoxin alpha (LT-α) gene. Inherent TNF-α production affects omega-3 response and is also associated with LT-α genotype. Therefore, LT-α genotype might predict omega-3 response. Using the NIH dbSNP, we analyzed the relative frequency of LT-α polymorphisms among various ethnicities, each weighted by the genotype's probability of positive response. While the probability of response for unknown LT-α genotypes are 50%, there is greater distinction in response rates between various genotypes. Hence, there is value in genetic testing to prognosticate an individual's response to omega-3.
Collapse
Affiliation(s)
- Benjamin Paik
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| | - Louis Tong
- Department of Cornea and External Eye Disease, Singapore National Eye Center, Singapore 168751, Singapore
- Ocular Surface Research Group, Singapore Eye Research Institute, Singapore 169856, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore 169857, Singapore
- Correspondence: ; Tel.: +65-6227-7255
| |
Collapse
|
36
|
Shabbir MA, Mehak F, Khan MR, Ahmed W, Nawaz MF, Hassoun A, Bhat ZF, Aadil RM. Unraveling the role of natural functional oils in modulating osteoarthritis related complications. Crit Rev Food Sci Nutr 2023; 64:6881-6901. [PMID: 36762672 DOI: 10.1080/10408398.2023.2176815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Osteoarthritis (OA) is a common joint disease and has been studied extensively in recent years as no promising therapy available so far for its treatment and remains a great challenge for health care specialists. Although the identification of some major mechanisms that contribute to this disease suggests a plethora of bioactive agents in tackling the associated complications yet OA's pathophysiology is still poorly understood owing to complex mechanistic changes observed. Experimental research is now exploring a wide range of therapeutically effective agents in an effort to find a way to repair OA-related joint degeneration and halt it from getting worse. Data was acquired and reviewed from most relevant and recent studies. This review summarizes the studies that are currently available and focuses on how various unconventional functional oils affect osteoarthritis and the affected joint tissues. An analysis of the recent scientific literature allowed us to highlight the potential anti-arthritic properties of edible oils and their main constituents, which seems to suggest an interesting new potential therapeutic application. Due to eccentric nature of OA, it is necessary to concentrate initially on the management of symptoms. The evidence supporting functional oils chondroprotective potential is still accumulating, underpinning a global need for more sustainable natural sources of treatment. More clinical research that focuses on the consequences of long-term treatment, possible negative effects, and epigenetic implications is necessary to get optimistic results. However, different animal or clinical studies suggest that linolenic and linoleic fatty acids decreased chondrocyte oxidative stress, cartilage breakdown, and expression of inflammatory markers. Distinct fatty acids along with minor components of oils also reduced the generation of prostaglandins and decreased oxidative stress. Furthermore, the potential roles of the main components of edible oils and possible negative results (if any) are also reported. While no severe side effects have been reported for any edible oils. Overall, these studies identify and support the use of functional oils as an adjuvant therapy for the management of OA and as a means of symptomatic alleviation for OA patients. However, to prove the effectiveness or to draw precise conclusions, high-quality clinical trials are required.
Collapse
Affiliation(s)
- Muhammad Asim Shabbir
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Fakiha Mehak
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Moazzam Rafiq Khan
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Waqar Ahmed
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Furqan Nawaz
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Abdo Hassoun
- Univ. Littoral Côte d'Opale, UMRt 1158 BioEcoAgro, USC ANSES, INRAe, Univ. Artois, Univ. Lille, Univ. Picardie Jules Verne, Univ. Liège, Junia, France
- Sustainable AgriFoodtech Innovation & Research (SAFIR), Arras, France
| | - Zuhaib F Bhat
- Division of Livestock Products Technology, SKUAST-J, Jammu, J&K, India
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
37
|
Panezai J, van Dyke T. Polyunsaturated Fatty Acids and Their Immunomodulatory Actions in Periodontal Disease. Nutrients 2023; 15:nu15040821. [PMID: 36839179 PMCID: PMC9965392 DOI: 10.3390/nu15040821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/20/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023] Open
Abstract
Polyunsaturated fatty acids (PUFAs) are a diverse set of molecules with remarkable contributions to human physiology. They not only serve as sources of fuel but also cellular structural components as well as substrates that provide bioactive metabolites. A growing body of evidence demonstrates their role in inflammation. Inflammation in the presence of a polymicrobial biofilm contributes to the pathology of periodontitis. The role PUFAs in modulating immuno-inflammatory reactions in periodontitis is only beginning to be uncovered as research continues to unravel their far-reaching immunologic implications.
