1
|
Liu B, Bukhari I, Li F, Ren F, Xia X, Hu B, Liu H, Meyer TF, Marshall BJ, Tay A, Fu Y, Wu W, Tang Y, Mi Y, Zheng PY. Enhanced LRP8 expression induced by Helicobacter pylori drives gastric cancer progression by facilitating β-Catenin nuclear translocation. J Adv Res 2025; 69:299-312. [PMID: 38609049 PMCID: PMC11954824 DOI: 10.1016/j.jare.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/05/2024] [Accepted: 04/05/2024] [Indexed: 04/14/2024] Open
Abstract
INTRODUCTION Helicobacter pylori (H. pylori) infection has been associated with gastric carcinogenesis. However, the precise involvement of LRP8, the low-density lipoprotein receptor-related protein 8, in H. pylori pathogenesis and gastric cancer (GC) remains poorly understood. OBJECTIVES To investigate the potential role of LRP8 in H. pylori infection and gastric carcinogenesis. METHODS Three-dimensional human-derived gastric organoids (hGO) and gastric cancer organoids (hGCO) were synthesized from the tissues obtained from human donors. In this work, multi-omics combined with in vivo and in vitro studies were conducted to investigate the potential involvement of LRP8 in H. pylori-induced GC. RESULTS We found that H. pylori infection significantly upregulated the expression of LRP8 in human GC tissues, cells, organoids, and mouse gastric mucous. In particular, LRP8 exhibited a distinct enrichment in cancer stem cells (CSC). Functionally, silencing of LRP8 affected the formation and proliferation of tumor spheroids, while increased expression of LRP8 was associated with increased proliferation and stemness of GC cells and organoids. Mechanistically, LRP8 promotes the binding of E-cadherin to β-catenin, thereby promoting nuclear translocation and transcriptional activity of β-catenin. Furthermore, LRP8 interacts with the cytotoxin-associated gene A (CagA) to form the CagA/LRP8/β-catenin complex. This complex further amplifies H. pylori-induced β-catenin nuclear translocation, leading to increased transcription of inflammatory factors and CSC markers. Clinical analysis demonstrated that abnormal overexpression of LRP8 is correlated with a poor prognosis and resistance to 5-Fluorouracil in patients with GC. CONCLUSION Our findings provide valuable information on the molecular intricacies of H. pylori-induced gastric carcinogenesis, offering potential therapeutic targets and prognostic markers for GC.
Collapse
Affiliation(s)
- Bin Liu
- Henan Key Laboratory for Helicobacter pylori and Digestive Tract Microecology, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China; Academy of Medical Science, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Ihtisham Bukhari
- Henan Key Laboratory for Helicobacter pylori and Digestive Tract Microecology, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China; Academy of Medical Science, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Fazhan Li
- Henan Key Laboratory for Helicobacter pylori and Digestive Tract Microecology, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China; Academy of Medical Science, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Feifei Ren
- Henan Key Laboratory for Helicobacter pylori and Digestive Tract Microecology, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Xue Xia
- Henan Key Laboratory for Helicobacter pylori and Digestive Tract Microecology, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Baitong Hu
- Henan Key Laboratory for Helicobacter pylori and Digestive Tract Microecology, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China; Academy of Medical Science, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Haipeng Liu
- Clinical and Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Thomas F Meyer
- Max Planck Institute for Infection Biology, Department of Molecular Biology, 10117 Berlin, Germany; Laboratory of Infection Oncology, Institute of Clinical Molecular Biology (IKMB), Christian-Albrechts University of Kiel, Kiel, Germany
| | - Barry J Marshall
- Helicobacter Pylori Research Laboratory, School of Biomedical Sciences, Marshall Centre for Infectious Disease Research and Training, University of Western Australia, Nedlands 6009, Australia
| | - Alfred Tay
- Helicobacter Pylori Research Laboratory, School of Biomedical Sciences, Marshall Centre for Infectious Disease Research and Training, University of Western Australia, Nedlands 6009, Australia
| | - Yuming Fu
- Gastrointestinal Surgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Wanqing Wu
- Gastrointestinal Surgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Youcai Tang
- Department of Pediatrics, the Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yang Mi
- Henan Key Laboratory for Helicobacter pylori and Digestive Tract Microecology, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China.
| | - Peng-Yuan Zheng
- Henan Key Laboratory for Helicobacter pylori and Digestive Tract Microecology, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China.
| |
Collapse
|
2
|
Tewari N, Dey P. Navigating commensal dysbiosis: Gastrointestinal host-pathogen interplay orchestrating opportunistic infections. Microbiol Res 2024; 286:127832. [PMID: 39013300 DOI: 10.1016/j.micres.2024.127832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/23/2024] [Accepted: 07/01/2024] [Indexed: 07/18/2024]
Abstract
The gut commensals, which are usually symbiotic or non-harmful bacteria that live in the gastrointestinal tract, have a positive impact on the health of the host. This review, however, specifically discuss distinct conditions where commensals aid in the development of pathogenic opportunistic infections. We discuss that the categorization of gut bacteria as either pathogens or non-pathogens depends on certain circumstances, which are significantly affected by the tissue microenvironment and the dynamic host-microbe interaction. Under favorable circumstances, commensals have the ability to transform into opportunistic pathobionts by undergoing overgrowth. These conditions include changes in the host's physiology, simultaneous infection with other pathogens, effective utilization of nutrients, interactions between different species of bacteria, the formation of protective biofilms, genetic mutations that enhance pathogenicity, acquisition of genes associated with virulence, and the ability to avoid the host's immune response. These processes allow commensals to both initiate infections themselves and aid other pathogens in populating the host. This review highlights the need of having a detailed and sophisticated knowledge of the two-sided nature of gut commensals. Although commensals mostly promote health, they may also become harmful in certain changes in the environment or the body's functioning. This highlights the need of acknowledging the intricate equilibrium in interactions between hosts and microbes, which is crucial for preserving intestinal homeostasis and averting diseases. Finally, we also emphasize the further need of research to better understand and anticipate the behavior of gut commensals in different situations, since they play a crucial and varied role in human health and disease.
Collapse
Affiliation(s)
- Nisha Tewari
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab 147004, India
| | - Priyankar Dey
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab 147004, India.
| |
Collapse
|
3
|
Oh H, Cho S, Lee JA, Ryu S, Chang Y. Risk prediction model for gastric cancer within 5 years in healthy Korean adults. Gastric Cancer 2024; 27:675-683. [PMID: 38561527 DOI: 10.1007/s10120-024-01488-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 03/08/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND Although endoscopy is commonly used for gastric cancer screening in South Korea, predictive models that integrate endoscopy results are scarce. We aimed to develop a 5-year gastric cancer risk prediction model using endoscopy results as a predictor. METHODS We developed a predictive model using the cohort data of the Kangbuk Samsung Health Study from 2011 to 2019. Among the 260,407 participants aged ≥20 years who did not have any previous history of cancer, 435 cases of gastric cancer were observed. A Cox proportional hazard regression model was used to evaluate the predictors and calculate the 5-year risk of gastric cancer. Harrell's C-statistics and Nam-D'Agostino χ2 test were used to measure the quality of discrimination and calibration ability, respectively. RESULTS We included age, sex, smoking status, alcohol consumption, family history of cancer, and previous results for endoscopy in the risk prediction model. This model showed sufficient discrimination ability [development cohort: C-Statistics: 0.800, 95% confidence interval (CI) 0.770-0.829; validation cohort: C-Statistics: 0.799, 95% CI 0.743-0.856]. It also performed well with effective calibration (development cohort: χ2 = 13.65, P = 0.135; validation cohort: χ2 = 15.57, P = 0.056). CONCLUSION Our prediction model, including young adults, showed good discrimination and calibration. Furthermore, this model considered a fixed time interval of 5 years to predict the risk of developing gastric cancer, considering endoscopic results. Thus, it could be clinically useful, especially for adults with endoscopic results.
Collapse
Affiliation(s)
- Hyungseok Oh
- Workplace Health Institute, Total Healthcare Center, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Sunwoo Cho
- Workplace Health Institute, Total Healthcare Center, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, South Korea
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA
| | - Jung Ah Lee
- Department of Family Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505, South Korea.
| | - Seungho Ryu
- Center for Cohort Studies, Total Healthcare Center, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Department of Occupational and Environmental Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Department of Clinical Research Design & Evaluation, Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University, Seoul, Republic of Korea
| | - Yoosoo Chang
- Center for Cohort Studies, Total Healthcare Center, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Department of Occupational and Environmental Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Department of Clinical Research Design & Evaluation, Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University, Seoul, Republic of Korea
| |
Collapse
|
4
|
Moradi L, Tajik F, Saeednejad Zanjani L, Panahi M, Gheytanchi E, Biabanaki ZS, Kazemi-Sefat GE, Hashemi F, Dehghan Manshadi M, Madjd Z. Clinical significance of CD166 and HER-2 in different types of gastric cancer. Clin Transl Oncol 2024; 26:664-681. [PMID: 37537510 DOI: 10.1007/s12094-023-03297-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/24/2023] [Indexed: 08/05/2023]
Abstract
INTRODUCTION Cluster of differentiation 166 (CD166), a cancer stem cell (CSC) marker, and human epidermal growth factor receptor 2 (HER-2) are expressed in a diversity of malignancies and is associated with tumor progression. Although studies regarding the importance of CSC markers and HER-2 in gastric cancer (GC) have rapidly developed, their clinicopathological, prognosis, and diagnosis value still remain unsatisfying in GC. Therefore, the present study aims to investigate the clinical, prognostic, and diagnostic significance of CD166 and HER-2 in different histological types of GC. MATERIALS AND METHODS Bioinformatic analysis was applied to determine the clinical importance of CD166 and HER-2 expression based on their tissue localization in primary GC tumors and the normal adjacent samples. The expression patterns, clinical significance, prognosis, and diagnosis value of CD166 and HER-2 proteins in tissue microarrays (TMAs) of 206 GC samples, including Signet Ring Cell (SRC) and intestinal types and also 28 adjacent normal tissues were evaluated using immunohistochemistry (IHC). RESULTS The results indicated that the expression of CD166 (membranous and cytoplasmic) and HER-2 were significantly up-regulated in tumor cells compared to adjacent normal tissues (P = 0.010, P < 0.001, and P = 0.011, respectively). A statistically significant association was detected between a high level of membranous expression of CD166 and lymphovascular invasion (P = 0.006); We also observed a statistically significant association between high cytoplasmic expression of CD166 protein and more invasion of the subserosa (P = 0.040) in the SRC type. In contrast, there was no correlation between the expression of HER-2 and clinicopathologic characteristics. Both CD166 and HER-2 showed reasonable accuracy and high specificity as diagnostic markers. CONCLUSION Our results confirmed that increased membranous and cytoplasmic expression of CD166 showed clinical significance in the SRC type and is associated with the progression of the disease and more aggressive tumor behaviors. These findings can be used to assist in designating subgroups of patients that require different follow-up strategies, and also, they might be utilized as the prognostic or diagnostic biomarkers in these types of GC for prospective clinical application.
Collapse
Affiliation(s)
- Leila Moradi
- Department of Pathology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Tajik
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Leili Saeednejad Zanjani
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Pathology and Genomic Medicine, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Mahshid Panahi
- Department of Pathology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Elmira Gheytanchi
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Sadat Biabanaki
- Faculty of Biological Sciences, Department of Genetics, Tarbiat Modares University, Tehran, Iran
| | - Golnaz Ensieh Kazemi-Sefat
- Faculty of Advanced Technologies in Medicine, Department of Molecular Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Farideh Hashemi
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Faculty of Advanced Technologies in Medicine, Department of Molecular Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Masoumeh Dehghan Manshadi
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Faculty of Advanced Technologies in Medicine, Department of Molecular Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Madjd
- Department of Pathology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran.
- Faculty of Advanced Technologies in Medicine, Department of Molecular Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Dey P, Ray Chaudhuri S. The opportunistic nature of gut commensal microbiota. Crit Rev Microbiol 2023; 49:739-763. [PMID: 36256871 DOI: 10.1080/1040841x.2022.2133987] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 07/30/2022] [Accepted: 10/05/2022] [Indexed: 11/03/2022]
Abstract
The abundance of gut commensals has historically been associated with health-promoting effects despite the fact that the definition of good or bad microbiota remains condition-specific. The beneficial or pathogenic nature of microbiota is generally dictated by the dimensions of host-microbiota and microbe-microbe interactions. With the increasing popularity of gut microbiota in human health and disease, emerging evidence suggests opportunistic infections promoted by those gut bacteria that are generally considered beneficial. Therefore, the current review deals with the opportunistic nature of the gut commensals and aims to summarise the concepts behind the occasional commensal-to-pathogenic transformation of the gut microbes. Specifically, relevant clinical and experimental studies have been discussed on the overgrowth and bacteraemia caused by commensals. Three key processes and their underlying mechanisms have been summarised to be responsible for the opportunistic nature of commensals, viz. improved colonisation fitness that is dictated by commensal-pathogen interactions and availability of preferred nutrients; pathoadaptive mutations that can trigger the commensal-to-pathogen transformation; and evasion of host immune response as a survival and proliferation strategy of the microbes. Collectively, this review provides an updated concept summary on the underlying mechanisms of disease causative events driven by gut commensal bacteria.
Collapse
Affiliation(s)
- Priyankar Dey
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, India
| | - Saumya Ray Chaudhuri
- Council of Scientific and Industrial Research (CSIR), Institute of Microbial Technology, Chandigarh, India
| |
Collapse
|
6
|
Teng Y, Xie R, Xu J, Wang P, Chen W, Shan Z, Yan Z, Mao F, Cheng P, Peng L, Zhang J, Tian W, Yang S, Zhao Y, Chen W, Zou Q, Zhuang Y. Tubulointerstitial nephritis antigen-like 1 is a novel matricellular protein that promotes gastric bacterial colonization and gastritis in the setting of Helicobacter pylori infection. Cell Mol Immunol 2023; 20:924-940. [PMID: 37336990 PMCID: PMC10387474 DOI: 10.1038/s41423-023-01055-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/29/2023] [Indexed: 06/21/2023] Open
Abstract
The interaction between the gastric epithelium and immune cells plays key roles in H. pylori-associated pathology. Here, we demonstrate a procolonization and proinflammatory role of tubulointerstitial nephritis antigen-like 1 (TINAGL1), a newly discovered matricellular protein, in H. pylori infection. Increased TINAGL1 production by gastric epithelial cells (GECs) in the infected gastric mucosa was synergistically induced by H. pylori and IL-1β via the ERK-SP1 pathway in a cagA-dependent manner. Elevated human gastric TINAGL1 correlated with H. pylori colonization and the severity of gastritis, and mouse TINAGL1 derived from non-bone marrow-derived cells promoted bacterial colonization and inflammation. Importantly, H. pylori colonization and inflammation were attenuated in Tinagl1-/- and Tinagl1ΔGEC mice and were increased in mice injected with mouse TINAGL1. Mechanistically, TINAGL1 suppressed CCL21 expression and promoted CCL2 production in GECs by directly binding to integrin α5β1 to inhibit ERK and activate the NF-κB pathway, respectively, which not only led to decreased gastric influx of moDCs via CCL21-CCR7-dependent migration and, as a direct consequence, reduced the bacterial clearance capacity of the H. pylori-specific Th1 response, thereby promoting H. pylori colonization, but also resulted in increased gastric influx of Ly6Chigh monocytes via CCL2-CCR2-dependent migration. In turn, TINAGL1 induced the production of the proinflammatory protein S100A11 by Ly6Chigh monocytes, promoting H. pylori-associated gastritis. In summary, we identified a model in which TINAGL1 collectively ensures H. pylori persistence and promotes gastritis.
