1
|
Banuelos A, Baez M, Zhang A, Yılmaz L, Kasberg W, Volk R, Georgeos N, Koren-Sedova E, Le U, Burden AT, Marjon KD, Lippincott-Schwartz J, Zaro BW, Weissman IL. Macrophages release neuraminidase and cleaved calreticulin for programmed cell removal. Proc Natl Acad Sci U S A 2025; 122:e2426644122. [PMID: 40397678 DOI: 10.1073/pnas.2426644122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 04/16/2025] [Indexed: 05/23/2025] Open
Abstract
Calreticulin (CALR) is primarily an endoplasmic reticulum chaperone protein that also plays a key role in facilitating programmed cell removal (PrCR) by acting as an "eat-me" signal for macrophages, directing their recognition and engulfment of dying, diseased, or unwanted cells. Recent findings have demonstrated that macrophages can transfer their own CALR onto exposed asialoglycans on target cells, marking them for PrCR. Despite the critical role CALR plays in this process, the molecular mechanisms behind its secretion by macrophages and the formation of binding sites on target cells remain unclear. Our findings show that CALR undergoes C-terminal cleavage upon secretion, producing a truncated form that functions as the active eat-me signal detectable on target cells. We identify cathepsins as potential proteases involved in this cleavage process. Furthermore, we demonstrate that macrophages release neuraminidases, which modify the surface of target cells and facilitate CALR binding. These insights reveal a coordinated mechanism through which lipopolysaccharide (LPS)-activated macrophages regulate CALR cleavage and neuraminidase activity to mark target cells for PrCR. How they recognize the cells to be targeted remains unknown.
Collapse
Affiliation(s)
- Allison Banuelos
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305
- Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University School of Medicine, Stanford, CA 94305
| | - Michelle Baez
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305
- Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University School of Medicine, Stanford, CA 94305
| | - Allison Zhang
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305
- Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University School of Medicine, Stanford, CA 94305
| | - Leyla Yılmaz
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305
- Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University School of Medicine, Stanford, CA 94305
| | | | - Regan Volk
- Department of Pharmaceutical Chemistry, Cardiovascular Research Institute, University of California, San Francisco, CA 94158
| | - Nardin Georgeos
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305
- Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University School of Medicine, Stanford, CA 94305
| | - Elle Koren-Sedova
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305
- Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University School of Medicine, Stanford, CA 94305
| | - Uyen Le
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305
- Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University School of Medicine, Stanford, CA 94305
| | - Andrew T Burden
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305
- Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University School of Medicine, Stanford, CA 94305
| | - Kristopher D Marjon
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305
- Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University School of Medicine, Stanford, CA 94305
| | | | - Balyn W Zaro
- Department of Pharmaceutical Chemistry, Cardiovascular Research Institute, University of California, San Francisco, CA 94158
| | - Irving L Weissman
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305
- Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University School of Medicine, Stanford, CA 94305
- Department of Pathology, Stanford University, Stanford, CA 94305
| |
Collapse
|
2
|
Steves MA, Xu K. SpeedyTrack: Direct microsecond wide-field single-molecule tracking and super-resolution mapping via CCD vertical shift. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.07.647376. [PMID: 40291653 PMCID: PMC12026894 DOI: 10.1101/2025.04.07.647376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
We introduce spatially-encoded dynamics tracking (SpeedyTrack), a strategy to enable direct microsecond wide-field single-molecule tracking/imaging on common microscopy setups. Capitalizing on the native sub-microsecond vertical charge shifting capability of popular electron-multiplying charge-coupled devices (EM-CCDs), SpeedyTrack staggers wide-field single-molecule images along the CCD chip at ∼10-row spacings between consecutive timepoints, effectively projecting the time domain to the spatial domain. Wide-field tracking is thus achieved for freely diffusing molecules at down to 50 μs temporal resolutions for >30 timepoints, permitting trajectory analysis to quantify diffusion coefficients up to 1,000 μm 2 /s. Concurrent acquisition of single-molecule diffusion trajectories and Förster resonance energy transfer (FRET) time traces further elucidates conformational dynamics and binding states for diffusing molecules. Moreover, with a temporally patterned vertical shifting scheme, we deconvolve the spatial and temporal information to map long, fast single-molecule trajectories at the super-resolution level, thus resolving the diffusion mode of a fluorescent protein in live cells with nanoscale resolution. While these demonstrated capabilities substantially outperform existing approaches, SpeedyTrack further stands out for its simplicity by directly working off the built-in functionalities of EM-CCDs without the need to modify existing optics or electronics. We thus provide a facile solution to the microsecond tracking/imaging of single molecules and their super-resolution mapping in the wide field.
Collapse
|
3
|
Paucar M, Li T, Bergendal Å, Savitcheva I, Pourhamidi K, Laffita‐Mesa JM, Nordgren A, Engvall M, Uhlén P, Lagerstedt‐Robinson K, Svenningsson P. An X-Linked Ataxia Syndrome in a Family with Hearing Loss Associated with a Novel Variant in the BCAP31 Gene. Mov Disord 2025; 40:672-682. [PMID: 39831730 PMCID: PMC12006879 DOI: 10.1002/mds.30116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 12/31/2024] [Accepted: 01/02/2025] [Indexed: 01/22/2025] Open
Abstract
OBJECTIVE Pathogenic variants in B-cell receptor-associated protein (BCAP31) are associated with X-linked, deafness, dystonia and cerebral hypomyelination (DDCH) syndrome. DDCH is congenital and non-progressive, featuring severe intellectual disability (ID), variable dysmorphism, and sometimes associated with shortened survival. BCAP31 encodes one of the most abundant chaperones, with several functions including acting as a negative regulator of endoplasmic reticulum (ER) calcium ion (Ca2+) concentration. Here, we characterize an X-linked syndrome, its underlying genotype, and a functional evaluation of the identified candidate genetic variant. METHODS Evaluation of motor features, neuroimaging studies, neurophysiological, and cognitive tests. Whole exome sequencing (WES) was applied, a plasmid encoding BCAP31 with and without a candidate variant was transfected into SH-SY5Y cells to assess subcellular location and to measure Ca2+ levels in the cytoplasm. RESULTS Adult-onset ataxia, cognitive impairment, and hearing loss leading to deafness are the predominant features. Reduced penetrance, slow progression with preserved ability to walk in advance age, and universal cerebellar atrophy are other features for this syndrome. This condition is associated with the new variant c.22G>A (V8I) in BCAP31 at Xq28. The subcellular location of the V8I BCAP31 protein was not altered but caused significant elevation of cytosolic Ca2+. CONCLUSIONS Our findings expand the spectrum of variants in BCAP31 from neurodevelopmental syndromes to include a progressive neurodegenerative disease with variable expressivity. This is the first time ataxia is described in association with a BCAP31 variant and functional evidence of pathogenicity is provided. Additional BCAP31 cases featuring ataxia are needed to establish an association. © 2025 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Martin Paucar
- Department of Clinical NeuroscienceKarolinska InstitutetStockholmSweden
- Department of NeurologyKarolinska University HospitalStockholmSweden
| | - Tianyi Li
- Department of Clinical NeuroscienceKarolinska InstitutetStockholmSweden
| | - Åsa Bergendal
- Department of Clinical NeuroscienceKarolinska InstitutetStockholmSweden
| | - Irina Savitcheva
- Department of Medical Radiation Physics and Nuclear MedicineKarolinska University HospitalStockholmSweden
| | - Kaveh Pourhamidi
- Department of NeurophysiologyKarolinska University HospitalStockholmSweden
| | - José M. Laffita‐Mesa
- Department of Clinical NeuroscienceKarolinska InstitutetStockholmSweden
- Department of NeurobiologyCare Sciences and Society, Karolinska InstitutetStockholmSweden
| | - Ann Nordgren
- Department of Clinical Genetics and GenomicsKarolinska University HospitalStockholmSweden
- Department of Molecular Medicine and SurgeryKarolinska InstitutetStockholmSweden
- Department of Clinical Genetics and GenomicsSahlgrenska University HospitalGothenburgSweden
- Institute of Biomedicine, Department of Laboratory MedicineUniversity of GothenburgGothenburgSweden
| | - Martin Engvall
- Department of Molecular Medicine and SurgeryKarolinska InstitutetStockholmSweden
- Centre for Inherited Metabolic DiseasesKarolinska University HospitalStockholmSweden
| | - Per Uhlén
- Department of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholmSweden
| | - Kristina Lagerstedt‐Robinson
- Department of Clinical Genetics and GenomicsKarolinska University HospitalStockholmSweden
- Department of Molecular Medicine and SurgeryKarolinska InstitutetStockholmSweden
| | - Per Svenningsson
- Department of Clinical NeuroscienceKarolinska InstitutetStockholmSweden
- Department of NeurologyKarolinska University HospitalStockholmSweden
| |
Collapse
|
4
|
Guerriero CJ, Carattino MD, Sharp KG, Kantz LJ, Gresko NP, Caplan MJ, Brodsky JL. Identification of polycystin 2 missense mutants targeted for endoplasmic reticulum-associated degradation. Am J Physiol Cell Physiol 2025; 328:C483-C499. [PMID: 39714991 DOI: 10.1152/ajpcell.00776.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/05/2024] [Accepted: 12/05/2024] [Indexed: 12/25/2024]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is a common genetic disorder leading to end-stage renal disease. ADPKD arises from mutations in the PKD1 and PKD2 genes, which encode polycystin 1 (PC1) and polycystin 2 (PC2), respectively. PC2 is a nonselective cation channel, and disease-linked mutations disrupt normal cellular processes, including signaling and fluid secretion. In this study, we investigate whether disease-causing missense mutations compromise PC2 folding, an event that can lead to endoplasmic reticulum-associated degradation (ERAD). To this end, we first developed a new yeast PC2 expression system. We show that the yeast system provides a tractable model to investigate PC2 biogenesis and that a disease-associated PC2 mutant, D511V, exhibits increased polyubiquitination and accelerated proteasome-dependent degradation compared with wild-type PC2. In contrast to wild-type PC2, the PC2 D511V variant also failed to improve the growth of yeast strains that lack endogenous potassium transporters, highlighting a loss of channel function at the cell surface and a new assay for loss-of-function PKD2 variants. In HEK293 cells, both D511V along with another disease-associated mutant, R322Q, were targeted for ERAD. Consistent with defects in protein folding, the surface localization of these PC2 variants was increased by incubation at low-temperature in HEK293 cells, underscoring the potential to pharmacologically rescue these and perhaps other misfolded PC2 alleles. Together, our study supports the hypothesis that select PC2 missense variants are degraded by ERAD, the potential for screening PKD2 alleles in a new genetic system, and the possibility that chemical chaperone-based therapeutic interventions might be used to treat ADPKD.NEW & NOTEWORTHY This study indicates that select missense mutations in PC2, a protein that when mutated leads to ADPKD, result in protein misfolding and degradation via the ERAD pathway. Our work leveraged a new yeast model and an HEK293 cell model to discover the mechanism underlying PC2 instability and demonstrates the potential for pharmacological rescue. We also suggest that targeting the protein misfolding phenotype with chemical chaperones may offer new therapeutic strategies to manage ADPKD-related protein dysfunction.
Collapse
Affiliation(s)
- Christopher J Guerriero
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Marcelo D Carattino
- Departments of Medicine and Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Katherine G Sharp
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Luke J Kantz
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Nikolay P Gresko
- Department of Cellular and Molecular Physiology, Yale University, New Haven, Connecticut, United States
| | - Michael J Caplan
- Department of Cellular and Molecular Physiology, Yale University, New Haven, Connecticut, United States
| | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
5
|
Shibata Y, Mazur EE, Pan B, Paulo JA, Gygi SP, Chavan S, Valerio LSA, Zhang J, Rapoport TA. The membrane curvature-inducing REEP1-4 proteins generate an ER-derived vesicular compartment. Nat Commun 2024; 15:8655. [PMID: 39368994 PMCID: PMC11455953 DOI: 10.1038/s41467-024-52901-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 09/24/2024] [Indexed: 10/07/2024] Open
Abstract
The endoplasmic reticulum (ER) is shaped by abundant membrane curvature-generating proteins that include the REEP family member REEP5. The REEP1 subfamily, consisting of four proteins in mammals (REEP1-4), is less abundant and lack a N-terminal region. Mutations in REEP1 and REEP2 cause Hereditary Spastic Paraplegia, but the function of these four REEP proteins remains enigmatic. Here we show that REEP1-4 reside in a unique vesicular compartment and identify features that determine their localization. Mutations in REEP1-4 that compromise curvature generation, including those causing disease, relocalize the proteins to the bulk ER. These mutants interact with wild-type proteins to retain them in the ER, consistent with their autosomal-dominant disease inheritance. REEP1 vesicles contain the membrane fusogen atlastin-1, but not general ER proteins. We propose that REEP1-4 generate these vesicles themselves by budding from the ER, and that they cycle back to the ER by atlastin-mediated fusion. The vesicles may serve to regulate ER tubule dynamics.