Collapse
Affiliation(s)
- Jeneen Panezai
- Department of Applied Oral Sciences, The Forsyth Institute, Cambridge, MA 02142, USA
- Department of Microbiology, Faculty of Life Sciences and Informatics, Balochistan University of Information Technology, Engineering and Management Sciences, Quetta 87300, Pakistan
| | - Thomas van Dyke
- Department of Applied Oral Sciences, The Forsyth Institute, Cambridge, MA 02142, USA
- Centre for Clinical and Translational Research, The Forsyth Institute, Cambridge, MA 02142, USA
- Department of Oral Medicine, Infection and Immunity, Harvard Faculty of Medicine, Boston, MA 02115, USA
- Correspondence:
| |
Collapse
|
38
|
Omega-3 polyunsaturated fatty acids and corneal nerve health: Current evidence and future directions. Ocul Surf 2023; 27:1-12. [PMID: 36328309 DOI: 10.1016/j.jtos.2022.10.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/24/2022] [Accepted: 10/27/2022] [Indexed: 11/07/2022]
Abstract
Corneal nerves play a key role in maintaining ocular surface integrity. Corneal nerve damage, from local or systemic conditions, can lead to ocular discomfort, pain, and, if poorly managed, neurotrophic keratopathy. Omega-3 polyunsaturated fatty acids (PUFAs) are essential dietary components that play a key role in neural development, maintenance, and function. Their potential application in modulating ocular and systemic inflammation has been widely reported. Omega-3 PUFAs and their metabolites also have neuroprotective properties and can confer benefit in neurodegenerative disease. Several preclinical studies have shown that topical administration of omega-3 PUFA-derived lipid mediators promote corneal nerve recovery following corneal surgery. Dietary omega-3 PUFA supplementation can also reduce corneal epithelial nerve loss and promote corneal nerve regeneration in diabetes. Omega-3 PUFAs and their lipid mediators thus show promise as therapeutic approaches to modulate corneal nerve health in ocular and systemic disease. This review discusses the role of dietary omega-3 PUFAs in maintaining ocular surface health and summarizes the possible applications of omega-3 PUFAs in the management of ocular and systemic conditions that cause corneal nerve damage. In examining the current evidence, this review also highlights relatively underexplored applications of omega-3 PUFAs in conferring neuroprotection and addresses their therapeutic potential in mediating corneal nerve regeneration.
Collapse
|
39
|
West AL, von Gerichten J, Irvine NA, Miles EA, Lillycrop KA, Calder PC, Fielding BA, Burdge GC. Fatty acid composition and metabolic partitioning of α-linolenic acid are contingent on life stage in human CD3 + T lymphocytes. Front Immunol 2022; 13:1079642. [PMID: 36582247 PMCID: PMC9792684 DOI: 10.3389/fimmu.2022.1079642] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 11/23/2022] [Indexed: 12/15/2022] Open
Abstract
Introduction Immune function changes across the life course; the fetal immune system is characterised by tolerance while that of seniors is less able to respond effectively to antigens and is more pro-inflammatory than in younger adults. Lipids are involved centrally in immune function but there is limited information about how T cell lipid metabolism changes during the life course. Methods and Results We investigated whether life stage alters fatty acid composition, lipid droplet content and α-linolenic acid (18:3ω-3) metabolism in human fetal CD3+ T lymphocytes and in CD3+ T lymphocytes from adults (median 41 years) and seniors (median 70 years). Quiescent fetal T cells had higher saturated (SFA), monounsaturated fatty acid (MUFA), and ω-6 polyunsaturated fatty acid (PUFA) contents than adults or seniors. Activation-induced changes in fatty acid composition differed between life stages. The principal metabolic fates of [13C]18:3ω-3 were constitutive hydroxyoctadecatrienoic acid synthesis and β-oxidation and carbon recycling into SFA and MUFA. These processes declined progressively across the life course. Longer chain ω-3 PUFA synthesis was a relatively minor metabolic fate of 18:3ω-3 at all life stages. Fetal and adult T lymphocytes had similar lipid droplet contents, which were lower than in T cells from seniors. Variation in the lipid droplet content of adult T cells accounted for 62% of the variation in mitogen-induced CD69 expression, but there was no significant relationship in fetal cells or lymphocytes from seniors. Discussion Together these findings show that fatty acid metabolism in human T lymphocytes changes across the life course in a manner that may facilitate the adaptation of immune function to different life stages.
