1
|
Hu L, Zhou S, Zhang X, Shi C, Zhang Y, Chen X. Self-Assembly of Polymers and Their Applications in the Fields of Biomedicine and Materials. Polymers (Basel) 2024; 16:2097. [PMID: 39125124 PMCID: PMC11314328 DOI: 10.3390/polym16152097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Polymer self-assembly can prepare various shapes and sizes of pores, making it widely used. The complexity and diversity of biomolecules make them a unique class of building blocks for precise assembly. They are particularly suitable for the new generation of biomaterials integrated with life systems as they possess inherent characteristics such as accurate identification, self-organization, and adaptability. Therefore, many excellent methods developed have led to various practical results. At the same time, the development of advanced science and technology has also expanded the application scope of self-assembly of synthetic polymers. By utilizing this technology, materials with unique shapes and properties can be prepared and applied in the field of tissue engineering. Nanomaterials with transparent and conductive properties can be prepared and applied in fields such as electronic displays and smart glass. Multi-dimensional, controllable, and multi-level self-assembly between nanostructures has been achieved through quantitative control of polymer dosage and combination, chemical modification, and composite methods. Here, we list the classic applications of natural- and artificially synthesized polymer self-assembly in the fields of biomedicine and materials, introduce the cutting-edge technologies involved in these applications, and discuss in-depth the advantages, disadvantages, and future development directions of each type of polymer self-assembly.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiaoyi Chen
- School of Pharmacy, Jiamusi University, Jiamusi 154007, China; (L.H.); (S.Z.); (X.Z.); (C.S.); (Y.Z.)
| |
Collapse
|
2
|
Shivatare SS, Shivatare VS, Wong CH. Glycoconjugates: Synthesis, Functional Studies, and Therapeutic Developments. Chem Rev 2022; 122:15603-15671. [PMID: 36174107 PMCID: PMC9674437 DOI: 10.1021/acs.chemrev.1c01032] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Glycoconjugates are major constituents of mammalian cells that are formed via covalent conjugation of carbohydrates to other biomolecules like proteins and lipids and often expressed on the cell surfaces. Among the three major classes of glycoconjugates, proteoglycans and glycoproteins contain glycans linked to the protein backbone via amino acid residues such as Asn for N-linked glycans and Ser/Thr for O-linked glycans. In glycolipids, glycans are linked to a lipid component such as glycerol, polyisoprenyl pyrophosphate, fatty acid ester, or sphingolipid. Recently, glycoconjugates have become better structurally defined and biosynthetically understood, especially those associated with human diseases, and are accessible to new drug, diagnostic, and therapeutic developments. This review describes the status and new advances in the biological study and therapeutic applications of natural and synthetic glycoconjugates, including proteoglycans, glycoproteins, and glycolipids. The scope, limitations, and novel methodologies in the synthesis and clinical development of glycoconjugates including vaccines, glyco-remodeled antibodies, glycan-based adjuvants, glycan-specific receptor-mediated drug delivery platforms, etc., and their future prospectus are discussed.
Collapse
Affiliation(s)
- Sachin S Shivatare
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Vidya S Shivatare
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Chi-Huey Wong
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
3
|
Li L, Chen G. Precise Assembly of Proteins and Carbohydrates for Next-Generation Biomaterials. J Am Chem Soc 2022; 144:16232-16251. [PMID: 36044681 DOI: 10.1021/jacs.2c04418] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The complexity and diversity of biomacromolecules make them a unique class of building blocks for generating precise assemblies. They are particularly available to a new generation of biomaterials integrated with living systems due to their intrinsic properties such as accurate recognition, self-organization, and adaptability. Therefore, many excellent approaches have been developed, leading to a variety of quite practical outcomes. Here, we review recent advances in the fabrication and application of artificially precise assemblies by employing proteins and carbohydrates as building blocks, followed by our perspectives on some of new challenges, goals, and opportunities for the future research directions in this field.
Collapse
Affiliation(s)
- Long Li
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, People's Republic of China
| | - Guosong Chen
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, People's Republic of China.,Multiscale Research Institute for Complex Systems, Fudan University, Shanghai 200433, People's Republic of China
| |
Collapse
|
4
|
Multicomponent reaction derived small di- and tri-carbohydrate-based glycomimetics as tools for probing lectin specificity. Glycoconj J 2022; 39:587-597. [PMID: 36001188 DOI: 10.1007/s10719-022-10079-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/14/2022] [Accepted: 08/10/2022] [Indexed: 11/04/2022]
Abstract
Lectins, carbohydrate-binding proteins, play important functions in all forms of life from bacteria and viruses to plants, animals, and humans, participating in cell-cell communication and pathogen binding. In an attempt to modify lectin functions, artificial lectin ligands were made usually as big dendrimeric or cluster multivalent glycomimetic structures. Here we synthesized a novel set of glycomimetic ligands through protection/deprotection multicomponent reactions (MCR) approach. Multivalent di-and tri-carbohydrate glycomimetics containing D-fructose, D-galactose, and D-allose moieties were prepared in 63-96% yield. MCR glycomimetics demonstrated different binding abilities for plant lectins Con A and UEA I, and human galectin-3. Information gained about the influence of molecule structure, multivalency and optical purity on the lectin binding ability can be used in lectin detection and sensitivity measurements to further facilitate understanding of carbohydrate recognition process.
Collapse
|
5
|
Liu CC, Huo CX, Zhai C, Zheng XJ, Xiong DC, Ye XS. Synthesis and Immunological Evaluation of Pentamannose-Based HIV-1 Vaccine Candidates. Bioconjug Chem 2022; 33:807-820. [PMID: 35470665 DOI: 10.1021/acs.bioconjchem.2c00079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Dense glycosylation and the trimeric conformation of the human immunodeficiency virus-1 (HIV-1) envelope protein limit the accessibility of some cellular glycan processing enzymes and end up with high-mannose-type N-linked glycans on the envelope spike, among which the Man5GlcNAc2 structure occupies a certain proportion. The Man5GlcNAc2 glycan composes the binding sites of some potent broadly neutralizing antibodies, and some lectins that can bind Man5GlcNAc2 show HIV-neutralizing activity. Therefore, Man5GlcNAc2 is a potential target for HIV-1 vaccine development. Herein, a highly convergent and effective strategy was developed for the synthesis of Man5 and its monofluoro-modified, trifluoro-modified, and S-linked analogues. We coupled these haptens to carrier protein CRM197 and evaluated the immunogenicity of the glycoconjugates in mice. The serological assays showed that the native Man5 conjugates failed to induce Man5-specific antibodies in vivo, while the modified analogue conjugates induced stronger antibody responses. However, these antibodies could not bind the native gp120 antigen. These results demonstrated that the immune tolerance mechanism suppressed the immune responses to Man5-related structures and the conformation of glycan epitopes on the synthesized glycoconjugates was distinct from that of native glycan epitopes on gp120.
Collapse
Affiliation(s)
- Chang-Cheng Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, and Chemical Biology Center, Peking University, Xue Yuan Road No. 38, Beijing 100191, China
| | - Chang-Xin Huo
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, and Chemical Biology Center, Peking University, Xue Yuan Road No. 38, Beijing 100191, China
| | - Canjia Zhai
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, and Chemical Biology Center, Peking University, Xue Yuan Road No. 38, Beijing 100191, China
| | - Xiu-Jing Zheng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, and Chemical Biology Center, Peking University, Xue Yuan Road No. 38, Beijing 100191, China
| | - De-Cai Xiong
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, and Chemical Biology Center, Peking University, Xue Yuan Road No. 38, Beijing 100191, China
| | - Xin-Shan Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, and Chemical Biology Center, Peking University, Xue Yuan Road No. 38, Beijing 100191, China
| |
Collapse
|
6
|
Deimel LP, Sattentau QJ. Shared sugars – parasite glycan homology in HIV-1 vaccine design. Trends Parasitol 2022; 38:498-500. [DOI: 10.1016/j.pt.2022.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 04/11/2022] [Indexed: 10/18/2022]
|
7
|
Deimel LP, Xue X, Sattentau QJ. Glycans in HIV-1 vaccine design – engaging the shield. Trends Microbiol 2022; 30:866-881. [DOI: 10.1016/j.tim.2022.02.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 12/13/2022]
|
8
|
Upadhyaya K, Bagul RS, Crich D. Influence of Configuration at the 4- and 6-Positions on the Conformation and Anomeric Reactivity and Selectivity of 7-Deoxyheptopyranosyl Donors: Discovery of a Highly Equatorially Selective l- glycero-d- gluco-Heptopyranosyl Donor. J Org Chem 2021; 86:12199-12225. [PMID: 34343001 DOI: 10.1021/acs.joc.1c01535] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The preparation of four per-O-benzyl-d- or l-glycero-d-galacto and d- or l-glycero-d-gluco heptopyranosyl sulfoxides and the influence of their side-chain conformations on reactivity and stereoselectivity in glycosylation reactions are described. The side-chain conformation in these donors is determined by the relative configuration of its point of attachment to the pyranoside ring and the two flanking centers in agreement with a recent model. In the d- and l-glycero-d-galacto glycosyl donors, the d-glycero-d-galacto isomer with the more electron-withdrawing trans,gauche conformation of its side chain was the more equatorially selective isomer. In the d- and l-glycero-d-gluco glycosyl donors, the l-glycero-d-gluco isomer with the least disarming gauche,gauche side-chain conformation was the most equatorially selective donor. Variable temperature NMR studies, while supporting the formation of intermediate glycosyl triflates at -80 °C in all cases, were inconclusive owing to a change in the decomposition mechanism with the change in configuration. It is suggested that the equatorial selectivity of the l-glycero-d-gluco isomer arises from H-bonding between the glycosyl acceptor and O6 of the donor, which is poised to deliver the acceptor antiperiplanar to the glycosyl triflate, resulting in a high degree of SN2 character in the displacement reaction.