Collapse
Affiliation(s)
- Yongsheng Teng
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University, Chongqing, China
- The 940th Hospital of Joint Logistics Support Force of PLA, Lanzhou, China
| | - Rui Xie
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, Guizhou, China
| | - Jingyu Xu
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, Guizhou, China
| | - Pan Wang
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University, Chongqing, China
- The 940th Hospital of Joint Logistics Support Force of PLA, Lanzhou, China
| | - Wanyan Chen
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University, Chongqing, China
| | - Zhiguo Shan
- Department of General Surgery and Center of Minimal Invasive Gastrointestinal Surgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Zongbao Yan
- Department of General Surgery and Center of Minimal Invasive Gastrointestinal Surgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Fangyuan Mao
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University, Chongqing, China
| | - Ping Cheng
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University, Chongqing, China
| | - Liusheng Peng
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University, Chongqing, China
| | - Jinyu Zhang
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University, Chongqing, China
| | - Wenqing Tian
- Department of Gastroenterology, Chongqing University Cancer Hospital, Chongqing, China
| | - Shiming Yang
- Department of Gastroenterology, XinQiao Hospital, Third Military Medical University, Chongqing, China
| | - Yongliang Zhao
- Department of General Surgery and Center of Minimal Invasive Gastrointestinal Surgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Weisan Chen
- La Trobe Institute of Molecular Science, La Trobe University, Bundoora, VIC, Australia
| | - Quanming Zou
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University, Chongqing, China.
| | - Yuan Zhuang
- Department of Gastroenterology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.
- National Engineering Research Center of Immunological Products, Third Military Medical University, Chongqing, China.
| |
Collapse
|
7
|
Chen X, Shen K, Deng Y, Mo J, Ni J, Hendi M, Chen S, Wang L, Si J. A Randomized Double-blind Clinical Trial of Weierkang Pills for the Treatment of Chronic Atrophic Gastritis. J Clin Gastroenterol 2023; 57:165-171. [PMID: 35050943 DOI: 10.1097/mcg.0000000000001663] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 12/05/2021] [Indexed: 01/07/2023]
Abstract
BACKGROUND AND GOALS There are currently no standard treatments for chronic atrophic gastritis and traditional Chinese medicine may be effective. This study aims to investigate the efficacy and safety of Weierkang pills in treating chronic atrophic gastritis. MATERIALS AND METHODS There were 108 patients in our study. They were randomly assigned to 2 groups. In group A, patients received Weierkang pills and patients in group B received folic acid combined with teprenone. Symptoms, endoscopic scores, and biopsy specimens were compared at baseline and 3 months after treatment. Meanwhile, the expressions of vascular endothelial growth factor and trefoil factor 3 (TFF3) in biopsy specimens were also compared. RESULTS Our study showed that the total effective rates of atrophy/intestinal metaplasia in group A reached the same level as group B (51.7% vs. 40.0%, P =0.419). Weierkang significantly improved the total effective rate of atrophy/intestinal metaplasia in gastric angle compared with group B (64.7% vs. 33.3%, P =0.024). Weierkang can significantly lower the total Kyoto risk score (2.6±1.1 vs. 3.3±1.0, P =0.002) and atrophy score (1.4±0.6 vs. 1.8±0.5, P =0.001) after treatment. In addition, Weierkang improves symptoms (1.3±1.3 vs. 2.3±1.8, P =0.003) and epigastric pain (0.2±0.4 vs. 0.5±0.6, P =0.041). The expression of TFF3 in gastric mucosa decreased significantly after treatment with Weierkang ( P =0.002). CONCLUSIONS Weierkang can improve the endoscopic appearance and pathologic changes of chronic atrophic gastritis patients. Symptoms also improved. TFF3 may be involved the pathophysiology mechanism.
Collapse
Affiliation(s)
- Xueqin Chen
- Departments of Gastroenterology
- Institute of Gastroenterology
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Kai Shen
- Departments of Gastroenterology
- Institute of Gastroenterology
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Yanyong Deng
- Departments of Gastroenterology
- Institute of Gastroenterology
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang Province, China
| | | | | | - Maher Hendi
- General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University
| | - Shujie Chen
- Departments of Gastroenterology
- Institute of Gastroenterology
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Lan Wang
- Departments of Gastroenterology
- Institute of Gastroenterology
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Jianmin Si
- Departments of Gastroenterology
- Institute of Gastroenterology
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang Province, China
| |
Collapse
|
8
|
Liu Y, Cai C, Qin X. Regulation of gut microbiota of Astragali Radix in treating for chronic atrophic gastritis rats based on metabolomics coupled with 16S rRNA gene sequencing. Chem Biol Interact 2022; 365:110063. [PMID: 35872051 DOI: 10.1016/j.cbi.2022.110063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/09/2022] [Accepted: 07/18/2022] [Indexed: 11/03/2022]
Abstract
Astragali Radix (HQ), a common traditional Chinese medicine (TCM), is widely used to treat chronic atrophic gastritis (CAG). However, its mechanism in treating CAG is still not clear. Accumulating evidence highlights the link between gut microbiota and CAG. We hypothesized that the gut microbiota might be involved in the effect of HQ. Ultra-performance liquid chromatography coupled with time-of-flight mass spectrometry (UPLC-Q-TOF/MS) based metabolomics and 16S rRNA gene sequencing techniques of the cecal contents were applied to study its mechanisms. As a result, nine metabolites and fifteen gut microbiotas changed significantly in cecal contents samples between control group and model group. Among them, two metabolites (7-keto-3A ·12-α-hydroxyalkanoic acid and deoxycholic acid) and two gut microbiota genera (Acetobacter and Escherichia), had the most obvious callback effect after the administration of HQ. Sixty-seven correlated pairs exhibited the significant link between the involved metabolites and gut microbiotas through the correlation analysis, where two strong correlation pairs: Tetrahydrohydroxone ∼ Bacteroides (r = 0.895) and Deoxycholic acid ∼ Acetobacter (r = -0.843) were regulated by HQ. The results showed that HQ had the potential protection from metabolic perturbation involved into gut microbiotas induced by CAG. Two gut microbiotas, Acetobacter and Escherichia, and two metabolites, 7-keto-3A ·12-α-hydroxyalkanoic acid and deoxycholic acid were the potential targets of HQ.
Collapse
Affiliation(s)
- Yuetao Liu
- Modern Research Center for Traditional Chinese Medicine, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Road, Taiyuan, 030006, Shanxi, PR China; Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, No. 92, Wucheng Road, Taiyuan, 030006, Shanxi, PR China.
| | - Congcong Cai
- Modern Research Center for Traditional Chinese Medicine, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Road, Taiyuan, 030006, Shanxi, PR China; Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, No. 92, Wucheng Road, Taiyuan, 030006, Shanxi, PR China
| | - Xuemei Qin
- Modern Research Center for Traditional Chinese Medicine, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Road, Taiyuan, 030006, Shanxi, PR China; Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, No. 92, Wucheng Road, Taiyuan, 030006, Shanxi, PR China.
| |
Collapse
|
9
|
Chang CC, Jan HM, Tseng CJ, Mondal S, Abera AB, Hsieh MY, Yang TC, Muthusamy S, Huang SC, Lin CH, Tony Mong KK. Metabolic Isolation, Stereochemical Determination, and Total Synthesis of Predominant Native Cholesteryl Phosphatidyl-α-glucoside from Carcinogenic Helicobacter pylori. Org Lett 2022; 24:5045-5050. [PMID: 35816729 DOI: 10.1021/acs.orglett.2c01815] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report the isolation and stereochemical determination of the predominant native cholesteryl 6-O-phosphatidyl α-glucoside (CPG) from Helicobacter pylori via an integrated biological and chemical strategy. The strategy employed (i) the metabolic isolation of a CPG analogue and (ii) the enzymatic degradation of the analogue to obtain the native lactobacillic acid for the stereochemical determination. The absolute stereochemistry of the acid was found to be 11R and 12S. Using the new stereochemical data, we accomplished the total synthesis of predominant native CPG and other predominant αCG derivatives.
Collapse
Affiliation(s)
- Chia-Chen Chang
- Applied Chemistry Department, National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu City 300093Taiwan, R.O.C
| | - Hau-Ming Jan
- Institute of Biological Chemistry, Academia Sinica, No.128 Academia Road Section 2, Nan-Kang, Taipei 11529, Taiwan
| | - Chieh-Jen Tseng
- Applied Chemistry Department, National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu City 300093Taiwan, R.O.C
| | - Soumik Mondal
- Applied Chemistry Department, National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu City 300093Taiwan, R.O.C
| | - Andualem Bahiru Abera
- Institute of Biological Chemistry, Academia Sinica, No.128 Academia Road Section 2, Nan-Kang, Taipei 11529, Taiwan.,Molecular and Biological Agricultural Sciences, Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan.,Graduate Institute of Biotechnology and Biotechnology Center, National Chung-Hsing University, Taichung 40227, Taiwan
| | - Ming-Yen Hsieh
- Institute of Biological Chemistry, Academia Sinica, No.128 Academia Road Section 2, Nan-Kang, Taipei 11529, Taiwan
| | - Tsai-Chen Yang
- Institute of Biological Chemistry, Academia Sinica, No.128 Academia Road Section 2, Nan-Kang, Taipei 11529, Taiwan
| | - Sasikala Muthusamy
- Institute of Biological Chemistry, Academia Sinica, No.128 Academia Road Section 2, Nan-Kang, Taipei 11529, Taiwan.,Molecular and Biological Agricultural Sciences, Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan.,Graduate Institute of Biotechnology and Biotechnology Center, National Chung-Hsing University, Taichung 40227, Taiwan
| | - Sheng-Cih Huang
- Applied Chemistry Department, National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu City 300093Taiwan, R.O.C
| | - Chun-Hung Lin
- Institute of Biological Chemistry, Academia Sinica, No.128 Academia Road Section 2, Nan-Kang, Taipei 11529, Taiwan.,Molecular and Biological Agricultural Sciences, Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan.,Graduate Institute of Biotechnology and Biotechnology Center, National Chung-Hsing University, Taichung 40227, Taiwan.,Department of Chemistry and Institute of Biochemical Sciences, National Taiwan University, Taipei 10617, Taiwan
| | - Kwok-Kong Tony Mong
- Applied Chemistry Department, National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu City 300093Taiwan, R.O.C
| |
Collapse
|
10
|
Cao L, Zhu S, Lu H, Soutto M, Bhat N, Chen Z, Peng D, Lin J, Lu J, Li P, Zheng C, Huang C, El-Rifai W. Helicobacter pylori-induced RASAL2 Through Activation of Nuclear Factor-κB Promotes Gastric Tumorigenesis via β-catenin Signaling Axis. Gastroenterology 2022; 162:1716-1731.e17. [PMID: 35134322 PMCID: PMC9038683 DOI: 10.1053/j.gastro.2022.01.046] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 01/25/2022] [Accepted: 01/30/2022] [Indexed: 01/10/2023]
Abstract
BACKGROUND & AIMS Helicobacter pylori infection is the predominant risk factor for gastric cancer. RAS protein activator like 2 (RASAL2) is considered a double-edged sword in carcinogenesis. Herein, we investigated the role of RASAL2 in response to H pylori infection and gastric tumorigenesis. METHODS Bioinformatics analyses of local and public databases were applied to analyze RASAL2 expression, signaling pathways, and clinical significance. In vitro cell culture, spheroids, patient-derived organoids, and in vivo mouse models were used. Molecular assays included chromatin immunoprecipitation, co-immunoprecipitation, Western blotting, quantitative polymerase chain reaction, and immunocyto/histochemistry. RESULTS H pylori infection induced RASAL2 expression via a nuclear factor-κB (NF-κB)-dependent mechanism whereby NF-κB was directly bound to the RASAL2 promoter activating its transcription. By gene silencing and ectopic overexpression, we found that RASAL2 upregulated β-catenin transcriptional activity. RASAL2 inhibited protein phosphatase 2A activity through direct binding with subsequent activation of the AKT/β-catenin signaling axis. Functionally, RASAL2 silencing decreased nuclear β-catenin levels and impaired tumor spheroids and organoids formation. Furthermore, the depletion of RASAL2 impaired tumor growth in gastric tumor xenograft mouse models. Clinicopathological analysis indicated that abnormal overexpression of RASAL2 correlated with poor prognosis and chemoresistance in human gastric tumors. CONCLUSIONS These studies uncovered a novel signaling axis of NF-κB/RASAL2/β-catenin, providing a novel link between infection, inflammation and gastric tumorigenesis.