Collapse
Affiliation(s)
- Annette L. West
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, Hampshire, United Kingdom
| | - Johanna von Gerichten
- Department of Nutritional Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, United Kingdom
| | - Nicola A. Irvine
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, Hampshire, United Kingdom
| | - Elizabeth A. Miles
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, Hampshire, United Kingdom
| | - Karen A. Lillycrop
- Centre for Biological Sciences, Faculty of Natural and Environmental Sciences, University of Southampton, Southampton, Hampshire, United Kingdom
| | - Philip C. Calder
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, Hampshire, United Kingdom,National Institute for Health and Care Research (NIHR) Southampton Biomedical Research Centre, University Hospital Southampton National Health Service (NHS) Foundation Trust and University of Southampton, Southampton, Hampshire, United Kingdom
| | - Barbara A. Fielding
- Department of Nutritional Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, United Kingdom
| | - Graham C. Burdge
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, Hampshire, United Kingdom,*Correspondence: Graham C. Burdge,
| |
Collapse
|
40
|
Domínguez-Balmaseda D, Del-Blanco-Muñiz JÁ, González-de-la-Flor A, García-Pérez-de-Sevilla G. Associations between Fatty Acid Intake and Tension-Type Headache: A Cross-Sectional Study. J Clin Med 2022; 11:jcm11237139. [PMID: 36498721 PMCID: PMC9736193 DOI: 10.3390/jcm11237139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/02/2022] Open
Abstract
INTRODUCTION Patients with tension-type headache (TTH) are characterized by recurrent pain that can become disabling. Identifying the dietary triggers of headaches has led to defining dietary strategies to prevent this disease. In fact, excessive dietary intake of Omega-6 (ω-6) fatty acids, or an ω-6: ω3 ≥ 5 ratio, typical of Western diets, has been associated with a higher prevalence of headaches. The objectives of the present study were to compare dietary fatty acid intake between participants with and without chronic TTH and to investigate the association between dietary fatty acid intake, pain characteristics, and quality of life in patients with chronic TTH. METHODS An observational study was conducted, comparing healthy participants (n = 24) and participants diagnosed with chronic TTH for more than six months (n = 24). The variables analyzed were dietary fatty acid intake variables, the Headache Impact Test (HIT-6), and the characteristics of the headache episodes (intensity, frequency, and duration). RESULTS The TTH group reported a significantly higher intake of saturated fatty acids (SFAs) but similar intakes of monounsaturated fatty acids (MUFAs), polyunsaturated fatty acids (PUFAs), and ω-6: ω-3 ratio when compared to controls. Furthermore, in the TTH group, the Ω-6 fatty acid intake was associated with more intense headache episodes. In addition, the TTH group reported a significant impact of headaches on their activities of daily living according to the HIT-6. CONCLUSIONS Higher intakes of SFAs and Ω-6 fatty acids were associated with more severe headache episodes in patients with TTH. Therefore, the characteristics of the diet, in particular the dietary fatty acid intake, should be considered when treating these patients.
Collapse
Affiliation(s)
- Diego Domínguez-Balmaseda
- Department of Physiotherapy, Faculty of Sport Sciences, Universidad Europea de Madrid, 28670 Villaviciosa de Odón, Spain
- Masmicrobiota Group, Faculty of Health Sciences, Universidad Europea de Madrid, 28670 Villaviciosa de Odón, Spain
- Correspondence:
| | - José Ángel Del-Blanco-Muñiz
- Department of Physiotherapy, Faculty of Sport Sciences, Universidad Europea de Madrid, 28670 Villaviciosa de Odón, Spain
| | - Angel González-de-la-Flor
- Department of Physiotherapy, Faculty of Sport Sciences, Universidad Europea de Madrid, 28670 Villaviciosa de Odón, Spain
| | | |
Collapse
|
41
|
Liu S, Xing J, Zheng Z, Liu Z, Song F, Liu S. Effect of Qishen granules on isoproterenol-induced chronic heart failure in rats evaluated by comprehensive metabolomics. Phytother Res 2022; 36:4573-4586. [PMID: 35906729 DOI: 10.1002/ptr.7576] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 12/13/2022]
Abstract
Qishen granules (QSG), a Chinese herbal formula, has been widely used in the treatment of myocardial ischemic chronic heart failure (CHF) for many years, but its mechanism of action is still unclear. In this study, comprehensive metabolomics was used to investigate the underlying protective mechanisms of QSG in an isoproterenol-induced CHF rat model. A total of 14 biomarkers were identified in serum and 34 biomarkers in urine, which were mainly related to fatty acid metabolism, bile acid metabolism, amino acid metabolism, purine metabolism, vitamin metabolism, and inflammation. Finally, 22 markers were selected for quantitative analysis of serum, urine, and fecal samples to verify the reliability of the results of untargeted metabolomics, and the results were similar to those of untargeted metabolomics. The correlation analysis showed that the targeted quantitative endogenous metabolites and CHF-related indexes were closely related. QSG might alleviate myocardial inflammatory response, oxidative stress, and amino acid metabolism disorder in CHF by regulating the level of endogenous metabolites. This study revealed QSG could regulate potential biomarkers and correlated metabolic pathway, which provided support for the further application of QSG.