Collapse
Affiliation(s)
- Kapil Upadhyaya
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 250 West Green Street, Athens, Georgia 30602, United States
| | - Rahul S Bagul
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 250 West Green Street, Athens, Georgia 30602, United States.,Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| | - David Crich
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 250 West Green Street, Athens, Georgia 30602, United States.,Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States.,Department of Chemistry, University of Georgia, 140 Cedar Street, Athens, Georgia 30602, United States
| |
Collapse
|
9
|
Maier I, Schiestl RH, Kontaxis G. Cyanovirin-N Binds Viral Envelope Proteins at the Low-Affinity Carbohydrate Binding Site without Direct Virus Neutralization Ability. Molecules 2021; 26:3621. [PMID: 34199200 PMCID: PMC8231982 DOI: 10.3390/molecules26123621] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/26/2021] [Accepted: 06/07/2021] [Indexed: 01/30/2023] Open
Abstract
Glycan-targeting antibodies and pseudo-antibodies have been extensively studied for their stoichiometry, avidity, and their interactions with the rapidly modifying glycan shield of influenza A. Broadly neutralizing antiviral agents bind in the same order when they neutralize enveloped viruses regardless of the location of epitopes to the host receptor binding site. Herein, we investigated the binding of cyanovirin-N (CV-N) to surface-expressed glycoproteins such as those of human immunodeficiency virus (HIV) gp120, hemagglutinin (HA), and Ebola (GP)1,2 and compared their binding affinities with the binding response to the trimer-folded gp140 using surface plasmon resonance (SPR). Binding-site knockout variants of an engineered dimeric CV-N molecule (CVN2) revealed a binding affinity that correlated with the number of (high-) affinity binding sites. Binding curves were specific for the interaction with N-linked glycans upon binding with two low-affinity carbohydrate binding sites. This biologically active assembly of a domain-swapped CVN2, or monomeric CV-N, bound to HA with a maximum KD of 2.7 nM. All three envelope spike proteins were recognized at a nanomolar KD, whereas binding to HIV neutralizing 2G12 by targeting HA and Ebola GP1,2 was measured in the µM range and specific for the bivalent binding scheme in SPR. In conclusion, invariant structural protein patterns provide a substrate for affinity maturation in the membrane-anchored HA regions, as well as the glycan shield on the membrane-distal HA top part. They can also induce high-affinity binding in antiviral CV-N to HA at two sites, and CVN2 binding is achieved at low-affinity binding sites.
Collapse
Affiliation(s)
- Irene Maier
- Department of Environmental Health Sciences, Fielding School of Public Health, University of California, Los Angeles, CA 90095, USA;
| | - Robert H. Schiestl
- Department of Environmental Health Sciences, Fielding School of Public Health, University of California, Los Angeles, CA 90095, USA;
| | - Georg Kontaxis
- Max Perutz Laboratories, Department of Structural and Computational Biology, University of Vienna, A-1030 Vienna, Austria;
| |
Collapse
|
10
|
Rajasekaran P, Pirrone MG, Crich D. Influence of substitution at the 5α-Position on the side chain conformation of glucopyranosides. Carbohydr Res 2021; 500:108254. [PMID: 33561715 DOI: 10.1016/j.carres.2021.108254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 10/22/2022]
Abstract
We describe the preparation of methyl 5α-methyl-α-d-glucopyranoside and of 5α-fluoro-β-d-glucopyranose per acetate and the NMR-based conformational analysis of their side chains. Both the 5α-methyl and 5α-fluoro substituents increase the population of the gauche,gauche side chain conformer to the extent that it becomes the predominant conformation. In the 5α-methyl series this is attributed to steric effects, whereas in the 5α-fluoro series the optimization of attractive gauche effects is the more likely reason.
Collapse
Affiliation(s)
- Parasuraman Rajasekaran
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 250 West Green Street, Athens, GA, 30602, USA; Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA, 30602, USA
| | - Michael G Pirrone
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 250 West Green Street, Athens, GA, 30602, USA; Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA, 30602, USA
| | - David Crich
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 250 West Green Street, Athens, GA, 30602, USA; Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA, 30602, USA; Department of Chemistry, University of Georgia, 140 Cedar Street, Athens, GA, 30602, USA.
| |
Collapse
|
11
|
Bastida I, Fernández-Tejada A. Synthetic carbohydrate-based HIV-1 vaccines. DRUG DISCOVERY TODAY. TECHNOLOGIES 2020; 35-36:45-56. [PMID: 33388127 DOI: 10.1016/j.ddtec.2020.09.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 09/15/2020] [Accepted: 09/22/2020] [Indexed: 01/22/2023]
Abstract
An effective prophylactic HIV-1 vaccine is essential in order to contain the HIV/AIDS global pandemic. The discovery of different broadly neutralizing antibodies (bnAbs) in the last decades has enabled the characterization of several minimal epitopes on the HIV envelope (Env) spike, including glycan-dependent fragments. Herein, we provide a brief overview of the progress made on the development of synthetic carbohydrate-based epitope mimics for the elicitation of bnAbs directed to certain regions on Env gp120 protein: the outer domain high-mannose cluster and the variable loops V1V2 and V3. We focus on the design, synthesis and biological evaluation of minimal immunogens and discuss key aspects towards the development of a successful protective vaccine against HIV-1.
Collapse
Affiliation(s)
- Iñaki Bastida
- Chemical Immunology Lab, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48169 Derio, Bizkaia, Spain
| | - Alberto Fernández-Tejada
- Chemical Immunology Lab, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48169 Derio, Bizkaia, Spain; Ikerbasque, Basque Foundation for Science, María Díaz de Haro 13, 48013 Bilbao, Bizkaia, Spain.
| |
Collapse
|
12
|
Acharya P, Williams W, Henderson R, Janowska K, Manne K, Parks R, Deyton M, Sprenz J, Stalls V, Kopp M, Mansouri K, Edwards RJ, Meyerhoff RR, Oguin T, Sempowski G, Saunders K, Haynes BF. A glycan cluster on the SARS-CoV-2 spike ectodomain is recognized by Fab-dimerized glycan-reactive antibodies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.06.30.178897. [PMID: 32637953 PMCID: PMC7337383 DOI: 10.1101/2020.06.30.178897] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
UNLABELLED The COVID-19 pandemic caused by SARS-CoV-2 has escalated into a global crisis. The spike (S) protein that mediates cell entry and membrane fusion is the current focus of vaccine and therapeutic antibody development efforts. The S protein, like many other viral fusion proteins such as HIV-1 envelope (Env) and influenza hemagglutinin, is glycosylated with both complex and high mannose glycans. Here we demonstrate binding to the SARS-CoV-2 S protein by a category of Fab-dimerized glycan-reactive (FDG) HIV-1-induced broadly neutralizing antibodies (bnAbs). A 3.1 Å resolution cryo-EM structure of the S protein ectodomain bound to glycan-dependent HIV-1 bnAb 2G12 revealed a quaternary glycan epitope on the spike S2 domain involving multiple protomers. These data reveal a new epitope on the SARS-CoV-2 spike that can be targeted for vaccine design. HIGHLIGHTS Fab-dimerized, glycan-reactive (FDG) HIV-1 bnAbs cross-react with SARS-CoV-2 spike.3.1 Å resolution cryo-EM structure reveals quaternary S2 epitope for HIV-1 bnAb 2G12.2G12 targets glycans, at positions 709, 717 and 801, in the SARS-CoV-2 spike.Our studies suggest a common epitope for FDG antibodies centered around glycan 709.
Collapse
|
13
|
Bruxelle JF, Kirilenko T, Qureshi Q, Lu N, Trattnig N, Kosma P, Pantophlet R. Serum alpha-mannosidase as an additional barrier to eliciting oligomannose-specific HIV-1-neutralizing antibodies. Sci Rep 2020; 10:7582. [PMID: 32371950 PMCID: PMC7200719 DOI: 10.1038/s41598-020-64500-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 04/15/2020] [Indexed: 01/04/2023] Open
Abstract
Oligomannose-type glycans on HIV-1 gp120 form a patch that is targeted by several broadly neutralizing antibodies (bnAbs) and that therefore is of interest to vaccine design. However, attempts to elicit similar oligomannose-specific bnAbs by immunizing with oligomannosidic glycoconjugates have only been modestly successful so far. A common assumption is that eliciting oligomannose-specific bnAbs is hindered by B cell tolerance, resulting from the presented oligomannosides being sensed as self molecules. Here, we present data, along with existing scientific evidence, supporting an additional, or perhaps alternate, explanation: serum mannosidase trimming of the presented oligomannosides in vivo. Mannosidase trimming lessens the likelihood of eliciting antibodies with capacity to bind full-sized oligomannose, which typifies the binding mode of existing bnAbs to the oligomannose patch. The rapidity of the observed trimming suggests the need for immunization strategies and/or synthetic glycosides that readily avoid or resist mannosidase trimming upon immunization and can overcome possible tolerance restrictions.
