1
|
Arosio P, Cairo G, Bou-Abdallah F. A Brief History of Ferritin, an Ancient and Versatile Protein. Int J Mol Sci 2024; 26:206. [PMID: 39796064 PMCID: PMC11719527 DOI: 10.3390/ijms26010206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 12/26/2024] [Accepted: 12/27/2024] [Indexed: 01/13/2025] Open
Abstract
Ferritin, a highly conserved iron storage protein, is among the earliest proteins that have been purified, named, and characterized due to its unique properties that continue to captivate researchers. Ferritin is composed of 24 subunits that form an almost spherical shell delimiting a cavity where thousands of iron atoms can be stored in a nontoxic ferric form, thereby preventing cytosolic iron from catalyzing oxidative stress. Mitochondrial and extracellular ferritin have also been described and characterized, with the latter being associated with several signaling functions. In addition, serum ferritin serves as a reliable indicator of both iron stores and inflammatory conditions. First identified and purified through crystallization in 1937, ferritin has since drawn significant attention for its critical role in iron metabolism and regulation. Its unique structural features have recently been exploited for many diverse biological and technological applications. To date, more than 40,000 publications have explored this remarkable protein. Here, we present a historical overview, tracing its journey from discovery to current applications and highlighting the evolution of biochemical techniques developed for its structure-function characterization over the past eight decades.
Collapse
Affiliation(s)
- Paolo Arosio
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Gaetano Cairo
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy;
| | - Fadi Bou-Abdallah
- Department of Chemistry, State University of New York at Potsdam, Potsdam, NY 13676, USA;
| |
Collapse
|
2
|
Ganguly A, Nanda S, Mandi M, Das K, Rajak P. Exploring the ameliorative potential of rutin against High-Sucrose Diet-induced oxidative stress and reproductive toxicity in Drosophila melanogaster. Reprod Toxicol 2024; 130:108742. [PMID: 39510200 DOI: 10.1016/j.reprotox.2024.108742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/22/2024] [Accepted: 10/30/2024] [Indexed: 11/15/2024]
Abstract
Sucrose is a vital ingredient in numerous food items consumed regularly. However, exposure to excessive sucrose for a prolonged period can promote health issues. The reproductive system has a delicate physiology that can be targeted by various chemical stressors, including sucrose. Hence, the present in vivo study aims to unveil the impacts of High-Sucrose Diet (HSD) on the reproductive fitness of Drosophila melanogaster. In addition, the present work has also assessed the protective potential of a bioactive compound, rutin, against it. Here, first instar larvae were exposed to HSD (30 %) alone and in combination with rutin (100-300 µM) till their adult stage. HSD disturbed sex comb morphology in adult males, while fecundity and hatchability of eggs in females. Moreover, HSD triggered gonadal ROS production, oxidative stress, and modulated endogenous antioxidants such as SOD, catalase, and glutathione in both sexes. Nuclear fragmentation and tissue injuries, along with protein and lipid oxidation, were also apparent. Elevated levels of cytosolic Iron suggested an active Fenton reaction in adults. Further, HSD modulated the activities of reproductive and metabolic mediators, including vitellogenin, malate dehydrogenase, glucose-6-phosphate dehydrogenase, and angiotensin-converting enzymes that are critical to maintain the overall reproductive fitness. Interestingly, co-treatment with rutin, mainly at 200 µM, mitigated these adverse effects and restored reproductive fitness. The protective potential of rutin might be attributed to its ability to normalize redox homeostasis, reduce oxidative stress, and optimize critical enzymes involved in reproductive physiology. These findings suggest that rutin has potential therapeutic implications for counteracting the reproductive hazards induced by HSD.
Collapse
Affiliation(s)
- Abhratanu Ganguly
- Toxicology Research Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Sayantani Nanda
- Toxicology Research Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Moutushi Mandi
- Toxicology Research Unit, Department of Zoology, The University of Burdwan, Purba Bardhaman, West Bengal, India
| | - Kanchana Das
- Toxicology Research Unit, Department of Zoology, The University of Burdwan, Purba Bardhaman, West Bengal, India
| | - Prem Rajak
- Toxicology Research Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India.
| |
Collapse
|
3
|
Nanda S, Ganguly A, Mandi M, Das K, Rajak P. Unveiling the physical, behavioural, and biochemical effects of clothianidin on a non-target organism, Drosophila melanogaster. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 956:177198. [PMID: 39471953 DOI: 10.1016/j.scitotenv.2024.177198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/23/2024] [Accepted: 10/23/2024] [Indexed: 11/01/2024]
Abstract
Clothianidin is a novel neonicotinoid pesticide globally used in agriculture to enhance crop production. However, unintentional exposure to clothianidin via contaminated environmental matrices and food products can be detrimental to non-target organisms, including humans. Hence, to unravel the potential health risks at organismal and sub-organismal levels, first instar larvae of a non-target organism, Drosophila melanogaster, were exposed to sub-lethal concentrations (0.05 to 0.1 μg/mL) of clothianidin till their third instar stage (chronic exposure). Larvae from the control and clothianidin-exposed groups were examined for their body weight, physical activity, behaviour, and enzymatic activities using in vivo and molecular docking approaches. Results have suggested that clothianidin at sub-lethal concentrations reduces body weight and physical fitness of D. melanogaster. Interestingly, AChE activity in larvae was reduced by 35 % and 41.13 % following exposure to 0.07 and 0.1 μg/mL of clothianidin, respectively. Further, the activity of mitoferrin, a major importer of iron inside the mitochondrial matrix and malate dehydrogenase, an integral component of the TCA cycle, were down-regulated by 58 % and 45.93 %, respectively, at 0.1 μg/mL clothianidin. Additionally, the activities of glucose 6-phosphate dehydrogenase, a vital enzyme of the pentose phosphate pathway and angiotensin-converting enzyme, responsible for maintaining optimum body physiology, were significantly declined by 43.58 % and 57.63 % at 0.1 μg/mL concentration of clothianidin. Binding affinity analyses have revealed that clothianidin can potentially bind with these enzymes using varying numbers of hydrogen bonds and other hydrophobic interactions to subvert their catalytic functions. Therefore, results of the present study equivocally suggest that chronic exposure to clothianidin, even at low concentrations, can disturb the physical, behavioural, and enzymatic activities of non-target organisms.
Collapse
Affiliation(s)
- Sayantani Nanda
- Toxicology Research Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Abhratanu Ganguly
- Toxicology Research Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Moutushi Mandi
- Toxicology Research Unit, Department of Zoology, The University of Burdwan, Purba Bardhaman, West Bengal, India
| | - Kanchana Das
- Toxicology Research Unit, Department of Zoology, The University of Burdwan, Purba Bardhaman, West Bengal, India
| | - Prem Rajak
- Toxicology Research Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India.
| |
Collapse
|
4
|
Xia W, Jian F, Yu C, Ni H, Wu H, Nur FA, Sun L, Cao C. In-depth transcriptome and physiological function analysis reveals the toxicology of sodium fluoride in the fall webworm Hyphantria cunea. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 282:116742. [PMID: 39047368 DOI: 10.1016/j.ecoenv.2024.116742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/25/2024] [Accepted: 07/13/2024] [Indexed: 07/27/2024]
Abstract
Fluoride is an environmental pollutant that severely injures various organisms in ecosystems. Herein, the non-target organism, fall webworm (Hyphantria cunea), was used to determine the toxicological mechanism of NaF exposure. In this study, H. cunea exposed to NaF showed significant declines in growth and reproduction. The authors conducted RNA sequencing on adipose bodies and midgut tissues from NaF-exposed H. cunea larvae to uncover the toxicological mechanisms. The results showed that extracellular matrix-receptor interaction, pentose and glucuronate interconversions, fatty acid biosynthesis, and ferroptosis might contribute to NaF stress. NaF significantly decreased the antioxidant level, nitrous oxide synthase activity, and NO content, while significantly increasing lipid peroxidation. NaF induced significant changes in the expression of energy metabolism genes. However, the triglyceride content was significantly decreased and the lipase enzyme activity was significantly increased. Moreover, the expression levels of light and heavy chains of ferritin were inhibited in NaF-exposed H. cunea. NaF caused ferritin Fe2+overload in FerHCH1 and FerLCH knockdown H. cunea larvae, activated reactive oxygen species, and reduced the total iron content, eventually increasing the mortality H. cunea larvae. This study identified the toxicological mechanisms of NaF in lipid synthesis and energy metabolism in H. cunea, providing a basis for understanding the molecular mechanisms of NaF toxicity and developing pollution control strategies.
Collapse
Affiliation(s)
- Wenxin Xia
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin, Heilongjiang 150040, China
| | - Furui Jian
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin, Heilongjiang 150040, China
| | - Cailing Yu
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin, Heilongjiang 150040, China
| | - Haiming Ni
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin, Heilongjiang 150040, China
| | - Hongqu Wu
- Hubei Biopesticide Engineering Research Center, Wuhan, Hubei, China
| | - Faidah Arina Nur
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin, Heilongjiang 150040, China
| | - Lili Sun
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin, Heilongjiang 150040, China.
| | - Chuanwang Cao
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin, Heilongjiang 150040, China.
| |
Collapse
|
5
|
Shen C, Feng G, Zhao F, Huang X, Li X. The multi-omics analysis in the hepatopancreas of Eriocheir sinensis provides novel insights into the response mechanism of heat stress. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 50:101232. [PMID: 38598963 DOI: 10.1016/j.cbd.2024.101232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/12/2024]
Abstract
Under global warming, heat stress can induce the excessive production of reactive oxygen species, causing irreversible damage to aquatic animals. It is essential to predict potentially harmful impacts on aquatic organisms under heat stress. Eriocheir sinensis, a typical crustacean crab, is widely distributed in China, American and Europe. Parent E. sinensis need migrate to the estuaries to reproduce in winter, and temperature is a key environmental factor. Herein, we performed a comprehensive transcriptomic and proteomic analysis in the hepatopancreas of E. sinensis under heat stress (20 °C and 30 °C), focusing on heat shock protein family, antioxidant system, energy metabolism and immune defense. The results revealed that parent E. sinensis generated adaptative responses to maintain physiological function under 20 °C stress via the transcriptional up-regulation of energy metabolism enzymes, mRNA synthesis and heat shock proteins. The transcriptional inhibition of key enzymes related to energy metabolism implied that 30 °C stress may lead to the dysfunction of energy metabolism in parent E. sinensis. Meanwhile, parent E. sinensis also enhanced the expression of ferritin and phospholipase D at translational level, and the glutathione s-transferase and heat shock protein 70 at both transcriptional and translational levels, speculating that parent E. sinensis can strengthen antioxidant and immune capacity to resist oxidative stress under 30 °C stress. This study elucidated the potential molecular mechanism in response to heat stress of parent E. sinensis hepatopancreas. The preliminary selection of heat tolerance genes or proteins in E. sinensis can provide a reference for the population prediction and the study of evolutionary mechanism under heat stress in crabs.
Collapse
Affiliation(s)
- Chenchen Shen
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai Engineering Research Center of Fisheries Resources Enhancement and Ecological Restoration of the Yangtze Estuary, Shanghai 200090, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Guangpeng Feng
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai Engineering Research Center of Fisheries Resources Enhancement and Ecological Restoration of the Yangtze Estuary, Shanghai 200090, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China.
| | - Feng Zhao
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai Engineering Research Center of Fisheries Resources Enhancement and Ecological Restoration of the Yangtze Estuary, Shanghai 200090, China
| | - Xiaorong Huang
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai Engineering Research Center of Fisheries Resources Enhancement and Ecological Restoration of the Yangtze Estuary, Shanghai 200090, China
| | - Xincang Li
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai Engineering Research Center of Fisheries Resources Enhancement and Ecological Restoration of the Yangtze Estuary, Shanghai 200090, China
| |
Collapse
|
6
|
Soltani S, Webb SM, Kroll T, King-Jones K. Drosophila Evi5 is a critical regulator of intracellular iron transport via transferrin and ferritin interactions. Nat Commun 2024; 15:4045. [PMID: 38744835 PMCID: PMC11094094 DOI: 10.1038/s41467-024-48165-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 04/22/2024] [Indexed: 05/16/2024] Open
Abstract
Vesicular transport is essential for delivering cargo to intracellular destinations. Evi5 is a Rab11-GTPase-activating protein involved in endosome recycling. In humans, Evi5 is a high-risk locus for multiple sclerosis, a debilitating disease that also presents with excess iron in the CNS. In insects, the prothoracic gland (PG) requires entry of extracellular iron to synthesize steroidogenic enzyme cofactors. The mechanism of peripheral iron uptake in insect cells remains controversial. We show that Evi5-depletion in the Drosophila PG affected vesicle morphology and density, blocked endosome recycling and impaired trafficking of transferrin-1, thus disrupting heme synthesis due to reduced cellular iron concentrations. We show that ferritin delivers iron to the PG as well, and interacts physically with Evi5. Further, ferritin-injection rescued developmental delays associated with Evi5-depletion. To summarize, our findings show that Evi5 is critical for intracellular iron trafficking via transferrin-1 and ferritin, and implicate altered iron homeostasis in the etiology of multiple sclerosis.