Collapse
Affiliation(s)
- Longlong Cao
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China; Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Shoumin Zhu
- Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Heng Lu
- Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Mohammed Soutto
- Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Nadeem Bhat
- Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Zheng Chen
- Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Dunfa Peng
- Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Jianxian Lin
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Jun Lu
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Ping Li
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Chaohui Zheng
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Changming Huang
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China.
| | - Wael El-Rifai
- Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida; Department of Veterans Affairs, Miami Healthcare System, Miami, Florida; Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida.
| |
Collapse
|
11
|
TANG Z, WANG Y, HUANG Y. Astragalus polysaccharide inhibits apoptosis and inflammation to alleviate chronic atrophic gastritis through NF-κB signaling pathway in rats. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.121921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | - Yi WANG
- Xiaochang County Maternal and Child Health Hospital, China
| | - Yan HUANG
- The First Affiliated Hospital of Hubei University of Science and Technology, China
| |
Collapse
|
12
|
Park JM, Han YM, Hahm KB. Rejuvenation of Helicobacter pylori-Associated Atrophic Gastritis Through Concerted Actions of Placenta-Derived Mesenchymal Stem Cells Prevented Gastric Cancer. Front Pharmacol 2021; 12:675443. [PMID: 34483897 PMCID: PMC8416416 DOI: 10.3389/fphar.2021.675443] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 06/22/2021] [Indexed: 01/06/2023] Open
Abstract
Chronic Helicobacter pylori infection causes gastric cancer via the progression of precancerous chronic atrophic gastritis (CAG). Therefore, repairing gastric atrophy could be a useful strategy in preventing H. pylori-associated gastric carcinogenesis. Although eradication of the bacterial pathogen offers one solution to this association, this study was designed to evaluate an alternative approach using mesenchymal stem cells to treat CAG and prevent carcinogenesis. Here, we used human placenta-derived mesenchymal stem cells (PD-MSCs) and their conditioned medium (CM) to treat H. pylori-associated CAG in a mice/cell model to explore their therapeutic effects and elucidate their molecular mechanisms. We compared the changes in the fecal microbiomes in response to PD-MSC treatments, and chronic H. pylori-infected mice were given ten treatments with PD-MSCs before being sacrificed for end point assays at around 36 weeks of age. These animals presented with significant reductions in the mean body weights of the control group, which were eradicated following PD-MSC treatment (p < 0.01). Significant changes in various pathological parameters including inflammation, gastric atrophy, erosions/ulcers, and dysplastic changes were noted in the control group (p < 0.01), but these were all significantly reduced in the PD-MSC/CM-treated groups. Lgr5+, Ki-67, H+/K+-ATPase, and Musashi-1 expressions were all significantly increased in the treated animals, while inflammatory mediators, MMP, and apoptotic executors were significantly decreased in the PD-MSC group compared to the control group (p < 0.001). Our model showed that H. pylori-initiated, high-salt diet-promoted gastric atrophic gastritis resulted in significant changes in the fecal microbiome at the phylum/genus level and that PD-MSC/CM interventions facilitated a return to more normal microbial communities. In conclusion, administration of PD-MSCs or their conditioned medium may present a novel rejuvenating agent in preventing the progression of H. pylori-associated premalignant lesions.
Collapse
Affiliation(s)
- Jong Min Park
- College of Oriental Medicine, Daejeon University, Daejeon, Korea
| | - Young Min Han
- Western Seoul Center, Korea Basic Science Institute, Seoul, Korea
| | - Ki Baik Hahm
- Medpacto Research Institute, Medpacto, Seoul, Korea.,CHA Cancer Preventive Research Center, CHA Bio Complex, Seongnam, Korea
| |
Collapse
|
13
|
Xia Q, Chen G, Ren Y, Zheng T, Shen C, Li M, Chen X, Zhai H, Li Z, Xu J, Gu A, Jin M, Fan L. Investigating efficacy of "microbiota modulation of the gut-lung Axis" combined with chemotherapy in patients with advanced NSCLC: study protocol for a multicenter, prospective, double blind, placebo controlled, randomized trial. BMC Cancer 2021; 21:721. [PMID: 34157996 PMCID: PMC8220724 DOI: 10.1186/s12885-021-08448-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 06/04/2021] [Indexed: 11/28/2022] Open
Abstract
Background Most NSCLCs metastasised out of the lungs at the time of diagnosis and cannot be surgically removed . Cytotoxic chemotherapy drugs have become the main treatment in recent decades, especially in patients with NSCLC without EGFR, ALK, and ROS gene mutations. The prognosis of lung cancer is poor, and the overall 5-year survival rate is only 9–13%. Therefore the treatment of advanced NSCLC remains a significant medical need. Recent studies have shown a significant relationship between the gut-lung axis microecology and malignant tumors. Intestinal probiotics are likely to play a role in inhibiting tumorigenesis through “intestinal-pulmonary axis microecological regulation”. This study will seek to investigate the efficacy of “Microbiota modulation of the Gut-Lung Axis” combined with chemotherapy in patients with advanced NSCLC. Methods The research is a multicenter, prospective, double blind, placebo controlled, randomized trial. Based on the theoretical basis of “intestinal and lung axis microecological adjustment”, combined with traditional platinum-containing two-drug chemotherapy, the efficacy of the new therapy on patients with advanced NSCLC was observed. Collect the basic information of the patient, and study the effect of platinum-based combined chemotherapy on the diversity of intestinal flora in patients with lung cancer after receiving chemotherapy treatment, feces before and after chemotherapy, and the status and extent of adverse reactions during chemotherapy . A total of 180 subjects were included, divided into a control group (platinum-containing dual-drug chemotherapy) and an intervention group (platinum-containing dual-drug chemotherapy combined with Bifico), and were randomly assigned to the group 1:1. Discussion As a result, intestinal-pulmonary microecological balance could become a new target for the treatment of lung cancer. This study explores the combination of intestinal microecological regulation and chemotherapy to provide new treatment strategies and basis for lung cancer patients. It can help prolong the survival time of lung cancer patients and improve the quality of life, thereby generating huge economic and social benefits. The results can be promoted and applied to units engaged in the treatment of lung cancer. Trial registration number NCT03642548, date: August 22, 2018, the first version protocol. The URL of trial registry record: https://clinicaltrials.gov/ct2/show/NCT03642548?term=NCT03642548&draw=2&rank=1.
Collapse
Affiliation(s)
- Qing Xia
- Department of Pulmonary and Critical Care Medicine, Shanghai 10th People's Hospital, Tongji University School of Medicine, No. 301, Middle Yangchang Rd, Shanghai, 200072, China
| | - Guojie Chen
- Institute of Energy Metabolism and Health, Tongji University School of Medicine, No. 301, Middle Yangchang Rd, Shanghai, 200072, China
| | - Yanbei Ren
- Institute of Energy Metabolism and Health, Tongji University School of Medicine, No. 301, Middle Yangchang Rd, Shanghai, 200072, China
| | - Tiansheng Zheng
- Institute of Energy Metabolism and Health, Tongji University School of Medicine, No. 301, Middle Yangchang Rd, Shanghai, 200072, China
| | - Changxing Shen
- Department of Pulmonary and Critical Care Medicine, Shanghai 10th People's Hospital, Tongji University School of Medicine, No. 301, Middle Yangchang Rd, Shanghai, 200072, China
| | - Ming Li
- Department of Pulmonary and Critical Care Medicine, Shanghai 10th People's Hospital, Tongji University School of Medicine, No. 301, Middle Yangchang Rd, Shanghai, 200072, China.
| | - Xiangyun Chen
- Institute of Energy Metabolism and Health, Tongji University School of Medicine, No. 301, Middle Yangchang Rd, Shanghai, 200072, China
| | - Hong Zhai
- Institute of Energy Metabolism and Health, Tongji University School of Medicine, No. 301, Middle Yangchang Rd, Shanghai, 200072, China
| | - Zhuang Li
- Institute of Energy Metabolism and Health, Tongji University School of Medicine, No. 301, Middle Yangchang Rd, Shanghai, 200072, China
| | - Jianfang Xu
- Oncology Department, Shanghai Pulmonary Hospital, Tongji University School of Medicine, No.507, Zhengmin Rd, Shanghai, 200433, China
| | - Aiqin Gu
- Oncology Department, Shanghai Chest Hospital, Shanghai Jiaotong University, No.241, West Huaihai Rd, Shanghai, 200030, China
| | - Meiling Jin
- Department of Pulmonary and Critical Care Medicine, Shanghai Zhongshan Hospital, Fudan University School of Medicine, No.180, Fenglin Rd, Shanghai, 200032, China
| | - Lihong Fan
- Institute of Energy Metabolism and Health, Tongji University School of Medicine, No. 301, Middle Yangchang Rd, Shanghai, 200072, China.
| |
Collapse
|
14
|
Sentani K, Imai T, Kobayashi G, Hayashi T, Sasaki N, Oue N, Yasui W. Histological diversity and molecular characteristics in gastric cancer: relation of cancer stem cell-related molecules and receptor tyrosine kinase molecules to mixed histological type and more histological patterns. Gastric Cancer 2021; 24:368-381. [PMID: 33118117 DOI: 10.1007/s10120-020-01133-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 09/28/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Gastric cancers (GCs) are still one of the leading causes of cancer-related mortality. The histological and molecular features of GC may differ widely from area to area within the same tumor. Intratumoral heterogeneity has been considered a major obstacle to an efficient diagnosis and successful molecular treatment. METHODS We selected and reevaluated 842 GC cases and analyzed the relationship between numbers or composites of histological patterns within tumors, and clinicopathological parameters in mucosal and invasive areas. In addition, we searched for the GC-associated molecules or molecular subtypes marking histological diversities. RESULTS GC cases with more histological numbers or mixed types in invasive areas showed significantly higher T grade and staging, whereas those in mucosal areas did not show any significant associations. GCs with histological diversities showed poorer prognosis and characteristically expressed cancer stem cell-related molecules (CD44, CD133 or ALDH1) and receptor tyrosine kinase molecules (HER2, EGFR or c-MET) as well as Helicobacter pylori infection. Expressions of CD44, HER2, c-MET, laminin 5·2 or retained E-cadherin in mucosal areas were predictive of more histological numbers and mixed types in invasive areas. In addition, the chromosomal instability subtype of GC showed significant associations with more histological numbers and mixed histological type, whereas the genomic stability subtype of GC showed a significant relationship with pure type. CONCLUSIONS We displayed the relationship between histological diversity and molecular features in GC, and we hope that the present data can contribute to the early diagnosis and prevention, and effective treatment of GC.
Collapse
Affiliation(s)
- Kazuhiro Sentani
- Department of Molecular Pathology, Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan.
| | - Takeharu Imai
- Department of Molecular Pathology, Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Go Kobayashi
- Department of Molecular Pathology, Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Tetsutaro Hayashi
- Department of Molecular Pathology, Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Naomi Sasaki
- Department of Pathology, Kure-Kyosai Hospital, Federation of National Public Service Personnel Mutual Aid Associations, Hiroshima, Japan
| | - Naohide Oue
- Department of Molecular Pathology, Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Wataru Yasui
- Department of Molecular Pathology, Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| |
Collapse
|
15
|
Zhou KL, Dong S, Guo S, Dai XH, Yang JY, Liu Y, Mi BL, Wang SW, Fu GB, Wei PD. Efficacy and safety of massage therapy for chronic atrophic gastritis: A protocol for systematic review and meta-analysis. Medicine (Baltimore) 2020; 99:e23347. [PMID: 33217876 PMCID: PMC7676512 DOI: 10.1097/md.0000000000023347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 10/26/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Chronic atrophic gastritis (CAG) is an established precursor of gastric carcinoma with high prevalence worldwide. It is a typical complex gastro-intestinal disease with multiple influence factors, of which exact mechanisms remain unelucidated. Therefore, an ideal strategy to relieve CAG is urgently needed. In recent years, massage therapy has been increasingly accepted by CAG patients due to its lower costs, fewer unwanted side effects and safety for clinical use. In this systematic review, we aim to evaluate the effectiveness and safety of massage therapy for patients with chronic atrophic gastritis. METHODS We will search the following electronic databases for randomized controlled trials to evaluate the effectiveness and safety of massage therapy in treating chronic atrophic gastritis: Wanfang and Pubmed Database, China National Knowledge Infrastructure Database, Cochrane Central register of controlled trials, Cumulative Index of Nursing and Allied Health Literature, and Excerpta Medica database. Each database will be searched from inception to September 2020. The entire process will include study selection, data extraction, risk of bias assessment, and meta-analyses. RESULT This proposed study will evaluate the effectiveness and safety of massage therapy for patients with chronic atrophic gastritis. The outcomes will include changes in CAG relief and adverse effect. CONCLUSION This proposed systematic review will evaluate the existing evidence on the effectiveness and safety of massage therapy for patients with chronic atrophic gastritis. DISSEMINATION AND ETHICS The results of this review will be disseminated through peer-reviewed publication. Because all of the data used in this systematic review and meta-analysis has been published, this review does not require ethical approval. Furthermore, all data will be analyzed anonymously during the review process.
Collapse
Affiliation(s)
- Ke-Lin Zhou
- Dongfang Hospital of Beijing University of Chinese Medicine
| | - Shuo Dong
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Sheng Guo
- Dongfang Hospital of Beijing University of Chinese Medicine
| | - Xiao-Hui Dai
- Dongfang Hospital of Beijing University of Chinese Medicine
| | - Jing-Yi Yang
- Dongfang Hospital of Beijing University of Chinese Medicine
| | - Yang Liu
- Dongfang Hospital of Beijing University of Chinese Medicine
| | - Bao-Lai Mi
- Dongfang Hospital of Beijing University of Chinese Medicine
| | - Shao-Wei Wang
- Dongfang Hospital of Beijing University of Chinese Medicine
| | - Guo-Bing Fu
- Dongfang Hospital of Beijing University of Chinese Medicine
| | - Pei-Dong Wei
- Dongfang Hospital of Beijing University of Chinese Medicine
| |
Collapse
|
16
|
Mucito-Varela E, Castillo-Rojas G, Calva JJ, López-Vidal Y. Integrative and Conjugative Elements of Helicobacter pylori Are Hypothetical Virulence Factors Associated With Gastric Cancer. Front Cell Infect Microbiol 2020; 10:525335. [PMID: 33194783 PMCID: PMC7604443 DOI: 10.3389/fcimb.2020.525335] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 09/11/2020] [Indexed: 01/08/2023] Open
Abstract
Helicobacter pylori is a bacteria with high genome plasticity that has been associated with diverse gastric pathologies. The genetic diversity of this bacteria has limited the characterization of virulence factors associated with gastric cancer (GC). To identify potentially helpful disease biomarkers, we compared 38 complete genomes and 108 draft genomes of H. pylori isolated worldwide from patients with diverse gastric pathologies and 53 draft genomes of H. pylori isolated from Mexican patients with GC, intestinal metaplasia, gastritis, peptic ulcer, and dyspepsia. H. pylori strains isolated from GC were 3-11 times more likely to harbor any of seven genes encoded within an integrative and conjugative element (ICE) than H. pylori isolated from subjects with other gastric pathologies. We tested the cytopathic effects on AGS cells of selected H. pylori strains with known cytotoxin-associated gene pathogenicity island (cag-PAI) and ICE status (H. pylori strains 29CaP, 29CaCe, 62A9, 7C, 8822, and 26695) and the histopathological damage of H. pylori 29CaP and 62A9 in a mouse model. H. pylori 29CaP, which harbors a complete ICEHptfs3 but lacks cag-PAI, elicited distinctive morphology changes and higher histopathological scores compared with other H. pylori strains carrying cag-PAI and hybrid ICE with incomplete TFSS. The presence of intact segments of ICE regions might be a risk factor to develop GC that needs to be addressed in future studies.
