1
|
Deshpande G, Das S, Roy AE, Ratnaparkhi GS. A face-off between Smaug and Caspar modulates primordial germ cell count and identity in Drosophila embryos. Fly (Austin) 2025; 19:2438473. [PMID: 39718186 DOI: 10.1080/19336934.2024.2438473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/26/2024] [Accepted: 12/01/2024] [Indexed: 12/25/2024] Open
Abstract
Proper formation and specification of Primordial Germ Cells (PGCs) is of special significance as they gradually transform into Germline Stem Cells (GSCs) that are ultimately responsible for generating the gametes. Intriguingly, not only the PGCs constitute the only immortal cell type but several specific determinants also underlying PGC specification such as Vasa, Nanos and Germ-cell-less are conserved through evolution. In Drosophila melanogaster, PGC formation and specification depends on two independent factors, the maternally deposited specialized cytoplasm (or germ plasm) enriched in germline determinants, and the mechanisms that execute the even partitioning of these determinants between the daughter cells. Prior work has shown that Oskar protein is necessary and sufficient to assemble the functional germ plasm, whereas centrosomes associated with the nuclei that invade the germ plasm are responsible for its equitable distribution. Our recent data suggests that Caspar, the Drosophila orthologue of human Fas-associated factor-1 (FAF1) is a novel regulator that modulates both mechanisms that underlie the determination of PGC fate. Consistently, early blastoderm embryos derived from females compromised for caspar display reduced levels of Oskar and defective centrosomes.
Collapse
Affiliation(s)
- Girish Deshpande
- Department of Biology, Indian Institute of Science Education & Research, Pune, India
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Subhradip Das
- Department of Biology, Indian Institute of Science Education & Research, Pune, India
| | - Adheena Elsa Roy
- Department of Biology, Indian Institute of Science Education & Research, Pune, India
| | - Girish S Ratnaparkhi
- Department of Biology, Indian Institute of Science Education & Research, Pune, India
| |
Collapse
|
2
|
Liao W, Lv Z, Mo Y, Yu S, Zhao Y, Zhang S, Liu F, Li Z, Yang Z. Battle between Gut Bacteria, Immune System, and Cry1Ac Toxin in Plutella xylostella. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:10896-10906. [PMID: 40271618 DOI: 10.1021/acs.jafc.5c01838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
Research on Bacillus thuringiensis (Bt)-pest interactions has prioritized Cry toxin receptors, with limited attention to gut bacteria's role in modulating Bt sensitivity. This study identified two Enterobacter strains in Plutella xylostella with opposing effects on Cry1Ac susceptibility. Enterobacter hormaechei (PxG15) degraded Cry1Ac protoxin and activated the proPO-AS and JNK pathway, which reduced Cry1Ac's damage to the midgut while limiting the invasion of gut bacteria into the hemolymph. Although Enterobacter asburiae (PxG1) rapidly activated the proPO-AS, the JNK pathway was activated in a much slower and weaker mode when compared to PxG15, which attenuated the repairing efficiency of the midgut under the treatment of Cry1Ac, leading to death resulting from sepsis from the quick invasion of gut bacteria into the hemolymph. This study illustrates the intricate interrelationships among Cry1Ac, the pest's midgut bacteria, and its immune system, offering novel insights into how gut bacteria shape pest survival following Cry1Ac exposure.
Collapse
Affiliation(s)
- Wenyu Liao
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
| | - Zhuohong Lv
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
| | - Yunfei Mo
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
| | - Shuwen Yu
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
| | - Yafei Zhao
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
| | - Shisheng Zhang
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
| | - Feng Liu
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Zhiwen Li
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
| | - Zhongxia Yang
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
3
|
Yao X, Lin L, Ye Z, Huo M, Jin P, Ma F. NF-κB/Relish readjusts miR-100 expression and recovers immune homeostasis in Drosophila melanogaster. INSECT SCIENCE 2024. [PMID: 39688880 DOI: 10.1111/1744-7917.13484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 10/21/2024] [Accepted: 10/25/2024] [Indexed: 12/18/2024]
Abstract
The regulation and maintenance of immune homeostasis are essential for animal survival, but the molecular mechanisms are not fully understood. Here, we used the model organism Drosophila melanogaster to uncover a potential mechanism by which the nuclear factor-κB transcription factor Relish and miR-100 cooperatively regulate innate immune homeostasis. We first demonstrated in vitro and in vivo that miR-100 can negatively regulate the immune responses of the Imd pathway by inhibiting the expression of TAK1-associated binding protein 2 (Tab2) gene. Second, we found that Relish, an important transcription factor in the Drosophila Imd pathway, could not only modulate the expressions of antimicrobial peptides (AMPs) to promote immune responses, but also bind to the promoter region of miR-100 and activate its transcription to inhibit immune responses. Third, the dynamic expression of genes profiling indicated that the Relish/miR-100/Tab2 regulatory axis could contribute to innate immune homeostasis in Drosophila. Together, our findings reveal the dual role of Relish in immune regulation, that is, Relish promotes the expression of AMPs to resist pathogen infection in the early immune response, while in the late immune stages, Relish readjusts the expression of miR-100 to negatively control immune responses to avoid excessive immunity thus maintaining immunohomeostasis. Meanwhile, our study provides a new perspective for further understanding the complex regulatory mechanism of immune homeostasis in animals.
Collapse
Affiliation(s)
- Xiaolong Yao
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Lu Lin
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Zifeng Ye
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Miaomiao Huo
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Ping Jin
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Fei Ma
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China
| |
Collapse
|
4
|
Das S, Hegde S, Wagh N, Sudhakaran J, Roy AE, Deshpande G, Ratnaparkhi GS. Caspar specifies primordial germ cell count and identity in Drosophila melanogaster. eLife 2024; 13:RP98584. [PMID: 39671304 PMCID: PMC11643641 DOI: 10.7554/elife.98584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2024] Open
Abstract
Repurposing of pleiotropic factors during execution of diverse cellular processes has emerged as a regulatory paradigm. Embryonic development in metazoans is controlled by maternal factors deposited in the egg during oogenesis. Here, we explore maternal role(s) of Caspar (Casp), the Drosophila orthologue of human Fas-associated factor-1 (FAF1) originally implicated in host-defense as a negative regulator of NF-κB signaling. Maternal loss of either Casp or it's protein partner, transitional endoplasmic reticulum 94 (TER94) leads to partial embryonic lethality correlated with aberrant centrosome behavior, cytoskeletal abnormalities, and defective gastrulation. Although ubiquitously distributed, both proteins are enriched in the primordial germ cells (PGCs), and in keeping with the centrosome problems, mutant embryos display a significant reduction in the PGC count. Moreover, the total number of pole buds is directly proportional to the level of Casp. Consistently, it's 'loss' and 'gain' results in respective reduction and increase in the Oskar protein levels, the master determinant of PGC fate. To elucidate this regulatory loop, we analyzed several known components of mid-blastula transition and identify the translational repressor Smaug, a zygotic regulator of germ cell specification, as a potential critical target. We present a detailed structure-function analysis of Casp aimed at understanding its novel involvement during PGC development.
Collapse
Affiliation(s)
- Subhradip Das
- Department of Biology, Indian Institute of Science Education & ResearchPuneIndia
| | - Sushmitha Hegde
- Department of Biology, Indian Institute of Science Education & ResearchPuneIndia
| | - Neel Wagh
- Department of Biology, Indian Institute of Science Education & ResearchPuneIndia
| | - Jyothish Sudhakaran
- Department of Biology, Indian Institute of Science Education & ResearchPuneIndia
| | - Adheena Elsa Roy
- Department of Biology, Indian Institute of Science Education & ResearchPuneIndia
| | - Girish Deshpande
- Department of Biology, Indian Institute of Science Education & ResearchPuneIndia
- Department of Molecular Biology, Princeton UniversityPrincetonUnited States
| | - Girish S Ratnaparkhi
- Department of Biology, Indian Institute of Science Education & ResearchPuneIndia
| |
Collapse
|
5
|
Thulasidharan A, Garg L, Tendulkar S, Ratnaparkhi GS. Age-dependent dynamics of neuronal VAPB ALS inclusions in the adult brain. Neurobiol Dis 2024; 196:106517. [PMID: 38679111 DOI: 10.1016/j.nbd.2024.106517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/01/2024] [Accepted: 04/25/2024] [Indexed: 05/01/2024] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a relentlessly progressive and fatal disease, caused by the degeneration of upper and lower motor neurons within the brain and spinal cord in the ageing human. The dying neurons contain cytoplasmic inclusions linked to the onset and progression of the disease. Here, we use a Drosophila model of ALS8 (VAPP58S) to understand the modulation of these inclusions in the ageing adult brain. The adult VAPP58S fly shows progressive deterioration in motor function till its demise 25 days post-eclosion. The density of VAPP58S-positive brain inclusions is stable for 5-15 days of age. In contrast, adding a single copy of VAPWT to the VAPP58S animal leads to a large decrease in inclusion density with concomitant rescue of motor function and lifespan. ER stress, a contributing factor in disease, shows reduction with ageing for the disease model. Autophagy, rather than the Ubiquitin Proteasome system, is the dominant mechanism for aggregate clearance. We explored the ability of Drosophila Valosin-containing protein (VCP/TER94), the ALS14 locus, which is involved in cellular protein clearance, to regulate age-dependent aggregation. Contrary to expectation, TER94 overexpression increased VAPP58S punctae density, while its knockdown led to enhanced clearance. Expression of a dominant positive allele, TER94R152H, further stabilised VAPP58S puncta, cementing roles for an ALS8-ALS14 axis. Our results are explained by a mechanism where autophagy is modulated by TER94 knockdown. Our study sheds light on the complex regulatory events involved in the neuronal maintenance of ALS8 aggregates, suggesting a context-dependent switch between proteasomal and autophagy-based mechanisms as the larvae develop into an adult. A deeper understanding of the nucleation and clearance of the inclusions, which affect cellular stress and function, is essential for understanding the initiation and progression of ALS.
Collapse
Affiliation(s)
- Aparna Thulasidharan
- Department of Biology, Indian Institute of Science Education & Research (IISER), Pune 411008, India
| | - Lovleen Garg
- Department of Biology, Indian Institute of Science Education & Research (IISER), Pune 411008, India
| | - Shweta Tendulkar
- Department of Biology, Indian Institute of Science Education & Research (IISER), Pune 411008, India
| | - Girish S Ratnaparkhi
- Department of Biology, Indian Institute of Science Education & Research (IISER), Pune 411008, India.
| |
Collapse
|
6
|
Zhang P, Catterson JH, Grönke S, Partridge L. Inhibition of S6K lowers age-related inflammation and increases lifespan through the endolysosomal system. NATURE AGING 2024; 4:491-509. [PMID: 38413780 PMCID: PMC11031405 DOI: 10.1038/s43587-024-00578-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 01/24/2024] [Indexed: 02/29/2024]
Abstract
Suppression of target of rapamycin complex 1 (TORC1) by rapamycin ameliorates aging in diverse species. S6 kinase (S6K) is an essential mediator, but the mechanisms involved are unclear. Here we show that activation of S6K specifically in Drosophila fat-body blocked extension of lifespan by rapamycin, induced accumulation of multilamellar lysosomes and blocked age-associated hyperactivation of the NF-κB-like immune deficiency (IMD) pathway, indicative of reduced inflammaging. Syntaxin 13 mediated the effects of TORC1-S6K signaling on lysosome morphology and inflammaging, suggesting they may be linked. Inflammaging depended on the IMD receptor regulatory isoform PGRP-LC, and repression of the IMD pathway from midlife extended lifespan. Age-related inflammaging was higher in females than in males and was not lowered in males by rapamycin treatment or lowered S6K. Rapamycin treatment also elevated Syntaxin 12/13 levels in mouse liver and prevented age-related increase in noncanonical NF-κB signaling, suggesting that the effect of TORC1 on inflammaging is conserved from flies to mammals.
Collapse
Affiliation(s)
- Pingze Zhang
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - James H Catterson
- Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, London, UK
- Centre for Discovery Brain Sciences, UK Dementia Research Institute, University of Edinburgh, Edinburgh, UK
| | | | - Linda Partridge
- Max Planck Institute for Biology of Ageing, Cologne, Germany.
- Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, London, UK.
| |
Collapse
|
7
|
Huang Y, Wang T, Jiang C, Li S, Zhou H, Li R. Relish-facilitated lncRNA-CR11538 suppresses Drosophila Imd immune response and maintains immune homeostasis via decoying Relish away from antimicrobial peptide promoters. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 151:105098. [PMID: 37956726 DOI: 10.1016/j.dci.2023.105098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/10/2023] [Accepted: 11/08/2023] [Indexed: 11/15/2023]
Abstract
Innate immunity plays a crucial role in host defense against pathogen invasion and its strength and duration requires precise control. Long non-coding RNAs (lncRNAs) have become important regulators of innate immunity, yet their roles in Drosophila immune responses remain largely unknown. In this study, we identified that the overexpression of lncRNA-CR11538 inhibits the expression of antimicrobial peptides (AMPs) Dpt and AttA in Drosophila upon Escherichia coli (E. coli) infection, and influences the survival rate of flies after E. cloacae infection. Mechanically, lncRNA-CR11538 decoys Relish away from AMPs promoter region. We further revealed that Relish can promote the transcription of lncRNA-CR11538. After analyzing the dynamic expression profile of lncRNA-CR11538 during Imd immune response, we put forward a hypothesis that in the late stage of Imd immune response, lncRNA-CR11538 can be activated by Relish and further decoy Relish away from the AMPs promoter to suppress excessive immune signal and maintain immune homeostasis. This mechanism we proposed provides insights into the complex regulatory networks controlling immune responses in Drosophila and suggests potential targets for therapeutic intervention in diseases involving dysregulated immune responses.
