1
|
Wang H, Cui B, Yan H, Wu S, Wang K, Yang G, Jiang J, Li Y. Metformin inhibits EV-A71 and CVA16 infections by regulating TRIB3-SCARB2 axis and activating AMPK. Antiviral Res 2025; 235:106081. [PMID: 39826812 DOI: 10.1016/j.antiviral.2025.106081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 01/07/2025] [Accepted: 01/14/2025] [Indexed: 01/22/2025]
Abstract
Our previous study had found that cellular pseudokinase tribbles 3 (TRIB3) facilitates the infection of enterovirus A71 (EV-A71) via upregulating the protein level of EV-A71 receptor scavenger receptor class B member 2 (SCARB2). In the present study, we used metformin, which had been reported to down-regulate TRIB3 expression, to verify the potential of TRIB3 as an antiviral target. Here, we found that metformin can indeed impede the replication of EV-A71 and Coxsackievirus A16 (CVA16) through inhibiting the transcription of TRIB3 to indirectly down-regulate SCARB2 protein levels to block viral infection. Importantly, we also found that metformin can inhibit the replication of EV-A71 and CVA16 in a TRIB3-independent manner. In fact, we found that both metformin and cellular AMP-activated protein kinase (AMPK) agonist AICAR can inhibit the replication of EV-A71 and CVA16 by pharmacologically activating AMPK. Moreover, AMPK phosphorylation specific inhibitor Compound C treatment can reverse the antiviral effect of metformin, indicating that metformin can indeed play an antiviral role through regulating AMPK. More importantly, we confirmed that metformin could effectively protected mice from lethal EV-A71 infection. Metformin treatment decreased the levels of EV-A71 VP1 protein and viral RNA in the infected muscles, and improved muscle pathology. These findings suggest that TRIB3 does have potential as a target for antiviral drugs, and metformin may be a potential agent or supplement against enterovirus infection.
Collapse
Affiliation(s)
- Huiqiang Wang
- CAMS Key Laboratory of Antiviral Drug Research, Beijing Key Laboratory of Technology and Application for Anti-Infective New Drugs Research and Development, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Boming Cui
- CAMS Key Laboratory of Antiviral Drug Research, Beijing Key Laboratory of Technology and Application for Anti-Infective New Drugs Research and Development, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Haiyan Yan
- CAMS Key Laboratory of Antiviral Drug Research, Beijing Key Laboratory of Technology and Application for Anti-Infective New Drugs Research and Development, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shuo Wu
- CAMS Key Laboratory of Antiviral Drug Research, Beijing Key Laboratory of Technology and Application for Anti-Infective New Drugs Research and Development, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Kun Wang
- CAMS Key Laboratory of Antiviral Drug Research, Beijing Key Laboratory of Technology and Application for Anti-Infective New Drugs Research and Development, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ge Yang
- CAMS Key Laboratory of Antiviral Drug Research, Beijing Key Laboratory of Technology and Application for Anti-Infective New Drugs Research and Development, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiandong Jiang
- CAMS Key Laboratory of Antiviral Drug Research, Beijing Key Laboratory of Technology and Application for Anti-Infective New Drugs Research and Development, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Yuhuan Li
- CAMS Key Laboratory of Antiviral Drug Research, Beijing Key Laboratory of Technology and Application for Anti-Infective New Drugs Research and Development, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
2
|
Haase JA, Baheerathan A, Zhang X, Fu RM, Nocke MK, Decker C, Dao Thi VL, Todt D, Neyts J, Kaptein SJ, Steinmann E, Kinast V. The tyrosine kinase Yes1 is a druggable host factor of HEV. Hepatol Commun 2024; 8:e0553. [PMID: 39560373 PMCID: PMC11495762 DOI: 10.1097/hc9.0000000000000553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 08/19/2024] [Indexed: 11/20/2024] Open
Abstract
BACKGROUND HEV is a positive-sense, single-stranded RNA virus of the Hepeviridae family. Although HEV accounts for more than 3 million symptomatic cases of viral hepatitis per year, specific anti-HEV therapy and knowledge about HEV pathogenesis are scarce. METHODS To gain a deeper understanding of the HEV infectious cycle and guide the development of novel antiviral strategies, we here used an RNAi mini screen targeting a selection of kinases, including mitogen-activated protein kinases, receptor tyrosine kinases, and Src-family kinases. Further, we used state-of-the-art HEV infection models, including primary human hepatocytes and athymic nude rats. RESULTS Upon knockdown of the Src-family kinase Yes1, a significant reduction of HEV susceptibility could be observed, suggesting an important role of Yes1 in the HEV infectious cycle. Selective inhibition of Yes1 kinase activity resulted in significant inhibition of HEV infection in hepatoma cells and primary human hepatocytes, as well as in a rat HEV in vivo model system. Subsequent analysis of Y1KI during the HEV infectious life cycle indicated a role of Yes1 kinase activity in the early onset of HEV infection. CONCLUSIONS We identified the dependence of HEV on Yes1 signaling, which may contribute to the so far scarce knowledge of HEV's pathogenesis in the future. Moreover, we provide Y1KI as a novel antiviral drug candidate specifically targeting an HEV host factor.
Collapse
Affiliation(s)
- Jil Alexandra Haase
- Department of Molecular and Medical Virology, Faculty of Medicine, Ruhr University Bochum, Bochum, Germany
| | - Abarna Baheerathan
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Xin Zhang
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Rebecca Menhua Fu
- Schaller Research Group, Department of Infectious Diseases and Virology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Biosciences International Graduate School, Heidelberg University, Heidelberg, Germany
| | - Maximilian Klaus Nocke
- Department of Molecular and Medical Virology, Faculty of Medicine, Ruhr University Bochum, Bochum, Germany
| | - Charlotte Decker
- Schaller Research Group, Department of Infectious Diseases and Virology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Biosciences International Graduate School, Heidelberg University, Heidelberg, Germany
| | - Viet Loan Dao Thi
- Schaller Research Group, Department of Infectious Diseases and Virology, Heidelberg University Hospital, Heidelberg, Germany
- German Centre for Infection Research (DZIF), Partner Site Heidelberg, Heidelberg, Germany
| | - Daniel Todt
- Department of Molecular and Medical Virology, Faculty of Medicine, Ruhr University Bochum, Bochum, Germany
- European Virus Bioinformatics Centre (EVBC), Jena, Germany
| | - Johan Neyts
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Suzanne J.F. Kaptein
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Eike Steinmann
- Department of Molecular and Medical Virology, Faculty of Medicine, Ruhr University Bochum, Bochum, Germany
- German Centre for Infection Research (DZIF), External Partner Site, Bochum, Germany
| | - Volker Kinast
- Department of Molecular and Medical Virology, Faculty of Medicine, Ruhr University Bochum, Bochum, Germany
- Department of Medical Microbiology and Virology, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| |
Collapse
|
3
|
Li G, Li Y, Tang X, Wang L, Yue S, He S, Li T. LKB1 suppresses KSHV reactivation and promotes primary effusion lymphoma progression. J Virol 2024; 98:e0060424. [PMID: 39194241 PMCID: PMC11406988 DOI: 10.1128/jvi.00604-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/19/2024] [Indexed: 08/29/2024] Open
Abstract
Viruses normally reprogram the host cell metabolic pathways as well as metabolic sensors to facilitate their persistence. The serine-threonine liver kinase B1 (LKB1) is a master upstream kinase of 5'-AMP-activated protein kinase (AMPK) that senses the energy status and therefore regulates the intracellular metabolic homeostasis. Previous studies showed that AMPK restricts Kaposi's sarcoma-associated herpesvirus (KSHV) lytic replication in endothelial cells during primary infection and promotes primary effusion lymphoma (PEL) cell survival. However, the role of LKB1 in KSHV lytic reactivation and KSHV-associated malignancies is unclear. In this study, we found that LKB1 is phosphorylated or activated in KSHV-positive PEL cells. Mechanistically, KSHV-encoded vCyclin mediated LKB1 activation in PEL cells, as vCyclin knockout ablated, while vCyclin overexpression enhanced LKB1 activation. Furthermore, knockdown of LKB1 inactivated AMPK and induced KSHV reactivation, as indicated by the increased expression of viral lytic genes and the increased virions in supernatants. Accordingly, AMPK inhibition by functional knockdown or a pharmacologic inhibitor, Compound C, promoted KSHV reactivation in PEL cells. Furthermore, inhibition of either LKB1 or AMPKα1 efficiently induced cell death by apoptosis of PEL cells both in vitro and in vivo. Together, these results identify LKB1 as a vulnerable target for PEL, which could be potentially exploited for treating other virus-associated diseases.IMPORTANCEKaposi's sarcoma-associated herpesvirus (KSHV) is an oncogenic virus associated with several human cancers, such as primary effusion lymphoma (PEL). Here, we showed that serine-threonine liver kinase B1 (LKB1), upstream of 5' AMP-activated protein kinase (AMPK), is activated by KSHV-encoded vCyclin and maintains KSHV latency in PEL cells. Inhibition of either LKB1 or AMPK enhances KSHV lytic replication from latency, which at least partially accounts for PEL cell death by apoptosis. Compound C, a potent AMPK inhibitor, induced KSHV reactivation and efficiently inhibited PEL progression in vivo. Thus, our work revealed that LKB1 is a potential therapeutic target for KSHV-associated cancers.
Collapse
Affiliation(s)
- Guanya Li
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Yinan Li
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Xinyu Tang
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Lijie Wang
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Shusheng Yue
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Shanping He
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Tingting Li
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| |
Collapse
|
4
|
Ashraf N, Van Nostrand JL. Fine-tuning AMPK in physiology and disease using point-mutant mouse models. Dis Model Mech 2024; 17:dmm050798. [PMID: 39136185 PMCID: PMC11340815 DOI: 10.1242/dmm.050798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024] Open
Abstract
AMP-activated protein kinase (AMPK) is an evolutionarily conserved serine/threonine kinase that monitors the cellular energy status to adapt it to the fluctuating nutritional and environmental conditions in an organism. AMPK plays an integral part in a wide array of physiological processes, such as cell growth, autophagy and mitochondrial function, and is implicated in diverse diseases, including cancer, metabolic disorders, cardiovascular diseases and neurodegenerative diseases. AMPK orchestrates many different physiological outcomes by phosphorylating a broad range of downstream substrates. However, the importance of AMPK-mediated regulation of these substrates in vivo remains an ongoing area of investigation to better understand its precise role in cellular and metabolic homeostasis. Here, we provide a comprehensive overview of our understanding of the kinase function of AMPK in vivo, as uncovered from mouse models that harbor phosphorylation mutations in AMPK substrates. We discuss some of the inherent limitations of these mouse models, highlight the broader implications of these studies for understanding human health and disease, and explore the valuable insights gained that could inform future therapeutic strategies for the treatment of metabolic and non-metabolic disorders.
Collapse
Affiliation(s)
- Naghmana Ashraf
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jeanine L. Van Nostrand
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
5
|
Landis D, Sutter A, Khemka S, Songtanin B, Nichols J, Nugent K. Metformin as adjuvant treatment in hepatitis C virus infections and associated complications. Am J Med Sci 2024; 368:90-98. [PMID: 38701970 DOI: 10.1016/j.amjms.2024.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 03/27/2024] [Accepted: 04/29/2024] [Indexed: 05/06/2024]
Abstract
Hepatitis C virus is an important global cause of hepatitis and subsequently cirrhosis and hepatocellular carcinoma. These infections may also cause extrahepatic manifestations, including insulin resistance and type 2 diabetes mellitus. These two complications can potentially reduce sustained virologic responses (SVR) in some drug regimens for this infection. Metformin has important biochemical effects that can limit viral replication in cellular cultures and can improve the response to antiviral drug therapy based on ribavirin and interferon. Clinical studies comparing treatment regimens with interferon, ribavirin, metformin with these regimens without metformin have demonstrated that metformin increases viral clearance, establishes higher rates of SVRs, and increases insulin sensitivity. Metformin also reduces the frequency of hepatocellular carcinoma in patients who have had SVRs. Larger treatment trials are needed to determine metformin's short-term and long-term treatment effects in patients with diabetes using newer antiviral drugs. In particular, if metformin reduces the frequency of cirrhosis and hepatocellular carcinoma, this would significantly reduce the morbidity and mortality associated with this infection.
Collapse
Affiliation(s)
- Dylan Landis
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Alex Sutter
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Sachi Khemka
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Busara Songtanin
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Jacob Nichols
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Kenneth Nugent
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States.
| |
Collapse
|
6
|
Yang X, Tian S, Min Z, Garbarino E, Ma J, Jia J, Tang H, Li L. AMPK restricts HHV-6A replication by inhibiting glycolysis and mTOR signaling. Virology 2024; 595:110080. [PMID: 38631099 DOI: 10.1016/j.virol.2024.110080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 03/22/2024] [Accepted: 04/03/2024] [Indexed: 04/19/2024]
Abstract
AMP-activated protein kinase (AMPK) is a cellular energy sensor regulating metabolic homeostasis. In this study, we investigated the role of AMPK in response to human herpesvirus 6A (HHV-6A) infection. We show that HHV-6A infection significantly downregulates the active phosphorylated state of AMPK in infected T cells. Pharmacological activation of AMPK highly attenuated HHV-6A propagation. Mechanistically, we found that the activation of AMPK by AICAR blocked HHV-6-induced glycolysis by inhibiting glucose metabolism and lactate secretion, as well as decreasing expressions of key glucose transporters and glycolytic enzymes. In addition, mTOR signaling has been inactivated in HHV-6A infected T cells by AICAR treatment. We also showed that HHV-6A infection of human umbilical cord blood mononuclear cells (CBMCs) reduced AMPK activity whereas the activation of AMPK by metformin drastically reduced HHV-6A DNA replication and virions production. Taken together, this study demonstrates that AMPK is a promising antiviral therapeutic target against HHV-6A infection.
Collapse
Affiliation(s)
- Xiaodi Yang
- Department of Medical Genetics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Siyu Tian
- Department of Medical Genetics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Zhujiang Min
- Department of Medical Genetics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Emanuela Garbarino
- Department of Immunology, National Vaccine Innovation Platform, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Jingjing Ma
- Department of Immunology, National Vaccine Innovation Platform, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Junli Jia
- Department of Immunology, National Vaccine Innovation Platform, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Huamin Tang
- Department of Immunology, National Vaccine Innovation Platform, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China; The Laboratory Center for Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China.
| | - Lingyun Li
- Department of Medical Genetics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
7
|
Zakirova NF, Khomich OA, Smirnova OA, Molle J, Duponchel S, Yanvarev DV, Valuev-Elliston VT, Monnier L, Grigorov B, Ivanova ON, Karpenko IL, Golikov MV, Bovet C, Rindlisbacher B, Khomutov AR, Kochetkov SN, Bartosch B, Ivanov AV. Hepatitis C Virus Dysregulates Polyamine and Proline Metabolism and Perturbs the Urea Cycle. Cells 2024; 13:1036. [PMID: 38920664 PMCID: PMC11201506 DOI: 10.3390/cells13121036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/05/2024] [Accepted: 06/11/2024] [Indexed: 06/27/2024] Open
Abstract
Hepatitis C virus (HCV) is an oncogenic virus that causes chronic liver disease in more than 80% of patients. During the last decade, efficient direct-acting antivirals were introduced into clinical practice. However, clearance of the virus does not reduce the risk of end-stage liver diseases to the level observed in patients who have never been infected. So, investigation of HCV pathogenesis is still warranted. Virus-induced changes in cell metabolism contribute to the development of HCV-associated liver pathologies. Here, we studied the impact of the virus on the metabolism of polyamines and proline as well as on the urea cycle, which plays a crucial role in liver function. It was found that HCV strongly suppresses the expression of arginase, a key enzyme of the urea cycle, leading to the accumulation of arginine, and up-regulates proline oxidase with a concomitant decrease in proline concentrations. The addition of exogenous proline moderately suppressed viral replication. HCV up-regulated transcription but suppressed protein levels of polyamine-metabolizing enzymes. This resulted in a decrease in polyamine content in infected cells. Finally, compounds targeting polyamine metabolism demonstrated pronounced antiviral activity, pointing to spermine and spermidine as compounds affecting HCV replication. These data expand our understanding of HCV's imprint on cell metabolism.