Collapse
Affiliation(s)
- Jean-François Bruxelle
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, V5A1S6, Canada
| | - Tess Kirilenko
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, V5A1S6, Canada
- AbCellera Biologics Inc., Vancouver, British Columbia, Canada
| | - Quratulain Qureshi
- Department of Molecular Biology & Biochemistry, Simon Fraser University, Burnaby, British Columbia, V5A1S6, Canada
| | - Naiomi Lu
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, V5A1S6, Canada
| | - Nino Trattnig
- Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, A-1190, Austria
- Department of Chemical Biology and Drug Discovery, Utrecht University, Utrecht, The Netherlands
| | - Paul Kosma
- Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, A-1190, Austria
| | - Ralph Pantophlet
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, V5A1S6, Canada.
- Department of Molecular Biology & Biochemistry, Simon Fraser University, Burnaby, British Columbia, V5A1S6, Canada.
| |
Collapse
|
14
|
Johnson J, Flores MG, Rosa J, Han C, Salvi AM, DeMali KA, Jagnow JR, Sparks A, Haim H. The High Content of Fructose in Human Semen Competitively Inhibits Broad and Potent Antivirals That Target High-Mannose Glycans. J Virol 2020; 94:e01749-19. [PMID: 32102878 PMCID: PMC7163146 DOI: 10.1128/jvi.01749-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 02/17/2020] [Indexed: 11/20/2022] Open
Abstract
Semen is the primary transmission vehicle for various pathogenic viruses. Initial steps of transmission, including cell attachment and entry, likely occur in the presence of semen. However, the unstable nature of human seminal plasma and its toxic effects on cells in culture limit the ability to study in vitro virus infection and inhibition in this medium. We found that whole semen significantly reduces the potency of antibodies and microbicides that target glycans on the envelope glycoproteins (Envs) of HIV-1. The extraordinarily high concentration of the monosaccharide fructose in semen contributes significantly to the effect by competitively inhibiting the binding of ligands to α1,2-linked mannose residues on Env. Infection and inhibition in whole human seminal plasma are accurately mimicked by a stable synthetic simulant of seminal fluid that we formulated. Our findings indicate that, in addition to the protein content of biological secretions, their small-solute composition impacts the potency of antiviral microbicides and mucosal antibodies.IMPORTANCE Biological secretions allow viruses to spread between individuals. Each type of secretion has a unique composition of proteins, salts, and sugars, which can affect the infectivity potential of the virus and inhibition of this process. Here, we describe HIV-1 infection and inhibition in whole human seminal plasma and a synthetic simulant that we formulated. We discovered that the sugar fructose in semen decreases the activity of a broad and potent class of antiviral agents that target mannose sugars on the envelope protein of HIV-1. This effect of semen fructose likely reduces the efficacy of such inhibitors to prevent the sexual transmission of HIV-1. Our findings suggest that the preclinical evaluation of microbicides and vaccine-elicited antibodies will be improved by their in vitro assessment in synthetic formulations that simulate the effects of semen on HIV-1 infection and inhibition.
Collapse
Affiliation(s)
- Jacklyn Johnson
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Manuel G Flores
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - John Rosa
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Changze Han
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Alicia M Salvi
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Kris A DeMali
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Jennifer R Jagnow
- In Vitro Fertilization and Reproductive Testing Laboratory, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Amy Sparks
- In Vitro Fertilization and Reproductive Testing Laboratory, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Hillel Haim
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
15
|
Beswick L, Ahmadipour S, Hofman GJ, Wootton H, Dimitriou E, Reynisson J, Field RA, Linclau B, Miller GJ. Exploring anomeric glycosylation of phosphoric acid: Optimisation and scope for non-native substrates. Carbohydr Res 2020; 488:107896. [PMID: 31887633 DOI: 10.1016/j.carres.2019.107896] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 12/16/2019] [Accepted: 12/16/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Laura Beswick
- Lennard-Jones Laboratory, School of Chemical and Physical Sciences, Keele University, Keele, Staffordshire, ST5 5BG, United Kingdom
| | - Sanaz Ahmadipour
- Lennard-Jones Laboratory, School of Chemical and Physical Sciences, Keele University, Keele, Staffordshire, ST5 5BG, United Kingdom
| | - Gert-Jan Hofman
- School of Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, United Kingdom
| | - Hannah Wootton
- Lennard-Jones Laboratory, School of Chemical and Physical Sciences, Keele University, Keele, Staffordshire, ST5 5BG, United Kingdom
| | - Eleni Dimitriou
- Lennard-Jones Laboratory, School of Chemical and Physical Sciences, Keele University, Keele, Staffordshire, ST5 5BG, United Kingdom
| | - Jóhannes Reynisson
- Hornbeam Building, School of Pharmacy and Bioengineering, Keele University, Keele, Staffordshire, ST5 5BG, United Kingdom
| | - Robert A Field
- Department of Chemistry and Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
| | - Bruno Linclau
- School of Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, United Kingdom
| | - Gavin J Miller
- Lennard-Jones Laboratory, School of Chemical and Physical Sciences, Keele University, Keele, Staffordshire, ST5 5BG, United Kingdom.
| |
Collapse
|
16
|
Jakas A, Višnjevac A, Jerić I. Multicomponent Approach to Homo- and Hetero-Multivalent Glycomimetics Bearing Rare Monosaccharides. J Org Chem 2020; 85:3766-3787. [DOI: 10.1021/acs.joc.9b03401] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Andreja Jakas
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Aleksandar Višnjevac
- Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Ivanka Jerić
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| |
Collapse
|
17
|
Cooperation between somatic mutation and germline-encoded residues enables antibody recognition of HIV-1 envelope glycans. PLoS Pathog 2019; 15:e1008165. [PMID: 31841553 PMCID: PMC6936856 DOI: 10.1371/journal.ppat.1008165] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 12/30/2019] [Accepted: 10/29/2019] [Indexed: 11/19/2022] Open
Abstract
Viral glycoproteins are a primary target for host antibody responses. However, glycans on viral glycoproteins can hinder antibody recognition since they are self glycans derived from the host biosynthesis pathway. During natural HIV-1 infection, neutralizing antibodies are made against glycans on HIV-1 envelope glycoprotein (Env). However, such antibodies are rarely elicited with vaccination. Previously, the vaccine-induced, macaque antibody DH501 was isolated and shown to bind to high mannose glycans on HIV-1 Env. Understanding how DH501 underwent affinity maturation to recognize glycans could inform vaccine induction of HIV-1 glycan antibodies. Here, we show that DH501 Env glycan reactivity is mediated by both germline-encoded residues that contact glycans, and somatic mutations that increase antibody paratope flexibility. Only somatic mutations in the heavy chain were required for glycan reactivity. The paratope conformation was fragile as single mutations within the immunoglobulin fold or complementarity determining regions were sufficient for eliminating antibody function. Taken together, the initial germline VHDJH rearrangement generated contact residues capable of binding glycans, and somatic mutations were required to form a flexible paratope with a cavity conducive to HIV-1 envelope glycan binding. The requirement for the presence of most somatic mutations across the heavy chain variable region provides one explanation for the difficulty in inducing anti-Env glycan antibodies with HIV-1 Env vaccination. The viral pathogen HIV-1 uses sugar molecules, called glycans, from the host to densely cover its envelope protein. Most broadly neutralizing HIV-1 antibodies interact with glycans on the HIV-1 envelope protein. For this reason, the vaccine induction of anti-HIV-1 glycan antibodies is a principal goal. Since vaccine-induced anti-HIV-1 glycan antibodies are rare, it has not been determined how antibodies develop during vaccination to recognize HIV-1 glycans. Here, we elucidated the amino acids required for a primate antibody induced by HIV-1 vaccination to interact with HIV envelope glycans. Genetic and functional analyses showed the putative antibody germline nucleotide sequence encoded amino acids that were required for glycan reactivity. Somatic mutation also introduced critical amino acids that were required for glycan recognition. Unusually, the somatic mutations were not required in order to form direct contacts with antigen, but instead functioned to improve antibody flexibility and to form its glycan binding site. These results define the molecular development of a vaccine-induced HIV-1 glycan antibody, providing insight into why vaccines rarely elicit antibodies against the glycans on the HIV-1 outer coat protein.
Collapse
|
18
|
Song C, Zheng XJ, Guo H, Cao Y, Zhang F, Li Q, Ye XS, Zhou Y. Fluorine-modified sialyl-Tn-CRM197 vaccine elicits a robust immune response. Glycoconj J 2019; 36:399-408. [PMID: 31267246 DOI: 10.1007/s10719-019-09884-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 06/17/2019] [Accepted: 06/21/2019] [Indexed: 01/28/2023]
Abstract
Even though a vaccine that targets tumor-associated carbohydrate antigens on epithelial carcinoma cells presents an attractive therapeutic approach, relatively poor immunogenicity limits its development. In this study, we investigated the immunological activity of a fluoro-substituted Sialyl-Tn (F-STn) analogue coupled to the non-toxic cross-reactive material of diphtheria toxin197 (CRM197). Our results indicate that F-STn-CRM197 promotes a greater immunogenicity than non-fluorinated STn-CRM197. In the presence or absence of adjuvant, F-STn-CRM197 remarkably enhances both cellular and humoral immunity against STn by increasing antigen-specific lymphocyte proliferation and inducing a mixed Th1/Th2 response leading to production of IFN-γ and IL-4 cytokines, as well as STn-specific antibodies. Furthermore, antisera produced from F-STn-CRM197 immunization significantly recognizes STn-positive tumor cells and increases cancer cell lysis induced by antibody-dependent cell-mediated cytotoxicity (ADCC) or complement-dependent cytotoxicity (CDC) pathways. Our data suggest that this F-STn vaccine may be useful for cancer immunotherapy and possibly for prophylactic prevention of cancer.