Collapse
Affiliation(s)
- Yu Huang
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, PR China
| | - Tan Wang
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, PR China
| | - Chun Jiang
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, PR China; Institute of Laboratory Medicine, Jinling Hospital, Nanjing University School of Medicine, 210002, Nanjing, Jiangsu, PR China
| | - Shengjie Li
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, PR China
| | - Hongjian Zhou
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, PR China; Institute of Laboratory Medicine, Jinling Hospital, Nanjing University School of Medicine, 210002, Nanjing, Jiangsu, PR China.
| | - Ruimin Li
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, 455000, PR China.
| |
Collapse
|
8
|
Tom A, Kumar NP, Kumar A, Saini P. Interactions between Leishmania parasite and sandfly: a review. Parasitol Res 2023; 123:6. [PMID: 38052752 DOI: 10.1007/s00436-023-08043-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 11/06/2023] [Indexed: 12/07/2023]
Abstract
Leishmaniasis transmission cycles are maintained and sustained in nature by the complex crosstalk of the Leishmania parasite, sandfly vector, and the mammalian hosts (human, as well as zoonotic reservoirs). Regardless of the vast research on human host-parasite interaction, there persists a substantial knowledge gap on the parasite's development and modulation in the vector component. This review focuses on some of the intriguing aspects of the Leishmania-sandfly interface, beginning with the uptake of the intracellular amastigotes from an infected host to the development of the parasite within the sandfly's alimentary canal, followed by the transmission of infective metacyclic stages to another potential host. Upon ingestion of the parasite, the sandfly hosts an intricate repertoire of immune barriers, either to evade the parasite or to ensure its homeostatic coexistence with the vector gut microbiome. Sandfly salivary polypeptides and Leishmania exosomes are co-egested with the parasite inoculum during the infected vector bite. This has been attributed to the modulation of the parasite infection and subsequent clinical manifestation in the host. While human host-based studies strive to develop effective therapeutics, a greater understanding of the vector-parasite-microbiome and human host interactions could help us to identify the targets and to develop strategies for effectively preventing the transmission of leishmaniasis.
Collapse
Affiliation(s)
- Anns Tom
- ICMR-Vector Control Research Centre (Field Station), Kottayam, Kerala, India
| | - N Pradeep Kumar
- ICMR-Vector Control Research Centre (Field Station), Kottayam, Kerala, India
| | - Ashwani Kumar
- ICMR- Vector Control Research Centre, Puducherry, India
| | - Prasanta Saini
- ICMR-Vector Control Research Centre (Field Station), Kottayam, Kerala, India.
| |
Collapse
|
9
|
Pan W, Yao X, Lin L, Liu X, Jin P, Ma F. The Relish/miR-275/Dredd mediated negative feedback loop is crucial to restoring immune homeostasis of Drosophila Imd pathway. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023; 162:104013. [PMID: 37804878 DOI: 10.1016/j.ibmb.2023.104013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/13/2023] [Accepted: 09/25/2023] [Indexed: 10/09/2023]
Abstract
The NF-κB/Relish, as a core transcription factor of Drosophila immune deficiency (Imd) pathway, activates the transcriptions of antimicrobial peptides (AMPs) to combat gram-negative bacterial infections, but its role in regulating miRNA expression during immune response has less been reported. We here describe a negative feedback loop of Imd signaling mediated by Relish/miR-275/Dredd that controls Drosophila immune homeostasis after Escherichia coli (E. coli) infection. Our results demonstrate that Relish may directly activate the transcription of miR-275 via binding to its promoter in vitro and vivo, particularly miR-275 further inhibits the expression of Dredd through binding to its 3'UTR to negatively control Drosophila Imd immune response. Remarkably, the ectopic expression of miR-275 significantly reduces Drosophila lifespan. More importantly, our work uncovers a new mechanism by which Relish can flexibly switch its role to maintain Drosophila immune response and homeostasis during infection. Collectively, our study not only reveals the functional duality of Relish in regulating immune response of Drosophila Imd pathway, but also provides a new insight into the maintenance of animal innate immune homeostasis.
Collapse
Affiliation(s)
- Wanwan Pan
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, China
| | - Xiaolong Yao
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, China
| | - Lu Lin
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, China
| | - Xiaoqi Liu
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, China
| | - Ping Jin
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, China.
| | - Fei Ma
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, China.
| |
Collapse
|
10
|
Yang L, Yang L, Wang X, Peng C, Chen X, Wei W, Xu X, Ye G, Xu J. Toll and IMD Immune Pathways Are Important Antifungal Defense Components in a Pupal Parasitoid, Pteromalus puparum. Int J Mol Sci 2023; 24:14088. [PMID: 37762389 PMCID: PMC10531655 DOI: 10.3390/ijms241814088] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/03/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Insects employ multifaceted strategies to combat invading fungi, with immunity being a promising mechanism. Immune pathways function in signal transduction and amplification, ultimately leading to the activation of antimicrobial peptides (AMPs). Although several studies have shown that immune pathways are responsible for defending against fungi, the roles of parasitoid immune pathways involved in antifungal responses remain unknown. In this study, we evaluated the roles of the Toll and IMD pathways of a pupal parasitoid, Pteromalus puparum (Hymenoptera: Pteromalidae), in fighting against Beauveria bassiana (Hypocreales: Cordycipitaceae). Successful colonization of B. bassiana on P. puparum adults was confirmed by scanning electron microscopy (SEM). AMPs were induced upon B. bassiana infection. The knockdown of key genes, PpTollA and PpIMD, in Toll and IMD signaling pathways, respectively, significantly compromised insect defense against fungal infection. The knockdown of either PpTollA or PpIMD in P. puparum dramatically promoted the proliferation of B. bassiana, resulting in a decreased survival rate and downregulated expression levels of AMPs against B. bassiana compared to controls. These data indicated that PpTollA and PpIMD participate in Toll and IMD-mediated activation of antifungal responses, respectively. In summary, this study has greatly broadened our knowledge of the parasitoid antifungal immunity against fungi.
Collapse
Affiliation(s)
- Lei Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Lei Yang
- State Key Laboratory of Rice Biology and Breeding & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaofu Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Cheng Peng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xiaoyun Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Wei Wei
- State Key Laboratory of Rice Biology and Breeding & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaoli Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Gongyin Ye
- State Key Laboratory of Rice Biology and Breeding & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Junfeng Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| |
Collapse
|
11
|
Luo Z, Qin YK, Zhao K, Nan XY, Li WW, Li EC, Wang Q. Caspar negatively regulates anti-bacterial immunity by controlling the nuclear translocation of Relish in Chinese mitten crab (Eriocheir sinensis). FISH & SHELLFISH IMMUNOLOGY 2023; 136:108714. [PMID: 36990260 DOI: 10.1016/j.fsi.2023.108714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/23/2023] [Accepted: 03/26/2023] [Indexed: 06/19/2023]
Abstract
Caspar, a homolog of the Fas-associated factor 1 (FAF1) family, contains an N-terminal ubiquitin interaction domain, a ubiquitin-like self-association domain, and a C-terminal ubiquitin regulatory domain. Caspar has been reported to be involved in the antibacterial immunity of Drosophila, which is unclear whether it is involved in the antibacterial immune process of crustaceans. In this article, we identified a Caspar gene in Eriocheir sinensis and named it EsCaspar. EsCaspar positively respond to bacterial stimulation and downregulate the expression of certain associated antimicrobial peptides by inhibiting the nuclear translocation of EsRelish. Thus, EsCaspar might be a suppressor of the immune deficiency (IMD) pathway that prevents over-activation of the immune system. Indeed, excess EsCaspar protein in crabs reduced resistance to bacterial infection. In conclusion, EsCaspar is a suppressor of the IMD pathway in crabs that plays a negative regulatory role in antimicrobial immunity.
Collapse
Affiliation(s)
- Zhi Luo
- Laboratory of Immunological Defense, School of Life Sciences, East China Normal University, 200241, Shanghai, China
| | - Yu-Kai Qin
- Laboratory of Immunological Defense, School of Life Sciences, East China Normal University, 200241, Shanghai, China
| | - Ke Zhao
- Laboratory of Immunological Defense, School of Life Sciences, East China Normal University, 200241, Shanghai, China
| | - Xing-Yu Nan
- Laboratory of Immunological Defense, School of Life Sciences, East China Normal University, 200241, Shanghai, China
| | - Wei-Wei Li
- Laboratory of Immunological Defense, School of Life Sciences, East China Normal University, 200241, Shanghai, China
| | - Er-Chao Li
- Laboratory of Immunological Defense, School of Life Sciences, East China Normal University, 200241, Shanghai, China.
| | - Qun Wang
- Laboratory of Immunological Defense, School of Life Sciences, East China Normal University, 200241, Shanghai, China.
| |
Collapse
|
12
|
Laureti M, Lee RX, Bennett A, Wilson LA, Sy VE, Kohl A, Dietrich I. Rift Valley Fever Virus Primes Immune Responses in Aedes aegypti Cells. Pathogens 2023; 12:563. [PMID: 37111448 PMCID: PMC10146816 DOI: 10.3390/pathogens12040563] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/25/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023] Open
Abstract
The ongoing global emergence of arthropod-borne (arbo) viruses has accelerated research into the interactions of these viruses with the immune systems of their vectors. Only limited information exists on how bunyaviruses, such as Rift Valley fever virus (RVFV), are sensed by mosquito immunity or escape detection. RVFV is a zoonotic phlebovirus (Bunyavirales; Phenuiviridae) of veterinary and human public health and economic importance. We have shown that the infection of mosquitoes with RVFV triggers the activation of RNA interference pathways, which moderately restrict viral replication. Here, we aimed to better understand the interactions between RVFV and other vector immune signaling pathways that might influence RVFV replication and transmission. For this, we used the immunocompetent Aedes aegypti Aag2 cell line as a model. We found that bacteria-induced immune responses restricted RVFV replication. However, virus infection alone did not alter the gene expression levels of immune effectors. Instead, it resulted in the marked enhancement of immune responses to subsequent bacterial stimulation. The gene expression levels of several mosquito immune pattern recognition receptors were altered by RVFV infection, which may contribute to this immune priming. Our findings imply that there is a complex interplay between RVFV and mosquito immunity that could be targeted in disease prevention strategies.
Collapse
Affiliation(s)
| | - Rui-Xue Lee
- MRC-University of Glasgow Centre for Virus Research, 464 Bearsden Road, Glasgow G61 1QH, UK
| | - Amelia Bennett
- The Pirbright Institute, Ash Road, Pirbright GU24 0NF, UK
- Department of Life Sciences, Faculty of Science, Claverton Down, University of Bath, Bath BA2 7AY, UK
| | - Lucas Aladar Wilson
- The Pirbright Institute, Ash Road, Pirbright GU24 0NF, UK
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, Foresterhill, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | | | - Alain Kohl
- MRC-University of Glasgow Centre for Virus Research, 464 Bearsden Road, Glasgow G61 1QH, UK
| | - Isabelle Dietrich
- The Pirbright Institute, Ash Road, Pirbright GU24 0NF, UK
- MRC-University of Glasgow Centre for Virus Research, 464 Bearsden Road, Glasgow G61 1QH, UK
| |
Collapse
|
13
|
Expression and Localization of Fas-Associated Factor 1 in Testicular Tissues of Different Ages and Ovaries at Different Reproductive Cycle Phases of Bos grunniens. Animals (Basel) 2023; 13:ani13030340. [PMID: 36766229 PMCID: PMC9913830 DOI: 10.3390/ani13030340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
Fas-associated factor 1 (FAF1), a member of the Fas family, is involved in biological processes such as apoptosis, inflammation, cell proliferation and proteostasis. This study aimed to explore the biological role of FAF1 in testicular tissue at different ages (juveniles (1 and 2 years old), adults (3, 4, 6, and 7 years old) and old-aged animals (11 years old)) and ovaries during different reproductive cycle phases (follicular, luteal, and pregnancy phases). FAF1 mRNA, relative protein expression and protein expression localization were determined in testes and ovaries using real-time quantification, WB and immunohistochemistry (IHC), respectively. Real-time quantification of testis tissues showed that the relative expression of FAF1 mRNA in testis tissues at 3, 4 and 7 years of age was significantly higher than of those in other ages, and in ovarian tissues was significantly higher in luteal phase ovaries than those in follicular and pregnancy phase ovaries; follicular phase ovaries were the lowest. WB of testis tissues showed that the relative protein expression of FAF1 protein was significantly higher at 11 and 7 years of age; in ovarian tissue, the relative protein expression of FAF1 protein was significantly higher in follicular phase ovaries than in luteal and pregnancy phase ovaries, and lowest in luteal phase ovaries. The relative protein expression of FAF1 at 3, 4 and 7 years of age was the lowest. IHC showed that FAF1 was mainly expressed in spermatozoa, spermatocytes, spermatogonia and supporting cells; in ovarian tissue, FAF1 was expressed in ovarian germ epithelial cells, granulosa cells, cumulus cells and luteal cells. The IHC results showed that FAF1 mRNA and protein were significantly differentially expressed in testes of different ages and ovarian tissues of different reproductive cycle phases, revealing the significance of FAF1 in the regulation of male and female B. grunniens reproductive physiology. Furthermore, our results provide a basis for the further exploration of FAF1 in the reproductive physiology of B. grunniens.