Collapse
Affiliation(s)
- Sattar Soltani
- University of Alberta, Faculty of Science, Edmonton, Alberta, T6G 2E9, Canada
| | - Samuel M Webb
- Stanford Synchrotron Radiation Lightsource SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - Thomas Kroll
- Stanford Synchrotron Radiation Lightsource SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - Kirst King-Jones
- University of Alberta, Faculty of Science, Edmonton, Alberta, T6G 2E9, Canada.
| |
Collapse
|
7
|
Feng F, He S, Li X, He J, Luo L. Mitochondria-mediated Ferroptosis in Diseases Therapy: From Molecular Mechanisms to Implications. Aging Dis 2024; 15:714-738. [PMID: 37548939 PMCID: PMC10917537 DOI: 10.14336/ad.2023.0717] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/17/2023] [Indexed: 08/08/2023] Open
Abstract
Ferroptosis, a type of cell death involving iron and lipid peroxidation, has been found to be closely associated with the development of many diseases. Mitochondria are vital components of eukaryotic cells, serving important functions in energy production, cellular metabolism, and apoptosis regulation. Presently, the precise relationship between mitochondria and ferroptosis remains unclear. In this study, we aim to systematically elucidate the mechanisms via which mitochondria regulate ferroptosis from multiple perspectives to provide novel insights into mitochondrial functions in ferroptosis. Additionally, we present a comprehensive overview of how mitochondria contribute to ferroptosis in different conditions, including cancer, cardiovascular disease, inflammatory disease, mitochondrial DNA depletion syndrome, and novel coronavirus pneumonia. Gaining a comprehensive understanding of the involvement of mitochondria in ferroptosis could lead to more effective approaches for both basic cell biology studies and medical treatments.
Collapse
Affiliation(s)
- Fuhai Feng
- The First Clinical College, Guangdong Medical University, Zhanjiang, Guangdong, China.
| | - Shasha He
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China.
| | - Xiaoling Li
- Animal Experiment Center, Guangdong Medical University, Zhanjiang, China.
| | - Jiake He
- The First Clinical College, Guangdong Medical University, Zhanjiang, Guangdong, China.
| | - Lianxiang Luo
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong, China.
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, Guangdong, China.
| |
Collapse
|
8
|
Usman D, Abubakar MB, Ibrahim KG, Imam MU. Iron chelation and supplementation: A comparison in the management of inflammatory bowel disease using drosophila. Life Sci 2024; 336:122328. [PMID: 38061132 DOI: 10.1016/j.lfs.2023.122328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/20/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023]
Abstract
AIMS Inflammatory Bowel Disease (IBD) is associated with systemic iron deficiency and has been managed with iron supplements which cause adverse side effects. Conversely, some reports highlight iron depletion to ameliorate IBD. The underlying intestinal response and comparative benefit of iron depletion and supplementation in IBD is unknown. The aims of this work were to characterize and compare the effects of iron supplementation and iron depletion in IBD. MAIN METHODS IBD was induced in Drosophila melanogaster using 3 % dextran sodium sulfate (DSS) in diet for 7 days. Using this model, we investigated the impacts of acute iron depletion (using bathophenanthroline disulfonate, BPS) and supplementation (using ferrous sulphate, FS), before and after IBD induction, on gut iron homeostasis, cell death, gut permeability, inflammation, antioxidant defence, antimicrobial response and several fly phenotypes. KEY FINDINGS DSS decreased fly mass (p < 0.001), increased gut permeability (p < 0.001) and shortened lifespan (p = 0.035) compared to control. The DSS-fed flies also showed significantly elevated lipid peroxidation (p < 0.001), and the upregulated expression of apoptotic marker- drice (p < 0.001), tight junction protein - bbg (p < 0.001), antimicrobial peptide - dpta (p = 0.002) and proinflammatory cytokine - upd2 (p < 0.001). BPS significantly (p < 0.05) increased fly mass and lifespan, decreased gut permeability, decreased lipid peroxidation and decreased levels of drice, bbg, dpta and upd2 in IBD flies. This iron chelation (using BPS) showed better protection from DSS-induced IBD than iron supplementation (using FS). Preventive and curative interventions, by BPS or FS, also differed in outcomes. SIGNIFICANCE This may inform precise management strategies aimed at tackling IBD and its recurrence.
Collapse
Affiliation(s)
- Dawoud Usman
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University Sokoto, Nigeria; Department of Physiology, College of Health Sciences, Usmanu Danfodiyo University Sokoto, Nigeria
| | - Murtala Bello Abubakar
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University Sokoto, Nigeria; Department of Physiology, College of Health Sciences, Usmanu Danfodiyo University Sokoto, Nigeria; Department of Physiology, College of Medicine and Health Sciences, Baze University, Abuja, Nigeria
| | - Kasimu Ghandi Ibrahim
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University Sokoto, Nigeria; Department of Physiology, College of Health Sciences, Usmanu Danfodiyo University Sokoto, Nigeria; Department of Basic Medical and Dental Sciences, Faculty of Dentistry, Zarqa University, P. O. Box 2000, Zarqa 13110, Jordan; School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown 2193, Johannesburg, South Africa
| | - Mustapha Umar Imam
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University Sokoto, Nigeria; Department of Medical Biochemistry, College of Health Sciences, Usmanu Danfodiyo University Sokoto, Nigeria.
| |
Collapse
|
9
|
Dutta D, Kanca O, Byeon SK, Marcogliese PC, Zuo Z, Shridharan RV, Park JH, Lin G, Ge M, Heimer G, Kohler JN, Wheeler MT, Kaipparettu BA, Pandey A, Bellen HJ. A defect in mitochondrial fatty acid synthesis impairs iron metabolism and causes elevated ceramide levels. Nat Metab 2023; 5:1595-1614. [PMID: 37653044 PMCID: PMC11151872 DOI: 10.1038/s42255-023-00873-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 07/21/2023] [Indexed: 09/02/2023]
Abstract
In most eukaryotic cells, fatty acid synthesis (FAS) occurs in the cytoplasm and in mitochondria. However, the relative contribution of mitochondrial FAS (mtFAS) to the cellular lipidome is not well defined. Here we show that loss of function of Drosophila mitochondrial enoyl coenzyme A reductase (Mecr), which is the enzyme required for the last step of mtFAS, causes lethality, while neuronal loss of Mecr leads to progressive neurodegeneration. We observe a defect in Fe-S cluster biogenesis and increased iron levels in flies lacking mecr, leading to elevated ceramide levels. Reducing the levels of either iron or ceramide suppresses the neurodegenerative phenotypes, indicating an interplay between ceramide and iron metabolism. Mutations in human MECR cause pediatric-onset neurodegeneration, and we show that human-derived fibroblasts display similar elevated ceramide levels and impaired iron homeostasis. In summary, this study identifies a role of mecr/MECR in ceramide and iron metabolism, providing a mechanistic link between mtFAS and neurodegeneration.
Collapse
Affiliation(s)
- Debdeep Dutta
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Oguz Kanca
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Seul Kee Byeon
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Paul C Marcogliese
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
- Department of Biochemistry & Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Zhongyuan Zuo
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Rishi V Shridharan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Jun Hyoung Park
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Guang Lin
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Ming Ge
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Gali Heimer
- Pediatric Neurology Unit, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel
- The Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Jennefer N Kohler
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Matthew T Wheeler
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Benny A Kaipparettu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Akhilesh Pandey
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
- Manipal Academy of Higher Education, Manipal, India
| | - Hugo J Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA.
| |
Collapse
|
10
|
Liu Y, Lu S, Wu LL, Yang L, Yang L, Wang J. The diversified role of mitochondria in ferroptosis in cancer. Cell Death Dis 2023; 14:519. [PMID: 37580393 PMCID: PMC10425449 DOI: 10.1038/s41419-023-06045-y] [Citation(s) in RCA: 146] [Impact Index Per Article: 73.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 06/23/2023] [Accepted: 08/07/2023] [Indexed: 08/16/2023]
Abstract
Ferroptosis is a form of regulated cell death induced by iron-dependent lipid peroxidation, and it has been studied extensively since its discovery in 2012. Induced by iron overload and ROS accumulation, ferroptosis is modulated by various cellular metabolic and signaling pathways. The GSH-GPX4 pathway, the FSP1-CoQ10 pathway, the GCH1-BH4 pathway, the DHODH-CoQH2 system and the sex hormones suppress ferroptosis. Mitochondrial iron metabolism regulates ferroptosis and mitochondria also undergo a morphological change during ferroptosis, these changes include increased membrane density and reduced mitochondrial cristae. Moreover, mitochondrial energy metabolism changes during ferroptosis, the increased oxidative phosphorylation and ATP production rates lead to a decrease in the glycolysis rate. In addition, excessive oxidative stress induces irreversible damage to mitochondria, diminishing organelle integrity. ROS production, mitochondrial membrane potential, mitochondrial fusion and fission, and mitophagy also function in ferroptosis. Notably, some ferroptosis inhibitors target mitochondria. Ferroptosis is a major mechanism for cell death associated with the progression of cancer. Metastasis-prone or metastatic cancer cells are more susceptible to ferroptosis. Inducing ferroptosis in tumor cells shows very promising potential for treating drug-resistant cancers. In this review, we present a brief retrospect of the discovery and the characteristics of ferroptosis, then we discuss the regulation of ferroptosis and highlight the unique role played by mitochondria in the ferroptosis of cancer cells. Furthermore, we explain how ferroptosis functions as a double-edged sword as well as novel therapies aimed at selectively manipulating cell death for cancer eradication.
Collapse
Affiliation(s)
- Yu'e Liu
- Institute of Hepatobiliary and Pancreatic Surgery, Department of Hepatobiliary and Pancreatic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Shiping Lu
- Center for Translational Research in infection and Inflammation, School of Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Lei-Lei Wu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, 200433, Shanghai, China
| | - Liang Yang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, China
| | - Lixue Yang
- Department of Biliary Tract Surgery II, Eastern Hepatobiliary Surgery Hospital, Shanghai, 200438, China.
| | - Jinghan Wang
- Institute of Hepatobiliary and Pancreatic Surgery, Department of Hepatobiliary and Pancreatic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China.
| |
Collapse
|
11
|
Abstract
Iron is an essential micronutrient for all types of organisms; however, iron has chemical properties that can be harmful to cells. Because iron is both necessary and potentially damaging, insects have homeostatic processes that control the redox state, quantity, and location of iron in the body. These processes include uptake of iron from the diet, intracellular and extracellular iron transport, and iron storage. Early studies of iron-binding proteins in insects suggested that insects and mammals have surprisingly different mechanisms of iron homeostasis, including different primary mechanisms for exporting iron from cells and for transporting iron from one cell to another, and subsequent studies have continued to support this view. This review summarizes current knowledge about iron homeostasis in insects, compares insect and mammalian iron homeostasis mechanisms, and calls attention to key remaining knowledge gaps.
Collapse
Affiliation(s)
- Maureen J Gorman
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas, USA;
| |
Collapse
|
12
|
Celis AI, Relman DA, Huang KC. The impact of iron and heme availability on the healthy human gut microbiome in vivo and in vitro. Cell Chem Biol 2023; 30:110-126.e3. [PMID: 36603582 PMCID: PMC9913275 DOI: 10.1016/j.chembiol.2022.12.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 07/12/2022] [Accepted: 12/14/2022] [Indexed: 01/06/2023]
Abstract
Responses of the indigenous human gut commensal microbiota to iron are poorly understood because of an emphasis on in vitro studies of pathogen iron sensitivity. In a study of iron supplementation in healthy humans, we identified gradual microbiota shifts in some participants correlated with bacterial iron internalization. To identify direct effects due to taxon-specific iron sensitivity, we used participant stool samples to derive diverse in vitro communities. Iron supplementation of these communities caused small compositional shifts, mimicking those in vivo, whereas iron deprivation dramatically inhibited growth with irreversible, cumulative reduction in diversity and replacement of dominant species. Sensitivity of individual species to iron deprivation in axenic culture generally predicted iron dependency in a community. Finally, exogenous heme acted as a source of inorganic iron to prevent depletion of some species. Our results highlight the complementarity of in vivo and in vitro studies in understanding how environmental factors affect gut microbiotas.
Collapse
Affiliation(s)
- Arianna I Celis
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - David A Relman
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Infectious Diseases Section, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA.
| | - Kerwyn Casey Huang
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA.
| |
Collapse
|
13
|
Li Z, Ma R, Wang L, Wang Y, Qin Q, Chen L, Dang X, Zhou Z. Starvation stress affects iron metabolism in honeybee Apis mellifera. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01098-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Wu S, Yin S, Zhou B. Molecular physiology of iron trafficking in Drosophila melanogaster. CURRENT OPINION IN INSECT SCIENCE 2022; 50:100888. [PMID: 35158107 DOI: 10.1016/j.cois.2022.100888] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/05/2022] [Accepted: 02/06/2022] [Indexed: 06/14/2023]
Abstract
Iron homeostasis in insects is less-well understood comparatively to mammals. The classic model organism Drosophila melanogaster has been recently employed to explore how iron is trafficked between and within cells. An outline for iron absorption, systemic delivery, and efflux is thus beginning to emerge. The proteins Malvolio, ZIP13, mitoferrin, ferritin, transferrin, and IRP-1A are key players in these processes. While many features are shared with those in mammals, some physiological differences may also exist. Notable remaining questions include the existence and identification of functional transferrin and ferritin receptors, and of an iron exporter like ferroportin, how systemic iron homeostasis is controlled, and the roles of different tissues in regulating iron physiology. By focusing on aspects of iron trafficking, this review updates on presently known complexities of iron homeostasis in Drosophila.