Collapse
MESH Headings
- Adjuvants, Immunologic/administration & dosage
- Animals
- Antibodies, Neoplasm/isolation & purification
- Antibodies, Neoplasm/pharmacology
- Antibody-Dependent Cell Cytotoxicity/drug effects
- Antigens, Tumor-Associated, Carbohydrate/chemistry
- Antigens, Tumor-Associated, Carbohydrate/immunology
- Bacterial Proteins/chemistry
- Bacterial Proteins/immunology
- Bacterial Proteins/pharmacology
- Cancer Vaccines/chemical synthesis
- Cancer Vaccines/immunology
- Cancer Vaccines/pharmacology
- Cell Line, Tumor
- Colonic Neoplasms/immunology
- Colonic Neoplasms/pathology
- Colonic Neoplasms/therapy
- Female
- Gene Expression
- Glycoconjugates/chemical synthesis
- Glycoconjugates/immunology
- Glycoconjugates/pharmacology
- Halogenation
- Humans
- Immune Sera/chemistry
- Immune Sera/pharmacology
- Immunity, Cellular/drug effects
- Immunity, Humoral/drug effects
- Immunization
- Immunogenicity, Vaccine
- Interferon-gamma/genetics
- Interferon-gamma/immunology
- Interleukin-4/genetics
- Interleukin-4/immunology
- Lymphocytes/drug effects
- Lymphocytes/immunology
- Mice
- Mice, Inbred BALB C
- Spleen/drug effects
- Spleen/immunology
- Th1-Th2 Balance
Collapse
Affiliation(s)
- Chengcheng Song
- School of Life Sciences, Northeast Normal University, Changchun, 130024, China
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Xiu-Jing Zheng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Haili Guo
- School of Life Sciences, Northeast Normal University, Changchun, 130024, China
| | - Yafei Cao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Fan Zhang
- School of Life Sciences, Northeast Normal University, Changchun, 130024, China
| | - Qin Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Xin-Shan Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
| | - Yifa Zhou
- School of Life Sciences, Northeast Normal University, Changchun, 130024, China.
| |
Collapse
|
19
|
Ahmadipour S, Pergolizzi G, Rejzek M, Field RA, Miller GJ. Chemoenzymatic Synthesis of C6-Modified Sugar Nucleotides To Probe the GDP-d-Mannose Dehydrogenase from Pseudomonas aeruginosa. Org Lett 2019; 21:4415-4419. [PMID: 31144821 DOI: 10.1021/acs.orglett.9b00967] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The chemoenzymatic synthesis of a series of C6-modified GDP-d-Man sugar nucleotides is described. This provides the first structure-function tools for the GDP-d-ManA producing GDP-d-mannose dehydrogenase (GMD) from Pseudomonas aeruginosa. Using a common C6 aldehyde functionalization strategy, chemical synthesis introduces deuterium enrichment, alongside one-carbon homologation at C6 for a series of mannose 1-phosphates. These materials are shown to be substrates for the GDP-mannose pyrophosphorylase from Salmonella enterica, delivering the required toolbox of modified GDP-d-Mans. C6-CH3 modified sugar-nucleotides are capable of reversibly preventing GDP-ManA production by GMD. The ketone product from oxidation of a C6-CH3 modified analogue is identified by high-resolution mass spectrometry.
Collapse
Affiliation(s)
- Sanaz Ahmadipour
- Lennard-Jones Laboratory, School of Chemical and Physical Sciences , Keele University , Keele , Staffordshire ST5 5BG , United Kingdom
| | - Giulia Pergolizzi
- Department of Biological Chemistry , John Innes Centre , Norwich Research Park , Norwich , NR4 7UH , United Kingdom
| | - Martin Rejzek
- Department of Biological Chemistry , John Innes Centre , Norwich Research Park , Norwich , NR4 7UH , United Kingdom
| | - Robert A Field
- Department of Biological Chemistry , John Innes Centre , Norwich Research Park , Norwich , NR4 7UH , United Kingdom
| | - Gavin J Miller
- Lennard-Jones Laboratory, School of Chemical and Physical Sciences , Keele University , Keele , Staffordshire ST5 5BG , United Kingdom
| |
Collapse
|
20
|
Nguyen DN, Xu B, Stanfield RL, Bailey JK, Horiya S, Temme JS, Leon DR, LaBranche CC, Montefiori DC, Costello CE, Wilson IA, Krauss IJ. Oligomannose Glycopeptide Conjugates Elicit Antibodies Targeting the Glycan Core Rather than Its Extremities. ACS CENTRAL SCIENCE 2019; 5:237-249. [PMID: 30834312 PMCID: PMC6396197 DOI: 10.1021/acscentsci.8b00588] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Indexed: 06/01/2023]
Abstract
Up to ∼20% of HIV-infected individuals eventually develop broadly neutralizing antibodies (bnAbs), and many of these antibodies (∼40%) target a region of dense high-mannose glycosylation on gp120 of the HIV envelope protein, known as the "high-mannose patch" (HMP). Thus, there have been numerous attempts to develop glycoconjugate vaccine immunogens that structurally mimic the HMP and might elicit bnAbs targeting this conserved neutralization epitope. Herein, we report on the immunogenicity of glycopeptides, designed by in vitro selection, that bind tightly to anti-HMP antibody 2G12. By analyzing the fine carbohydrate specificity of rabbit antibodies elicited by these immunogens, we found that they differ from some natural human bnAbs, such as 2G12 and PGT128, in that they bind primarily to the core structures within the glycan, rather than to the Manα1 → 2Man termini (2G12) or to the whole glycan (PGT128). Antibody specificity for the glycan core may result from extensive serum mannosidase trimming of the immunogen in the vaccinated animals. This finding has broad implications for vaccine design aiming to target glycan-dependent HIV neutralizing antibodies.
Collapse
Affiliation(s)
- Dung N. Nguyen
- Department
of Chemistry, Brandeis University, Waltham, Massachusetts 02454-9110, United States
| | - Bokai Xu
- Department
of Chemistry, Brandeis University, Waltham, Massachusetts 02454-9110, United States
| | - Robyn L. Stanfield
- Department
of Integrative Structural and Computational Biology and the Skaggs
Institute for Chemical Biology, The Scripps
Research Institute, La Jolla, California 92037, United States
| | - Jennifer K. Bailey
- Department
of Chemistry, Brandeis University, Waltham, Massachusetts 02454-9110, United States
| | - Satoru Horiya
- Department
of Chemistry, Brandeis University, Waltham, Massachusetts 02454-9110, United States
| | - J. Sebastian Temme
- Department
of Chemistry, Brandeis University, Waltham, Massachusetts 02454-9110, United States
| | - Deborah R. Leon
- Department
of Biochemistry, Center for Biomedical Mass Spectrometry, Boston University School of Medicine, Boston, Massachusetts 02215, United States
| | - Celia C. LaBranche
- Department
of Surgery, Duke University Medical Center, Durham, North Carolina 27710, United States
| | - David C. Montefiori
- Department
of Surgery, Duke University Medical Center, Durham, North Carolina 27710, United States
| | - Catherine E. Costello
- Department
of Biochemistry, Center for Biomedical Mass Spectrometry, Boston University School of Medicine, Boston, Massachusetts 02215, United States
| | - Ian A. Wilson
- Department
of Integrative Structural and Computational Biology and the Skaggs
Institute for Chemical Biology, The Scripps
Research Institute, La Jolla, California 92037, United States
| | - Isaac J. Krauss
- Department
of Chemistry, Brandeis University, Waltham, Massachusetts 02454-9110, United States
| |
Collapse
|
21
|
Pfister HB, Kelly M, Qadri F, Ryan ET, Kováč P. Synthesis of glycocluster-containing conjugates for a vaccine against cholera. Org Biomol Chem 2019; 17:4049-4060. [DOI: 10.1039/c9ob00368a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The glycocluster-containing conjugates for a vaccine against cholera showed immunoreactivity comparable to conventional conjugates.