Collapse
|
14
|
Zeng T, Jaffar S, Xu Y, Qi Y. The Intestinal Immune Defense System in Insects. Int J Mol Sci 2022; 23:ijms232315132. [PMID: 36499457 PMCID: PMC9740067 DOI: 10.3390/ijms232315132] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/29/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
Over a long period of evolution, insects have developed unique intestinal defenses against invasion by foreign microorganisms, including physical defenses and immune responses. The physical defenses of the insect gut consist mainly of the peritrophic matrix (PM) and mucus layer, which are the first barriers to pathogens. Gut microbes also prevent the colonization of pathogens. Importantly, the immune-deficiency (Imd) pathways produce antimicrobial peptides to eliminate pathogens; mechanisms related to reactive oxygen species are another important pathway for insect intestinal immunity. The janus kinase/STAT signaling pathway is involved in intestinal immunity by producing bactericidal substances and regulating tissue repair. Melanization can produce many bactericidal active substances into the intestine; meanwhile, there are multiple responses in the intestine to fight against viral and parasitic infections. Furthermore, intestinal stem cells (ISCs) are also indispensable in intestinal immunity. Only the coordinated combination of the intestinal immune defense system and intestinal tissue renewal can effectively defend against pathogenic microorganisms.
Collapse
|
15
|
Zhou H, Wu S, Liu L, Liu X, Lan S, Jiang J, Yang W, Jin P, Xia X, Ma F. Drosophila Relish-mediated miR-317 expression facilitates immune homeostasis restoration via inhibiting PGRP-LC. Eur J Immunol 2022; 52:1934-1945. [PMID: 36155909 DOI: 10.1002/eji.202250034] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 09/20/2022] [Accepted: 09/23/2022] [Indexed: 12/13/2022]
Abstract
Innate immunity is the first and essential line for resisting pathogens, and the immune intensity and duration need to be strictly regulated to balance excessive or insufficient immune response. MicroRNAs (miRNAs) are crucial regulators of immune response in Drosophila, yet how immune-related miRNAs are regulated remains poorly understood. Herein, we elucidated that the involvement of miR-317 in NF-κB transcription factor Relish mediated Drosophila Imd pathway in response to Gram-negative (G-) bacteria stimulation. Remarkably, the dynamic expression profiling for immune response indicated that Relish simultaneously enhances the expression of the effector antimicrobial peptide Dpt as well as miR-317 post-infection. Upregulation of miR-317 could further down-regulate the expression of PGRP-LC, thereby forming a feedback in Drosophila Imd pathway to prevent over-activation and restore immune homeostasis. Taken together, our study not only uncovers a novel Relish/miR-317/PGRP-LC regulatory axis to attenuate Drosophila Imd immune response and facilitate immune homeostasis restoration, but also provides vital insights into the complex mechanisms of animal innate immune regulation.
Collapse
Affiliation(s)
- Hongjian Zhou
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, P. R. China.,Institute of Laboratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu, 210002, China
| | - Shanshan Wu
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, P. R. China
| | - Li Liu
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, P. R. China
| | - Xiaoqi Liu
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, P. R. China
| | - Siyu Lan
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, P. R. China
| | - Jiajun Jiang
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, P. R. China
| | - Wan Yang
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, P. R. China
| | - Ping Jin
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, P. R. China
| | - Xinyi Xia
- Institute of Laboratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu, 210002, China
| | - Fei Ma
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, P. R. China
| |
Collapse
|
16
|
Ogienko AA, Omelina ES, Bylino OV, Batin MA, Georgiev PG, Pindyurin AV. Drosophila as a Model Organism to Study Basic Mechanisms of Longevity. Int J Mol Sci 2022; 23:11244. [PMID: 36232546 PMCID: PMC9569508 DOI: 10.3390/ijms231911244] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/20/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
The spatio-temporal regulation of gene expression determines the fate and function of various cells and tissues and, as a consequence, the correct development and functioning of complex organisms. Certain mechanisms of gene activity regulation provide adequate cell responses to changes in environmental factors. Aside from gene expression disorders that lead to various pathologies, alterations of expression of particular genes were shown to significantly decrease or increase the lifespan in a wide range of organisms from yeast to human. Drosophila fruit fly is an ideal model system to explore mechanisms of longevity and aging due to low cost, easy handling and maintenance, large number of progeny per adult, short life cycle and lifespan, relatively low number of paralogous genes, high evolutionary conservation of epigenetic mechanisms and signalling pathways, and availability of a wide range of tools to modulate gene expression in vivo. Here, we focus on the organization of the evolutionarily conserved signaling pathways whose components significantly influence the aging process and on the interconnections of these pathways with gene expression regulation.
Collapse
Affiliation(s)
- Anna A. Ogienko
- Department of Regulation of Genetic Processes, Institute of Molecular and Cellular Biology SB RAS, 630090 Novosibirsk, Russia
| | - Evgeniya S. Omelina
- Department of Regulation of Genetic Processes, Institute of Molecular and Cellular Biology SB RAS, 630090 Novosibirsk, Russia
- Laboratory of Biotechnology, Novosibirsk State Agrarian University, 630039 Novosibirsk, Russia
| | - Oleg V. Bylino
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology RAS, 119334 Moscow, Russia
| | - Mikhail A. Batin
- Open Longevity, 15260 Ventura Blvd., Sherman Oaks, Los Angeles, CA 91403, USA
| | - Pavel G. Georgiev
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology RAS, 119334 Moscow, Russia
| | - Alexey V. Pindyurin
- Department of Regulation of Genetic Processes, Institute of Molecular and Cellular Biology SB RAS, 630090 Novosibirsk, Russia
| |
Collapse
|
17
|
Cammarata-Mouchtouris A, Acker A, Goto A, Chen D, Matt N, Leclerc V. Dynamic Regulation of NF-κB Response in Innate Immunity: The Case of the IMD Pathway in Drosophila. Biomedicines 2022; 10:2304. [PMID: 36140409 PMCID: PMC9496462 DOI: 10.3390/biomedicines10092304] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/01/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
Metazoans have developed strategies to protect themselves from pathogenic attack. These preserved mechanisms constitute the immune system, composed of innate and adaptive responses. Among the two kinds, the innate immune system involves the activation of a fast response. NF-κB signaling pathways are activated during infections and lead to the expression of timely-controlled immune response genes. However, activation of NF-κB pathways can be deleterious when uncontrolled. Their regulation is necessary to prevent the development of inflammatory diseases or cancers. The similarity of the NF-κB pathways mediating immune mechanisms in insects and mammals makes Drosophila melanogaster a suitable model for studying the innate immune response and learning general mechanisms that are also relevant for humans. In this review, we summarize what is known about the dynamic regulation of the central NF-κB-pathways and go into detail on the molecular level of the IMD pathway. We report on the role of the nuclear protein Akirin in the regulation of the NF-κB Relish immune response. The use of the Drosophila model allows the understanding of the fine-tuned regulation of this central NF-κB pathway.
Collapse
Affiliation(s)
| | - Adrian Acker
- Institut de Biologie Moléculaire et Cellulaire (IBMC), UPR9022, CNRS, Université de Strasbourg, 67084 Strasbourg, France
| | - Akira Goto
- Institut de Biologie Moléculaire et Cellulaire (IBMC), UPR9022, CNRS, Université de Strasbourg, 67084 Strasbourg, France
| | - Di Chen
- Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou 511436, China
| | - Nicolas Matt
- Institut de Biologie Moléculaire et Cellulaire (IBMC), UPR9022, CNRS, Université de Strasbourg, 67084 Strasbourg, France
| | - Vincent Leclerc
- Institut de Biologie Moléculaire et Cellulaire (IBMC), UPR9022, CNRS, Université de Strasbourg, 67084 Strasbourg, France
| |
Collapse
|
18
|
Boštjančić LL, Francesconi C, Rutz C, Hoffbeck L, Poidevin L, Kress A, Jussila J, Makkonen J, Feldmeyer B, Bálint M, Schwenk K, Lecompte O, Theissinger K. Host-pathogen coevolution drives innate immune response to Aphanomyces astaci infection in freshwater crayfish: transcriptomic evidence. BMC Genomics 2022; 23:600. [PMID: 35989333 PMCID: PMC9394032 DOI: 10.1186/s12864-022-08571-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 04/20/2022] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND For over a century, scientists have studied host-pathogen interactions between the crayfish plague disease agent Aphanomyces astaci and freshwater crayfish. It has been hypothesised that North American crayfish hosts are disease-resistant due to the long-lasting coevolution with the pathogen. Similarly, the increasing number of latent infections reported in the historically sensitive European crayfish hosts seems to indicate that similar coevolutionary processes are occurring between European crayfish and A. astaci. Our current understanding of these host-pathogen interactions is largely focused on the innate immunity processes in the crayfish haemolymph and cuticle, but the molecular basis of the observed disease-resistance and susceptibility remain unclear. To understand how coevolution is shaping the host's molecular response to the pathogen, susceptible native European noble crayfish and invasive disease-resistant marbled crayfish were challenged with two A. astaci strains of different origin: a haplogroup A strain (introduced to Europe at least 50 years ago, low virulence) and a haplogroup B strain (signal crayfish in lake Tahoe, USA, high virulence). Here, we compare the gene expression profiles of the hepatopancreas, an integrated organ of crayfish immunity and metabolism. RESULTS We characterised several novel innate immune-related gene groups in both crayfish species. Across all challenge groups, we detected 412 differentially expressed genes (DEGs) in the noble crayfish, and 257 DEGs in the marbled crayfish. In the noble crayfish, a clear immune response was detected to the haplogroup B strain, but not to the haplogroup A strain. In contrast, in the marbled crayfish we detected an immune response to the haplogroup A strain, but not to the haplogroup B strain. CONCLUSIONS We highlight the hepatopancreas as an important hub for the synthesis of immune molecules in the response to A. astaci. A clear distinction between the innate immune response in the marbled crayfish and the noble crayfish is the capability of the marbled crayfish to mobilise a higher variety of innate immune response effectors. With this study we outline that the type and strength of the host immune response to the pathogen is strongly influenced by the coevolutionary history of the crayfish with specific A. astaci strains.
Collapse
Affiliation(s)
- Ljudevit Luka Boštjančić
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberg Biodiversity and Climate Research Centre, Georg-Voigt-Str. 14-16, 60325, Frankfurt am Main, Germany
| | - Caterina Francesconi
- Institute for Environmental Sciences, University of Koblenz-Landau, Fortstrasse 7, 76829, Landau, Germany.
| | - Christelle Rutz
- Department of Computer Science, ICube, UMR 7357, University of Strasbourg, CNRS, Centre de Recherche en Biomédecine de Strasbourg, Rue Eugène Boeckel 1, 67000, Strasbourg, France
| | - Lucien Hoffbeck
- Department of Computer Science, ICube, UMR 7357, University of Strasbourg, CNRS, Centre de Recherche en Biomédecine de Strasbourg, Rue Eugène Boeckel 1, 67000, Strasbourg, France
| | - Laetitia Poidevin
- Department of Computer Science, ICube, UMR 7357, University of Strasbourg, CNRS, Centre de Recherche en Biomédecine de Strasbourg, Rue Eugène Boeckel 1, 67000, Strasbourg, France
| | - Arnaud Kress
- Department of Computer Science, ICube, UMR 7357, University of Strasbourg, CNRS, Centre de Recherche en Biomédecine de Strasbourg, Rue Eugène Boeckel 1, 67000, Strasbourg, France
| | - Japo Jussila
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 1627, 70210, Kuopio, Finland
| | - Jenny Makkonen
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 1627, 70210, Kuopio, Finland
- Present address: BioSafe - Biological Safety Solutions, Microkatu 1, 70210, Kuopio, Finland
| | - Barbara Feldmeyer
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberg Biodiversity and Climate Research Centre, Georg-Voigt-Str. 14-16, 60325, Frankfurt am Main, Germany
| | - Miklós Bálint
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberg Biodiversity and Climate Research Centre, Georg-Voigt-Str. 14-16, 60325, Frankfurt am Main, Germany
| | - Klaus Schwenk
- Institute for Environmental Sciences, University of Koblenz-Landau, Fortstrasse 7, 76829, Landau, Germany
| | - Odile Lecompte
- Department of Computer Science, ICube, UMR 7357, University of Strasbourg, CNRS, Centre de Recherche en Biomédecine de Strasbourg, Rue Eugène Boeckel 1, 67000, Strasbourg, France
| | - Kathrin Theissinger
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberg Biodiversity and Climate Research Centre, Georg-Voigt-Str. 14-16, 60325, Frankfurt am Main, Germany
- Institute for Environmental Sciences, University of Koblenz-Landau, Fortstrasse 7, 76829, Landau, Germany
| |
Collapse
|
19
|
Hua Y, Zhu Y, Hu Y, Kong F, Duan R, Zhang C, Zhang C, Zhang S, Jin Y, Ye Y, Cai Q, Ji S. A Feedback Regulatory Loop Involving dTrbd/dTak1 in Controlling IMD Signaling in Drosophila Melanogaster. Front Immunol 2022; 13:932268. [PMID: 35911722 PMCID: PMC9329959 DOI: 10.3389/fimmu.2022.932268] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/23/2022] [Indexed: 11/23/2022] Open
Abstract
Negative regulators of the inflammatory responses are essential for the maintenance of immune homeostasis and organismal fitness. In Drosophila, the deubiquitinase (Dub) dTrbd selectively restricts the K63-linked ubiquitination modification of dTak1, a pivotal kinase of the IMD signaling pathway, to regulate the IMD innate immune response. However, which domain and how it functions to enable dTrbd's activity remain unexplored. Here, we provide compelling evidence showing that the NZF domain of dTrbd is essential for its association with dTak1. Meanwhile, the Linker region of dTrbd is involved in modulating its condensation, a functional state representing the Dub enzymatical activity of dTrbd. Of interest, the activated IMD signals following bacterial stimuli enhance the dTrbd/dTak1 interaction, as well as the condensate assembly and Dub enzymatical activity of dTrbd. Collectively, our studies shed light on the dual mechanisms by which the IMD signaling-mediated feedback loop of dTrbd/dTak1 precisely regulates the innate immune response in Drosophila.