Collapse
Affiliation(s)
- Shitao Wu
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Sai Yin
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Bing Zhou
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China; Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| |
Collapse
|
15
|
Xue J, Li G, Ji X, Liu ZH, Wang HL, Xiao G. Drosophila ZIP13 overexpression or transferrin1 RNAi influences the muscle degeneration of Pink1 RNAi by elevating iron levels in mitochondria. J Neurochem 2022; 160:540-555. [PMID: 35038358 DOI: 10.1111/jnc.15574] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 01/08/2022] [Accepted: 01/10/2022] [Indexed: 12/01/2022]
Abstract
Disruption of iron homeostasis in the brain of Parkinson's disease (PD) patients has been reported for many years, but the underlying mechanisms remain unclear. To investigate iron metabolism genes related to PTEN-induced kinase 1 (Pink1) and parkin (E3 ubiquitin ligase), two PD-associated proteins that function to coordinate mitochondrial turnover via induction of selective mitophagy, we conducted a genetic screen in Drosophila and found that altered expression of genes involved in iron metabolism, such as Drosophila ZIP13 (dZIP13) or transferrin1 (Tsf1), significantly influences the disease progression related to Pink1 but not parkin. Several phenotypes of Pink1 mutant and Pink1 RNAi but not parkin mutant were significantly rescued by overexpression (OE) of dZIP13 (dZIP13 OE) or silencing of Tsf1 (Tsf1 RNAi) in the flight muscles. The rescue effects of dZIP13 OE or Tsf1 RNAi were not exerted through mitochondrial disruption or mitophagy, instead, the iron levels in mitochondira were significantly increased, resulting in enhanced activity of enzymes participating in respiration and increased ATP synthesis. Consistently, the rescue effects of dZIP13 OE or Tsf1 RNAi on Pink1 RNAi can be inhibited by decreasing the iron levels in mitochondria through mitoferrin (dmfrn) RNAi. This study suggests that dZIP13, Tsf1 and dmfrn might act independently of parkin in a parallel pathway downstream of Pink1 by modulating respiration and indicates that manipulation of iron levels in mitochondria may provide a novel therapeutic strategy for PD associated with Pink1.
Collapse
Affiliation(s)
- Jinsong Xue
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Guangying Li
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Xiaowen Ji
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Zhi-Hua Liu
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Hui-Li Wang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Guiran Xiao
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
| |
Collapse
|
16
|
Hu L, Wu Z, Robert CAM, Ouyang X, Züst T, Mestrot A, Xu J, Erb M. Soil chemistry determines whether defensive plant secondary metabolites promote or suppress herbivore growth. Proc Natl Acad Sci U S A 2021; 118:e2109602118. [PMID: 34675080 PMCID: PMC8639379 DOI: 10.1073/pnas.2109602118] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2021] [Indexed: 01/26/2023] Open
Abstract
Plant secondary (or specialized) metabolites mediate important interactions in both the rhizosphere and the phyllosphere. If and how such compartmentalized functions interact to determine plant-environment interactions is not well understood. Here, we investigated how the dual role of maize benzoxazinoids as leaf defenses and root siderophores shapes the interaction between maize and a major global insect pest, the fall armyworm. We find that benzoxazinoids suppress fall armyworm growth when plants are grown in soils with very low available iron but enhance growth in soils with higher available iron. Manipulation experiments confirm that benzoxazinoids suppress herbivore growth under iron-deficient conditions and in the presence of chelated iron but enhance herbivore growth in the presence of free iron in the growth medium. This reversal of the protective effect of benzoxazinoids is not associated with major changes in plant primary metabolism. Plant defense activation is modulated by the interplay between soil iron and benzoxazinoids but does not explain fall armyworm performance. Instead, increased iron supply to the fall armyworm by benzoxazinoids in the presence of free iron enhances larval performance. This work identifies soil chemistry as a decisive factor for the impact of plant secondary metabolites on herbivore growth. It also demonstrates how the multifunctionality of plant secondary metabolites drives interactions between abiotic and biotic factors, with potential consequences for plant resistance in variable environments.
Collapse
Affiliation(s)
- Lingfei Hu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
- Institute of Plant Sciences, University of Bern, 3013 Bern, Switzerland
| | - Zhenwei Wu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | | | - Xiao Ouyang
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Tobias Züst
- Institute of Plant Sciences, University of Bern, 3013 Bern, Switzerland
| | - Adrien Mestrot
- Institute of Geography, University of Bern, 3012 Bern, Switzerland
| | - Jianming Xu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China;
| | - Matthias Erb
- Institute of Plant Sciences, University of Bern, 3013 Bern, Switzerland;
| |
Collapse
|
17
|
Slobodian MR, Petahtegoose JD, Wallis AL, Levesque DC, Merritt TJS. The Effects of Essential and Non-Essential Metal Toxicity in the Drosophila melanogaster Insect Model: A Review. TOXICS 2021; 9:269. [PMID: 34678965 PMCID: PMC8540122 DOI: 10.3390/toxics9100269] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/08/2021] [Accepted: 10/14/2021] [Indexed: 02/07/2023]
Abstract
The biological effects of environmental metal contamination are important issues in an industrialized, resource-dependent world. Different metals have different roles in biology and can be classified as essential if they are required by a living organism (e.g., as cofactors), or as non-essential metals if they are not. While essential metal ions have been well studied in many eukaryotic species, less is known about the effects of non-essential metals, even though essential and non-essential metals are often chemically similar and can bind to the same biological ligands. Insects are often exposed to a variety of contaminated environments and associated essential and non-essential metal toxicity, but many questions regarding their response to toxicity remain unanswered. Drosophila melanogaster is an excellent insect model species in which to study the effects of toxic metal due to the extensive experimental and genetic resources available for this species. Here, we review the current understanding of the impact of a suite of essential and non-essential metals (Cu, Fe, Zn, Hg, Pb, Cd, and Ni) on the D. melanogaster metal response system, highlighting the knowledge gaps between essential and non-essential metals in D. melanogaster. This review emphasizes the need to use multiple metals, multiple genetic backgrounds, and both sexes in future studies to help guide future research towards better understanding the effects of metal contamination in general.
Collapse
Affiliation(s)
| | | | | | | | - Thomas J. S. Merritt
- Faculty of Science and Engineering, Laurentian University, 935 Ramsey Lake Rd, Sudbury, ON P3E 2C6, Canada; (M.R.S.); (J.D.P.); (A.L.W.); (D.C.L.)
| |
Collapse
|
18
|
He B, Liu Z, Wang Y, Cheng L, Qing Q, Duan J, Xu J, Dang X, Zhou Z, Li Z. Imidacloprid activates ROS and causes mortality in honey bees (Apis mellifera) by inducing iron overload. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 228:112709. [PMID: 34895731 DOI: 10.1016/j.ecoenv.2021.112709] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 08/08/2021] [Accepted: 08/24/2021] [Indexed: 06/14/2023]
Abstract
Imidacloprid, a neonicotinoid pesticide widely used for insect pest control, has become a potential pollutant to pollinators. Previous reports have demonstrated the toxicity of this drug in activating oxidative stress resulting in high mortality in the honey bee Apis mellifera. However, the mechanisms underlying the toxicity of imidacloprid have not been fully elucidated. In this study, sublethal (36 ng/bee) and median lethal (132 ng/bee) doses of imidacloprid were administered to bees. The results showed dose-dependent increases in reactive oxygen species (ROS), Fe2+, and mortality in bees. Notably, imidacloprid also induced upregulation of the gene encoding ferritin (AmFth), which plays a pivotal role in reducing Fe2+ overload. Upregulation of AmFth has been suggested to be closely related to ROS accumulation and high mortality in bees. To confirm the role played by AmFth in imidacloprid-activated ROS, dsAmFth double-strand was orally administered to bees after exposure to imidacloprid. The results revealed aggravated Fe2+ overload, higher ROS activation, and elevated mortality in the bees, indicating that imidacloprid activated ROS and caused mortality in the bees, probably by inducing iron overload. This study helps to elucidate the molecular mechanisms underlying the toxicity of imidacloprid from the perspective of iron metabolism.
Collapse
Affiliation(s)
- Biao He
- College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Zhihao Liu
- College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Yuedi Wang
- College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Lanchun Cheng
- College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Qiqian Qing
- College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Jiaxin Duan
- College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Jinshan Xu
- College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Xiaoqun Dang
- College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Zeyang Zhou
- College of Life Sciences, Chongqing Normal University, Chongqing, China; The State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Zhi Li
- College of Life Sciences, Chongqing Normal University, Chongqing, China.
| |
Collapse
|
19
|
Mitochondrial Ferritin: Its Role in Physiological and Pathological Conditions. Cells 2021; 10:cells10081969. [PMID: 34440737 PMCID: PMC8393899 DOI: 10.3390/cells10081969] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/27/2021] [Accepted: 07/30/2021] [Indexed: 12/16/2022] Open
Abstract
In 2001, a new type of human ferritin was identified by searching for homologous sequences to H-ferritin in the human genome. After the demonstration that this ferritin is located specifically in the mitochondrion, it was called mitochondrial ferritin. Studies on the properties of this new type of ferritin have been limited by its very high homology with the cytosolic H-ferritin, which is expressed at higher levels in cells. This great similarity made it difficult to obtain specific antibodies against the mitochondrial ferritin devoid of cross-reactivity with cytosolic ferritin. Thus, the knowledge of the physiological role of mitochondrial ferritin is still incomplete despite 20 years of research. In this review, we summarize the literature on mitochondrial ferritin expression regulation and its physical and biochemical properties, with particular attention paid to the differences with cytosolic ferritin and its role in physiological condition. Until now, there has been no evidence that the alteration of the mitochondrial ferritin gene is causative of any disorder; however, the identified association of the mitochondrial ferritin with some disorders is discussed.
Collapse
|
20
|
Wan Z, Xu J, Huang Y, Zhai Y, Ma Z, Zhou B, Cao Z. Elevating bioavailable iron levels in mitochondria suppresses the defective phenotypes caused by PINK1 loss-of-function in Drosophila melanogaster. Biochem Biophys Res Commun 2020; 532:285-291. [DOI: 10.1016/j.bbrc.2020.08.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 08/02/2020] [Indexed: 01/12/2023]
|
21
|
Abolaji AO, Fasae KD, Iwezor CE, Farombi EO. D-Penicillamine prolongs survival and lessens copper-induced toxicity in Drosophila melanogaster. Toxicol Res (Camb) 2020; 9:346-352. [PMID: 32905187 DOI: 10.1093/toxres/tfaa032] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 04/02/2020] [Accepted: 04/24/2020] [Indexed: 12/18/2022] Open
Abstract
D-penicillamine (DPA) is an amino-thiol that has been established as a copper chelating agent for the treatment of Wilson's disease. DPA reacts with metals to form complexes and/or chelates. Here, we investigated the survival rate extension capacity and modulatory role of DPA on Cu2+-induced toxicity in Drosophila melanogaster. Adult Wild type (Harwich strain) flies were exposed to Cu2+ (1 mM) and/or DPA (50 μM) in the diet for 7 days. Additionally, flies were exposed to acute Cu2+ (10 mM) for 24 h, followed by DPA (50 μM) treatment for 4 days. Thereafter, the antioxidant status [total thiol (T-SH) and glutathione (GSH) levels and glutathione S-transferase and catalase activities] as well as hydrogen peroxide (H2O2) level and acetylcholinesterase activity were evaluated. The results showed that DPA treatment prolongs the survival rate of D. melanogaster by protecting against Cu2+-induced lethality. Further, DPA restored Cu2+-induced depletion of T-SH level compared to the control (P < 0.05). DPA also protected against Cu2+ (1 mM)-induced inhibition of catalase activity. In addition, DPA ameliorated Cu2+-induced elevation of acetylcholinesterase activity in the flies. The study may therefore have health implications in neurodegenerative diseases involving oxidative stress such as Alzheimer's disease.
Collapse
Affiliation(s)
- Amos Olalekan Abolaji
- Department of Biochemistry, Drosophila Laboratory, Molecular Drug Metabolism and Toxicology Unit, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Kehinde Damilare Fasae
- Department of Biochemistry, Drosophila Laboratory, Molecular Drug Metabolism and Toxicology Unit, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Chizim Elizabeth Iwezor
- Department of Biochemistry, Drosophila Laboratory, Molecular Drug Metabolism and Toxicology Unit, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Ebenezer Olatunde Farombi
- Department of Biochemistry, Drosophila Laboratory, Molecular Drug Metabolism and Toxicology Unit, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
22
|
Battaglia AM, Chirillo R, Aversa I, Sacco A, Costanzo F, Biamonte F. Ferroptosis and Cancer: Mitochondria Meet the "Iron Maiden" Cell Death. Cells 2020; 9:cells9061505. [PMID: 32575749 PMCID: PMC7349567 DOI: 10.3390/cells9061505] [Citation(s) in RCA: 361] [Impact Index Per Article: 72.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/12/2020] [Accepted: 06/18/2020] [Indexed: 01/17/2023] Open
Abstract
Ferroptosis is a new type of oxidative regulated cell death (RCD) driven by iron-dependent lipid peroxidation. As major sites of iron utilization and master regulators of oxidative metabolism, mitochondria are the main source of reactive oxygen species (ROS) and, thus, play a role in this type of RCD. Ferroptosis is, indeed, associated with severe damage in mitochondrial morphology, bioenergetics, and metabolism. Furthermore, dysregulation of mitochondrial metabolism is considered a biochemical feature of neurodegenerative diseases linked to ferroptosis. Whether mitochondrial dysfunction can, per se, initiate ferroptosis and whether mitochondrial function in ferroptosis is context-dependent are still under debate. Cancer cells accumulate high levels of iron and ROS to promote their metabolic activity and growth. Of note, cancer cell metabolic rewiring is often associated with acquired sensitivity to ferroptosis. This strongly suggests that ferroptosis may act as an adaptive response to metabolic imbalance and, thus, may constitute a new promising way to eradicate malignant cells. Here, we review the current literature on the role of mitochondria in ferroptosis, and we discuss opportunities to potentially use mitochondria-mediated ferroptosis as a new strategy for cancer therapy.
