1
|
Langguth M, Maranou E, Koskela SA, Elenius O, Kallionpää RE, Birkman EM, Pulkkinen OI, Sundvall M, Salmi M, Figueiredo CR. TIMP-1 is an activator of MHC-I expression in myeloid dendritic cells with implications for tumor immunogenicity. Genes Immun 2024; 25:188-200. [PMID: 38777826 PMCID: PMC11178497 DOI: 10.1038/s41435-024-00274-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 04/11/2024] [Accepted: 04/19/2024] [Indexed: 05/25/2024]
Abstract
Immune checkpoint therapies (ICT) for advanced solid tumors mark a new milestone in cancer therapy. Yet their efficacy is often limited by poor immunogenicity, attributed to inadequate priming and generation of antitumor T cells by dendritic cells (DCs). Identifying biomarkers to enhance DC functions in such tumors is thus crucial. Tissue Inhibitor of Metalloproteinases-1 (TIMP-1), recognized for its influence on immune cells, has an underexplored relationship with DCs. Our research reveals a correlation between high TIMP1 levels in metastatic melanoma and increased CD8 + T cell infiltration and survival. Network studies indicate a functional connection with HLA genes. Spatial transcriptomic analysis of a national melanoma cohort revealed that TIMP1 expression in immune compartments associates with an HLA-A/MHC-I peptide loading signature in lymph nodes. Primary human and bone-marrow-derived DCs secrete TIMP-1, which notably increases MHC-I expression in classical type 1 dendritic cells (cDC1), especially under melanoma antigen exposure. TIMP-1 affects the immunoproteasome/TAP complex, as seen by upregulated PSMB8 and TAP-1 levels of myeloid DCs. This study uncovers the role of TIMP-1 in DC-mediated immunogenicity with insights into CD8 + T cell activation, providing a foundation for mechanistic exploration and highlighting its potential as a new target for combinatorial immunotherapy to enhance ICT effectiveness.
Collapse
Affiliation(s)
- Miriam Langguth
- Medical Immune Oncology Research Group (MIORG), Institute of Biomedicine, Faculty of Medicine, University of Turku, Turku, Finland
| | - Eleftheria Maranou
- Medical Immune Oncology Research Group (MIORG), Institute of Biomedicine, Faculty of Medicine, University of Turku, Turku, Finland
| | - Saara A Koskela
- Medical Immune Oncology Research Group (MIORG), Institute of Biomedicine, Faculty of Medicine, University of Turku, Turku, Finland
| | - Oskar Elenius
- Medical Immune Oncology Research Group (MIORG), Institute of Biomedicine, Faculty of Medicine, University of Turku, Turku, Finland
| | - Roosa E Kallionpää
- Auria Biobank, University of Turku and Turku University Hospital, Turku, Finland
| | - Eva-Maria Birkman
- Department of Pathology, Laboratory Division, Turku University Hospital and University of Turku, Kiinamyllynkatu 10, 20520, Turku, Finland
| | - Otto I Pulkkinen
- Medical Immune Oncology Research Group (MIORG), Institute of Biomedicine, Faculty of Medicine, University of Turku, Turku, Finland
| | - Maria Sundvall
- Cancer Research Unit, Institute of Biomedicine, and FICAN West Cancer Center Laboratory, University of Turku, and Turku University Hospital, Kiinamyllynkatu 10, 20520, Turku, Finland
- Department of Oncology, Turku University Hospital, Turku, Finland
| | - Marko Salmi
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
- Institute of Biomedicine, University of Turku, Turku, Finland
- MediCity Research Laboratory, University of Turku, Turku, Finland
| | - Carlos R Figueiredo
- Medical Immune Oncology Research Group (MIORG), Institute of Biomedicine, Faculty of Medicine, University of Turku, Turku, Finland.
- Cancer Research Unit, Institute of Biomedicine, and FICAN West Cancer Center Laboratory, University of Turku, and Turku University Hospital, Kiinamyllynkatu 10, 20520, Turku, Finland.
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland.
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Tykistökatu 6, 20520, Turku, Finland.
| |
Collapse
|
2
|
Lee SB, Pan J, Xiong D, Palen K, Johnson B, Lubet RA, Shoemaker RH, Green JE, Fernando RI, Sei S, You M, Wang Y. Striking efficacy of a vaccine targeting TOP2A for triple-negative breast cancer immunoprevention. NPJ Precis Oncol 2023; 7:108. [PMID: 37880313 PMCID: PMC10600249 DOI: 10.1038/s41698-023-00461-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 09/29/2023] [Indexed: 10/27/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer that has a poor prognosis. TOP2A is a key enzyme in DNA replication and is a therapeutic target for breast and other cancers. TOP2A-specific Th1-promoting epitopes with optimal binding affinity to MHC II were identified using a combined scoring system. The multi-peptide TOP2A vaccine elicited a robust immunologic response in immunized mice, as demonstrated by the significant production of Th1 cytokines from immunized animals' splenocytes stimulated in vitro with TOP2A peptides. Anti-tumor efficacy of the TOP2A vaccine was demonstrated in a syngeneic TNBC mouse model, in which pre-graft preventive vaccination was associated with significantly decreased tumor growth as compared to adjuvant control. In a genetically engineered mouse (GEM) model of TNBC, vaccinated animals demonstrated a significant reduction in tumor incidence and average tumor volume compared to adjuvant control. Finally, we examined TCR sequences in CD4 tumor Infiltrating lymphocytes (TIL) from vaccinated mice and found that the TIL contained TCR sequences specific to the three vaccine peptides. These data indicate that our newly developed multi-peptide TOP2A vaccine is highly immunogenic, elicits TILs with vaccine specific TCRs, and is highly effective in preventing and intercepting TNBC development and progression in vivo.
Collapse
Affiliation(s)
- Sang Beom Lee
- Center for Cancer Prevention, Houston Methodist Cancer Center, Houston Methodist Research Institute, Weill Cornell College of Medicine, Houston, TX, USA
| | - Jing Pan
- Center for Cancer Prevention, Houston Methodist Cancer Center, Houston Methodist Research Institute, Weill Cornell College of Medicine, Houston, TX, USA
| | - Donghai Xiong
- Center for Cancer Prevention, Houston Methodist Cancer Center, Houston Methodist Research Institute, Weill Cornell College of Medicine, Houston, TX, USA
| | - Katie Palen
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Bryon Johnson
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Ronald A Lubet
- Chemopreventive Agent Development Research Group, Division of Cancer Prevention, National Cancer Institute, Bethesda, MD, USA
| | - Robert H Shoemaker
- Chemopreventive Agent Development Research Group, Division of Cancer Prevention, National Cancer Institute, Bethesda, MD, USA
| | - Jeffrey E Green
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Romaine Ingrid Fernando
- Chemopreventive Agent Development Research Group, Division of Cancer Prevention, National Cancer Institute, Bethesda, MD, USA
| | - Shizuko Sei
- Chemopreventive Agent Development Research Group, Division of Cancer Prevention, National Cancer Institute, Bethesda, MD, USA
| | - Ming You
- Center for Cancer Prevention, Houston Methodist Cancer Center, Houston Methodist Research Institute, Weill Cornell College of Medicine, Houston, TX, USA.
| | - Yian Wang
- Center for Cancer Prevention, Houston Methodist Cancer Center, Houston Methodist Research Institute, Weill Cornell College of Medicine, Houston, TX, USA.