Collapse
Affiliation(s)
- Eduardo Mucito-Varela
- Departamento de Microbiología y Parasitología, Programa de Inmunología Molecular Microbiana, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Gonzalo Castillo-Rojas
- Departamento de Microbiología y Parasitología, Programa de Inmunología Molecular Microbiana, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Juan J. Calva
- Department of Infectious Diseases, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán” (INCMNSZ), Mexico City, Mexico
| | - Yolanda López-Vidal
- Departamento de Microbiología y Parasitología, Programa de Inmunología Molecular Microbiana, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| |
Collapse
|
17
|
Al-Sadik H, Sugathan S, Saseedharan P, Sulaiman S, Beegam S, Nemmar A, Attoub S, Karam SM. Effects of Diesel Exhaust Particles on Mouse Gastric Stem Cells. Life (Basel) 2020; 10:149. [PMID: 32806566 PMCID: PMC7460091 DOI: 10.3390/life10080149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/31/2020] [Accepted: 08/04/2020] [Indexed: 02/07/2023] Open
Abstract
Stem cells have attracted many scientists because of their unique properties and therapeutic applications. However, very little is known on the environmental toxins that could affect their biological features. This study focuses on the consequences of the exposure of a cell line representative of the mouse gastric stem/progenitor (mGS) cells to diesel exhaust particles (DEPs). These immortal cells were cultured using routine protocols. The DEPs were added to the culture media at 1, 10, and 100 µg/mL for 1 to 72 h. The cells were assayed for their viability, migration, oxidative stress, and the expression of genes specific for cell proliferation, pluripotency, and death. DEPs induced a reduction in the metabolic activity of mGS cells, only at a high concentration of 100 µg/mL. However, no significant effects were detected on cell migration, oxidative stress markers (glutathione and thiobarbituric acid reactive substances), and cell death related proteins/genes. Interestingly, these findings were associated with down-regulation of Notch 2 and 3 and Bmi-1 proteins and activation of STAT3 involved in the regulation of the fate of stem cells. In conclusion, this study demonstrates that mGS cells have some resistance to oxidative stress and apoptosis when exposed to DEPs at the expense of their stemness.
Collapse
Affiliation(s)
- Heba Al-Sadik
- Department of Anatomy, College of Medicine & Health Sciences, United Arab Emirates University, P.O. Box 17666, Al-Ain, UAE; (H.A.-S); (S.S.); (P.S.)
| | - Subi Sugathan
- Department of Anatomy, College of Medicine & Health Sciences, United Arab Emirates University, P.O. Box 17666, Al-Ain, UAE; (H.A.-S); (S.S.); (P.S.)
| | - Prashanth Saseedharan
- Department of Anatomy, College of Medicine & Health Sciences, United Arab Emirates University, P.O. Box 17666, Al-Ain, UAE; (H.A.-S); (S.S.); (P.S.)
| | - Shahrazad Sulaiman
- Department of Pharmacology and Therapeutics, College of Medicine & Health Sciences, United Arab Emirates University, P.O. Box 17666, Al-Ain, UAE; (S.S.); (S.A.)
| | - Sumaya Beegam
- Department of Physiology, College of Medicine & Health Sciences, United Arab Emirates University, P.O. Box 17666, Al-Ain, UAE; (S.B.); (A.N.)
| | - Abderrahim Nemmar
- Department of Physiology, College of Medicine & Health Sciences, United Arab Emirates University, P.O. Box 17666, Al-Ain, UAE; (S.B.); (A.N.)
- Zayed Center for Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, UAE
| | - Samir Attoub
- Department of Pharmacology and Therapeutics, College of Medicine & Health Sciences, United Arab Emirates University, P.O. Box 17666, Al-Ain, UAE; (S.S.); (S.A.)
- Zayed Center for Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, UAE
| | - Sherif M. Karam
- Department of Anatomy, College of Medicine & Health Sciences, United Arab Emirates University, P.O. Box 17666, Al-Ain, UAE; (H.A.-S); (S.S.); (P.S.)
- Zayed Center for Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, UAE
| |
Collapse
|
18
|
Abstract
As one of the most prevalent infections globally, Helicobacter pylori (H. pylori) continues to present diagnostic and therapeutic challenges for clinicians worldwide. Diagnostically, the "test-and-treat" strategy is the recommended approach for healthcare practitioners when managing this potentially curable disease. The choice of testing method should be based on several factors including patient age, presenting symptoms, and medication use, as well as test reliability, availability, and cost. With rising antibiotic resistance, particularly of macrolides, care must be taken to ensure that therapy is selected based on regional resistance patterns and prior antibiotic exposure. In the USA, macrolide antibiotic resistance rates in some areas have reached or exceeded a generally accepted threshold, such that clarithromycin triple therapy may no longer be an appropriate first-line empiric treatment. Instead, bismuth quadruple therapy should be considered, while levofloxacin-based or alternative macrolide-containing therapies are also options. Once treated, it is essential to test for eradication as untreated H. pylori is associated with serious complications including peptic ulcer disease, mucosa-associated lymphoid tissue lymphoma, and gastric cancer. This review article aims to consolidate current knowledge of H. pylori infection with a particular emphasis on diagnostic and treatment strategies.
Collapse
Affiliation(s)
- Bernardo Guevara
- Department of Internal Medicine, University of California Davis School of Medicine, 4150 V Street, Suite 1100, Sacramento, CA, 95817, USA
| | - Asha Gupta Cogdill
- Division of Gastroenterology and Hepatology, UC Davis Medical Center, University of California Davis School of Medicine, 4150 V Street, Suite 3500, Sacramento, CA, 95817, USA.
| |
Collapse
|
19
|
Teng Y, Cang B, Mao F, Chen W, Cheng P, Peng L, Luo P, Lu D, You N, Zou Q, Zhuang Y. Expression of ETS1 in gastric epithelial cells positively regulate inflammatory response in Helicobacter pylori-associated gastritis. Cell Death Dis 2020; 11:498. [PMID: 32612120 PMCID: PMC7329872 DOI: 10.1038/s41419-020-2705-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 06/04/2020] [Accepted: 06/19/2020] [Indexed: 11/09/2022]
Abstract
Gastric epithelial cells (GECs) provide the first point of contact of the host by Helicobacter pylori (H. pylori), and the interaction between H. pylori and GECs plays a critical role in H. pylori-associated diseases. Aberrant expression of transcription factors (TFs) contributes to the pathogenesis of inflammatory disorders, including H. pylori-associated gastritis. ETS (E26 transformation specific) transcription factor family is one of the largest families of evolutionarily conserved TFs, regulating critical functions during cell homeostasis. We screened ETS family gene expression in H. pylori-infected mouse and human GECs and found that ETS1 (ETS proto-oncogene 1, transcription factor) expression was highly affected by H. pylori infection. Then, we reported that ETS1 was induced in GECs by H. pylori via cagA activated NF-κB pathway. Notably, we demonstrated that proinflammatory cytokines IL-1β and TNFα have synergistic effects on ETS1 expression during H. pylori infection in an NF-κB-pathway-dependent manner. RNA-seq assay and Gene-ontology functional analysis revealed that ETS1 positively regulate inflammatory response during H. pylori infection. Increased ETS1 is also detected in the gastric mucosa of mice and patients with H. pylori infection. Collectively, these data showed that ETS1 may play an important role in the pathogenesis of H. pylori-associated gastritis.
Collapse
Affiliation(s)
- Yongsheng Teng
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University, Chongqing, China
| | | | - Fangyuan Mao
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University, Chongqing, China
| | - Weisan Chen
- La Trobe Institute of Molecular Science, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Ping Cheng
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University, Chongqing, China
| | - Liusheng Peng
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University, Chongqing, China
| | - Ping Luo
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University, Chongqing, China
| | - Dongshui Lu
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University, Chongqing, China
| | - Nan You
- Department of Hepatobiliary Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing, China.
| | - Quanming Zou
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University, Chongqing, China.
| | - Yuan Zhuang
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University, Chongqing, China.
| |
Collapse
|
20
|
Helicobacter pylori infection and type 1 diabetes mellitus in children. J Diabetes Metab Disord 2020; 19:243-247. [PMID: 32550173 DOI: 10.1007/s40200-020-00497-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 01/28/2020] [Indexed: 12/19/2022]
Abstract
Objectives This study aimed to investigate the association between Helicobacter pylori infection with diabetes mellitus type one and the effect of infected Helicobacter pylori on glycemic control. Methods This case control study was conducted on children with and without type 1 diabetes mellitus (T1DM). Demographic data and gastrointestinal symptoms in both groups and glycemic control status and duration of diabetes were recorded in patients with T1DM. Stool test was done on all children to detect Helicobacter pylori antigen. Results Sixty three children with T1DM with a mean of 10.88 ± 2.84 years and 105 control children with an average age 10.17 ± 2.55 years (P = 0/09) were involved in this study. The frequency of Helicobacter pylori infection in patients with T1DM was 17/63 (27%) and 25/105 (23.8%) in control group, (P = 0/64). The frequency of bloating, epigastric pain and nausea was not significantly different between the two groups. The frequency of epigastric pain in children with diabetes with helicobacter infection was significantly higher than non-infected children with diabetes (29.4% vs. 2.2%) (P = 0.004).The mean duration of diabetes (P = 0.53), age diagnosis of diabetes (P = 0.09), fasting blood glucose (P = 0.18), glycosylated hemoglobin (P = 0.08) and the daily insulin dose (P = 0.18) in patients with T1DM with and without helicobacter pylori infection had not significantly different. Conclusions There was no significant association between Helicobacter pylori infection and diabetes in children 5-15 years old, and glycemic control status was not difference in patients with T1DM with and without Helicobacter pylori infection.
Collapse
|
21
|
Tian F, Lu B, Chen Z, Liu J, Ji D, Li J, Tang M, Zhu W, Li J. Microbial antigens-loaded myeloma cells enhance Th2 cell proliferation and myeloma clonogenicity via Th2-myeloma cell interaction. BMC Cancer 2019; 19:1246. [PMID: 31870332 PMCID: PMC6929311 DOI: 10.1186/s12885-019-6469-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 12/16/2019] [Indexed: 11/13/2022] Open
Abstract
Background Myeloma cells retain B cell functions, considered to be potential antigen presenting cells, yet there is little information regarding promoting Th2 cell proliferation or the direct effects to myeloma on the Th2 cells stimulated by microbial antigens-loaded myeloma cells. Methods Mixed lymphocyte reaction was used colorimetric assays via CCK8-kit. Surface molecular expression was performed by flow cytometry, cells sorting using microbeads. The concentrations of cytokines in serum were assessed using an ELISA kit. Clonogenic assay were performed in a methylcellulose culture system. Statistical analysis was assessed using the Student’s t-test or one-way analysis of variance for multiple comparisons test. Results The expression of HLA-DR, CD80 and CD40 on RPMI8266 cell membrane surface was upregulated by interaction with interferon-γ and/or Bacillus Calmette-Guerin Vaccine (BCGV). RPMI8266 cells were able to induce the mixed lymphocyte reaction in a dose-dependent fashion. The Th2 ratio induced by RPMI8266 treated by BCGV and interferon-γ (treated-RPMI8266) cells was only slightly greater than by untreated-tumor cells, but the serum IL-4 level secreted by Th2 cells was markedly higher in treated-RPMI8266 cells group. Th2 cells stimulated by treated-myeloma cells could directly promote treated-myeloma cell clonogenicity in a dose-dependent manner. Anti-HLADR IgG2b completely blocked increased of IL-4 secretion by Th2 cells stimulated by treated-myeloma cells, while also blocked enhancing the clonogenicity of treated tumor cells stimulated by MM-Th2 cells. Conclusions These results indicate that a novel mechanism of myeloma pathogenesis in myeloma cells could act as an APC to present microbial Ags to Th2 cells, promoting Th2 cell proliferation, consequently facilitating tumor development by close interaction between Th2 myeloma cells. Taken together, the microbial Ag presenting course of MM-Th2-MM interactions—restricted by MHC class-II—may result in tumor development such that all factors involved in the system could have a potential for myeloma therapeutic intervention.
Collapse
Affiliation(s)
- Faqing Tian
- Department of Hematology, Longgang District People's Hospital of Shenzhen, Shenzhen, 518172, Guangdong, China.
| | - Bo Lu
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Ziren Chen
- Department of Hematological Oncology, Shenzhen University General Hospital, Shenzhen, 518055, China
| | - Junru Liu
- Department of Hematology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
| | - Delan Ji
- Department of Hematology, Longgang District People's Hospital of Shenzhen, Shenzhen, 518172, Guangdong, China
| | - Juheng Li
- Department of Hematology, Longgang District People's Hospital of Shenzhen, Shenzhen, 518172, Guangdong, China
| | - Meiqin Tang
- Department of Hematology, Longgang District People's Hospital of Shenzhen, Shenzhen, 518172, Guangdong, China
| | - Wei Zhu
- Department of Pathology, School of Basic Medicine, Guangdong Medical University, Dongguan, 523808, Guangdong, China
| | - Juan Li
- Department of Hematology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China.
| |
Collapse
|
22
|
Yao X, Liu D, Zhou L, Xie Y, Li Y. FAM60A, increased by Helicobacter pylori, promotes proliferation and suppresses apoptosis of gastric cancer cells by targeting the PI3K/AKT pathway. Biochem Biophys Res Commun 2019; 521:1003-1009. [PMID: 31727367 DOI: 10.1016/j.bbrc.2019.11.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 11/04/2019] [Indexed: 01/10/2023]
Abstract
Helicobacter pylori (H. pylori) infection can promote the development of gastric cancer (GC); however, the underlying mechanism is not clear. FAM60A has been found showing high levels in some cancer cells, including lung cancer (A549), and pancreatic cancer (Capan-2) cell lines. Data in oncomine showed that FAM60A overexpression was an critical prognostic factor in GC. In this study, we showed that knockdown of FAM60A could revert the increase of proliferation and the decrease of apoptosis caused by H.pylori infection in HGC-27 and AGS cells. Conversely, FAM60A upregulation promoted proliferation and inhibited apoptosis in HGC-27 and AGS cells. We also found that the PI3K/AKT pathway inhibitor LY294002 could revert the changes caused by FAM60A upregulation in HGC-27 and AGS cells. Thus, our study provides evidence that FAM60A act as a carcinogen and suggests that H. pylori-induced upregulation of FAM60A may contribute to the development of gastric cancer.