Collapse
Affiliation(s)
- Anna Martina Battaglia
- Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy; (A.M.B.); (R.C.); (I.A.); (A.S.); (F.C.)
| | - Roberta Chirillo
- Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy; (A.M.B.); (R.C.); (I.A.); (A.S.); (F.C.)
| | - Ilenia Aversa
- Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy; (A.M.B.); (R.C.); (I.A.); (A.S.); (F.C.)
| | - Alessandro Sacco
- Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy; (A.M.B.); (R.C.); (I.A.); (A.S.); (F.C.)
| | - Francesco Costanzo
- Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy; (A.M.B.); (R.C.); (I.A.); (A.S.); (F.C.)
- Center of Interdepartmental Services (CIS), “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy
| | - Flavia Biamonte
- Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy; (A.M.B.); (R.C.); (I.A.); (A.S.); (F.C.)
- Research Centre of Biochemistry and advanced Molecular Biology, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy
- Correspondence: ; Tel.: +39-0961-369-4105
| |
Collapse
|
23
|
Xiao G, Liu ZH, Zhao M, Wang HL, Zhou B. Transferrin 1 Functions in Iron Trafficking and Genetically Interacts with Ferritin in Drosophila melanogaster. Cell Rep 2020; 26:748-758.e5. [PMID: 30650364 DOI: 10.1016/j.celrep.2018.12.053] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/31/2018] [Accepted: 12/11/2018] [Indexed: 12/23/2022] Open
Abstract
Iron metabolism is an essential process that when dysregulated causes disease. Mammalian serum transferrin (TF) plays a primary role in delivering iron to cells. To improve our understanding of the conservation of iron metabolism between species, we investigate here the function of the TF homolog in Drosophila melanogaster, transferrin 1 (Tsf1). Tsf1 knockdown results in iron accumulation in the gut and iron deficiency in the fat body (which is analogous to the mammalian liver). Fat body-derived Tsf1 localizes to the gut surface, suggesting that Tsf1 functions in trafficking iron between the gut and the fat body, similar to TF in mammals. Moreover, Tsf1 knockdown strongly suppresses the phenotypic effects of ferritin (Fer1HCH) RNAi, an established iron trafficker in Drosophila. We propose that Tsf1 and ferritin compete for iron in the Drosophila intestine and demonstrate the value of using Drosophila for investigating iron trafficking and the evolution of systemic iron regulation.
Collapse
Affiliation(s)
- Guiran Xiao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, China.
| | - Zhi-Hua Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Mengran Zhao
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Hui-Li Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, China.
| | - Bing Zhou
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
24
|
|
25
|
Geiser DL, Thai TN, Love MB, Winzerling JJ. Iron and Ferritin Deposition in the Ovarian Tissues of the Yellow Fever Mosquito (Diptera: Culicidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2019; 19:5586715. [PMID: 31606748 PMCID: PMC6790249 DOI: 10.1093/jisesa/iez089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Indexed: 05/16/2023]
Abstract
Dengue, yellow fever, and Zika are viruses transmitted by yellow fever mosquito, Aedes aegypti [Linnaeus (Diptera: Culicidae)], to thousands of people each year. Mosquitoes transmit these viruses while consuming a blood meal that is required for oogenesis. Iron, an essential nutrient from the blood meal, is required for egg development. Mosquitoes receive a high iron load in the meal; although iron can be toxic, these animals have developed mechanisms for dealing with this load. Our previous research has shown iron from the blood meal is absorbed in the gut and transported by ferritin, the main iron transport and storage protein, to the ovaries. We now report the distribution of iron and ferritin in ovarian tissues before blood feeding and 24 and 72 h post-blood meal. Ovarian iron is observed in specific locations. Timing post-blood feeding influences the location and distribution of the ferritin heavy-chain homolog, light-chain homolog 1, and light-chain homolog 2 in ovaries. Understanding iron deposition in ovarian tissues is important to the potential use of interference in iron metabolism as a vector control strategy for reducing mosquito fecundity, decreasing mosquito populations, and thereby reducing transmission rates of vector-borne diseases.
Collapse
Affiliation(s)
- Dawn L Geiser
- Department of Nutritional Sciences, College of Agriculture and Life Sciences, The University of Arizona, Tucson, AZ
| | - Theresa N Thai
- Department of Nutritional Sciences, College of Agriculture and Life Sciences, The University of Arizona, Tucson, AZ
| | - Maria B Love
- Department of Nutritional Sciences, College of Agriculture and Life Sciences, The University of Arizona, Tucson, AZ
| | - Joy J Winzerling
- Department of Nutritional Sciences, College of Agriculture and Life Sciences, The University of Arizona, Tucson, AZ
| |
Collapse
|
26
|
Jacomin AC, Geraki K, Brooks J, Tjendana-Tjhin V, Collingwood JF, Nezis IP. Impact of Autophagy and Aging on Iron Load and Ferritin in Drosophila Brain. Front Cell Dev Biol 2019; 7:142. [PMID: 31404236 PMCID: PMC6669360 DOI: 10.3389/fcell.2019.00142] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 07/10/2019] [Indexed: 01/22/2023] Open
Abstract
Biometals such as iron, copper, potassium, and zinc are essential regulatory elements of several biological processes. The homeostasis of biometals is often affected in age-related pathologies. Notably, impaired iron metabolism has been linked to several neurodegenerative disorders. Autophagy, an intracellular degradative process dependent on the lysosomes, is involved in the regulation of ferritin and iron levels. Impaired autophagy has been associated with normal pathological aging, and neurodegeneration. Non-mammalian model organisms such as Drosophila have proven to be appropriate for the investigation of age-related pathologies. Here, we show that ferritin is expressed in adult Drosophila brain and that iron and holoferritin accumulate with aging. At whole-brain level we found no direct relationship between the accumulation of holoferritin and a deficit in autophagy in aged Drosophila brain. However, synchrotron X-ray spectromicroscopy revealed an additional spectral feature in the iron-richest region of autophagy-deficient fly brains, consistent with iron-sulfur. This potentially arises from iron-sulfur clusters associated with altered mitochondrial iron homeostasis.
Collapse
Affiliation(s)
| | - Kalotina Geraki
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, United Kingdom
| | - Jake Brooks
- School of Engineering, University of Warwick, Coventry, United Kingdom
| | | | | | - Ioannis P. Nezis
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| |
Collapse
|
27
|
Tang T, Yang Z, Li J, Yuan F, Xie S, Liu F. Identification of multiple ferritin genes in Macrobrachium nipponense and their involvement in redox homeostasis and innate immunity. FISH & SHELLFISH IMMUNOLOGY 2019; 89:701-709. [PMID: 31004801 DOI: 10.1016/j.fsi.2019.04.050] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/14/2019] [Accepted: 04/16/2019] [Indexed: 06/09/2023]
Abstract
Based on the transcriptome database, we screened out four ferritin subunit genes (MnFer2-5) from the oriental river prawn Macrobrachium nipponense, which encode two non-secretory and two secretory peptides. MnFer2 and 4 possess a strictly conserved ferroxidase site, and MnFer3 has a non-typical ferroxidase site. MnFer5 seems to be a number of ferritin families, which has a distinct dinuclear metal binding motif, but lacks an iron ion channel, a ferroxidase site and a nucleation site. Diverse tissue-specific transcriptions of the four genes indicate their functional diversity in the prawn. Among them, MnFer2 is mainly expressed in hepatopancreas and intestines, MnFer3 and 4 are predominantly expressed in gills, and MnFer5 is widely expressed in various tissues with high presence in intestines, hepatopancreas and haemocytes. The transcription of all the four MnFer genes can be strongly induced by doxorubicin, indicating the involvement of these ferritin subunits in protection from oxidative stress. Upon Aeromonas hydrophila infection, only MnFer5 is persistently up-regulated, while other subunits including MnFer2-4 are down-regulated during the early stage, followed by recovery and even a slight increase at 48 h post bacterial challenge. Moreover, the iron binding capacity of recombinant MnFer2 is also demonstrated in vitro. The E. coli expressing MnFer2 displays increased resistance to hydrogen peroxidase cytotoxicity. These results suggest a protective role of ferritins from M. nipponense in iron homeostasis, redox biology and antibacterial immunity and shed light on the molecule evolution of crustacean ferritin subunits.
Collapse
Affiliation(s)
- Ting Tang
- The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding, Hebei, 071002, China
| | - Zilan Yang
- The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding, Hebei, 071002, China
| | - Jing Li
- The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding, Hebei, 071002, China
| | - Fengyu Yuan
- The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding, Hebei, 071002, China
| | - Song Xie
- The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding, Hebei, 071002, China.
| | - Fengsong Liu
- The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding, Hebei, 071002, China.
| |
Collapse
|
28
|
Wu Q, Wu WS, Su L, Zheng X, Wu WY, Santambrogio P, Gou YJ, Hao Q, Wang PN, Li YR, Zhao BL, Nie G, Levi S, Chang YZ. Mitochondrial Ferritin Is a Hypoxia-Inducible Factor 1α-Inducible Gene That Protects from Hypoxia-Induced Cell Death in Brain. Antioxid Redox Signal 2019; 30:198-212. [PMID: 29402144 DOI: 10.1089/ars.2017.7063] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Aims: Mitochondrial ferritin (protein [FtMt]) is preferentially expressed in cell types of high metabolic activity and oxygen consumption, which is consistent with its role of sequestering iron and preventing oxygen-derived redox damage. As of yet, the mechanisms of FtMt regulation and the protection FtMt affords remain largely unknown. Results: Here, we report that hypoxia-inducible factor 1α (HIF-1α) can upregulate FtMt expression. We verify one functional hypoxia-response element (HRE) in the positive regulatory region and two HREs possessing HIF-1α binding activity in the minimal promoter region of the human FTMT gene. We also demonstrate that FtMt can alleviate hypoxia-induced brain cell death by sequestering uncommitted iron, whose levels increase with hypoxia in these cells. Innovation: In the absence of FtMt, this catalytic metal excess catalyzes the production of cytotoxic reactive oxygen species. Conclusion: Thus, the cell ability to increase expression of FtMt during hypoxia may be a skill to avoid tissue damage derived from oxygen limitation.
Collapse
Affiliation(s)
- Qiong Wu
- 1 Laboratory of Molecular Iron Metabolism, The Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Science, Hebei Normal University , Shijiazhuang, China .,2 Division of Neuroscience, San Raffaele Scientific Institute , Milano, Italy .,3 College of Basic Medicine, Hebei University of Chinese Medicine , Shijiazhuang, China .,4 Department of Clinical Laboratory, The Third Hospital of Hebei Medical University , Shijiazhuang, China
| | - Wen-Shuang Wu
- 1 Laboratory of Molecular Iron Metabolism, The Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Science, Hebei Normal University , Shijiazhuang, China .,3 College of Basic Medicine, Hebei University of Chinese Medicine , Shijiazhuang, China .,4 Department of Clinical Laboratory, The Third Hospital of Hebei Medical University , Shijiazhuang, China
| | - Lin Su
- 1 Laboratory of Molecular Iron Metabolism, The Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Science, Hebei Normal University , Shijiazhuang, China
| | - Xin Zheng
- 1 Laboratory of Molecular Iron Metabolism, The Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Science, Hebei Normal University , Shijiazhuang, China
| | - Wen-Yue Wu
- 1 Laboratory of Molecular Iron Metabolism, The Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Science, Hebei Normal University , Shijiazhuang, China
| | - Paolo Santambrogio
- 2 Division of Neuroscience, San Raffaele Scientific Institute , Milano, Italy
| | - Yu-Jing Gou
- 1 Laboratory of Molecular Iron Metabolism, The Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Science, Hebei Normal University , Shijiazhuang, China
| | - Qian Hao
- 1 Laboratory of Molecular Iron Metabolism, The Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Science, Hebei Normal University , Shijiazhuang, China
| | - Pei-Na Wang
- 1 Laboratory of Molecular Iron Metabolism, The Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Science, Hebei Normal University , Shijiazhuang, China
| | - Ya-Ru Li
- 1 Laboratory of Molecular Iron Metabolism, The Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Science, Hebei Normal University , Shijiazhuang, China
| | - Bao-Lu Zhao
- 1 Laboratory of Molecular Iron Metabolism, The Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Science, Hebei Normal University , Shijiazhuang, China
| | - Guangjun Nie
- 5 CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology , Beijing, China
| | - Sonia Levi
- 2 Division of Neuroscience, San Raffaele Scientific Institute , Milano, Italy .,6 Vita-Salute San Raffaele University , Milano, Italy
| | - Yan-Zhong Chang
- 1 Laboratory of Molecular Iron Metabolism, The Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Science, Hebei Normal University , Shijiazhuang, China
| |
Collapse
|
29
|
Hernandez EP, Kusakisako K, Talactac MR, Galay RL, Yoshii K, Tanaka T. Induction of intracellular ferritin expression in embryo-derived Ixodes scapularis cell line (ISE6). Sci Rep 2018; 8:16566. [PMID: 30410072 PMCID: PMC6224502 DOI: 10.1038/s41598-018-34860-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 10/25/2018] [Indexed: 11/26/2022] Open
Abstract
Iron is a very important nutrient for cells; however, it could also cause fatal effects because of its capability to trigger oxidative stress. Due to high exposure to iron from their blood diet, ticks make use of several mechanisms to cope up with oxidative stress. One mechanism is iron sequestration by ferritin and its control protein (IRP). Since the IRP activity is dependent on the ferrous iron concentration, we tried to induce intracellular ferritin (FER1) protein expression by exposing Ixodes scapularis embryo-derived cell line (ISE6) to different concentrations of ferrous sulphate at different time points. We were able to induce FER1 protein after exposure to 2 mM of ferrous sulphate for 48 h, as observed in both Western blotting and indirect immunofluorescent antibody tests. This could indicate that the FER1 produced could be a product of the release of IRPs from the FER1 mRNA leading to its translation. The RNA interference of FER1, through the transfection of dsRNA, led to an increase in mortality and decrease in the cellular proliferation of ISE6 cells. Overall, ISE6 cells could be a good tool in further understanding the mechanism of FER1 action, not just in Ixodes ticks but in other tick species as well.