Collapse
Affiliation(s)
- Natalia F. Zakirova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (N.F.Z.); (O.A.K.); (O.A.S.); (D.V.Y.); (V.T.V.-E.); (O.N.I.); (I.L.K.); (M.V.G.); (A.R.K.); (S.N.K.)
| | - Olga A. Khomich
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (N.F.Z.); (O.A.K.); (O.A.S.); (D.V.Y.); (V.T.V.-E.); (O.N.I.); (I.L.K.); (M.V.G.); (A.R.K.); (S.N.K.)
- INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Université Claude Bernard Lyon 1, 69434 Lyon, France; (J.M.); (L.M.); (B.G.); (B.B.)
| | - Olga A. Smirnova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (N.F.Z.); (O.A.K.); (O.A.S.); (D.V.Y.); (V.T.V.-E.); (O.N.I.); (I.L.K.); (M.V.G.); (A.R.K.); (S.N.K.)
| | - Jennifer Molle
- INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Université Claude Bernard Lyon 1, 69434 Lyon, France; (J.M.); (L.M.); (B.G.); (B.B.)
| | - Sarah Duponchel
- INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Université Claude Bernard Lyon 1, 69434 Lyon, France; (J.M.); (L.M.); (B.G.); (B.B.)
| | - Dmitry V. Yanvarev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (N.F.Z.); (O.A.K.); (O.A.S.); (D.V.Y.); (V.T.V.-E.); (O.N.I.); (I.L.K.); (M.V.G.); (A.R.K.); (S.N.K.)
| | - Vladimir T. Valuev-Elliston
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (N.F.Z.); (O.A.K.); (O.A.S.); (D.V.Y.); (V.T.V.-E.); (O.N.I.); (I.L.K.); (M.V.G.); (A.R.K.); (S.N.K.)
| | - Lea Monnier
- INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Université Claude Bernard Lyon 1, 69434 Lyon, France; (J.M.); (L.M.); (B.G.); (B.B.)
| | - Boyan Grigorov
- INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Université Claude Bernard Lyon 1, 69434 Lyon, France; (J.M.); (L.M.); (B.G.); (B.B.)
| | - Olga N. Ivanova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (N.F.Z.); (O.A.K.); (O.A.S.); (D.V.Y.); (V.T.V.-E.); (O.N.I.); (I.L.K.); (M.V.G.); (A.R.K.); (S.N.K.)
| | - Inna L. Karpenko
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (N.F.Z.); (O.A.K.); (O.A.S.); (D.V.Y.); (V.T.V.-E.); (O.N.I.); (I.L.K.); (M.V.G.); (A.R.K.); (S.N.K.)
| | - Mikhail V. Golikov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (N.F.Z.); (O.A.K.); (O.A.S.); (D.V.Y.); (V.T.V.-E.); (O.N.I.); (I.L.K.); (M.V.G.); (A.R.K.); (S.N.K.)
| | - Cedric Bovet
- University Institute of Clinical Chemistry, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland; (C.B.); (B.R.)
| | - Barbara Rindlisbacher
- University Institute of Clinical Chemistry, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland; (C.B.); (B.R.)
| | - Alex R. Khomutov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (N.F.Z.); (O.A.K.); (O.A.S.); (D.V.Y.); (V.T.V.-E.); (O.N.I.); (I.L.K.); (M.V.G.); (A.R.K.); (S.N.K.)
| | - Sergey N. Kochetkov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (N.F.Z.); (O.A.K.); (O.A.S.); (D.V.Y.); (V.T.V.-E.); (O.N.I.); (I.L.K.); (M.V.G.); (A.R.K.); (S.N.K.)
| | - Birke Bartosch
- INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Université Claude Bernard Lyon 1, 69434 Lyon, France; (J.M.); (L.M.); (B.G.); (B.B.)
| | - Alexander V. Ivanov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (N.F.Z.); (O.A.K.); (O.A.S.); (D.V.Y.); (V.T.V.-E.); (O.N.I.); (I.L.K.); (M.V.G.); (A.R.K.); (S.N.K.)
| |
Collapse
|
8
|
Das GC, Hollinger FB. GSK-3β as a Potential Coordinator of Anabolic and Catabolic Pathways in Hepatitis C Virus Insulin Resistance. Intervirology 2023; 67:6-18. [PMID: 38104537 PMCID: PMC10794973 DOI: 10.1159/000535787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 12/11/2023] [Indexed: 12/19/2023] Open
Abstract
INTRODUCTION Chronic hepatitis C infection can result in insulin resistance (IR). We have previously shown that it occurs through the interaction of pathways for glucose homeostasis, insulin signaling, and autophagy. But it is not known how soon the pathways are activated and how IR is related to the signals generated by catabolic and anabolic conditions occurring in infected cells. We have extended our studies to a cell culture system mimicking acute infection and to downstream pathways involving energy-sensor AMPK and nutrient-sensor mTOR that are active in catabolic and anabolic processes within the infected cells. METHODS Huh7 liver cells in culture were infected with hepatitis C virus (HCV). We performed proteomics analysis of key proteins in infected cells by Western blotting and IP experiments, with or without IFNα exposure as a component of conventional therapeutic strategy. RESULTS We present evidence that (a) IRS-1 Ser312, Beclin-1, protein conjugate Atg12-Atg5 or GS Ser641 are up-regulated early in infection presumably by activating the same pathways as utilized for persistent infection; (b) Bcl-XL, an inhibitor of both autophagy and apoptosis, is present in a core complex with IRS-1 Ser312 and Beclin-1 during progression of IR; (c) AMPK level remains about the same in infected cells where it is activated by phosphorylation at Thr172 concomitant with increased autophagy, a hallmark of catabolic conditions; (d) an mTOR level that promotes anabolism is increased rather than decreased under an expanded autophagy; (e) hypophosphorylation of translational repressor 4E-BP1 downstream of mTOR is suggestive of reduced protein synthesis; and (f) β-catenin, is up-regulated but not phosphorylated suggesting indirectly our previous contention that its kinase, GSK-3β, is mostly in an inactive state. CONCLUSION We report that in the development of IR following chronic infection, anabolic and catabolic pathways are activated early, and the metabolic interaction occurs possibly in a core complex with IRS-1 Ser312, Beclin-1, and autophagy inhibitor Bcl-XL. Induction of autophagy is usually controlled by a two-edged mechanism acting in opposition under anabolic and catabolic conditions by AMPK/mTOR/4E-BP1 pathway with GSK-3β-mediated feedback loops. However, we have observed an up-regulation of mTOR along with an up-regulation of AMPK caused by HCV infection is a deviation from the normal scenario described above which might be of therapeutic interest.
Collapse
Affiliation(s)
- Gokul C Das
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - F Blaine Hollinger
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
9
|
Chakravarty S, Subramanian G, Popli S, Veleeparambil M, Fan S, Chakravarti R, Chattopadhyay S. Interferon-stimulated gene TDRD7 interacts with AMPK and inhibits its activation to suppress viral replication and pathogenesis. mBio 2023; 14:e0061123. [PMID: 37712680 PMCID: PMC10653931 DOI: 10.1128/mbio.00611-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 07/24/2023] [Indexed: 09/16/2023] Open
Abstract
IMPORTANCE Virus infection triggers induction of interferon (IFN)-stimulated genes (ISGs), which ironically inhibit viruses themselves. We identified Tudor domain-containing 7 (TDRD7) as a novel antiviral ISG, which inhibits viral replication by interfering with autophagy pathway. Here, we present a molecular basis for autophagy inhibitory function of TDRD7. TDRD7 interacted with adenosine monophosphate (AMP)-activated protein kinase (AMPK), the kinase that initiates autophagy, to inhibit its activation. We identified domains required for the interaction; deleting AMPK-interacting domain blocked antiAMPK and antiviral activities of TDRD7. We used primary cells and mice to evaluate the TDRD7-AMPK antiviral pathway. TDRD7-deficient primary mouse cells exhibited enhanced AMPK activation and viral replication. Finally, TDRD7 knockout mice showed increased susceptibility to respiratory virus infection. Therefore, our study revealed a new antiviral pathway of IFN and its contribution to host response. Our results have therapeutic potential; a TDRD7-derived peptide may be an effective AMPK inhibitor with application as antiviral agent.
Collapse
Affiliation(s)
- Sukanya Chakravarty
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Gayatri Subramanian
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Sonam Popli
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Manoj Veleeparambil
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Shumin Fan
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Ritu Chakravarti
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Saurabh Chattopadhyay
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| |
Collapse
|
10
|
Tewari DN, Biswas A, Chakrabarti AK, Dutta S. AMFR promotes innate immunity activation and proteasomal degradation of HMGCR in response to influenza virus infection in A549 cells. Virology 2023; 587:109875. [PMID: 37703797 DOI: 10.1016/j.virol.2023.109875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 08/18/2023] [Accepted: 08/29/2023] [Indexed: 09/15/2023]
Abstract
Differential regulation of the 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR), which is considered the rate-limiting enzyme of the cholesterol biosynthesis pathway, has been reported in case of infection with many viruses. In our study, we have found that influenza virus infection decreases total cellular cholesterol level which is directly related to the downregulation of HMGCR protein. We found that HMGCR is degraded through ubiquitination and proteasomal-mediated pathway upon viral infection. Upregulation of Autocrine Motility Factor Receptor (AMFR), which is an E3-ubiquitin ligase of HMGCR, was also observed. Furthermore, knockdown of AMFR inhibits ubiquitination of HMGCR and also leads to inactivation of the innate immunity components TANK-binding kinase 1 (TBK1) and Interferon regulatory factor 3 (IRF3). Our study is the first to show the role of HMGCR and AMFR in influenza virus infection and reveals that AMFR plays a crucial role in the downregulation of HMGCR and the activation of innate immunity following influenza virus infection.
Collapse
Affiliation(s)
- Devendra Nath Tewari
- Division of Virology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, 700010, India
| | - Asim Biswas
- Division of Virology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, 700010, India
| | - Alok Kumar Chakrabarti
- Division of Virology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, 700010, India.
| | - Shanta Dutta
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, 700010, India
| |
Collapse
|
11
|
Doshi H, Spengler K, Godbole A, Gee YS, Baell J, Oakhill JS, Henke A, Heller R. AMPK protects endothelial cells against HSV-1 replication via inhibition of mTORC1 and ACC1. Microbiol Spectr 2023; 11:e0041723. [PMID: 37702499 PMCID: PMC10580915 DOI: 10.1128/spectrum.00417-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 07/06/2023] [Indexed: 09/14/2023] Open
Abstract
Herpes simplex virus type 1 (HSV-1) is a widespread contagious pathogen, mostly causing mild symptoms on the mucosal entry side. However, systemic distribution, in particular upon reactivation of the virus in immunocompromised patients, may trigger an innate immune response and induce damage of organs. In these conditions, HSV-1 may infect vascular endothelial cells, but little is known about the regulation of HSV-1 replication and possible defense mechanisms in these cells. The current study addresses the question of whether the host cell protein AMP-activated protein kinase (AMPK), an important metabolic sensor, can control HSV-1 replication in endothelial cells. We show that downregulation of the catalytic subunits AMPKα1 and/or AMPKα2 increased HSV-1 replication as monitored by TCID50 titrations, while a potent AMPK agonist, MK-8722, strongly inhibited it. MK-8722 induced a persistent phosphorylation of the AMPK downstream targets acetyl-CoA carboxylase (ACC) and the rapamycin-sensitive adaptor protein of mTOR (Raptor) and, related to this, impairment of ACC1-mediated lipid synthesis and the mechanistic target of the rapamycin complex-1 (mTORC1) pathway. Since blockade of mTOR by Torin-2 as well as downregulation of ACC1 by siRNA also decreased HSV-1 replication, MK-8722 is likely to exert its anti-viral effect via mTORC1 and ACC1 inhibition. Importantly, MK-8722 was able to reduce virus replication even when added after HSV-1. Together, our data highlight the importance of endothelial cells as host cells for HSV-1 replication upon systemic infection and identify AMPK, a metabolic host cell protein, as a potential target for antiviral strategies against HSV-1 infection and its severe consequences. IMPORTANCE Herpes simplex virus type 1 (HSV-1) is a common pathogen that causes blisters or cold sores in humans. It remains latent in infected individuals and can be reactivated multiple times. In adverse conditions, for instance, in immunocompromised patients, HSV-1 can lead to serious complications such as encephalitis, meningitis, or blindness. In these situations, infection of endothelial cells lining the surface of blood vessels may contribute to the manifestation of disease. Here, we describe the role of AMP-activated protein kinase (AMPK), a potent regulator of cellular energy metabolism, in HSV-1 replication in endothelial cells. While downregulation of AMPK potentiates HSV-1 replication, pharmacological AMPK activation inhibits it by limiting the availability of required host cell macromolecules such as proteins or fatty acids. These data highlight the role of metabolic host cell proteins as antiviral targets and reveal activation of endothelial AMPK as a potential strategy to protect from severe consequences of HSV-1 infection.
Collapse
Affiliation(s)
- Heena Doshi
- Institute for Molecular Cell Biology, Center for Molecular Biomedicine, Jena University Hospital, Jena, Germany
| | - Katrin Spengler
- Institute for Molecular Cell Biology, Center for Molecular Biomedicine, Jena University Hospital, Jena, Germany
| | - Amod Godbole
- Institute for Molecular Cell Biology, Center for Molecular Biomedicine, Jena University Hospital, Jena, Germany
| | - Yi Sing Gee
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Jonathan Baell
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, China
| | - Jonathan S. Oakhill
- Metabolic Signaling Laboratory, St. Vincent’s Institute of Medical Research, Fitzroy, Victoria, Australia
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Victoria, Australia
| | - Andreas Henke
- Section of Experimental Virology, Institute of Medical Microbiology, Jena University Hospital, Jena, Germany
| | - Regine Heller
- Institute for Molecular Cell Biology, Center for Molecular Biomedicine, Jena University Hospital, Jena, Germany
| |
Collapse
|
12
|
Raheja H, George B, Tripathi SK, Saha S, Maiti TK, Das S. Hepatitis C virus non-structural proteins modulate cellular kinases for increased cytoplasmic abundance of host factor HuR and facilitate viral replication. PLoS Pathog 2023; 19:e1011552. [PMID: 37540723 PMCID: PMC10431626 DOI: 10.1371/journal.ppat.1011552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/16/2023] [Accepted: 07/11/2023] [Indexed: 08/06/2023] Open
Abstract
Host protein HuR translocation from nucleus to cytoplasm following infection is crucial for the life cycle of several RNA viruses including hepatitis C virus (HCV), a major causative agent of hepatocellular carcinoma. HuR assists the assembly of replication-complex on the viral-3'UTR, and its depletion hampers viral replication. Although cytoplasmic HuR is crucial for HCV replication, little is known about how the virus orchestrates the mobilization of HuR into the cytoplasm from the nucleus. We show that two viral proteins, NS3 and NS5A, act co-ordinately to alter the equilibrium of the nucleo-cytoplasmic movement of HuR. NS3 activates protein kinase C (PKC)-δ, which in-turn phosphorylates HuR on S318 residue, triggering its export to the cytoplasm. NS5A inactivates AMP-activated kinase (AMPK) resulting in diminished nuclear import of HuR through blockade of AMPK-mediated phosphorylation and acetylation of importin-α1. Cytoplasmic retention or entry of HuR can be reversed by an AMPK activator or a PKC-δ inhibitor. Our findings suggest that efforts should be made to develop inhibitors of PKC-δ and activators of AMPK, either separately or in combination, to inhibit HCV infection.