| |
Collapse
|
3
|
Raman V, Howell LM, Bloom SMK, Hall CL, Wetherby VE, Minter LM, Kulkarni AA, Forbes NS. Intracellular Salmonella delivery of an exogenous immunization antigen refocuses CD8 T cells against cancer cells, eliminates pancreatic tumors and forms antitumor immunity. Front Immunol 2023; 14:1228532. [PMID: 37868996 PMCID: PMC10585021 DOI: 10.3389/fimmu.2023.1228532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 09/12/2023] [Indexed: 10/24/2023] Open
Abstract
Introduction Immunotherapies have shown great promise, but are not effective for all tumors types and are effective in less than 3% of patients with pancreatic ductal adenocarcinomas (PDAC). To make an immune treatment that is effective for more cancer patients and those with PDAC specifically, we genetically engineered Salmonella to deliver exogenous antigens directly into the cytoplasm of tumor cells. We hypothesized that intracellular delivery of an exogenous immunization antigen would activate antigen-specific CD8 T cells and reduce tumors in immunized mice. Methods To test this hypothesis, we administered intracellular delivering (ID) Salmonella that deliver ovalbumin as a model antigen into tumor-bearing, ovalbumin-vaccinated mice. ID Salmonella delivers antigens by autonomously lysing in cells after the induction of cell invasion. Results We showed that the delivered ovalbumin disperses throughout the cytoplasm of cells in culture and in tumors. This delivery into the cytoplasm is essential for antigen cross-presentation. We showed that co-culture of ovalbumin-recipient cancer cells with ovalbumin-specific CD8 T cells triggered a cytotoxic T cell response. After the adoptive transfer of OT-I CD8 T cells, intracellular delivery of ovalbumin reduced tumor growth and eliminated tumors. This effect was dependent on the presence of the ovalbumin-specific T cells. Following vaccination with the exogenous antigen in mice, intracellular delivery of the antigen cleared 43% of established KPC pancreatic tumors, increased survival, and prevented tumor re-implantation. Discussion This response in the immunosuppressive KPC model demonstrates the potential to treat tumors that do not respond to checkpoint inhibitors, and the response to re-challenge indicates that new immunity was established against intrinsic tumor antigens. In the clinic, ID Salmonella could be used to deliver a protein antigen from a childhood immunization to refocus pre-existing T cell immunity against tumors. As an off-the-shelf immunotherapy, this bacterial system has the potential to be effective in a broad range of cancer patients.
Collapse
Affiliation(s)
- Vishnu Raman
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA, United States
- Ernest Pharmaceuticals, LLC, Hadley, MA, United States
| | - Lars M. Howell
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA, United States
| | - Shoshana M. K. Bloom
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA, United States
| | - Christopher L. Hall
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA, United States
- Ernest Pharmaceuticals, LLC, Hadley, MA, United States
| | | | - Lisa M. Minter
- Molecular and Cell Biology Program, University of Massachusetts, Amherst, MA, United States
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, United States
- Institute for Applied Life Science, University of Massachusetts, Amherst, MA, United States
| | - Ashish A. Kulkarni
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA, United States
- Institute for Applied Life Science, University of Massachusetts, Amherst, MA, United States
| | - Neil S. Forbes
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA, United States
- Molecular and Cell Biology Program, University of Massachusetts, Amherst, MA, United States
- Institute for Applied Life Science, University of Massachusetts, Amherst, MA, United States
| |
Collapse
|
4
|
Araujo A, Safronova A, Burger E, López-Yglesias A, Giri S, Camanzo ET, Martin AT, Grivennikov S, Yarovinsky F. IFN-γ mediates Paneth cell death via suppression of mTOR. eLife 2021; 10:e60478. [PMID: 34633285 PMCID: PMC8570691 DOI: 10.7554/elife.60478] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 10/10/2021] [Indexed: 12/12/2022] Open
Abstract
Paneth cells constitutively produce antimicrobial peptides and growth factors that allow for intestinal homeostasis, host protection, and intestinal stem cell replication. Paneth cells rely heavily on the glycolytic metabolic program, which is in part controlled by the kinase complex Mechanistic target of rapamycin (mTORC1). Yet, little is known about mTOR importance in Paneth cell integrity under steady-state and inflammatory conditions. Our results demonstrate that IFN-γ, a crucial mediator of the intestinal inflammation, acts directly on murine Paneth cells to alter their mitochondrial integrity and membrane potential, resulting in an TORC1-dependent cell death mechanism distinct from canonical cell death pathways including apoptosis, necroptosis, and pyroptosis. These results were established with the purified cytokine and a physiologically relevant common Th1-inducing human parasite Toxoplasma gondii. Given the crucial role for IFN-γ, which is a cytokine frequently associated with the development of inflammatory bowel disease and compromised Paneth cell functions, the identified mechanisms underlying mTORC1-dependent Paneth cell death downstream of IFN-γ may provide promising novel approaches for treating intestinal inflammation.
Collapse
Affiliation(s)
- Alessandra Araujo
- Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical CenterNew YorkUnited States
| | - Alexandra Safronova
- Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical CenterNew YorkUnited States
| | - Elise Burger
- Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical CenterNew YorkUnited States
| | - Américo López-Yglesias
- Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical CenterNew YorkUnited States
| | - Shilpi Giri
- Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical CenterNew YorkUnited States
| | - Ellie T Camanzo
- Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical CenterNew YorkUnited States
| | - Andrew T Martin
- Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical CenterNew YorkUnited States
| | - Sergei Grivennikov
- Department of Medicine and Department of Biomedical Sciences, Cedars-Sinai Medical CenterLos AngelesUnited States
- Cancer Prevention and Control Program, Fox Chase Cancer CenterPhiladelphiaUnited States
| | - Felix Yarovinsky
- Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical CenterNew YorkUnited States
| |
Collapse
|
5
|
Lee AG, Scott JM, Fabbrizi MR, Jiang X, Sojka DK, Miller MJ, Baldridge MT, Yokoyama WM, Shin H. T cell response kinetics determines neuroinfection outcomes during murine HSV infection. JCI Insight 2020; 5:134258. [PMID: 32161194 PMCID: PMC7141405 DOI: 10.1172/jci.insight.134258] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 02/12/2020] [Indexed: 12/11/2022] Open
Abstract
Herpes simplex virus-2 (HSV-2) and HSV-1 both can cause genital herpes, a chronic infection that establishes a latent reservoir in the nervous system. Clinically, the recurrence frequency of HSV-1 genital herpes is considerably less than HSV-2 genital herpes, which correlates with reduced neuronal infection. The factors dictating the disparate outcomes of HSV-1 and HSV-2 genital herpes are unclear. In this study, we show that vaginal infection of mice with HSV-1 leads to the rapid appearance of mature DCs in the draining lymph node, which is dependent on an early burst of NK cell-mediated IFN-γ production in the vagina that occurs after HSV-1 infection but not HSV-2 infection. Rapid DC maturation after HSV-1 infection, but not HSV-2 infection, correlates with the accelerated generation of a neuroprotective T cell response and early accumulation of IFN-γ-producing T cells at the site of infection. Depletion of T cells or loss of IFN-γ receptor (IFN-γR) expression in sensory neurons both lead to a marked loss of neuroprotection only during HSV-1, recapitulating a prominent feature of HSV-2 infection. Our experiments reveal key differences in host control of neuronal HSV-1 and HSV-2 infection after genital exposure of mice, and they define parameters of a successful immune response against genital herpes.
Collapse
Affiliation(s)
| | | | | | | | - Dorothy K. Sojka
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | | | - Wayne M. Yokoyama
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | | |
Collapse
|
6
|
Hertoghs N, Pul LV, Geijtenbeek TBH. Mucosal dendritic cells in HIV-1 susceptibility: a critical role for C-type lectin receptors. Future Virol 2017. [DOI: 10.2217/fvl-2017-0020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Sexual transmission is the major route of HIV-1 infection worldwide. The interaction of HIV-1 with mucosal dendritic cells (DCs) might determine HIV-1 susceptibility as well as initial antiviral immunity controlling virus in the chronic phase. Different DC subsets reside in mucosal tissues and express specific C-type lectin receptors (CLRs) that interact with HIV-1 with different outcomes. HIV-1 has been shown to subvert CLRs for viral transmission and immune evasion, whereas CLRs can also protect against HIV-1 infection. Here, we will discuss the role of CLRs in HIV-1 transmission and adaptive immunity, and how the CLRs dictate the function of DCs in infection. Ultimately, understanding the interplay between CLRs and HIV-1 will lead to targeted approaches in the search for preventative measures.