Collapse
Affiliation(s)
- Emmanuel Pacia Hernandez
- Laboratory of Infectious Diseases, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0056, Japan.,Department of Pathological and Preventive Veterinary Science, The United Graduate School of Veterinary Science, Yamaguchi University, Yoshida, Yamaguchi, 753-8515, Japan
| | - Kodai Kusakisako
- Laboratory of Infectious Diseases, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0056, Japan.,Department of Pathological and Preventive Veterinary Science, The United Graduate School of Veterinary Science, Yamaguchi University, Yoshida, Yamaguchi, 753-8515, Japan
| | - Melbourne Rio Talactac
- Laboratory of Infectious Diseases, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0056, Japan.,Department of Pathological and Preventive Veterinary Science, The United Graduate School of Veterinary Science, Yamaguchi University, Yoshida, Yamaguchi, 753-8515, Japan.,Department of Clinical and Population Health, College of Veterinary Medicine and Biomedical Sciences, Cavite State University, Cavite, 4122, Philippines
| | - Remil Linggatong Galay
- Department of Veterinary Paraclinical Sciences, University of the Philippines Los Baños, College, Laguna, 3004, Philippines
| | - Kentaro Yoshii
- Laboratory of Public Health, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, 060-0818, Japan
| | - Tetsuya Tanaka
- Laboratory of Infectious Diseases, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0056, Japan. .,Department of Pathological and Preventive Veterinary Science, The United Graduate School of Veterinary Science, Yamaguchi University, Yoshida, Yamaguchi, 753-8515, Japan.
| |
Collapse
|
30
|
Fei DQ, Yu HZ, Xu JP, Zhang SZ, Wang J, Li B, Yang LA, Hu P, Xu X, Zhao K, Shahzad T. Isolation of ferritin and its interaction with BmNPV in the silkworm, Bombyx mori. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 86:130-137. [PMID: 29793044 DOI: 10.1016/j.dci.2018.05.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 05/08/2018] [Accepted: 05/08/2018] [Indexed: 06/08/2023]
Abstract
Ferritin is a ubiquitous iron storage protein that plays an important role in host defence against pathogen infections. In the present study, native ferritin was isolated from the hemolymph of Bombyx mori using native-polyacrylamide gel electrophoresis (native-PAGE) and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The results revealed that ferritin consisted of two subunits, designated as BmFerHCH and BmFerLCH. Previously integrated previous transcriptome and iTRAQ data showed that the two subunits were down-regulated in resistant silkworm strain BC9 and there was no obvious change in the expression levels of the subunits in susceptible silkworm strain P50 after BmNPV infection. Virus overlay assays revealed that B. mori ferritin as the form of heteropolymer had an interaction with B. mori nucleopolyhedrovirus (BmNPV), but it can't interact with BmNPV after depolymerisation. What's more, reverse transcription quantitative PCR (RT-qPCR) analysis suggested that BmFerHCH and BmFerLCH could be induced by bacteria, virus and iron. This is the first study to extract B. mori ferritin successfully and confirms their roles in the process of BmNPV infection. All these results will lay a foundation for further research the function of B. mori ferritin.
Collapse
Affiliation(s)
- Dong-Qiong Fei
- School of Life Sciences, Anhui Agricultural University, Hefei, China; Anhui International Joint Research and Development Center of Sericulture Resources Utilization, China
| | - Hai-Zhong Yu
- School of Life Sciences, Anhui Agricultural University, Hefei, China; Anhui International Joint Research and Development Center of Sericulture Resources Utilization, China; National Navel Orange Engineering and Technology Research Center, Gannan Normal University, Ganzhou, China
| | - Jia-Ping Xu
- School of Life Sciences, Anhui Agricultural University, Hefei, China; Anhui International Joint Research and Development Center of Sericulture Resources Utilization, China.
| | - Shang-Zhi Zhang
- School of Life Sciences, Anhui Agricultural University, Hefei, China; Anhui International Joint Research and Development Center of Sericulture Resources Utilization, China
| | - Jie Wang
- School of Life Sciences, Anhui Agricultural University, Hefei, China; Anhui International Joint Research and Development Center of Sericulture Resources Utilization, China
| | - Bing Li
- School of Life Sciences, Anhui Agricultural University, Hefei, China; Anhui International Joint Research and Development Center of Sericulture Resources Utilization, China
| | - Li-Ang Yang
- School of Life Sciences, Anhui Agricultural University, Hefei, China; Anhui International Joint Research and Development Center of Sericulture Resources Utilization, China
| | - Pei Hu
- School of Life Sciences, Anhui Agricultural University, Hefei, China; Anhui International Joint Research and Development Center of Sericulture Resources Utilization, China
| | - Xin Xu
- School of Life Sciences, Anhui Agricultural University, Hefei, China; Anhui International Joint Research and Development Center of Sericulture Resources Utilization, China
| | - Kang Zhao
- School of Life Sciences, Anhui Agricultural University, Hefei, China; Anhui International Joint Research and Development Center of Sericulture Resources Utilization, China
| | - Toufeeq Shahzad
- School of Life Sciences, Anhui Agricultural University, Hefei, China; Anhui International Joint Research and Development Center of Sericulture Resources Utilization, China
| |
Collapse
|
31
|
Hu L, Mateo P, Ye M, Zhang X, Berset JD, Handrick V, Radisch D, Grabe V, Köllner TG, Gershenzon J, Robert CAM, Erb M. Plant iron acquisition strategy exploited by an insect herbivore. Science 2018; 361:694-697. [PMID: 30115808 DOI: 10.1126/science.aat4082] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 06/19/2018] [Indexed: 12/24/2022]
Abstract
Insect herbivores depend on their host plants to acquire macro- and micronutrients. Here we asked how a specialist herbivore and damaging maize pest, the western corn rootworm, finds and accesses plant-derived micronutrients. We show that the root-feeding larvae use complexes between iron and benzoxazinoid secondary metabolites to identify maize as a host, to forage within the maize root system, and to increase their growth. Maize plants use these same benzoxazinoids for protection against generalist herbivores and, as shown here, for iron uptake. We identify an iron transporter that allows the corn rootworm to benefit from complexes between iron and benzoxazinoids. Thus, foraging for an essential plant-derived complex between a micronutrient and a secondary metabolite shapes the interaction between maize and a specialist herbivore.
Collapse
Affiliation(s)
- L Hu
- Institute of Plant Sciences, University of Bern, Switzerland
| | - P Mateo
- Institute of Plant Sciences, University of Bern, Switzerland.,Neuchâtel Platform of Analytical Chemistry, University of Neuchâtel, Switzerland
| | - M Ye
- Institute of Plant Sciences, University of Bern, Switzerland
| | - X Zhang
- Institute of Plant Sciences, University of Bern, Switzerland
| | - J D Berset
- Institute of Plant Sciences, University of Bern, Switzerland
| | - V Handrick
- Max Planck Institute for Chemical Ecology, Jena, Germany
| | - D Radisch
- Max Planck Institute for Chemical Ecology, Jena, Germany
| | - V Grabe
- Max Planck Institute for Chemical Ecology, Jena, Germany
| | - T G Köllner
- Max Planck Institute for Chemical Ecology, Jena, Germany
| | - J Gershenzon
- Max Planck Institute for Chemical Ecology, Jena, Germany
| | - C A M Robert
- Institute of Plant Sciences, University of Bern, Switzerland.
| | - M Erb
- Institute of Plant Sciences, University of Bern, Switzerland.
| |
Collapse
|
32
|
Iron economy in Naegleria gruberi reflects its metabolic flexibility. Int J Parasitol 2018; 48:719-727. [PMID: 29738737 DOI: 10.1016/j.ijpara.2018.03.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 03/07/2018] [Accepted: 03/08/2018] [Indexed: 11/24/2022]
Abstract
Naegleria gruberi is a free-living amoeba, closely related to the human pathogen Naegleria fowleri, the causative agent of the deadly human disease primary amoebic meningoencephalitis. Herein, we investigated the effect of iron limitation on different aspects of N. gruberi metabolism. Iron metabolism is among the most conserved pathways found in all eukaryotes. It includes the delivery, storage and utilisation of iron in many cell processes. Nevertheless, most of the iron metabolism pathways of N. gruberi are still not characterised, even though iron balance within the cell is crucial. We found a single homolog of ferritin in the N. gruberi genome and showed its localisation in the mitochondrion. Using comparative mass spectrometry, we identified 229 upregulated and 184 down-regulated proteins under iron-limited conditions. The most down-regulated protein under iron-limited conditions was hemerythrin, and a similar effect on the expression of hemerythrin was found in N. fowleri. Among the other down-regulated proteins were [FeFe]-hydrogenase and its maturase HydG and several heme-containing proteins. The activities of [FeFe]-hydrogenase, as well as alcohol dehydrogenase, were also decreased by iron deficiency. Our results indicate that N. gruberi is able to rearrange its metabolism according to iron availability, prioritising mitochondrial pathways. We hypothesise that the mitochondrion is the center for iron homeostasis in N. gruberi, with mitochondrially localised ferritin as a potential key component of this process.
Collapse
|
33
|
Marelja Z, Leimkühler S, Missirlis F. Iron Sulfur and Molybdenum Cofactor Enzymes Regulate the Drosophila Life Cycle by Controlling Cell Metabolism. Front Physiol 2018; 9:50. [PMID: 29491838 PMCID: PMC5817353 DOI: 10.3389/fphys.2018.00050] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 01/16/2018] [Indexed: 12/20/2022] Open
Abstract
Iron sulfur (Fe-S) clusters and the molybdenum cofactor (Moco) are present at enzyme sites, where the active metal facilitates electron transfer. Such enzyme systems are soluble in the mitochondrial matrix, cytosol and nucleus, or embedded in the inner mitochondrial membrane, but virtually absent from the cell secretory pathway. They are of ancient evolutionary origin supporting respiration, DNA replication, transcription, translation, the biosynthesis of steroids, heme, catabolism of purines, hydroxylation of xenobiotics, and cellular sulfur metabolism. Here, Fe-S cluster and Moco biosynthesis in Drosophila melanogaster is reviewed and the multiple biochemical and physiological functions of known Fe-S and Moco enzymes are described. We show that RNA interference of Mocs3 disrupts Moco biosynthesis and the circadian clock. Fe-S-dependent mitochondrial respiration is discussed in the context of germ line and somatic development, stem cell differentiation and aging. The subcellular compartmentalization of the Fe-S and Moco assembly machinery components and their connections to iron sensing mechanisms and intermediary metabolism are emphasized. A biochemically active Fe-S core complex of heterologously expressed fly Nfs1, Isd11, IscU, and human frataxin is presented. Based on the recent demonstration that copper displaces the Fe-S cluster of yeast and human ferredoxin, an explanation for why high dietary copper leads to cytoplasmic iron deficiency in flies is proposed. Another proposal that exosomes contribute to the transport of xanthine dehydrogenase from peripheral tissues to the eye pigment cells is put forward, where the Vps16a subunit of the HOPS complex may have a specialized role in concentrating this enzyme within pigment granules. Finally, we formulate a hypothesis that (i) mitochondrial superoxide mobilizes iron from the Fe-S clusters in aconitase and succinate dehydrogenase; (ii) increased iron transiently displaces manganese on superoxide dismutase, which may function as a mitochondrial iron sensor since it is inactivated by iron; (iii) with the Krebs cycle thus disrupted, citrate is exported to the cytosol for fatty acid synthesis, while succinyl-CoA and the iron are used for heme biosynthesis; (iv) as iron is used for heme biosynthesis its concentration in the matrix drops allowing for manganese to reactivate superoxide dismutase and Fe-S cluster biosynthesis to reestablish the Krebs cycle.