Collapse
Affiliation(s)
- Harsha Raheja
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Biju George
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Sachin Kumar Tripathi
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | | | | | - Saumitra Das
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| |
Collapse
|
13
|
Rajsfus BF, Mohana-Borges R, Allonso D. Diabetogenic viruses: linking viruses to diabetes mellitus. Heliyon 2023; 9:e15021. [PMID: 37064445 PMCID: PMC10102442 DOI: 10.1016/j.heliyon.2023.e15021] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 03/31/2023] Open
Abstract
Diabetes Mellitus (DM) is a group of chronic metabolic diseases distinguished by elevated glycemia due to the alterations in insulin metabolism. DM is one of the most relevant diseases of the modern world, with high incidence and prevalence worldwide, associated with severe systemic complications and increased morbidity and mortality rates. Although genetic factors and lifestyle habits are two of the main factors involved in DM onset, viral infections, such as enteroviruses, cytomegalovirus, hepatitis C virus, human immunodeficiency virus, severe acute respiratory syndrome coronavirus 2, among others, have been linked as triggers of type 1 (T1DM) and type 2 (T2DM) diabetes. Over the years, various groups identified different mechanisms as to how viruses can promote these metabolic syndromes. However, this field is still poorly explored and needs further research, as millions of people live with these pathologies. Thus, this review aims to ex-plore the different processes of how viruses can induce DM and their contribution to the prevalence and incidence of DM worldwide.
Collapse
|
14
|
Zhang Q, Liu S, Zhang CS, Wu Q, Yu X, Zhou R, Meng F, Wang A, Zhang F, Chen S, Wang X, Li L, Huang J, Huang YW, Zou J, Qin J, Liang T, Feng XH, Lin SC, Xu P. AMPK directly phosphorylates TBK1 to integrate glucose sensing into innate immunity. Mol Cell 2022; 82:4519-4536.e7. [PMID: 36384137 DOI: 10.1016/j.molcel.2022.10.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 05/18/2022] [Accepted: 10/25/2022] [Indexed: 11/17/2022]
Abstract
Nutrient sensing and damage sensing are two fundamental processes in living organisms. While hyperglycemia is frequently linked to diabetes-related vulnerability to microbial infection, how body glucose levels affect innate immune responses to microbial invasion is not fully understood. Here, we surprisingly found that viral infection led to a rapid and dramatic decrease in blood glucose levels in rodents, leading to robust AMPK activation. AMPK, once activated, directly phosphorylates TBK1 at S511, which triggers IRF3 recruitment and the assembly of MAVS or STING signalosomes. Consistently, ablation or inhibition of AMPK, knockin of TBK1-S511A, or increased glucose levels compromised nucleic acid sensing, while boosting AMPK-TBK1 cascade by AICAR or TBK1-S511E knockin improves antiviral immunity substantially in various animal models. Thus, we identify TBK1 as an AMPK substrate, reveal the molecular mechanism coupling a dual sensing of glucose and nuclei acids, and report its physiological necessity in antiviral defense.
Collapse
Affiliation(s)
- Qian Zhang
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, Zhejiang, China; Institute of Intelligent Medicine, Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University (HIC-ZJU), Hangzhou 310058, China; Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Shengduo Liu
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, Zhejiang, China; Institute of Intelligent Medicine, Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University (HIC-ZJU), Hangzhou 310058, China
| | - Chen-Song Zhang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Qirou Wu
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Xinyuan Yu
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Ruyuan Zhou
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, Zhejiang, China; Institute of Intelligent Medicine, Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University (HIC-ZJU), Hangzhou 310058, China
| | - Fansen Meng
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Ailian Wang
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Fei Zhang
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, Zhejiang, China; Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Shasha Chen
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, Zhejiang, China; Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Xiaojian Wang
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Lei Li
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Jun Huang
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Yao-Wei Huang
- Key Laboratory of Animal Virology of Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jian Zou
- Eye Center of the Second Affiliated Hospital School of Medicine, Institutes of Translational Medicine, Zhejiang University, Hangzhou 310058, China
| | - Jun Qin
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai 200031, China
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, University School of Medicine, Zhejiang University, Hangzhou 310058, China; Cancer Center, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Xin-Hua Feng
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, Zhejiang, China; Cancer Center, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Sheng-Cai Lin
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Pinglong Xu
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, Zhejiang, China; Institute of Intelligent Medicine, Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University (HIC-ZJU), Hangzhou 310058, China; Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, University School of Medicine, Zhejiang University, Hangzhou 310058, China; Cancer Center, Zhejiang University, Hangzhou 310058, Zhejiang, China.
| |
Collapse
|
15
|
Casorla-Perez LA, Guennoun R, Cubillas C, Peng B, Kornfeld K, Wang D. Orsay Virus Infection of Caenorhabditis elegans Is Modulated by Zinc and Dependent on Lipids. J Virol 2022; 96:e0121122. [PMID: 36342299 PMCID: PMC9682997 DOI: 10.1128/jvi.01211-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/16/2022] [Indexed: 11/09/2022] Open
Abstract
Viruses utilize host lipids to promote the viral life cycle, but much remains unknown as to how this is regulated. Zinc is a critical element for life, and few studies have linked zinc to lipid homeostasis. We demonstrated that Caenorhabditis elegans infection by Orsay virus is dependent upon lipids and that mutation of the master regulator of lipid biosynthesis, sbp-1, reduced Orsay virus RNA levels by ~236-fold. Virus infection could be rescued by dietary supplementation with lipids downstream of fat-6/fat-7. Mutation of a zinc transporter encoded by sur-7, which suppresses the lipid defect of sbp-1, also rescued Orsay virus infection. Furthermore, reducing zinc levels by chemical chelation in the sbp-1 mutant also increased lipids and rescued Orsay virus RNA levels. Finally, increasing zinc levels by dietary supplementation led to an ~1,620-fold reduction in viral RNA. These findings provide insights into the critical interactions between zinc and host lipids necessary for virus infection. IMPORTANCE Orsay virus is the only known natural virus pathogen of Caenorhabditis elegans, which shares many evolutionarily conserved pathways with humans. We leveraged the powerful genetic tractability of C. elegans to characterize a novel interaction between zinc, lipids, and virus infection. Inhibition of the Orsay virus replication in the sbp-1 mutant animals, explained by the lipid depletion, can be rescued by a genetic and pharmacological approach that reduces the zinc accumulation and rescues the lipid levels in this mutant animal. Interestingly, the human ortholog of sbp-1, srebp-1, has been reported to play a role for virus infection, and zinc has been shown to inhibit the virus replication of multiple viruses. However, the mechanism through which zinc is acting is not well understood. These results suggest that the lipid regulation mediated by zinc may play a relevant role during mammalian virus infection.
Collapse
Affiliation(s)
| | - Ranya Guennoun
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Ciro Cubillas
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Bo Peng
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Kerry Kornfeld
- Developmental Biology, School of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| | - David Wang
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, Missouri, USA
- Department Pathology & Immunology, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
16
|
Qin ZL, Yao QF, Zhao P, Ren H, Qi ZT. Zika virus infection triggers lipophagy by stimulating the AMPK-ULK1 signaling in human hepatoma cells. Front Cell Infect Microbiol 2022; 12:959029. [PMID: 36405969 PMCID: PMC9667116 DOI: 10.3389/fcimb.2022.959029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 10/19/2022] [Indexed: 01/25/2023] Open
Abstract
Zika virus (ZIKV) is a globally transmitted mosquito-borne pathogen, and no effective treatment or vaccine is available yet. Lipophagy, a selective autophagy targeting lipid droplets (LDs), is an emerging subject in cellular lipid metabolism and energy homeostasis. However, the regulatory mechanism of lipid metabolism and the role of lipophagy in Zika virus infection remain largely unknown. Here, we demonstrated that ZIKV induced lipophagy by activating unc-51-like kinase 1 (ULK1) through activation of 5' adenosine monophosphate (AMP)-activated protein kinase (AMPK) in Huh7 cells. Upon ZIKV infection, the average size and triglyceride content of LDs significantly decreased. Moreover, ZIKV infection significantly increased lysosomal biosynthesis and LD-lysosome fusion. The activities of AMPK at Thr-172 and ULK1 at Ser-556 were increased in ZIKV-infected cells and closely correlated with lipophagy induction. Silencing of AMPK expression inhibited ZIKV infection, autophagy induction, and LD-lysosome fusion and decreased the triglyceride content of the cells. The activities of mammalian target of rapamycin (mTOR) at Ser-2448 and ULK1 at Ser-757 were suppressed independently of AMPK during ZIKV infection. Therefore, ZIKV infection triggers AMPK-mediated lipophagy, and the LD-related lipid metabolism during ZIKV infection is mainly regulated via the AMPK-ULK1 signaling pathway.
Collapse
|
17
|
Lu A, Yang J, Huang X, Huang X, Yin G, Cai Y, Feng X, Zhang X, Li Y, Liu Q. The Function behind the Relation between Lipid Metabolism and Vimentin on H9N2 Subtype AIV Replication. Viruses 2022; 14:v14081814. [PMID: 36016436 PMCID: PMC9416647 DOI: 10.3390/v14081814] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/08/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022] Open
Abstract
Avian influenza caused by H9N2 subtype avian influenza virus (AIV) poses a great threat to the healthy development of the poultry industry. Vimentin is closely related to intracellular lipid metabolism, which plays an important role during the viral infection process. However, the function of lipid metabolism and vimentin on H9N2 AIV replication is unclear. In this paper, the cholesterol level and 3-hydroxy-3-methylglutaryl coenzyme a reductase (HMGCR) phosphorylation were investigated in vimentin knockout (KO) and human cervical carcinoma cells (HeLa) cell with or without AIV infection. The results showed that compared to the control group without infected with H9N2 subtype AIV, the cholesterol contents were significantly increased, while HMGCR phosphorylation level was reduced in both KO and HeLa cell after virus infection. Furthermore, viral replication was significantly inhibited in the cells treated with the cholesterol inhibitor lovastatin. Compared with the control group, adenylate activated protein kinase (AMPK), a kinase regulating HMGCR enzymatic activity was inhibited in both KO and HeLa cells in the infected virus group, and AMPK phosphorylation levels were significantly lower in KO HeLa cell than that of HeLa cells. Additionally, after MβCD treatment, viral hemagglutinin (HA) gene level was significantly decreased in HeLa cells, while it was significantly increased in KO HeLa cells. In addition, vimentin expression was significantly increased in MβCD-treated HeLa cells with the viral infection and returned to normal levels after exogenous cholesterol to backfill the MβCD-treated cells. Therefore, the disruption of lipid rafts during the binding phase of viral invasion of cells significantly reduced viral infection. These studies indicated that the lipid rafts and cholesterol levels might be critical for H9N2 subtype AIV infection of human-derived cells and that vimentin might play an important role in the regulation of lipids on viral replication, which provided an important antiviral target against influenza virus.
Collapse
Affiliation(s)
- Anran Lu
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Key Laboratory of Animal Microbiology of China’s Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Jing Yang
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Xiangyu Huang
- Key Laboratory of Animal Microbiology of China’s Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinmei Huang
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Guihu Yin
- Key Laboratory of Animal Microbiology of China’s Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yiqin Cai
- Key Laboratory of Animal Microbiology of China’s Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiuli Feng
- Key Laboratory of Animal Microbiology of China’s Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaofei Zhang
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Yin Li
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Qingtao Liu
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Correspondence:
| |
Collapse
|
18
|
Jennelle LT, Magoro T, Angelucci AR, Dandekar A, Hahn YS. Hepatitis C Virus Alters Macrophage Cholesterol Metabolism Through Interaction with Scavenger Receptors. Viral Immunol 2022; 35:223-235. [PMID: 35467430 PMCID: PMC9063163 DOI: 10.1089/vim.2021.0101] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Lipid accumulation and inflammation act together to induce, sustain, and further development of chronic liver disease. Hepatitis C virus (HCV) infection induces metabolic and immune changes in liver macrophages, promoting lipid accumulation and inflammation that synergize and culminate in the development of steatohepatitis and fibrogenesis. Chronic HCV patients have increased liver macrophages with disruptions in cholesterol metabolism and alterations in inflammatory mediators. While HCV-induced changes in inflammatory mediators are well documented, how HCV triggers metabolic change in macrophages is unknown. In this report, we examined the mechanism of macrophage sensing of HCV to cause metabolic impairment and subsequent immune dysfunction. We demonstrate that HCV protein and RNA kinetics in macrophages are distinct from hepatocytes. In macrophages, HCV RNAs and protein accumulate rapidly after exposure but internalized RNAs quickly decline to a low-level set point. Notably, exposure of macrophages to HCV resulted in increased lipids and cholesterol and activation of cholesterol-sensing, immunomodulatory liver X receptors (LXRs). Furthermore, we provide evidence that HCV RNA accumulation in macrophages occurs through scavenging receptors. These results suggest that HCV released from infected hepatocytes stimulates accumulation of lipids and activation of LXR in macrophages contributing to metabolic changes involved in HCV-induced chronic liver disease. Our results provide novel insight into mechanisms through which impaired lipid metabolism in macrophages associated with HCV infection promotes development of liver steatohepatitis and fibrosis.
Collapse
Affiliation(s)
- Lucas T. Jennelle
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, Virginia, USA
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Tshifhiwa Magoro
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, Virginia, USA
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Angelina R. Angelucci
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, Virginia, USA
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Aditya Dandekar
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, Virginia, USA
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Young S. Hahn
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, Virginia, USA
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
19
|
Hsieh MH, Kao TY, Hsieh TH, Kao CC, Peng CY, Lai HC, Chuang PH, Kao JT. Long-term surveillance of liver histological changes in chronic hepatitis C patients completing pegylated interferon-α plus ribavirin therapy: an observational cohort study. Ther Adv Chronic Dis 2022; 13:20406223211067631. [PMID: 35070254 PMCID: PMC8771741 DOI: 10.1177/20406223211067631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 12/01/2021] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND For chronic hepatitis C (CHC) patients completing pegylated interferon (PegIFN)-α/ribavirin therapy, long-term liver histological changes remain largely unexplored. METHODS This observational cohort study included 85 CHC patients completing PegIFN-α/ribavirin therapy with liver biopsies performed at baseline and the end of surveillance (EOS). Median years between paired biopsies were 6.75 (interquartile range: 5.63-7.54). RESULTS In patients with baseline METAVIR fibrosis stages (F) <4 (able to undergo fibrosis progression; n = 77), cases achieving sustained virological response (SVR) (n = 52) had a significantly lower rate of fibrosis progression than non-SVR cases (n = 25) (3.8% versus 24.0%, p = 0.012). Among the entire cohort (n = 85), the rate of activity response [METAVIR activity grades (A) decreasing or maintaining at A0] in SVR cases (n = 59) was significantly higher than that in non-SVR cases (n = 26) (94.9% versus 65.4%, p = 0.001). For SVR cases among the entire cohort, independent predictors of fibrosis clearance included baseline F <2 [odds ratio (OR) = 7.877, p = 0.042] and aspartate transaminase (AST) levels declining by >70% at EOS compared with baseline (OR = 9.013, p = 0.038). For non-SVR cases among the entire cohort, baseline AST levels >80 U/l and glucose levels ⩽ 105 mg/dl independently predicted significant fibrosis (F2/F3/F4) at EOS (OR = 12.558, p = 0.049) and activity response (OR = 17.741, p = 0.047), respectively. CONCLUSIONS Among CHC patients completing PegIFN-α/ribavirin therapy, SVR lowers the risk of liver histological progression but does not guarantee fibrosis clearance. For SVR cases, those with baseline F ⩾ 2 or without significantly declined follow-up AST levels should be specifically monitored. As for non-SVR cases, those with a higher baseline AST or glucose level should preferentially receive retreatment.