Collapse
Affiliation(s)
- Yoko Shibata
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA, 2115, USA.
- Howard Hughes Medical Institute, Boston, MA, USA.
| | - Emily E Mazur
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA, 2115, USA
- Howard Hughes Medical Institute, Boston, MA, USA
| | - Buyan Pan
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA, 2115, USA
- Howard Hughes Medical Institute, Boston, MA, USA
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA, 2115, USA
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA, 2115, USA
| | - Suyog Chavan
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA, 2115, USA
| | | | - Jiuchun Zhang
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA, 2115, USA
| | - Tom A Rapoport
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA, 2115, USA.
- Howard Hughes Medical Institute, Boston, MA, USA.
| |
Collapse
|
6
|
Kettel P, Marosits L, Spinetti E, Rechberger M, Giannini C, Radler P, Niedermoser I, Fischer I, Versteeg GA, Loose M, Covino R, Karagöz GE. Disordered regions in the IRE1α ER lumenal domain mediate its stress-induced clustering. EMBO J 2024; 43:4668-4698. [PMID: 39232130 PMCID: PMC11480506 DOI: 10.1038/s44318-024-00207-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/02/2024] [Accepted: 07/23/2024] [Indexed: 09/06/2024] Open
Abstract
Conserved signaling cascades monitor protein-folding homeostasis to ensure proper cellular function. One of the evolutionary conserved key players is IRE1, which maintains endoplasmic reticulum (ER) homeostasis through the unfolded protein response (UPR). Upon accumulation of misfolded proteins in the ER, IRE1 forms clusters on the ER membrane to initiate UPR signaling. What regulates IRE1 cluster formation is not fully understood. Here, we show that the ER lumenal domain (LD) of human IRE1α forms biomolecular condensates in vitro. IRE1α LD condensates were stabilized both by binding to unfolded polypeptides as well as by tethering to model membranes, suggesting their role in assembling IRE1α into signaling-competent stable clusters. Molecular dynamics simulations indicated that weak multivalent interactions drive IRE1α LD clustering. Mutagenesis experiments identified disordered regions in IRE1α LD to control its clustering in vitro and in cells. Importantly, dysregulated clustering of IRE1α mutants led to defects in IRE1α signaling. Our results revealed that disordered regions in IRE1α LD control its clustering and suggest their role as a common strategy in regulating protein assembly on membranes.
Collapse
Affiliation(s)
- Paulina Kettel
- Max Perutz Laboratories Vienna, Vienna BioCenter, Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Laura Marosits
- Max Perutz Laboratories Vienna, Vienna BioCenter, Vienna, Austria
- Medical University of Vienna, Vienna, Austria
| | - Elena Spinetti
- Frankfurt Institute for Advanced Studies, Frankfurt, Germany
- Institute of Biophysics, Goethe University, Frankfurt, Germany
| | | | - Caterina Giannini
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Philipp Radler
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Isabell Niedermoser
- Max Perutz Laboratories Vienna, Vienna BioCenter, Vienna, Austria
- Medical University of Vienna, Vienna, Austria
| | - Irmgard Fischer
- Max Perutz Laboratories Vienna, Vienna BioCenter, Vienna, Austria
| | - Gijs A Versteeg
- Max Perutz Laboratories Vienna, Vienna BioCenter, Vienna, Austria
- Department of Microbiology, Immunobiology and Genetics, University of Vienna, Vienna, Austria
| | - Martin Loose
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Roberto Covino
- Frankfurt Institute for Advanced Studies, Frankfurt, Germany
- IMPRS on Cellular Biophysics, Frankfurt, Germany
| | - G Elif Karagöz
- Max Perutz Laboratories Vienna, Vienna BioCenter, Vienna, Austria.
- Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
7
|
Anitei M, Bruno F, Valkova C, Dau T, Cirri E, Mestres I, Calegari F, Kaether C. IER3IP1-mutations cause microcephaly by selective inhibition of ER-Golgi transport. Cell Mol Life Sci 2024; 81:334. [PMID: 39115595 PMCID: PMC11335259 DOI: 10.1007/s00018-024-05386-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 07/13/2024] [Accepted: 07/27/2024] [Indexed: 08/22/2024]
Abstract
Mutations in the IER3IP1 (Immediate Early Response-3 Interacting Protein 1) gene can give rise to MEDS1 (Microcephaly with Simplified Gyral Pattern, Epilepsy, and Permanent Neonatal Diabetes Syndrome-1), a severe condition leading to early childhood mortality. The small endoplasmic reticulum (ER)-membrane protein IER3IP1 plays a non-essential role in ER-Golgi transport. Here, we employed secretome and cell-surface proteomics to demonstrate that the absence of IER3IP1 results in the mistrafficking of proteins crucial for neuronal development and survival, including FGFR3, UNC5B and SEMA4D. This phenomenon correlates with the distension of ER membranes and increased lysosomal activity. Notably, the trafficking of cargo receptor ERGIC53 and KDEL-receptor 2 are compromised, with the latter leading to the anomalous secretion of ER-localized chaperones. Our investigation extended to in-utero knock-down of Ier3ip1 in mouse embryo brains, revealing a morphological phenotype in newborn neurons. In summary, our findings provide insights into how the loss or mutation of a 10 kDa small ER-membrane protein can cause a fatal syndrome.
Collapse
Affiliation(s)
- Mihaela Anitei
- Leibniz Institute on Aging, Fritz-Lipmann-Institute, Beutenbergstr 11, 07745, Jena, Germany
| | - Francesca Bruno
- Leibniz Institute on Aging, Fritz-Lipmann-Institute, Beutenbergstr 11, 07745, Jena, Germany
| | - Christina Valkova
- Leibniz Institute on Aging, Fritz-Lipmann-Institute, Beutenbergstr 11, 07745, Jena, Germany
| | - Therese Dau
- Leibniz Institute on Aging, Fritz-Lipmann-Institute, Beutenbergstr 11, 07745, Jena, Germany
| | - Emilio Cirri
- Leibniz Institute on Aging, Fritz-Lipmann-Institute, Beutenbergstr 11, 07745, Jena, Germany
| | - Iván Mestres
- Center for Regenerative Therapies, TU-Dresden, Fetscherstraße 105, 01307, Dresden, Germany
| | - Federico Calegari
- Center for Regenerative Therapies, TU-Dresden, Fetscherstraße 105, 01307, Dresden, Germany
| | - Christoph Kaether
- Leibniz Institute on Aging, Fritz-Lipmann-Institute, Beutenbergstr 11, 07745, Jena, Germany.
| |
Collapse
|
8
|
Li C, Yi Y, Ouyang Y, Chen F, Lu C, Peng S, Wang Y, Chen X, Yan X, Xu H, Li S, Feng L, Xie X. TORSEL, a 4EBP1-based mTORC1 live-cell sensor, reveals nutrient-sensing targeting by histone deacetylase inhibitors. Cell Biosci 2024; 14:68. [PMID: 38824577 PMCID: PMC11143692 DOI: 10.1186/s13578-024-01250-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 05/21/2024] [Indexed: 06/03/2024] Open
Abstract
BACKGROUND Mammalian or mechanistic target of rapamycin complex 1 (mTORC1) is an effective therapeutic target for diseases such as cancer, diabetes, aging, and neurodegeneration. However, an efficient tool for monitoring mTORC1 inhibition in living cells or tissues is lacking. RESULTS We developed a genetically encoded mTORC1 sensor called TORSEL. This sensor changes its fluorescence pattern from diffuse to punctate when 4EBP1 dephosphorylation occurs and interacts with eIF4E. TORSEL can specifically sense the physiological, pharmacological, and genetic inhibition of mTORC1 signaling in living cells and tissues. Importantly, TORSEL is a valuable tool for imaging-based visual screening of mTORC1 inhibitors. Using TORSEL, we identified histone deacetylase inhibitors that selectively block nutrient-sensing signaling to inhibit mTORC1. CONCLUSIONS TORSEL is a unique living cell sensor that efficiently detects the inhibition of mTORC1 activity, and histone deacetylase inhibitors such as panobinostat target mTORC1 signaling through amino acid sensing.
Collapse
Affiliation(s)
- Canrong Li
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Yuguo Yi
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Yingyi Ouyang
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Fengzhi Chen
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Chuxin Lu
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Shujun Peng
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Yifan Wang
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Xinyu Chen
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Xiao Yan
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Haolun Xu
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Shuiming Li
- College of Life Sciences and Oceanography, Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen University, Shenzhen, China
| | - Lin Feng
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiaoduo Xie
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China.
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.
| |
Collapse
|
9
|
Hemagirri M, Chen Y, Gopinath SCB, Sahreen S, Adnan M, Sasidharan S. Crosstalk between protein misfolding and endoplasmic reticulum stress during ageing and their role in age-related disorders. Biochimie 2024; 221:159-181. [PMID: 37918463 DOI: 10.1016/j.biochi.2023.10.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/25/2023] [Accepted: 10/30/2023] [Indexed: 11/04/2023]
Abstract
Maintaining the proteome is crucial to retaining cell functionality and response to multiple intrinsic and extrinsic stressors. Protein misfolding increased the endoplasmic reticulum (ER) stress and activated the adaptive unfolded protein response (UPR) to restore cell homeostasis. Apoptosis occurs when ER stress is prolonged or the adaptive response fails. In healthy young cells, the ratio of protein folding machinery to quantities of misfolded proteins is balanced under normal circumstances. However, the age-related deterioration of the complex systems for handling protein misfolding is accompanied by ageing-related disruption of protein homeostasis, which results in the build-up of misfolded and aggregated proteins. This ultimately results in decreased cell viability and forms the basis of common age-related diseases called protein misfolding diseases. Proteins or protein fragments convert from their ordinarily soluble forms to insoluble fibrils or plaques in many of these disorders, which build up in various organs such as the liver, brain, or spleen. Alzheimer's, Parkinson's, type II diabetes, and cancer are diseases in this group commonly manifest in later life. Thus, protein misfolding and its prevention by chaperones and different degradation paths are becoming understood from molecular perspectives. Proteodynamics information will likely affect future interventional techniques to combat cellular stress and support healthy ageing by avoiding and treating protein conformational disorders. This review provides an overview of the diverse proteostasis machinery, protein misfolding, and ER stress involvement, which activates the UPR sensors. Here, we will discuss the crosstalk between protein misfolding and ER stress and their role in developing age-related diseases.
Collapse
Affiliation(s)
- Manisekaran Hemagirri
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, USM, 11800, Pulau Pinang, Malaysia
| | - Yeng Chen
- Department of Oral & Craniofacial Sciences, Faculty of Dentistry, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Subash C B Gopinath
- Faculty of Chemical Engineering and Technology, Universiti Malaysia Perlis, Arau, 02600, Malaysia
| | - Sumaira Sahreen
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, USM, 11800, Pulau Pinang, Malaysia
| | - Mohd Adnan
- Department of Biology, College of Science, University of Ha'il, Ha'il, P. O. Box 2440, Saudi Arabia.
| | - Sreenivasan Sasidharan
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, USM, 11800, Pulau Pinang, Malaysia.
| |
Collapse
|
10
|
Avci D, Heidasch R, Costa M, Lüchtenborg C, Kale D, Brügger B, Lemberg MK. Intramembrane protease SPP defines a cholesterol-regulated abundance control of the mevalonate pathway enzyme squalene synthase. J Biol Chem 2024; 300:105644. [PMID: 38218226 PMCID: PMC10850959 DOI: 10.1016/j.jbc.2024.105644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 12/21/2023] [Accepted: 01/02/2024] [Indexed: 01/15/2024] Open
Abstract
Intramembrane proteolysis regulates important processes such as signaling and transcriptional and posttranslational abundance control of proteins with key functions in metabolic pathways. This includes transcriptional control of mevalonate pathway genes, thereby ensuring balanced biosynthesis of cholesterol and other isoprenoids. Our work shows that, at high cholesterol levels, signal peptide peptidase (SPP) cleaves squalene synthase (SQS), an enzyme that defines the branching point for allocation of isoprenoids to the sterol and nonsterol arms of the mevalonate pathway. This intramembrane cleavage releases SQS from the membrane and targets it for proteasomal degradation. Regulation of this mechanism is achieved by the E3 ubiquitin ligase TRC8 that, in addition to ubiquitinating SQS in response to cholesterol levels, acts as an allosteric activator of SPP-catalyzed intramembrane cleavage of SQS. Cellular cholesterol levels increase in the absence of SPP activity. We infer from these results that, SPP-TRC8 mediated abundance control of SQS acts as a regulation step within the mevalonate pathway.