Collapse
Affiliation(s)
| | - Meagan Kelly
- Division of infectious Diseases
- Massachusetts General Hospital
- Boston
- USA
| | - Firdausi Qadri
- International Center for Diarrhoeal Disease Research (icddr
- b)
- Dhaka
- Bangladesh
| | - Edward T. Ryan
- Division of infectious Diseases
- Massachusetts General Hospital
- Boston
- USA
- Department of Medicine
| | - Pavol Kováč
- NIDDK
- LBC
- National Institutes of Health
- Bethesda
- USA
| |
Collapse
|
22
|
Song C, Zheng XJ, Liu CC, Zhou Y, Ye XS. A cancer vaccine based on fluorine-modified sialyl-Tn induces robust immune responses in a murine model. Oncotarget 2018; 8:47330-47343. [PMID: 28537884 PMCID: PMC5564568 DOI: 10.18632/oncotarget.17646] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 04/19/2017] [Indexed: 12/13/2022] Open
Abstract
Development of an effective vaccine to target tumor associated carbohydrate antigens, aberrantly expressed on the cell surface of various carcinomas, is an appealing approach toward cancer immunotherapy. However, a major problem of carbohydrate antigens is their poor immunogenicity. Immunization with modified-carbohydrate antigens could improve the immunogenicity and induce cross reaction with the native carbohydrate antigens. In this study, we investigated the antitumor ability of three fluoro-substituted sialyl-Tn (STn) analogues (2, 3, 4) coupled to KLH (keyhole limpet hemocyanin) and studied the mechanism of tumor immunotherapy of the vaccines in a murine model of colon cancer. Vaccination with 4-KLH, in which the two N-acetyl groups of STn are substituted with N-fluoroacetyl groups, could remarkably prolong the survival of tumor-bearing mouse and resulted in a significant reduction in tumor burden of lungs compared with STn-KLH (1-KLH). The vaccine 4-KLH could provoke stronger cytotoxic T lymphocytes immune response, T helper (Th) cell-mediated immune response and an earlier-stage Th1 immune response than 1-KLH, thus breaking immune tolerance and generating a therapeutic response. The 4-KLH vaccine induced strong tumor-specific anti-STn antibodies which could mediate complement-dependent cytotoxicity and antibody-dependent cell-mediated cytotoxicity against human tumor cells. Moreover, in the absence of adjuvant, 4-KLH still elicited stronger immune responses than 1-KLH. Our data suggested that 4-KLH is superior in tumor prevention. The strategic hapten fluorination may be a potential approach applicable to the vaccines development for the cancer immunotherapy.
Collapse
Affiliation(s)
- Chengcheng Song
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.,School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Xiu-Jing Zheng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Chang-Cheng Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yifa Zhou
- School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Xin-Shan Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| |
Collapse
|
23
|
Köllmann C, Jones PG, Werz DB. Synthesis of 5-C-Methylated d-Mannose, d-Galactose, l-Gulose, and l-Altrose and Their Structural Elucidation by NMR Spectroscopy. Org Lett 2018; 20:1220-1223. [PMID: 29406726 DOI: 10.1021/acs.orglett.8b00144] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
C5/C6-Spirocyclopropanation of exocyclic enol esters followed by alkali ring-opening of the three-membered ring was used for the diastereoselective preparation of 5-C-methylated d-mannose, d-galactose, l-gulose, and l-altrose. Extensive NMR studies demonstrated an increase of furanose form by 5-C-methylation in almost all cases.
Collapse
Affiliation(s)
- Christoph Köllmann
- Institute for Organic Chemistry and ‡ Institute for Inorganic and Analytical Chemistry, Technische Universität Braunschweig , Hagenring 30, 38106 Braunschweig, Germany
| | - Peter G Jones
- Institute for Organic Chemistry and ‡ Institute for Inorganic and Analytical Chemistry, Technische Universität Braunschweig , Hagenring 30, 38106 Braunschweig, Germany
| | - Daniel B Werz
- Institute for Organic Chemistry and ‡ Institute for Inorganic and Analytical Chemistry, Technische Universität Braunschweig , Hagenring 30, 38106 Braunschweig, Germany
| |
Collapse
|
24
|
Abstract
Glycosylation is an important post-translational modification that is required for structural and stability purposes and functional roles such as signalling, attachment and shielding. Many human pathogens such as bacteria display an array of carbohydrates on their surface that are non-self to the host; others such as viruses highjack the host-cell machinery and present self-carbohydrates sometimes arranged in a non-self more immunogenic manner. In combination with carrier proteins, these glycan structures can be highly immunogenic. During natural infection, glycan-binding antibodies are often elicited that correlate with long-lasting protection. A great amount of research has been invested in carbohydrate vaccine design to elicit such an immune response, which has led to the development of vaccines against the bacterial pathogens Haemophilus influenzae type b, Streptococcus pneumonia and Neisseria meningitidis. Other vaccines, e.g. against HIV-1, are still in development, but promising progress has been made with the isolation of broadly neutralizing glycan-binding antibodies and the engineering of stable trimeric envelope glycoproteins. Carbohydrate vaccines against other pathogens such as viruses (Dengue, Hepatitis C), parasites (Plasmodium) and fungi (Candida) are at different stages of development. This chapter will discuss the challenges in inducing cross-reactive carbohydrate-targeting antibodies and progress towards carbohydrate vaccines.
Collapse
|
25
|
Interplay of Carbohydrate and Carrier in Antibacterial Glycoconjugate Vaccines. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2018; 175:355-378. [PMID: 30143807 DOI: 10.1007/10_2018_71] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Bacterial infections are a serious health concern and are responsible for millions of illnesses and deaths each year in communities around the world. Vaccination is an important public health measure for reducing and eliminating this burden, and regions with comprehensive vaccination programs have achieved significant reductions in infection and mortality. This is often accomplished by immunization with bacteria-derived carbohydrates, typically in conjunction with other biomolecules, which induce immunological memory and durable protection against bacterial human pathogens. For many species, however, vaccines are currently unavailable or have suboptimal efficacy characterized by short-lived memory and incomplete protection, especially among at-risk populations. To address this challenge, new tools and techniques have emerged for engineering carbohydrates and conjugating them to carrier molecules in a tractable and scalable manner. Collectively, these approaches are yielding carbohydrate-based vaccine designs with increased immunogenicity and protective efficacy, thereby opening up new opportunities for this important class of antigens. In this chapter we detail the current understanding of how carbohydrates interact with the immune system to provide immunity; how glycoengineering, especially in the context of glycoconjugate vaccines, can be used to modify and enhance immune responses; and current trends and strategies being pursued for the rational design of next-generation glycosylated antibacterial vaccines. Graphical Abstract.
Collapse
|
26
|
Saunders KO, Nicely NI, Wiehe K, Bonsignori M, Meyerhoff RR, Parks R, Walkowicz WE, Aussedat B, Wu NR, Cai F, Vohra Y, Park PK, Eaton A, Go EP, Sutherland LL, Scearce RM, Barouch DH, Zhang R, Von Holle T, Overman RG, Anasti K, Sanders RW, Moody MA, Kepler TB, Korber B, Desaire H, Santra S, Letvin NL, Nabel GJ, Montefiori DC, Tomaras GD, Liao HX, Alam SM, Danishefsky SJ, Haynes BF. Vaccine Elicitation of High Mannose-Dependent Neutralizing Antibodies against the V3-Glycan Broadly Neutralizing Epitope in Nonhuman Primates. Cell Rep 2017; 18:2175-2188. [PMID: 28249163 DOI: 10.1016/j.celrep.2017.02.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 12/19/2016] [Accepted: 01/30/2017] [Indexed: 12/26/2022] Open
Abstract
Induction of broadly neutralizing antibodies (bnAbs) that target HIV-1 envelope (Env) is a goal of HIV-1 vaccine development. A bnAb target is the Env third variable loop (V3)-glycan site. To determine whether immunization could induce antibodies to the V3-glycan bnAb binding site, we repetitively immunized macaques over a 4-year period with an Env expressing V3-high mannose glycans. Env immunizations elicited plasma antibodies that neutralized HIV-1 expressing only high-mannose glycans-a characteristic shared by early bnAb B cell lineage members. A rhesus recombinant monoclonal antibody from a vaccinated macaque bound to the V3-glycan site at the same amino acids as broadly neutralizing antibodies. A structure of the antibody bound to glycan revealed that the three variable heavy-chain complementarity-determining regions formed a cavity into which glycan could insert and neutralized multiple HIV-1 isolates with high-mannose glycans. Thus, HIV-1 Env vaccination induced mannose-dependent antibodies with characteristics of V3-glycan bnAb precursors.