Collapse
Affiliation(s)
- Ming-Han Hsieh
- Department of Medicine, School of Medicine, China Medical University, Taichung, Taiwan
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Tzu-Yu Kao
- Faculty of Medicine, Wroclaw Medical University, Wroclaw, Dolnoslaskie, Poland
| | - Ting-Hui Hsieh
- Interdisciplinary Program for Undergraduates, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chun-Chi Kao
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Cheng-Yuan Peng
- Department of Medicine, School of Medicine, China Medical University, Taichung, Taiwan
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Hsueh-Chou Lai
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Po-Heng Chuang
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Jung-Ta Kao
- Department of Medicine, School of Medicine, China Medical University, No. 91, Hsueh-Shih Road, Taichung 40402, Taiwan
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
20
|
Sabariegos R, Ortega-Prieto AM, Díaz-Martínez L, Grande-Pérez A, García Crespo C, Gallego I, de Ávila AI, Albentosa-González L, Soria ME, Gastaminza P, Domingo E, Perales C, Mas A. Guanosine inhibits hepatitis C virus replication and increases indel frequencies, associated with altered intracellular nucleotide pools. PLoS Pathog 2022; 18:e1010210. [PMID: 35085375 PMCID: PMC8794218 DOI: 10.1371/journal.ppat.1010210] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 12/16/2021] [Indexed: 12/30/2022] Open
Abstract
In the course of experiments aimed at deciphering the inhibition mechanism of mycophenolic acid and ribavirin in hepatitis C virus (HCV) infection, we observed an inhibitory effect of the nucleoside guanosine (Gua). Here, we report that Gua, and not the other standard nucleosides, inhibits HCV replication in human hepatoma cells. Gua did not directly inhibit the in vitro polymerase activity of NS5B, but it modified the intracellular levels of nucleoside di- and tri-phosphates (NDPs and NTPs), leading to deficient HCV RNA replication and reduction of infectious progeny virus production. Changes in the concentrations of NTPs or NDPs modified NS5B RNA polymerase activity in vitro, in particular de novo RNA synthesis and template switching. Furthermore, the Gua-mediated changes were associated with a significant increase in the number of indels in viral RNA, which may account for the reduction of the specific infectivity of the viral progeny, suggesting the presence of defective genomes. Thus, a proper NTP:NDP balance appears to be critical to ensure HCV polymerase fidelity and minimal production of defective genomes.
Collapse
Affiliation(s)
- Rosario Sabariegos
- Laboratorio de Virología Molecular, Centro Regional de Investigaciones Biomédicas (CRIB), Universidad de Castilla-La Mancha, Albacete, Spain
- Facultad de Medicina, Universidad de Castilla-La Mancha, Albacete, Spain
- Unidad de Biomedicina UCLM-CSIC, Albacete, Spain
| | - Ana María Ortega-Prieto
- Centro de Biología Molecular “Severo Ochoa”, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Campus de Cantoblanco, Madrid, Spain
| | - Luis Díaz-Martínez
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora," Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHMS-UMA-CSIC), Málaga, Spain
- Área de Genética, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | - Ana Grande-Pérez
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora," Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHMS-UMA-CSIC), Málaga, Spain
- Área de Genética, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | - Carlos García Crespo
- Centro de Biología Molecular “Severo Ochoa”, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Campus de Cantoblanco, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, Madrid, Spain
| | - Isabel Gallego
- Centro de Biología Molecular “Severo Ochoa”, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Campus de Cantoblanco, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, Madrid, Spain
| | - Ana I. de Ávila
- Centro de Biología Molecular “Severo Ochoa”, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Campus de Cantoblanco, Madrid, Spain
| | - Laura Albentosa-González
- Laboratorio de Virología Molecular, Centro Regional de Investigaciones Biomédicas (CRIB), Universidad de Castilla-La Mancha, Albacete, Spain
| | - María Eugenia Soria
- Centro de Biología Molecular “Severo Ochoa”, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Campus de Cantoblanco, Madrid, Spain
- Department of Clinical Microbiology, IIS-Fundación Jiménez Díaz, UAM, Madrid, Spain
| | - Pablo Gastaminza
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, Madrid, Spain
- Department of Cellular and Molecular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, Madrid, Spain
| | - Esteban Domingo
- Unidad de Biomedicina UCLM-CSIC, Albacete, Spain
- Centro de Biología Molecular “Severo Ochoa”, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Campus de Cantoblanco, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, Madrid, Spain
- * E-mail: (AM); (CP); (ED)
| | - Celia Perales
- Centro de Biología Molecular “Severo Ochoa”, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Campus de Cantoblanco, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, Madrid, Spain
- Department of Clinical Microbiology, IIS-Fundación Jiménez Díaz, UAM, Madrid, Spain
- * E-mail: (AM); (CP); (ED)
| | - Antonio Mas
- Laboratorio de Virología Molecular, Centro Regional de Investigaciones Biomédicas (CRIB), Universidad de Castilla-La Mancha, Albacete, Spain
- Unidad de Biomedicina UCLM-CSIC, Albacete, Spain
- Facultad de Farmacia, Universidad de Castilla-La Mancha, Albacete, Spain
- * E-mail: (AM); (CP); (ED)
| |
Collapse
|
21
|
The Antimalaria Drug Artesunate Inhibits Porcine Reproductive and Respiratory Syndrome Virus Replication via Activating AMPK and Nrf2/HO-1 Signaling Pathways. J Virol 2021; 96:e0148721. [PMID: 34787456 DOI: 10.1128/jvi.01487-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Porcine Reproductive and Respiratory Syndrome virus (PRRSV) causes significant economic losses to the pork industry worldwide. Currently, vaccine strategies provide limited protection against PRRSV transmission, and no effective drug is commercially available. Therefore, there is an urgent need to develop novel antiviral strategies to prevent PRRSV pandemics. This study showed that artesunate (AS), one of the antimalarial drugs, potently suppressed PRRSV replication in Marc-145 cells and ex vivo primary porcine alveolar macrophages (PAMs) at micromolar concentrations. Furthermore, we demonstrated that this suppression was closely associated with AS-activated AMPK (energy homeostasis) and Nrf2/HO-1 (inflammation) signaling pathways. AS treatment promoted p-AMPK, Nrf2 and HO-1 expression, and thus inhibited PRRSV replication in Marc-145 and PAM cells in a time- and dose-dependent manner. These effects of AS were reversed when AMPK or HO-1 gene was silenced by siRNA. In addition, we demonstrated that AMPK works upstream of Nrf2/HO-1 as its activation by AS is AMPK-dependent. Adenosine phosphate analysis showed that AS activates AMPK via improving AMP/ADP:ATP ratio rather than direct interaction with AMPK. Altogether, our findings indicate that AS could be a promising novel therapeutics for controlling PRRSV and that its anti-PRRSV mechanism, which involves the functional link between energy homeostasis and inflammation suppression pathways, may provide opportunities for developing novel antiviral agents. Importance Porcine reproductive and respiratory syndrome virus (PRRSV) infections have been continuously threatened the pork industry worldwide. Vaccination strategies provide very limited protection against PRRSV infection, and no effective drug is commercially available. We show that artesunate (AS), one of the antimalarial drugs, is a potent inhibitor against PRRSV replication in Marc-145 cells and ex vivo primary porcine alveolar macrophages (PAMs). Furthermore, we demonstrate that AS inhibits PRRSV replication via activation of AMPK-dependent Nrf2/HO-1 signaling pathways, revealing a novel link between energy homeostasis (AMPK) and inflammation suppression (Nrf2/HO-1) during viral infection. Therefore, we believe that AS may be a promising novel therapeutics for controlling PRRSV, and its anti-PRRSV mechanism may provide a potential strategy to develop novel antiviral agents.
Collapse
|
22
|
Abstract
Cellular activities are finely regulated by numerous signaling pathways to support specific functions of complex life processes. Viruses are obligate intracellular parasites. Each step of viral replication is ultimately governed by the interaction of a virus with its host cells. Because of the demands of viral replication, the nutritional needs of virus-infected cells differ from those of uninfected cells. To improve their chances of survival and replication, viruses have evolved to commandeer cellular processes, including cell metabolism, augmenting these processes to support their needs. This article summarizes recent findings regarding virus-induced alterations to major cellular metabolic pathways focusing on how viruses modulate various signaling cascades to induce these changes. We begin with a general introduction describing the role played by signaling pathways in cellular metabolism. We then discuss how different viruses target these signaling pathways to reprogram host metabolism to favor the viral needs. We highlight the gaps in understanding metabolism-related virus-host interactions and discuss how studying these changes will enhance our understanding of fundamental processes involved in metabolic regulation. Finally, we discuss the potential to harness these processes to combat viral diseases, as well as other diseases, including metabolic disorders and cancers.
Collapse
|
23
|
Farfan-Morales CN, Cordero-Rivera CD, Reyes-Ruiz JM, Hurtado-Monzón AM, Osuna-Ramos JF, González-González AM, De Jesús-González LA, Palacios-Rápalo SN, Del Ángel RM. Anti-flavivirus Properties of Lipid-Lowering Drugs. Front Physiol 2021; 12:749770. [PMID: 34690817 PMCID: PMC8529048 DOI: 10.3389/fphys.2021.749770] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/20/2021] [Indexed: 12/11/2022] Open
Abstract
Although Flaviviruses such as dengue (DENV) and zika (ZIKV) virus are important human pathogens, an effective vaccine or antiviral treatment against them is not available. Hence, the search for new strategies to control flavivirus infections is essential. Several studies have shown that the host lipid metabolism could be an antiviral target because cholesterol and other lipids are required during the replicative cycle of different Flaviviridae family members. FDA-approved drugs with hypolipidemic effects could be an alternative for treating flavivirus infections. However, a better understanding of the regulation between host lipid metabolism and signaling pathways triggered during these infections is required. The metabolic pathways related to lipid metabolism modified during DENV and ZIKV infection are analyzed in this review. Additionally, the role of lipid-lowering drugs as safe host-targeted antivirals is discussed.
Collapse
Affiliation(s)
- Carlos Noe Farfan-Morales
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City, Mexico
| | - Carlos Daniel Cordero-Rivera
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City, Mexico
| | - José Manuel Reyes-Ruiz
- Unidad Médica de Alta Especialidad, Hospital de Especialidades No. 14, Centro Médico Nacional "Adolfo Ruiz Cortines," Instituto Mexicano del Seguro Social, Heroica Veracruz, Mexico
| | - Arianna M Hurtado-Monzón
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City, Mexico
| | - Juan Fidel Osuna-Ramos
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City, Mexico
| | - Arely M González-González
- Laboratorio de Ingeniería Tisular y Medicina Traslacional, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Luis Adrián De Jesús-González
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City, Mexico
| | - Selvin Noé Palacios-Rápalo
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City, Mexico
| | - Rosa María Del Ángel
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City, Mexico
| |
Collapse
|
24
|
Abstract
The immune and endocrine systems collectively control homeostasis in the body. The endocrine system ensures that values of essential factors and nutrients such as glucose, electrolytes and vitamins are maintained within threshold values. The immune system resolves local disruptions in tissue homeostasis, caused by pathogens or malfunctioning cells. The immediate goals of these two systems do not always align. The immune system benefits from optimal access to nutrients for itself and restriction of nutrient availability to all other organs to limit pathogen replication. The endocrine system aims to ensure optimal nutrient access for all organs, limited only by the nutrients stores that the body has available. The actual state of homeostatic parameters such as blood glucose levels represents a careful balance based on regulatory signals from the immune and endocrine systems. This state is not static but continuously adjusted in response to changes in the current metabolic needs of the body, the amount of resources it has available and the level of threats it encounters. This balance is maintained by the ability of the immune and endocrine systems to interact and co-regulate systemic metabolism. In context of metabolic disease, this system is disrupted, which impairs functionality of both systems. The failure of the endocrine system to retain levels of nutrients such as glucose within threshold values impairs functionality of the immune system. In addition, metabolic stress of organs in context of obesity is perceived by the immune system as a disruption in local homeostasis, which it tries to resolve by the excretion of factors which further disrupt normal metabolic control. In this chapter, we will discuss how the immune and endocrine systems interact under homeostatic conditions and during infection with a focus on blood glucose regulation. In addition, we will discuss how this system fails in the context of metabolic disease.
Collapse
|
25
|
Chen X, Wu T, Li L, Lin Y, Ma Z, Xu J, Li H, Cheng F, Chen R, Sun K, Luo Y, Zhang C, Chen F, Wang J, Kuo T, Li X, Geng C, Lin F, Huang C, Hu J, Yin J, Liu M, Tao Y, Zhang J, Ou R, Zheng F, Jin Y, Yang H, Wang J, Xu X, Fu S, Jiang H, Jin X, Zhang H. Transcriptional Start Site Coverage Analysis in Plasma Cell-Free DNA Reveals Disease Severity and Tissue Specificity of COVID-19 Patients. Front Genet 2021; 12:663098. [PMID: 34122515 PMCID: PMC8194351 DOI: 10.3389/fgene.2021.663098] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/14/2021] [Indexed: 01/10/2023] Open
Abstract
Symptoms of coronavirus disease 2019 (COVID-19) range from asymptomatic to severe pneumonia and death. A deep understanding of the variation of biological characteristics in severe COVID-19 patients is crucial for the detection of individuals at high risk of critical condition for the clinical management of the disease. Herein, by profiling the gene expression spectrum deduced from DNA coverage in regions surrounding transcriptional start site in plasma cell-free DNA (cfDNA) of COVID-19 patients, we deciphered the altered biological processes in the severe cases and demonstrated the feasibility of cfDNA in measuring the COVID-19 progression. The up- and downregulated genes in the plasma of severe patient were found to be closely related to the biological processes and functions affected by COVID-19 progression. More importantly, with the analysis of transcriptome data of blood cells and lung cells from control group and cases with severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) infection, we revealed that the upregulated genes were predominantly involved in the viral and antiviral activity in blood cells, reflecting the intense viral replication and the active reaction of immune system in the severe patients. Pathway analysis of downregulated genes in plasma DNA and lung cells also demonstrated the diminished adenosine triphosphate synthesis function in lung cells, which was evidenced to correlate with the severe COVID-19 symptoms, such as a cytokine storm and acute respiratory distress. Overall, this study revealed tissue involvement, provided insights into the mechanism of COVID-19 progression, and highlighted the utility of cfDNA as a noninvasive biomarker for disease severity inspections.