Collapse
Affiliation(s)
- Dönem Avci
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany; Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany.
| | - Ronny Heidasch
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Martina Costa
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany; Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany
| | | | - Dipali Kale
- Biochemistry Center of Heidelberg University (BZH), Heidelberg, Germany
| | - Britta Brügger
- Biochemistry Center of Heidelberg University (BZH), Heidelberg, Germany
| | - Marius K Lemberg
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany; Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany.
| |
Collapse
|
11
|
Cheatham AM, Sharma NR, Satpute-Krishnan P. Competition for calnexin binding regulates secretion and turnover of misfolded GPI-anchored proteins. J Cell Biol 2023; 222:e202108160. [PMID: 37702712 PMCID: PMC10499038 DOI: 10.1083/jcb.202108160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 03/19/2023] [Accepted: 08/10/2023] [Indexed: 09/14/2023] Open
Abstract
In mammalian cells, misfolded glycosylphosphatidylinositol (GPI)-anchored proteins (GPI-APs) are cleared out of the ER to the Golgi via a constitutive and a stress-inducible pathway called RESET. From the Golgi, misfolded GPI-APs transiently access the cell surface prior to rapid internalization for lysosomal degradation. What regulates the release of misfolded GPI-APs for RESET during steady-state conditions and how this release is accelerated during ER stress is unknown. Using mutants of prion protein or CD59 as model misfolded GPI-APs, we demonstrate that inducing calnexin degradation or upregulating calnexin-binding glycoprotein expression triggers the release of misfolded GPI-APs for RESET. Conversely, blocking protein synthesis dramatically inhibits the dissociation of misfolded GPI-APs from calnexin and subsequent turnover. We demonstrate an inverse correlation between newly synthesized calnexin substrates and RESET substrates that coimmunoprecipitate with calnexin. These findings implicate competition by newly synthesized substrates for association with calnexin as a key factor in regulating the release of misfolded GPI-APs from calnexin for turnover via the RESET pathway.
Collapse
Affiliation(s)
- Amber M. Cheatham
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Nishi Raj Sharma
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Prasanna Satpute-Krishnan
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| |
Collapse
|
12
|
Lim JM, Sabbasani VR, Swenson RE, Levine RL. Methionine sulfoxide reductases and cholesterol transporter STARD3 constitute an efficient system for detoxification of cholesterol hydroperoxides. J Biol Chem 2023; 299:105099. [PMID: 37507014 PMCID: PMC10469991 DOI: 10.1016/j.jbc.2023.105099] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Methionine sulfoxide reductases (MSRs) are key enzymes in the cellular oxidative defense system. Reactive oxygen species oxidize methionine residues to methionine sulfoxide, and the methionine sulfoxide reductases catalyze their reduction back to methionine. We previously identified the cholesterol transport protein STARD3 as an in vivo binding partner of MSRA (methionine sulfoxide reductase A), an enzyme that reduces methionine-S-sulfoxide back to methionine. We hypothesized that STARD3 would also bind the cytotoxic cholesterol hydroperoxides and that its two methionine residues, Met307 and Met427, could be oxidized, thus detoxifying cholesterol hydroperoxide. We now show that in addition to binding MSRA, STARD3 binds all three MSRB (methionine sulfoxide reductase B), enzymes that reduce methionine-R-sulfoxide back to methionine. Using pure 5, 6, and 7 positional isomers of cholesterol hydroperoxide, we found that both Met307 and Met427 on STARD3 are oxidized by 6α-hydroperoxy-3β-hydroxycholest-4-ene (cholesterol-6α-hydroperoxide) and 7α-hydroperoxy-3β-hydroxycholest-5-ene (cholesterol-7α-hydroperoxide). MSRs reduce the methionine sulfoxide back to methionine, restoring the ability of STARD3 to bind cholesterol. Thus, the cyclic oxidation and reduction of methionine residues in STARD3 provides a catalytically efficient mechanism to detoxify cholesterol hydroperoxide during cholesterol transport, protecting membrane contact sites and the entire cell against the toxicity of cholesterol hydroperoxide.
Collapse
Affiliation(s)
- Jung Mi Lim
- Laboratory of Biochemistry, National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA.
| | - Venkata R Sabbasani
- Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute, Rockville, Maryland, USA
| | - Rolf E Swenson
- Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute, Rockville, Maryland, USA
| | - Rodney L Levine
- Laboratory of Biochemistry, National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA
| |
Collapse
|
13
|
Ogen-Shtern N, Chang C, Saad H, Mazkereth N, Patel C, Shenkman M, Lederkremer GZ. COP I and II dependent trafficking controls ER-associated degradation in mammalian cells. iScience 2023; 26:106232. [PMID: 36876137 PMCID: PMC9982306 DOI: 10.1016/j.isci.2023.106232] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 01/09/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
Misfolded proteins and components of the endoplasmic reticulum (ER) quality control and ER associated degradation (ERAD) machineries concentrate in mammalian cells in the pericentriolar ER-derived quality control compartment (ERQC), suggesting it as a staging ground for ERAD. By tracking the chaperone calreticulin and an ERAD substrate, we have now determined that the trafficking to the ERQC is reversible and recycling back to the ER is slower than the movement in the ER periphery. The dynamics suggest vesicular trafficking rather than diffusion. Indeed, using dominant negative mutants of ARF1 and Sar1 or the drugs Brefeldin A and H89, we observed that COPI inhibition causes accumulation in the ERQC and increases ERAD, whereas COPII inhibition has the opposite effect. Our results suggest that targeting of misfolded proteins to ERAD involves COPII-dependent transport to the ERQC and that they can be retrieved to the peripheral ER in a COPI-dependent manner.
Collapse
Affiliation(s)
- Navit Ogen-Shtern
- The Shmunis School of Biomedicine and Cancer Research, Cell Biology Division, George Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Chieh Chang
- The Shmunis School of Biomedicine and Cancer Research, Cell Biology Division, George Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Haddas Saad
- The Shmunis School of Biomedicine and Cancer Research, Cell Biology Division, George Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Niv Mazkereth
- The Shmunis School of Biomedicine and Cancer Research, Cell Biology Division, George Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Chaitanya Patel
- The Shmunis School of Biomedicine and Cancer Research, Cell Biology Division, George Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Marina Shenkman
- The Shmunis School of Biomedicine and Cancer Research, Cell Biology Division, George Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Gerardo Z Lederkremer
- The Shmunis School of Biomedicine and Cancer Research, Cell Biology Division, George Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
14
|
Xiang L, Yan R, Chen K, Li W, Xu K. Single-Molecule Displacement Mapping Unveils Sign-Asymmetric Protein Charge Effects on Intraorganellar Diffusion. NANO LETTERS 2023; 23:1711-1716. [PMID: 36802676 PMCID: PMC10044514 DOI: 10.1021/acs.nanolett.2c04379] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Using single-molecule displacement/diffusivity mapping (SMdM), an emerging super-resolution microscopy method, here we quantify, at nanoscale resolution, the diffusion of a typical fluorescent protein (FP) in the endoplasmic reticulum (ER) and mitochondrion of living mammalian cells. We thus show that the diffusion coefficients D in both organelles are ∼40% of that in the cytoplasm, with the latter exhibiting higher spatial inhomogeneities. Moreover, we unveil that diffusions in the ER lumen and the mitochondrial matrix are markedly impeded when the FP is given positive, but not negative, net charges. Calculation shows most intraorganellar proteins as negatively charged, hence a mechanism to impede the diffusion of positively charged proteins. However, we further identify the ER protein PPIB as an exception with a positive net charge and experimentally show that the removal of this positive charge elevates its intra-ER diffusivity. We thus unveil a sign-asymmetric protein charge effect on the nanoscale intraorganellar diffusion.
Collapse
Affiliation(s)
- Limin Xiang
- Department of Chemistry & California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA, USA, 94720
- College of Chemistry and Molecular Sciences & TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, China
| | - Rui Yan
- Department of Chemistry & California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA, USA, 94720
| | - Kun Chen
- Department of Chemistry & California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA, USA, 94720
| | - Wan Li
- Department of Chemistry & California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA, USA, 94720
| | - Ke Xu
- Department of Chemistry & California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA, USA, 94720
| |
Collapse
|
15
|
Xiang L, Yan R, Chen K, Li W, Xu K. Single-molecule displacement mapping unveils sign-asymmetric protein charge effects on intraorganellar diffusion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.26.525611. [PMID: 36747807 PMCID: PMC9900983 DOI: 10.1101/2023.01.26.525611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Using single-molecule displacement/diffusivity mapping (SM d M), an emerging super-resolution microscopy method, here we quantify, at nanoscale resolution, the diffusion of a typical fluorescent protein (FP) in the endoplasmic reticulum (ER) and mitochondrion of living mammalian cells. We thus show that the diffusion coefficients D in both organelles are ~40% of that in the cytoplasm, with the latter exhibiting higher spatial inhomogeneities. Moreover, we unveil that diffusions in the ER lumen and the mitochondrial matrix are markedly impeded when the FP is given positive, but not negative, net charges. Calculation shows most intraorganellar proteins as negatively charged, thus a mechanism to impede the diffusion of positively charged proteins. However, we further identify the ER protein PPIB as an exception with a positive net charge, and experimentally show that the removal of this positive charge elevates its intra-ER diffusivity. We thus unveil a sign-asymmetric protein charge effect on the nanoscale intraorganellar diffusion.
Collapse
|
16
|
Palazzo FC, Sitia R, Tempio T. Selective Secretion of KDEL-Bearing Proteins: Mechanisms and Functions. Front Cell Dev Biol 2022; 10:967875. [PMID: 35912099 PMCID: PMC9326092 DOI: 10.3389/fcell.2022.967875] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 06/24/2022] [Indexed: 11/13/2022] Open
Abstract
In multicellular organisms, cells must continuously exchange messages with the right meaning, intensity, and duration. Most of these messages are delivered through cognate interactions between membrane and secretory proteins. Their conformational maturation is assisted by a vast array of chaperones and enzymes, ensuring the fidelity of intercellular communication. These folding assistants reside in the early secretory compartment (ESC), a functional unit that encompasses endoplasmic reticulum (ER), intermediate compartment and cis-Golgi. Most soluble ESC residents have C-terminal KDEL-like motifs that prevent their transport beyond the Golgi. However, some accumulate in the ER, while others in downstream stations, implying different recycling rates. Moreover, it is now clear that cells can actively secrete certain ESC residents but not others. This essay discusses the physiology of their differential intracellular distribution, and the mechanisms that may ensure selectivity of release.
Collapse
|
17
|
Kopanchuk S, Vavers E, Veiksina S, Ligi K, Zvejniece L, Dambrova M, Rinken A. Intracellular dynamics of the Sigma-1 receptor observed with super-resolution imaging microscopy. PLoS One 2022; 17:e0268563. [PMID: 35584184 PMCID: PMC9116656 DOI: 10.1371/journal.pone.0268563] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 05/03/2022] [Indexed: 12/05/2022] Open
Abstract
Sigma-1 receptor (Sig1R) is an endoplasmic reticulum (ER)-related membrane protein, that forms heteromers with other cellular proteins. As the mechanism of action of this chaperone protein remains unclear, the aim of the present study was to detect and analyze the intracellular dynamics of Sig1R in live cells using super-resolution imaging microscopy. For that, the Sig1R-yellow fluorescent protein conjugate (Sig1R-YFP) together with fluorescent markers of cell organelles were transfected into human ovarian adenocarcinoma (SK-OV-3) cells with BacMam technology. Sig1R-YFP was found to be located mainly in the nuclear envelope and in both tubular and vesicular structures of the ER but was not detected in the plasma membrane, even after activation of Sig1R with agonists. The super-resolution radial fluctuations approach (SRRF) performed with a highly inclined and laminated optical sheet (HILO) fluorescence microscope indicated substantial overlap of Sig1R-YFP spots with KDEL-mRFP, slight overlap with pmKate2-mito and no overlap with the markers of endosomes, peroxisomes, lysosomes, or caveolae. Activation of Sig1R with (+)-pentazocine caused a time-dependent decrease in the overlap between Sig1R-YFP and KDEL-mRFP, indicating that the activation of Sig1R decreases its colocalization with the marker of vesicular ER and does not cause comprehensive translocations of Sig1R in cells.