Collapse
Affiliation(s)
- Kevin O Saunders
- Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA; Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA.
| | - Nathan I Nicely
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA; Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Kevin Wiehe
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA; Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Mattia Bonsignori
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA; Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - R Ryan Meyerhoff
- Department of Immunology, Duke University School of Medicine, Durham, NC 27710, USA; Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Robert Parks
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA; Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | | | - Baptiste Aussedat
- Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA
| | - Nelson R Wu
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA; Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Fangping Cai
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA; Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Yusuf Vohra
- Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA
| | - Peter K Park
- Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA
| | - Amanda Eaton
- Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA; Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Eden P Go
- University of Kansas, Lawrence, KS 66045, USA
| | - Laura L Sutherland
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA; Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Richard M Scearce
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA; Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Dan H Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Ruijun Zhang
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA; Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Tarra Von Holle
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA; Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - R Glenn Overman
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA; Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Kara Anasti
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA; Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Rogier W Sanders
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - M Anthony Moody
- Department of Immunology, Duke University School of Medicine, Durham, NC 27710, USA; Department of Pediatrics, Duke University School of Medicine, Durham, NC 27710, USA; Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | | | | | | | | | | | | | - David C Montefiori
- Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Georgia D Tomaras
- Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA; Department of Immunology, Duke University School of Medicine, Durham, NC 27710, USA; Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA; Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Hua-Xin Liao
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA; Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - S Munir Alam
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA; Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | | | - Barton F Haynes
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA; Department of Immunology, Duke University School of Medicine, Durham, NC 27710, USA; Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
27
|
Sun Z, Yan L, Tang J, Qian Q, Lenberg J, Zhu D, Liu W, Wu K, Wang Y, Lu S. Brief introduction of current technologies in isolation of broadly neutralizing HIV-1 antibodies. Virus Res 2017; 243:75-82. [PMID: 29051051 PMCID: PMC7114535 DOI: 10.1016/j.virusres.2017.10.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 10/13/2017] [Accepted: 10/15/2017] [Indexed: 12/11/2022]
Abstract
HIV/AIDS has become a worldwide pandemic. Before an effective HIV-1 vaccine eliciting broadly neutralizing monoclonal antibodies (bnmAbs) is fully developed, passive immunization for prevention and treatment of HIV-1 infection may alleviate the burden caused by the pandemic. Among HIV-1 infected individuals, about 20% of them generated cross-reactive neutralizing antibodies two to four years after infection, the details of which could provide knowledge for effective vaccine design. Recent progress in techniques for isolation of human broadly neutralizing antibodies has facilitated the study of passive immunization. The isolation and characterization of large panels of potent human broadly neutralizing antibodies has revealed new insights into the principles of antibody-mediated neutralization of HIV. In this paper, we review the current effective techniques in broadly neutralizing antibody isolation.
Collapse
Affiliation(s)
- Zehua Sun
- Department of Medicine, National Jewish Health, 1400 Jackson Street, Denver, CO, 80206, United States.
| | - Lixin Yan
- Harbin Medical University Affiliated 2nd Hospital, 246 Xuefu Road, Harbin, 150086, China.
| | - Jiansong Tang
- Department of Technical Specialist, China Bioengineering Technology Group Limited, Unit 209,Building 16W, Hong Kong Science Park, Shatin, NT, HK, 999077, Hong Kong
| | - Qian Qian
- Department of Medicine, National Jewish Health, 1400 Jackson Street, Denver, CO, 80206, United States
| | - Jerica Lenberg
- Department of Medicine, National Jewish Health, 1400 Jackson Street, Denver, CO, 80206, United States; Augustana University, 2001 S Summit Avenue, Sioux Falls, SD, 571977, United States
| | - Dandan Zhu
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, TX, 77030, United States
| | - Wan Liu
- Harbin Medical University Affiliated 2nd Hospital, 246 Xuefu Road, Harbin, 150086, China
| | - Kao Wu
- Glyn O. Philips Hydrocolloid Research Center at HUT, Hubei University of Technology, Wuhan 430068, China
| | - Yilin Wang
- University of California, Irvine. 100 Pacific, Irvine, CA, 92618, United States
| | - Shiqiang Lu
- AIDS Institute, Faculty of Medicine, The University of Hong Kong, No21 Sassoon Road, 999077, Hong Kong, Hong Kong.
| |
Collapse
|
28
|
Lusvarghi S, Ghirlando R, Davison JR, Bewley CA. Chemical and Biophysical Approaches for Complete Characterization of Lectin-Carbohydrate Interactions. Methods Enzymol 2017; 598:3-35. [PMID: 29306440 PMCID: PMC6141027 DOI: 10.1016/bs.mie.2017.06.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Lectins are carbohydrate-binding proteins unrelated to antibodies or enzymes. While carbohydrates are present on all cells and pathogens, lectins are also ubiquitous in nature and their interactions with glycans mediate countless biological and physical interactions. Due to the multivalency found in both lectins and their glycan-binding partners, complete characterization of these interactions can be complex and typically requires the use of multiple complimentary techniques. In this chapter, we provide a general strategy and protocols for chemical and biophysical approaches that can be used to characterize carbohydrate-mediated interactions in the context of individual oligosaccharides, as part of a glycoprotein, and ending with visualization of interactions with whole virions.
Collapse
Affiliation(s)
- Sabrina Lusvarghi
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Rodolfo Ghirlando
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Jack R Davison
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Carole A Bewley
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States.
| |
Collapse
|
29
|
Ueno-Noto K, Takano K. Water molecules inside protein structure affect binding of monosaccharides with HIV-1 antibody 2G12. J Comput Chem 2016; 37:2341-8. [DOI: 10.1002/jcc.24447] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 06/03/2016] [Accepted: 06/16/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Kaori Ueno-Noto
- Chemistry Section, Center for Natural Sciences, College of Liberal Arts and Sciences, Kitasato University; 1-15-1 Kitasato Minami-Ku, Sagamihara Kanagawa 252-0373 Japan
| | - Keiko Takano
- Department of Chemistry and Biochemistry; Graduate School of Humanities and Sciences, Ochanomizu University; 2-1-1 Otsuka, Bunkyo-Ku Tokyo 112-8610 Japan
| |
Collapse
|
30
|
Liu CC, Zhai C, Zheng XJ, Ye XS. Altering the Specificity of the Antibody Response to HIV gp120 with a Glycoconjugate Antigen. ACS Chem Biol 2016; 11:1702-9. [PMID: 27088577 DOI: 10.1021/acschembio.6b00224] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Some conserved glycans on the HIV envelope protein are targets of broadly neutralizing antibodies (bnAbs) of HIV. BnAbs provide a precise definition of broadly neutralizing epitopes on the envelope protein of HIV. These epitopes are promising for vaccine design. Many glycan-related antigens with high affinity to bnAbs have been tested as immunogens in vivo. However, it was found that no bnAb-like antibodies were induced. Vaccination with different immunogens containing the same neutralizing epitope may enhance the affinity maturation of antibodies which focus on the shared epitope. This combined immunization strategy showed great potential in peptide epitope-based vaccine design. However, it has not yet been explored on glycan-related epitopes to date. Herein, we take 2G12 as a model to validate this strategy on glycan-related epitopes. A high-affinity antigen of 2G12 was constructed by conjugating the D1 arm tetramannoside to bovine serum albumin. Then, the glycoconjugate was coimmunized with a recombinant gp120, which was expected to selectively benefit the induction of antibodies recognizing the neutralizing epitope of 2G12 on gp120. Mice were inoculated with the two antigens simultaneously or alternately to determine the suitable regimen for this strategy. The serological assays demonstrated that the antibody titers and subtypes responded to the whole gp120 were not improved, and the proportion of antibodies competitively bound to the 2G12 epitope was not enhanced significantly either. However, the coimmunized glycoconjugate selectively raised the proportion of antibodies recognizing D1 arm tetramannoside-related structures on gp120. These results provide important experience for the design of glycan-dependent bnAb-based vaccines.
Collapse
Affiliation(s)
- Chang-Cheng Liu
- State Key Laboratory of Natural and Biomimetic Drugs,
School of Pharmaceutical Sciences, Peking University, Xue Yuan
Rd No. 38, Beijing 100191, China
| | - Canjia Zhai
- State Key Laboratory of Natural and Biomimetic Drugs,
School of Pharmaceutical Sciences, Peking University, Xue Yuan
Rd No. 38, Beijing 100191, China
| | - Xiu-Jing Zheng
- State Key Laboratory of Natural and Biomimetic Drugs,
School of Pharmaceutical Sciences, Peking University, Xue Yuan
Rd No. 38, Beijing 100191, China
| | - Xin-Shan Ye
- State Key Laboratory of Natural and Biomimetic Drugs,
School of Pharmaceutical Sciences, Peking University, Xue Yuan
Rd No. 38, Beijing 100191, China
| |
Collapse
|
31
|
Synthesis of modified D-mannose core derivatives and their impact on GH38 α-mannosidases. Carbohydr Res 2016; 428:62-71. [DOI: 10.1016/j.carres.2016.04.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 04/04/2016] [Accepted: 04/06/2016] [Indexed: 11/21/2022]
|
32
|
Huang ML, Fisher CJ, Godula K. Glycomaterials for probing host-pathogen interactions and the immune response. Exp Biol Med (Maywood) 2016; 241:1042-53. [PMID: 27190259 DOI: 10.1177/1535370216647811] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The initial engagement of host cells by pathogens is often mediated by glycan structures presented on the cell surface. Various components of the glycocalyx can be targeted by pathogens for adhesion to facilitate infection. Glycans also play integral roles in the modulation of the host immune response to infection. Therefore, understanding the parameters that define glycan interactions with both pathogens and the various components of the host immune system can aid in the development of strategies to prevent, interrupt, or manage infection. Glycomaterials provide a unique and powerful tool with which to interrogate the compositional and functional complexity of the glycocalyx. The objective of this review is to highlight some key contributions from this area of research in deciphering the mechanisms of pathogenesis and the associated host response.
Collapse
Affiliation(s)
- Mia L Huang
- Department of Chemistry and Biochemistry, University of California-San Diego, La Jolla, CA 92093, USA
| | - Christopher J Fisher
- Department of Chemistry and Biochemistry, University of California-San Diego, La Jolla, CA 92093, USA
| | - Kamil Godula
- Department of Chemistry and Biochemistry, University of California-San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
33
|
Wang Z, Qin C, Hu J, Guo X, Yin J. Recent advances in synthetic carbohydrate-based human immunodeficiency virus vaccines. Virol Sin 2016; 31:110-7. [PMID: 26992403 DOI: 10.1007/s12250-015-3691-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 03/02/2016] [Indexed: 12/14/2022] Open
Abstract
An effective vaccine for human immunodeficiency virus (HIV) is urgently needed to prevent HIV infection and progression to acquired immune deficiency syndrome (AIDS). As glycosylation of viral proteins becomes better understood, carbohydrate-based antiviral vaccines against special viruses have attracted much attention. Significant efforts in carbohydrate synthesis and immunogenicity research have resulted in the development of multiple carbohydrate-based HIV vaccines. This review summarizes recent advances in synthetic carbohydrate-based vaccines design strategies and the applications of these vaccines in the prevention of HIV.