Collapse
Affiliation(s)
- Xinping Chen
- Hainan Provincial Key Laboratory of Cell and Molecular Genetic Translational Medicine, Hainan General Hospital, Hainan Hospital Affiliated to The Hainan Medical College, Haikou, China
| | - Tao Wu
- Hainan Provincial Key Laboratory of Cell and Molecular Genetic Translational Medicine, Hainan General Hospital, Hainan Hospital Affiliated to The Hainan Medical College, Haikou, China
| | - Lingguo Li
- BGI-Shenzhen, Shenzhen, China
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Yu Lin
- BGI-Shenzhen, Shenzhen, China
| | - Zhichao Ma
- Hainan Provincial Key Laboratory of Cell and Molecular Genetic Translational Medicine, Hainan General Hospital, Hainan Hospital Affiliated to The Hainan Medical College, Haikou, China
| | | | - Hui Li
- Hainan Provincial Key Laboratory of Cell and Molecular Genetic Translational Medicine, Hainan General Hospital, Hainan Hospital Affiliated to The Hainan Medical College, Haikou, China
| | - Fanjun Cheng
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | - Kun Sun
- BGI-Shenzhen, Shenzhen, China
- Shenzhen Bay Laboratory, Shenzhen, China
| | - Yuxue Luo
- BGI-Shenzhen, Shenzhen, China
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Chen Zhang
- Hainan Provincial Key Laboratory of Cell and Molecular Genetic Translational Medicine, Hainan General Hospital, Hainan Hospital Affiliated to The Hainan Medical College, Haikou, China
| | | | - Jiao Wang
- Hainan Provincial Key Laboratory of Cell and Molecular Genetic Translational Medicine, Hainan General Hospital, Hainan Hospital Affiliated to The Hainan Medical College, Haikou, China
| | - Tingyu Kuo
- BGI-Shenzhen, Shenzhen, China
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China
| | - Xiaojuan Li
- Hainan Provincial Key Laboratory of Cell and Molecular Genetic Translational Medicine, Hainan General Hospital, Hainan Hospital Affiliated to The Hainan Medical College, Haikou, China
| | | | - Feng Lin
- Hainan Provincial Key Laboratory of Cell and Molecular Genetic Translational Medicine, Hainan General Hospital, Hainan Hospital Affiliated to The Hainan Medical College, Haikou, China
| | | | - Junjie Hu
- Hainan Provincial Key Laboratory of Cell and Molecular Genetic Translational Medicine, Hainan General Hospital, Hainan Hospital Affiliated to The Hainan Medical College, Haikou, China
| | | | - Ming Liu
- Hainan Provincial Key Laboratory of Cell and Molecular Genetic Translational Medicine, Hainan General Hospital, Hainan Hospital Affiliated to The Hainan Medical College, Haikou, China
| | - Ye Tao
- BGI-Shenzhen, Shenzhen, China
| | - Jiye Zhang
- Hainan Provincial Key Laboratory of Cell and Molecular Genetic Translational Medicine, Hainan General Hospital, Hainan Hospital Affiliated to The Hainan Medical College, Haikou, China
| | | | - Fang Zheng
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Jin
- Department of Emergency Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huanming Yang
- BGI-Shenzhen, Shenzhen, China
- James D. Watson Institute of Genome Sciences, Hangzhou, China
| | - Jian Wang
- BGI-Shenzhen, Shenzhen, China
- James D. Watson Institute of Genome Sciences, Hangzhou, China
| | - Xun Xu
- BGI-Shenzhen, Shenzhen, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen, China
| | - Shengmiao Fu
- Hainan Provincial Key Laboratory of Cell and Molecular Genetic Translational Medicine, Hainan General Hospital, Hainan Hospital Affiliated to The Hainan Medical College, Haikou, China
| | - Hongyan Jiang
- Hainan Provincial Key Laboratory of Cell and Molecular Genetic Translational Medicine, Hainan General Hospital, Hainan Hospital Affiliated to The Hainan Medical College, Haikou, China
| | - Xin Jin
- BGI-Shenzhen, Shenzhen, China
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | |
Collapse
|
26
|
Bhutta MS, Gallo ES, Borenstein R. Multifaceted Role of AMPK in Viral Infections. Cells 2021; 10:1118. [PMID: 34066434 PMCID: PMC8148118 DOI: 10.3390/cells10051118] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/02/2021] [Accepted: 05/03/2021] [Indexed: 02/06/2023] Open
Abstract
Viral pathogens often exploit host cell regulatory and signaling pathways to ensure an optimal environment for growth and survival. Several studies have suggested that 5'-adenosine monophosphate-activated protein kinase (AMPK), an intracellular serine/threonine kinase, plays a significant role in the modulation of infection. Traditionally, AMPK is a key energy regulator of cell growth and proliferation, host autophagy, stress responses, metabolic reprogramming, mitochondrial homeostasis, fatty acid β-oxidation and host immune function. In this review, we highlight the modulation of host AMPK by various viruses under physiological conditions. These intracellular pathogens trigger metabolic changes altering AMPK signaling activity that then facilitates or inhibits viral replication. Considering the COVID-19 pandemic, understanding the regulation of AMPK signaling following infection can shed light on the development of more effective therapeutic strategies against viral infectious diseases.
Collapse
Affiliation(s)
- Maimoona Shahid Bhutta
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA 23507, USA;
| | - Elisa S. Gallo
- Board-Certified Dermatologist and Independent Researcher, Norfolk, VA 23507, USA;
| | - Ronen Borenstein
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA 23507, USA;
| |
Collapse
|
27
|
The antiviral effect of metformin on zika and dengue virus infection. Sci Rep 2021; 11:8743. [PMID: 33888740 PMCID: PMC8062493 DOI: 10.1038/s41598-021-87707-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 03/30/2021] [Indexed: 02/08/2023] Open
Abstract
The Dengue (DENV) and zika (ZIKV) virus infections are currently a public health concern. At present, there is no treatment or a safe and effective vaccine for these viruses. Hence, the development of new strategies as host-directed therapy is required. In this sense, Metformin (MET), an FDA-approved drug used for the treatment of type 2 diabetes, has shown an anti-DENV effect in vitro by activating AMPK and reducing HMGCR activity. In this study, MET treatment was evaluated during in vitro and in vivo ZIKV infection and compared to MET treatment during DENV infection. Our results demonstrated that MET has a broad in vitro antiviral spectrum. MET inhibited ZIKV infection in different cell lines, but it was most effective in inhibiting DENV and yellow fever virus (YFV) infection in Huh-7 cells. However, the drug failed to protect against ZIKV infection when AG129 immunodeficient mice were used as in vivo model. Interestingly, MET increased DENV-infected male mice's survival time, reducing the severe signs of the disease. Together, these findings indicate that, although MET was an effective antiviral agent to inhibit in vitro and in vivo DENV infection, it could only inhibit in vitro ZIKV infection.
Collapse
|
28
|
Xu L, Wang X, Chen Y, Soong L, Chen Y, Cai J, Liang Y, Sun J. Metformin Modulates T Cell Function and Alleviates Liver Injury Through Bioenergetic Regulation in Viral Hepatitis. Front Immunol 2021; 12:638575. [PMID: 33968030 PMCID: PMC8097169 DOI: 10.3389/fimmu.2021.638575] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/23/2021] [Indexed: 12/11/2022] Open
Abstract
Metformin is not only the first-line medication for the treatment of type 2 diabetes, but it is also effective as an anti-inflammatory, anti-oxidative and anti-tumor agent. However, the effect of metformin during viral hepatitis remains elusive. Using an adenovirus (Ad)-induced viral hepatitis mouse model, we found that metformin treatment significantly attenuated liver injury, with reduced serum aspartate transaminase (AST) and alanine transaminase (ALT) levels and liver histological changes, presumably via decreased effector T cell responses. We then demonstrated that metformin reduced mTORC1 activity in T cells from infected mice, as evidenced by decreased phosphorylation of ribosome protein S6 (p-S6). The inhibitory effects on the mTORC1 signaling by metformin was dependent on the tuberous sclerosis complex 1 (TSC1). Mechanistically, metformin treatment modulated the phosphorylation of dynamin-related protein 1 (Drp-1) and mitochondrial fission 1 protein (FIS1), resulting in increased mass in effector T cells. Moreover, metformin treatment promoted mitochondrial superoxide production, which can inhibit excessive T cell activation in viral hepatitis. Together, our results revealed a protective role and therapeutic potential of metformin against liver injury in acute viral hepatitis via modulating effector T cell activation via regulating the mTORC1 pathway and mitochondrial functions.
Collapse
Affiliation(s)
- Lanman Xu
- Department of Infectious Diseases and Liver Diseases, Ningbo Medical Center Lihuili Hospital, Affiliated Lihuili Hospital of Ningbo University, Ningbo Institute of Innovation for Combined Medicine and Engineering, Ningbo, China.,Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| | - Xiaofang Wang
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States.,Department of Infectious Diseases, Key Laboratory of Viral Hepatitis of Hunan, Xiangya Hospital, Central South University, Changsha, China
| | - Yan Chen
- Department of Ophthalmology, University of Texas Medical Branch, Galveston, TX, United States
| | - Lynn Soong
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States.,Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States.,Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, United States
| | - Yongping Chen
- Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Wenzhou, China
| | - Jiyang Cai
- Department of Ophthalmology, University of Texas Medical Branch, Galveston, TX, United States
| | - Yuejin Liang
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States.,Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, United States
| | - Jiaren Sun
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States.,Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States.,Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
29
|
Nguyen NM, Chanh HQ, Tam DTH, Vuong NL, Chau NTX, Chau NVV, Phong NT, Trieu HT, Luong Thi Hue T, Cao Thi T, Dinh The T, Duyen HTL, Van NTT, Nguyen Than Ha Q, Rivino L, Gallagher P, Jones NK, Geskus RB, Kestelyn E, Yacoub S. Metformin as adjunctive therapy for dengue in overweight and obese patients: a protocol for an open-label clinical trial (MeDO). Wellcome Open Res 2021; 5:160. [PMID: 33083561 PMCID: PMC7539082 DOI: 10.12688/wellcomeopenres.16053.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2020] [Indexed: 12/03/2023] Open
Abstract
Background: Dengue is a disease of major global importance. While most symptomatic infections are mild, a small proportion of patients progress to severe disease with risk of hypovolaemic shock, organ dysfunction and death. In the absence of effective antiviral or disease modifying drugs, clinical management is solely reliant on supportive measures. Obesity is a growing problem among young people in Vietnam and is increasingly recognised as an important risk factor for severe dengue, likely due to alterations in host immune and inflammatory pathways. Metformin, a widely used anti-hyperglycaemic agent with excellent safety profile, has demonstrated potential as a dengue therapeutic in vitro and in a retrospective observational study of adult dengue patients with type 2 diabetes. This study aims to assess the safety and tolerability of metformin treatment in overweight and obese dengue patients, and investigate its effects on several clinical, immunological and virological markers of disease severity. Methods: This open label trial of 120 obese/overweight dengue patients will be performed in two phases, with a metformin dose escalation if no safety concerns arise in phase one. The primary endpoint is identification of clinical and laboratory adverse events. Sixty overweight and obese dengue patients aged 10-30 years will be enrolled at the Hospital for Tropical Diseases in Ho Chi Minh City, Vietnam. Participants will complete a 5-day course of metformin therapy and be compared to a non-treated group of 60 age-matched overweight and obese dengue patients. Discussion: Previously observed antiviral and immunomodulatory effects of metformin make it a promising dengue therapeutic candidate in appropriately selected patients. This study will assess the safety and tolerability of adjunctive metformin in the management of overweight and obese young dengue patients, as well as its effects on markers of viral replication, endothelial dysfunction and host immune responses. Trial registration: ClinicalTrials.gov: NCT04377451 (May 6 th 2020).
Collapse
Affiliation(s)
- Nguyet Minh Nguyen
- Oxford University Clinical Research Unit, Ho Chi Minh City, 700000, Vietnam
| | - Ho Quang Chanh
- Oxford University Clinical Research Unit, Ho Chi Minh City, 700000, Vietnam
| | - Dong Thi Hoai Tam
- Oxford University Clinical Research Unit, Ho Chi Minh City, 700000, Vietnam
| | - Nguyen Lam Vuong
- Oxford University Clinical Research Unit, Ho Chi Minh City, 700000, Vietnam
| | | | | | | | | | | | - Tam Cao Thi
- Hospital for Tropical Diseases, Ho Chi Minh City, 700000, Vietnam
| | - Trung Dinh The
- Oxford University Clinical Research Unit, Ho Chi Minh City, 700000, Vietnam
| | - Huynh Thi Le Duyen
- Oxford University Clinical Research Unit, Ho Chi Minh City, 700000, Vietnam
| | - Ninh Thi Thanh Van
- Oxford University Clinical Research Unit, Ho Chi Minh City, 700000, Vietnam
| | | | - Laura Rivino
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | | | | | - Ronald B. Geskus
- Oxford University Clinical Research Unit, Ho Chi Minh City, 700000, Vietnam
- Centre for Tropical Medicine and Global Health, Oxford University, Oxford, UK
| | - Evelyne Kestelyn
- Oxford University Clinical Research Unit, Ho Chi Minh City, 700000, Vietnam
- Centre for Tropical Medicine and Global Health, Oxford University, Oxford, UK
| | - Sophie Yacoub
- Oxford University Clinical Research Unit, Ho Chi Minh City, 700000, Vietnam
- Centre for Tropical Medicine and Global Health, Oxford University, Oxford, UK
| |
Collapse
|
30
|
Nguyen NM, Chanh HQ, Tam DTH, Vuong NL, Chau NTX, Chau NVV, Phong NT, Trieu HT, Luong Thi Hue T, Cao Thi T, Dinh The T, Duyen HTL, Van NTT, Nguyen Than Ha Q, Rivino L, Gallagher P, Jones NK, Geskus RB, Kestelyn E, Yacoub S. Metformin as adjunctive therapy for dengue in overweight and obese patients: a protocol for an open-label clinical trial (MeDO). Wellcome Open Res 2021; 5:160. [PMID: 33083561 PMCID: PMC7539082 DOI: 10.12688/wellcomeopenres.16053.2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2020] [Indexed: 12/30/2022] Open
Abstract
Background: Dengue is a disease of major global importance. While most symptomatic infections are mild, a small proportion of patients progress to severe disease with risk of hypovolaemic shock, organ dysfunction and death. In the absence of effective antiviral or disease modifying drugs, clinical management is solely reliant on supportive measures. Obesity is a growing problem among young people in Vietnam and is increasingly recognised as an important risk factor for severe dengue, likely due to alterations in host immune and inflammatory pathways. Metformin, a widely used anti-hyperglycaemic agent with excellent safety profile, has demonstrated potential as a dengue therapeutic
in vitro and in a retrospective observational study of adult dengue patients with type 2 diabetes. This study aims to assess the safety and tolerability of metformin treatment in overweight and obese dengue patients, and investigate its effects on several clinical, immunological and virological markers of disease severity. Methods: This open label trial of 120 obese/overweight dengue patients will be performed in two phases, with a metformin dose escalation if no safety concerns arise in phase one. The primary endpoint is identification of clinical and laboratory adverse events. Sixty overweight and obese dengue patients aged 10-30 years will be enrolled at the Hospital for Tropical Diseases in Ho Chi Minh City, Vietnam. Participants will complete a 5-day course of metformin therapy and be compared to a non-treated group of 60 age-matched overweight and obese dengue patients. Discussion: Previously observed antiviral and immunomodulatory effects of metformin make it a promising dengue therapeutic candidate in appropriately selected patients. This study will assess the safety and tolerability of adjunctive metformin in the management of overweight and obese young dengue patients, as well as its effects on markers of viral replication, endothelial dysfunction and host immune responses. Trial registration: ClinicalTrials.gov:
NCT04377451 (May 6
th 2020).