Collapse
Affiliation(s)
- Shuxin Liu
- National Center of Mass Spectrometry in Changchun and Jilin Provincial Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China.,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, China
| | - Junpeng Xing
- National Center of Mass Spectrometry in Changchun and Jilin Provincial Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Zhong Zheng
- National Center of Mass Spectrometry in Changchun and Jilin Provincial Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Zhiqiang Liu
- National Center of Mass Spectrometry in Changchun and Jilin Provincial Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China.,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, China
| | - Fengrui Song
- National Center of Mass Spectrometry in Changchun and Jilin Provincial Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China.,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, China
| | - Shu Liu
- National Center of Mass Spectrometry in Changchun and Jilin Provincial Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China.,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, China
| |
Collapse
|
42
|
Elisia I, Yeung M, Kowalski S, Wong J, Rafiei H, Dyer RA, Atkar-Khattra S, Lam S, Krystal G. Omega 3 supplementation reduces C-reactive protein, prostaglandin E 2 and the granulocyte/lymphocyte ratio in heavy smokers: An open-label randomized crossover trial. Front Nutr 2022; 9:1051418. [PMID: 36532545 PMCID: PMC9751896 DOI: 10.3389/fnut.2022.1051418] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/17/2022] [Indexed: 01/19/2024] Open
Abstract
OBJECTIVES Given the current controversy concerning the efficacy of omega 3 supplements at reducing inflammation, we evaluated the safety and efficacy of omega 3 on reducing inflammation in people with a 6-year lung cancer risk >1.5% and a C reactive protein (CRP) level >2 mg/L in a phase IIa cross-over study. MATERIALS AND METHODS Forty-nine healthy participants ages 55 to 80, who were still smoking or had smoked in the past with ≥30 pack-years smoking history, living in British Columbia, Canada, were randomized in an open-label trial to receive 2.4 g eicosapentaenoic acid (EPA) + 1.2 g docosahexaenoic acid (DHA)/day for 6 months followed by observation for 6 months or observation for 6 months first and then active treatment for the next 6 months. Blood samples were collected over 1 year for measurement of plasma CRP, plasma and red blood cell (RBC) membrane levels of EPA, DHA and other fatty acids, Prostaglandin E2 (PGE2), Leukotriene B4 (LTB4) and an inflammatory marker panel. RESULTS Twenty one participants who began the trial within the active arm completed the trial while 20 participants who started in the control arm completed the study. Taking omega 3 resulted in a significant decrease in plasma CRP and PGE2 but not LTB4 levels. Importantly, the effect size for the primary outcome, CRP values, at the end of the intervention relative to baseline was medium (Cohen's d = 0.56). DHA, but not EPA levels in RBC membranes inversely correlated with PGE2 levels. Omega 3 also led to a significant reduction in granulocytes and an increase in lymphocytes. These high-dose omega 3 supplements were well tolerated, with only minor gastrointestinal symptoms in a subset of participants. CONCLUSION Omega 3 fatty acids taken at 3.6 g/day significantly reduce systemic inflammation with negligible adverse health effects in people who smoke or have smoked and are at high risk of lung cancer.ClinicalTrials.gov, NCT number: NCT03936621.