Collapse
Affiliation(s)
- Zhenyuan Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Chunjun Qin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Jing Hu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.,Wuxi Medical School, Jiangnan University, Wuxi, 214122, China
| | - Xiaoqiang Guo
- Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Jian Yin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
34
|
Liu CC, Zheng XJ, Ye XS. Broadly Neutralizing Antibody-Guided Carbohydrate-Based HIV Vaccine Design: Challenges and Opportunities. ChemMedChem 2016; 11:357-62. [PMID: 26762799 DOI: 10.1002/cmdc.201500498] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Indexed: 11/12/2022]
Abstract
The HIV envelope (Env) is heavily glycosylated, facilitating the spread and survival of HIV in many ways. Some potent broadly neutralizing antibodies (bnAbs) such as 2G12, PG9, PG16, and PGTs can recognize the conserved glycan residues on Env. The bnAbs, which often emerge after many years of chronic infection, provide insight into the vulnerability of HIV and can therefore guide the design of vaccines. Many carbohydrate-conjugated vaccines have been designed to induce bnAb-like antibodies, but none have yet been successful. The low antigenicity of these vaccines is one possible explanation. New strategies have been applied to obtain high-affinity antigens of glycan-dependent and other bnAbs. However, when used as immunogens in vivo, high-affinity antigens are still insufficient in eliciting bnAb-like antibodies. bnAbs generally possess some unusual features and may therefore be suppressed by the host immune system. In view of this situation, some immunization regimens based on the affinity maturation of antibodies have been tested. Herein we summarize recent studies into the design of carbohydrate-based HIV vaccines and some valuable experiences gained in work with other bnAb-based HIV vaccines.
Collapse
Affiliation(s)
- Chang-Cheng Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Xiu-Jing Zheng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Xin-Shan Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
| |
Collapse
|
35
|
Restuccia A, Fettis MM, Hudalla GA. Glycomaterials for immunomodulation, immunotherapy, and infection prophylaxis. J Mater Chem B 2016; 4:1569-1585. [DOI: 10.1039/c5tb01780g] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Synthetic carbohydrate-modified materials that can engage the innate and adaptive immune systems are receiving increasing interest to confer protection against onset of future disease, such as pathogen infection, as well as to treat established diseases, such as autoimmunity and cancer.
Collapse
Affiliation(s)
- Antonietta Restuccia
- J. Crayton Pruitt Family Department of Biomedical Engineering
- University of Florida
- Gainesville
- USA
| | - Margaret M. Fettis
- J. Crayton Pruitt Family Department of Biomedical Engineering
- University of Florida
- Gainesville
- USA
| | - Gregory A. Hudalla
- J. Crayton Pruitt Family Department of Biomedical Engineering
- University of Florida
- Gainesville
- USA
| |
Collapse
|
36
|
Fernández-Tejada A, Cañada FJ, Jiménez-Barbero J. Recent Developments in Synthetic Carbohydrate-Based Diagnostics, Vaccines, and Therapeutics. Chemistry 2015; 21:10616-28. [PMID: 26095198 DOI: 10.1002/chem.201500831] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Glycans are everywhere in biological systems, being involved in many cellular events with important implications for medical purposes. Building upon a detailed understanding of the functional roles of carbohydrates in molecular recognition processes and disease states, glycans are increasingly being considered as key players in pharmacological research. On the basis of the important progress recently made in glycochemistry, glycobiology, and glycomedicine, we provide a complete overview of successful applications and future perspectives of carbohydrates in the biopharmaceutical and medical fields. This review highlights the development of carbohydrate-based diagnostics, exemplified by glycan imaging techniques and microarray platforms, synthetic oligosaccharide vaccines against infectious diseases (e.g., HIV) and cancer, and finally carbohydrate-derived therapeutics, including glycomimetic drugs and glycoproteins.
Collapse
Affiliation(s)
| | - F Javier Cañada
- Chemical and Physical Biology, CIB-CSIC, Ramiro de Maeztu 9, 28040 Madrid (Spain)
| | - Jesús Jiménez-Barbero
- Infectious Disease Programme, Center for Cooperative Research in Biosciences, CIC-bioGUNE, Bizkaia Technology Park, 48160 Derio (Spain). .,Ikerbasque, Basque Foundation for Science, María López de Haro 13, 48009 Bilbao (Spain).
| |
Collapse
|
37
|
Abstract
Despite three decades of intensive research efforts, the development of an effective prophylactic vaccine against HIV remains an unrealized goal in the global campaign to contain the HIV/AIDS pandemic. Recent characterization of novel epitopes for inducing broadly neutralizing antibodies has fueled research in the design and synthesis of new, well-defined antigenic constructs for the development of HIV envelope-directed vaccines. The present review will cover previous and recent efforts toward the design of synthetic vaccines based on the HIV viral envelope glycoproteins, with special emphasis on examples from our own laboratories. The biological evaluation of some of the most representative vaccine candidates, in terms of their antigenicity and immunogenicity, will also be discussed to illustrate the current state-of-the-art toward the development of fully synthetic HIV vaccines.
Collapse
Affiliation(s)
- Alberto Fernández-Tejada
- Laboratory for Bioorganic Chemistry, Molecular Pharmacology and Chemistry Program, Sloan Kettering Institute for Cancer Research, 1275 York Avenue, NY 10065, USA
| | | | | |
Collapse
|
38
|
Iterative design of a helically folded aromatic oligoamide sequence for the selective encapsulation of fructose. Nat Chem 2015; 7:334-41. [PMID: 25803472 DOI: 10.1038/nchem.2195] [Citation(s) in RCA: 196] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 02/02/2015] [Indexed: 12/23/2022]
Abstract
The ab initio design of synthetic molecular receptors for a specific biomolecular guest remains an elusive objective, particularly for targets such as monosaccharides, which have very close structural analogues. Here we report a powerful approach to produce receptors with very high selectivity for specific monosaccharides and, as a demonstration, we develop a foldamer that selectively encapsulates fructose. The approach uses an iterative design process that exploits the modular structure of folded synthetic oligomer sequences in conjunction with molecular modelling and structural characterization to inform subsequent refinements. Starting from a first-principles design taking size, shape and hydrogen-bonding ability into account and using the high predictability of aromatic oligoamide foldamer conformations and their propensity to crystallize, a sequence that binds to β-D-fructopyranose in organic solvents with atomic-scale complementarity was obtained in just a few iterative modifications. This scheme, which mimics the adaptable construction of biopolymers from a limited number of monomer units, provides a general protocol for the development of selective receptors.
Collapse
|
39
|
Paleček E, Tkáč J, Bartošík M, Bertók T, Ostatná V, Paleček J. Electrochemistry of nonconjugated proteins and glycoproteins. Toward sensors for biomedicine and glycomics. Chem Rev 2015; 115:2045-108. [PMID: 25659975 PMCID: PMC4360380 DOI: 10.1021/cr500279h] [Citation(s) in RCA: 221] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Indexed: 02/07/2023]
Affiliation(s)
- Emil Paleček
- Institute
of Biophysics Academy of Science of the Czech Republic, v.v.i., Královopolská
135, 612 65 Brno, Czech Republic
| | - Jan Tkáč
- Institute
of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38 Bratislava, Slovakia
| | - Martin Bartošík
- Regional
Centre for Applied Molecular Oncology, Masaryk
Memorial Cancer Institute, Žlutý kopec 7, 656 53 Brno, Czech Republic
| | - Tomáš Bertók
- Institute
of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38 Bratislava, Slovakia
| | - Veronika Ostatná
- Institute
of Biophysics Academy of Science of the Czech Republic, v.v.i., Královopolská
135, 612 65 Brno, Czech Republic
| | - Jan Paleček
- Central
European Institute of Technology, Masaryk
University, Kamenice
5, 625 00 Brno, Czech Republic
| |
Collapse
|
40
|
Schuster HJ, Vijayakrishnan B, Davis BG. Chain-growth polyglycosylation: synthesis of linker-equipped mannosyl oligomers. Carbohydr Res 2015; 403:135-41. [DOI: 10.1016/j.carres.2014.06.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Revised: 06/16/2014] [Accepted: 06/19/2014] [Indexed: 11/29/2022]
|
41
|
Zheng XJ, Yang F, Zheng M, Huo CX, Zhang Y, Ye XS. Improvement of the immune efficacy of carbohydrate vaccines by chemical modification on the GM3 antigen. Org Biomol Chem 2015; 13:6399-406. [DOI: 10.1039/c5ob00405e] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
N-modified GM3 glycoconjugates improved the efficiency of the vaccination without the combination of metabolic oligosaccharide engineering technology.