Collapse
Affiliation(s)
- Zvonimir Marelja
- Imagine Institute, Université Paris Descartes-Sorbonne Paris Cité, Paris, France
| | - Silke Leimkühler
- Department of Molecular Enzymology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Fanis Missirlis
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| |
Collapse
|
34
|
Walter-Nuno AB, Taracena ML, Mesquita RD, Oliveira PL, Paiva-Silva GO. Silencing of Iron and Heme-Related Genes Revealed a Paramount Role of Iron in the Physiology of the Hematophagous Vector Rhodnius prolixus. Front Genet 2018; 9:19. [PMID: 29456553 PMCID: PMC5801409 DOI: 10.3389/fgene.2018.00019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Accepted: 01/16/2018] [Indexed: 12/19/2022] Open
Abstract
Iron is an essential element for most organisms However, free iron and heme, its complex with protoporphyrin IX, can be extremely cytotoxic, due to the production of reactive oxygen species, eventually leading to oxidative stress. Thus, eukaryotic cells control iron availability by regulating its transport, storage and excretion as well as the biosynthesis and degradation of heme. In the genome of Rhodnius prolixus, the vector of Chagas disease, we identified 36 genes related to iron and heme metabolism We performed a comprehensive analysis of these genes, including identification of homologous genes described in other insect genomes. We observed that blood-meal modulates the expression of ferritin, Iron Responsive protein (IRP), Heme Oxygenase (HO) and the heme exporter Feline Leukemia Virus C Receptor (FLVCR), components of major pathways involved in the regulation of iron and heme metabolism, particularly in the posterior midgut (PM), where an intense release of free heme occurs during the course of digestion. Knockdown of these genes impacted the survival of nymphs and adults, as well as molting, oogenesis and embryogenesis at different rates and time-courses. The silencing of FLVCR caused the highest levels of mortality in nymphs and adults and reduced nymph molting. The oogenesis was mildly affected by the diminished expression of all of the genes whereas embryogenesis was dramatically impaired by the knockdown of ferritin expression. Furthermore, an intense production of ROS in the midgut of blood-fed insects occurs when the expression of ferritin, but not HO, was inhibited. In this manner, the degradation of dietary heme inside the enterocytes may represent an oxidative challenge that is counteracted by ferritins, conferring to this protein a major antioxidant role. Taken together these results demonstrate that the regulation of iron and heme metabolism is of paramount importance for R. prolixus physiology and imbalances in the levels of these key proteins after a blood- meal can be extremely deleterious to the insects in their various stages of development.
Collapse
Affiliation(s)
- Ana B Walter-Nuno
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
| | - Mabel L Taracena
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
| | - Rafael D Mesquita
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil.,Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pedro L Oliveira
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
| | - Gabriela O Paiva-Silva
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
| |
Collapse
|
35
|
Yoon S, Cho B, Shin M, Koranteng F, Cha N, Shim J. Iron Homeostasis Controls Myeloid Blood Cell Differentiation in Drosophila. Mol Cells 2017; 40:976-985. [PMID: 29237257 PMCID: PMC5750716 DOI: 10.14348/molcells.2017.0287] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 11/12/2017] [Indexed: 02/04/2023] Open
Abstract
Iron is an essential divalent ion for aerobic life. Life has evolved to maintain iron homeostasis for normal cellular and physiological functions and therefore imbalances in iron levels exert a wide range of consequences. Responses to iron dysregulation in blood development, however, remain elusive. Here, we found that iron homeostasis is critical for differentiation of Drosophila blood cells in the larval hematopoietic organ, called the lymph gland. Supplementation of an iron chelator, bathophenanthroline disulfate (BPS) results in an excessive differentiation of the crystal cell in the lymph gland. This phenotype is recapitulated by loss of Fer1HCH in the intestine, indicating that reduced levels of systemic iron enhances crystal cell differentiation. Detailed analysis of Fer1HCH-tagged-GFP revealed that Fer1HCH is also expressed in the hematopoietic systems. Lastly, blocking Fer1HCH expression in the mature blood cells showed marked increase in the blood differentiation of both crystal cells and plasmatocytes. Thus, our work suggests a relevance of systemic and local iron homeostasis in blood differentiation, prompting further investigation of molecular mechanisms underlying iron regulation and cell fate determination in the hematopoietic system.
Collapse
Affiliation(s)
- Sunggyu Yoon
- Department of Life Sciences, College of Natural Science, Hanyang University, Seoul 04763,
Korea
| | - Bumsik Cho
- Department of Life Sciences, College of Natural Science, Hanyang University, Seoul 04763,
Korea
| | - Mingyu Shin
- Department of Life Sciences, College of Natural Science, Hanyang University, Seoul 04763,
Korea
| | - Ferdinand Koranteng
- Department of Life Sciences, College of Natural Science, Hanyang University, Seoul 04763,
Korea
| | - Nuri Cha
- Department of Life Sciences, College of Natural Science, Hanyang University, Seoul 04763,
Korea
| | - Jiwon Shim
- Department of Life Sciences, College of Natural Science, Hanyang University, Seoul 04763,
Korea
- Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul 04763,
Korea
- Research Institute for Natural Science, Hanyang University, Seoul 04763,
Korea
| |
Collapse
|
36
|
Geiser DL, Patel N, Patel P, Bhakta J, Velasquez LS, Winzerling JJ. Description of a Second Ferritin Light Chain Homologue From the Yellow Fever Mosquito (Diptera: Culicidae). JOURNAL OF INSECT SCIENCE 2017. [PMCID: PMC5751084 DOI: 10.1093/jisesa/iex096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Ferritin is required for iron storage in vertebrates and for iron transport and storage in invertebrates, specifically insects. Classical ferritins consist of 24 subunits configured as a polyhedron wherein iron is held. The 24 subunits include light and heavy chains, each with specific functions. Several homologues of the light and heavy chains have been sequenced and studied in insects. In addition to iron transport and storage, ferritin has a role in dietary iron absorption, and functions as a protective agent preventing iron overload, decreasing oxidative stress, and reducing infection in these animals. The expression profile and regulation of a second ferritin light chain homologue (LCH2) in Aedes aegypti [Linnaeus (Diptera: Culicidae), yellow fever mosquito] was characterized in cells, animal developmental stages, and tissues post bloodmeal (PBM) by real-time PCR and immunoblot. Two previously studied ferritin subunits from Ae. aegypti, HCH and LCH1, along with LCH2 were immunoprecipitated and analyzed by mass spectrometry. The three Ae. aegypti ferritin subunits, HCH, LCH1, and LCH2, have different expression profiles and regulation with iron exposure, developmental stage, and tissue response PBM. Ae. aegypti expresses multiple and unique ferritin light chain subunits. Ae. aegypti, the vector for Zika, Dengue, and yellow fever, requires iron for oogenesis that is transported and stored in ferritin; this vector expresses a second light chain ferritin subunit homologue unlike any other species in which ferritin has been studied to date.
Collapse
Affiliation(s)
- Dawn L Geiser
- Department of Nutritional Sciences, College of Agriculture and Life Sciences, the University of Arizona, Tucson, Arizona
- Corresponding author, e-mail:
| | - Naren Patel
- Department of Nutritional Sciences, College of Agriculture and Life Sciences, the University of Arizona, Tucson, Arizona
| | - Pritesh Patel
- Department of Nutritional Sciences, College of Agriculture and Life Sciences, the University of Arizona, Tucson, Arizona
| | - Janki Bhakta
- Department of Nutritional Sciences, College of Agriculture and Life Sciences, the University of Arizona, Tucson, Arizona
| | - Lissette S Velasquez
- Department of Nutritional Sciences, College of Agriculture and Life Sciences, the University of Arizona, Tucson, Arizona
| | - Joy J Winzerling
- Department of Nutritional Sciences, College of Agriculture and Life Sciences, the University of Arizona, Tucson, Arizona
| |
Collapse
|
37
|
Yu HZ, Zhang SZ, Ma Y, Fei DQ, Li B, Yang LA, Wang J, Li Z, Muhammad A, Xu JP. Molecular Characterization and Functional Analysis of a Ferritin Heavy Chain Subunit from the Eri-Silkworm, Samia cynthia ricini. Int J Mol Sci 2017; 18:ijms18102126. [PMID: 29036914 PMCID: PMC5666808 DOI: 10.3390/ijms18102126] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 10/05/2017] [Accepted: 10/06/2017] [Indexed: 01/16/2023] Open
Abstract
Ferritins are conserved iron-binding proteins that are primarily involved in iron storage, detoxification and the immune response. Despite the importance of ferritin in organisms, little is known about their roles in the eri-silkworm (Samia cynthia ricini). We previously identified a ferritin heavy chain subunit named ScFerHCH in the S. c. ricini transcriptome database. The full-length S. c. ricini ferritin heavy chain subunit (ScFerHCH) was 1863 bp and encoded a protein of 231 amino acids with a deduced molecular weight of 25.89 kDa. Phylogenetic analysis revealed that ScFerHCH shared a high amino acid identity with the Bombyx mori and Danaus plexippus heavy chain subunits. Higher ScFerHCH expression levels were found in the silk gland, fat body and midgut of S. c. ricini by reverse transcription quantitative polymerase chain reaction (RT-qPCR) and Western blotting. Injection of Staphylococcus aureus and Pseudomonas aeruginosa was associated with an upregulation of ScFerHCH in the midgut, fat body and hemolymph, indicating that ScFerHCH may contribute to the host’s defense against invading pathogens. In addition, the anti-oxidation activity and iron-binding capacity of recombinant ScFerHCH protein were examined. Taken together, our results suggest that the ferritin heavy chain subunit from eri-silkworm may play critical roles not only in innate immune defense, but also in organismic iron homeostasis.
Collapse
Affiliation(s)
- Hai-Zhong Yu
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| | - Shang-Zhi Zhang
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| | - Yan Ma
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| | - Dong-Qiong Fei
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| | - Bing Li
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| | - Li-Ang Yang
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| | - Jie Wang
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| | - Zhen Li
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| | - Azharuddin Muhammad
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| | - Jia-Ping Xu
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
38
|
Wang YQ, Chang SY, Wu Q, Gou YJ, Jia L, Cui YM, Yu P, Shi ZH, Wu WS, Gao G, Chang YZ. The Protective Role of Mitochondrial Ferritin on Erastin-Induced Ferroptosis. Front Aging Neurosci 2016; 8:308. [PMID: 28066232 PMCID: PMC5167726 DOI: 10.3389/fnagi.2016.00308] [Citation(s) in RCA: 218] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 12/06/2016] [Indexed: 11/13/2022] Open
Abstract
Ferroptosis, a newly identified form of regulated cell death, is characterized by overwhelming iron-dependent accumulation of lethal lipid reactive oxygen species (ROS). Preventing cellular iron overload by reducing iron uptake and increasing iron storage may contribute to inhibit ferroptosis. Mitochondrial ferritin (FtMt) is an iron-storage protein that is located in the mitochondria, which has a significant role in modulating cellular iron metabolism. Recent studies showed that FtMt played inhibitory effects on oxidative stress-dependent neuronal cell damage. However, the potential role of FtMt in the progress of ferroptosis in neuronal cells has not been studied. To explore this, we established ferroptosis models of cell and drosophila by erastin treatment. We found that overexpression of FtMt in neuroblastoma SH-SY5Y cells significantly inhibited erastin-induced ferroptosis, which very likely was achieved by regulation of iron homeostasis. Upon erastin treatment, significant increases of cellular labile iron pool (LIP) and cytosolic ROS were observed in wild-type SH-SY5Y cells, but not in the FtMt-overexpressed cells. Consistent with that, the alterations of iron-related proteins in FtMt-overexpressed cells were different from that of the control cells. We further investigated the role of FtMt in erastin-induced ferroptosis in transgenic drosophila. We found that the wild-type drosophilas fed an erastin-containing diet didn't survive more than 3 weeks. In contrast, the FtMt overexpressing drosophilas fed the same diet were survival very well. These results indicated that FtMt played a protective role in erastin-induced ferroptosis.