Collapse
Affiliation(s)
- Ingrid Elisia
- The Terry Fox Laboratory, BC Cancer Research Centre, Vancouver, BC, Canada
| | - Michelle Yeung
- The Terry Fox Laboratory, BC Cancer Research Centre, Vancouver, BC, Canada
| | - Sara Kowalski
- The Terry Fox Laboratory, BC Cancer Research Centre, Vancouver, BC, Canada
| | - Jennifer Wong
- The Terry Fox Laboratory, BC Cancer Research Centre, Vancouver, BC, Canada
| | - Hossein Rafiei
- The Terry Fox Laboratory, BC Cancer Research Centre, Vancouver, BC, Canada
| | - Roger A. Dyer
- Analytical Core for Metabolomics and Nutrition, BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Sukhinder Atkar-Khattra
- Department of Integrative Oncology, British Columbia Cancer Research Institute, Vancouver, BC, Canada
| | - Stephen Lam
- Department of Integrative Oncology, British Columbia Cancer Research Institute, Vancouver, BC, Canada
| | - Gerald Krystal
- The Terry Fox Laboratory, BC Cancer Research Centre, Vancouver, BC, Canada
| |
Collapse
|
43
|
Lê A, Mantel M, Marchix J, Bodinier M, Jan G, Rolli-Derkinderen M. Inflammatory bowel disease therapeutic strategies by modulation of the microbiota: how and when to introduce pre-, pro-, syn-, or postbiotics? Am J Physiol Gastrointest Liver Physiol 2022; 323:G523-G553. [PMID: 36165557 DOI: 10.1152/ajpgi.00002.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Inflammatory bowel diseases (IBD), a heterogeneous group of inflammatory conditions that encompass both ulcerative colitis and Crohn's disease, represent a major public health concern. The etiology of IBD is not yet fully understood and no cure is available, with current treatments only showing long-term effectiveness in a minority of patients. A need to increase our knowledge on IBD pathophysiology is growing, to define preventive measures, to improve disease outcome, and to develop new effective and lasting treatments. IBD pathogenesis is sustained by aberrant immune responses, associated with alterations of the intestinal epithelial barrier (IEB), modifications of the enteric nervous system, and changes in microbiota composition. Currently, most of the treatments target the inflammation and the immune system, but holistic approaches targeting lifestyle and diet improvements are emerging. As dysbiosis is involved in IBD pathogenesis, pre-, pro-, syn-, and postbiotics are used/tested to reduce the inflammation or strengthen the IEB. The present review will resume these works, pointing out the stage of life, the duration, and the environmental conditions that should go along with microbiota or microbiota-derived treatments.
Collapse
Affiliation(s)
- Amélie Lê
- The Enteric Nervous System in Gut and Brain Disorders, Institut des Maladies de l'Appareil Digestif, Nantes Université, Institut National pour la Santé et la Recherche Médicale, Nantes, France
| | - Marine Mantel
- The Enteric Nervous System in Gut and Brain Disorders, Institut des Maladies de l'Appareil Digestif, Nantes Université, Institut National pour la Santé et la Recherche Médicale, Nantes, France
- Unité Mixte de Recherche Science et Technologie du Lait et de l'Oeuf, Agrocampus Ouest, Institut Agro, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Rennes, France
| | - Justine Marchix
- The Enteric Nervous System in Gut and Brain Disorders, Institut des Maladies de l'Appareil Digestif, Nantes Université, Institut National pour la Santé et la Recherche Médicale, Nantes, France
| | - Marie Bodinier
- Unité de Recherche 1268 Biopolymères Interactions Assemblages, I Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Pays de la Loire, Nantes, France
| | - Gwénaël Jan
- Unité Mixte de Recherche Science et Technologie du Lait et de l'Oeuf, Agrocampus Ouest, Institut Agro, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Rennes, France
| | - Malvyne Rolli-Derkinderen
- The Enteric Nervous System in Gut and Brain Disorders, Institut des Maladies de l'Appareil Digestif, Nantes Université, Institut National pour la Santé et la Recherche Médicale, Nantes, France
| |
Collapse
|
44
|
Affiliation(s)
- Sandro La Vignera
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Livia Basile
- Department of Chemical Sciences, University of Catania, Catania, Italy
| |
Collapse
|
45
|