Collapse
Affiliation(s)
- Nina Hertoghs
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Amsterdam Infection & Immunity Institute, 1105 AZ, Amsterdam, The Netherlands
| | - Lisa van Pul
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Amsterdam Infection & Immunity Institute, 1105 AZ, Amsterdam, The Netherlands
| | - Teunis BH Geijtenbeek
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Amsterdam Infection & Immunity Institute, 1105 AZ, Amsterdam, The Netherlands
| |
Collapse
|
7
|
Ribeiro CMS, Sarrami-Forooshani R, Geijtenbeek TBH. HIV-1 border patrols: Langerhans cells control antiviral responses and viral transmission. Future Virol 2015. [DOI: 10.2217/fvl.15.79] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Langerhans cells (LCs) reside in the mucosal epithelia and are refractory to HIV-1 infection; HIV-1 capture by C-type lectin receptor langerin and subsequent targeting to Birbeck granules prevents infection. Furthermore, LCs restrict transmission of CXCR4-using HIV-1 variants, which underscores the role of immature LCs as gatekeepers in the selection of HIV-1 variants. Interaction of langerin on LCs with hyaluronic acid on dendritic cells facilitates cross-presentation of HIV-1 to CD8+ T cells. Activation of LCs upon inflammation bypasses the langerin-dependent barrier, which favors cross-presentation and increases susceptibility of LCs to HIV-1 infection. These recent developments not only highlight the plasticity of LCs but also define an important role for LC-dendritic cell crosstalk at the periphery in directing adaptive immune responses to viruses.
Collapse
Affiliation(s)
- Carla MS Ribeiro
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Ramin Sarrami-Forooshani
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Teunis BH Geijtenbeek
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
8
|
van den Berg LM, Cardinaud S, van der Aar AMG, Sprokholt JK, de Jong MAWP, Zijlstra-Willems EM, Moris A, Geijtenbeek TBH. Langerhans Cell-Dendritic Cell Cross-Talk via Langerin and Hyaluronic Acid Mediates Antigen Transfer and Cross-Presentation of HIV-1. THE JOURNAL OF IMMUNOLOGY 2015; 195:1763-73. [PMID: 26170391 DOI: 10.4049/jimmunol.1402356] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 06/16/2015] [Indexed: 12/21/2022]
Abstract
Human epidermal and mucosal Langerhans cells (LCs) express the C-type lectin receptor langerin that functions as a pattern recognition receptor. LCs are among the first immune cells to interact with HIV-1 during sexual transmission. In this study, we demonstrate that langerin not only functions as a pattern recognition receptor but also as an adhesion receptor mediating clustering between LCs and dendritic cells (DCs). Langerin recognized hyaluronic acid on DCs and removal of these carbohydrate structures partially abrogated LC-DC clustering. Because LCs did not cross-present HIV-1-derived Ags to CD8(+) T cells in a cross-presentation model, we investigated whether LCs were able to transfer Ags to DCs. LC-DC clustering led to maturation of DCs and facilitated Ag transfer of HIV-1 to DCs, which subsequently induced activation of CD8(+) cells. The rapid transfer of Ags to DCs, in contrast to productive infection of LCs, suggests that this might be an important mechanism for induction of anti-HIV-1 CD8(+) T cells. Induction of the enzyme hyaluronidase-2 by DC maturation allowed degradation of hyaluronic acid and abrogated LC-DC interactions. Thus, we have identified an important function of langerin in mediating LC-DC clustering, which allows Ag transfer to induce CTL responses to HIV-1. Furthermore, we showed this interaction is mediated by hyaluronidase-2 upregulation after DC maturation. These data underscore the importance of LCs and DCs in orchestrating adaptive immunity to HIV-1. Novel strategies might be developed to harness this mechanism for vaccination.
Collapse
Affiliation(s)
- Linda M van den Berg
- Department of Experimental Immunology, Academic Medical Center, 1105 AZ Amsterdam, the Netherlands
| | - Sylvain Cardinaud
- Center for Immunology and Microbial Infections-Paris, University Pierre and Marie Curie Paris 06, University Sorbonne, F-75013 Paris, France; Center for Immunology and Microbial Infections-Paris, INSERM, U1135, F-75013 Paris, France; Center for Immunology and Microbial Infections-Paris, French National Centre for Scientific Research, ERL 8255, F-75013 Paris, France
| | - Angelic M G van der Aar
- Department of Experimental Immunology, Academic Medical Center, 1105 AZ Amsterdam, the Netherlands
| | - Joris K Sprokholt
- Department of Experimental Immunology, Academic Medical Center, 1105 AZ Amsterdam, the Netherlands
| | - Marein A W P de Jong
- Department of Experimental Immunology, Academic Medical Center, 1105 AZ Amsterdam, the Netherlands
| | | | - Arnaud Moris
- Center for Immunology and Microbial Infections-Paris, University Pierre and Marie Curie Paris 06, University Sorbonne, F-75013 Paris, France; Center for Immunology and Microbial Infections-Paris, INSERM, U1135, F-75013 Paris, France; Center for Immunology and Microbial Infections-Paris, French National Centre for Scientific Research, ERL 8255, F-75013 Paris, France; Department of Immunology, AP-HP University Medical Center Paris Area, F-75013 Paris, France
| | - Teunis B H Geijtenbeek
- Department of Experimental Immunology, Academic Medical Center, 1105 AZ Amsterdam, the Netherlands;
| |
Collapse
|
9
|
Kerkar SP, Chinnasamy D, Hadi N, Melenhorst J, Muranski P, Spyridonidis A, Ito S, Weber G, Yin F, Hensel N, Wang E, Marincola FM, Barrett AJ. Timing and intensity of exposure to interferon-γ critically determines the function of monocyte-derived dendritic cells. Immunology 2014; 143:96-108. [PMID: 24678989 DOI: 10.1111/imm.12292] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 03/09/2014] [Accepted: 03/24/2014] [Indexed: 01/09/2023] Open
Abstract
A growing body of evidence suggests that inflammatory cytokines have a dualistic role in immunity. In this study, we sought to determine the direct effects of interferon-γ (IFN-γ) on the differentiation and maturation of human peripheral blood monocyte-derived dendritic cells (moDC). Here, we report that following differentiation of monocytes into moDC with granulocyte-macrophage colony-stimulating factor and interleukin-4, IFN-γ induces moDC maturation and up-regulates the co-stimulatory markers CD80/CD86/CD95 and MHC Class I, enabling moDC to effectively generate antigen-specific CD4(+) and CD8(+) T-cell responses for multiple viral and tumour antigens. Early exposure of monocytes to high concentrations of IFN-γ during differentiation promotes the formation of macrophages. However, under low concentrations of IFN-γ, monocytes continue to differentiate into dendritic cells possessing a unique gene-expression profile, resulting in impairments in subsequent maturation by IFN-γ or lipopolysaccharide and an inability to generate effective antigen-specific CD4(+) and CD8(+) T-cell responses. These findings demonstrate that IFN-γ imparts differential programmes on moDC that shape the antigen-specific T-cell responses they induce. Timing and intensity of exposure to IFN-γ can therefore determine the functional capacity of moDC.
Collapse
Affiliation(s)
- Sid P Kerkar
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
van Montfoort N, van der Aa E, Woltman AM. Understanding MHC class I presentation of viral antigens by human dendritic cells as a basis for rational design of therapeutic vaccines. Front Immunol 2014; 5:182. [PMID: 24795724 PMCID: PMC4005948 DOI: 10.3389/fimmu.2014.00182] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 04/07/2014] [Indexed: 12/24/2022] Open
Abstract
Effective viral clearance requires the induction of virus-specific CD8+ cytotoxic T lymphocytes (CTL). Since dendritic cells (DC) have a central role in initiating and shaping virus-specific CTL responses, it is important to understand how DC initiate virus-specific CTL responses. Some viruses can directly infect DC, which theoretically allow direct presentation of viral antigens to CTL, but many viruses target other cells than DC and thus the host depends on the cross-presentation of viral antigens by DC to activate virus-specific CTL. Research in mouse models has highly enhanced our understanding of the mechanisms underlying cross-presentation and the dendritic cells (DC) subsets involved, however, these results cannot be readily translated toward the role of human DC in MHC class I-antigen presentation of human viruses. Here, we summarize the insights gained in the past 20 years on MHC class I presentation of viral antigen by human DC and add to the current debate on the capacities of different human DC subsets herein. Furthermore, possible sources of viral antigens and essential DC characteristics for effective induction of virus-specific CTL are evaluated. We conclude that cross-presentation is not only an efficient mechanism exploited by DC to initiate immunity to viruses that do not infect DC but also to viruses that do infect DC, because cross-presentation has many conceptual advantages and bypasses direct immune modulatory effects of the virus on its infected target cells. Since knowledge on the mechanism of viral antigen presentation and the preferred DC subsets is crucial for rational vaccine design, the obtained insights are very instrumental for the development of effective anti-viral immunotherapy.