Collapse
Affiliation(s)
- Nguyet Minh Nguyen
- Oxford University Clinical Research Unit, Ho Chi Minh City, 700000, Vietnam
| | - Ho Quang Chanh
- Oxford University Clinical Research Unit, Ho Chi Minh City, 700000, Vietnam
| | - Dong Thi Hoai Tam
- Oxford University Clinical Research Unit, Ho Chi Minh City, 700000, Vietnam
| | - Nguyen Lam Vuong
- Oxford University Clinical Research Unit, Ho Chi Minh City, 700000, Vietnam
| | | | | | | | | | | | - Tam Cao Thi
- Hospital for Tropical Diseases, Ho Chi Minh City, 700000, Vietnam
| | - Trung Dinh The
- Oxford University Clinical Research Unit, Ho Chi Minh City, 700000, Vietnam
| | - Huynh Thi Le Duyen
- Oxford University Clinical Research Unit, Ho Chi Minh City, 700000, Vietnam
| | - Ninh Thi Thanh Van
- Oxford University Clinical Research Unit, Ho Chi Minh City, 700000, Vietnam
| | | | - Laura Rivino
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | | | | | - Ronald B Geskus
- Oxford University Clinical Research Unit, Ho Chi Minh City, 700000, Vietnam.,Centre for Tropical Medicine and Global Health, Oxford University, Oxford, UK
| | - Evelyne Kestelyn
- Oxford University Clinical Research Unit, Ho Chi Minh City, 700000, Vietnam.,Centre for Tropical Medicine and Global Health, Oxford University, Oxford, UK
| | - Sophie Yacoub
- Oxford University Clinical Research Unit, Ho Chi Minh City, 700000, Vietnam.,Centre for Tropical Medicine and Global Health, Oxford University, Oxford, UK
| |
Collapse
|
31
|
Shimotohno K. HCV Assembly and Egress via Modifications in Host Lipid Metabolic Systems. Cold Spring Harb Perspect Med 2021; 11:cshperspect.a036814. [PMID: 32122916 PMCID: PMC7778218 DOI: 10.1101/cshperspect.a036814] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Hepatitis C virus (HCV) proliferates by hijacking the host lipid machinery. In vitro replication systems revealed many aspects of the virus life cycle; in particular, viral utilization of host lipid metabolism during HCV proliferation. HCV interacts with lipid droplets (LDs) before starting the process of virus capsid formation at the lipid-rich endoplasmic reticulum (ER) membrane compartment. HCV buds into the ER via lipoprotein assembly and secretion. Exchangeable apolipoproteins, represented by apolipoprotein E (apoE), play pivotal roles in enhancing HCV-specific infectivity. HCV virions are likely to interact with other lipoproteins circulating in blood vessels and incorporate apolipoproteins as well as lipids. This review focuses on virus assembly and egress by briefly describing the recent advances in this area.
Collapse
|
32
|
Tseng HH, Huang WR, Cheng CY, Chiu HC, Liao TL, Nielsen BL, Liu HJ. Aspirin and 5-Aminoimidazole-4-carboxamide Riboside Attenuate Bovine Ephemeral Fever Virus Replication by Inhibiting BEFV-Induced Autophagy. Front Immunol 2020; 11:556838. [PMID: 33329515 PMCID: PMC7732683 DOI: 10.3389/fimmu.2020.556838] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 10/21/2020] [Indexed: 12/21/2022] Open
Abstract
Recent study in our laboratory has demonstrated that BEFV-induced autophagy via activation of the PI3K/Akt/NF-κB and Src/JNK pathways and suppression of the PI3K-AKt-mTORC1 pathway is beneficial for virus replication. In the current study, we found that both aspirin and 5-aminoimidazole-4-carboxamide-1-β-riboside (AICAR) siginificantly attenuated virus replication by inhibiting BEFV-induced autophagy via suppressing the BEFV-activated PI3K/Akt/NF-κB and Src/JNK pathways as well as inducing reversion of the BEFV-suppressed PI3K-Akt-mTORC1 pathway. AICAR reversed the BEFV-activated PI3K/Akt/NF-κB and Src/JNK pathways at the early to late stages of infection and induced reversion of the BEFV-suppressed PI3K-AKt-mTORC1 pathway at the late stage of infection. Our findings reveal that inhibition of BEFV-induced autophagy by AICAR is independent of AMPK. Furthermore, we found that AICAR transcriptionally downregulates the ATG related genes ULK1, Beclin 1, and LC3 and enhances Atg7 degradation by the proteasome pathway. Aspirin suppresses virus replication by inhibiting BEFV-induced autophagy. It directly suppressed the NF-κB pathway and reversed the BEFV-activated Src/JNK pathway at the early stage of infection and reversed the BEFV-suppressed PI3K/Akt/mTOR pathway at the late stage of infection. The current study provides mechanistic insights into the effects of aspirin and AICAR on BEFV replication through suppression of BEFV-induced autophagy.
Collapse
Affiliation(s)
- Hsu-Hung Tseng
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan.,Division of General Surgery, Taichung Hospital, Ministry of Health and Welfare, Taichung, Taiwan
| | - Wei-Ru Huang
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan.,The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Ching-Yuan Cheng
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
| | - Hung-Chuan Chiu
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan.,The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Tsai-Ling Liao
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan.,Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan.,Ph.D Program in Translational Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Brent L Nielsen
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States
| | - Hung-Jen Liu
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan.,The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan.,Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan.,Ph.D Program in Translational Medicine, National Chung Hsing University, Taichung, Taiwan.,Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
33
|
Lim B, Kim S, Lim KS, Jeong CG, Kim SC, Lee SM, Park CK, Te Pas MFW, Gho H, Kim TH, Lee KT, Kim WI, Kim JM. Integrated time-serial transcriptome networks reveal common innate and tissue-specific adaptive immune responses to PRRSV infection. Vet Res 2020; 51:128. [PMID: 33050948 PMCID: PMC7552595 DOI: 10.1186/s13567-020-00850-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/13/2020] [Indexed: 12/17/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) infection is the most important viral disease causing severe economic losses in the swine industry. However, mechanisms underlying gene expression control in immunity-responsible tissues at different time points during PRRSV infection are poorly understood. We constructed an integrated gene co-expression network and identified tissue- and time-dependent biological mechanisms of PRRSV infection through bioinformatics analysis using three tissues (lungs, bronchial lymph nodes [BLNs], and tonsils) via RNA-Seq. Three groups with specific expression patterns (i.e., the 3-dpi, lung, and BLN groups) were discovered. The 3 dpi-specific group showed antiviral and innate-immune signalling similar to the case for influenza A infection. Moreover, we observed adaptive immune responses in the lung-specific group based on various cytokines, while the BLN-specific group showed down-regulated AMPK signalling related to viral replication. Our study may provide comprehensive insights into PRRSV infection, as well as useful information for vaccine development.
Collapse
Affiliation(s)
- Byeonghwi Lim
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Gyeonggi-do, 17546, Republic of Korea
| | - Sangwook Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Gyeonggi-do, 17546, Republic of Korea
| | - Kyu-Sang Lim
- Department of Animal Science, Iowa State University, Ames, IA, 50011, USA
| | - Chang-Gi Jeong
- College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeollabuk-do, 54596, Republic of Korea
| | - Seung-Chai Kim
- College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeollabuk-do, 54596, Republic of Korea
| | - Sang-Myeong Lee
- College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungcheongbuk-do, 28644, Republic of Korea
| | - Choi-Kyu Park
- College of Veterinary Medicine & Animal Disease Intervention Center, Kyungpook National University, Daegu, 41566, Republic of Korea
| | | | - Haesu Gho
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju, 55365, Republic of Korea
| | - Tae-Hun Kim
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju, 55365, Republic of Korea
| | - Kyung-Tai Lee
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju, 55365, Republic of Korea.
| | - Won-Il Kim
- College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeollabuk-do, 54596, Republic of Korea.
| | - Jun-Mo Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Gyeonggi-do, 17546, Republic of Korea.
| |
Collapse
|
34
|
Kopietz F, Rupar K, Berggreen C, Säll J, Vertommen D, Degerman E, Rider MH, Göransson O. Inhibition of AMPK activity in response to insulin in adipocytes: involvement of AMPK pS485, PDEs, and cellular energy levels. Am J Physiol Endocrinol Metab 2020; 319:E459-E471. [PMID: 32663099 DOI: 10.1152/ajpendo.00065.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Insulin resistance in obesity and type 2 diabetes has been shown to be associated with decreased de novo fatty acid (FA) synthesis in adipose tissue. It is known that insulin can acutely stimulate FA synthesis in adipocytes; however, the mechanisms underlying this effect are unclear. The rate-limiting step in FA synthesis is catalyzed by acetyl-CoA carboxylase (ACC), known to be regulated through inhibitory phosphorylation at S79 by the AMP-activated protein kinase (AMPK). Previous results from our laboratory showed an inhibition of AMPK activity by insulin, which was accompanied by PKB-dependent phosphorylation of AMPK at S485. However, whether the S485 phosphorylation is required for insulin-induced inhibition of AMPK or other mechanisms underlie the reduced kinase activity is not known. To investigate this, primary rat adipocytes were transduced with a recombinant adenovirus encoding AMPK-WT or a nonphosphorylatable AMPK S485A mutant. AMPK activity measurements by Western blot analysis and in vitro kinase assay revealed that WT and S485A AMPK were inhibited to a similar degree by insulin, indicating that AMPK S485 phosphorylation is not required for insulin-induced AMPK inhibition. Further analysis suggested an involvement of decreased AMP-to-ATP ratios in the insulin-induced inhibition of AMPK activity, whereas a possible contribution of phosphodiesterases was excluded. Furthermore, we show that insulin-induced AMPK S485 phosphorylation also occurs in human adipocytes, suggesting it to be of an importance yet to be revealed. Altogether, this study increases our understanding of how insulin regulates AMPK activity, and with that, FA synthesis, in adipose tissue.
Collapse
Affiliation(s)
| | - Kaja Rupar
- Department of Experimental Medical Science, Lund University, Sweden
| | | | - Johanna Säll
- Department of Experimental Medical Science, Lund University, Sweden
| | - Didier Vertommen
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Eva Degerman
- Department of Experimental Medical Science, Lund University, Sweden
| | - Mark H Rider
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Olga Göransson
- Department of Experimental Medical Science, Lund University, Sweden
| |
Collapse
|
35
|
Subramanian G, Popli S, Chakravarty S, Taylor RT, Chakravarti R, Chattopadhyay S. The interferon-inducible protein TDRD7 inhibits AMP-activated protein kinase and thereby restricts autophagy-independent virus replication. J Biol Chem 2020; 295:6811-6822. [PMID: 32273341 DOI: 10.1074/jbc.ra120.013533] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/03/2020] [Indexed: 12/25/2022] Open
Abstract
The interferon system is the first line of defense against virus infection. Recently, using a high-throughput genetic screen of a human interferon-stimulated gene short-hairpin RNA library, we identified a viral restriction factor, TDRD7 (Tudor domain-containing 7). TDRD7 inhibits the paramyxo-/pneumoviruses (e.g. Sendai virus and respiratory syncytial virus) by interfering with the virus-induced cellular autophagy pathway, which these viruses use for their replication. Here, we report that TDRD7 is a viral restriction factor against herpes simplex virus (HSV-1). Using knockdown, knockout, and ectopic expression systems, we demonstrate the anti-HSV-1 activity of TDRD7 in multiple human and mouse cell types. TDRD7 inhibited the virus-activated AMP-activated protein kinase (AMPK), which was essential for HSV-1 replication. Genetic ablation or chemical inhibition of AMPK activity suppressed HSV-1 replication in multiple human and mouse cells. Mechanistically, HSV-1 replication after viral entry depended on AMPK but not on its function in autophagy. The antiviral activity of TDRD7 depended on its ability to inhibit virus-activated AMPK. In summary, our results indicate that the newly identified viral restriction factor TDRD7 inhibits AMPK and thereby blocks HSV-1 replication independently of the autophagy pathway. These findings suggest that AMPK inhibition represents a potential strategy to manage HSV-1 infections.
Collapse
Affiliation(s)
- Gayatri Subramanian
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio 43614
| | - Sonam Popli
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio 43614
| | - Sukanya Chakravarty
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio 43614
| | - R Travis Taylor
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio 43614
| | - Ritu Chakravarti
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio 43614
| | - Saurabh Chattopadhyay
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio 43614
| |
Collapse
|
36
|
Zhao J, Li G, Zhao X, Lin X, Gao Y, Raimundo N, Li GL, Shang W, Wu H, Song L. Down-regulation of AMPK signaling pathway rescues hearing loss in TFB1 transgenic mice and delays age-related hearing loss. Aging (Albany NY) 2020; 12:5590-5611. [PMID: 32240104 PMCID: PMC7185105 DOI: 10.18632/aging.102977] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 03/03/2020] [Indexed: 04/08/2023]
Abstract
AMP-activated protein kinase (AMPK) integrates the regulation of cell growth and metabolism. AMPK activation occurs in response to cellular energy decline and mitochondrial dysfunction triggered by reactive oxygen species (ROS). In aged Tg-mtTFB1 mice, a mitochondrial deafness mouse model, hearing loss is accompanied with cochlear pathology including reduced endocochlear potential (EP) and loss of spiral ganglion neurons (SGN), inner hair cell (IHC) synapses and outer hair cells (OHC). Accumulated ROS and increased apoptosis signaling were also detected in cochlear tissues, accompanied by activation of AMPK. To further explore the role of AMPK signaling in the auditory phenotype, we used genetically knocked out AMPKα1 as a rescue to Tg-mtTFB1 mice and observed: improved ABR wave I, EP and IHC function, normal SGNs, IHC synapses morphology and OHC survivals, with decreased ROS, reduced pro-apoptotic signaling (Bax) and increased anti-apoptotic signaling (Bcl-2) in the cochlear tissues, indicating that reduced AMPK attenuated apoptosis via ROS-AMPK-Bcl2 pathway in the cochlea. To conclude, AMPK hyperactivation causes accelerated presbycusis in Tg-mtTFB1 mice by redox imbalance and dysregulation of the apoptosis pathway. The effects of AMPK downregulation on pro-survival function and reduction of oxidative stress indicate AMPK serves as a target to rescue or relieve mitochondrial hearing loss.