Aravagiri K, Ali A, Wang HC, Candido KD, Knezevic NN. Identifying molecular mechanisms of acute to chronic pain transition and potential drug targets. Expert Opin Ther Targets 2022; 26:801-810. [DOI: 10.1080/14728222.2022.2137404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Kannan Aravagiri
- Department of Anesthesiology, Advocate Illinois Masonic Medical Center, Chicago, IL, USA
| | - Adam Ali
- Department of Anesthesiology, Advocate Illinois Masonic Medical Center, Chicago, IL, USA
| | - Hank C Wang
- Department of Anesthesiology, Advocate Illinois Masonic Medical Center, Chicago, IL, USA
- Chicago Medical School at Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Kenneth D Candido
- Department of Anesthesiology, Advocate Illinois Masonic Medical Center, Chicago, IL, USA
- Department of Anesthesiology, University of Illinois, Chicago, IL, USA
- Department of Surgery, University of Illinois, Chicago, IL, USA
| | - Nebojsa Nick Knezevic
- Department of Anesthesiology, Advocate Illinois Masonic Medical Center, Chicago, IL, USA
- Department of Anesthesiology, University of Illinois, Chicago, IL, USA
- Department of Surgery, University of Illinois, Chicago, IL, USA
| |
Collapse
|
46
|
Spahr A, Divnic‐Resnik T. Impact of health and lifestyle food supplements on periodontal tissues and health. Periodontol 2000 2022; 90:146-175. [PMID: 35916868 PMCID: PMC9804634 DOI: 10.1111/prd.12455] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
According to the new classification, periodontitis is defined as a chronic multifactorial inflammatory disease associated with dysbiotic biofilms and characterized by progressive destruction of the tooth-supporting apparatus. This definition, based on the current scientific evidence, clearly indicates and emphasizes, beside the microbial component dental biofilm, the importance of the inflammatory reaction in the progressive destruction of periodontal tissues. The idea to modulate this inflammatory reaction in order to decrease or even cease the progressive destruction was, therefore, a logical consequence. Attempts to achieve this goal involve various kinds of anti-inflammatory drugs or medications. However, there is also an increasing effort in using food supplements or so-called natural food ingredients to modulate patients' immune responses and maybe even improve the healing of periodontal tissues. The aim of this chapter of Periodontology 2000 is to review the evidence of various food supplements and ingredients regarding their possible effects on periodontal inflammation and wound healing. This review may help researchers and clinicians to evaluate the current evidence and to stimulate further research in this area.
Collapse
Affiliation(s)
- Axel Spahr
- Discipline of Periodontics, School of Dentistry, Faculty of Medicine and HealthThe University of SydneySydneyNew South WalesAustralia
| | - Tihana Divnic‐Resnik
- Discipline of Periodontics, School of Dentistry, Faculty of Medicine and HealthThe University of SydneySydneyNew South WalesAustralia
| |
Collapse
|
47
|
Association of Serum Lipid Level with Meibum Biosynthesis and Meibomian Gland Dysfunction: A Review. J Clin Med 2022; 11:jcm11144010. [PMID: 35887773 PMCID: PMC9323051 DOI: 10.3390/jcm11144010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/27/2022] [Accepted: 07/05/2022] [Indexed: 11/16/2022] Open
Abstract
The primary role of meibomian glands (MGs) is to actively synthesize and secret lipids and proteins spread onto the tear film, and the glandular lipids promote tear stability, prevent evaporation, and reduce friction. Meibomian gland dysfunction (MGD) is the leading cause of dry eye disease and one of the most common ophthalmic problems worldwide. MGs are densely innervated and regulated by hormones and growth factors. However, since the polar and nonpolar lipids are produced through processes in MGs that are not completely understood, a relevant question has been raised: Would the altered systemic lipids metabolism affect the physiology and structure of MGs? This review introduces the recent update regarding the relationships between serum lipid and MGD in clinical and basic research while providing answers to this question. A causal relationship remains to be established; however, serum lipid level or dyslipidemia may be related to MGD directly or indirectly, or both. Further studies are warranted to establish the role of serum lipid level and meibocyte differentiation/maturation and lipid synthesis.