Collapse
Affiliation(s)
- Nadine van Montfoort
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center Rotterdam , Rotterdam , Netherlands
| | - Evelyn van der Aa
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center Rotterdam , Rotterdam , Netherlands
| | - Andrea M Woltman
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center Rotterdam , Rotterdam , Netherlands
| |
Collapse
|
11
|
Disis ML, Gad E, Herendeen DR, Lai VP, Park KH, Cecil DL, O'Meara MM, Treuting PM, Lubet RA. A multiantigen vaccine targeting neu, IGFBP-2, and IGF-IR prevents tumor progression in mice with preinvasive breast disease. Cancer Prev Res (Phila) 2013; 6:1273-82. [PMID: 24154719 PMCID: PMC3864759 DOI: 10.1158/1940-6207.capr-13-0182] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
A multiantigen multipeptide vaccine, targeting proteins expressed in preinvasive breast lesions, can stimulate type I CD4(+) T cells which have been shown to be deficient in both patients with breast cancer and mice that develop mammary tumors. Transgenic mice (TgMMTV-neu) were immunized with a multiantigen peptide vaccine specific for neu, insulin-like growth factor-binding protein 2 and insulin-like growth factor receptor-I at a time when some of the animals already had preinvasive lesions (18 weeks of age). Although immunization with each individual antigen was partially effective in inhibiting tumor growth, immunization with the multiantigen vaccine was highly effective, blocking development of palpable lesions in 65% of mice and slowing tumor growth in the infrequent palpable tumors, which did arise. Protection was mediated by CD4(+) T cells, and the few slow-growing tumors that did develop demonstrated a significant increase in intratumoral CD8(+) T cells as compared with controls (P = 0.0007). We also combined the vaccine with agents that were, by themselves, partially effective inhibitors of tumor progression in this model; lapatinib and the RXR agonist bexarotene. Although the combination of lapatinib and vaccination performed similarly to vaccination alone (P = 0.735), bexarotene and vaccination significantly enhanced disease-free survival (P < 0.0001), and approximately 90% of the mice showed no pathologic evidence of carcinomas at one year. The vaccine also demonstrated significant clinical efficacy in an additional transgenic model of breast cancer (TgC3(I)-Tag). Chemoimmunoprevention combinations may be an effective approach to breast cancer prevention even when the vaccine is administered in the presence of subclinical disease.
Collapse
MESH Headings
- Adoptive Transfer
- Animals
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Bexarotene
- Female
- Insulin-Like Growth Factor Binding Protein 2/antagonists & inhibitors
- Insulin-Like Growth Factor Binding Protein 2/immunology
- Lapatinib
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Lymphocytes, Tumor-Infiltrating/pathology
- Mammary Neoplasms, Animal/immunology
- Mammary Neoplasms, Animal/pathology
- Mammary Neoplasms, Animal/prevention & control
- Mice
- Mice, Transgenic
- Neoplasm Invasiveness
- Precancerous Conditions/immunology
- Precancerous Conditions/pathology
- Precancerous Conditions/prevention & control
- Quinazolines/administration & dosage
- Receptor, ErbB-2/antagonists & inhibitors
- Receptor, ErbB-2/immunology
- Receptor, IGF Type 1/antagonists & inhibitors
- Receptor, IGF Type 1/immunology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- T-Lymphocytes/pathology
- Tetrahydronaphthalenes/administration & dosage
- Tumor Cells, Cultured
- Vaccines, Subunit/therapeutic use
Collapse
Affiliation(s)
- Mary L Disis
- Tumor Vaccine Group, Center for Translational Medicine in Women's Health, 850 Republican Street, Box 358050, University of Washington, Seattle, WA 98109.
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Mantegazza AR, Magalhaes JG, Amigorena S, Marks MS. Presentation of phagocytosed antigens by MHC class I and II. Traffic 2012; 14:135-52. [PMID: 23127154 DOI: 10.1111/tra.12026] [Citation(s) in RCA: 162] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 11/01/2012] [Accepted: 11/06/2012] [Indexed: 12/15/2022]
Abstract
Phagocytosis provides innate immune cells with a mechanism to take up and destroy pathogenic bacteria, apoptotic cells and other large particles. In some cases, however, peptide antigens from these particles are preserved for presentation in association with major histocompatibility complex (MHC) class I or class II molecules in order to stimulate antigen-specific T cells. Processing and presentation of antigens from phagosomes presents a number of distinct challenges relative to antigens internalized by other means; while bacterial antigens were among the first discovered to be presented to T cells, analyses of the cellular mechanisms by which peptides from phagocytosed antigens assemble with MHC molecules and by which these complexes are then expressed at the plasma membrane have lagged behind those of conventional model soluble antigens. In this review, we cover recent advances in our understanding of these processes, including the unique cross-presentation of phagocytosed antigens by MHC class I molecules, and in their control by signaling modalities in phagocytic cells.
Collapse
Affiliation(s)
- Adriana R Mantegazza
- Department of Pathology & Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
13
|
van der Vlist M, de Witte L, de Vries RD, Litjens M, de Jong MAWP, Fluitsma D, de Swart RL, Geijtenbeek TBH. Human Langerhans cells capture measles virus through Langerin and present viral antigens to CD4⁺ T cells but are incapable of cross-presentation. Eur J Immunol 2011; 41:2619-31. [PMID: 21739428 DOI: 10.1002/eji.201041305] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 05/17/2011] [Accepted: 07/05/2011] [Indexed: 11/11/2022]
Abstract
Langerhans cells (LCs) are a subset of DCs that reside in the upper respiratory tract and are ideally suited to sense respiratory virus infections. Measles virus (MV) is a highly infectious lymphotropic and myelotropic virus that enters the host via the respiratory tract. Here, we show that human primary LCs are capable of capturing MV through the C-type lectin Langerin. Both immature and mature LCs presented MV-derived antigens in the context of HLA class II to MV-specific CD4(+) T cells. Immature LCs were not susceptible to productive infection by MV and did not present endogenous viral antigens in the context of HLA class I. In contrast, mature LCs could be infected by MV and presented de novo synthesized viral antigens to MV-specific CD8(+) T cells. Notably, neither immature nor mature LCs were able to cross-present exogenous UV-inactivated MV or MV-infected apoptotic cells. The lack of direct infection of immature LCs, and the inability of both immature and mature LCs to cross-present MV antigens, suggest that human LCs may not be directly involved in priming MV-specific CD8(+) T cells. Immune activation of LCs seems a prerequisite for MV infection of LCs and subsequent CD8(+) T-cell priming via the endogenous antigen presentation pathway.