Collapse
Affiliation(s)
- Xinjie Yao
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China
| | - Dongyan Liu
- Medical Research Center, Shengjing Hospital of China Medical University, Benxi, 117000, Liaoning, China
| | - Linyan Zhou
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China
| | - Ying Xie
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China
| | - Yan Li
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China.
| |
Collapse
|
23
|
Song WM, Lin X, Liao X, Hu D, Lin J, Sarpel U, Ye Y, Feferman Y, Labow DM, Walsh MJ, Zheng X, Zhang B. Multiscale network analysis reveals molecular mechanisms and key regulators of the tumor microenvironment in gastric cancer. Int J Cancer 2019; 146:1268-1280. [PMID: 31463974 PMCID: PMC7004118 DOI: 10.1002/ijc.32643] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 07/18/2019] [Accepted: 08/16/2019] [Indexed: 12/24/2022]
Abstract
Gastric cancer (GC) is the third leading cause of cancer deaths and the fourth most prevalent malignancy worldwide. The high incidence and mortality rates of gastric cancer result from multiple factors such as ineffective screening, diagnosis, and limited treatment options. In our study, we sought to systematically identify predictive molecular networks and key regulators to elucidate complex interacting signaling pathways in GC. We performed an integrative network analysis of the transcriptomic data in The Cancer Genome Atlas (TCGA) gastric cancer cohort and then comprehensively characterized the predictive subnetworks and key regulators by the matched genetic and epigenetic data. We identified 221 gene subnetworks (modules) in GC. The most prognostic subnetworks captured multiple aspects of the tumor microenvironment in GC involving interactions among stromal, epithelial and immune cells. We revealed the genetic and epigenetic underpinnings of those subnetworks and their key transcriptional regulators. We computationally predicted and experimentally validated specific mechanisms of anticancer effects of GKN2 in gastric cancer proliferation and invasion in vitro. The network models and the key regulators of the tumor microenvironment in GC identified here pave a way for developing novel therapeutic strategies for GC. What's new? Gene signatures have been identified for diagnosis and classification of gastric cancer (GC) as well as prediction of therapeutic response. However, key molecular mechanisms underlying prognosis remain to be revealed. Our study systematically identifies and characterizes predictive molecular networks and key regulators. The most prognostic subnetworks capture multiple aspects of the tumor microenvironment in GC involving interactions among stromal, epithelial, and immune cells. The authors computationally predicted and experimentally validated specific mechanisms of anti‐cancer effects of GKN2 in GC proliferation and invasion in vitro. These network models and key regulators pave the way for developing novel therapeutic strategies for GC.
Collapse
Affiliation(s)
- Won-Min Song
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY.,Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Xiandong Lin
- Laboratory of Radiation Oncology and Radiobiolog, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou, Fujian, China.,Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian, China
| | - Xuehong Liao
- Department of Pathology, Zhongshan Hospital of Xiamen University, Xiamen, Fujian, China
| | - Dan Hu
- Department of Pathology, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou, Fujian, China
| | - Jieqiong Lin
- Department of Pathology, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou, Fujian, China
| | - Umut Sarpel
- Department of Surgery, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Yunbin Ye
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian, China.,Laboratory of Immuno-Oncology, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou, Fujian, China
| | - Yael Feferman
- Department of Surgery, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Daniel M Labow
- Department of Surgery, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Martin J Walsh
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY.,Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY.,The Mount Sinai Center for RNA Biology and Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Xiongwei Zheng
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian, China.,Department of Pathology, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou, Fujian, China
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY.,Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
24
|
Sokolova O, Naumann M. Crosstalk Between DNA Damage and Inflammation in the Multiple Steps of Gastric Carcinogenesis. Curr Top Microbiol Immunol 2019; 421:107-137. [PMID: 31123887 DOI: 10.1007/978-3-030-15138-6_5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Over the last years, intensive investigations in molecular biology and cell physiology extended tremendously the knowledge about the association of inflammation and cancer. In frame of this paradigm, the human pathogen Helicobacter pylori triggers gastritis and gastric ulcer disease, and contributes to the development of gastric cancer. Mechanisms, by which the bacteria-induced inflammation in gastric mucosa leads to intestinal metaplasia and carcinoma, are represented in this review. An altered cell-signaling response and increased production of free radicals by epithelial and immune cells account for the accumulation of DNA damage in gastric mucosa, if infection stays untreated. Host genetics and environmental factors, especially diet, can accelerate the process, which offers the opportunity of intervention based on a balanced nutrition. It is supposed that inflammation might influence stem- or progenitor cells in gastric tissue predisposing for metaplasia or tumor relapse. Herein, DNA is strongly mutated and labile, which restricts therapy options. Thus, the understanding of the mechanisms that underlie gastric carcinogenesis will be of preeminent importance for the development of strategies for screening and early detection. As most gastric cancer patients face late-stage disease with a poor overall survival, the development of multi-targeted therapeutic intervention strategies is a major challenge for the future.
Collapse
Affiliation(s)
- Olga Sokolova
- Institute of Experimental Internal Medicine, Otto von Guericke University, Leipziger Str. 44, 39120, Magdeburg, Germany.
| | - Michael Naumann
- Institute of Experimental Internal Medicine, Otto von Guericke University, Leipziger Str. 44, 39120, Magdeburg, Germany
| |
Collapse
|
25
|
Zuo X, Deguchi Y, Xu W, Liu Y, Li HS, Wei D, Tian R, Chen W, Xu M, Yang Y, Gao S, Jaoude JC, Liu F, Chrieki SP, Moussalli MJ, Gagea M, Sebastian MM, Zheng X, Tan D, Broaddus R, Wang J, Ajami NJ, Swennes AG, Watowich SS, Shureiqi I. PPARD and Interferon Gamma Promote Transformation of Gastric Progenitor Cells and Tumorigenesis in Mice. Gastroenterology 2019; 157:163-178. [PMID: 30885780 PMCID: PMC6581611 DOI: 10.1053/j.gastro.2019.03.018] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 02/20/2019] [Accepted: 03/12/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS The peroxisome proliferator-activated receptor delta (PPARD) regulates cell metabolism, proliferation, and inflammation and has been associated with gastric and other cancers. Villin-positive epithelial cells are a small population of quiescent gastric progenitor cells. We expressed PPARD from a villin promoter to investigate the role of these cells and PPARD in development of gastric cancer. METHODS We analyzed gastric tissues from mice that express the Ppard (PPARD1 and PPARD2 mice) from a villin promoter, and mice that did not carry this transgene (controls), by histology and immunohistochemistry. We performed cell lineage-tracing experiments and analyzed the microbiomes, chemokine and cytokine production, and immune cells and transcriptomes of stomachs of these mice. We also performed immunohistochemical analysis of PPARD levels in 2 sets of human gastric tissue microarrays. RESULTS Thirty-eight percent of PPARD mice developed spontaneous, invasive gastric adenocarcinomas, with severe chronic inflammation. Levels of PPARD were increased in human gastric cancer tissues, compared with nontumor tissues, and associated with gastric cancer stage and grade. We found an inverse correlation between level of PPARD in tumor tissue and patient survival time. Gastric microbiomes from PPARD and control mice did not differ significantly. Lineage-tracing experiments identified villin-expressing gastric progenitor cells (VGPCs) as the origin of gastric tumors in PPARD mice. In these mice, PPARD up-regulated CCL20 and CXCL1, which increased infiltration of the gastric mucosa by immune cells. Immune cell production of inflammatory cytokines promoted chronic gastric inflammation and expansion and transformation of VGPCs, leading to tumorigenesis. We identified a positive-feedback loop between PPARD and interferon gamma signaling that sustained gastric inflammation to induce VGPC transformation and gastric carcinogenesis. CONCLUSIONS We found PPARD overexpression in VPGCs to result in inflammation, dysplasia, and tumor formation. PPARD and VGPCs might be therapeutic targets for stomach cancer.
Collapse
Affiliation(s)
- Xiangsheng Zuo
- Departments of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Yasunori Deguchi
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Weiguo Xu
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yi Liu
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Haiyan S. Li
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Daoyan Wei
- Department of Gastroenterology, Hepatology, and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Rui Tian
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Weidong Chen
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Min Xu
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yaying Yang
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shen Gao
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jonathan C. Jaoude
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Fuyao Liu
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sarah P. Chrieki
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Micheline J. Moussalli
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mihai Gagea
- Department of Veterinary Medicine and Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Manu M. Sebastian
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xiaofeng Zheng
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Dongfeng Tan
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Russell Broaddus
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jing Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Nadim J. Ajami
- Alkek Center for Metagenomics and Microbiome Research and Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Alton G. Swennes
- Center for Comparative Medicine and Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Stephanie S. Watowich
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Imad Shureiqi
- Departments of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
26
|
Song G, Zhou N, Lu Y, Yu Z, Chen K, Zhang P. The anti-gastritis activity of an exopolysaccharide from Rhizopus nigricans. FOOD BIOSCI 2019. [DOI: 10.1016/j.fbio.2019.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
27
|
Luo C, Sun Z, Li Z, Zheng L, Zhu X. Notoginsenoside R1 (NGR1) Attenuates Chronic Atrophic Gastritis in Rats. Med Sci Monit 2019; 25:1177-1186. [PMID: 30757999 PMCID: PMC6381808 DOI: 10.12659/msm.911512] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Background This study investigated the effect and mechanism of notoginsenoside R1 (NGR1) on chronic atrophic gastritis (CAG) in a rat model. Material/Methods To perform our investigation, a rat model of CAG was established, and then rats were treated with various doses of NGR1. After treatment, hematoxylin-eosin (HE) staining was used for histopathological observation and further scoring. Enzyme-linked immunosorbent assay (ELISA) was used to determine the contents of gastrointestinal hormones, inflammatory factors, gastric mucosal destruction factors, and gastric mucosal-protective factors. Gene and protein expressions were measured using quantitative real-time PCR and Western blot assay, respectively. Results Results indicated that NGR1 relieved rat CAG. NGR1 treatment significantly increased the levels of gastrin (GAS) and somatostatin (SS) and reduced motilin (MTL) in the serum of CAG rats. The serum levels of interleukin (IL)-1β and IL-6 were significantly reduced by NGR1 treatment in CAG rats in a dose-dependent manner. Additionally, the increased levels of prostaglandin (PG)E2, nitric oxide synthase (NOS), and endothelin (ET) in CAG rats were significantly decreased by NGR1 administration. Moreover, the decreased level of secretory IgA (sIgA) and glutathione (GSH) in rats caused by MNNG was notably increased by NGR1 treatment. No significant changes were found in glutathione disulfide (GSSG) secretion. Finally, we found that the increased Bcl-2 expression and reduced Bax expression in the stomach tissues of rats caused by MNNG were eliminated by NGR1 treatment. Conclusions NGR1 exerts a protective effect on CAG, and it is a multi-target, multi-linked, comprehensive process.
Collapse
Affiliation(s)
- Chao Luo
- Department of Spleen Surgery and Gastroenterology, Second Affiliated Hospital of Nanjing University of Chinese Medicine (Second Hospital of Jiangsu Province), Nanjing, Jiangsu, China (mainland)
| | - Zhiguang Sun
- School Offices,, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China (mainland)
| | - Zhen Li
- Department of Spleen Surgery and Gastroenterology, Second Affiliated Hospital of Nanjing University of Chinese Medicine (Second Hospital of Jiangsu Province), Nanjing, Jiangsu, China (mainland)
| | - Liang Zheng
- Department of Spleen Surgery and Gastroenterology, Second Affiliated Hospital of Nanjing University of Chinese Medicine (Second Hospital of Jiangsu Province), Nanjing, Jiangsu, China (mainland)
| | - Xiaolin Zhu
- External Liaison Office, Second Affiliated Hospital of Nanjing University of Chinese Medicine (Second Hospital of Jiangsu Province), Nanjing, Jiangsu, China (mainland)
| |
Collapse
|
28
|
Carrasco-Garcia E, Álvarez-Satta M, García-Puga M, Ribeiro ML, Arevalo S, Arauzo-Bravo M, Matheu A. Therapeutic relevance of SOX9 stem cell factor in gastric cancer. Expert Opin Ther Targets 2018; 23:143-152. [DOI: 10.1080/14728222.2019.1559826] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Estefania Carrasco-Garcia
- Cellular Oncology group, Biodonostia Health Research Institute, San Sebastian, Spain
- CIBER de Fragilidad y Envejecimiento Saludable (CIBERfes)
| | - María Álvarez-Satta
- Cellular Oncology group, Biodonostia Health Research Institute, San Sebastian, Spain
| | - Mikel García-Puga
- Cellular Oncology group, Biodonostia Health Research Institute, San Sebastian, Spain
| | - Marcelo Lima Ribeiro
- Clinical Pharmacology and Gastroenterology Unit, São Francisco University, Bragança Paulista, Sao Paulo, Brazil
| | - Sara Arevalo
- Cellular Oncology group, Biodonostia Health Research Institute, San Sebastian, Spain
| | - Marcos Arauzo-Bravo
- IKERBASQUE, Basque Foundation, Bilbao, Spain
- Computational Biology and Systems Biomedicine, Biodonostia Health Research Institute, San Sebastian, Spain
| | - Ander Matheu
- Cellular Oncology group, Biodonostia Health Research Institute, San Sebastian, Spain
- CIBER de Fragilidad y Envejecimiento Saludable (CIBERfes)
- IKERBASQUE, Basque Foundation, Bilbao, Spain
| |
Collapse
|
29
|
Carrasco-Garcia E, García-Puga M, Arevalo S, Matheu A. Towards precision medicine: linking genetic and cellular heterogeneity in gastric cancer. Ther Adv Med Oncol 2018; 10:1758835918794628. [PMID: 30181784 PMCID: PMC6116075 DOI: 10.1177/1758835918794628] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 07/24/2018] [Indexed: 12/16/2022] Open
Abstract
Molecular and cellular heterogeneity are phenomena that are revolutionizing
oncology research and becoming critical to the idea of personalized medicine.
Recent comprehensive molecular profiling has identified molecular subtypes of
gastric cancer (GC) and linked them to clinical information. Moreover, GC stem
cells (gCSCs) have been identified and found to be responsible for GC initiation
and progression, Helicobacter pylori oncogenic action and
therapy resistance. Addressing molecular heterogeneity is critical for achieving
an optimal therapeutic approach against GC as well as targeting gCSCs. In this
review, we outline the implications of molecular and cellular heterogeneity in
the treatment of GC and we summarize the clinical impact of the most important
regulators of gCSCs.