Collapse
|
48
|
Fu Y, Yang Y, Zhu L, Chen J, Yu N, Zhao M. Effect of dietary n-6: n-3 Poly-Unsaturated fatty acids ratio on gestational diabetes mellitus: a prospective cohort. Gynecol Endocrinol 2022; 38:583-587. [PMID: 35549805 DOI: 10.1080/09513590.2022.2073995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
OBJECTIVE The aim of this study was to investigate the relationship between dietary n-6: n-3 poly-unsaturated fatty acids (PUFA) ratio and the risk of developing gestational diabetes mellitus (GDM). MATERIALS AND METHODS A total of 100 pregnant women were prospectively included for detailed information on dietary intake at 16-18 weeks evaluated using a three-day food record, and subsequent GDM diagnosis at 24-28 weeks. Participants were divided into two groups for analysis: GDM group (n = 22) and control group (n = 78) based on oral glucose tolerance test results performed between 24 and 28 weeks. RESULTS The average dietary n-6: n-3 PUFA ratio in the control group was 5.63 ± 2.12 and that in the GDM group was 8.35 ± 3.45, within a significant difference (p < .05). A significant difference was associated with a higher dietary n-6: n-3 PUFA ratio and GDM (adjusted odds ratio = 4.29, 95%confidence interval:1.303, 14.124). CONCLUSIONS Higher dietary n-6: n-3 PUFA ratio was associated with higher odds of GDM. Given the small sample, further studies are required to confirm this hypothesis.
Collapse
Affiliation(s)
- Yueqi Fu
- School of Nursing, Anhui Medical University, Hefei, Anhui, China
| | - Ya Yang
- Anhui No.2 Provincial People's Hospital, Hefei, Anhui, China
| | - Liyuan Zhu
- School of Nursing, Anhui Medical University, Hefei, Anhui, China
| | - Jing Chen
- School of Nursing, Anhui Medical University, Hefei, Anhui, China
| | - Ningning Yu
- School of Nursing, Anhui Medical University, Hefei, Anhui, China
| | - Mei Zhao
- School of Nursing, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
49
|
Yang T, Zhao J, Liu F, Li Y. Lipid metabolism and endometrial receptivity. Hum Reprod Update 2022; 28:858-889. [PMID: 35639910 DOI: 10.1093/humupd/dmac026] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/27/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Obesity has now been recognized as a high-risk factor for reproductive health. Although remarkable advancements have been made in ART, a considerable number of infertile obese women still suffer from serial implantation failure, despite the high quality of embryos transferred. Although obesity has long been known to exert various deleterious effects on female fertility, the underlying mechanisms, especially the roles of lipid metabolism in endometrial receptivity, remain largely elusive. OBJECTIVE AND RATIONALE This review summarizes current evidence on the impacts of several major lipids and lipid-derived mediators on the embryonic implantation process. Emerging methods for evaluating endometrial receptivity, for example transcriptomic and lipidomic analysis, are also discussed. SEARCH METHODS The PubMed and Embase databases were searched using the following keywords: (lipid or fatty acid or prostaglandin or phospholipid or sphingolipid or endocannabinoid or lysophosphatidic acid or cholesterol or progesterone or estrogen or transcriptomic or lipidomic or obesity or dyslipidemia or polycystic ovary syndrome) AND (endometrial receptivity or uterine receptivity or embryo implantation or assisted reproductive technology or in vitro fertilization or embryo transfer). A comprehensive literature search was performed on the roles of lipid-related metabolic pathways in embryo implantation published between January 1970 and March 2022. Only studies with original data and reviews published in English were included in this review. Additional information was obtained from references cited in the articles resulting from the literature search. OUTCOMES Recent studies have shown that a fatty acids-related pro-inflammatory response in the embryo-endometrium boundary facilitates pregnancy via mediation of prostaglandin signaling. Phospholipid-derived mediators, for example endocannabinoids, lysophosphatidic acid and sphingosine-1-phosphate, are associated with endometrial receptivity, embryo spacing and decidualization based on evidence from both animal and human studies. Progesterone and estrogen are two cholesterol-derived steroid hormones that synergistically mediate the structural and functional alterations in the uterus ready for blastocyst implantation. Variations in serum cholesterol profiles throughout the menstrual cycle imply a demand for steroidogenesis at the time of window of implantation (WOI). Since 2002, endometrial transcriptomic analysis has been serving as a diagnostic tool for WOI dating. Numerous genes that govern lipid homeostasis have been identified and, based on specific alterations of lipidomic signatures differentially expressed in WOI, lipidomic analysis of endometrial fluid provides a possibility for non-invasive diagnosis of lipids alterations during the WOI. WIDER IMPLICATIONS Given that lipid metabolic dysregulation potentially plays a role in infertility, a better understanding of lipid metabolism could have significant clinical implications for the diagnosis and treatment of female reproductive disorders.