Collapse
Affiliation(s)
- Michiel van der Vlist
- Center of Infection and Immunity Amsterdam, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Tsuji T, Matsuzaki J, Kelly MP, Ramakrishna V, Vitale L, He LZ, Keler T, Odunsi K, Old LJ, Ritter G, Gnjatic S. Antibody-Targeted NY-ESO-1 to Mannose Receptor or DEC-205 In Vitro Elicits Dual Human CD8+ and CD4+ T Cell Responses with Broad Antigen Specificity. THE JOURNAL OF IMMUNOLOGY 2010; 186:1218-27. [DOI: 10.4049/jimmunol.1000808] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
15
|
Wadle A, Mischo A, Strahl S, Nishikawa H, Held G, Neumann F, Wullner B, Fischer E, Kleber S, Karbach J, Jager E, Shiku H, Odunsi K, Shrikant PA, Knuth A, Cerundolo V, Renner C. NY-ESO-1 protein glycosylated by yeast induces enhanced immune responses. Yeast 2010; 27:919-31. [PMID: 20672253 DOI: 10.1002/yea.1796] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Vaccine strategies that target dendritic cells to elicit potent cellular immunity are the subject of intense research. Here we report that the genetically engineered yeast Saccharomyces cerevisiae, expressing the full-length tumour-associated antigen NY-ESO-1, is a versatile host for protein production. Exposing dendritic cells (DCs) to soluble NY-ESO-1 protein linked to the yeast a-agglutinin 2 protein (Aga2p) protein resulted in protein uptake, processing and MHC class I cross-presentation of NY-ESO-1-derived peptides. The process of antigen uptake and cross-presentation was dependent on the glycosylation pattern of NY-ESO-1-Aga2p protein and the presence of accessible mannose receptors. In addition, NY-ESO-1-Aga2p protein uptake by dendritic cells resulted in recognition by HLA-DP4 NY-ESO-1-specific CD4(+) T cells, indicating MHC class II presentation. Finally, vaccination of mice with yeast-derived NY-ESO-1-Aga2p protein led to an enhanced humoral and cellular immune response, when compared to the bacterially expressed NY-ESO-1 protein. Together, these data demonstrate that yeast-derived full-length NY-ESO-1-Aga2p protein is processed and presented efficiently by MHC class I and II complexes and warrants clinical trials to determine the potential value of S. cerevisiae as a host for cancer vaccine development.
Collapse
Affiliation(s)
- Andreas Wadle
- Department of Oncology, Universtity Hospital Zurich, University of Zurich/Irchel, Zurich, Switzerland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Combadière B, Vogt A, Mahé B, Costagliola D, Hadam S, Bonduelle O, Sterry W, Staszewski S, Schaefer H, van der Werf S, Katlama C, Autran B, Blume-Peytavi U. Preferential amplification of CD8 effector-T cells after transcutaneous application of an inactivated influenza vaccine: a randomized phase I trial. PLoS One 2010; 5:e10818. [PMID: 20520820 PMCID: PMC2877091 DOI: 10.1371/journal.pone.0010818] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2009] [Accepted: 03/05/2010] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Current conventional vaccination approaches do not induce potent CD8 T-cell responses for fighting mostly variable viral diseases such as influenza, avian influenza viruses or HIV. Following our recent study on vaccine penetration by targeting of vaccine to human hair follicular ducts surrounded by Langerhans cells, we tested in the first randomized Phase-Ia trial based on hair follicle penetration (namely transcutaneous route) the induction of virus-specific CD8 T cell responses. METHODS AND FINDINGS We chose the inactivated influenza vaccine - a conventional licensed tetanus/influenza (TETAGRIP) vaccine - to compare the safety and immunogenicity of transcutaneous (TC) versus IM immunization in two randomized controlled, multi-center Phase I trials including 24 healthy-volunteers and 12 HIV-infected patients. Vaccination was performed by application of inactivated influenza vaccine according to a standard protocol allowing the opening of the hair duct for the TC route or needle-injection for the IM route. We demonstrated that the safety of the two routes was similar. We showed the superiority of TC application, but not the IM route, to induce a significant increase in influenza-specific CD8 cytokine-producing cells in healthy-volunteers and in HIV-infected patients. However, these routes did not differ significantly for the induction of influenza-specific CD4 responses, and neutralizing antibodies were induced only by the IM route. The CD8 cell response is thus the major immune response observed after TC vaccination. CONCLUSIONS This Phase Ia clinical trial (Manon05) testing an anti-influenza vaccine demonstrated that vaccines designed for antibody induction by the IM route, generate vaccine-specific CD8 T cells when administered transcutaneously. These results underline the necessity of adapting vaccination strategies to control complex infectious diseases when CD8 cellular responses are crucial. Our work opens up a key area for the development of preventive and therapeutic vaccines for diseases in which CD8 cells play a crucial role. TRIAL REGISTRATION Clinicaltrials.gov NCT00261001.
Collapse
Affiliation(s)
- Behazine Combadière
- Institut National de Santé et de Recherche Médicale, INSERM U945, Paris, France.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Milam JE, Erb-Downward JR, Chen GH, Osuchowski MF, McDonald R, Chensue SW, Toews GB, Huffnagle GB, Olszewski MA. CD11c+ cells are required to prevent progression from local acute lung injury to multiple organ failure and death. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 176:218-26. [PMID: 19948830 DOI: 10.2353/ajpath.2010.081027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
To investigate the role of CD11c(+) cells in endotoxin-induced acute lung injury, wild-type or CD11c-diphtheria toxin receptor transgenic mice were treated with intraperitoneal diphtheria toxin (5 ng/g b.wt.) in the presence or absence of intratracheal lipopolysaccharide (51 microg). Lipopolysaccharide treatment resulted in 100% mortality in CD11c-depleted animals but not in control animals. Analysis of local lung tissue revealed no differences in acute lung injury severity; however, analysis of distal tissues revealed severe damage and necrosis to multiple organs (liver, spleen, and kidneys) in CD11c-diphtheria toxin receptor mice but not in wild-type mice. In addition, dramatic increases in systemic levels of liver enzymes (alanine aminotransferase, 657 U/L, aspartate aminotransferase, 1401 U/L), blood urea (53 mg/dl), and 8-iso-prostaglandin F(2alpha), a marker of oxidative stress (350 pg/ml), were observed. These data demonstrate that CD11c(+) cells play a critical role in protecting the organs from systemic injury caused by a pulmonary endotoxin challenge.
Collapse
Affiliation(s)
- Jami E Milam
- VA Ann Arbor Healthcare System, Ann Arbor, MI 48105, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Flacher V, Sparber F, Tripp CH, Romani N, Stoitzner P. Targeting of epidermal Langerhans cells with antigenic proteins: attempts to harness their properties for immunotherapy. Cancer Immunol Immunother 2009; 58:1137-47. [PMID: 18677477 PMCID: PMC11030799 DOI: 10.1007/s00262-008-0563-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Accepted: 07/12/2008] [Indexed: 12/16/2022]
Abstract
Langerhans cells, a subset of skin dendritic cells in the epidermis, survey peripheral tissue for invading pathogens. In recent functional studies it was proven that Langerhans cells can present exogenous antigen not merely on major histocompatibility complexes (MHC)-class II molecules to CD4+ T cells, but also on MHC-class I molecules to CD8+ T cells. Immune responses against topically applied antigen could be measured in skin-draining lymph nodes. Skin barrier disruption or co-application of adjuvants was required for maximal induction of T cell responses. Cytotoxic T cells induced by topically applied antigen inhibited tumor growth in vivo, thus underlining the potential of Langerhans cells for immunotherapy. Here we review recent work and report novel observations relating to the potential use of Langerhans cells for immunotherapy. We investigated the potential of epicutaneous immunization strategies in which resident skin dendritic cells are loaded with tumor antigen in situ. This contrasts with current clinical approaches, where dendritic cells generated from progenitors in blood are loaded with tumor antigen ex vivo before injection into cancer patients. In the current study, we applied either fluorescently labeled protein antigen or targeting antibodies against DEC-205/CD205 and langerin/CD207 topically onto barrier-disrupted skin and examined antigen capture and transport by Langerhans cells. Protein antigen could be detected in Langerhans cells in situ, and they were the main skin dendritic cell subset transporting antigen during emigration from skin explants. Potent in vivo proliferative responses of CD4+ and CD8+ T cells were measured after epicutaneous immunization with low amounts of protein antigen. Targeting antibodies were mainly transported by langerin+ migratory dendritic cells of which the majority represented migratory Langerhans cells and a smaller subset the new langerin+ dermal dendritic cell population located in the upper dermis. The preferential capture of topically applied antigen by Langerhans cells and their ability to induce potent CD4+ and CD8+ T cell responses emphasizes their potential for epicutaneous immunization strategies.