Collapse
Affiliation(s)
- Yongzhi Hua
- Centre for Developmental Biology, School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Yangyang Zhu
- Centre for Developmental Biology, School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Yixuan Hu
- Centre for Developmental Biology, School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Fanrui Kong
- Centre for Developmental Biology, School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Renjie Duan
- Centre for Developmental Biology, School of Life Sciences, Anhui Agricultural University, Hefei, China
- School of Preclinical Medicine, Wannan Medical College, Wuhu, China
| | - Chao Zhang
- Centre for Developmental Biology, School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Chuchu Zhang
- Centre for Developmental Biology, School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Shikun Zhang
- Centre for Developmental Biology, School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Yiheng Jin
- Centre for Developmental Biology, School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Yizhu Ye
- Centre for Developmental Biology, School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Qingshuang Cai
- Centre for Developmental Biology, School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Shanming Ji
- Centre for Developmental Biology, School of Life Sciences, Anhui Agricultural University, Hefei, China
| |
Collapse
|
20
|
Alejandro AD, Lilia JP, Jesús MB, Henry RM. The IMD and Toll canonical immune pathways of Triatoma pallidipennis are preferentially activated by Gram-negative and Gram-positive bacteria, respectively, but cross-activation also occurs. Parasit Vectors 2022; 15:256. [PMID: 35821152 PMCID: PMC9277830 DOI: 10.1186/s13071-022-05363-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 06/10/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Antimicrobial peptides (AMPs) participate in the humoral immune response of insects eliminating invasive microorganisms. The immune deficiency pathway (IMD) and Toll are the main pathways by which the synthesis of these molecules is regulated in response to Gram-negative (IMD pathway) or Gram-positive (Toll pathway) bacteria. Various pattern-recognition receptors (PRRs) participate in the recognition of microorganisms, such as pgrp-lc and toll, which trigger signaling cascades and activate NF-κB family transcription factors, such as relish, that translocate to the cell nucleus, mainly in the fat body, inducing AMP gene transcription. METHODS T. pallidipennis inhibited in Tppgrp-lc, Tptoll, and Tprelish were challenged with E. coli and M. luteus to analyze the expression of AMPs transcripts in the fat body and to execute survival assays. RESULTS In this work we investigated the participation of the pgrp-lc and toll receptor genes and the relish transcription factor (designated as Tppgrp-lc, Tptoll, and Tprelish), in the transcriptional regulation of defensin B, prolixicin, and lysozyme B in Triatoma pallidipennis, one of the main vectors of Chagas disease. AMP transcript abundance was higher in the fat body of blood-fed than non-fed bugs. Challenge with Escherichia coli or Micrococcus luteus induced differential increases in AMP transcripts. Additionally, silencing of Tppgrp-lc, Tptoll, and Tprelish resulted in reduced AMP transcription and survival of bugs after a bacterial challenge. CONCLUSIONS Our findings demonstrated that the IMD and Toll pathways in T. pallidipennis preferentially respond to Gram-negative and Gram-positive bacteria, respectively, by increasing the expression of AMP transcripts, but cross-induction also occurs.
Collapse
Affiliation(s)
- Alvarado-Delgado Alejandro
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Av. Universidad 655, CP 62100 Cuernavaca, Morelos México
| | - Juárez-Palma Lilia
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Av. Universidad 655, CP 62100 Cuernavaca, Morelos México
| | - Maritinez-Bartneche Jesús
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Av. Universidad 655, CP 62100 Cuernavaca, Morelos México
| | - Rodriguez Mario Henry
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Av. Universidad 655, CP 62100 Cuernavaca, Morelos México
| |
Collapse
|
21
|
Zhou H, Wu S, Liu L, Li R, Jin P, Li S. Drosophila Relish Activating lncRNA-CR33942 Transcription Facilitates Antimicrobial Peptide Expression in Imd Innate Immune Response. Front Immunol 2022; 13:905899. [PMID: 35720331 PMCID: PMC9201911 DOI: 10.3389/fimmu.2022.905899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/02/2022] [Indexed: 12/29/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are an emerging class of regulators that play crucial roles in regulating the strength and duration of innate immunity. However, little is known about the regulation of Drosophila innate immunity-related lncRNAs. In this study, we first revealed that overexpression of lncRNA-CR33942 could strengthen the expression of the Imd pathway antimicrobial peptide (AMP) genes Diptericin (Dpt) and Attacin-A (AttA) after infection, and vice versa. Secondly, RNA-seq analysis of lncRNA-CR33942-overexpressing flies post Gram-negative bacteria infection confirmed that lncRNA-CR33942 positively regulated the Drosophila immune deficiency (Imd) pathway. Mechanistically, we found that lncRNA-CR33942 interacts and enhances the binding of NF-κB transcription factor Relish to Dpt and AttA promoters, thereby facilitating Dpt and AttA expression. Relish could also directly promote lncRNA-CR33942 transcription by binding to its promoter. Finally, rescue experiments and dynamic expression profiling post-infection demonstrated the vital role of the Relish/lncRNA-CR33942/AMP regulatory axis in enhancing Imd pathway and maintaining immune homeostasis. Our study elucidates novel mechanistic insights into the role of lncRNA-CR33942 in activating Drosophila Imd pathway and the complex regulatory interaction during the innate immune response of animals.
Collapse
Affiliation(s)
- Hongjian Zhou
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Shanshan Wu
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Li Liu
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Ruimin Li
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, China
| | - Ping Jin
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Shengjie Li
- Jiangsu Provincial Key Construction Laboratory of Special Biomass Byproduct Resource Utilization, School of Food Science, Nanjing Xiaozhuang University, Nanjing, China
| |
Collapse
|
22
|
Tendulkar S, Hegde S, Garg L, Thulasidharan A, Kaduskar B, Ratnaparkhi A, Ratnaparkhi GS. Caspar, an adapter for VAPB and TER94, modulates the progression of ALS8 by regulating IMD/NFκB mediated glial inflammation in a drosophila model of human disease. Hum Mol Genet 2022; 31:2857-2875. [PMID: 35377453 PMCID: PMC9433731 DOI: 10.1093/hmg/ddac076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/25/2022] [Accepted: 03/29/2022] [Indexed: 11/16/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal, late-onset, progressive motor neurodegenerative disorder. A key pathological feature of the disease is the presence of heavily ubiquitinated protein inclusions. Both the unfolded protein response and the ubiquitin–proteasome system appear significantly impaired in patients and animal models of ALS. We have studied cellular and molecular mechanisms involved in ALS using a vesicle-associated membrane protein-associated protein B (VAPB/ALS8) Drosophila model [Moustaqim-Barrette, A., Lin, Y.Q., Pradhan, S., Neely, G.G., Bellen, H.J. and Tsuda, H. (2014) The ALS 8 protein, VAP, is required for ER protein quality control. Hum. Mol. Genet., 23, 1975–1989], which mimics many systemic aspects of the human disease. Here, we show that VAPB, located on the cytoplasmic face of the endoplasmic reticulum membrane, interacts with Caspar, an orthologue of human fas associated factor 1 (FAF1). Caspar, in turn, interacts with transitional endoplasmic reticulum ATPase (TER94), a fly orthologue of ALS14 (VCP/p97, valosin-containing protein). Caspar overexpression in the glia extends lifespan and also slows the progression of motor dysfunction in the ALS8 disease model, a phenomenon that we ascribe to its ability to restrain age-dependent inflammation, which is modulated by Relish/NFκB signalling. Caspar binds to VAPB via an FFAT motif, and we find that Caspar’s ability to negatively regulate NFκB signalling is not dependent on the VAPB:Caspar interaction. We hypothesize that Caspar is a key molecule in the pathogenesis of ALS. The VAPB:Caspar:TER94 complex appears to be a candidate for regulating both protein homeostasis and NFκB signalling, with our study highlighting a role for Caspar in glial inflammation. We project human FAF1 as an important protein target to alleviate the progression of motor neuron disease.
Collapse
Affiliation(s)
- Shweta Tendulkar
- Indian Institute of Science Education & Research (IISER) Pune 411008, India
| | - Sushmitha Hegde
- Indian Institute of Science Education & Research (IISER) Pune 411008, India
| | - Lovleen Garg
- Indian Institute of Science Education & Research (IISER) Pune 411008, India
| | | | | | | | | |
Collapse
|
23
|
Salem Wehbe L, Barakat D, Acker A, El Khoury R, Reichhart JM, Matt N, El Chamy L. Protein Phosphatase 4 Negatively Regulates the Immune Deficiency-NF-κB Pathway during the Drosophila Immune Response. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 207:1616-1626. [PMID: 34452932 PMCID: PMC7616922 DOI: 10.4049/jimmunol.1901497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 07/07/2021] [Indexed: 12/31/2022]
Abstract
The evolutionarily conserved immune deficiency (IMD) signaling pathway shields Drosophila against bacterial infections. It regulates the expression of antimicrobial peptides encoding genes through the activation of the NF-κB transcription factor Relish. Tight regulation of the signaling cascade ensures a balanced immune response, which is otherwise highly harmful. Several phosphorylation events mediate intracellular progression of the IMD pathway. However, signal termination by dephosphorylation remains largely elusive. Here, we identify the highly conserved protein phosphatase 4 (PP4) complex as a bona fide negative regulator of the IMD pathway. RNA interference-mediated gene silencing of PP4-19c, PP4R2, and Falafel, which encode the catalytic and regulatory subunits of the phosphatase complex, respectively, caused a marked upregulation of bacterial-induced antimicrobial peptide gene expression in both Drosophila melanogaster S2 cells and adult flies. Deregulated IMD signaling is associated with reduced lifespan of PP4-deficient flies in the absence of any infection. In contrast, flies overexpressing this phosphatase are highly sensitive to bacterial infections. Altogether, our results highlight an evolutionarily conserved function of PP4c in the regulation of NF-κB signaling from Drosophila to mammals.