Collapse
Affiliation(s)
- Jingjing Zhao
- Department of Otolaryngology, Head and Neck Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Gen Li
- Department of Otolaryngology, Head and Neck Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Xuan Zhao
- Navy Clinical Medical School, Anhui Medical University, Hefei, China
| | - Xin Lin
- Department of Otorhinolaryngology, Head and Neck Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yunge Gao
- Department of Otolaryngology, Head and Neck Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Nuno Raimundo
- Institute of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Geng-Lin Li
- Department of Otorhinolaryngology, Eye and ENT Hospital, Fudan University, Shanghai, China
| | - Wei Shang
- Navy Clinical Medical School, Anhui Medical University, Hefei, China
- In Vitro Fertility (IVF) Center Department of Obstetrics and Gynecology, the Sixth Medical Center of PLA General Hospital, Beijing, China
| | - Hao Wu
- Department of Otolaryngology, Head and Neck Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Lei Song
- Department of Otolaryngology, Head and Neck Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| |
Collapse
|
37
|
Huet C, Boudaba N, Guigas B, Viollet B, Foretz M. Glucose availability but not changes in pancreatic hormones sensitizes hepatic AMPK activity during nutritional transition in rodents. J Biol Chem 2020; 295:5836-5849. [PMID: 32184359 DOI: 10.1074/jbc.ra119.010244] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 03/10/2020] [Indexed: 12/14/2022] Open
Abstract
The cellular energy sensor AMP-activated protein kinase (AMPK) is a metabolic regulator that mediates adaptation to nutritional variations to maintain a proper energy balance in cells. We show here that suckling-weaning and fasting-refeeding transitions in rodents are associated with changes in AMPK activation and the cellular energy state in the liver. These nutritional transitions were characterized by a metabolic switch from lipid to glucose utilization, orchestrated by modifications in glucose levels and the glucagon/insulin ratio in the bloodstream. We therefore investigated the respective roles of glucose and pancreatic hormones on AMPK activation in mouse primary hepatocytes. We found that glucose starvation transiently activates AMPK, whereas changes in glucagon and insulin levels had no impact on AMPK. Challenge of hepatocytes with metformin-induced metabolic stress strengthened both AMPK activation and cellular energy depletion under limited-glucose conditions, whereas neither glucagon nor insulin altered AMPK activation. Although both insulin and glucagon induced AMPKα phosphorylation at its Ser485/491 residue, they did not affect its activity. Finally, the decrease in cellular ATP levels in response to an energy stress was additionally exacerbated under fasting conditions and by AMPK deficiency in hepatocytes, revealing metabolic inflexibility and emphasizing the importance of AMPK for maintaining hepatic energy charge. Our results suggest that nutritional changes (i.e. glucose availability), rather than the related hormonal changes (i.e. the glucagon/insulin ratio), sensitize AMPK activation to the energetic stress induced by the dietary transition during fasting. This effect is critical for preserving the cellular energy state in the liver.
Collapse
Affiliation(s)
- Camille Huet
- Université de Paris, Institut Cochin, CNRS, INSERM, F-75014 Paris, France
| | - Nadia Boudaba
- Université de Paris, Institut Cochin, CNRS, INSERM, F-75014 Paris, France
| | - Bruno Guigas
- Department of Parasitology, Leiden University Medical Center, 2333 ZA Leiden, Netherlands
| | - Benoit Viollet
- Université de Paris, Institut Cochin, CNRS, INSERM, F-75014 Paris, France
| | - Marc Foretz
- Université de Paris, Institut Cochin, CNRS, INSERM, F-75014 Paris, France.
| |
Collapse
|
38
|
Fatty Acids Regulate Porcine Reproductive and Respiratory Syndrome Virus Infection via the AMPK-ACC1 Signaling Pathway. Viruses 2019; 11:v11121145. [PMID: 31835577 PMCID: PMC6950460 DOI: 10.3390/v11121145] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/06/2019] [Accepted: 12/08/2019] [Indexed: 12/24/2022] Open
Abstract
Lipids play a crucial role in the replication of porcine reproductive and respiratory syndrome virus (PRRSV), a porcine virus that is endemic throughout the world. However, little is known about the effect of fatty acids (FAs), a type of vital lipid, on PRRSV infection. In this study, we found that treatment with a FA biosynthetic inhibitor significantly inhibited PRRSV propagation, indicating the necessity of FAs for optimal replication of PRRSV. Further study revealed that 5′-adenosine monophosphate (AMP)-activated protein kinase (AMPK), a key kinase antagonizing FA biosynthesis, was strongly activated by PRRSV and the pharmacological activator of AMPK exhibited anti-PRRSV activity. Additionally, we found that acetyl-CoA carboxylase 1 (ACC1), the first rate-limiting enzyme in the FA biosynthesis pathway, was phosphorylated (inactive form) by PRRSV-activated AMPK, and active ACC1 was required for PRRSV proliferation, suggesting that the PRRSV infection induced the activation of the AMPK–ACC1 pathway, which was not conducive to PRRSV replication. This work provides new evidence about the mechanisms involved in host lipid metabolism during PRRSV infection and identifies novel potential antiviral targets for PRRSV.
Collapse
|
39
|
Meng Z, Liu Q, Sun F, Qiao L. Hepatitis C virus nonstructural protein 5A perturbs lipid metabolism by modulating AMPK/SREBP-1c signaling. Lipids Health Dis 2019; 18:191. [PMID: 31684957 PMCID: PMC6829953 DOI: 10.1186/s12944-019-1136-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 10/20/2019] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Steatosis is an important clinical manifestation associated with chronic hepatitis C virus (HCV) infection. AMP-activated protein kinase (AMPK), a major mediator of lipid metabolism, regulates HCV-associated hepatic steatosis, but the underlying mechanisms remain obscure. Here we investigated the mechanism of HCV nonstructural protein 5A (NS5A)-induced lipid accumulation by the AMPK/SREBP-1c pathway. METHODS We generated model mice by injecting recombinant lentiviral particles expressing the NS5A protein (genotype 3a) via the tail vein. The serum levels of alanine aminotransferase (ALT), free fatty acids (FFAs) and triglycerides (TG) were examined. H&E and Oil Red O staining were used to examine lipid droplets. Immunohistochemistry staining, quantitative real-time PCR and Western blotting were used to determine the expression of lipogenic genes. RESULTS Our results showed that the serum levels of ALT, FFAs and TG, as well as the accumulation of hepatic lipid droplets, were increased significantly in mice infected with NS5A-expressing lentiviral particles. NS5A inhibited AMPK phosphorylation and increased the expression levels of sterol regulatory element binding protein-1c (SREBP-1c), acetyl-coenzyme A carboxylase 1 (ACC1) and fatty acid synthase (FASN) in vivo and in vitro. Further investigation revealed that pharmacological activation or ectopic expression of AMPK neutralized the upregulation of SREBP-1c, ACC1 and FASN, and ameliorated hepatic lipid accumulation induced by NS5A. Ectopic expression of SREBP-1c enhanced NS5A-induced hepatic lipid accumulation, which was dramatically reversed by pharmacological activation of AMPK. CONCLUSIONS Collectively, we demonstrate that NS5A induces hepatic lipid accumulation via the AMPK/SREBP-1c pathway.
Collapse
Affiliation(s)
- Ziyu Meng
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin, 300134, China
| | - Qiang Liu
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), School of Public Health Vaccinology and Immunotherapeutics, Department of Veterinary Microbiology, University of Saskatchewan, S7N5E3, Saskatoon, Canada
| | - Fujun Sun
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin, 300134, China
| | - Ling Qiao
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin, 300134, China.
| |
Collapse
|
40
|
Muñoz Díaz HA, Lúquez Mindiola AJ, Gómez Aldana AJ. Fisiopatología de la hepatitis C y diabetes mellitus. Hacia la cura de dos epidemias en el siglo XXI. REVISTA COLOMBIANA DE GASTROENTEROLOGÍA 2019; 34:277-287. [DOI: 10.22516/25007440.322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/01/2024]
Abstract
La infección crónica por virus de la hepatitis C (VHC) y la diabetes mellitus (DM) son dos problemas de salud pública que impactan los sistemas de salud, con una alta carga económica global. La infección por VHC produce manifestaciones hepáticas tales como hepatitis, cirrosis y carcinoma hepatocelular; asimismo, se ha involucrado en la patogénesis de manifestaciones extrahepáticas, entre las cuales se ha asociado con alteraciones metabólicas como la DM. Estudios longitudinales y transversales han reportado mayor incidencia y prevalencia de DM en pacientes con infección crónica por VHC. La DM acelera la progresión histológica y clínica en pacientes con infección crónica por VHC y las complicaciones cardiovasculares. Recientemente se ha avanzado en el tratamiento y la introducción de nuevos medicamentos como los antivirales de acción directa, que mejoran el control glucémico en estos pacientes.
Collapse
|
41
|
Liraglutide Inhibits Hepatitis C Virus Replication Through an AMP Activated Protein Kinase Dependent Mechanism. Int J Mol Sci 2019; 20:ijms20184569. [PMID: 31540136 PMCID: PMC6769880 DOI: 10.3390/ijms20184569] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 08/29/2019] [Accepted: 09/09/2019] [Indexed: 12/13/2022] Open
Abstract
Insulin resistance and diabetes are both associated with chronic hepatitis C virus (HCV) infection, and the glucagon-like peptide-1(GLP-1) receptor agonist, liraglutide, is a common therapy for diabetes. Our aim was to investigate whether liraglutide treatment can inhibit HCV replication. A cell culture-produced HCV infectious system was generated by transfection of in vitro-transcribed genomic JFH-1 ribonucleic acid (RNA) into Huh-7.5 cells. Total RNA samples were extracted to determine the efficiency of HCV replication. The Ava5 cells were treated with liraglutide and cell viability was calculated. A Western blot analysis of the protein expression was performed. The immunoreactive blot signals were also detected. Liraglutide activated GLP-1 receptors in the HCV infectious system, and inhibited subgenomic HCV RNA replication in the HuH-7.5 cells. The Western blot analysis revealed both HCV protein and replicon RNA were reduced after treatment with liraglutide in a dose-dependent manner. Liraglutide decreased the cell viability of HCV RNA at an optimum concentration of 120 μg/mL, activated the 5′ adenosine monophosphate-activated protein kinase (AMPK) and the phosphorylated- transducer of regulated cyclic adenosine monophosphate (CAMP) response element-binding protein 2 (TORC2), thereby decreasing the cell viability of phosphoenolpyruvate carboxykinase (PEPCK) and G6pase RNA Therefore, we conclude that liraglutide can inhibit HCV replication via an AMPK/TORC2-dependent pathway.
Collapse
|
42
|
Wensveen FM, Šestan M, Turk Wensveen T, Polić B. 'Beauty and the beast' in infection: How immune-endocrine interactions regulate systemic metabolism in the context of infection. Eur J Immunol 2019; 49:982-995. [PMID: 31106860 DOI: 10.1002/eji.201847895] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/28/2019] [Accepted: 05/17/2019] [Indexed: 02/07/2023]
Abstract
The immune and endocrine systems ensure two vital functions in the body. The immune system protects us from lethal pathogens, whereas the endocrine system ensures proper metabolic function of peripheral organs by regulating systemic homeostasis. These two systems were long thought to operate independently. The immune system uses cytokines and immune receptors, whereas the endocrine system uses hormones to regulate metabolism. However, recent findings show that the immune and endocrine systems closely interact, especially regarding regulation of glucose metabolism. In response to pathogen encounter, cytokines modify responsiveness of peripheral organs to endocrine signals, resulting in altered levels of blood hormones such as insulin, which promotes the ability of the body to fight infection. Here we provide an overview of recent literature describing various mechanisms, which the immune system utilizes to modify endocrine regulation of systemic metabolism. Moreover, we will describe how these immune-endocrine interactions derail in the context of obesity. From a clinical perspective we will elaborate how infection and obesity aggravate the development of metabolic diseases such as diabetes mellitus type 2 in humans. In summary, this review provides a comprehensive overview of immune-induced changes in systemic metabolism following infection, with a focus on regulation of glucose metabolism.
Collapse
Affiliation(s)
- Felix M Wensveen
- Department of Histology and Embryology, University of Rijeka School of Medicine, Rijeka, Croatia
| | - Marko Šestan
- Department of Histology and Embryology, University of Rijeka School of Medicine, Rijeka, Croatia
| | - Tamara Turk Wensveen
- Department of Endocrinology, Diabetes and Metabolic Diseases, Clinical hospital center Rijeka, Rijeka, Croatia
| | - Bojan Polić
- Department of Histology and Embryology, University of Rijeka School of Medicine, Rijeka, Croatia
| |
Collapse
|
43
|
Acharya B, Gyeltshen S, Chaijaroenkul W, Na-Bangchang K. Significance of Autophagy in Dengue Virus Infection: A Brief Review. Am J Trop Med Hyg 2019; 100:783-790. [PMID: 30761986 PMCID: PMC6447095 DOI: 10.4269/ajtmh.18-0761] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 12/29/2018] [Indexed: 12/16/2022] Open
Abstract
Dengue virus (DENV) causes asymptomatic to severe life-threatening infections and affects millions of people worldwide. Autophagy, a cellular degradative pathway, has both proviral and antiviral functions. Dengue virus triggers the autophagy pathway for the successful replication of its genome. However, the exact mechanism and the viral factors involved in activating this pathway remain unclear. This review summarizes the existing knowledge on the mechanism of autophagy induction and its significance during DENV infection.
Collapse
Affiliation(s)
- Bishwanath Acharya
- Chulabhorn International College of Medicine, Thammasat University, Rangsit Center, Klong Luang, Thailand
| | - Sonam Gyeltshen
- Chulabhorn International College of Medicine, Thammasat University, Rangsit Center, Klong Luang, Thailand
| | - Wanna Chaijaroenkul
- Chulabhorn International College of Medicine, Thammasat University, Rangsit Center, Klong Luang, Thailand
| | - Kesara Na-Bangchang
- Chulabhorn International College of Medicine, Thammasat University, Rangsit Center, Klong Luang, Thailand
- Center of Excellence in Pharmacology and Molecular Biology of Malaria and Cholangiocarcinoma, Chulabhorn International College of Medicine, Thammasat University, Rangsit Center, Klong Luang, Thailand
| |
Collapse
|
44
|
Eisenreich W, Rudel T, Heesemann J, Goebel W. How Viral and Intracellular Bacterial Pathogens Reprogram the Metabolism of Host Cells to Allow Their Intracellular Replication. Front Cell Infect Microbiol 2019; 9:42. [PMID: 30886834 PMCID: PMC6409310 DOI: 10.3389/fcimb.2019.00042] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 02/08/2019] [Indexed: 12/12/2022] Open
Abstract
Viruses and intracellular bacterial pathogens (IBPs) have in common the need of suitable host cells for efficient replication and proliferation during infection. In human infections, the cell types which both groups of pathogens are using as hosts are indeed quite similar and include phagocytic immune cells, especially monocytes/macrophages (MOs/MPs) and dendritic cells (DCs), as well as nonprofessional phagocytes, like epithelial cells, fibroblasts and endothelial cells. These terminally differentiated cells are normally in a metabolically quiescent state when they are encountered by these pathogens during infection. This metabolic state of the host cells does not meet the extensive need for nutrients required for efficient intracellular replication of viruses and especially IBPs which, in contrast to the viral pathogens, have to perform their own specific intracellular metabolism to survive and efficiently replicate in their host cell niches. For this goal, viruses and IBPs have to reprogram the host cell metabolism in a pathogen-specific manner to increase the supply of nutrients, energy, and metabolites which have to be provided to the pathogen to allow its replication. In viral infections, this appears to be often achieved by the interaction of specific viral factors with central metabolic regulators, including oncogenes and tumor suppressors, or by the introduction of virus-specific oncogenes. Less is so far known on the mechanisms leading to metabolic reprogramming of the host cell by IBPs. However, the still scant data suggest that similar mechanisms may also determine the reprogramming of the host cell metabolism in IBP infections. In this review, we summarize and compare the present knowledge on this important, yet still poorly understood aspect of pathogenesis of human viral and especially IBP infections.