Collapse
Affiliation(s)
- Vincent Flacher
- Department of Dermatology and Venereology, Innsbruck Medical University, Anichstrasse 35, 6020 Innsbruck, Austria
| | - Florian Sparber
- Department of Dermatology and Venereology, Innsbruck Medical University, Anichstrasse 35, 6020 Innsbruck, Austria
| | - Christoph H. Tripp
- Department of Dermatology and Venereology, Innsbruck Medical University, Anichstrasse 35, 6020 Innsbruck, Austria
| | - Nikolaus Romani
- Department of Dermatology and Venereology, Innsbruck Medical University, Anichstrasse 35, 6020 Innsbruck, Austria
- Kompetenzzentrum Medizin Tirol (CEMIT), Innsbruck, Austria
| | - Patrizia Stoitzner
- Department of Dermatology and Venereology, Innsbruck Medical University, Anichstrasse 35, 6020 Innsbruck, Austria
| |
Collapse
|
19
|
Abstract
Dendritic-cell (DC) and natural killer (NK)-cell interactions are critical in sculpting the adaptive immune response. However, the mechanisms by which DCs down-regulate NK-cell functions are not well understood. NK-cell function is inhibited by transforming growth factor beta (TGF-beta), but DCs do not appear to produce TGF-beta. We have previously shown that activated human DCs produce large amounts of activin-A, a TGF-beta superfamily member, which autoregulates DC function. The present report shows that NK-cells express type I and II activin receptors and that activin-A triggers NK-cell Smad 2/3 signaling. Furthermore, activin-A directly regulates NK cell functions by (1) down-regulating the T-box transcription factor T-bet and interferon gamma (IFN-gamma) but not perforin or granzyme mRNA; (2) suppressing NK-cell IFN-gamma production as potently as TGF-beta; and (3) suppressing NK-cell CD25 expression and proliferation and sculpting NK-cell cytokine and chemokine profiles. Interestingly, unlike TGF-beta, activin-A weakly down-regulates the NK-cell natural cytotoxicity receptors (NCRs) NKp30 and NKG2D but does not attenuate their cytotoxic function. These findings provide the first evidence for a novel immune regulatory role of activin-A during DC-mediated NK-cell regulation, highlighting the potential of antagonizing activin-A signaling in vivo to enhance NK cell-mediated immune functions and adaptive immunity.
Collapse
|
20
|
Villablanca EJ, Mora JR. A two-step model for Langerhans cell migration to skin-draining LN. Eur J Immunol 2009; 38:2975-80. [PMID: 18991275 DOI: 10.1002/eji.200838919] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Although the role of Langerhans cells (LC) in skin immune responses is still a matter of debate, it is known that LC require the chemokine receptor CCR7 for migrating to skin-draining LN. A report in the current issue of the European Journal of Immunology unfolds some of the intricacies of LC migration, showing that LC need CXCR4, but not CCR7, for their migration from the epidermis to the dermis. Thus, LC migration to skin-draining LN occurs in two distinct phases: a first step from the epidermis to the dermis regulated by CXCR4 and a second CCR7-dependent step from the dermis to LN. Here we discuss the potential implications of this new two-step LC migration paradigm.
Collapse
Affiliation(s)
- Eduardo J Villablanca
- Department of Medicine, Gastrointestinal Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | | |
Collapse
|
21
|
Kageyama S, Kitano S, Hirayama M, Nagata Y, Imai H, Shiraishi T, Akiyoshi K, Scott AM, Murphy R, Hoffman EW, Old LJ, Katayama N, Shiku H. Humoral immune responses in patients vaccinated with 1-146 HER2 protein complexed with cholesteryl pullulan nanogel. Cancer Sci 2008; 99:601-7. [PMID: 18081877 PMCID: PMC11158566 DOI: 10.1111/j.1349-7006.2007.00705.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2007] [Revised: 10/31/2007] [Accepted: 11/10/2007] [Indexed: 11/28/2022] Open
Abstract
The CHP-HER2 vaccine, comprising truncated 146HER2 protein complexed with nanogels of cholesteryl pullulan (CHP), is a novel protein antigen vaccine that elicits 146HER2-specific CD8(+) and CD4(+) T-cell immune responses in patients with HER2-expressing tumors. We analyzed the humoral responses in patients vaccinated with CHP-HER2 and those with CHP-HER2 plus granulocyte-macrophage colony-stimulating factor (GM-CSF). The vaccine was injected subcutaneously at a dose of 300 microg protein. Nine patients received the vaccine alone over the first four injections, followed by CHP-HER2 with GM-CSF or OK-432, whereas six received CHP-HER2 plus GM-CSF from the first cycle. 146HER2-specific IgG antibodies were induced in 14 patients, who were negative at baseline. The antibodies became detectable after the second or third vaccination and reached plateau levels after the third or fourth cycle in patients vaccinated with CHP-HER2 plus GM-CSF. In contrast, the antibodies appeared only after the third to sixth vaccination and the plateau appeared after the fourth to eighth cycle in patients vaccinated with the CHP-HER2 vaccine alone over the first four cycles. The antibodies induced by the vaccine were not reactive with HER2 antigen expressed on the cell surface in any of the patients. Epitope analysis using overlapping peptides revealed a single region in the 146HER2 protein, amino acids 127-146, in eight patients who were initially vaccinated with CHP-HER2 alone. Similarly, the same HER2 region was recognized dominantly in patients vaccinated with GM-CSF. Our results indicate that CHP-HER2 induced HER2-specific humoral responses in patients with HER2-expressing tumors and that GM-CSF seems to accelerate the responses.
Collapse
Affiliation(s)
- Shinichi Kageyama
- Department of Immuno-Gene Therapy, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Cao T, Ueno H, Glaser C, Fay JW, Palucka AK, Banchereau J. Both Langerhans cells and interstitial DC cross-present melanoma antigens and efficiently activate antigen-specific CTL. Eur J Immunol 2007; 37:2657-67. [PMID: 17683111 DOI: 10.1002/eji.200636499] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Dendritic cells (DC) have a unique capacity to present external antigens to CD8(+) T cells, i.e. cross-presentation. However, it is not fully established whether the ability to cross-presentation is restricted to a unique subset of DC in humans. Here, we show that two major myeloid DC subsets, i.e. Langerhans cells (LC) and interstitial DC (Int-DC), have the ability to cross-present antigens to CD8(+) T cells in vitro. LC and Int-DC were obtained from DC generated by culturing human CD34(+)-hematopoietic progenitor cells with GM-CSF, FLT3-L, and TNF-alpha (CD34-DC). Both DC subsets were able to capture necrotic/apoptotic allogeneic melanoma cells and present antigens to CD8(+) T cells, resulting in efficient priming of naive CD8(+) T cells into CTL capable of killing melanoma cells. Strikingly, a single stimulation with either subset (LC or Int-DC) or total CD34-DC loaded with necrotic/apoptotic melanoma cells was sufficient to activate melanoma-specific memory CD8(+) T cells obtained from patients with metastatic melanoma to become effective CTL. Thus, this study provides the rationale to use CD34-DC loaded with necrotic/apoptotic allogeneic melanoma cells in a clinical trial.