Collapse
Affiliation(s)
- Layale Salem Wehbe
- Université de Strasbourg, CNRS, M3I UPR 9022, Strasbourg, France; and
- Unité de Recherche Environnement, Génomique et Protéomique, Faculté des Sciences, Université Saint-Joseph de Beyrouth-Liban, Mar Roukos, Mkalles, Beirut, Lebanon
| | - Dana Barakat
- Université de Strasbourg, CNRS, M3I UPR 9022, Strasbourg, France; and
- Unité de Recherche Environnement, Génomique et Protéomique, Faculté des Sciences, Université Saint-Joseph de Beyrouth-Liban, Mar Roukos, Mkalles, Beirut, Lebanon
| | - Adrian Acker
- Université de Strasbourg, CNRS, M3I UPR 9022, Strasbourg, France; and
| | - Rita El Khoury
- Université de Strasbourg, CNRS, M3I UPR 9022, Strasbourg, France; and
- Unité de Recherche Environnement, Génomique et Protéomique, Faculté des Sciences, Université Saint-Joseph de Beyrouth-Liban, Mar Roukos, Mkalles, Beirut, Lebanon
| | | | - Nicolas Matt
- Université de Strasbourg, CNRS, M3I UPR 9022, Strasbourg, France; and
| | - Laure El Chamy
- Unité de Recherche Environnement, Génomique et Protéomique, Faculté des Sciences, Université Saint-Joseph de Beyrouth-Liban, Mar Roukos, Mkalles, Beirut, Lebanon
| |
Collapse
|
24
|
Tang R, Huang W, Guan J, Liu Q, Beerntsen BT, Ling E. Drosophila H2Av negatively regulates the activity of the IMD pathway via facilitating Relish SUMOylation. PLoS Genet 2021; 17:e1009718. [PMID: 34370736 PMCID: PMC8376203 DOI: 10.1371/journal.pgen.1009718] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/19/2021] [Accepted: 07/14/2021] [Indexed: 12/15/2022] Open
Abstract
Insects depend on the innate immune response for defense against a wide array of pathogens. Central to Drosophila immunity are antimicrobial peptides (AMPs), released into circulation when pathogens trigger either of the two widely studied signal pathways, Toll or IMD. The Toll pathway responds to infection by Gram-positive bacteria and fungi while the IMD pathway is activated by Gram-negative bacteria. During activation of the IMD pathway, the NF-κB-like transcription factor Relish is phosphorylated and then cleaved, which is crucial for IMD-dependent AMP gene induction. Here we show that loss-of-function mutants of the unconventional histone variant H2Av upregulate IMD-dependent AMP gene induction in germ-free Drosophila larvae and adults. After careful dissection of the IMD pathway, we found that Relish has an epistatic relationship with H2Av. In the H2Av mutant larvae, SUMOylation is down-regulated, suggesting a possible role of SUMOylation in the immune phenotype. Eventually we demonstrated that Relish is mostly SUMOylated on amino acid K823. Loss of the potential SUMOylation site leads to significant auto-activation of Relish in vivo. Further work indicated that H2Av regulates Relish SUMOylation after physically interacting with Su(var)2-10, the E3 component of the SUMOylation pathway. Biochemical analysis suggested that SUMOylation of Relish prevents its cleavage and activation. Our findings suggest a new mechanism by which H2Av can negatively regulate, and thus prevent spontaneous activation of IMD-dependent AMP production, through facilitating SUMOylation of the NF-κB like transcription factor Relish. Toll and IMD signaling pathways should be involved in the production of antimicrobial peptides in animals upon infection. Immunity responses are energy consuming. Thus, these two pathways are fine-tuned. Animal H2A variant histones are involved in many physiological functions. In Drosophila, the production of antibacterial peptides is out of control in the mutant of H2A variant (H2Av810). After careful examination, we found that Relish, the transcription factor of the IMD pathway, was activated in this mutant. Eventually we demonstrate that Relish can be SUMOylated with the involvement of H2Av. Loss of the main SUMOylation site in Relish induces it to auto-activate following over-expression. Therefore, H2Av is a negative regulator of the IMD signaling pathway by maintaining the normal level of Relish SUMOylation in Drosophila.
Collapse
Affiliation(s)
- Ruijuan Tang
- University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Wuren Huang
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Jingmin Guan
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Qiuning Liu
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetland, Yancheng Teachers University, Yancheng, China
| | - Brenda T. Beerntsen
- Veterinary Pathobiology, University of Missouri, Columbia, Missouri, United States of America
| | - Erjun Ling
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
25
|
Ramesh P, Dey NS, Kanwal A, Mandal S, Mandal L. Relish plays a dynamic role in the niche to modulate Drosophila blood progenitor homeostasis in development and infection. eLife 2021; 10:67158. [PMID: 34292149 PMCID: PMC8363268 DOI: 10.7554/elife.67158] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 07/14/2021] [Indexed: 12/12/2022] Open
Abstract
Immune challenges demand the gearing up of basal hematopoiesis to combat infection. Little is known about how during development, this switch is achieved to take care of the insult. Here, we show that the hematopoietic niche of the larval lymph gland of Drosophila senses immune challenge and reacts to it quickly through the nuclear factor-κB (NF-κB), Relish, a component of the immune deficiency (Imd) pathway. During development, Relish is triggered by ecdysone signaling in the hematopoietic niche to maintain the blood progenitors. Loss of Relish causes an alteration in the cytoskeletal architecture of the niche cells in a Jun Kinase-dependent manner, resulting in the trapping of Hh implicated in progenitor maintenance. Notably, during infection, downregulation of Relish in the niche tilts the maintenance program toward precocious differentiation, thereby bolstering the cellular arm of the immune response.
Collapse
Affiliation(s)
- Parvathy Ramesh
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, India.,Developmental Genetics Laboratory, IISER Mohali, SAS Nagar, Punjab, India
| | - Nidhi Sharma Dey
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, India.,Developmental Genetics Laboratory, IISER Mohali, SAS Nagar, Punjab, India
| | - Aditya Kanwal
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, India.,Developmental Genetics Laboratory, IISER Mohali, SAS Nagar, Punjab, India
| | - Sudip Mandal
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, India.,Molecular Cell and Developmental Biology Laboratory, IISER Mohali, SAS Nagar, Punjab, India
| | - Lolitika Mandal
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, India.,Developmental Genetics Laboratory, IISER Mohali, SAS Nagar, Punjab, India
| |
Collapse
|
26
|
Rosendo Machado S, van der Most T, Miesen P. Genetic determinants of antiviral immunity in dipteran insects - Compiling the experimental evidence. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 119:104010. [PMID: 33476667 DOI: 10.1016/j.dci.2021.104010] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/08/2021] [Accepted: 01/09/2021] [Indexed: 06/12/2023]
Abstract
The genetic basis of antiviral immunity in dipteran insects is extensively studied in Drosophila melanogaster and advanced technologies for genetic manipulation allow a better characterization of immune responses also in non-model insect species. Especially, immunity in vector mosquitoes is recently in the spotlight, due to the medical impact that these insects have by transmitting viruses and other pathogens. Here, we review the current state of experimental evidence that supports antiviral functions for immune genes acting in different cellular pathways. We discuss the well-characterized RNA interference mechanism along with the less well-defined JAK-STAT, Toll, and IMD signaling pathways. Furthermore, we highlight the initial evidence for antiviral activity observed for the autophagy pathway, transcriptional pausing, as well as piRNA production from endogenous viral elements. We focus our review on studies from Drosophila and mosquito species from the lineages Aedes, Culex, and Anopheles, which contain major vector species responsible for virus transmission.
Collapse
Affiliation(s)
- Samara Rosendo Machado
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, the Netherlands
| | - Tom van der Most
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, the Netherlands
| | - Pascal Miesen
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, the Netherlands.
| |
Collapse
|
27
|
Trammell CE, Goodman AG. Host Factors That Control Mosquito-Borne Viral Infections in Humans and Their Vector. Viruses 2021; 13:748. [PMID: 33923307 PMCID: PMC8145797 DOI: 10.3390/v13050748] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/13/2021] [Accepted: 04/22/2021] [Indexed: 02/07/2023] Open
Abstract
Mosquito-borne viral infections are responsible for a significant degree of morbidity and mortality across the globe due to the severe diseases these infections cause, and they continue to increase each year. These viruses are dependent on the mosquito vector as the primary means of transmission to new vertebrate hosts including avian, livestock, and human populations. Due to the dynamic host environments that mosquito-borne viruses pass through as they are transmitted between vector and vertebrate hosts, there are various host factors that control the response to infection over the course of the pathogen's life cycle. In this review, we discuss these host factors that are present in either vector or vertebrate models during infection, how they vary or are conserved between hosts, and their implications in future research pertaining to disease prevention and treatment.
Collapse
Affiliation(s)
- Chasity E. Trammell
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99163, USA;
- NIH Protein Biotechnology Training Program, Washington State University, Pullman, WA 99164-6240, USA
| | - Alan G. Goodman
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99163, USA;
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
28
|
Ma M, Guo L, Tu C, Wang A, Xu L, Luo J. Comparative Analysis of Adelphocoris suturalis Jakovlev (Hemiptera: Miridae) Immune Responses to Fungal and Bacterial Pathogens. Front Physiol 2021; 12:646721. [PMID: 33815150 PMCID: PMC8012897 DOI: 10.3389/fphys.2021.646721] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 02/18/2021] [Indexed: 01/30/2023] Open
Abstract
The wide-spread culture of transgenic Bt cotton resisting the infamous cotton bollworms has reduced the adoption of broad-spectrum insecticides to a large extent. Consequently, the non-targeted insect Adelphocoris suturalis Jakovlev has become a major cotton pest in China. Entomopathogenic microbes show promising results for controlling this pest in the future, but A. suturalis innate immune responses to these pathogens are poorly understood. Here, we used the entomopathogenic fungus Beauveria bassiana and the Gram-negative pathogenic bacteria Enterobactor cloacae to infect A. suturalis nymphs, followed by high throughput RNA-seq to analyze the immune transcriptomes of A. suturalis in response to the two pathogens. A total of 150 immunity-related genes were identified, including pattern recognition receptors, extracellular signal modulators, signal pathways (Toll, IMD, JNK, and JAK/STAT), and response effectors. Further quantitative real-time PCR analysis demonstrated that B. bassiana and E. cloacae were recognized by different receptors (GNBP and PGRP, respectively); activated Toll pathway and IMD pathway respectively; and both induced expression of the effector gene Defensin. However, melanization is suppressed in B. bassiana-infected nymphs. Collectively, this study provides a transcriptomic snapshot of the A. suturalis immune system, and at the genetic level, gains multifaceted insights of the immune response to fungal and Gram-negative bacterial pathogens. Ultimately this work pioneers the study of molecular mechanisms underlying immune interactions between A. suturalis and its pathogens and assists in the development of novel mitigation strategies to control this pest.
Collapse
Affiliation(s)
- Meiqi Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Libin Guo
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Chengjie Tu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Aoli Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Letian Xu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Jing Luo
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| |
Collapse
|
29
|
Hu Y, Moczek AP. Wing serial homologues and the diversification of insect outgrowths: insights from the pupae of scarab beetles. Proc Biol Sci 2021; 288:20202828. [PMID: 33467999 DOI: 10.1098/rspb.2020.2828] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Modification of serially homologous structures is a common avenue towards functional innovation in developmental evolution, yet ancestral affinities among serial homologues may be obscured as structure-specific modifications accumulate over time. We sought to assess the degree of homology to wings of three types of body wall projections commonly observed in scarab beetles: (i) the dorsomedial support structures found on the second and third thoracic segments of pupae, (ii) the abdominal support structures found bilaterally in most abdominal segments of pupae, and (iii) the prothoracic horns which depending on species and sex may be restricted to pupae or also found in adults. We functionally investigated 14 genes within, as well as two genes outside, the canonical wing gene regulatory network to compare and contrast their role in the formation of each of the three presumed wing serial homologues. We found 11 of 14 wing genes to be functionally required for the proper formation of lateral and dorsal support structures, respectively, and nine for the formation of prothoracic horns. At the same time, we document multiple instances of divergence in gene function across our focal structures. Collectively, our results support the hypothesis that dorsal and lateral support structures as well as prothoracic horns share a developmental origin with insect wings. Our findings suggest that the morphological and underlying gene regulatory diversification of wing serial homologues across species, life stages and segments has contributed significantly to the extraordinary diversity of arthropod appendages and outgrowths.
Collapse
Affiliation(s)
- Yonggang Hu
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Armin P Moczek
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
30
|
Li R, Zhou H, Jia C, Jin P, Ma F. Drosophila Myc restores immune homeostasis of Imd pathway via activating miR-277 to inhibit imd/Tab2. PLoS Genet 2020; 16:e1008989. [PMID: 32810129 PMCID: PMC7455005 DOI: 10.1371/journal.pgen.1008989] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 08/28/2020] [Accepted: 07/13/2020] [Indexed: 12/20/2022] Open
Abstract
Drosophila Myc (dMyc), as a broad-spectrum transcription factor, can regulate the expression of a large number of genes to control diverse cellular processes, such as cell cycle progression, cell growth, proliferation and apoptosis. However, it remains largely unknown about whether dMyc can be involved in Drosophila innate immune response. Here, we have identified dMyc to be a negative regulator of Drosophila Imd pathway via the loss- and gain-of-function screening. We demonstrate that dMyc inhibits Drosophila Imd immune response via directly activating miR-277 transcription, which further inhibit the expression of imd and Tab2-Ra/b. Importantly, dMyc can improve the survival of flies upon infection, suggesting inhibiting Drosophila Imd pathway by dMyc is vital to restore immune homeostasis that is essential for survival. Taken together, our study not only reports a new dMyc-miR-277-imd/Tab2 axis involved in the negative regulation of Drosophila Imd pathway, and provides a new insight into the complex regulatory mechanism of Drosophila innate immune homeostasis maintenance.
Collapse
Affiliation(s)
- Ruimin Li
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Hongjian Zhou
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Chaolong Jia
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Ping Jin
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China
- * E-mail: (PJ); (FM)
| | - Fei Ma
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China
- * E-mail: (PJ); (FM)
| |
Collapse
|
31
|
Kaduskar B, Trivedi D, Ratnaparkhi GS. Caspar SUMOylation regulates Drosophila lifespan. MICROPUBLICATION BIOLOGY 2020; 2020. [PMID: 32760885 PMCID: PMC7396161 DOI: 10.17912/micropub.biology.000288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Deepti Trivedi
- Fly Facility, National Centre for Biological Sciences (NCBS), TIFR, Bangalore 560065 INDIA
| | | |
Collapse
|
32
|
Arora S, Ligoxygakis P. Beyond Host Defense: Deregulation of Drosophila Immunity and Age-Dependent Neurodegeneration. Front Immunol 2020; 11:1574. [PMID: 32774336 PMCID: PMC7387716 DOI: 10.3389/fimmu.2020.01574] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 06/15/2020] [Indexed: 12/12/2022] Open
Abstract
Age-dependent neurodegenerative disorders are a set of diseases that affect millions of individuals worldwide. Apart from a small subset that are the result of well-defined inherited autosomal dominant gene mutations (e.g., those encoding the β-amyloid precursor protein and presenilins), our understanding of the genetic network that underscores their pathology, remains scarce. Genome-wide association studies (GWAS) especially in Alzheimer's disease patients and research in Parkinson's disease have implicated inflammation and the innate immune response as risk factors. However, even if GWAS etiology points toward innate immunity, untangling cause, and consequence is a challenging task. Specifically, it is not clear whether predisposition to de-regulated immunity causes an inadequate response to protein aggregation (such as amyloid or α-synuclein) or is the direct cause of this aggregation. Given the evolutionary conservation of the innate immune response in Drosophila and humans, unraveling whether hyperactive immune response in glia have a protective or pathological role in the brain could be a potential strategy in combating age-related neurological diseases.