Collapse
Affiliation(s)
| | - Edijs Vavers
- Latvian Institute of Organic Synthesis, Riga, Latvia
- Riga Stradins University, Riga, Latvia
| | - Santa Veiksina
- University of Tartu, Institute of Chemistry, Tartu, Estonia
| | - Kadri Ligi
- University of Tartu, Institute of Chemistry, Tartu, Estonia
| | | | - Maija Dambrova
- Latvian Institute of Organic Synthesis, Riga, Latvia
- Riga Stradins University, Riga, Latvia
| | - Ago Rinken
- University of Tartu, Institute of Chemistry, Tartu, Estonia
| |
Collapse
|
18
|
Nourbakhsh K, Ferreccio AA, Bernard MJ, Yadav S. TAOK2 is an ER-localized kinase that catalyzes the dynamic tethering of ER to microtubules. Dev Cell 2021; 56:3321-3333.e5. [PMID: 34879262 PMCID: PMC8699727 DOI: 10.1016/j.devcel.2021.11.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 09/17/2021] [Accepted: 11/15/2021] [Indexed: 01/07/2023]
Abstract
The endoplasmic reticulum (ER) depends on extensive association with the microtubule (MT) cytoskeleton for its structure and mitotic inheritance. However, mechanisms that underlie coupling of ER membranes to MTs are poorly understood. We have identified thousand and one amino acid kinase 2 (TAOK2) as a pleiotropic protein kinase that mediates tethering of ER to MTs. In human cells, TAOK2 localizes in distinct ER subdomains via transmembrane helices and an adjacent amphipathic region. Through its C-terminal tail, TAOK2 directly binds MTs, coupling ER membranes to the MT cytoskeleton. In TAOK2 knockout cells, although ER-membrane dynamics are increased, movement of ER along growing MT plus ends is disrupted. ER-MT tethering is tightly regulated by catalytic activity of TAOK2, perturbation of which leads to defects in ER morphology, association with MTs, and cell division. Our study identifies TAOK2 as an ER-MT tether and reveals a kinase-regulated mechanism for control of ER dynamics.
Collapse
Affiliation(s)
- Kimya Nourbakhsh
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Amy A Ferreccio
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Matthew J Bernard
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Smita Yadav
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA; Institute of Stem Cell and Regenerative Medicine, Seattle, WA 98109, USA.
| |
Collapse
|
19
|
Intertwined and Finely Balanced: Endoplasmic Reticulum Morphology, Dynamics, Function, and Diseases. Cells 2021; 10:cells10092341. [PMID: 34571990 PMCID: PMC8472773 DOI: 10.3390/cells10092341] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/02/2021] [Accepted: 09/04/2021] [Indexed: 02/07/2023] Open
Abstract
The endoplasmic reticulum (ER) is an organelle that is responsible for many essential subcellular processes. Interconnected narrow tubules at the periphery and thicker sheet-like regions in the perinuclear region are linked to the nuclear envelope. It is becoming apparent that the complex morphology and dynamics of the ER are linked to its function. Mutations in the proteins involved in regulating ER structure and movement are implicated in many diseases including neurodegenerative diseases such as Alzheimer’s, Parkinson’s, and amyotrophic lateral sclerosis (ALS). The ER is also hijacked by pathogens to promote their replication. Bacteria such as Legionella pneumophila and Chlamydia trachomatis, as well as the Zika virus, bind to ER morphology and dynamics-regulating proteins to exploit the functions of the ER to their advantage. This review covers our understanding of ER morphology, including the functional subdomains and membrane contact sites that the organelle forms. We also focus on ER dynamics and the current efforts to quantify ER motion and discuss the diseases related to ER morphology and dynamics.
Collapse
|
20
|
A virtuous cycle operated by ERp44 and ERGIC-53 guarantees proteostasis in the early secretory compartment. iScience 2021; 24:102244. [PMID: 33763635 PMCID: PMC7973864 DOI: 10.1016/j.isci.2021.102244] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/01/2021] [Accepted: 02/25/2021] [Indexed: 01/13/2023] Open
Abstract
The composition of the secretome depends on the combined action of cargo receptors that facilitate protein transport and sequential checkpoints that restrict it to native conformers. Acting after endoplasmic reticulum (ER)-resident chaperones, ERp44 retrieves its clients from downstream compartments. To guarantee efficient quality control, ERp44 should exit the ER as rapidly as its clients, or more. Here, we show that appending ERp44 to different cargo proteins increases their secretion rates. ERp44 binds the cargo receptor ER-Golgi intermediate compartment (ERGIC)-53 in the ER to negotiate preferential loading into COPII vesicles. Silencing ERGIC-53, or competing for its COPII binding with 4-phenylbutyrate, causes secretion of Prdx4, an enzyme that relies on ERp44 for intracellular localization. In more acidic, zinc-rich downstream compartments, ERGIC-53 releases its clients and ERp44, which can bind and retrieve non-native conformers via KDEL receptors. By coupling the transport of cargoes and inspector proteins, cells ensure efficiency and fidelity of secretion.
Collapse
|
21
|
Lajoie P, Snapp EL. Size-dependent secretory protein reflux into the cytosol in association with acute endoplasmic reticulum stress. Traffic 2020; 21:419-429. [PMID: 32246734 PMCID: PMC7317852 DOI: 10.1111/tra.12729] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 03/30/2020] [Accepted: 03/30/2020] [Indexed: 01/06/2023]
Abstract
Once secretory proteins have been targeted to the endoplasmic reticulum (ER) lumen, the proteins typically remain partitioned from the cytosol. If the secretory proteins misfold, they can be unfolded and retrotranslocated into the cytosol for destruction by the proteasome by ER-Associated protein Degradation (ERAD). Here, we report that correctly folded and targeted luminal ER fluorescent protein reporters accumulate in the cytosol during acute misfolded secretory protein stress in yeast. Photoactivation fluorescence microscopy experiments reveal that luminal reporters already localized to the ER relocalize to the cytosol, even in the absence of essential ERAD machinery. We named this process "ER reflux." Reflux appears to be regulated in a size-dependent manner for reporters. Interestingly, prior heat shock stress also prevents ER stress-induced reflux. Together, our findings establish a new ER stress-regulated pathway for relocalization of small luminal secretory proteins into the cytosol, distinct from the ERAD and preemptive quality control pathways. Importantly, our results highlight the value of fully characterizing the cell biology of reporters and describe a simple modification to maintain luminal ER reporters in the ER during acute ER stress.
Collapse
Affiliation(s)
- Patrick Lajoie
- Department of Anatomy and Cell BiologyThe University of Western OntarioLondonOntarioCanada
| | | |
Collapse
|
22
|
Kaul Z, Mookherjee D, Das S, Chatterjee D, Chakrabarti S, Chakrabarti O. Loss of tumor susceptibility gene 101 (TSG101) perturbs endoplasmic reticulum structure and function. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118741. [PMID: 32422153 DOI: 10.1016/j.bbamcr.2020.118741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 05/02/2020] [Accepted: 05/08/2020] [Indexed: 12/30/2022]
Abstract
Tumor susceptibility gene 101 (TSG101), an ESCRT-I protein, is implicated in multiple cellular processes and its functional depletion can lead to blocked lysosomal degradation, cell cycle arrest, demyelination and neurodegeneration. Here, we show that loss of TSG101 results in endoplasmic reticulum (ER) stress and this causes ER membrane remodelling (EMR). This correlates with an expansion of ER, increased vacuolation, altered relative distribution of the rough and smooth ER and disruption of three-way junctions. Blocked lysosomal degradation due to TSG101 depletion leads to ER stress and Ca2+ leakage from ER stores, causing destabilization of actin cytoskeleton. Inhibiting Ca2+ release from the ER by blocking ryanodine receptors (RYRs) with Dantrolene partially rescues the ER stress phenotypes. Hence, in this study we have identified the involvement of TSG101 in modulating ER stress mediated remodelling by engaging the actin cytoskeleton. This is significant because functional depletion of TSG101 effectuates ER-stress, perturbs the structure, mobility and function of the ER, all aspects closely associated with neurodegenerative diseases. SUMMARY STATEMENT: We show that tumor susceptibility gene (TSG) 101 regulates endoplasmic reticulum (ER) stress and its membrane remodelling. Loss of TSG101 perturbs structure, mobility and function of the ER as a consequence of actin destabilization.
Collapse
Affiliation(s)
- Zenia Kaul
- Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India; Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA..
| | - Debdatto Mookherjee
- Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
| | - Subhrangshu Das
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, CN 6, Sector V, Salt Lake, Kolkata 700091, India
| | - Debmita Chatterjee
- Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
| | - Saikat Chakrabarti
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, CN 6, Sector V, Salt Lake, Kolkata 700091, India
| | - Oishee Chakrabarti
- Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India; Homi Bhabha National Institute, India.
| |
Collapse
|
23
|
The Metastable XBP1u Transmembrane Domain Defines Determinants for Intramembrane Proteolysis by Signal Peptide Peptidase. Cell Rep 2020; 26:3087-3099.e11. [PMID: 30865896 DOI: 10.1016/j.celrep.2019.02.057] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 12/07/2018] [Accepted: 02/14/2019] [Indexed: 11/23/2022] Open
Abstract
Unspliced XBP1 mRNA encodes XBP1u, the transcriptionally inert variant of the unfolded protein response (UPR) transcription factor XBP1s. XBP1u targets its mRNA-ribosome-nascent-chain-complex to the endoplasmic reticulum (ER) to facilitate UPR activation and prevents overactivation. Yet, its membrane association is controversial. Here, we use cell-free translocation and cellular assays to define a moderately hydrophobic stretch in XBP1u that is sufficient to mediate insertion into the ER membrane. Mutagenesis of this transmembrane (TM) region reveals residues that facilitate XBP1u turnover by an ER-associated degradation route that is dependent on signal peptide peptidase (SPP). Furthermore, the impact of these mutations on TM helix dynamics was assessed by residue-specific amide exchange kinetics, evaluated by a semi-automated algorithm. Based on our results, we suggest that SPP-catalyzed intramembrane proteolysis of TM helices is not only determined by their conformational flexibility, but also by side-chain interactions near the scissile peptide bond with the enzyme's active site.
Collapse
|
24
|
Mitochondria-Endoplasmic Reticulum Contacts in Reactive Astrocytes Promote Vascular Remodeling. Cell Metab 2020; 31:791-808.e8. [PMID: 32220306 PMCID: PMC7139200 DOI: 10.1016/j.cmet.2020.03.005] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 01/03/2020] [Accepted: 03/03/2020] [Indexed: 12/12/2022]
Abstract
Astrocytes have emerged for playing important roles in brain tissue repair; however, the underlying mechanisms remain poorly understood. We show that acute injury and blood-brain barrier disruption trigger the formation of a prominent mitochondrial-enriched compartment in astrocytic endfeet, which enables vascular remodeling. Integrated imaging approaches revealed that this mitochondrial clustering is part of an adaptive response regulated by fusion dynamics. Astrocyte-specific conditional deletion of Mitofusin 2 (Mfn2) suppressed perivascular mitochondrial clustering and disrupted mitochondria-endoplasmic reticulum (ER) contact sites. Functionally, two-photon imaging experiments showed that these structural changes were mirrored by impaired mitochondrial Ca2+ uptake leading to abnormal cytosolic transients within endfeet in vivo. At the tissue level, a compromised vascular complexity in the lesioned area was restored by boosting mitochondrial-ER perivascular tethering in MFN2-deficient astrocytes. These data unmask a crucial role for mitochondrial dynamics in coordinating astrocytic local domains and have important implications for repairing the injured brain.
Collapse
|
25
|
Lee S, Shin Y, Kim K, Song Y, Kim Y, Kang SW. Protein Translocation Acquires Substrate Selectivity Through ER Stress-Induced Reassembly of Translocon Auxiliary Components. Cells 2020; 9:cells9020518. [PMID: 32102453 PMCID: PMC7072789 DOI: 10.3390/cells9020518] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 02/20/2020] [Accepted: 02/24/2020] [Indexed: 11/16/2022] Open
Abstract
Protein import across the endoplasmic reticulum membrane is physiologically regulated in a substrate-selective manner to ensure the protection of stressed ER from the overload of misfolded proteins. However, it is poorly understood how different types of substrates are accurately distinguished and disqualified during translocational regulation. In this study, we found poorly assembled translocon-associated protein (TRAP) complexes in stressed ER. Immunoaffinity purification identified calnexin in the TRAP complex in which poor assembly inhibited membrane insertion of the prion protein (PrP) in a transmembrane sequence-selective manner, through translocational regulation. This reaction was induced selectively by redox perturbation, rather than calcium depletion, in the ER. The liberation of ERp57 from calnexin appeared to be the reason for the redox sensitivity. Stress-independent disruption of the TRAP complex prevented a pathogenic transmembrane form of PrP (ctmPrP) from accumulating in the ER. This study uncovered a previously unappreciated role for calnexin in assisting the redox-sensitive function of the TRAP complex and provided insights into the ER stress-induced reassembly of translocon auxiliary components as a key mechanism by which protein translocation acquires substrate selectivity.
Collapse
Affiliation(s)
- Sohee Lee
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul 138-736, Korea; (S.L.); (Y.S.); (Y.S.)
- Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, Seoul 05505, Korea
| | - Yejin Shin
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul 138-736, Korea; (S.L.); (Y.S.); (Y.S.)
- Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, Seoul 05505, Korea
| | - Kyunggon Kim
- Department of Convergence Medicine, Asan Medical Center, Seoul 05505, Korea;
| | - Youngsup Song
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul 138-736, Korea; (S.L.); (Y.S.); (Y.S.)
- Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, Seoul 05505, Korea
| | - Yongsub Kim
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul 138-736, Korea; (S.L.); (Y.S.); (Y.S.)
- Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, Seoul 05505, Korea
| | - Sang-Wook Kang
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul 138-736, Korea; (S.L.); (Y.S.); (Y.S.)
- Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, Seoul 05505, Korea
- Correspondence: ; Tel.: +82-2-3010-2205
| |
Collapse
|
26
|
Homeostasis of SLC4A11 protein is mediated by endoplasmic reticulum-associated degradation. Exp Eye Res 2019; 188:107782. [DOI: 10.1016/j.exer.2019.107782] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 07/17/2019] [Accepted: 08/28/2019] [Indexed: 01/12/2023]
|
27
|
Lindhout FW, Cao Y, Kevenaar JT, Bodzęta A, Stucchi R, Boumpoutsari MM, Katrukha EA, Altelaar M, MacGillavry HD, Hoogenraad CC. VAP-SCRN1 interaction regulates dynamic endoplasmic reticulum remodeling and presynaptic function. EMBO J 2019; 38:e101345. [PMID: 31441084 PMCID: PMC6792018 DOI: 10.15252/embj.2018101345] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 07/11/2019] [Accepted: 07/17/2019] [Indexed: 01/08/2023] Open
Abstract
In neurons, the continuous and dynamic endoplasmic reticulum (ER) network extends throughout the axon, and its dysfunction causes various axonopathies. However, it remains largely unknown how ER integrity and remodeling modulate presynaptic function in mammalian neurons. Here, we demonstrated that ER membrane receptors VAPA and VAPB are involved in modulating the synaptic vesicle (SV) cycle. VAP interacts with secernin-1 (SCRN1) at the ER membrane via a single FFAT-like motif. Similar to VAP, loss of SCRN1 or SCRN1-VAP interactions resulted in impaired SV cycling. Consistently, SCRN1 or VAP depletion was accompanied by decreased action potential-evoked Ca2+ responses. Additionally, we found that VAP-SCRN1 interactions play an important role in maintaining ER continuity and dynamics, as well as presynaptic Ca2+ homeostasis. Based on these findings, we propose a model where the ER-localized VAP-SCRN1 interactions provide a novel control mechanism to tune ER remodeling and thereby modulate Ca2+ dynamics and SV cycling at presynaptic sites. These data provide new insights into the molecular mechanisms controlling ER structure and dynamics, and highlight the relevance of ER function for SV cycling.
Collapse
Affiliation(s)
- Feline W Lindhout
- Department of BiologyCell BiologyUtrecht UniversityUtrechtThe Netherlands
| | - Yujie Cao
- Department of BiologyCell BiologyUtrecht UniversityUtrechtThe Netherlands
| | - Josta T Kevenaar
- Department of BiologyCell BiologyUtrecht UniversityUtrechtThe Netherlands
| | - Anna Bodzęta
- Department of BiologyCell BiologyUtrecht UniversityUtrechtThe Netherlands
| | - Riccardo Stucchi
- Department of BiologyCell BiologyUtrecht UniversityUtrechtThe Netherlands
- Biomolecular Mass Spectrometry and ProteomicsBijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical SciencesUtrecht UniversityUtrechtThe Netherlands
| | | | - Eugene A Katrukha
- Department of BiologyCell BiologyUtrecht UniversityUtrechtThe Netherlands
| | - Maarten Altelaar
- Biomolecular Mass Spectrometry and ProteomicsBijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical SciencesUtrecht UniversityUtrechtThe Netherlands
| | | | - Casper C Hoogenraad
- Department of BiologyCell BiologyUtrecht UniversityUtrechtThe Netherlands
- Department of NeuroscienceGenentech, Inc.South San FranciscoCAUSA
| |
Collapse
|
28
|
Mookherjee D, Majumder P, Mukherjee R, Chatterjee D, Kaul Z, Das S, Sougrat R, Chakrabarti S, Chakrabarti O. Cytosolic aggregates in presence of non‐translocated proteins perturb endoplasmic reticulum structure and dynamics. Traffic 2019; 20:943-960. [DOI: 10.1111/tra.12694] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 08/21/2019] [Accepted: 08/29/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Debdatto Mookherjee
- Biophysics & Structural Genomics DivisionSaha Institute of Nuclear Physics Kolkata India
| | - Priyanka Majumder
- Biophysics & Structural Genomics DivisionSaha Institute of Nuclear Physics Kolkata India
- Department of Life Sciences, School of Natural SciencesShiv Nadar University Dadri UP India
| | - Rukmini Mukherjee
- Biophysics & Structural Genomics DivisionSaha Institute of Nuclear Physics Kolkata India
- Buchmann Institute for Molecular Life Sciences Frankfurt Am Main Germany
| | - Debmita Chatterjee
- Biophysics & Structural Genomics DivisionSaha Institute of Nuclear Physics Kolkata India
| | - Zenia Kaul
- Biophysics & Structural Genomics DivisionSaha Institute of Nuclear Physics Kolkata India
- Department of Microbiology, Immunology, and Cancer BiologyUniversity of Virginia School of Medicine Charlottesville Virginia
| | - Subhrangshu Das
- Structural Biology and Bioinformatics DivisionCSIR‐Indian Institute of Chemical Biology Kolkata India
| | - Rachid Sougrat
- Imaging and Characterization Lab4700 King Abdullah University of Science and Technology Thuwal Kingdom of Saudi Arabia
| | - Saikat Chakrabarti
- Structural Biology and Bioinformatics DivisionCSIR‐Indian Institute of Chemical Biology Kolkata India
| | - Oishee Chakrabarti
- Biophysics & Structural Genomics DivisionSaha Institute of Nuclear Physics Kolkata India
- Homi Bhabha National Institute Mumbai India
| |
Collapse
|
29
|
Yong J, Bischof H, Burgstaller S, Siirin M, Murphy A, Malli R, Kaufman RJ. Mitochondria supply ATP to the ER through a mechanism antagonized by cytosolic Ca 2. eLife 2019; 8:49682. [PMID: 31498082 PMCID: PMC6763289 DOI: 10.7554/elife.49682] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 09/09/2019] [Indexed: 12/15/2022] Open
Abstract
The endoplasmic reticulum (ER) imports ATP and uses energy from ATP hydrolysis for protein folding and trafficking. However, little is known about how this vital ATP transport occurs across the ER membrane. Here, using three commonly used cell lines (CHO, INS1 and HeLa), we report that ATP enters the ER lumen through a cytosolic Ca2+-antagonized mechanism, or CaATiER (Ca2+-Antagonized Transport into ER). Significantly, we show that mitochondria supply ATP to the ER and a SERCA-dependent Ca2+ gradient across the ER membrane is necessary for ATP transport into the ER, through SLC35B1/AXER. We propose that under physiological conditions, increases in cytosolic Ca2+ inhibit ATP import into the ER lumen to limit ER ATP consumption. Furthermore, the ATP level in the ER is readily depleted by oxidative phosphorylation (OxPhos) inhibitors and that ER protein misfolding increases ATP uptake from mitochondria into the ER. These findings suggest that ATP usage in the ER may increase mitochondrial OxPhos while decreasing glycolysis, i.e. an ‘anti-Warburg’ effect.
Collapse
Affiliation(s)
- Jing Yong
- Degenerative Diseases Program, SBP Medical Discovery Institute, La Jolla, United States
| | - Helmut Bischof
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Sandra Burgstaller
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Marina Siirin
- Degenerative Diseases Program, SBP Medical Discovery Institute, La Jolla, United States
| | - Anne Murphy
- Department of Pharmacology, University of California, San Diego, La Jolla, United States
| | - Roland Malli
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Randal J Kaufman
- Degenerative Diseases Program, SBP Medical Discovery Institute, La Jolla, United States.,Department of Pharmacology, University of California, San Diego, La Jolla, United States
| |
Collapse
|
30
|
Chadwick SR, Lajoie P. Endoplasmic Reticulum Stress Coping Mechanisms and Lifespan Regulation in Health and Diseases. Front Cell Dev Biol 2019; 7:84. [PMID: 31231647 PMCID: PMC6558375 DOI: 10.3389/fcell.2019.00084] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 05/03/2019] [Indexed: 12/30/2022] Open
Abstract
Multiple factors lead to proteostatic perturbations, often resulting in the aberrant accumulation of toxic misfolded proteins. Cells, from yeast to humans, can respond to sudden accumulation of secretory proteins within the endoplasmic reticulum (ER) through pathways such as the Unfolded Protein Response (UPR). The ability of cells to adapt the ER folding environment to the misfolded protein burden ultimately dictates cell fate. The aging process is a particularly important modifier of the proteostasis network; as cells age, both their ability to maintain this balance in protein folding/degradation and their ability to respond to insults in these pathways can break down, a common element of age-related diseases (including neurodegenerative diseases). ER stress coping mechanisms are central to lifespan regulation under both normal and disease states. In this review, we give a brief overview of the role of ER stress response pathways in age-dependent neurodegeneration.
Collapse
Affiliation(s)
- Sarah R Chadwick
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, ON, Canada
| | - Patrick Lajoie
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, ON, Canada
| |
Collapse
|
31
|
Behrendt L, Kurth I, Kaether C. A disease causing ATLASTIN 3 mutation affects multiple endoplasmic reticulum-related pathways. Cell Mol Life Sci 2019; 76:1433-1445. [PMID: 30666337 PMCID: PMC6420906 DOI: 10.1007/s00018-019-03010-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 01/09/2019] [Accepted: 01/10/2019] [Indexed: 12/01/2022]
Abstract
Atlastins (ATLs) are membrane-bound GTPases involved in shaping of the endoplasmic reticulum (ER). Mutations in ATL1 and ATL3 cause spastic paraplegia and hereditary sensory neuropathy. We here show that the sensory neuropathy causing ATL3 Y192C mutation reduces the complexity of the tubular ER-network. ATL3 Y192C delays ER-export by reducing the number of ER exit sites, reduces autophagy, fragments the Golgi and causes malformation of the nucleus. In cultured primary neurons, ATL3 Y192C does not localize to the growing axon, resulting in axon growth deficits. Patient-derived fibroblasts possess a tubular ER with reduced complexity and have a reduced number of autophagosomes. The data suggest that the disease-causing ATL3 Y192C mutation affects multiple ER-related pathways, possibly as a consequence of the distorted ER morphology.
Collapse
Affiliation(s)
- Laura Behrendt
- Leibniz Institut für Alternsforschung-Fritz Lipmann Institut, Beutenbergstr. 11, 07745, Jena, Germany
| | - Ingo Kurth
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University, 52074, Aachen, Germany
| | - Christoph Kaether
- Leibniz Institut für Alternsforschung-Fritz Lipmann Institut, Beutenbergstr. 11, 07745, Jena, Germany.
| |
Collapse
|
32
|
Avci D, Malchus NS, Heidasch R, Lorenz H, Richter K, Neßling M, Lemberg MK. The intramembrane protease SPP impacts morphology of the endoplasmic reticulum by triggering degradation of morphogenic proteins. J Biol Chem 2018; 294:2786-2800. [PMID: 30578301 DOI: 10.1074/jbc.ra118.005642] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 12/12/2018] [Indexed: 11/06/2022] Open
Abstract
The endoplasmic reticulum (ER), as a multifunctional organelle, plays crucial roles in lipid biosynthesis and calcium homeostasis as well as the synthesis and folding of secretory and membrane proteins. Therefore, it is of high importance to maintain ER homeostasis and to adapt ER function and morphology to cellular needs. Here, we show that signal peptide peptidase (SPP) modulates the ER shape through degradation of morphogenic proteins. Elevating SPP activity induces rapid rearrangement of the ER and formation of dynamic ER clusters. Inhibition of SPP activity rescues the phenotype without the need for new protein synthesis, and this rescue depends on a pre-existing pool of proteins in the Golgi. With the help of organelle proteomics, we identified certain membrane proteins to be diminished upon SPP expression and further show that the observed morphology changes depend on SPP-mediated cleavage of ER morphogenic proteins, including the SNARE protein syntaxin-18. Thus, we suggest that SPP-mediated protein abundance control by a regulatory branch of ER-associated degradation (ERAD-R) has a role in shaping the early secretory pathway.