Collapse
Affiliation(s)
- Estefania Carrasco-Garcia
- Cellular Oncology Group, Biodonostia Health Research Institute, Gipuzkoa, Spain CIBER de Fragilidad y Envejecimiento Saludable (CIBERfes), Madrid, Spain
| | - Mikel García-Puga
- Cellular Oncology Group, Biodonostia Health Research Institute, San Sebastian, Spain
| | - Sara Arevalo
- Cellular Oncology Group, Biodonostia Health Research Institute, San Sebastian, Spain
| | - Ander Matheu
- Cellular Oncology Group, Biodonostia Health Research Institute, Paseo Dr. Beguiristain s/n, Gipuzkoa, 20014, Spain IKERBASQUE, Basque Foundation, Bilbao, Spain CIBER de Fragilidad y Envejecimiento Saludable (CIBERfes) Madrid, Spain
| |
Collapse
|
30
|
Li S, Xu T, Liu S, Liu Z, Pi Z, Song F, Jin Y. Exploring the potential pharmacodynamic material basis and pharmacologic mechanism of the Fufang-Xialian-Capsule in chronic atrophic gastritis by network pharmacology approach based on the components absorbed into the blood. ROYAL SOCIETY OPEN SCIENCE 2018; 5:171806. [PMID: 30110485 PMCID: PMC6030346 DOI: 10.1098/rsos.171806] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 05/04/2018] [Indexed: 06/08/2023]
Abstract
In this study, a new network pharmacology approach based on the components absorbed into the blood was used to investigate the pharmacodynamic material basis and the pharmacologic mechanism of the Fufang-Xialian-Capsule (FXL) in treating chronic atrophic gastritis (CAG). Initially, we confirmed the components absorbed into the blood by ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. Then, the network approach, which was based on the results of components absorbed into the blood, was used to analyse the pharmacodynamic material basis and the pharmacologic mechanism of FXL on treating CAG. As a result, 22 absorbed components were found in rat plasma. Given the results of the absorption analysis of the components, eight pathways associated with CAG development were found. The targets linked to these pathways are the drug targets of FXL in CAG treatment. The components associated with these targets are the potential pharmacodynamic material basis and exert synergy in regulating pathways during CAG treatment.
Collapse
Affiliation(s)
- Shizhe Li
- National Center of Mass Spectrometry in Changchun and Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry and Chemical Biology Laboratory, Changchun 130022, People's Republic of China
- College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Tengfei Xu
- National Center of Mass Spectrometry in Changchun and Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry and Chemical Biology Laboratory, Changchun 130022, People's Republic of China
| | - Shu Liu
- National Center of Mass Spectrometry in Changchun and Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry and Chemical Biology Laboratory, Changchun 130022, People's Republic of China
| | - Zhiqiang Liu
- National Center of Mass Spectrometry in Changchun and Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry and Chemical Biology Laboratory, Changchun 130022, People's Republic of China
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
| | - Zifeng Pi
- National Center of Mass Spectrometry in Changchun and Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry and Chemical Biology Laboratory, Changchun 130022, People's Republic of China
| | - Fenrui Song
- National Center of Mass Spectrometry in Changchun and Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry and Chemical Biology Laboratory, Changchun 130022, People's Republic of China
| | - Yongri Jin
- College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| |
Collapse
|
31
|
Sepulveda AR, J. Del Portillo A. Molecular Basis of Diseases of the Gastrointestinal Tract. MOLECULAR PATHOLOGY 2018:387-415. [DOI: 10.1016/b978-0-12-802761-5.00019-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
32
|
Chinese Classical Formula Sijunzi Decoction and Chronic Atrophic Gastritis: Evidence for Treatment Approach? EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:9012929. [PMID: 29138645 PMCID: PMC5613649 DOI: 10.1155/2017/9012929] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 07/26/2017] [Indexed: 12/19/2022]
Abstract
Objective This aim is to evaluate the effect of Sijunzi decoction (SJZD) treating chronic atrophic gastritis (CAG). Methods We performed searches in seven databases. The randomized controlled trials (RCTs) comparing SJZD with standard medical care or inactive intervention for CAG were enrolled. Combined therapy of SJZD plus conventional therapies compared with conventional therapies alone was also retrieved. The primary outcome included the incidence of gastric cancer and the improvement of atrophy, intestinal metaplasia, and dysplasia based on the gastroscopy and pathology. The secondary outcomes were Helicobacter pylori clearance rate, quality of life, and adverse event/adverse drug reaction. Results Six RCTs met the inclusion criteria. The research quality was low in the trials. For the overall effect rate, pooled analysis from 4 trials showed that modified SJZD plus conventional medications exhibited a significant improvement (OR = 4.86; 95% CI: 2.80 to 8.44; P < 0.00001) and without significant heterogeneity compared with the conventional medications alone. None reported the adverse effect. Conclusions Modified SJZD combined with conventional western medicines appears to have benefits for CAG. Due to the limited number and methodological flaw, the beneficial and harmful effects of SJZD for CAG could not be identified. More high-quality clinical trials are needed to confirm the results.
Collapse
|
33
|
Plant Lectins as Medical Tools against Digestive System Cancers. Int J Mol Sci 2017; 18:ijms18071403. [PMID: 28671623 PMCID: PMC5535896 DOI: 10.3390/ijms18071403] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 06/21/2017] [Accepted: 06/25/2017] [Indexed: 12/21/2022] Open
Abstract
Digestive system cancers-those of the esophagus, stomach, small intestine, colon-rectum, liver, and pancreas-are highly related to genetics and lifestyle. Most are considered highly mortal due to the frequency of late diagnosis, usually in advanced stages, caused by the absence of symptoms or masked by other pathologies. Different tools are being investigated in the search of a more precise diagnosis and treatment. Plant lectins have been studied because of their ability to recognize and bind to carbohydrates, exerting a variety of biological activities on animal cells, including anticancer activities. The present report integrates existing information on the activity of plant lectins on various types of digestive system cancers, and surveys the current state of research into their properties for diagnosis and selective treatment.
Collapse
|
34
|
Luo B, Wang M, Hou N, Hu X, Jia G, Qin X, Zuo X, Liu Y, Luo K, Song W, Wang K, Pang M. ATP-Dependent Lon Protease Contributes to Helicobacter pylori-Induced Gastric Carcinogenesis. Neoplasia 2017; 18:242-52. [PMID: 27108387 PMCID: PMC4840290 DOI: 10.1016/j.neo.2016.03.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 02/18/2016] [Accepted: 03/01/2016] [Indexed: 12/20/2022] Open
Abstract
Helicobacter pylori infection is the strongest risk factor for development of gastric cancer. Host cellular stress responses, including inflammatory and immune responses, have been reported highly linked to H. pylori-induced carcinogenesis. However, whether mitochondrial regulation and metabolic reprogramming, which are potently associated with various cancers, play a role in H. pylori-induced gastric carcinogenesis is largely unknown. Here we revealed that Lon protease (Lonp1), which is a key inductive of mitochondrial unfolded protein response (UPR(mt)) and is required to maintain the mitochondrial quality, was greatly induced in H. pylori infected gastric epithelial cells. Importantly, we uncovered that knockdown of Lonp1 expression significantly diminished the metabolic switch to glycolysis and gastric cell proliferation associated with low multiplicity of H. pylori infection. In addition, Lonp1 overexpression in gastric epithelial cells also promoted glycolytic switch and cell overgrowth, suggesting H. pylori effect is Lonp1 dependent. We further demonstrated that H. pylori induced Lonp1 expression and cell overgrowth, at least partially, via HIF-1α regulation. Collectively, our results concluded the relevance of Lonp1 for cell proliferation and identified Lonp1 as a key regulator of metabolic reprogramming in H. pylori-induced gastric carcinogenesis.
Collapse
Affiliation(s)
- Bin Luo
- Department of Gastrointestinal Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu 610072, People's Republic of China
| | - Minggang Wang
- Department of Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100043, People's Republic of China
| | - Nengyi Hou
- Department of Gastrointestinal Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu 610072, People's Republic of China
| | - Xiao Hu
- Department of Gastroenterology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu 610072, People's Republic of China
| | - Guiqing Jia
- Department of Gastrointestinal Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu 610072, People's Republic of China
| | - Xianpeng Qin
- Department of Gastrointestinal Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu 610072, People's Republic of China
| | - Xiaofei Zuo
- Department of Gastrointestinal Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu 610072, People's Republic of China
| | - Yang Liu
- Department of Gastrointestinal Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu 610072, People's Republic of China
| | - Kun Luo
- Department of Gastrointestinal Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu 610072, People's Republic of China
| | - Wei Song
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Kang Wang
- Department of Gastrointestinal Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu 610072, People's Republic of China.
| | - Minghui Pang
- Department of Gastrointestinal Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu 610072, People's Republic of China.
| |
Collapse
|
35
|
Xu J, Zheng X, Cheng KK, Chang X, Shen G, Liu M, Wang Y, Shen J, Zhang Y, He Q, Dong J, Yang Z. NMR-based metabolomics Reveals Alterations of Electro-acupuncture Stimulations on Chronic Atrophic Gastritis Rats. Sci Rep 2017; 7:45580. [PMID: 28358020 PMCID: PMC5372362 DOI: 10.1038/srep45580] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 02/28/2017] [Indexed: 12/15/2022] Open
Abstract
Chronic atrophic gastritis (CAG) is a common gastrointestinal disease which has been considered as precancerous lesions of gastric carcinoma. Previously, electro-acupuncture stimulation has been shown to be effective in ameliorating symptoms of CAG. However the underlying mechanism of this beneficial treatment is yet to be established. In the present study, an integrated histopathological examination along with molecular biological assay, as well as 1H NMR analysis of multiple biological samples (urine, serum, stomach, cortex and medulla) were employed to systematically assess the pathology of CAG and therapeutic effect of electro-acupuncture stimulation at Sibai (ST 2), Liangmen (ST 21), and Zusanli (ST 36) acupoints located in the stomach meridian using a rat model of CAG. The current results showed that CAG caused comprehensive metabolic alterations including the TCA cycle, glycolysis, membrane metabolism and catabolism, gut microbiota-related metabolism. On the other hand, electro-acupuncture treatment was found able to normalize a number of CAG-induced metabolomics changes by alleviating membrane catabolism, restoring function of neurotransmitter in brain and partially reverse the CAG-induced perturbation in gut microbiota metabolism. These findings provided new insights into the biochemistry of CAG and mechanism of the therapeutic effect of electro-acupuncture stimulations.
Collapse
Affiliation(s)
- Jingjing Xu
- Department of Electronic Science, and Department of Traditional Chinese Medicine, Xiamen University, Xiamen 361005, China
| | - Xujuan Zheng
- Department of Electronic Science, and Department of Traditional Chinese Medicine, Xiamen University, Xiamen 361005, China
| | - Kian-Kai Cheng
- Department of Bioprocess &Polymer Engineering, Innovative Centre in Agritechnology, University Teknologi Malaysia, Johor 81310, Malaysia
| | - Xiaorong Chang
- College of Acupuncture and Moxibustion, Hunan University of Chinese Medicine, Changsha 410007, China
| | - Guiping Shen
- Department of Electronic Science, and Department of Traditional Chinese Medicine, Xiamen University, Xiamen 361005, China
| | - Mi Liu
- College of Acupuncture and Moxibustion, Hunan University of Chinese Medicine, Changsha 410007, China
| | - Yadong Wang
- Department of Electronic Science, and Department of Traditional Chinese Medicine, Xiamen University, Xiamen 361005, China
| | - Jiacheng Shen
- Department of Electronic Science, and Department of Traditional Chinese Medicine, Xiamen University, Xiamen 361005, China
| | - Yuan Zhang
- College of Acupuncture and Moxibustion, Hunan University of Chinese Medicine, Changsha 410007, China
| | - Qida He
- Department of Electronic Science, and Department of Traditional Chinese Medicine, Xiamen University, Xiamen 361005, China
| | - Jiyang Dong
- Department of Electronic Science, and Department of Traditional Chinese Medicine, Xiamen University, Xiamen 361005, China
| | - Zongbao Yang
- Department of Electronic Science, and Department of Traditional Chinese Medicine, Xiamen University, Xiamen 361005, China
| |
Collapse
|
36
|
Chen YL, Mo XQ, Huang GR, Huang YQ, Xiao J, Zhao LJ, Wei HY, Liang Q. Gene polymorphisms of pathogenic Helicobacter pylori in patients with different types of gastrointestinal diseases. World J Gastroenterol 2016; 22:9718-9726. [PMID: 27956795 PMCID: PMC5124976 DOI: 10.3748/wjg.v22.i44.9718] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 08/17/2016] [Accepted: 09/06/2016] [Indexed: 02/06/2023] Open
Abstract
Helicobacter pylori (H. pylori) is a kind of chronic infectious pathogen which can cause chronic gastritis, peptic ulcer, gastric cancer and other diseases. The genetic structure of the pathogenic genes of H. pylori varies largely, which contributes to the differences in virulence among various strains, and in clinical symptoms. Virulence genes of H. pylori can be categorized into three main classes: those related to adhesion and colonization, those related to gastric mucosal injury, and others. This review focuses on the relationship between genetic polymorphisms of the three classes of virulence genes of H. pylori and diseases. Most of the genetic polymorphisms of the main virulence factors of H. pylori are summarized in this paper.
Collapse
|
37
|
Sue S, Shibata W, Kameta E, Sato T, Ishii Y, Kaneko H, Miwa H, Sasaki T, Tamura T, Kondo M, Maeda S. Intestine-specific homeobox (ISX) induces intestinal metaplasia and cell proliferation to contribute to gastric carcinogenesis. J Gastroenterol 2016; 51:949-60. [PMID: 26872890 DOI: 10.1007/s00535-016-1176-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Accepted: 01/26/2016] [Indexed: 02/04/2023]
Abstract
BACKGROUND Helicobacter pylori induces chronic inflammation and intestinal metaplasia (IM) through genetic and epigenetic changes and activation of intracellular signaling pathways that contribute to gastric carcinogenesis. However, the precise mechanism of IM in gastric carcinogenesis has not been fully elucidated. We previously found that intestine-specific homeobox (ISX) mRNA expression increased in organoids cultured from Helicobacter-infected mouse mucosa. In this study, we elucidate the role of ISX in the development of IM and gastric carcinogenesis. METHODS ISX expression was assessed in Helicobacter-infected mouse and human gastric mucosa. MKN45 gastric cancer cells were co-cultured with H. pylori to determine whether Helicobacter infection induced ISX expression. We established stable MKN45 transfected cells expressing ISX (Stable-ISX MKN45) and performed a spheroid colony formation assay and a xenograft model. We performed ISX immunohistochemistry in cancer and adjacent gastric tissues. RESULTS ISX expression was increased in mouse and human gastric mucosa infected with Helicobacter. The presence of IM and H. pylori infection in human stomach was correlated with ISX expression. H. pylori induced ISX mRNA and protein expression. CDX1/2, cyclinD1, and MUC2 were upregulated in Stable-ISX MKN45, whereas MUC5AC was downregulated. Stable-ISX MKN45 cells formed more spheroid colonies, and had high tumorigenic ability. ISX expression in gastric cancer and adjacent mucosa were correlated. CONCLUSIONS ISX expression induced by H. pylori infection may lead to IM and hyperproliferation of gastric mucosa through CDX1/2 and cyclinD1 expression, contributing to gastric carcinogenesis.