Collapse
Affiliation(s)
- Srishti Arora
- Laboratory of Cell Biology, Development and Genetics, Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Petros Ligoxygakis
- Laboratory of Cell Biology, Development and Genetics, Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
33
|
Potts R, King JG, Pietri JE. Ex vivo characterization of the circulating hemocytes of bed bugs and their responses to bacterial exposure. J Invertebr Pathol 2020; 174:107422. [PMID: 32526226 PMCID: PMC9254597 DOI: 10.1016/j.jip.2020.107422] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 11/17/2022]
Abstract
Bed bugs (Cimex spp.) are urban pests of global importance. Knowledge of the immune system of bed bugs has implications for understanding their susceptibility to biological control agents, their potential to transmit human pathogens, and the basic comparative immunology of insects. Nonetheless, the immunological repertoire of the family Cimicidae remains poorly characterized. Here, we use microscopy, flow cytometry, and RNA sequencing to provide a basal characterization of the circulating hemocytes of the common bed bug, Cimex lectularius. We also examine the responses of these specialized cells to E. coli exposure using the same techniques. Our results show that circulating hemocytes are comprised of at least four morphologically distinct cell types that are capable of phagocytosis, undergo degranulation, and exhibit additional markers of activation following stimulation, including size shift and DNA replication. Furthermore, transcriptomic profiling reveals expression of predicted Toll/IMD signaling pathway components, antimicrobial effectors and other potentially immunoresponsive genes in these cells. Together, our data demonstrate the conservation of several canonical cellular immune responses in the common bed bug and provide a foundation for additional mechanistic immunological studies with specific pathogens of interest.
Collapse
Affiliation(s)
- Rashaun Potts
- University of South Dakota, Sanford School of Medicine, Division of Basic Biomedical Sciences, Vermillion, SD, United States
| | - Jonas G King
- Mississippi State University, Department of Biochemistry, Molecular Biology, Entomology & Plant Pathology, Starkville, MS, United States
| | - Jose E Pietri
- University of South Dakota, Sanford School of Medicine, Division of Basic Biomedical Sciences, Vermillion, SD, United States.
| |
Collapse
|
34
|
Hegde S, Soory A, Kaduskar B, Ratnaparkhi GS. SUMO conjugation regulates immune signalling. Fly (Austin) 2020; 14:62-79. [PMID: 32777975 PMCID: PMC7714519 DOI: 10.1080/19336934.2020.1808402] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/30/2020] [Accepted: 08/05/2020] [Indexed: 12/11/2022] Open
Abstract
Post-translational modifications (PTMs) are critical drivers and attenuators for proteins that regulate immune signalling cascades in host defence. In this review, we explore functional roles for one such PTM, the small ubiquitin-like modifier (SUMO). Very few of the SUMO conjugation targets identified by proteomic studies have been validated in terms of their roles in host defence. Here, we compare and contrast potential SUMO substrate proteins in immune signalling for flies and mammals, with an emphasis on NFκB pathways. We discuss, using the few mechanistic studies that exist for validated targets, the effect of SUMO conjugation on signalling and also explore current molecular models that explain regulation by SUMO. We also discuss in detail roles of evolutionary conservation of mechanisms, SUMO interaction motifs, crosstalk of SUMO with other PTMs, emerging concepts such as group SUMOylation and finally, the potentially transforming roles for genome-editing technologies in studying the effect of PTMs.
Collapse
Affiliation(s)
- Sushmitha Hegde
- Biology, Indian Institute of Science Education & Research (IISER), Pune, India
| | - Amarendranath Soory
- Biology, Indian Institute of Science Education & Research (IISER), Pune, India
| | | | | |
Collapse
|
35
|
Hu J, Wang X, Xiao X, Sun C, Xia Q, Wang F. A tandem death effector domain-containing protein inhibits the IMD signaling pathway via forming amyloid-like aggregates with the caspase-8 homolog DREDD. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 114:103225. [PMID: 31446032 DOI: 10.1016/j.ibmb.2019.103225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/08/2019] [Accepted: 08/21/2019] [Indexed: 06/10/2023]
Abstract
Negative regulation of the immune signaling pathway involves diverse negative regulators that target different signaling molecules. One of the signaling molecules, DREDD, which activates the NF-κB transcription factor Relish in the IMD pathway, is a homolog of mammalian caspase-8. Some structural related proteins have been identified to regulate the activity of caspase-8 in signaling complex assembly. However, it is unknown in insects whether the IMD pathway undergoes such a down-regulation. In this study, we explored the regulatory role of a newly identified protein BmCaspase-8 like (BmCasp8L) in silkworm, which displays high sequence similarity with the N-terminus of BmDREDD to the IMD pathway, and investigated its mechanism. Domain prediction, phylogenic analysis and gene architecture suggests BmCasp8L acts as a potential inhibitor to BmDREDD. We then found it is highly expressed in the fat body and hemocytes, and suppresses the cleavage of BmRelish and BmIMD mediated by BmDREDD upon PGN stimulation, resulting in deficiency in antimicrobial peptides production. Besides the inhibitory role in the IMD pathway, it also suppresses the BmDREDD-induced apoptosis. By investigating the amyloidal activity of BmCasp8L and its interaction with BmDREDD and BmFADD, we demonstrated that BmCasp8L forms amyloid-like aggregates in vitro as well as in vivo, and it inactivates BmDREDD by blending into the amyloidal speck-like structure formed by BmDREDD and BmFADD that is required for BmDREDD activity. Taken together, our results demonstrate BmCasp8L inhibits the IMD signaling pathway via forming amyloidal aggregates with BmDREDD, suggesting an evolutionarily conserved regulatory mechanism of innate immune signaling pathway.
Collapse
Affiliation(s)
- Jie Hu
- Biological Science Research Center, Southwest University, Chongqing, China
| | - Xinyi Wang
- Biological Science Research Center, Southwest University, Chongqing, China
| | - Xiaoyi Xiao
- Biological Science Research Center, Southwest University, Chongqing, China
| | - Chang Sun
- Biological Science Research Center, Southwest University, Chongqing, China
| | - Qingyou Xia
- Biological Science Research Center, Southwest University, Chongqing, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, China
| | - Fei Wang
- Biological Science Research Center, Southwest University, Chongqing, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, China.
| |
Collapse
|
36
|
Yang L, Wan B, Wang BB, Liu MM, Fang Q, Song QS, Ye GY. The Pupal Ectoparasitoid Pachycrepoideus vindemmiae Regulates Cellular and Humoral Immunity of Host Drosophila melanogaster. Front Physiol 2019; 10:1282. [PMID: 31680999 PMCID: PMC6798170 DOI: 10.3389/fphys.2019.01282] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 09/24/2019] [Indexed: 12/18/2022] Open
Abstract
The immunological interaction between Drosophila melanogaster and its larval parasitoids has been thoroughly investigated, however, little is known about the interaction between the host and its pupal parasitoids. Pachycrepoideus vindemmiae, a pupal ectoparasitoid of D. melanogaster, injects venom into its host while laying eggs on the puparium, which regulates host immunity and interrupts host development. To resist the invasion of parasitic wasps, various immune defense strategies have been developed in their hosts as a consequence of co-evolution. In this study, we mainly focused on the host immunomodulation by P. vindemmiae and thoroughly investigated cellular and humoral immune response, including cell adherence, cell viability, hemolymph melanization and the Toll, Imd, and JAK/STAT immune pathways. Our results indicated that venom had a significant inhibitory effect on lamellocyte adherence and induced plasmatocyte cell death. Venom injection and in vitro incubation strongly inhibited hemolymph melanization. More in-depth investigation revealed that the Toll and Imd immune pathways were immediately activated upon parasitization, followed by the JAK/STAT pathway, which was activated within the first 24 h post-parasitism. These regulatory effects were further validated by qPCR. Our present study manifested that P. vindemmiae regulated the cellular and humoral immune system of host D. melanogaster in many aspects. These findings lay the groundwork for studying the immunological interaction between D. melanogaster and its pupal parasitoid.
Collapse
Affiliation(s)
- Lei Yang
- State Key Laboratory of Rice Biology and Ministry of Agriculture, Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Bin Wan
- State Key Laboratory of Rice Biology and Ministry of Agriculture, Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Bei-Bei Wang
- State Key Laboratory of Rice Biology and Ministry of Agriculture, Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Ming-Ming Liu
- State Key Laboratory of Rice Biology and Ministry of Agriculture, Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Qi Fang
- State Key Laboratory of Rice Biology and Ministry of Agriculture, Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Qi-Sheng Song
- Division of Plant Sciences, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, MO, United States
| | - Gong-Yin Ye
- State Key Laboratory of Rice Biology and Ministry of Agriculture, Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
37
|
Kim TH, Lee HC, Kim JH, Hewawaduge CY, Chathuranga K, Chathuranga WAG, Ekanayaka P, Wijerathne HMSM, Kim CJ, Kim E, Lee JS. Fas-associated factor 1 mediates NADPH oxidase-induced reactive oxygen species production and proinflammatory responses in macrophages against Listeria infection. PLoS Pathog 2019; 15:e1008004. [PMID: 31412082 PMCID: PMC6709923 DOI: 10.1371/journal.ppat.1008004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 08/26/2019] [Accepted: 07/27/2019] [Indexed: 11/29/2022] Open
Abstract
Fas-associated factor 1 is a death-promoting protein that induces apoptosis by interacting with the Fas receptor. Until now, FAF1 was reported to interact potentially with diverse proteins and to function as a negative and/or positive regulator of several cellular possesses. However, the role of FAF1 in defense against bacterial infection remains unclear. Here, we show that FAF1 plays a pivotal role in activating NADPH oxidase in macrophages during Listeria monocytogenes infection. Upon infection by L. monocytogenes, FAF1 interacts with p67phox (an activator of the NADPH oxidase complex), thereby facilitating its stabilization and increasing the activity of NADPH oxidase. Consequently, knockdown or ectopic expression of FAF1 had a marked effect on production of ROS, proinflammatory cytokines, and antibacterial activity, in macrophages upon stimulation of TLR2 or after infection with L. monocytogenes. Consistent with this, FAF1gt/gt mice, which are knocked down in FAF1, showed weaker inflammatory responses than wild-type mice; these weaker responses led to increased replication of L. monocytogenes. Collectively, these findings suggest that FAF1 positively regulates NADPH oxidase-mediated ROS production and antibacterial defenses. Phagocytic NADPH oxidase plays a pivotal role in generating reactive oxygen species (ROS) and in defense against bacterial infections such as L. monocytogenes. ROS eliminate phagocytosed bacteria directly and are implicated in transduction of signals that mediate inflammatory responses. Here, we show that the apoptotic protein FAF1 regulates ROS production in macrophages by regulating phagocytic NADPH oxidase activity upon infection by L. monocytogenes. FAF1 interacts directly with and stabilizes p67phox, a regulatory protein of the phagocytic NADPH oxidase complex, to induce ROS production during L. monocytogenes infection. Production of ROS leads to release of proinflammatory cytokines, chemokines and, ultimately, to bacterial clearance. Interestingly, FAF1gt/gt mice deficient in FAF1 expression exhibit weakened inflammatory responses and are thus more vulnerable to bacterial infection than FAF1+/+ mice. This study reveals that FAF1 is a crucial regulator that induces inflammatory responses to bacterial infection via ROS production.