Collapse
Affiliation(s)
- Yue-Qi Wang
- Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University Shijiazhuang, China
| | - Shi-Yang Chang
- Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University Shijiazhuang, China
| | - Qiong Wu
- Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University Shijiazhuang, China
| | - Yu-Jing Gou
- Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University Shijiazhuang, China
| | - Linpei Jia
- Department of Nephrology, The Second Hospital of Jilin University Changchun, China
| | - Yan-Mei Cui
- Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University Shijiazhuang, China
| | - Peng Yu
- Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University Shijiazhuang, China
| | - Zhen-Hua Shi
- Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University Shijiazhuang, China
| | - Wen-Shuang Wu
- Department of Clinical Laboratory, The Third Hospital of Hebei Medical University Shijiazhuang, China
| | - Guofen Gao
- Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University Shijiazhuang, China
| | - Yan-Zhong Chang
- Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University Shijiazhuang, China
| |
Collapse
|
39
|
Lopez TE, Pham HM, Nguyen BV, Tahmasian Y, Ramsden S, Coskun V, Schriner SE, Jafari M. Green tea polyphenols require the mitochondrial iron transporter, mitoferrin, for lifespan extension in Drosophila melanogaster. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2016; 93:210-221. [PMID: 27696504 PMCID: PMC5121014 DOI: 10.1002/arch.21353] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Green tea has been found to increase the lifespan of various experimental animal models including the fruit fly, Drosophila melanogaster. High in polyphenolic content, green tea has been shown to reduce oxidative stress in part by its ability to bind free iron, a micronutrient that is both essential for and toxic to all living organisms. Due to green tea's iron-binding properties, we questioned whether green tea acts to increase the lifespan of the fruit fly by modulating iron regulators, specifically, mitoferrin, a mitochondrial iron transporter, and transferrin, found in the hemolymph of flies. Publicly available hypomorph mutants for these iron regulators were utilized to investigate the effect of green tea on lifespan and fertility. We identified that green tea could not increase the lifespan of mitoferrin mutants but did rescue the reduced male fertility phenotype. The effect of green tea on transferrin mutant lifespan and fertility were comparable to w1118 flies, as observed in our previous studies, in which green tea increased male fly lifespan and reduced male fertility. Expression levels in both w1118 flies and mutant flies, supplemented with green tea, showed an upregulation of mitoferrin but not transferrin. Total body and mitochondrial iron levels were significantly reduced by green tea supplementation in w1118 and mitoferrin mutants but not transferrin mutant flies. Our results demonstrate that green tea may act to increase the lifespan of Drosophila in part by the regulation of mitoferrin and reduction of mitochondrial iron.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Mahtab Jafari
- Corresponding Author: Dr. Mahtab Jafari, Department of Pharmaceutical Sciences, University of California Irvine, Irvine, CA 92697,
| |
Collapse
|
40
|
Sun S, Zhu J, Ge X, Zhang W. Molecular characterization and gene expression of ferritin in blunt snout bream (Megalobrama amblycephala). FISH & SHELLFISH IMMUNOLOGY 2016; 57:87-95. [PMID: 27539708 DOI: 10.1016/j.fsi.2016.08.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 08/02/2016] [Accepted: 08/13/2016] [Indexed: 06/06/2023]
Abstract
Ferritins are conserved iron storage proteins that exist in most living organisms and play an essential role in iron homeostasis. In this study, we reported the identification and analysis of a ferritin middle-chain (M) subunit, MaFerM, from blunt snout bream, Megalobrama amblycephala. The full length cDNA of MaFerM contains a 5'-untranslated region (UTR) of 152 bp, an open reading frame (ORF) of 522 bp and a 3'-UTR of 270 bp. The ORF encodes a putative protein of 174 amino acids, which shares extensive sequence identities with the M ferritins of several fish species. In silico analysis identified both the ferroxidase center of mammalian heavy-chain (H) ferritins and the iron nucleation site of mammalian light-chain (L) ferritins in MaFerM. Quantitative real-time reverse transcription polymerase chain reaction analysis indicated that MaFerM expression was highest in the liver and lowest in the heart and responded positively to experimental challenges with Aeromonas hydrophila. The exposure of cultured M. amblycephala to treatment with stress inducers (iron and H2O2) significantly up-regulated the expression of MaFerM in a dose-dependent manner. Iron chelation analysis showed that recombinant MaFerM purified from Escherichia coli exhibited apparent iron binding activity. These results suggest that MaFerM is a functional M ferritin and is likely to play a role in iron sequestration and protection against oxidative stress and immune stimulus.
Collapse
Affiliation(s)
- Shengming Sun
- Key Laboratory of Genetic Breeding and Aquaculture Biology of Freshwater Fishes, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, No. 9 East Shanshui Road, Wuxi, Jiangsu 214081, PR China
| | - Jian Zhu
- Key Laboratory of Genetic Breeding and Aquaculture Biology of Freshwater Fishes, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, No. 9 East Shanshui Road, Wuxi, Jiangsu 214081, PR China.
| | - Xianping Ge
- Key Laboratory of Genetic Breeding and Aquaculture Biology of Freshwater Fishes, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, No. 9 East Shanshui Road, Wuxi, Jiangsu 214081, PR China.
| | - Wxuxiao Zhang
- Wuxi Fishery College Nanjing Agricultural University, Wuxi 214081, PR China
| |
Collapse
|
41
|
Guaraldo M, Santambrogio P, Rovelli E, Di Savino A, Saglio G, Cittaro D, Roetto A, Levi S. Characterization of human mitochondrial ferritin promoter: identification of transcription factors and evidences of epigenetic control. Sci Rep 2016; 6:33432. [PMID: 27625068 PMCID: PMC5022048 DOI: 10.1038/srep33432] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 08/02/2016] [Indexed: 02/07/2023] Open
Abstract
Mitochondrial ferritin (FtMt) is an iron storage protein belonging to the ferritin family but, unlike the cytosolic ferritin, it has an iron-unrelated restricted tissue expression. FtMt appears to be preferentially expressed in cell types characterized by high metabolic activity and oxygen consumption, suggesting a role in protecting mitochondria from iron-dependent oxidative damage. The human gene (FTMT) is intronless and its promoter region has not been described yet. To analyze the regulatory mechanisms controlling FTMT expression, we characterized the 5' flanking region upstream the transcriptional starting site of FTMT by in silico enquiry of sequences conservation, DNA deletion analysis, and ChIP assay. The data revealed a minimal promoter region and identified the presence of SP1, CREB and YY1 as positive regulators, and GATA2, FoxA1 and C/EBPβ as inhibitors of the transcriptional regulation. Furthermore, the FTMT transcription is increased by acetylating and de-methylating agent treatments in K562 and HeLa cells. These treatments up-regulate FtMt expression even in fibroblasts derived from a Friedreich ataxia patient, where it might exert a beneficial effect against mitochondrial oxidative damage. The expression of FTMT appears regulated by a complex mechanism involving epigenetic events and interplay between transcription factors.
Collapse
Affiliation(s)
- Michela Guaraldo
- San Raffaele Scientific Institute, Division of Neuroscience, 20132 Milano, Italy
| | - Paolo Santambrogio
- San Raffaele Scientific Institute, Division of Neuroscience, 20132 Milano, Italy
| | - Elisabetta Rovelli
- San Raffaele Scientific Institute, Division of Neuroscience, 20132 Milano, Italy
| | - Augusta Di Savino
- University of Torino, Department of Clinical and Biological Sciences, AOU San Luigi Gonzaga, 10043 Orbassano, Torino, Italy
| | - Giuseppe Saglio
- University of Torino, Department of Clinical and Biological Sciences, AOU San Luigi Gonzaga, 10043 Orbassano, Torino, Italy
| | - Davide Cittaro
- San Raffaele Scientific Institute, Center for Translational Genomics and Bioinformatics, 20132 Milano, Italy
| | - Antonella Roetto
- University of Torino, Department of Clinical and Biological Sciences, AOU San Luigi Gonzaga, 10043 Orbassano, Torino, Italy
| | - Sonia Levi
- San Raffaele Scientific Institute, Division of Neuroscience, 20132 Milano, Italy
- University Vita-Salute San Raffaele, 20132 Milano, Italy
| |
Collapse
|
42
|
Romani P, Papi A, Ignesti M, Soccolini G, Hsu T, Gargiulo G, Spisni E, Cavaliere V. Dynamin controls extracellular level of Awd/Nme1 metastasis suppressor protein. Naunyn Schmiedebergs Arch Pharmacol 2016; 389:1171-1182. [DOI: 10.1007/s00210-016-1268-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 06/17/2016] [Indexed: 10/21/2022]
|
43
|
Chen K, Lin G, Haelterman NA, Ho TSY, Li T, Li Z, Duraine L, Graham BH, Jaiswal M, Yamamoto S, Rasband MN, Bellen HJ. Loss of Frataxin induces iron toxicity, sphingolipid synthesis, and Pdk1/Mef2 activation, leading to neurodegeneration. eLife 2016; 5:e16043. [PMID: 27343351 PMCID: PMC4956409 DOI: 10.7554/elife.16043] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 06/24/2016] [Indexed: 12/22/2022] Open
Abstract
Mutations in Frataxin (FXN) cause Friedreich's ataxia (FRDA), a recessive neurodegenerative disorder. Previous studies have proposed that loss of FXN causes mitochondrial dysfunction, which triggers elevated reactive oxygen species (ROS) and leads to the demise of neurons. Here we describe a ROS independent mechanism that contributes to neurodegeneration in fly FXN mutants. We show that loss of frataxin homolog (fh) in Drosophila leads to iron toxicity, which in turn induces sphingolipid synthesis and ectopically activates 3-phosphoinositide dependent protein kinase-1 (Pdk1) and myocyte enhancer factor-2 (Mef2). Dampening iron toxicity, inhibiting sphingolipid synthesis by Myriocin, or reducing Pdk1 or Mef2 levels, all effectively suppress neurodegeneration in fh mutants. Moreover, increasing dihydrosphingosine activates Mef2 activity through PDK1 in mammalian neuronal cell line suggesting that the mechanisms are evolutionarily conserved. Our results indicate that an iron/sphingolipid/Pdk1/Mef2 pathway may play a role in FRDA.
Collapse
Affiliation(s)
- Kuchuan Chen
- Program in Developmental Biology, Baylor College of Medicine, Houston, United States
| | - Guang Lin
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
| | - Nele A Haelterman
- Program in Developmental Biology, Baylor College of Medicine, Houston, United States
| | - Tammy Szu-Yu Ho
- Department of Neuroscience, Baylor College of Medicine, Houston, United States
| | - Tongchao Li
- Program in Developmental Biology, Baylor College of Medicine, Houston, United States
| | - Zhihong Li
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
| | - Lita Duraine
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, United States
| | - Brett H Graham
- Program in Developmental Biology, Baylor College of Medicine, Houston, United States
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
| | - Manish Jaiswal
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, United States
| | - Shinya Yamamoto
- Program in Developmental Biology, Baylor College of Medicine, Houston, United States
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, United States
| | - Matthew N Rasband
- Program in Developmental Biology, Baylor College of Medicine, Houston, United States
- Department of Neuroscience, Baylor College of Medicine, Houston, United States
| | - Hugo J Bellen
- Program in Developmental Biology, Baylor College of Medicine, Houston, United States
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
- Department of Neuroscience, Baylor College of Medicine, Houston, United States
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, United States
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, United States
| |
Collapse
|
44
|
Jiang H, Wang J, Rogers J, Xie J. Brain Iron Metabolism Dysfunction in Parkinson's Disease. Mol Neurobiol 2016; 54:3078-3101. [PMID: 27039308 DOI: 10.1007/s12035-016-9879-1] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 03/21/2016] [Indexed: 12/15/2022]
Abstract
Dysfunction of iron metabolism, which includes its uptake, storage, and release, plays a key role in neurodegenerative disorders, including Parkinson's disease (PD), Alzheimer's disease, and Huntington's disease. Understanding how iron accumulates in the substantia nigra (SN) and why it specifically targets dopaminergic (DAergic) neurons is particularly warranted for PD, as this knowledge may provide new therapeutic avenues for a more targeted neurotherapeutic strategy for this disease. In this review, we begin with a brief introduction describing brain iron metabolism and its regulation. We then provide a detailed description of how iron accumulates specifically in the SN and why DAergic neurons are especially vulnerable to iron in PD. Furthermore, we focus on the possible mechanisms involved in iron-induced cell death of DAergic neurons in the SN. Finally, we present evidence in support that iron chelation represents a plausable therapeutic strategy for PD.
Collapse
Affiliation(s)
- Hong Jiang
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Medical College of Qingdao University, Qingdao, 266071, China.
| | - Jun Wang
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Medical College of Qingdao University, Qingdao, 266071, China
| | - Jack Rogers
- Neurochemistry Laboratory, Division of Psychiatric Neurosciences and Genetics and Aging Research Unit, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Junxia Xie
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Medical College of Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
45
|
Ferritin Assembly in Enterocytes of Drosophila melanogaster. Int J Mol Sci 2016; 17:27. [PMID: 26861293 PMCID: PMC4783870 DOI: 10.3390/ijms17020027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 12/04/2015] [Accepted: 12/11/2015] [Indexed: 11/30/2022] Open
Abstract
Ferritins are protein nanocages that accumulate inside their cavity thousands of oxidized iron atoms bound to oxygen and phosphates. Both characteristic types of eukaryotic ferritin subunits are present in secreted ferritins from insects, but here dimers between Ferritin 1 Heavy Chain Homolog (Fer1HCH) and Ferritin 2 Light Chain Homolog (Fer2LCH) are further stabilized by disulfide-bridge in the 24-subunit complex. We addressed ferritin assembly and iron loading in vivo using novel transgenic strains of Drosophila melanogaster. We concentrated on the intestine, where the ferritin induction process can be controlled experimentally by dietary iron manipulation. We showed that the expression pattern of Fer2LCH-Gal4 lines recapitulated iron-dependent endogenous expression of the ferritin subunits and used these lines to drive expression from UAS-mCherry-Fer2LCH transgenes. We found that the Gal4-mediated induction of mCherry-Fer2LCH subunits was too slow to effectively introduce them into newly formed ferritin complexes. Endogenous Fer2LCH and Fer1HCH assembled and stored excess dietary iron, instead. In contrast, when flies were genetically manipulated to co-express Fer2LCH and mCherry-Fer2LCH simultaneously, both subunits were incorporated with Fer1HCH in iron-loaded ferritin complexes. Our study provides fresh evidence that, in insects, ferritin assembly and iron loading in vivo are tightly regulated.