Collapse
Affiliation(s)
- Dönem Avci
- From the Centre for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany and
| | - Nicole S Malchus
- From the Centre for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany and
| | - Ronny Heidasch
- From the Centre for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany and
| | - Holger Lorenz
- From the Centre for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany and
| | - Karsten Richter
- German Cancer Research Center (DKFZ), Central Unit Electron Microscopy, 69120 Heidelberg, Germany
| | - Michelle Neßling
- German Cancer Research Center (DKFZ), Central Unit Electron Microscopy, 69120 Heidelberg, Germany
| | - Marius K Lemberg
- From the Centre for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany and
| |
Collapse
|
33
|
Lee CJ, Rana MS, Bae C, Li Y, Banerjee A. In vitro reconstitution of Wnt acylation reveals structural determinants of substrate recognition by the acyltransferase human Porcupine. J Biol Chem 2018; 294:231-245. [PMID: 30420431 DOI: 10.1074/jbc.ra118.005746] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 10/30/2018] [Indexed: 11/06/2022] Open
Abstract
Wnt proteins regulate a large number of processes, including cellular growth, differentiation, and tissue homeostasis, through the highly conserved Wnt signaling pathway in metazoans. Porcupine (PORCN) is an endoplasmic reticulum (ER)-resident integral membrane enzyme that catalyzes posttranslational modification of Wnts with palmitoleic acid, an unsaturated lipid. This unique form of lipidation with palmitoleic acid is a vital step in the biogenesis and secretion of Wnt, and PORCN inhibitors are currently in clinical trials for cancer treatment. However, PORCN-mediated Wnt lipidation has not been reconstituted in vitro with purified enzyme. Here, we report the first successful purification of human PORCN and confirm, through in vitro reconstitution with the purified enzyme, that PORCN is necessary and sufficient for Wnt acylation. By systematically examining a series of substrate variants, we show that PORCN intimately recognizes the local structure of Wnt around the site of acylation. Our in vitro assay enabled us to examine the activity of PORCN with a range of fatty acyl-CoAs with varying length and unsaturation. The selectivity of human PORCN across a spectrum of fatty acyl-CoAs suggested that the kink in the unsaturated acyl chain is a key determinant of PORCN-mediated catalysis. Finally, we show that two putative PORCN inhibitors that were discovered with cell-based assays indeed target human PORCN. Together, these results provide discrete, high-resolution biochemical insights into the mechanism of PORCN-mediated Wnt acylation and pave the way for further detailed biochemical and structural studies.
Collapse
Affiliation(s)
- Chul-Jin Lee
- Cell Biology and Neurobiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - Mitra S Rana
- Cell Biology and Neurobiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - Chanhyung Bae
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, NINDS, National Institutes of Health, Bethesda, Maryland 20892
| | - Yan Li
- Protein/Peptide Sequencing Facility, NINDS, National Institutes of Health, Bethesda, Maryland 20892
| | - Anirban Banerjee
- Cell Biology and Neurobiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892.
| |
Collapse
|
34
|
Segeritz CP, Rashid ST, de Brito MC, Serra MP, Ordonez A, Morell CM, Kaserman JE, Madrigal P, Hannan NRF, Gatto L, Tan L, Wilson AA, Lilley K, Marciniak SJ, Gooptu B, Lomas DA, Vallier L. hiPSC hepatocyte model demonstrates the role of unfolded protein response and inflammatory networks in α 1-antitrypsin deficiency. J Hepatol 2018; 69:851-860. [PMID: 29879455 PMCID: PMC6562205 DOI: 10.1016/j.jhep.2018.05.028] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 04/25/2018] [Accepted: 05/17/2018] [Indexed: 02/02/2023]
Abstract
BACKGROUND & AIMS α1-Antitrypsin deficiency (A1ATD) is an autosomal recessive disorder caused by mutations in the SERPINA1 gene. Individuals with the Z variant (Gly342Lys) retain polymerised protein in the endoplasmic reticulum (ER) of their hepatocytes, predisposing them to liver disease. The concomitant lack of circulating A1AT also causes lung emphysema. Greater insight into the mechanisms that link protein misfolding to liver injury will facilitate the design of novel therapies. METHODS Human-induced pluripotent stem cell (hiPSC)-derived hepatocytes provide a novel approach to interrogate the molecular mechanisms of A1ATD because of their patient-specific genetic architecture and reflection of human physiology. To that end, we utilised patient-specific hiPSC hepatocyte-like cells (ZZ-HLCs) derived from an A1ATD (ZZ) patient, which faithfully recapitulated key aspects of the disease at the molecular and cellular level. Subsequent functional and "omics" comparisons of these cells with their genetically corrected isogenic-line (RR-HLCs) and primary hepatocytes/human tissue enabled identification of new molecular markers and disease signatures. RESULTS Our studies showed that abnormal A1AT polymer processing (immobilised ER components, reduced luminal protein mobility and disrupted ER cisternae) occurred heterogeneously within hepatocyte populations and was associated with disrupted mitochondrial structure, presence of the oncogenic protein AKR1B10 and two upregulated molecular clusters centred on members of inflammatory (IL-18 and Caspase-4) and unfolded protein response (Calnexin and Calreticulin) pathways. These results were validated in a second patient-specific hiPSC line. CONCLUSIONS Our data identified novel pathways that potentially link the expression of Z A1AT polymers to liver disease. These findings could help pave the way towards identification of new therapeutic targets for the treatment of A1ATD. LAY SUMMARY This study compared the gene expression and protein profiles of healthy liver cells and those affected by the inherited disease α1-antitrypsin deficiency. This approach identified specific factors primarily present in diseased samples which could provide new targets for drug development. This study also demonstrates the interest of using hepatic cells generated from human-induced pluripotent stem cells to model liver disease in vitro for uncovering new mechanisms with clinical relevance.
Collapse
Affiliation(s)
- Charis-Patricia Segeritz
- Wellcome Trust and MRC Cambridge Stem Cell Institute, Department of Surgery, University of Cambridge, UK; Cambridge Institute for Medical Research, University of Cambridge, UK
| | - Sheikh Tamir Rashid
- Wellcome Trust and MRC Cambridge Stem Cell Institute, Department of Surgery, University of Cambridge, UK; Cambridge Institute for Medical Research, University of Cambridge, UK; Centre for Stem Cells and Regenerative Medicine & Institute for Liver Studies, King's College London, UK.
| | - Miguel Cardoso de Brito
- Wellcome Trust and MRC Cambridge Stem Cell Institute, Department of Surgery, University of Cambridge, UK
| | - Maria Paola Serra
- Centre for Stem Cells and Regenerative Medicine & Institute for Liver Studies, King's College London, UK
| | - Adriana Ordonez
- Cambridge Institute for Medical Research, University of Cambridge, UK
| | - Carola Maria Morell
- Wellcome Trust and MRC Cambridge Stem Cell Institute, Department of Surgery, University of Cambridge, UK
| | - Joseph E Kaserman
- Center for Regenerative Medicine (CReM) of Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Pedro Madrigal
- Wellcome Trust and MRC Cambridge Stem Cell Institute, Department of Surgery, University of Cambridge, UK
| | - Nicholas R F Hannan
- Wellcome Trust and MRC Cambridge Stem Cell Institute, Department of Surgery, University of Cambridge, UK
| | - Laurent Gatto
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Building O, Downing Site, Cambridge CB2 1QW, UK
| | - Lu Tan
- Cambridge Institute for Medical Research, University of Cambridge, UK
| | - Andrew A Wilson
- Center for Regenerative Medicine (CReM) of Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Kathryn Lilley
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Building O, Downing Site, Cambridge CB2 1QW, UK
| | | | - Bibek Gooptu
- NIHR Leicester BRC-Respiratory and Leicester Institute of Structural & Chemical Biology, University of Leicester, UK; ISMB/Birkbeck & UCL, University of London, UK; Division of Asthma, Allergy and Lung Biology, King's College London, UK
| | | | - Ludovic Vallier
- Wellcome Trust and MRC Cambridge Stem Cell Institute, Department of Surgery, University of Cambridge, UK; Wellcome Trust Sanger Institute, Genome Campus Hinxton, UK.
| |
Collapse
|
35
|
Single particle trajectories reveal active endoplasmic reticulum luminal flow. Nat Cell Biol 2018; 20:1118-1125. [PMID: 30224760 PMCID: PMC6435195 DOI: 10.1038/s41556-018-0192-2] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 08/09/2018] [Indexed: 01/22/2023]
Abstract
The Endoplasmic Reticulum (ER), a network of membranous sheets and pipes, supports functions encompassing biogenesis of secretory proteins and delivery of functional solutes throughout the cell1,2. Molecular mobility through the ER network enables these functionalities, but diffusion alone is not sufficient to explain luminal transport across supramicron distances. Understanding the ER structure-function relationship is critical in light of mutations in ER morphology regulating proteins that give rise to neurodegenerative disorders3,4. Here, super-resolution microscopy and analysis of single particle trajectories of ER luminal proteins revealed that the topological organization of the ER correlates with distinct trafficking modes of its luminal content: with a dominant diffusive component in tubular junctions and a fast flow component in tubules. Particle trajectory orientations resolved over time revealed an alternating current of the ER contents, whilst fast ER super-resolution identified energy-dependent tubule contraction events at specific points as a plausible mechanism for generating active ER luminal flow. The discovery of active flow in the ER has implications for timely ER content distribution throughout the cell, particularly important for cells with extensive ER-containing projections such as neurons.
Collapse
|
36
|
Lippincott-Schwartz J, Snapp EL, Phair RD. The Development and Enhancement of FRAP as a Key Tool for Investigating Protein Dynamics. Biophys J 2018; 115:1146-1155. [PMID: 30219286 DOI: 10.1016/j.bpj.2018.08.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 07/27/2018] [Accepted: 08/06/2018] [Indexed: 01/18/2023] Open
Abstract
The saga of fluorescence recovery after photobleaching (FRAP) illustrates how disparate technical developments impact science. Starting with the classic 1976 Axelrod et al. work in Biophysical Journal, FRAP (originally fluorescence photobleaching recovery) opened the door to extraction of quantitative information from photobleaching experiments, laying the experimental and theoretical groundwork for quantifying both the mobility and the mobile fraction of a labeled population of proteins. Over the ensuing years, FRAP's reach dramatically expanded, with new developments in GFP technology and turn-key confocal microscopy, which enabled measurement of protein diffusion and binding/dissociation rates in virtually every compartment within the cell. The FRAP technique and data catalyzed an exchange of ideas between biophysicists studying membrane dynamics, cell biologists focused on intracellular dynamics, and systems biologists modeling the dynamics of cell activity. The outcome transformed the field of cellular biology, leading to a fundamental rethinking of long-held theories of cellular dynamism. Here, we review the pivotal FRAP studies that made these developments and conceptual changes possible, which gave rise to current models of complex cell dynamics.
Collapse
Affiliation(s)
| | - Erik Lee Snapp
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia.
| | - Robert D Phair
- Integrative Bioinformatics, Inc., Mountain View, California
| |
Collapse
|
37
|
Snapp EL, McCaul N, Quandte M, Cabartova Z, Bontjer I, Källgren C, Nilsson I, Land A, von Heijne G, Sanders RW, Braakman I. Structure and topology around the cleavage site regulate post-translational cleavage of the HIV-1 gp160 signal peptide. eLife 2017; 6:26067. [PMID: 28753126 PMCID: PMC5577925 DOI: 10.7554/elife.26067] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 07/26/2017] [Indexed: 12/29/2022] Open
Abstract
Like all other secretory proteins, the HIV-1 envelope glycoprotein gp160 is targeted to the endoplasmic reticulum (ER) by its signal peptide during synthesis. Proper gp160 folding in the ER requires core glycosylation, disulfide-bond formation and proline isomerization. Signal-peptide cleavage occurs only late after gp160 chain termination and is dependent on folding of the soluble subunit gp120 to a near-native conformation. We here detail the mechanism by which co-translational signal-peptide cleavage is prevented. Conserved residues from the signal peptide and residues downstream of the canonical cleavage site form an extended alpha-helix in the ER membrane, which covers the cleavage site, thus preventing cleavage. A point mutation in the signal peptide breaks the alpha helix allowing co-translational cleavage. We demonstrate that postponed cleavage of gp160 enhances functional folding of the molecule. The change to early cleavage results in decreased viral fitness compared to wild-type HIV.
Collapse
Affiliation(s)
- Erik Lee Snapp
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Nicholas McCaul
- Cellular Protein Chemistry, Bijvoet Center for Biomolecular Research, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Matthias Quandte
- Cellular Protein Chemistry, Bijvoet Center for Biomolecular Research, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Zuzana Cabartova
- National Institute of Public Health, National Reference Laboratory for Viral Hepatitis, Prague, Czech Republic
| | - Ilja Bontjer
- Department of Medical Microbiology, Laboratory of Experimental Virology, Center for Infection and Immunity Amsterdam, Academic Medical Center, Amsterdam, Netherlands
| | - Carolina Källgren
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden.,Science for Life Laboratory, Stockholm University, Solna, Sweden
| | - IngMarie Nilsson
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden.,Science for Life Laboratory, Stockholm University, Solna, Sweden
| | - Aafke Land
- Cellular Protein Chemistry, Bijvoet Center for Biomolecular Research, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Gunnar von Heijne
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden.,Science for Life Laboratory, Stockholm University, Solna, Sweden
| | - Rogier W Sanders
- Department of Medical Microbiology, Laboratory of Experimental Virology, Center for Infection and Immunity Amsterdam, Academic Medical Center, Amsterdam, Netherlands
| | - Ineke Braakman
- Cellular Protein Chemistry, Bijvoet Center for Biomolecular Research, Faculty of Science, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
38
|
Kaul Z, Chakrabarti O. Tumor susceptibility gene 101 regulates predisposition to apoptosis via ESCRT machinery accessory proteins. Mol Biol Cell 2017; 28:2106-2122. [PMID: 28539405 PMCID: PMC5509423 DOI: 10.1091/mbc.e16-12-0855] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 05/11/2017] [Accepted: 05/16/2017] [Indexed: 12/21/2022] Open
Abstract
ESCRT proteins are implicated in myriad cellular processes, including endosome formation, fusion of autophagosomes/amphisomes with lysosomes, and apoptosis. The role played by these proteins in either facilitating or protecting against apoptosis is unclear. In this study, while trying to understand how deficiency of Mahogunin RING finger 1 (MGRN1) affects cell viability, we uncovered a novel role for its interactor, the ESCRT-I protein TSG101: it directly participates in mitigating ER stress-mediated apoptosis. The association of TSG101 with ALIX prevents predisposition to apoptosis, whereas ALIX-ALG-2 interaction favors a death phenotype. Altered Ca2+ homeostasis in cells and a simultaneous increase in the protein levels of ALIX and ALG-2 are required to elicit apoptosis by activating ER stress-associated caspase 4/12. We further demonstrate that in the presence of membrane-associated, disease-causing prion protein CtmPrP, increased ALIX and ALG-2 levels are detected along with ER stress markers and associated caspases in transgenic brain lysates and cells. These effects were rescued by overexpression of TSG101. This is significant because MGRN1 deficiency is closely associated with neurodegeneration and prenatal and neonatal mortality, which could be due to excess cell death in selected brain regions or myocardial apoptosis during embryonic development.