Collapse
Affiliation(s)
- Wolfgang Eisenreich
- Chair of Biochemistry, Department of Chemistry, Technische Universität München, Garching, Germany
| | - Thomas Rudel
- Chair of Microbiology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Jürgen Heesemann
- Max von Pettenkofer-Institute, Ludwig Maximilian University of Munich, Munich, Germany
| | - Werner Goebel
- Max von Pettenkofer-Institute, Ludwig Maximilian University of Munich, Munich, Germany
| |
Collapse
|
45
|
Ferretti AC, Hidalgo F, Tonucci FM, Almada E, Pariani A, Larocca MC, Favre C. Metformin and glucose starvation decrease the migratory ability of hepatocellular carcinoma cells: targeting AMPK activation to control migration. Sci Rep 2019; 9:2815. [PMID: 30809021 PMCID: PMC6391381 DOI: 10.1038/s41598-019-39556-w] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 01/17/2019] [Indexed: 12/22/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a highly metastatic cancer with very poor prognosis. AMP activated kinase (AMPK) constitutes a candidate to inhibit HCC progression. First, AMPK is downregulated in HCC. Second, glucose starvation induces apoptosis in HCC cells via AMPK. Correspondingly, metformin activates AMPK and inhibits HCC cell proliferation. Nevertheless, the effect of AMPK activation on HCC cell invasiveness remains elusive. Here, migration/invasion was studied in HCC cells exposed to metformin and glucose starvation. Cell viability, proliferation and differentiation, as well as AMPK and PKA activation were analyzed. In addition, invasiveness in mutants of the AMPKα activation loop was assessed. Metformin decreased cell migration, invasion and epithelial-mesenchymal transition, and interference with AMPKα expression avoided metformin actions. Those antitumor effects were potentiated by glucose deprivation. Metformin activated AMPK at the same time that inhibited PKA, and both effects were enhanced by glucose starvation. Given that AMPKα(S173) phosphorylation by PKA decreases AMPK activation, we hypothesized that the reduction of PKA inhibitory effect by metformin could explain the increased antitumor effects observed. Supporting this, in AMPK activating conditions, cell migration/invasion was further impaired in AMPKα(S173C) mutant cells. Metformin emerges as a strong inhibitor of migration/invasion in HCC cells, and glucose restriction potentiates this effect.
Collapse
Affiliation(s)
- Anabela C Ferretti
- Institute of Experimental Physiology, CONICET, School of Biochemical Sciences, University of Rosario, Rosario, Argentina
| | - Florencia Hidalgo
- Institute of Experimental Physiology, CONICET, School of Biochemical Sciences, University of Rosario, Rosario, Argentina
| | - Facundo M Tonucci
- Institute of Experimental Physiology, CONICET, School of Biochemical Sciences, University of Rosario, Rosario, Argentina
| | - Evangelina Almada
- Institute of Experimental Physiology, CONICET, School of Biochemical Sciences, University of Rosario, Rosario, Argentina
| | - Alejandro Pariani
- Institute of Experimental Physiology, CONICET, School of Biochemical Sciences, University of Rosario, Rosario, Argentina
| | - María C Larocca
- Institute of Experimental Physiology, CONICET, School of Biochemical Sciences, University of Rosario, Rosario, Argentina
| | - Cristián Favre
- Institute of Experimental Physiology, CONICET, School of Biochemical Sciences, University of Rosario, Rosario, Argentina.
| |
Collapse
|
46
|
Silwal P, Kim JK, Yuk JM, Jo EK. AMP-Activated Protein Kinase and Host Defense against Infection. Int J Mol Sci 2018; 19:ijms19113495. [PMID: 30404221 PMCID: PMC6274990 DOI: 10.3390/ijms19113495] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 11/05/2018] [Accepted: 11/05/2018] [Indexed: 02/07/2023] Open
Abstract
5′-AMP-activated protein kinase (AMPK) plays diverse roles in various physiological and pathological conditions. AMPK is involved in energy metabolism, which is perturbed by infectious stimuli. Indeed, various pathogens modulate AMPK activity, which affects host defenses against infection. In some viral infections, including hepatitis B and C viral infections, AMPK activation is beneficial, but in others such as dengue virus, Ebola virus, and human cytomegaloviral infections, AMPK plays a detrimental role. AMPK-targeting agents or small molecules enhance the antiviral response and contribute to the control of microbial and parasitic infections. In addition, this review focuses on the double-edged role of AMPK in innate and adaptive immune responses to infection. Understanding how AMPK regulates host defenses will enable development of more effective host-directed therapeutic strategies against infectious diseases.
Collapse
Affiliation(s)
- Prashanta Silwal
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon 35015, Korea.
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon 35015, Korea.
| | - Jin Kyung Kim
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon 35015, Korea.
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon 35015, Korea.
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Korea.
| | - Jae-Min Yuk
- Department of Infection Biology, Chungnam National University School of Medicine, Daejeon 35015, Korea.
| | - Eun-Kyeong Jo
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon 35015, Korea.
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon 35015, Korea.
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Korea.
| |
Collapse
|
47
|
Cheng F, Ramos da Silva S, Huang IC, Jung JU, Gao SJ. Suppression of Zika Virus Infection and Replication in Endothelial Cells and Astrocytes by PKA Inhibitor PKI 14-22. J Virol 2018; 92:JVI.02019-17. [PMID: 29212931 PMCID: PMC5790943 DOI: 10.1128/jvi.02019-17] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 11/28/2017] [Indexed: 02/05/2023] Open
Abstract
The recent outbreak of Zika virus (ZIKV), a reemerging flavivirus, and its associated neurological disorders, such as Guillain-Barré (GB) syndrome and microcephaly, have generated an urgent need to develop effective ZIKV vaccines and therapeutic agents. Here, we used human endothelial cells and astrocytes, both of which represent key cell types for ZIKV infection, to identify potential inhibitors of ZIKV replication. Because several pathways, including the AMP-activated protein kinase (AMPK), protein kinase A (PKA), and mitogen-activated protein kinase (MAPK) signaling pathways, have been reported to play important roles in flavivirus replication, we tested inhibitors and agonists of these pathways for their effects on ZIKV replication. We identified the PKA inhibitor PKI 14-22 (PKI) to be a potent inhibitor of ZIKV replication. PKI effectively suppressed the replication of ZIKV from both the African and Asian/American lineages with a high efficiency and minimal cytotoxicity. While ZIKV infection does not induce PKA activation, endogenous PKA activity is essential for supporting ZIKV replication. Interestingly, in addition to PKA, PKI also inhibited another unknown target(s) to block ZIKV replication. PKI inhibited ZIKV replication at the postentry stage by preferentially affecting negative-sense RNA synthesis as well as viral protein translation. Together, these results have identified a potential inhibitor of ZIKV replication which could be further explored for future therapeutic application.IMPORTANCE There is an urgent need to develop effective vaccines and therapeutic agents against Zika virus (ZIKV) infection, a reemerging flavivirus associated with neurological disorders, including Guillain-Barré (GB) syndrome and microcephaly. By screening for inhibitors of several cellular pathways, we have identified the PKA inhibitor PKI 14-22 (PKI) to be a potent inhibitor of ZIKV replication. We show that PKI effectively suppresses the replication of all ZIKV strains tested with minimal cytotoxicity to human endothelial cells and astrocytes, two key cell types for ZIKV infection. Furthermore, we show that PKI inhibits ZIKV negative-sense RNA synthesis and viral protein translation. This study has identified a potent inhibitor of ZIKV infection which could be further explored for future therapeutic application.
Collapse
Affiliation(s)
- Fan Cheng
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Suzane Ramos da Silva
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - I-Chueh Huang
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Jae U Jung
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Shou-Jiang Gao
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
- Laboratory of Human Virology and Oncology, Shantou University Medical College, Shantou, Guangdong, People's Republic of China
| |
Collapse
|
48
|
Boudaba N, Marion A, Huet C, Pierre R, Viollet B, Foretz M. AMPK Re-Activation Suppresses Hepatic Steatosis but its Downregulation Does Not Promote Fatty Liver Development. EBioMedicine 2018; 28:194-209. [PMID: 29343420 PMCID: PMC5835560 DOI: 10.1016/j.ebiom.2018.01.008] [Citation(s) in RCA: 151] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 01/05/2018] [Accepted: 01/05/2018] [Indexed: 12/12/2022] Open
Abstract
Nonalcoholic fatty liver disease is a highly prevalent component of disorders associated with disrupted energy homeostasis. Although dysregulation of the energy sensor AMP-activated protein kinase (AMPK) is viewed as a pathogenic factor in the development of fatty liver its role has not been directly demonstrated. Unexpectedly, we show here that liver-specific AMPK KO mice display normal hepatic lipid homeostasis and are not prone to fatty liver development, indicating that the decreases in AMPK activity associated with hepatic steatosis may be a consequence, rather than a cause, of changes in hepatic metabolism. In contrast, we found that pharmacological re-activation of downregulated AMPK in fatty liver is sufficient to normalize hepatic lipid content. Mechanistically, AMPK activation reduces hepatic triglyceride content both by inhibiting lipid synthesis and by stimulating fatty acid oxidation in an LKB1-dependent manner, through a transcription-independent mechanism. Furthermore, the effect of the antidiabetic drug metformin on lipogenesis inhibition and fatty acid oxidation stimulation was enhanced by combination treatment with small-molecule AMPK activators in primary hepatocytes from mice and humans. Overall, these results demonstrate that AMPK downregulation is not a triggering factor in fatty liver development but in contrast, establish the therapeutic impact of pharmacological AMPK re-activation in the treatment of fatty liver disease. Hepatic AMPK deficiency is not sufficient to trigger fatty liver development Re-activation of downregulated AMPK in fatty liver normalizes hepatic lipid content Hepatic AMPK activation both inhibits lipogenesis and stimulates fatty acid oxidation AMPK activation modulates lipid metabolism via a transcription-independent mechanism Small-molecule AMPK activators enhance metformin effects on hepatic lipid metabolism
Nonalcoholic fatty liver disease is a highly prevalent component of metabolic syndrome, for which treatment options are limited. Downregulation of the energy sensor AMPK is viewed as a pathogenic factor in the development of fatty liver. However, we show here hepatic AMPK suppression is not sufficient to promote hepatic lipid accumulation, indicating that the decreases in AMPK activity associated with hepatic steatosis may be a consequence, rather than a cause, of changes in hepatic metabolism. In contrast, we found that pharmacological re-activation of downregulated AMPK in fatty liver is sufficient to normalize hepatic lipid content. Thus, these results establish the therapeutic impact of pharmacological AMPK re-activation in the treatment of fatty liver disease.
Collapse
Affiliation(s)
- Nadia Boudaba
- INSERM, U1016, Institut Cochin, Paris 75014, France; CNRS, UMR8104, Paris 75014, France; Université Paris Descartes, Sorbonne Paris Cité, Paris 75014, France
| | - Allison Marion
- INSERM, U1016, Institut Cochin, Paris 75014, France; CNRS, UMR8104, Paris 75014, France; Université Paris Descartes, Sorbonne Paris Cité, Paris 75014, France
| | - Camille Huet
- INSERM, U1016, Institut Cochin, Paris 75014, France; CNRS, UMR8104, Paris 75014, France; Université Paris Descartes, Sorbonne Paris Cité, Paris 75014, France
| | - Rémi Pierre
- INSERM, U1016, Institut Cochin, Paris 75014, France; CNRS, UMR8104, Paris 75014, France; Université Paris Descartes, Sorbonne Paris Cité, Paris 75014, France
| | - Benoit Viollet
- INSERM, U1016, Institut Cochin, Paris 75014, France; CNRS, UMR8104, Paris 75014, France; Université Paris Descartes, Sorbonne Paris Cité, Paris 75014, France
| | - Marc Foretz
- INSERM, U1016, Institut Cochin, Paris 75014, France; CNRS, UMR8104, Paris 75014, France; Université Paris Descartes, Sorbonne Paris Cité, Paris 75014, France.
| |
Collapse
|
49
|
Zhang J, Lan Y, Sanyal S. Modulation of Lipid Droplet Metabolism-A Potential Target for Therapeutic Intervention in Flaviviridae Infections. Front Microbiol 2017; 8:2286. [PMID: 29234310 PMCID: PMC5712332 DOI: 10.3389/fmicb.2017.02286] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 11/06/2017] [Indexed: 12/21/2022] Open
Abstract
Lipid droplets (LDs) are endoplasmic reticulum (ER)-related dynamic organelles that store and regulate fatty acids and neutral lipids. They play a central role in cellular energy storage, lipid metabolism and cellular homeostasis. It has become evident that viruses have co-evolved in order to exploit host lipid metabolic pathways. This is especially characteristic of the Flaviviridae family, including hepatitis C virus (HCV) and several flaviviruses. Devoid of an appropriate lipid biosynthetic machinery of their own, these single-strand positive-sense RNA viruses can induce dramatic changes in host metabolic pathways to establish a favorable environment for viral multiplication and acquire essential components to facilitate their assembly and traffic. Here we have reviewed the current knowledge on the intracellular life cycle of those from the Flaviviridae family, with particular emphasis on HCV and dengue virus (DENV), and their association with the biosynthesis and metabolism of LDs, with the aim to identify potential antiviral targets for development of novel therapeutic interventions.
Collapse
Affiliation(s)
- Jingshu Zhang
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China
| | - Yun Lan
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China
| | - Sumana Sanyal
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China.,School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China
| |
Collapse
|
50
|
Tsai WL, Chang TH, Sun WC, Chan HH, Wu CC, Hsu PI, Cheng JS, Yu ML. Metformin activates type I interferon signaling against HCV via activation of adenosine monophosphate-activated protein kinase. Oncotarget 2017; 8:91928-91937. [PMID: 29190886 PMCID: PMC5696152 DOI: 10.18632/oncotarget.20248] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 07/12/2017] [Indexed: 12/25/2022] Open
Abstract
Activation of the type I interferon (IFN) signaling pathway is essential for the eradication of hepatitis C virus (HCV). Metformin can activate adenosine monophosphate-activated protein kinase (AMPK) to reduce insulin resistance. Cross talks between AMPK and IFN signaling remain unclear. To understand the influence of metformin on the type I IFN signaling pathway and HCV infection, the full-length HCV replicon OR6 cells and the infectious HCV clones JFH1 were used to assess the anti-HCV effect of the insulin sensitizers, metformin and pioglitazone. Immunofluorescence staining and the immunoblotting of HCV viral protein demonstrated that metformin, but not pioglitazone, inhibited HCV replication in OR-6 and JFH-1-infected Huh 7.5.1 cells. Immunoblotting data showed that metformin activated the phosphorylation of STAT-1 and STAT-2 in OR-6 and JFH-1 infected Huh 7.5.1 cells. Metformin enhanced the phosphorylation of AMPK, and the metformin-activated IFN signaling was down-regulated by AMPK inhibitor. After treatment of AMPK inhibitor, the level of HCV core protein decreased by metformin can be rescued. In conclusion, metformin activates type I interferon signaling and inhibits the replication of HCV via activation of AMPK.
Collapse
Affiliation(s)
- Wei-Lun Tsai
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
- School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Tsung-Hsien Chang
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Chung Hwa University of Medical Technology, Tainan, Taiwan
| | - Wei-Chi Sun
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
- School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Hoi-Hung Chan
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
- School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Chun-Ching Wu
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Ping-I Hsu
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
- School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Jin-Shiung Cheng
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
- School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Ming-Lung Yu
- Hepatobiliary Division, Department of Internal Medicine and Hepatitis Center, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Faculty of Internal Medicine, College of Medicine, and Graduate Institute of Clinical Medicine, and Lipid Science and Aging Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| |
Collapse
|