Collapse
|
46
|
García-Prieto A, Alonso J, Muñoz D, Marcano L, Abad Díaz de Cerio A, Fernández de Luis R, Orue I, Mathon O, Muela A, Fdez-Gubieda ML. On the mineral core of ferritin-like proteins: structural and magnetic characterization. NANOSCALE 2016; 8:1088-1099. [PMID: 26666195 DOI: 10.1039/c5nr04446d] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
It is generally accepted that the mineral core synthesized by ferritin-like proteins consists of a ferric oxy-hydroxide mineral similar to ferrihydrite in the case of horse spleen ferritin (HoSF) and an oxy-hydroxide-phosphate phase in plant and prokaryotic ferritins. The structure reflects a dynamic process of deposition and dissolution, influenced by different biological, chemical and physical variables. In this work we shed light on this matter by combining a structural (High Resolution Transmission Electron Microscopy (HRTEM) and Fe K-edge X-ray Absorption Spectroscopy (XAS)) and a magnetic study of the mineral core biomineralized by horse spleen ferritin (HoSF) and three prokaryotic ferritin-like proteins: bacterial ferritin (FtnA) and bacterioferritin (Bfr) from Escherichia coli and archaeal ferritin (PfFtn) from Pyrococcus furiosus. The prokaryotic ferritin-like proteins have been studied under native conditions and inside the cells for the sake of preserving their natural attributes. They share with HoSF a nanocrystalline structure rather than an amorphous one as has been frequently reported. However, the presence of phosphorus changes drastically the short-range order and magnetic response of the prokaryotic cores with respect to HoSF. The superparamagnetism observed in HoSF is absent in the prokaryotic proteins, which show a pure atomic-like paramagnetic behaviour attributed to phosphorus breaking the Fe-Fe exchange interaction.
Collapse
Affiliation(s)
- A García-Prieto
- Dpto. de Física Aplicada I, Universidad del País Vasco - UPV/EHU, 48013 Bilbao, Spain and BCMaterials, Parque tecnológico de Zamudio, 48160 Derio, Spain.
| | - J Alonso
- BCMaterials, Parque tecnológico de Zamudio, 48160 Derio, Spain. and Department of Physics, University of South Florida, Tampa, FL 33647, USA
| | - D Muñoz
- Dpto. de Inmunología, Microbiología y Parasitologa, Universidad del País Vasco - UPV/EHU, 48940 Leioa, Spain and Dpto. de Electricidad y Electrónica, Universidad del País Vasco - UPV/EHU, 48940 Leioa, Spain
| | - L Marcano
- Dpto. de Electricidad y Electrónica, Universidad del País Vasco - UPV/EHU, 48940 Leioa, Spain
| | - A Abad Díaz de Cerio
- Dpto. de Inmunología, Microbiología y Parasitologa, Universidad del País Vasco - UPV/EHU, 48940 Leioa, Spain and Dpto. de Electricidad y Electrónica, Universidad del País Vasco - UPV/EHU, 48940 Leioa, Spain
| | | | - I Orue
- SGIker, Universidad del País Vasco UPV/EHU, 48940 Leioa, Spain
| | - O Mathon
- European Synchrotron Radiation Facility, 38000 Grenoble, France
| | - A Muela
- BCMaterials, Parque tecnológico de Zamudio, 48160 Derio, Spain. and Dpto. de Inmunología, Microbiología y Parasitologa, Universidad del País Vasco - UPV/EHU, 48940 Leioa, Spain
| | - M L Fdez-Gubieda
- BCMaterials, Parque tecnológico de Zamudio, 48160 Derio, Spain. and Dpto. de Electricidad y Electrónica, Universidad del País Vasco - UPV/EHU, 48940 Leioa, Spain
| |
Collapse
|
47
|
Llorens JV, Metzendorf C, Missirlis F, Lind MI. Mitochondrial iron supply is required for the developmental pulse of ecdysone biosynthesis that initiates metamorphosis in Drosophila melanogaster. J Biol Inorg Chem 2015; 20:1229-38. [PMID: 26468126 DOI: 10.1007/s00775-015-1302-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 10/05/2015] [Indexed: 12/23/2022]
Abstract
Synthesis of ecdysone, the key hormone that signals the termination of larval growth and the initiation of metamorphosis in insects, is carried out in the prothoracic gland by an array of iron-containing cytochrome P450s, encoded by the halloween genes. Interference, either with iron-sulfur cluster biogenesis in the prothoracic gland or with the ferredoxins that supply electrons for steroidogenesis, causes a block in ecdysone synthesis and developmental arrest in the third instar larval stage. Here we show that mutants in Drosophila mitoferrin (dmfrn), the gene encoding a mitochondrial carrier protein implicated in mitochondrial iron import, fail to grow and initiate metamorphosis under dietary iron depletion or when ferritin function is partially compromised. In mutant dmfrn larvae reared under iron replete conditions, the expression of halloween genes is increased and 20-hydroxyecdysone (20E), the active form of ecdysone, is synthesized. In contrast, addition of an iron chelator to the diet of mutant dmfrn larvae disrupts 20E synthesis. Dietary addition of 20E has little effect on the growth defects, but enables approximately one-third of the iron-deprived dmfrn larvae to successfully turn into pupae and, in a smaller percentage, into adults. This partial rescue is not observed with dietary supply of ecdysone's precursor 7-dehydrocholesterol, a precursor in the ecdysone biosynthetic pathway. The findings reported here support the notion that a physiological supply of mitochondrial iron for the synthesis of iron-sulfur clusters and heme is required in the prothoracic glands of insect larvae for steroidogenesis. Furthermore, mitochondrial iron is also essential for normal larval growth.
Collapse
Affiliation(s)
- Jose V Llorens
- Department of Comparative Physiology, Uppsala University, Norbyvägen 18A, Uppsala, Sweden
| | - Christoph Metzendorf
- Heidelberg University Biochemistry Center (BZH), University of Heidelberg, Im Neuenheimer Feld 328, Heidelberg, Germany
| | - Fanis Missirlis
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados, Av. IPN 2508, Mexico City, Mexico.
| | - Maria I Lind
- Department of Comparative Physiology, Uppsala University, Norbyvägen 18A, Uppsala, Sweden.
| |
Collapse
|
48
|
Navarro JA, Botella JA, Metzendorf C, Lind MI, Schneuwly S. Mitoferrin modulates iron toxicity in a Drosophila model of Friedreich's ataxia. Free Radic Biol Med 2015; 85:71-82. [PMID: 25841783 DOI: 10.1016/j.freeradbiomed.2015.03.014] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 02/26/2015] [Accepted: 03/13/2015] [Indexed: 01/12/2023]
Abstract
Friedreich's ataxia is the most important recessive ataxia in the Caucasian population. Loss of frataxin expression affects the production of iron-sulfur clusters and, therefore, mitochondrial energy production. One of the pathological consequences is an increase of iron transport into the mitochondrial compartment leading to a toxic accumulation of reactive iron. However, the mechanism underlying this inappropriate mitochondrial iron accumulation is still unknown. Control and frataxin-deficient flies were fed with an iron diet in order to mimic an iron overload and used to assess various cellular as well as mitochondrial functions. We showed that frataxin-deficient flies were hypersensitive toward dietary iron and developed an iron-dependent decay of mitochondrial functions. In the fly model exhibiting only partial frataxin loss, we demonstrated that the inability to activate ferritin translation and the enhancement of mitochondrial iron uptake via mitoferrin upregulation were likely the key molecular events behind the iron-induced phenotype. Both defects were observed during the normal process of aging, confirming their importance in the progression of the pathology. In an effort to further assess the importance of these mechanisms, we carried out genetic interaction studies. We showed that mitoferrin downregulation improved many of the frataxin-deficient conditions, including nervous system degeneration, whereas mitoferrin overexpression exacerbated most of them. Taken together, this study demonstrates the crucial role of mitoferrin dysfunction in the etiology of Friedreich's ataxia and provides evidence that impairment of mitochondrial iron transport could be an effective treatment of the disease.
Collapse
Affiliation(s)
- Juan A Navarro
- Institute of Zoology, University of Regensburg, Universitaetsstrasse 31, 93040 Regensburg, Germany.
| | - Jose A Botella
- Institute of Zoology, University of Regensburg, Universitaetsstrasse 31, 93040 Regensburg, Germany
| | - Christoph Metzendorf
- Biochemistry Center, Heidelberg University, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Maria I Lind
- Department of Comparative Physiology, Uppsala University, Norbyvägen 18A, S-752 36 Uppsala, Sweden
| | - Stephan Schneuwly
- Institute of Zoology, University of Regensburg, Universitaetsstrasse 31, 93040 Regensburg, Germany
| |
Collapse
|
49
|
Ferritin Is Required in Multiple Tissues during Drosophila melanogaster Development. PLoS One 2015; 10:e0133499. [PMID: 26192321 PMCID: PMC4508113 DOI: 10.1371/journal.pone.0133499] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 06/28/2015] [Indexed: 11/19/2022] Open
Abstract
In Drosophila melanogaster, iron is stored in the cellular endomembrane system inside a protein cage formed by 24 ferritin subunits of two types (Fer1HCH and Fer2LCH) in a 1:1 stoichiometry. In larvae, ferritin accumulates in the midgut, hemolymph, garland, pericardial cells and in the nervous system. Here we present analyses of embryonic phenotypes for mutations in Fer1HCH, Fer2LCH and in both genes simultaneously. Mutations in either gene or deletion of both genes results in a similar set of cuticular embryonic phenotypes, ranging from non-deposition of cuticle to defects associated with germ band retraction, dorsal closure and head involution. A fraction of ferritin mutants have embryonic nervous systems with ventral nerve cord disruptions, misguided axonal projections and brain malformations. Ferritin mutants die with ectopic apoptotic events. Furthermore, we show that ferritin maternal contribution, which varies reflecting the mother's iron stores, is used in early development. We also evaluated phenotypes arising from the blockage of COPII transport from the endoplasmic reticulum to the Golgi apparatus, feeding the secretory pathway, plus analysis of ectopically expressed and fluorescently marked Fer1HCH and Fer2LCH. Overall, our results are consistent with insect ferritin combining three functions: iron storage, intercellular iron transport, and protection from iron-induced oxidative stress. These functions are required in multiple tissues during Drosophila embryonic development.
Collapse
|
50
|
Peng Z, Dittmer NT, Lang M, Brummett LM, Braun CL, Davis LC, Kanost MR, Gorman MJ. Multicopper oxidase-1 orthologs from diverse insect species have ascorbate oxidase activity. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2015; 59:58-71. [PMID: 25701385 PMCID: PMC4387078 DOI: 10.1016/j.ibmb.2015.02.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 02/04/2015] [Accepted: 02/09/2015] [Indexed: 06/01/2023]
Abstract
Members of the multicopper oxidase (MCO) family of enzymes can be classified by their substrate specificity; for example, ferroxidases oxidize ferrous iron, ascorbate oxidases oxidize ascorbate, and laccases oxidize aromatic substrates such as diphenols. Our previous work on an insect multicopper oxidase, MCO1, suggested that it may function as a ferroxidase. This hypothesis was based on three lines of evidence: RNAi-mediated knock down of Drosophila melanogaster MCO1 (DmMCO1) affects iron homeostasis, DmMCO1 has ferroxidase activity, and DmMCO1 has predicted iron binding residues. In our current study, we expanded our focus to include MCO1 from Anopheles gambiae, Tribolium castaneum, and Manduca sexta. We verified that MCO1 orthologs have similar expression profiles, and that the MCO1 protein is located on the basal surface of cells where it is positioned to oxidize substrates in the hemolymph. In addition, we determined that RNAi-mediated knock down of MCO1 in A. gambiae affects iron homeostasis. To further characterize the enzymatic activity of MCO1 orthologs, we purified recombinant MCO1 from all four insect species and performed kinetic analyses using ferrous iron, ascorbate and two diphenols as substrates. We found that all of the MCO1 orthologs are much better at oxidizing ascorbate than they are at oxidizing ferrous iron or diphenols. This result is surprising because ascorbate oxidases are thought to be specific to plants and fungi. An analysis of three predicted iron binding residues in DmMCO1 revealed that they are not required for ferroxidase or laccase activity, but two of the residues (His374 and Asp380) influence oxidation of ascorbate. These two residues are conserved in MCO1 orthologs from insects and crustaceans; therefore, they are likely to be important for MCO1 function. The results of this study suggest that MCO1 orthologs function as ascorbate oxidases and influence iron homeostasis through an unknown mechanism.
Collapse
Affiliation(s)
- Zeyu Peng
- Department of Biochemistry and Molecular Biophysics, 141 Chalmers, Kansas State University, Manhattan, KS 66506, USA.
| | - Neal T Dittmer
- Department of Biochemistry and Molecular Biophysics, 141 Chalmers, Kansas State University, Manhattan, KS 66506, USA.
| | - Minglin Lang
- Department of Biochemistry and Molecular Biophysics, 141 Chalmers, Kansas State University, Manhattan, KS 66506, USA.
| | - Lisa M Brummett
- Department of Biochemistry and Molecular Biophysics, 141 Chalmers, Kansas State University, Manhattan, KS 66506, USA.
| | - Caroline L Braun
- Department of Biochemistry and Molecular Biophysics, 141 Chalmers, Kansas State University, Manhattan, KS 66506, USA.
| | - Lawrence C Davis
- Department of Biochemistry and Molecular Biophysics, 141 Chalmers, Kansas State University, Manhattan, KS 66506, USA.
| | - Michael R Kanost
- Department of Biochemistry and Molecular Biophysics, 141 Chalmers, Kansas State University, Manhattan, KS 66506, USA.
| | - Maureen J Gorman
- Department of Biochemistry and Molecular Biophysics, 141 Chalmers, Kansas State University, Manhattan, KS 66506, USA.
| |
Collapse
|