Collapse
Affiliation(s)
- Zenia Kaul
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata 700064, India
| | - Oishee Chakrabarti
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata 700064, India
| |
Collapse
|
39
|
Applying systems-level spectral imaging and analysis to reveal the organelle interactome. Nature 2017; 546:162-167. [PMID: 28538724 PMCID: PMC5536967 DOI: 10.1038/nature22369] [Citation(s) in RCA: 739] [Impact Index Per Article: 92.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 04/13/2017] [Indexed: 12/14/2022]
Abstract
The organization of the eukaryotic cell into discrete membrane-bound organelles allows for the separation of incompatible biochemical processes, but the activities of these organelles must be coordinated. For example, lipid metabolism is distributed between the endoplasmic reticulum for lipid synthesis, lipid droplets for storage and transport, mitochondria and peroxisomes for β-oxidation, and lysosomes for lipid hydrolysis and recycling. It is increasingly recognized that organelle contacts have a vital role in diverse cellular functions. However, the spatial and temporal organization of organelles within the cell remains poorly characterized, as fluorescence imaging approaches are limited in the number of different labels that can be distinguished in a single image. Here we present a systems-level analysis of the organelle interactome using a multispectral image acquisition method that overcomes the challenge of spectral overlap in the fluorescent protein palette. We used confocal and lattice light sheet instrumentation and an imaging informatics pipeline of five steps to achieve mapping of organelle numbers, volumes, speeds, positions and dynamic inter-organelle contacts in live cells from a monkey fibroblast cell line. We describe the frequency and locality of two-, three-, four- and five-way interactions among six different membrane-bound organelles (endoplasmic reticulum, Golgi, lysosome, peroxisome, mitochondria and lipid droplet) and show how these relationships change over time. We demonstrate that each organelle has a characteristic distribution and dispersion pattern in three-dimensional space and that there is a reproducible pattern of contacts among the six organelles, that is affected by microtubule and cell nutrient status. These live-cell confocal and lattice light sheet spectral imaging approaches are applicable to any cell system expressing multiple fluorescent probes, whether in normal conditions or when cells are exposed to disturbances such as drugs, pathogens or stress. This methodology thus offers a powerful descriptive tool and can be used to develop hypotheses about cellular organization and dynamics.
Collapse
|
40
|
Nixon-Abell J, Obara CJ, Weigel AV, Li D, Legant WR, Xu CS, Pasolli HA, Harvey K, Hess HF, Betzig E, Blackstone C, Lippincott-Schwartz J. Increased spatiotemporal resolution reveals highly dynamic dense tubular matrices in the peripheral ER. Science 2016; 354:aaf3928. [PMID: 27789813 PMCID: PMC6528812 DOI: 10.1126/science.aaf3928] [Citation(s) in RCA: 306] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 09/16/2016] [Indexed: 12/12/2022]
Abstract
The endoplasmic reticulum (ER) is an expansive, membrane-enclosed organelle that plays crucial roles in numerous cellular functions. We used emerging superresolution imaging technologies to clarify the morphology and dynamics of the peripheral ER, which contacts and modulates most other intracellular organelles. Peripheral components of the ER have classically been described as comprising both tubules and flat sheets. We show that this system consists almost exclusively of tubules at varying densities, including structures that we term ER matrices. Conventional optical imaging technologies had led to misidentification of these structures as sheets because of the dense clustering of tubular junctions and a previously uncharacterized rapid form of ER motion. The existence of ER matrices explains previous confounding evidence that had indicated the occurrence of ER "sheet" proliferation after overexpression of tubular junction-forming proteins.
Collapse
Affiliation(s)
- Jonathon Nixon-Abell
- Cell Biology Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke (NINDS), Bethesda, MD, USA. Department of Pharmacology, UCL School of Pharmacy, University College London, London, UK
| | - Christopher J Obara
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Bethesda, MD, USA. Janelia Research Campus, Howard Hughes Medical Institute (HHMI), Ashburn, VA, USA
| | - Aubrey V Weigel
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Bethesda, MD, USA. Janelia Research Campus, Howard Hughes Medical Institute (HHMI), Ashburn, VA, USA
| | - Dong Li
- Janelia Research Campus, Howard Hughes Medical Institute (HHMI), Ashburn, VA, USA. National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Wesley R Legant
- Janelia Research Campus, Howard Hughes Medical Institute (HHMI), Ashburn, VA, USA
| | - C Shan Xu
- Janelia Research Campus, Howard Hughes Medical Institute (HHMI), Ashburn, VA, USA
| | - H Amalia Pasolli
- Janelia Research Campus, Howard Hughes Medical Institute (HHMI), Ashburn, VA, USA
| | - Kirsten Harvey
- Department of Pharmacology, UCL School of Pharmacy, University College London, London, UK
| | - Harald F Hess
- Janelia Research Campus, Howard Hughes Medical Institute (HHMI), Ashburn, VA, USA
| | - Eric Betzig
- Janelia Research Campus, Howard Hughes Medical Institute (HHMI), Ashburn, VA, USA
| | - Craig Blackstone
- Cell Biology Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke (NINDS), Bethesda, MD, USA.
| | - Jennifer Lippincott-Schwartz
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Bethesda, MD, USA. Janelia Research Campus, Howard Hughes Medical Institute (HHMI), Ashburn, VA, USA.
| |
Collapse
|
41
|
Yonemura Y, Li X, Müller K, Krämer A, Atigbire P, Mentrup T, Feuerhake T, Kroll T, Shomron O, Nohl R, Arndt HD, Hoischen C, Hemmerich P, Hirschberg K, Kaether C. Inhibition of cargo export at ER exit sites and the trans-Golgi network by the secretion inhibitor FLI-06. J Cell Sci 2016; 129:3868-3877. [PMID: 27587840 DOI: 10.1242/jcs.186163] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 08/25/2016] [Indexed: 12/21/2022] Open
Abstract
Export out of the endoplasmic reticulum (ER) involves the Sar1 and COPII machinery acting at ER exit sites (ERES). Whether and how cargo proteins are recruited upstream of Sar1 and COPII is unclear. Two models are conceivable, a recruitment model where cargo is actively transported through a transport factor and handed over to the Sar1 and COPII machinery in ERES, and a capture model, where cargo freely diffuses into ERES where it is captured by the Sar1 and COPII machinery. Using the novel secretion inhibitor FLI-06, we show that recruitment of the cargo VSVG to ERES is an active process upstream of Sar1 and COPII. Applying FLI-06 before concentration of VSVG in ERES completely abolishes its recruitment. In contrast, applying FLI-06 after VSVG concentration in ERES does not lead to dispersal of the concentrated VSVG, arguing that it inhibits recruitment to ERES as opposed to capture in ERES. FLI-06 also inhibits export out of the trans-Golgi network (TGN), suggesting that similar mechanisms might orchestrate cargo selection and concentration at the ER and TGN. FLI-06 does not inhibit autophagosome biogenesis and the ER-peroxisomal transport route, suggesting that these rely on different mechanisms.
Collapse
Affiliation(s)
- Yoji Yonemura
- Leibniz Institut für Alternsforschung-Fritz Lipmann Institut, Jena 07745, Germany
| | - Xiaolin Li
- Leibniz Institut für Alternsforschung-Fritz Lipmann Institut, Jena 07745, Germany
| | - Katja Müller
- Leibniz Institut für Alternsforschung-Fritz Lipmann Institut, Jena 07745, Germany
| | - Andreas Krämer
- Leibniz Institut für Alternsforschung-Fritz Lipmann Institut, Jena 07745, Germany
| | - Paul Atigbire
- Leibniz Institut für Alternsforschung-Fritz Lipmann Institut, Jena 07745, Germany
| | - Torben Mentrup
- Leibniz Institut für Alternsforschung-Fritz Lipmann Institut, Jena 07745, Germany
| | - Talitha Feuerhake
- Leibniz Institut für Alternsforschung-Fritz Lipmann Institut, Jena 07745, Germany
| | - Torsten Kroll
- Leibniz Institut für Alternsforschung-Fritz Lipmann Institut, Jena 07745, Germany
| | - Olga Shomron
- Pathology Department, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Richard Nohl
- Lehrstuhl für organische Chemie I, Friedrich-Schiller Universität, Jena 07743, Germany
| | - Hans-Dieter Arndt
- Lehrstuhl für organische Chemie I, Friedrich-Schiller Universität, Jena 07743, Germany
| | - Christian Hoischen
- Leibniz Institut für Alternsforschung-Fritz Lipmann Institut, Jena 07745, Germany
| | - Peter Hemmerich
- Leibniz Institut für Alternsforschung-Fritz Lipmann Institut, Jena 07745, Germany
| | - Koret Hirschberg
- Pathology Department, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Christoph Kaether
- Leibniz Institut für Alternsforschung-Fritz Lipmann Institut, Jena 07745, Germany
| |
Collapse
|
42
|
Abstract
Transport of newly synthesized proteins from the endoplasmic reticulum (ER) to the Golgi complex is highly selective. As a general rule, such transport is limited to soluble and membrane-associated secretory proteins that have reached properly folded and assembled conformations. To secure the efficiency, fidelity, and control of this crucial transport step, cells use a combination of mechanisms. The mechanisms are based on selective retention of proteins in the ER to prevent uptake into transport vesicles, on selective capture of proteins in COPII carrier vesicles, on inclusion of proteins in these vesicles by default as part of fluid and membrane bulk flow, and on selective retrieval of proteins from post-ER compartments by retrograde vesicle transport.
Collapse
Affiliation(s)
- Charles Barlowe
- Biochemistry Department, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755;
| | - Ari Helenius
- Institute of Biochemistry, ETH Zurich, Zurich CH-8093, Switzerland
| |
Collapse
|
43
|
Piña FJ, Fleming T, Pogliano K, Niwa M. Reticulons Regulate the ER Inheritance Block during ER Stress. Dev Cell 2016; 37:279-88. [PMID: 27117666 DOI: 10.1016/j.devcel.2016.03.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 03/07/2016] [Accepted: 03/28/2016] [Indexed: 01/05/2023]
Abstract
Segregation of functional organelles during the cell cycle is crucial to generate healthy daughter cells. In Saccharomyces cerevisiae, ER stress causes an ER inheritance block to ensure cells inherit a functional ER. Here, we report that formation of tubular ER in the mother cell, the first step in ER inheritance, depends on functional symmetry between the cortical ER (cER) and perinuclear ER (pnER). ER stress induces functional asymmetry, blocking tubular ER formation and ER inheritance. Using fluorescence recovery after photobleaching, we show that the ER chaperone Kar2/BiP fused to GFP and an ER membrane reporter, Hmg1-GFP, behave differently in the cER and pnER. The functional asymmetry and tubular ER formation depend on Reticulons/Yop1, which maintain ER structure. LUNAPARK1 deletion in rtn1Δrtn2Δyop1Δ cells restores the pnER/cER functional asymmetry, tubular ER generation, and ER inheritance blocks. Thus, Reticulon/Yop1-dependent changes in ER structure are linked to ER inheritance during the yeast cell cycle.