Collapse
Affiliation(s)
- Soichiro Sue
- Department of Gastroenterology, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
| | - Wataru Shibata
- Department of Gastroenterology, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan.,Advanced Medical Research Center, Yokohama City University, Yokohama, Japan
| | - Eri Kameta
- Department of Gastroenterology, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
| | - Takeshi Sato
- Department of Gastroenterology, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
| | - Yasuaki Ishii
- Department of Gastroenterology, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
| | - Hiroaki Kaneko
- Department of Gastroenterology, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
| | - Haruo Miwa
- Department of Gastroenterology, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
| | - Tomohiko Sasaki
- Department of Gastroenterology, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
| | - Toshihide Tamura
- Department of Gastroenterology, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
| | - Masaaki Kondo
- Department of Gastroenterology, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
| | - Shin Maeda
- Department of Gastroenterology, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan.
| |
Collapse
|
38
|
Hanafy AS, El Hawary AT, Hamed EF, Hassaneen AM. Impact of Helicobacter pylori eradication on refractory thrombocytopenia in patients with chronic HCV awaiting antiviral therapy. Eur J Clin Microbiol Infect Dis 2016; 35:1171-6. [PMID: 27180243 DOI: 10.1007/s10096-016-2650-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 04/14/2016] [Indexed: 01/06/2023]
Abstract
The possibility of delaying treatment of HCV due to severe thrombocytopenia is challenging. This study aimed to detect the prevalence of active helicobacter infection as a claimed cause of thrombocytopenia in a cohort of Egyptian patients with chronic active HCV awaiting combined anti-viral therapy. The study included 400 chronic HCV patients with thrombocytopenia. Laboratory investigations included liver function tests, real time quantitative PCR, reticulocytic count, ESR, ANA, bone marrow aspiration, measurement of anti-helicobacter antibodies, and helicobacter stool antigen. Positive cases for active H. pylori were given the standard triple therapy for 2 weeks. Helicobacter stool antigen was detected 4 weeks after termination of therapy and the change in platelet count was detected 1 month after eradication. A total of 248 out of 281 seropositive patients for H. pylori (88.3 %) showed positive stool antigen (p = 0.01). Eradication was achieved in 169 (68.1 %) patients with platelet mean count 114.9 ± 18.8 × 10(3)/μl with highly significant statistical difference from pretreatment value (49.7 ± 9.2 × 10(3)/μl, p = 0.000). Seventy-nine patients were resistant to conventional triple therapy and given a 7-day course of moxifloxacin-based therapy; 61 patients responded (77.1 %) with mean platelet improvement from 76.4 ± 17.4 × 10(3)/μl to 104.2 ± 15.2 × 10(3)/μl (p = 0.000). The non-responders showed no improvement in their platelet count (74.6 ± 20.5 vs. 73.6 ± 15.3 × 10(3)/ul, P = 0.5). Eradication of active H. pylori in HCV augments platelet count and enhances the early start of antiviral therapy.
Collapse
Affiliation(s)
- A S Hanafy
- Internal Medicine Department, Hepatogastroenterology Division, Zagazig University, Zagazig, Egypt.
| | - A T El Hawary
- Internal Medicine Department, Hepatogastroenterology Division, Zagazig University, Zagazig, Egypt
| | - E F Hamed
- Internal Medicine Department, Hepatogastroenterology Division, Zagazig University, Zagazig, Egypt
| | - A M Hassaneen
- Clinical Pathology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt.,Clinical Pathology Department, Faculty of Medicine, Sulaiman AlRajhi Colleges, Al Bukayriyah, Saudi Arabia
| |
Collapse
|
39
|
Carrasco-Garcia E, Santos JC, Garcia I, Brianti M, García-Puga M, Pedrazzoli JJ, Matheu A, Ribeiro ML. Paradoxical role of SOX2 in gastric cancer. Am J Cancer Res 2016; 6:701-713. [PMID: 27186426 PMCID: PMC4859879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 02/01/2016] [Indexed: 06/05/2023] Open
Abstract
Sox2 is a critical regulator of embryogenesis and necessary for cellular reprogramming. It also plays an important role in tissue homeostasis and regeneration, maintaining the population of undifferentiated adult stem cells. Like various developmental and stem cell genes, SOX2 is aberrantly expressed and amplified in several human cancers. Moreover, functional studies have shown that it regulates many biological processes including cell proliferation, apoptosis, self-renewal and invasion. While it is oncogenic in most cancers, SOX2 activity is controversial in gastric cancer, where it might behave as a tumor suppressor in some situations. In this review, we discuss its role in cancer biology, with particular attention to what is known about the involvement of SOX2 in gastric cancer biology.
Collapse
Affiliation(s)
- Estefania Carrasco-Garcia
- Neurooncology group, Biodonostia Health Research InstitutePaseo Dr. Beguiristain s/n, San Sebastian 20014, Spain
| | - Juliana C Santos
- Unidade Integrada de Farmacologia e Gastroenterologia, Universidade São FranciscoBragança Paulista, SP, Brazil
| | - Idoia Garcia
- Neurooncology group, Biodonostia Health Research InstitutePaseo Dr. Beguiristain s/n, San Sebastian 20014, Spain
- IKERBASQUE, Basque FoundationSpain
| | - Mitsue Brianti
- Unidade Integrada de Farmacologia e Gastroenterologia, Universidade São FranciscoBragança Paulista, SP, Brazil
| | - Mikel García-Puga
- Neurooncology group, Biodonostia Health Research InstitutePaseo Dr. Beguiristain s/n, San Sebastian 20014, Spain
| | - José Jr Pedrazzoli
- Unidade Integrada de Farmacologia e Gastroenterologia, Universidade São FranciscoBragança Paulista, SP, Brazil
| | - Ander Matheu
- Neurooncology group, Biodonostia Health Research InstitutePaseo Dr. Beguiristain s/n, San Sebastian 20014, Spain
- IKERBASQUE, Basque FoundationSpain
| | - Marcelo L Ribeiro
- Unidade Integrada de Farmacologia e Gastroenterologia, Universidade São FranciscoBragança Paulista, SP, Brazil
| |
Collapse
|
40
|
Amieva M, Peek RM. Pathobiology of Helicobacter pylori-Induced Gastric Cancer. Gastroenterology 2016; 150:64-78. [PMID: 26385073 PMCID: PMC4691563 DOI: 10.1053/j.gastro.2015.09.004] [Citation(s) in RCA: 629] [Impact Index Per Article: 69.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 09/01/2015] [Accepted: 09/03/2015] [Indexed: 02/07/2023]
Abstract
Colonization of the human stomach by Helicobacter pylori and its role in causing gastric cancer is one of the richest examples of a complex relationship among human cells, microbes, and their environment. It is also a puzzle of enormous medical importance given the incidence and lethality of gastric cancer worldwide. We review recent findings that have changed how we view these relationships and affected the direction of gastric cancer research. For example, recent data have indicated that subtle mismatches between host and microbe genetic traits greatly affect the risk of gastric cancer. The ability of H pylori and its oncoprotein CagA to reprogram epithelial cells and activate properties of stemness show the sophisticated relationship between H pylori and progenitor cells in the gastric mucosa. The observation that cell-associated H pylori can colonize the gastric glands and directly affect precursor and stem cells supports these observations. The ability to mimic these interactions in human gastric organoid cultures as well as animal models will allow investigators to more fully unravel the extent of H pylori control on the renewing gastric epithelium. Finally, our realization that external environmental factors, such as dietary components and essential micronutrients, as well as the gastrointestinal microbiota, can change the balance between H pylori's activity as a commensal or a pathogen has provided direction to studies aimed at defining the full carcinogenic potential of this organism.
Collapse
Affiliation(s)
- Manuel Amieva
- Department of Microbiology and Immunology, Stanford University, Palo Alto, California; Department of Pediatrics, Stanford University, Palo Alto, California
| | - Richard M Peek
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University, Nashville, Tennessee; Department of Cancer Biology, Vanderbilt University, Nashville, Tennessee.
| |
Collapse
|
41
|
Sureban SM, Madhoun MF, May R, Qu D, Ali N, Fazili J, Weygant N, Chandrakesan P, Ding K, Lightfoot SA, Houchen CW. Plasma DCLK1 is a marker of hepatocellular carcinoma (HCC): Targeting DCLK1 prevents HCC tumor xenograft growth via a microRNA-dependent mechanism. Oncotarget 2015; 6:37200-15. [PMID: 26468984 PMCID: PMC4741924 DOI: 10.18632/oncotarget.5808] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 10/06/2015] [Indexed: 01/07/2023] Open
Abstract
Tumor stem cell marker Doublecortin-like kinase1 (DCLK1) is upregulated in several solid tumors. The role of DCLK1 in hepatocellular carcinoma (HCC) is unclear. We immunostained tissues from human livers with HCC, cirrhosis controls (CC), and non-cirrhosis controls (NCC) for DCLK1. Western blot and ELISA analyses for DCLK1 were performed with stored plasma samples. We observed increased immunoreactive DCLK1 in epithelia and stroma in HCC and CCs compared with NCCs, and observed a marked increase in plasma DCLK1 from patients with HCC compared with CC and NCC. Analysis of the Cancer Genome Atlas' HCC dataset revealed that DCLK1 is overexpressed in HCC tumors relative to adjacent normal tissues. High DCLK1-expressing cells had more epithelial-mesenchymal transition (EMT). Various tumor suppressor miRNAs were also downregulated in HCC tumors. We evaluated the effects of DCLK1 knockdown on Huh7.5-derived tumor xenograft growth. This was associated with growth arrest and a marked downregulation of cMYC, and EMT transcription factors ZEB1, ZEB2, SNAIL, and SLUG via let-7a and miR-200 miRNA-dependent mechanisms. Furthermore, upregulation of miR-143/145, a corresponding decrease in pluripotency factors OCT4, NANOG, KLF4, and LIN28, and a reduction of let-7a, miR-143/145, and miR-200-specific luciferase activity was observed. These findings suggest that the detection of elevated plasma DCLK1 may provide a cost-effective, less invasive tool for confirmation of clinical signs of cirrhosis, and a potential companion diagnostic marker for patients with cirrhosis and HCC. Our results support evaluating DCLK1 as a biomarker for detection and as a therapeutic target for eradicating HCC.
Collapse
MESH Headings
- Animals
- Biomarkers, Tumor/blood
- Biomarkers, Tumor/genetics
- Carcinoma, Hepatocellular/blood
- Carcinoma, Hepatocellular/enzymology
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/therapy
- Cell Line, Tumor
- Cell Proliferation
- Databases, Genetic
- Doublecortin-Like Kinases
- Gene Expression Regulation, Neoplastic
- Gene Knockdown Techniques
- Genetic Therapy/methods
- Humans
- Intracellular Signaling Peptides and Proteins/blood
- Intracellular Signaling Peptides and Proteins/genetics
- Kruppel-Like Factor 4
- Liver Cirrhosis/blood
- Liver Cirrhosis/enzymology
- Liver Neoplasms/blood
- Liver Neoplasms/enzymology
- Liver Neoplasms/genetics
- Liver Neoplasms/pathology
- Liver Neoplasms/therapy
- Mice, Nude
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Neoplastic Stem Cells/enzymology
- Neoplastic Stem Cells/pathology
- Phenotype
- Protein Serine-Threonine Kinases/blood
- Protein Serine-Threonine Kinases/genetics
- RNA Interference
- RNAi Therapeutics
- Retrospective Studies
- Signal Transduction
- Time Factors
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transfection
- Tumor Burden
- Up-Regulation
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Sripathi M. Sureban
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Veterans Affairs Medical Center, Oklahoma City, OK 73104, USA
- The Peggy and Charles Stephenson Cancer Center, Oklahoma City, OK 73104, USA
| | - Mohammad F. Madhoun
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Veterans Affairs Medical Center, Oklahoma City, OK 73104, USA
| | - Randal May
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Veterans Affairs Medical Center, Oklahoma City, OK 73104, USA
| | - Dongfeng Qu
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Veterans Affairs Medical Center, Oklahoma City, OK 73104, USA
- The Peggy and Charles Stephenson Cancer Center, Oklahoma City, OK 73104, USA
| | - Naushad Ali
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Veterans Affairs Medical Center, Oklahoma City, OK 73104, USA
- The Peggy and Charles Stephenson Cancer Center, Oklahoma City, OK 73104, USA
| | - Javid Fazili
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Veterans Affairs Medical Center, Oklahoma City, OK 73104, USA
| | - Nathaniel Weygant
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Parthasarathy Chandrakesan
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- The Peggy and Charles Stephenson Cancer Center, Oklahoma City, OK 73104, USA
| | - Kai Ding
- Department of Biostatistics & Epidemiology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Stanley A. Lightfoot
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Courtney W. Houchen
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Veterans Affairs Medical Center, Oklahoma City, OK 73104, USA
- The Peggy and Charles Stephenson Cancer Center, Oklahoma City, OK 73104, USA
- COARE Biotechnology Inc., Oklahoma City, OK 73104, USA
| |
Collapse
|
42
|
Tanabe S, Aoyagi K, Yokozaki H, Sasaki H. Regulated genes in mesenchymal stem cells and gastric cancer. World J Stem Cells 2015; 7:208-222. [PMID: 25621121 PMCID: PMC4300932 DOI: 10.4252/wjsc.v7.i1.208] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 09/18/2014] [Accepted: 11/17/2014] [Indexed: 02/07/2023] Open
Abstract
AIM To investigate the genes regulated in mesenchymal stem cells (MSCs) and diffuse-type gastric cancer (GC), gene expression was analyzed. METHODS Gene expression of MSCs and diffuse-type GC cells were analyzed by microarray. Genes related to stem cells, cancer and the epithelial-mesenchymal transition (EMT) were extracted from human gene lists using Gene Ontology and reference information. Gene panels were generated, and messenger RNA gene expression in MSCs and diffuse-type GC cells was analyzed. Cluster analysis was performed using the NCSS software. RESULTS The gene expression of regulator of G-protein signaling 1 (RGS1) was up-regulated in diffuse-type GC cells compared with MSCs. A panel of stem-cell related genes and genes involved in cancer or the EMT were examined. Stem-cell related genes, such as growth arrest-specific 6, musashi RNA-binding protein 2 and hairy and enhancer of split 1 (Drosophila), NOTCH family genes and Notch ligands, such as delta-like 1 (Drosophila) and Jagged 2, were regulated. CONCLUSION Expression of RGS1 is up-regulated, and genes related to stem cells and NOTCH signaling are altered in diffuse-type GC compared with MSCs.