Collapse
Affiliation(s)
- Tae-Hwan Kim
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Hyun-Cheol Lee
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Jae-Hoon Kim
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - C. Y. Hewawaduge
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Kiramage Chathuranga
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| | | | - Pathum Ekanayaka
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - H. M. S. M. Wijerathne
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Chul-Joong Kim
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Eunhee Kim
- College of Biological Sciences and Biotechnology, Chungnam National University, Daejeon, Republic of Korea
| | - Jong-Soo Lee
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
- * E-mail:
| |
Collapse
|
38
|
Byun PK, Zhang C, Yao B, Wardwell-Ozgo J, Terry D, Jin P, Moberg K. The Taiman Transcriptional Coactivator Engages Toll Signals to Promote Apoptosis and Intertissue Invasion in Drosophila. Curr Biol 2019; 29:2790-2800.e4. [PMID: 31402304 DOI: 10.1016/j.cub.2019.07.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 04/29/2019] [Accepted: 07/04/2019] [Indexed: 01/15/2023]
Abstract
The Drosophila Taiman (Tai) protein is homologous to the human steroid-receptor coactivators SRC1-3 and activates transcription in complex with the 20-hydroxyecdysone (20E) receptor (EcR). Tai has roles in intestinal homeostasis, germline maintenance, cell motility, and proliferation through interactions with EcR and the coactivator Yorkie (Yki). Tai also promotes invasion of tumor cells in adjacent organs, but this pro-invasive mechanism is undefined. Here, we show that Tai expression transforms sessile pupal wing cells into an invasive mass that penetrates the adjacent thorax during a period of high 20E. Candidate analysis confirms a reliance on elements of the 20E and Hippo pathways, such as Yki and the Yki-Tai target dilp8. Screening the Tai-induced wing transcriptome detects enrichment for innate immune factors, including the Spätzle (Spz) family of secreted Toll ligands that induce apoptosis during cell competition. Tai-expressing wing cells induce immune signaling and apoptosis among adjacent thoracic cells, and genetic reduction of spz, Toll, or the rpr/hid/grim pro-apoptotic factors each suppresses invasion, suggesting an intercellular Spz-Toll circuit supports killing-mediated invasion. Modeling these interactions in larval epithelia confirms that Tai kills neighboring cells via a mechanism involving Toll, Spz factors, and the Spz inhibitor Necrotic. Tai-expressing cells evade death signals by repressing the immune deficiency (IMD) pathway, which operates in parallel to Toll to control nuclear factor κB (NF-κB) activity and independently regulates JNK activity. In sum, these findings suggest that Tai promotes competitive cell killing via Spz-Toll and that this killing mechanism supports pathologic intertissue invasion in Drosophila.
Collapse
Affiliation(s)
- Phil K Byun
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Can Zhang
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Bing Yao
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Joanna Wardwell-Ozgo
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Douglas Terry
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Peng Jin
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Ken Moberg
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
39
|
Ramirez JL, Muturi EJ, Barletta ABF, Rooney AP. The Aedes aegypti IMD pathway is a critical component of the mosquito antifungal immune response. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 95:1-9. [PMID: 30582948 DOI: 10.1016/j.dci.2018.12.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 12/19/2018] [Accepted: 12/20/2018] [Indexed: 06/09/2023]
Abstract
Successful infection of the insect body by entomopathogenic fungi is the result of complex molecular interactions between the host and the invading pathogenic fungi. The mosquito antifungal response is multifaceted and is regulated in part by the Toll and Jak-STAT pathways. Here, we assessed the role of the IMD pathway in the mosquito Ae. aegypti antifungal immune response when challenged with one of two entomopathogenic fungi, Beauveria bassiana and Isaria javanica. IMD pathway components of the mosquito immune system were elicited in response to infection with both entomopathogenic fungi, primarily in the fat body of mosquitoes. Furthermore, we observed induction of antimicrobial peptides that in turn appear to be tissue and fungal strain-specific. IMD pathway impairment by RNAi gene silencing resulted in higher fungal proliferation and reduction in survival of fungi-infected mosquitoes. Collectively, these data indicates that the IMD pathway plays a more significant role in the antifungal immune response than previously recognized.
Collapse
Affiliation(s)
- José L Ramirez
- Crop Bioprotection Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, United States Department of Agriculture, Peoria, IL, USA.
| | - Ephantus J Muturi
- Crop Bioprotection Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, United States Department of Agriculture, Peoria, IL, USA
| | - Ana B F Barletta
- Laboratory of Malaria and Vector Research, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Alejandro P Rooney
- Crop Bioprotection Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, United States Department of Agriculture, Peoria, IL, USA
| |
Collapse
|
40
|
Lee WS, Webster JA, Madzokere ET, Stephenson EB, Herrero LJ. Mosquito antiviral defense mechanisms: a delicate balance between innate immunity and persistent viral infection. Parasit Vectors 2019; 12:165. [PMID: 30975197 PMCID: PMC6460799 DOI: 10.1186/s13071-019-3433-8] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 04/04/2019] [Indexed: 01/24/2023] Open
Abstract
Mosquito-borne diseases are associated with major global health burdens. Aedes spp. and Culex spp. are primarily responsible for the transmission of the most medically important mosquito-borne viruses, including dengue virus, West Nile virus and Zika virus. Despite the burden of these pathogens on human populations, the interactions between viruses and their mosquito hosts remain enigmatic. Viruses enter the midgut of a mosquito following the mosquito’s ingestion of a viremic blood meal. During infection, virus recognition by the mosquito host triggers their antiviral defense mechanism. Of these host defenses, activation of the RNAi pathway is the main antiviral mechanism, leading to the degradation of viral RNA, thereby inhibiting viral replication and promoting viral clearance. However, whilst antiviral host defense mechanisms limit viral replication, the mosquito immune system is unable to effectively clear the virus. As such, these viruses can establish persistent infection with little or no fitness cost to the mosquito vector, ensuring life-long transmission to humans. Understanding of the mosquito innate immune response enables the discovery of novel antivectorial strategies to block human transmission. This review provides an updated and concise summary of recent studies on mosquito antiviral immune responses, which is a key determinant for successful virus transmission. In addition, we will also discuss the factors that may contribute to persistent infection in mosquito hosts. Finally, we will discuss current mosquito transmission-blocking strategies that utilize genetically modified mosquitoes and Wolbachia-infected mosquitoes for resistance to pathogens.
Collapse
Affiliation(s)
- Wai-Suet Lee
- Institute for Glycomics, Griffith University, Gold Coast Campus, Southport, QLD, 4215, Australia
| | - Julie A Webster
- Institute for Glycomics, Griffith University, Gold Coast Campus, Southport, QLD, 4215, Australia
| | - Eugene T Madzokere
- Institute for Glycomics, Griffith University, Gold Coast Campus, Southport, QLD, 4215, Australia
| | - Eloise B Stephenson
- Institute for Glycomics, Griffith University, Gold Coast Campus, Southport, QLD, 4215, Australia.,Environmental Futures Research Institute, Griffith University, Gold Coast Campus, Southport, QLD, 4215, Australia
| | - Lara J Herrero
- Institute for Glycomics, Griffith University, Gold Coast Campus, Southport, QLD, 4215, Australia.
| |
Collapse
|
41
|
da Silva Gonçalves D, Iturbe-Ormaetxe I, Martins-da-Silva A, Telleria EL, Rocha MN, Traub-Csekö YM, O'Neill SL, Sant'Anna MRV, Moreira LA. Wolbachia introduction into Lutzomyia longipalpis (Diptera: Psychodidae) cell lines and its effects on immune-related gene expression and interaction with Leishmania infantum. Parasit Vectors 2019; 12:33. [PMID: 30646951 PMCID: PMC6332621 DOI: 10.1186/s13071-018-3227-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 11/21/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The leishmaniases are important neglected diseases caused by Leishmania spp. which are transmitted by sand flies, Lutzomyia longipalpis being the main vector of visceral leishmaniasis in the Americas. The methodologies for leishmaniasis control are not efficient, causing 1.5 million reported cases annually worldwide, therefore showing the need for development of novel strategies and interventions to control transmission of the disease. The bacterium Wolbachia pipientis is being used to control viruses transmitted by mosquitoes, such as dengue and Zika, and its introduction in disease vectors has been effective against parasites such as Plasmodium. Here we show the first successful establishment of Wolbachia into two different embryonic cell lines from L. longipalpis, LL-5 and Lulo, and analysed its effects on the sand fly innate immune system, followed by in vitro Leishmania infantum interaction. RESULTS Our results show that LL-5 cells respond to wMel and wMelPop-CLA strains within the first 72 h post-infection, through the expression of antimicrobial peptides and inducible nitric oxide synthase resulting in a decrease of Wolbachia detection in the early stages of infection. In subsequent passages, the wMel strain was not able to infect any of the sand fly cell lines while the wMelPop-CLA strain was able to stably infect Lulo cells and LL-5 at lower levels. In Wolbachia stably infected cells, the expression of immune-related genes involved with downregulation of the IMD, Toll and Jak-Stat innate immune pathways was significantly decreased, in comparison with the uninfected control, suggesting immune activation upon Wolbachia transinfection. Furthermore, Wolbachia transinfection did not promote a negative effect on parasite load in those cells. CONCLUSIONS Initial strong immune responses of LL5 cells might explain the inefficiency of stable infections in these cells while we found that Lulo cells are more permissive to infection with Wolbachia causing an effect on the cell immune system, but not against in vitro L. infantum interaction. This establishes Lulo cells as a good system for the adaptation of Wolbachia in L. longipalpis.
Collapse
Affiliation(s)
- Daniela da Silva Gonçalves
- Grupo Mosquitos Vetores: Endossimbiontes e Interação Patógeno Vetor, Centro de Pesquisas René Rachou - Fundação Oswaldo Cruz, Av. Augusto de Lima 1715, 30190-002. Belo Horizonte, Belo Horizonte, MG, Brazil
| | - Iñaki Iturbe-Ormaetxe
- World Mosquito Program, Institute of Vector-Borne Disease, Monash University, 12 Innovation Walk, Clayton, VIC, 3800, Australia
| | - Andrea Martins-da-Silva
- Laboratório de Biologia Molecular de Parasitos e Vetores, Instituto Oswaldo Cruz - Fundação Oswaldo Cruz, Av. Brasil, 4365, Rio de Janeiro, RJ, 21040-900, Brazil
| | - Erich Loza Telleria
- Laboratório de Biologia Molecular de Parasitos e Vetores, Instituto Oswaldo Cruz - Fundação Oswaldo Cruz, Av. Brasil, 4365, Rio de Janeiro, RJ, 21040-900, Brazil
| | - Marcele Neves Rocha
- Grupo Mosquitos Vetores: Endossimbiontes e Interação Patógeno Vetor, Centro de Pesquisas René Rachou - Fundação Oswaldo Cruz, Av. Augusto de Lima 1715, 30190-002. Belo Horizonte, Belo Horizonte, MG, Brazil
| | - Yara M Traub-Csekö
- Laboratório de Biologia Molecular de Parasitos e Vetores, Instituto Oswaldo Cruz - Fundação Oswaldo Cruz, Av. Brasil, 4365, Rio de Janeiro, RJ, 21040-900, Brazil
| | - Scott L O'Neill
- World Mosquito Program, Institute of Vector-Borne Disease, Monash University, 12 Innovation Walk, Clayton, VIC, 3800, Australia
| | - Maurício Roberto Viana Sant'Anna
- Laboratório de Insetos Hematófagos, Departamento de Parasitologia, Instituto de Ciências Biológicas/UFMG, Av. Antônio Carlos, 6627, 31270-901. Belo Horizonte, Belo Horizonte, MG, Brazil
| | - Luciano Andrade Moreira
- Grupo Mosquitos Vetores: Endossimbiontes e Interação Patógeno Vetor, Centro de Pesquisas René Rachou - Fundação Oswaldo Cruz, Av. Augusto de Lima 1715, 30190-002. Belo Horizonte, Belo Horizonte, MG, Brazil.
| |
Collapse
|
42
|
Wang F, Xia Q. Back to homeostasis: Negative regulation of NF-κB immune signaling in insects. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 87:216-223. [PMID: 29908201 DOI: 10.1016/j.dci.2018.06.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 06/12/2018] [Accepted: 06/13/2018] [Indexed: 06/08/2023]
Abstract
Maintenance of homeostasis requires prompt activation and down-regulation of immune signaling pathways. This review attempts to summarize our current knowledge regarding the negative regulation of two NF-κB signaling pathways in insects, Toll and IMD pathway, which are mostly essential for host defense against bacteria and fungus. Various types of negative regulators and their mechanisms are discussed here with the emphasis on the prominent roles of ubiquitination. The counterbalance between these two pathways, the crosstalk with other physiological pathways, and the difference in their repertoires of negative regulators are also discussed.
Collapse
Affiliation(s)
- Fei Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China.
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China
| |
Collapse
|
43
|
Hu Y, Schmitt-Engel C, Schwirz J, Stroehlein N, Richter T, Majumdar U, Bucher G. A morphological novelty evolved by co-option of a reduced gene regulatory network and gene recruitment in a beetle. Proc Biol Sci 2018; 285:rspb.2018.1373. [PMID: 30135167 DOI: 10.1098/rspb.2018.1373] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 07/25/2018] [Indexed: 12/18/2022] Open
Abstract
The mechanisms underlying the evolution of morphological novelties have remained enigmatic but co-option of existing gene regulatory networks (GRNs), recruitment of genes and the evolution of orphan genes have all been suggested to contribute. Here, we study a morphological novelty of beetle pupae called gin-trap. By combining the classical candidate gene approach with unbiased screening in the beetle Tribolium castaneum, we find that 70% of the tested components of the wing network were required for gin-trap development. However, many downstream and even upstream components were not included in the co-opted network. Only one gene was recruited from another biological context, but it was essential for the anteroposterior symmetry of the gin-traps, which represents a gin-trap-unique morphological innovation. Our data highlight the importance of co-option and modification of GRNs. The recruitment of single genes may not be frequent in the evolution of morphological novelties, but may be essential for subsequent diversification of the novelties. Finally, after having screened about 28% of annotated genes in the Tribolium genome to identify the genes required for gin-trap development, we found none of them are orphan genes, suggesting that orphan genes may have played only a minor, if any, role in the evolution of gin-traps.