Collapse
Affiliation(s)
- Francisco Javier Piña
- Section of Molecular Biology, Division of Biological Sciences, University of California, San Diego, NSB#1, Room 5328, La Jolla, CA 92093-0377, USA
| | - Tinya Fleming
- Section of Molecular Biology, Division of Biological Sciences, University of California, San Diego, NSB#1, Room 4113, La Jolla, CA 92093-0377, USA
| | - Kit Pogliano
- Section of Molecular Biology, Division of Biological Sciences, University of California, San Diego, NSB#1, Room 4113, La Jolla, CA 92093-0377, USA
| | - Maho Niwa
- Section of Molecular Biology, Division of Biological Sciences, University of California, San Diego, NSB#1, Room 5328, La Jolla, CA 92093-0377, USA.
| |
Collapse
|
44
|
Lamriben L, Graham JB, Adams BM, Hebert DN. N-Glycan-based ER Molecular Chaperone and Protein Quality Control System: The Calnexin Binding Cycle. Traffic 2016; 17:308-26. [PMID: 26676362 DOI: 10.1111/tra.12358] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 12/14/2015] [Accepted: 12/14/2015] [Indexed: 12/17/2022]
Abstract
Helenius and colleagues proposed over 20-years ago a paradigm-shifting model for how chaperone binding in the endoplasmic reticulum was mediated and controlled for a new type of molecular chaperone- the carbohydrate-binding chaperones, calnexin and calreticulin. While the originally established basics for this lectin chaperone binding cycle holds true today, there has been a number of important advances that have expanded our understanding of its mechanisms of action, role in protein homeostasis, and its connection to disease states that are highlighted in this review.
Collapse
Affiliation(s)
- Lydia Lamriben
- Department of Biochemistry and Molecular Biology, Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, MA, 01003, USA
| | - Jill B Graham
- Department of Biochemistry and Molecular Biology, Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, MA, 01003, USA
| | - Benjamin M Adams
- Department of Biochemistry and Molecular Biology, Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, MA, 01003, USA
| | - Daniel N Hebert
- Department of Biochemistry and Molecular Biology, Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, MA, 01003, USA
| |
Collapse
|
45
|
Piña FJ, Niwa M. The ER Stress Surveillance (ERSU) pathway regulates daughter cell ER protein aggregate inheritance. eLife 2015; 4. [PMID: 26327697 PMCID: PMC4555637 DOI: 10.7554/elife.06970] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 08/04/2015] [Indexed: 12/11/2022] Open
Abstract
Stress induced by cytoplasmic protein aggregates can have deleterious consequences for the cell, contributing to neurodegeneration and other diseases. Protein aggregates are also formed within the endoplasmic reticulum (ER), although the fate of ER protein aggregates, specifically during cell division, is not well understood. By simultaneous visualization of both the ER itself and ER protein aggregates, we found that ER protein aggregates that induce ER stress are retained in the mother cell by activation of the ER Stress Surveillance (ERSU) pathway, which prevents inheritance of stressed ER. In contrast, under conditions of normal ER inheritance, ER protein aggregates can enter the daughter cell. Thus, whereas cytoplasmic protein aggregates are retained in the mother cell to protect the functional capacity of daughter cells, the fate of ER protein aggregates is determined by whether or not they activate the ERSU pathway to impede transmission of the cortical ER during the cell cycle.
Collapse
Affiliation(s)
- Francisco J Piña
- Division of Biological Sciences, Section of Molecular Biology, Univeristy of California, San Diego, San Diego, United States
| | - Maho Niwa
- Division of Biological Sciences, Section of Molecular Biology, Univeristy of California, San Diego, San Diego, United States
| |
Collapse
|
46
|
Ruiz CA, Rossi SG, Rotundo RL. Rescue and Stabilization of Acetylcholinesterase in Skeletal Muscle by N-terminal Peptides Derived from the Noncatalytic Subunits. J Biol Chem 2015; 290:20774-20781. [PMID: 26139603 PMCID: PMC4543640 DOI: 10.1074/jbc.m115.653741] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 06/29/2015] [Indexed: 11/06/2022] Open
Abstract
The vast majority of newly synthesized acetylcholinesterase (AChE) molecules do not assemble into catalytically active oligomeric forms and are rapidly degraded intracellularly by the endoplasmic reticulum-associated protein degradation pathway. We have previously shown that AChE in skeletal muscle is regulated in part post-translationally by the availability of the noncatalytic subunit collagen Q, and others have shown that expression of a 17-amino acid N-terminal proline-rich attachment domain of collagen Q is sufficient to promote AChE tetramerization in cells producing AChE. In this study we show that muscle cells, or cell lines expressing AChE catalytic subunits, incubated with synthetic proline-rich attachment domain peptides containing the endoplasmic reticulum retrieval sequence KDEL take up and retrogradely transport them to the endoplasmic reticulum network where they induce assembly of AChE tetramers. The peptides act to enhance AChE folding thereby rescuing them from reticulum degradation. This enhanced folding efficiency occurs in the presence of inhibitors of protein synthesis and in turn increases total cell-associated AChE activity and active tetramer secretion. Pulse-chase studies of isotopically labeled AChE molecules show that the enzyme is rescued from intracellular degradation. These studies provide a mechanistic explanation for the large scale intracellular degradation of AChE previously observed and indicate that simple peptides alone can increase the production and secretion of this critical synaptic enzyme in muscle tissue.
Collapse
Affiliation(s)
- Carlos A Ruiz
- Department of Cell Biology, University of Miami Miller School of Medicine, Miami, Florida 33136
| | - Susana G Rossi
- Department of Cell Biology, University of Miami Miller School of Medicine, Miami, Florida 33136
| | - Richard L Rotundo
- Department of Cell Biology, University of Miami Miller School of Medicine, Miami, Florida 33136; Department of Neuroscience Program, University of Miami Miller School of Medicine, Miami, Florida 33136.
| |
Collapse
|
47
|
Costantini LM, Baloban M, Markwardt ML, Rizzo MA, Guo F, Verkhusha VV, Snapp EL. A palette of fluorescent proteins optimized for diverse cellular environments. Nat Commun 2015; 6:7670. [PMID: 26158227 PMCID: PMC4499870 DOI: 10.1038/ncomms8670] [Citation(s) in RCA: 183] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 05/28/2015] [Indexed: 12/18/2022] Open
Abstract
To perform quantitative live cell imaging, investigators require fluorescent reporters that accurately report protein localization and levels, while minimally perturbing the cell. Yet, within the biochemically distinct environments of cellular organelles, popular fluorescent proteins (FPs), including EGFP, can be unreliable for quantitative imaging, resulting in the underestimation of protein levels and incorrect localization. Specifically, within the secretory pathway, significant populations of FPs misfold and fail to fluoresce due to non-native disulphide bond formation. Furthermore, transmembrane FP-fusion constructs can disrupt organelle architecture due to oligomerizing tendencies of numerous common FPs. Here, we describe a powerful set of bright and inert FPs optimized for use in multiple cellular compartments, especially oxidizing environments and biological membranes. Also, we provide new insights into the use of red FPs in the secretory pathway. Our monomeric 'oxFPs' finally resolve long-standing, underappreciated and important problems of cell biology and should be useful for a number of applications.
Collapse
Affiliation(s)
- Lindsey M. Costantini
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, 10461 New York USA
| | - Mikhail Baloban
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, 10461 New York USA
| | - Michele L. Markwardt
- Department of Physiology, University of Maryland School of Medicine, 660 West Redwood Street, Baltimore, 21201 Maryland USA
| | - Megan A. Rizzo
- Department of Physiology, University of Maryland School of Medicine, 660 West Redwood Street, Baltimore, 21201 Maryland USA
| | - Feng Guo
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, 10461 New York USA
| | - Vladislav V. Verkhusha
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, 10461 New York USA
| | - Erik L. Snapp
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, 10461 New York USA
| |
Collapse
|
48
|
Satpute-Krishnan P, Ajinkya M, Bhat S, Itakura E, Hegde RS, Lippincott-Schwartz J. ER stress-induced clearance of misfolded GPI-anchored proteins via the secretory pathway. Cell 2015; 158:522-33. [PMID: 25083867 PMCID: PMC4121523 DOI: 10.1016/j.cell.2014.06.026] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Revised: 04/08/2014] [Accepted: 06/09/2014] [Indexed: 11/15/2022]
Abstract
Proteins destined for the cell surface are first assessed in the endoplasmic reticulum (ER) for proper folding before release into the secretory pathway. This ensures that defective proteins are normally prevented from entering the extracellular environment, where they could be disruptive. Here, we report that, when ER folding capacity is saturated during stress, misfolded glycosylphosphatidylinositol-anchored proteins dissociate from resident ER chaperones, engage export receptors, and quantitatively leave the ER via vesicular transport to the Golgi. Clearance from the ER commences within minutes of acute ER stress, before the transcriptional component of the unfolded protein response is activated. These aberrant proteins then access the cell surface transiently before destruction in lysosomes. Inhibiting this stress-induced pathway by depleting the ER-export receptors leads to aggregation of the ER-retained misfolded protein. Thus, this rapid response alleviates the elevated burden of misfolded proteins in the ER at the onset of ER stress, promoting protein homeostasis in the ER.
Collapse
Affiliation(s)
- Prasanna Satpute-Krishnan
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Monica Ajinkya
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Savithri Bhat
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Eisuke Itakura
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Ramanujan S Hegde
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| | - Jennifer Lippincott-Schwartz
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA.
| |
Collapse
|
49
|
Costantini LM, Irvin SC, Kennedy SC, Guo F, Goldstein H, Herold BC, Snapp EL. Engineering and exploitation of a fluorescent HIV-1 gp120 for live cell CD4 binding assays. Virology 2014; 476:240-248. [PMID: 25555152 DOI: 10.1016/j.virol.2014.12.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 10/08/2014] [Accepted: 12/09/2014] [Indexed: 10/24/2022]
Abstract
The HIV-1 envelope glycoprotein, gp120, binds the host cell receptor, CD4, in the initial step of HIV viral entry and infection. This process is an appealing target for the development of inhibitory drugs and neutralizing antibodies. To study gp120 binding and intracellular trafficking, we engineered a fluorescent fusion of the humanized gp120 JRFL HIV-1 variant and GFP. Gp120-sfGFP is glycosylated with human sugars, robustly expressed, and secreted from cultured human cells. Protein dynamics, quality control, and trafficking can be visualized in live cells. The fusion protein can be readily modified with different gp120 variants or fluorescent proteins. Finally, secreted gp120-sfGFP enables a sensitive and easy binding assay that can quantitatively screen potential inhibitors of gp120-CD4 binding on live cells via fluorescence imaging or laser scanning cytometry. This adaptable research tool should aid in studies of gp120 cell biology and the development of novel anti-HIV drugs.
Collapse
Affiliation(s)
- Lindsey M Costantini
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Susan C Irvin
- Department of Pediatrics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA; Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Steven C Kennedy
- Department of Pediatrics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Feng Guo
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Harris Goldstein
- Department of Pediatrics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA; Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Betsy C Herold
- Department of Pediatrics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA; Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Erik L Snapp
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA.
| |
Collapse
|
50
|
Mossuto MF, Sannino S, Mazza D, Fagioli C, Vitale M, Yoboue ED, Sitia R, Anelli T. A dynamic study of protein secretion and aggregation in the secretory pathway. PLoS One 2014; 9:e108496. [PMID: 25279560 PMCID: PMC4184786 DOI: 10.1371/journal.pone.0108496] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 08/21/2014] [Indexed: 01/08/2023] Open
Abstract
Precise coordination of protein biogenesis, traffic and homeostasis within the early secretory compartment (ESC) is key for cell physiology. As a consequence, disturbances in these processes underlie many genetic and chronic diseases. Dynamic imaging methods are needed to follow the fate of cargo proteins and their interactions with resident enzymes and folding assistants. Here we applied the Halotag labelling system to study the behavior of proteins with different fates and roles in ESC: a chaperone, an ERAD substrate and an aggregation-prone molecule. Exploiting the Halo property of binding covalently ligands labelled with different fluorochromes, we developed and performed non-radioactive pulse and chase assays to follow sequential waves of proteins in ESC, discriminating between young and old molecules at the single cell level. In this way, we could monitor secretion and degradation of ER proteins in living cells. We can also follow the biogenesis, growth, accumulation and movements of protein aggregates in the ESC. Our data show that protein deposits within ESC grow by sequential apposition of molecules up to a given size, after which novel seeds are detected. The possibility of using ligands with distinct optical and physical properties offers a novel possibility to dynamically follow the fate of proteins in the ESC.
Collapse
Affiliation(s)
| | - Sara Sannino
- Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, IT
- Department of Biosciences, Università degli Studi di Milano, Milan, IT
| | - Davide Mazza
- Università Vita-Salute San Raffaele, Milan, IT
- Experimental Imaging Center, IRCCS Ospedale San Raffaele, Milan, IT
| | - Claudio Fagioli
- Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, IT
| | - Milena Vitale
- Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, IT
- Università Vita-Salute San Raffaele, Milan, IT
| | - Edgar Djaha Yoboue
- Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, IT
| | - Roberto Sitia
- Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, IT
- Università Vita-Salute San Raffaele, Milan, IT
| | - Tiziana Anelli
- Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, IT
- Università Vita-Salute San Raffaele, Milan, IT
| |
Collapse
|