Collapse
Affiliation(s)
- Tinghua Cao
- Baylor Institute for Immunology Research, Dallas, TX 75204, USA
| | | | | | | | | | | |
Collapse
|
23
|
Valmori D, Souleimanian NE, Tosello V, Bhardwaj N, Adams S, O'Neill D, Pavlick A, Escalon JB, Cruz CM, Angiulli A, Angiulli F, Mears G, Vogel SM, Pan L, Jungbluth AA, Hoffmann EW, Venhaus R, Ritter G, Old LJ, Ayyoub M. Vaccination with NY-ESO-1 protein and CpG in Montanide induces integrated antibody/Th1 responses and CD8 T cells through cross-priming. Proc Natl Acad Sci U S A 2007; 104:8947-52. [PMID: 17517626 PMCID: PMC1885608 DOI: 10.1073/pnas.0703395104] [Citation(s) in RCA: 241] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2007] [Indexed: 01/05/2023] Open
Abstract
The use of recombinant tumor antigen proteins is a realistic approach for the development of generic cancer vaccines, but the potential of this type of vaccines to induce specific CD8(+) T cell responses, through in vivo cross-priming, has remained unclear. In this article, we report that repeated vaccination of cancer patients with recombinant NY-ESO-1 protein, Montanide ISA-51, and CpG ODN 7909, a potent stimulator of B cells and T helper type 1 (Th1)-type immunity, resulted in the early induction of specific integrated CD4(+) Th cells and antibody responses in most vaccinated patients, followed by the development of later CD8(+) T cell responses in a fraction of them. The correlation between antibody and T cell responses, together with the ability of vaccine-induced antibodies to promote in vitro cross-presentation of NY-ESO-1 by dendritic cells to vaccine-induced CD8(+) T cells, indicated that elicitation of NY-ESO-1-specific CD8(+) T cell responses by cross-priming in vivo was associated with the induction of adequate levels of specific antibodies. Together, our data provide clear evidence of in vivo cross-priming of specific cytotoxic T lymphocytes by a recombinant tumor antigen vaccine, underline the importance of specific antibody induction for the cross-priming to occur, and support the use of this type of formulation for the further development of efficient cancer vaccines.
Collapse
Affiliation(s)
- Danila Valmori
- *Ludwig Institute Clinical Trial Center, Columbia University, New York, NY 10032
| | | | - Valeria Tosello
- *Ludwig Institute Clinical Trial Center, Columbia University, New York, NY 10032
| | - Nina Bhardwaj
- New York University School of Medicine, New York, NY 10016
| | - Sylvia Adams
- New York University School of Medicine, New York, NY 10016
| | - David O'Neill
- New York University School of Medicine, New York, NY 10016
| | - Anna Pavlick
- New York University School of Medicine, New York, NY 10016
| | | | | | | | | | - Gregory Mears
- Division of Medical Oncology, Columbia University Medical Center, New York, NY 10032; and
| | - Susan M. Vogel
- Division of Medical Oncology, Columbia University Medical Center, New York, NY 10032; and
| | - Linda Pan
- Ludwig Institute for Cancer Research, New York, NY 10158
| | | | | | - Ralph Venhaus
- Ludwig Institute for Cancer Research, New York, NY 10158
| | - Gerd Ritter
- Ludwig Institute for Cancer Research, New York, NY 10158
| | - Lloyd J. Old
- Ludwig Institute for Cancer Research, New York, NY 10158
| | - Maha Ayyoub
- *Ludwig Institute Clinical Trial Center, Columbia University, New York, NY 10032
| |
Collapse
|
24
|
Bozzacco L, Trumpfheller C, Siegal FP, Mehandru S, Markowitz M, Carrington M, Nussenzweig MC, Piperno AG, Steinman RM. DEC-205 receptor on dendritic cells mediates presentation of HIV gag protein to CD8+ T cells in a spectrum of human MHC I haplotypes. Proc Natl Acad Sci U S A 2007; 104:1289-94. [PMID: 17229838 PMCID: PMC1783096 DOI: 10.1073/pnas.0610383104] [Citation(s) in RCA: 190] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2006] [Indexed: 11/18/2022] Open
Abstract
Optimal HIV vaccines should elicit CD8+ T cells specific for HIV proteins presented on MHC class I products, because these T cells contribute to host resistance to viruses. We had previously found that the targeting of antigen to dendritic cells (DCs) in mice efficiently induces CD8+ T cell responses. To extend this finding to humans, we introduced the HIV p24 gag protein into a mAb that targets DEC-205/CD205, an endocytic receptor of DCs. We then assessed cross-presentation, which is the processing of nonreplicating internalized antigen onto MHC class I for recognition by CD8+ T cells. Low doses of alphaDEC-gag, but not control Ig-gag, stimulated proliferation and IFN-gamma production by CD8+ T cells isolated from the blood of HIV-infected donors. alphaCD205 fusion mAb was more effective for cross-presentation than alphaCD209/DC-SIGN, another abundant DC uptake receptor. Presentation was diverse, because we identified eight different gag peptides that were recognized via DEC-205 in 11 individuals studied consecutively. Our results, based on humans with highly polymorphic MHC products, reveal that DCs and DEC-205 can cross-present several different peptides from a single protein. Because of the consistency in eliciting CD8+ T cell responses, these data support the testing of alphaDEC-205 fusion mAb as a protein-based vaccine.
Collapse
Affiliation(s)
| | | | - Frederick P. Siegal
- Comprehensive HIV Center, Saint Vincent's Hospital and Medical Center, New York, NY 10011
| | - Saurabh Mehandru
- The Rockefeller University Hospital and Aaron Diamond AIDS Research Center, New York, NY 10011; and
| | - Martin Markowitz
- The Rockefeller University Hospital and Aaron Diamond AIDS Research Center, New York, NY 10011; and
| | - Mary Carrington
- Laboratory of Genomic Diversity, SAIC-Frederick, Inc., National Cancer Institute, Frederick, MD 21702
| | - Michel C. Nussenzweig
- Molecular Immunology, Chris Browne Center for Immunology and Immune Diseases, The Rockefeller University, New York, NY 10021
| | | | | |
Collapse
|
25
|
Inoue J, Aramaki Y. Cyclooxygenase-2 inhibition promotes enhancement of antitumor responses by transcutaneous vaccination with cytosine-phosphate-guanosine-oligodeoxynucleotides and model tumor antigen. J Invest Dermatol 2006; 127:614-21. [PMID: 17159912 DOI: 10.1038/sj.jid.5700656] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
One of the principal goals in tumor immune prophylaxis and tumor therapy is the induction of antitumor responses by generating sufficient numbers of tumor antigen-specific helper T (Th)1 cells and cytotoxic T lymphocytes (CTLs). We have demonstrated that the administration of cytosine-phosphate-guanosine-oligodeoxynucleotide (CpG-ODN) through tape-stripped skin induced a Th1-type immune response and suggested that the skin is a potential site for vaccination. CpG-ODN induces the expression of cyclooxygenase (COX)-2, and its product prostaglandin (PG) E2 underlies an immunosuppressive network, therefore it is a simple strategy to use a COX-2 inhibitor for tumor vaccination with CpG-ODN. In this study, we examined whether a COX-2 inhibitor enhances the antitumor immune response induced by CpG-ODN with model tumor antigen, ovalbumin (OVA), applied to tape-stripped skin in mice. The COX-2 inhibitor remarkably enhanced antigen-specific Th1-type immune responses and generation of CTLs induced by transcutaneous vaccination with CpG-ODN and OVA. PGE2 and IL-10 levels in the skin were significantly decreased and production of IL-12 was enhanced. This vaccination also induces an effective antitumor immunity in tumor-challenged mice. These results suggested that transcutaneous vaccination with a COX-2 inhibitor, CpG-ODN, and tumor antigen is a very simple and cost-effective strategy for tumor vaccine and may be readily achievable.
Collapse
Affiliation(s)
- Joe Inoue
- School of Pharmacy, Tokyo University of Pharmacy and Life Science, Hachioji, Tokyo, Japan
| | | |
Collapse
|
26
|
Zeng G, Aldridge ME, Tian X, Seiler D, Zhang X, Jin Y, Rao J, Li W, Chen D, Langford MP, Duggan C, Belldegrun AS, Dubinett SM. Dendritic cell surface calreticulin is a receptor for NY-ESO-1: direct interactions between tumor-associated antigen and the innate immune system. THE JOURNAL OF IMMUNOLOGY 2006; 177:3582-9. [PMID: 16951317 DOI: 10.4049/jimmunol.177.6.3582] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
How the immune system recognizes endogenously arising tumors and elicits adaptive immune responses against nonmutated tumor-associated Ags is poorly understood. In search of intrinsic factors contributing to the immunogenicity of the tumor-associated Ag NY-ESO-1, we found that the NY-ESO-1 protein binds to the surface of immature dendritic cells (DC), macrophages, and monocytes, but not to that of B cells or T cells. Using immunoprecipitation coupled with tandem mass spectrometry, we isolated DC surface calreticulin as the receptor for NY-ESO-1. Calreticulin Abs blocked NY-ESO-1 binding on immature DC and its cross-presentation to CD8+ T cells in vitro. Calreticulin/NY-ESO-1 interactions provide a direct link between NY-ESO-1, the innate immune system, and, potentially, the adaptive immune response against NY-ESO-1.