Collapse
Affiliation(s)
- Shihori Tanabe
- Shihori Tanabe, Division of Safety Information on Drug, Food and Chemicals, National Institute of Health Sciences, Setagaya-ku, Tokyo 158-8501, Japan
| | - Kazuhiko Aoyagi
- Shihori Tanabe, Division of Safety Information on Drug, Food and Chemicals, National Institute of Health Sciences, Setagaya-ku, Tokyo 158-8501, Japan
| | - Hiroshi Yokozaki
- Shihori Tanabe, Division of Safety Information on Drug, Food and Chemicals, National Institute of Health Sciences, Setagaya-ku, Tokyo 158-8501, Japan
| | - Hiroki Sasaki
- Shihori Tanabe, Division of Safety Information on Drug, Food and Chemicals, National Institute of Health Sciences, Setagaya-ku, Tokyo 158-8501, Japan
| |
Collapse
|
43
|
Zhao Y, Feng F, Zhou YN. Stem cells in gastric cancer. World J Gastroenterol 2015; 21:112-123. [PMID: 25574084 PMCID: PMC4284326 DOI: 10.3748/wjg.v21.i1.112] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 09/19/2014] [Accepted: 10/21/2014] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer (GC) is one of the leading causes of cancer-related mortality worldwide. Cancer stem cells (CSCs), which were first identified in acute myeloid leukemia and subsequently in a large array of solid tumors, play important roles in cancer initiation, dissemination and recurrence. CSCs are often transformed tissue-specific stem cells or de-differentiated transit amplifying progenitor cells. Several populations of multipotent gastric stem cells (GSCs) that reside in the stomach have been determined to regulate physiological tissue renewal and injury repair. These populations include the Villin+ and Lgr5+ GSCs in the antrum, the Troy+ chief cells in the corpus, and the Sox2+ GSCs that are found in both the antrum and the corpus. The disruption of tumor suppressors in Villin+ or Lgr5+ GSCs leads to GC in mouse models. In addition to residing GSCs, bone marrow-derived cells can initiate GC in a mouse model of chronic Helicobacter infection. Furthermore, expression of the cell surface markers CD133 or CD44 defines gastric CSCs in mouse models and in human primary GC tissues and cell lines. Targeted elimination of CSCs effectively reduces tumor size and grade in mouse models. In summary, the recent identification of normal GSCs and gastric CSCs has greatly improved our understanding of the molecular and cellular etiology of GC and will aid in the development of effective therapies to treat patients.
Collapse
|
44
|
Pulikkot S, Greish YE, Mourad AI, Karam SM. Establishment of a three-dimensional culture system of gastric stem cells supporting mucous cell differentiation using microfibrous polycaprolactone scaffolds. Cell Prolif 2014; 47:553-563. [PMID: 25345659 PMCID: PMC6495834 DOI: 10.1111/cpr.12141] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Accepted: 08/02/2014] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVES To generate various polycaprolactone (PCL) scaffolds and test their suitability for growth and differentiation of immortalized mouse gastric stem (mGS) cells. MATERIALS AND METHODS Non-porous, microporous and three-dimensional electrospun microfibrous PCL scaffolds were prepared and characterized for culture of mGS cells. First, growth of mGS cells was compared on these different scaffolds after 3 days culture, using viability assay and microscopy. Secondly, growth pattern of the cells on microfibrous scaffolds was studied after 3, 6, 9 and 12 days culture using DNA PicoGreen assay and scanning electron microscopy. Thirdly, differentiation of the cells grown on microfibrous scaffolds for 3 and 9 days was analysed using lectin/immunohistochemistry. RESULTS The mGS cells grew preferentially on microfibrous scaffolds. From 3 to 6 days, there was increase in cell number, followed by reduction by days 9 and 12. To test whether the reduction in cell number was associated with cell differentiation, cryosections of cell-containing scaffolds cultured for 3 and 9 days were probed with gastric epithelial cell differentiation markers. On day 3, none of the markers examined bound to the cells. However by day 9, approximately, 50% of them bound to N-acetyl-d-glucosamine-specific lectin and anti-trefoil factor 2 antibodies, indicating their differentiation into glandular mucus-secreting cells. CONCLUSIONS Microfibrous PCL scaffolds supported growth and differentiation of mGS cells into mucus-secreting cells. These data will help lay groundwork for future experiments to explore use of gastric stem cells and PCL scaffolds in stomach tissue engineering.
Collapse
Affiliation(s)
- S. Pulikkot
- Department of AnatomyCollege of Medicine and Health SciencesUnited Arab Emirates UniversityAl AinUnited Arab Emirates
- Department of ChemistryCollege of ScienceUnited Arab Emirates UniversityAl AinUnited Arab Emirates
| | - Y. E. Greish
- Department of ChemistryCollege of ScienceUnited Arab Emirates UniversityAl AinUnited Arab Emirates
| | - A‐H. I. Mourad
- Department of Mechanical EngineeringCollege of EngineeringUnited Arab Emirates UniversityAl AinUnited Arab Emirates
| | - S. M. Karam
- Department of AnatomyCollege of Medicine and Health SciencesUnited Arab Emirates UniversityAl AinUnited Arab Emirates
| |
Collapse
|
45
|
Lin D, Koskella B. Friend and foe: factors influencing the movement of the bacterium Helicobacter pylori along the parasitism-mutualism continuum. Evol Appl 2014; 8:9-22. [PMID: 25667600 PMCID: PMC4310578 DOI: 10.1111/eva.12231] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 10/14/2014] [Indexed: 12/11/2022] Open
Abstract
Understanding the transition of bacterial species from commensal to pathogen, or vice versa, is a key application of evolutionary theory to preventative medicine. This requires working knowledge of the molecular interaction between hosts and bacteria, ecological interactions among microbes, spatial variation in bacterial prevalence or host life history, and evolution in response to these factors. However, there are very few systems for which such broad datasets are available. One exception is the gram-negative bacterium, Helicobacter pylori, which infects upwards of 50% of the global human population. This bacterium is associated with a wide breadth of human gastrointestinal disease, including numerous cancers, inflammatory disorders, and pathogenic infections, but is also known to confer fitness benefits to its host both indirectly, through interactions with other pathogens, and directly. Outstanding questions are therefore why, when, and how this bacterium transitions along the parasitism–mutualism continuum. We examine known virulence factors, genetic predispositions of the host, and environmental contributors that impact progression of clinical disease and help define geographical trends in disease incidence. We also highlight the complexity of the interaction and discuss future therapeutic strategies for disease management and public health in light of the longstanding evolutionary history between the bacterium and its human host.
Collapse
|
46
|
Roy B, Chattopadhyay G, Mishra D, Das T, Chakraborty S, Maiti TK. On-chip lectin microarray for glycoprofiling of different gastritis types and gastric cancer. BIOMICROFLUIDICS 2014; 8:034107. [PMID: 24959308 PMCID: PMC4048441 DOI: 10.1063/1.4882778] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 05/29/2014] [Indexed: 05/30/2023]
Abstract
An on-chip lectin microarray based glycomic approach is employed to identify glyco markers for different gastritis and gastric cancer. Changes in protein glycosylation have impact on biological function and carcinogenesis. These altered glycosylation patterns in serum proteins and membrane proteins of tumor cells can be unique markers of cancer progression and hence have been exploited to diagnose various stages of cancer through lectin microarray technology. In the present work, we aimed to study the alteration of glycan structure itself in different stages of gastritis and gastric cancer thoroughly. In order to perform the study from both serum and tissue glycoproteins in an efficient and high-throughput manner, we indigenously developed and employed lectin microarray integrated on a microfluidic lab-on-a-chip platform. We analyzed serum and gastric biopsy samples from 8 normal, 15 chronic Type-B gastritis, 10 chronic Type-C gastritis, and 6 gastric adenocarcinoma patients and found that the glycoprofile obtained from tissue samples was more distinctive than that of the sera samples. We were able to establish signature glycoprofile for the three disease groups, that were absent in healthy normal individuals. In addition, our findings elucidated certain novel signature glycan expression in chronic gastritis and gastric cancer. In silico analysis showed that glycoprofile of chronic gastritis and gastric adenocarcinoma formed close clusters, confirming the previously hypothesized linkage between them. This signature can be explored further as gastric cancer marker to develop novel analytical tools and obtain in-depth understanding of the disease prognosis.
Collapse
Affiliation(s)
- Bibhas Roy
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Gautam Chattopadhyay
- Department of Surgical Gastroenterology, Kolkata Medical College, Kolkata, India
| | - Debasish Mishra
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Tamal Das
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Suman Chakraborty
- Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Tapas K Maiti
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
47
|
Fischer W, Breithaupt U, Kern B, Smith SI, Spicher C, Haas R. A comprehensive analysis of Helicobacter pylori plasticity zones reveals that they are integrating conjugative elements with intermediate integration specificity. BMC Genomics 2014; 15:310. [PMID: 24767410 PMCID: PMC4234485 DOI: 10.1186/1471-2164-15-310] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 04/16/2014] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The human gastric pathogen Helicobacter pylori is a paradigm for chronic bacterial infections. Its persistence in the stomach mucosa is facilitated by several mechanisms of immune evasion and immune modulation, but also by an unusual genetic variability which might account for the capability to adapt to changing environmental conditions during long-term colonization. This variability is reflected by the fact that almost each infected individual is colonized by a genetically unique strain. Strain-specific genes are dispersed throughout the genome, but clusters of genes organized as genomic islands may also collectively be present or absent. RESULTS We have comparatively analysed such clusters, which are commonly termed plasticity zones, in a high number of H. pylori strains of varying geographical origin. We show that these regions contain fixed gene sets, rather than being true regions of genome plasticity, but two different types and several subtypes with partly diverging gene content can be distinguished. Their genetic diversity is incongruent with variations in the rest of the genome, suggesting that they are subject to horizontal gene transfer within H. pylori populations. We identified 40 distinct integration sites in 45 genome sequences, with a conserved heptanucleotide motif that seems to be the minimal requirement for integration. CONCLUSIONS The significant number of possible integration sites, together with the requirement for a short conserved integration motif and the high level of gene conservation, indicates that these elements are best described as integrating conjugative elements (ICEs) with an intermediate integration site specificity.
Collapse
Affiliation(s)
- Wolfgang Fischer
- Max von Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie, Ludwig-Maximilians-Universität, D-80336 Munich, Germany.
| | | | | | | | | | | |
Collapse
|
48
|
Mutoh H, Sashikawa M, Sakamoto H, Tateno T. Cyclooxygenase 2 in gastric carcinoma is expressed in doublecortin- and CaM kinase-like-1-positive tuft cells. Gut Liver 2014; 8:508-18. [PMID: 25228975 PMCID: PMC4164254 DOI: 10.5009/gnl13237] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2013] [Revised: 09/04/2013] [Accepted: 09/05/2013] [Indexed: 12/13/2022] Open
Abstract
Background/Aims Doublecortin and CaM kinase-like-1 (DCAMKL1) is a marker of stem cells expressed predominantly in the crypt base in the intestine. However, DCAMKL1-positive cells have been shown to be differentiated tuft cells rather than quiescent progenitors. Tuft cells are the only epithelial cells that express cyclooxygenase 2 (COX-2) in the normal intestinal epithelium. We previously generated Cdx2-transgenic mice as model mice for intestinal metaplasia and gastric carcinoma. In the current study, we investigated the association between COX-2 and DCAMKL1 in gastric carcinoma. Methods We examined the association between COX-2 and DCAMKL1 expression in gastric carcinomas in clinical samples (early gastric well-differentiated adenocarcinoma) and Cdx2-transgenic mice; and the DCAMKL1-transgenic mouse stomach using immunohistochemistry and quantitative real-time polymerase chain reaction. Results The COX-2-expressing cells were scattered, not diffusely expressed, in gastric carcinomas from humans and Cdx2-transgenic mice. DCAMKL1-positive cells were also scattered in the gastric carcinomas, indicating that tuft cells could still be present in gastric carcinoma. COX-2 was expressed in DCAMKL1-positive tuft cells in Cdx2- and DCAMKL1-transgenic mouse stomachs, whereas the Sox9 transcription factor was ubiquitously expressed in gastric carcinomas, including COX-2-positive cells. Conclusions COX-2 is expressed in DCAMKL1-expressing quiescent tuft cells in gastric carcinoma.
Collapse
Affiliation(s)
- Hiroyuki Mutoh
- Division of Gastroenterology, Department of Medicine, Jichi Medical University, Tochigi, Japan
| | - Miho Sashikawa
- Division of Gastroenterology, Department of Medicine, Jichi Medical University, Tochigi, Japan
| | - Hirotsugu Sakamoto
- Division of Gastroenterology, Department of Medicine, Jichi Medical University, Tochigi, Japan
| | - Tomoko Tateno
- Division of Gastroenterology, Department of Medicine, Jichi Medical University, Tochigi, Japan
| |
Collapse
|
49
|
Khalilpour A, Santhanam A, Wei LC, Saadatnia G, Velusamy N, Osman S, Mohamad AM, Noordin R. Antigenic proteins of Helicobacter pylori of potential diagnostic value. Asian Pac J Cancer Prev 2014; 14:1635-42. [PMID: 23679248 DOI: 10.7314/apjcp.2013.14.3.1635] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Helicobacter pylori antigen was prepared from an isolate from a patient with a duodenal ulcer. Serum samples were obtained from culture-positive H. pylori infected patients with duodenal ulcers, gastric ulcers and gastritis (n=30). As controls, three kinds of sera without detectable H. pylori IgG antibodies were used: 30 from healthy individuals without history of gastric disorders, 30 from patients who were seen in the endoscopy clinic but were H. pylori culture negative and 30 from people with other diseases. OFF-GEL electrophoresis, SDS-PAGE and Western blots of individual serum samples were used to identify protein bands with good sensitivity and specificity when probed with the above sera and HRP-conjugated anti-human IgG. Four H. pylori protein bands showed good (≥ 70%) sensitivity and high specificity (98-100%) towards anti-Helicobacter IgG antibody in culture- positive patients sera and control sera, respectively. The identities of the antigenic proteins were elucidated by mass spectrometry. The relative molecular weights and the identities of the proteins, based on MALDI TOF/ TOF, were as follows: CagI (25 kDa), urease G accessory protein (25 kDa), UreB (63 kDa) and proline/pyrroline- 5-carboxylate dehydrogenase (118 KDa). These identified proteins, singly and/or in combinations, may be useful for diagnosis of H. pylori infection in patients.
Collapse
Affiliation(s)
- Akbar Khalilpour
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Minden, Malaysia
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Staines Boone AT, Torres Martínez MG, López Herrera G, de Leija Portilla JO, Espinosa Padilla SE, Espinosa Rosales FJ, Lugo Reyes SO. Gastric Adenocarcinoma in the Context of X-linked Agammaglobulinemia. J Clin Immunol 2013; 34:134-7. [DOI: 10.1007/s10875-013-9971-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 11/18/2013] [Indexed: 11/28/2022]
|