Collapse
Affiliation(s)
- Tianli Yang
- Reproductive Medicine Center, Xiangya Hospital of Central South University, Changsha, P.R. China.,Clinical Research Center for Women's Reproductive Health in Hunan Province, Changsha, P.R. China
| | - Jing Zhao
- Reproductive Medicine Center, Xiangya Hospital of Central South University, Changsha, P.R. China.,Clinical Research Center for Women's Reproductive Health in Hunan Province, Changsha, P.R. China
| | - Feng Liu
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, and Key Laboratory of Diabetes Immunology, Ministry of Education, The Second Xiangya Hospital of Central South University, Changsha, P.R. China
| | - Yanping Li
- Reproductive Medicine Center, Xiangya Hospital of Central South University, Changsha, P.R. China.,Clinical Research Center for Women's Reproductive Health in Hunan Province, Changsha, P.R. China
| |
Collapse
|
50
|
Shen J, Zhang L, Wang Y, Chen Z, Ma J, Fang X, Das UN, Yao K. Beneficial Actions of Essential Fatty Acids in Streptozotocin-Induced Type 1 Diabetes Mellitus. Front Nutr 2022; 9:890277. [PMID: 35669071 PMCID: PMC9164285 DOI: 10.3389/fnut.2022.890277] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 03/31/2022] [Indexed: 12/28/2022] Open
Abstract
The essential fatty acids (EFA), n3 alpha-linolenic acid (ALA), and n6 linoleic acid (LA) are of benefit in diabetes mellitus, but their mechanisms of action are unknown. We, therefore, examined the effects of EFAs on the metabolism, gut microbiota, and inflammatory and retinal histopathology indices in streptozotocin (STZ)-induced type 1 diabetes mellitus (T1DM) animals, and we assessed the levels of vitreal lipoxin A4 (LXA4)-derived from LA-in subjects with diabetic retinopathy (DR). STZ-induced T1DM rats received LA or ALA 100 μg/day intraperitoneally on alternate days for 21 days, and their blood glucose; lipid profile; plasma, hepatic, and retinal fatty acid profiles (by gas chromatography); retinal histology; activities of hepatic and retinal desaturases; and inflammatory markers (by qRT-PCR) were evaluated. Gut microbiota composition was assayed by 16S rDNA sequencing technology of the fecal samples, and their short-chain fatty acids and bile acids were assayed by gas chromatography, liquid chromatography coupled with tandem mass spectrometry, respectively. The human vitreal fatty acid profiles of subjects with proliferative DR and LXA4 levels were measured. LA and ALA significantly improved the plasma glucose and lipid levels; increased the abundance of Ruminococcaceae (the ALA-treated group), Alloprevotella, Prevotellaceae_Ga6A1_group, Ruminococcaceae_UCG_010, and Ruminococcus_1 (the LA-treated group) bacteria; enhanced acetate and butyrate levels; and augmented fecal and hepatic concentrations of cholic acid, chenodeoxycholic acid, and tauro ursodeoxycholic acid in ALA- and LA-treated animals. Significant STZ-induced decreases in plasma LA, gamma-linolenic acid, arachidonic acid, and ALA levels reverted to near normal, following LA and ALA treatments. Significant changes in the expression of desaturases; COX-2, 5-LOX, and 12-LOX enzymes; and cytokines in T1DM were reverted to near normal by EFAs. DR subjects also had low retinal LXA4 levels. The results of the present study show that ALA and LA are of significant benefit in reversing metabolism, gut microbiota, and inflammatory and retinal index changes seen in T1DM, suggesting that EFAs are of benefit in diabetes mellitus.
Collapse
Affiliation(s)
- Junhui Shen
- Eye Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Ophthalmology of Zhejiang Province, Hangzhou, China
| | - Li Zhang
- Eye Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Ophthalmology of Zhejiang Province, Hangzhou, China
| | - Yuanqi Wang
- Eye Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Ophthalmology of Zhejiang Province, Hangzhou, China
| | - Zhiqing Chen
- Eye Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Ophthalmology of Zhejiang Province, Hangzhou, China
| | - Jian Ma
- Eye Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Ophthalmology of Zhejiang Province, Hangzhou, China
| | - Xiaoyun Fang
- Eye Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Ophthalmology of Zhejiang Province, Hangzhou, China
| | - Undurti N. Das
- UND Life Sciences, Battle Ground, WA, United States
- Department of Biotechnology, Indian Institute of Technology, Kandi, India
| | - Ke Yao
- Eye Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Ophthalmology of Zhejiang Province, Hangzhou, China
| |
Collapse
|