Collapse
Affiliation(s)
- Gang Zeng
- Department of Urology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Gnjatic S, Nishikawa H, Jungbluth AA, Güre AO, Ritter G, Jäger E, Knuth A, Chen YT, Old LJ. NY-ESO-1: review of an immunogenic tumor antigen. Adv Cancer Res 2006; 95:1-30. [PMID: 16860654 DOI: 10.1016/s0065-230x(06)95001-5] [Citation(s) in RCA: 272] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In the 9 years since its discovery, cancer-testis antigen NY-ESO-1 has made one of the fastest transitions from molecular, cellular, and immunological description to vaccine and immunotherapy candidate, already tested in various formulations in more than 30 clinical trials worldwide. Its main characteristic resides in its capacity to elicit spontaneous antibody and T-cell responses in a proportion of cancer patients. An overview of immunological findings and immunotherapeutic approaches with NY-ESO-1, as well the role of regulation in NY-ESO-1 immunogenicity, is presented here.
Collapse
Affiliation(s)
- Sacha Gnjatic
- Ludwig Institute for Cancer Research, New York Branch at Memorial Sloan-Kettering Cancer Center, New York 10021, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Nishikawa H, Qian F, Tsuji T, Ritter G, Old LJ, Gnjatic S, Odunsi K. Influence of CD4+CD25+ regulatory T cells on low/high-avidity CD4+ T cells following peptide vaccination. THE JOURNAL OF IMMUNOLOGY 2006; 176:6340-6. [PMID: 16670346 DOI: 10.4049/jimmunol.176.10.6340] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
We have recently reported that NY-ESO-1-specific naive CD4+ T cell precursors exist in most individuals but are suppressed by CD4+CD25+ regulatory T cells (Tregs), while memory CD4+ T cell effectors against NY-ESO-1 are found only in cancer patients with spontaneous Ab responses to NY-ESO-1. In this study, we have analyzed mechanisms of CD4+ T cell induction following peptide vaccination in relation to susceptibility to Tregs. Specific HLA-DP4-restricted CD4+ T cell responses were elicited after vaccination with NY-ESO-1(157-170) peptide (emulsified in IFA) in patients with NY-ESO-1-expressing epithelial ovarian cancer. These vaccine-induced CD4+ T cells were detectable from effector/memory populations without requirement for in vitro CD4+CD25+ T cell depletion. However, they were only able to recognize NY-ESO-1(157-170) peptide but not naturally processed NY-ESO-1 protein and had much lower avidity compared with NY-ESO-1-specific pre-existing naive CD4+CD25- T cell precursors or spontaneously induced CD4+ T cell effectors of cancer patients with NY-ESO-1 Ab. We propose that vaccination with NY-ESO-1(157-170) peptide recruits low-avidity T cells with low sensitivity to Tregs and fails to modulate the suppressive effect of Tregs on high-avidity NY-ESO-1-specific T cell precursors.
Collapse
Affiliation(s)
- Hiroyoshi Nishikawa
- Ludwig Institute for Cancer Research, New York Branch, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Wadle A, Held G, Neumann F, Kleber S, Wuellner B, Asemissen AM, Kubuschok B, Scheibenbogen C, Breinig T, Meyerhans A, Renner C. Cross-presentation of HLA class I epitopes from influenza matrix protein produced in Saccharomyces cerevisiae. Vaccine 2006; 24:6272-81. [PMID: 16860448 DOI: 10.1016/j.vaccine.2006.05.096] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2005] [Revised: 05/18/2006] [Accepted: 05/23/2006] [Indexed: 02/02/2023]
Abstract
Here we report that genetically engineered yeast of the strain Saccharomyces cerevisiae expressing full-length influenza matrix protein (IMP) attached to the yeast cell wall are a very versatile host for antigen delivery. Feeding of dendritic cells with either intact yeast expressing IMP protein or soluble IMP protein cleaved off the cell wall resulted in protein uptake, processing and cross-presentation of IMP-derived peptides. This process was analysed using previously established T-cell lines recognizing the immuno-dominant 58-66 peptide when presented by HLA-A2*0201 complexes. In addition, IMP(58-66)/HLA-A2*0201-specific antibodies were selected from a naive phage library which confirmed that peptide presentation was an active process of endocellular uptake and not just a result of external peptide loading. Moreover, MHC peptide antibodies could block the recognition of peptide-presenting dendritic cells by IMP(58-66)-specific T-cells in a dose dependent manner. There was no difference in T-cell recognition when either intact yeast or yeast cell extracts were used for DC feeding. Together, these data demonstrate that yeast derived proteins either in their soluble form or as part of a whole yeast vaccine are taken up, processed and presented by dendritic cells in HLA class I context.
Collapse
Affiliation(s)
- Andreas Wadle
- Klinik und Poliklinik für Onkologie, Rämistr. 100, UniversitätsSpital Zürich, CH-8091 Zürich, Switzerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Stoitzner P, Tripp CH, Eberhart A, Price KM, Jung JY, Bursch L, Ronchese F, Romani N. Langerhans cells cross-present antigen derived from skin. Proc Natl Acad Sci U S A 2006; 103:7783-8. [PMID: 16672373 PMCID: PMC1472522 DOI: 10.1073/pnas.0509307103] [Citation(s) in RCA: 166] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Dendritic cells (DC) efficiently cross-present exogenous antigen on MHC class I molecules to CD8+ T cells. However, little is known about cross-presentation by Langerhans cells (LC), the DCs of the epidermis. Therefore, we investigated this issue in detail. Isolated murine LCs were able to cross-present soluble ovalbumin protein on MHC-class I molecules to antigen-specific CD8+ T cells, albeit less potently than the CD8+ DC subsets from spleen. Furthermore, LCs cross-presented cell-associated ovalbumin peptide and protein expressed by neighboring keratinocytes. Use of transporter associated with antigen processing (TAP-1)-deficient mice suggested a TAP-dependent pathway. Similar observations were made with migratory LC. Antigen expressed in the epidermis was ingested by LCs during migration from the epidermis and presented to antigen-specific T cells in vitro. Cross-presentation of ovalbumin protein by LCs induced IFN-gamma production and cytotoxicity in antigen-specific CD8+ T cells. Additionally, epicutaneous application of ovalbumin protein induced in vivo proliferation of OT-I T cells in the draining lymph nodes; this was markedly enhanced when antigen was applied to inflamed, barrier-disrupted skin. Thus, LCs cross-present exogenous antigen to CD8+ T cells and induce effector functions, like cytokine production and cytotoxicity, and may thereby critically contribute in epicutaneous vaccination approaches.
Collapse
Affiliation(s)
- Patrizia Stoitzner
- Departments of *Dermatology and
- Malaghan Institute of Medical Research, Wellington 6005, New Zealand; and
| | | | - Andreas Eberhart
- Biochemical Pharmacology, Innsbruck Medical University, 6020 Innsbruck, Austria
| | - Kylie M. Price
- Malaghan Institute of Medical Research, Wellington 6005, New Zealand; and
| | - Jae Y. Jung
- Malaghan Institute of Medical Research, Wellington 6005, New Zealand; and
| | - Laura Bursch
- Center for Immunology, Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455
| | - Franca Ronchese
- Malaghan Institute of Medical Research, Wellington 6005, New Zealand; and
| | - Nikolaus Romani
- Departments of *Dermatology and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|