Collapse
Affiliation(s)
- Yonggang Hu
- Department of Evolutionary Developmental Genetics, GZMB, University of Göttingen, Justus von Liebig Weg 11, 37077 Göttingen, Germany
| | - Christian Schmitt-Engel
- Department of Evolutionary Developmental Genetics, GZMB, University of Göttingen, Justus von Liebig Weg 11, 37077 Göttingen, Germany
| | - Jonas Schwirz
- Department of Evolutionary Developmental Genetics, GZMB, University of Göttingen, Justus von Liebig Weg 11, 37077 Göttingen, Germany
| | - Nadi Stroehlein
- Department of Biology, Division of Developmental Biology, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | - Tobias Richter
- Department of Biology, Division of Developmental Biology, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | - Upalparna Majumdar
- Department of Biology, Division of Developmental Biology, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | - Gregor Bucher
- Department of Evolutionary Developmental Genetics, GZMB, University of Göttingen, Justus von Liebig Weg 11, 37077 Göttingen, Germany
| |
Collapse
|
44
|
Visetnan S, Donpudsa S, Tassanakajon A, Rimphanitchayakit V. Silencing of a Kazal-type serine proteinase inhibitor SPIPm2 from Penaeus monodon affects YHV susceptibility and hemocyte homeostasis. FISH & SHELLFISH IMMUNOLOGY 2018; 79:18-27. [PMID: 29729960 DOI: 10.1016/j.fsi.2018.05.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 03/20/2018] [Accepted: 05/02/2018] [Indexed: 06/08/2023]
Abstract
In shrimp, the Kazal-type serine proteinase inhibitors (KPIs) are involved in host innate immune defense system against pathogenic microorganisms. A five-Kazal-domain SPIPm2 is the most abundant KPIs in the black tiger shrimp Penaeus monodon and up-regulated in response to yellow head virus (YHV) infection. In this study, the role of SPIPm2 in YHV infection was investigated. The expression of SPIPm2 in hemocytes, gill and heart from 48-h YHV-infected shrimp was increased. The expression of SPIPm2 in hemocytes was significantly increased after 12 h of infection and gradually increased higher afterwards. Silencing of SPIPm2 by dsRNA interference resulted in the increased expression of different apoptosis-related genes, the increased expression of transcriptional factors of antimicrobial synthesis pathways, the reduction of circulating hemocytes in the shrimp hemolymph, and the increased susceptibility of the silenced shrimp to YHV infection. The activities of caspase-3 and caspase-7 in the hemocytes of SPIPm2-silenced shrimp was also increased by 5.32-fold as compared with those of the control shrimp. The results suggested that the SPIPm2 was involved in the hemocyte homeostasis.
Collapse
Affiliation(s)
- Suwattana Visetnan
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Phyathai Road, Bangkok 10330, Thailand
| | - Suchao Donpudsa
- Department of Chemistry, Faculty of Science, Srinakharinwirot University, Bangkok 10110, Thailand.
| | - Anchalee Tassanakajon
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Phyathai Road, Bangkok 10330, Thailand
| | - Vichien Rimphanitchayakit
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Phyathai Road, Bangkok 10330, Thailand.
| |
Collapse
|
45
|
Abstract
In this review, we explore the state-of-the-art of sand fly relationships with microbiota, viruses and Leishmania, with particular emphasis on the vector immune responses. Insect-borne diseases are a major public health problem in the world. Phlebotomine sand flies are proven vectors of several aetiological agents including viruses, bacteria and the trypanosomatid Leishmania, which are responsible for diseases such as viral encephalitis, bartonellosis and leishmaniasis, respectively. All metazoans in nature coexist intimately with a community of commensal microorganisms known as microbiota. The microbiota has a fundamental role in the induction, maturation and function of the host immune system, which can modulate host protection from pathogens and infectious diseases. We briefly review viruses of public health importance present in sand flies and revisit studies done on bacterial and fungal gut contents of these vectors. We bring this information into the context of sand fly development and immune responses. We highlight the immunity mechanisms that the insect utilizes to survive the potential threats involved in these interactions and discuss the recently discovered complex interactions among microbiota, sand fly, Leishmania and virus. Additionally, some of the alternative control strategies that could benefit from the current knowledge are considered.
Collapse
|
46
|
Zhai Z, Huang X, Yin Y. Beyond immunity: The Imd pathway as a coordinator of host defense, organismal physiology and behavior. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 83:51-59. [PMID: 29146454 DOI: 10.1016/j.dci.2017.11.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 11/10/2017] [Accepted: 11/13/2017] [Indexed: 06/07/2023]
Abstract
The humoral arm of host defense in Drosophila relies on two evolutionarily conserved NFκB signaling cascades, the Toll and the immune deficiency (Imd) pathways. The Imd signaling pathway senses and neutralizes Gram-negative bacteria. Its activity is tightly adjusted, allowing the host to simultaneously prevent infection by pathogenic bacteria and tolerate beneficial gut microbiota. Over-activation of Imd signaling is detrimental at least in part by causing gut dysbiosis that further exacerbates intestinal pathologies. Furthermore, it is increasingly recognized that the Imd pathway or its components also play non-immune roles. In this review, we summarize recent advances in Imd signal transduction, discuss the gut-microbiota interactions mediated by Imd signaling, and finally elaborate on its diverse physiological functions beyond immunity. Understanding the multifaceted physiological outputs of Imd activation will help integrate its immune role into the regulation of whole organismal physiology.
Collapse
Affiliation(s)
- Zongzhao Zhai
- Changsha Medical University, 410125 Changsha, China; Animal Nutrition and Human Health Laboratory, School of Life Sciences, Hunan Normal University, 410081 Changsha, Hunan, China.
| | | | - Yulong Yin
- Changsha Medical University, 410125 Changsha, China; Animal Nutrition and Human Health Laboratory, School of Life Sciences, Hunan Normal University, 410081 Changsha, Hunan, China
| |
Collapse
|
47
|
NF-κB Immunity in the Brain Determines Fly Lifespan in Healthy Aging and Age-Related Neurodegeneration. Cell Rep 2018; 19:836-848. [PMID: 28445733 PMCID: PMC5413584 DOI: 10.1016/j.celrep.2017.04.007] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 02/22/2017] [Accepted: 03/31/2017] [Indexed: 01/03/2023] Open
Abstract
During aging, innate immunity progresses to a chronically active state. However, what distinguishes those that “age well” from those developing age-related neurological conditions is unclear. We used Drosophila to explore the cost of immunity in the aging brain. We show that mutations in intracellular negative regulators of the IMD/NF-κB pathway predisposed flies to toxic levels of antimicrobial peptides, resulting in early locomotor defects, extensive neurodegeneration, and reduced lifespan. These phenotypes were rescued when immunity was suppressed in glia. In healthy flies, suppressing immunity in glial cells resulted in increased adipokinetic hormonal signaling with high nutrient levels in later life and an extension of active lifespan. Thus, when levels of IMD/NF-κB deviate from normal, two mechanisms are at play: lower levels derepress an immune-endocrine axis, which mobilizes nutrients, leading to lifespan extension, whereas higher levels increase antimicrobial peptides, causing neurodegeneration. Immunity in the fly brain is therefore a key lifespan determinant. Constitutive immunity predisposes to short lifespan with severe neurodegeneration Blocking constitutive immunity in glia rescues predisposed flies Suppression of immunity in glia of healthy flies triggers adipokinetic signaling This immune-endocrine axis mobilizes nutrients and extends active lifespan
Collapse
|
48
|
Zakovic S, Levashina EA. NF-κB-Like Signaling Pathway REL2 in Immune Defenses of the Malaria Vector Anopheles gambiae. Front Cell Infect Microbiol 2017; 7:258. [PMID: 28680852 PMCID: PMC5478692 DOI: 10.3389/fcimb.2017.00258] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 06/01/2017] [Indexed: 12/04/2022] Open
Abstract
The blood feeding requirements of insects are often exploited by pathogens for their transmission. This is also the case of the protozoan parasites of genus Plasmodium, the causative agents of malaria. Every year malaria claims the lives of a half million people, making its vector, the Anopheles mosquito, the deadliest animal in the world. However, mosquitoes mount powerful immune responses that efficiently limit parasite proliferation. Among the immune signaling pathways identified in the main malaria vector Anopheles gambiae, the NF-κB-like signaling cascades REL2 and REL1 are essential for eliciting proper immune reactions, but only REL2 has been implicated in the responses against the human malaria parasite Plasmodium falciparum. Instead, constitutive activation of REL1 causes massive killing of rodent malaria parasites. In this review, we summarize our present knowledge on the REL2 pathway in Anopheles mosquitoes and its role in mosquito immune responses to diverse pathogens, with a focus on Plasmodium. Mosquito-parasite interactions are crucial for malaria transmission and, therefore, represent a potential target for malaria control strategies.
Collapse
Affiliation(s)
- Suzana Zakovic
- Vector Biology, Max-Planck Institute for Infection BiologyBerlin, Germany
| | - Elena A Levashina
- Vector Biology, Max-Planck Institute for Infection BiologyBerlin, Germany
| |
Collapse
|
49
|
Lai AG, Aboobaker AA. Comparative genomic analysis of innate immunity reveals novel and conserved components in crustacean food crop species. BMC Genomics 2017; 18:389. [PMID: 28521727 PMCID: PMC5437397 DOI: 10.1186/s12864-017-3769-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 05/07/2017] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Growing global demands for crustacean food crop species have driven large investments in aquaculture research worldwide. However, large-scale production is susceptible to pathogen-mediated destruction particularly in developing economies. Thus, a thorough understanding of the immune system components of food crop species is imperative for research to combat pathogens. RESULTS Through a comparative genomics approach utilising extant data from 55 species, we describe the innate immune system of the class Malacostraca, which includes all food crop species. We identify 7407 malacostracan genes from 39 gene families implicated in different aspects of host defence and demonstrate dynamic evolution of innate immunity components within this group. Malacostracans have achieved flexibility in recognising infectious agents through divergent evolution and expansion of pathogen recognition receptors genes. Antiviral RNAi, Toll and JAK-STAT signal transduction pathways have remained conserved within Malacostraca, although the Imd pathway appears to lack several key components. Immune effectors such as the antimicrobial peptides (AMPs) have unique evolutionary profiles, with many malacostracan AMPs not found in other arthropods. Lastly, we describe four putative novel immune gene families, potentially representing important evolutionary novelties of the malacostracan immune system. CONCLUSION Our analyses across the broader Malacostraca have allowed us to not only draw analogies with other arthropods but also to identify evolutionary novelties in immune modulation components and form strong hypotheses as to when key pathways have evolved or diverged. This will serve as a key resource for future immunology research in crustacean food crops.
Collapse
Affiliation(s)
- Alvina G Lai
- Department of Zoology, University of Oxford, Tinbergen Building, South Parks Road, Oxford, OX1 3PS, UK.
| | - A Aziz Aboobaker
- Department of Zoology, University of Oxford, Tinbergen Building, South Parks Road, Oxford, OX1 3PS, UK.
| |
Collapse
|
50
|
Maki K, Shibata T, Kawabata SI. Transglutaminase-catalyzed incorporation of polyamines masks the DNA-binding region of the transcription factor Relish. J Biol Chem 2017; 292:6369-6380. [PMID: 28258224 DOI: 10.1074/jbc.m117.779579] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 02/27/2017] [Indexed: 02/01/2023] Open
Abstract
In Drosophila, the final immune deficiency (IMD) pathway-dependent signal is transmitted through proteolytic conversion of the nuclear factor-κB (NF-κB)-like transcription factor Relish to the active N-terminal fragment Relish-N. Relish-N is then translocated from the cytosol into the nucleus for the expression of IMD-controlled genes. We previously demonstrated that transglutaminase (TG) suppresses the IMD pathway by polymerizing Relish-N to inhibit its nuclear translocation. Conversely, we also demonstrated that orally ingested synthetic amines, such as monodansylcadaverine (DCA) and biotin-labeled pentylamine, are TG-dependently incorporated into Relish-N, causing the nuclear translocation of modified Relish-N in gut epithelial cells. It remains unclear, however, whether polyamine-containing Relish-N retains transcriptional activity. Here, we used mass spectrometry analysis of a recombinant Relish-N modified with DCA by TG activity after proteolytic digestion and show that the DCA-modified Gln residues are located in the DNA-binding region of Relish-N. TG-catalyzed DCA incorporation inhibited binding of Relish-N to the Rel-responsive element in the NF-κB-binding DNA sequence. Subcellular fractionation of TG-expressing Drosophila S2 cells indicated that TG was localized in both the cytosol and nucleus. Of note, natural polyamines, including spermidine and spermine, competitively inhibited TG-dependent DCA incorporation into Relish-N. Moreover, in vivo experiments demonstrated that Relish-N was modified by spermine and that this modification reduced transcription of IMD pathway-controlled cecropin A1 and diptericin genes. These findings suggest that intracellular TG regulates Relish-N-mediated transcriptional activity by incorporating polyamines into Relish-N and via protein-protein cross-linking.
Collapse
Affiliation(s)
- Kouki Maki
- From the Graduate School of Systems Life Sciences
| | - Toshio Shibata
- Institute for Advanced Study, and.,Department of Biology, Faculty of Science, Kyushu University, Fukuoka 819-0395, Japan
| | - Shun-Ichiro Kawabata
- From the Graduate School of Systems Life Sciences, .,Department of Biology, Faculty of Science, Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|