Collapse
Affiliation(s)
- Xiu-Jing Zheng
- State Key Laboratory of Natural and Biomimetic Drugs
- School of Pharmaceutical Sciences
- and Center for Molecular and Translational Medicine
- Peking University
- Beijing 100191
| | - Fan Yang
- State Key Laboratory of Natural and Biomimetic Drugs
- School of Pharmaceutical Sciences
- and Center for Molecular and Translational Medicine
- Peking University
- Beijing 100191
| | - Mingwei Zheng
- State Key Laboratory of Natural and Biomimetic Drugs
- School of Pharmaceutical Sciences
- and Center for Molecular and Translational Medicine
- Peking University
- Beijing 100191
| | - Chang-Xin Huo
- State Key Laboratory of Natural and Biomimetic Drugs
- School of Pharmaceutical Sciences
- and Center for Molecular and Translational Medicine
- Peking University
- Beijing 100191
| | - Ye Zhang
- School of Basic Medical Sciences
- Peking University
- Beijing 100191
- China
| | - Xin-Shan Ye
- State Key Laboratory of Natural and Biomimetic Drugs
- School of Pharmaceutical Sciences
- and Center for Molecular and Translational Medicine
- Peking University
- Beijing 100191
| |
Collapse
|
42
|
Horiya S, MacPherson IS, Krauss IJ. Recent strategies targeting HIV glycans in vaccine design. Nat Chem Biol 2014; 10:990-9. [PMID: 25393493 PMCID: PMC4431543 DOI: 10.1038/nchembio.1685] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 10/03/2014] [Indexed: 12/20/2022]
Abstract
Although efforts to develop a vaccine against HIV have so far met with little success, recent studies of HIV-positive patients with strongly neutralizing sera have shown that the human immune system is capable of producing potent and broadly neutralizing antibodies (bnAbs), some of which neutralize up to 90% of HIV strains. These antibodies bind conserved vulnerable sites on the viral envelope glycoprotein gp120, and identification of these sites has provided exciting clues about the design of potentially effective vaccines. Carbohydrates have a key role in this field, as a large fraction of bnAbs bind carbohydrates or combinations of carbohydrate and peptide elements on gp120. Additionally, carbohydrates partially mask some peptide surfaces recognized by bnAbs. The use of engineered glycoproteins and other glycostructures as vaccines to elicit antibodies with broad neutralizing activity is therefore a key area of interest in HIV vaccine design.
Collapse
Affiliation(s)
- Satoru Horiya
- Department of Chemistry, Brandeis University, Waltham, Massachusetts, USA
| | - Iain S MacPherson
- Department of Chemistry, Brandeis University, Waltham, Massachusetts, USA
| | - Isaac J Krauss
- Department of Chemistry, Brandeis University, Waltham, Massachusetts, USA
| |
Collapse
|
43
|
Stanfield RL, De Castro C, Marzaioli AM, Wilson IA, Pantophlet R. Crystal structure of the HIV neutralizing antibody 2G12 in complex with a bacterial oligosaccharide analog of mammalian oligomannose. Glycobiology 2014; 25:412-9. [PMID: 25380763 DOI: 10.1093/glycob/cwu123] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Human immunodeficiency virus-1 (HIV-1) is a major public health threat that continues to infect millions of people worldwide each year. A prophylactic vaccine remains the most cost-effective way of globally reducing and eliminating the spread of the virus. The HIV envelope spike, which is the target of many vaccine design efforts, is densely mantled with carbohydrate and several potent broadly neutralizing antibodies to HIV-1 recognize carbohydrate on the envelope spike as a major part of their epitope. However, immunizing with recombinant forms of the envelope glycoprotein does not typically elicit anti-carbohydrate antibodies. Thus, studies of alternative antigens that may serve as a starting point for carbohydrate-based immunogens are of interest. Here, we present the crystal structure of one such anti-carbohydrate HIV neutralizing antibody (2G12) in complex with the carbohydrate backbone of the lipooligosaccharide from Rhizobium radiobacter strain Rv3, which exhibits a chemical structure that naturally mimics the core high-mannose carbohydrate epitope of 2G12 on HIV-1 gp120. The structure described here provides molecular evidence of the structural homology between the Rv3 oligosaccharide and highly abundant carbohydrates on the surface of HIV-1 and raises the potential for the design of novel glycoconjugates that may find utility in efforts to develop immunogens for eliciting carbohydrate-specific neutralizing antibodies to HIV.
Collapse
Affiliation(s)
- Robyn L Stanfield
- Department of Integrative Structural and Computational Biology, Scripps CHAVI-ID, and IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
| | - Cristina De Castro
- Department of Chemical Sciences, University of Napoli Federico II, Complesso Universitario Monte Sant'Angelo, 80126 Napoli, Italy
| | - Alberto M Marzaioli
- Department of Chemical Sciences, University of Napoli Federico II, Complesso Universitario Monte Sant'Angelo, 80126 Napoli, Italy
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, Scripps CHAVI-ID, and IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
| | - Ralph Pantophlet
- Faculty of Health Sciences and Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
44
|
Abstract
The heavy glycosylation of HIV envelope constitutes a strong defense mechanism for the virus to evade host immune response, which accounts for a major barrier for HIV vaccine development. Nevertheless, the identification of a number of glycan-dependent broadly HIV-neutralizing antibodies from HIV-infected individuals, including 2G12, PG9, PG16, PGT121-123, PGT125-128, and PGT135, strongly suggests that the defensive viral 'glycan shield' can be important targets of vaccines. The novel glycan recognition mode exhibited by these antibodies provides new templates for immunogen design. This review highlights recent work on the characterization of the glycan-dependent epitopes of these neutralizing antibodies and recent advances in the synthesis of the relevant carbohydrate antigens for HIV vaccine design.
Collapse
|
45
|
Abstract
The unusual traits of broadly neutralizing antibodies for HIV-1 are stimulating new strategies to induce their production through vaccination.
Collapse
Affiliation(s)
- Barton F. Haynes
- Duke Human Vaccine Institute, Departments of Medicine, Immunology and Pathology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Laurent Verkoczy
- Duke Human Vaccine Institute, Departments of Medicine, Immunology and Pathology, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
46
|
Koyama Y, Ueno-Noto K, Takano K. Affinity of HIV-1 antibody 2G12 with monosaccharides: A theoretical study based on explicit and implicit water models. Comput Biol Chem 2014; 49:36-44. [DOI: 10.1016/j.compbiolchem.2014.01.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Revised: 01/14/2014] [Accepted: 01/14/2014] [Indexed: 11/25/2022]
|
47
|
Horiya S, Bailey JK, Temme JS, Guillen Schlippe YV, Krauss IJ. Directed evolution of multivalent glycopeptides tightly recognized by HIV antibody 2G12. J Am Chem Soc 2014; 136:5407-15. [PMID: 24645849 PMCID: PMC4004241 DOI: 10.1021/ja500678v] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
![]()
Herein,
we report a method for in vitro selection of multivalent
glycopeptides, combining mRNA display with incorporation of unnatural
amino acids and “click” chemistry. We have demonstrated
the use of this method to design potential glycopeptide vaccines against
HIV. From libraries of ∼1013 glycopeptides containing
multiple Man9 glycan(s), we selected variants that bind
to HIV broadly neutralizing antibody 2G12 with picomolar to low nanomolar
affinity. This is comparable to the strength of the natural 2G12–gp120
interaction, and is the strongest affinity achieved to date with constructs
containing 3–5 glycans. These glycopeptides are therefore of
great interest in HIV vaccine design.
Collapse
Affiliation(s)
- Satoru Horiya
- Department of Chemistry, Brandeis University , Waltham, Massachusetts 02454-9110, United States
| | | | | | | | | |
Collapse
|
48
|
Temme JS, MacPherson IS, DeCourcey JF, Krauss IJ. High temperature SELMA: evolution of DNA-supported oligomannose clusters which are tightly recognized by HIV bnAb 2G12. J Am Chem Soc 2014; 136:1726-9. [PMID: 24446826 PMCID: PMC3985446 DOI: 10.1021/ja411212q] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
SELMA (SELection with Modified Aptamers) is a directed evolution method which can be used to develop DNA-supported clusters of carbohydrates in which the geometry of clustering is optimized for strong recognition by a lectin of interest. Herein, we report a modification of SELMA which results in glycoclusters which achieve dramatically stronger target recognition (100-fold) with dramatically fewer glycans (2-3-fold). Our first applications of SELMA yielded clusters of 5-10 oligomannose glycans which were recognized by broadly neutralizing HIV antibody 2G12 with moderate affinities (150-500 nM Kd's). In the present manuscript, we report glycoclusters containing just 3-4 glycans, which are recognized by 2G12 with Kd's as low as 1.7 nM. These glycoclusters are recognized by 2G12 as tightly as is the HIV envelope protein gp120, and they are the first constructs to achieve this tight recognition with the minimal number of Man9 units (3-4) necessary to occupy the binding sites on 2G12. They are thus of great interest as immunogens which might elicit broadly neutralizing antibodies against HIV.
Collapse
Affiliation(s)
- J Sebastian Temme
- Department of Chemistry, Brandeis University , Waltham, Massachusetts, 02454-9110, United States
| | | | | | | |
Collapse
|
49
|
Hudak JE, Bertozzi CR. Glycotherapy: new advances inspire a reemergence of glycans in medicine. CHEMISTRY & BIOLOGY 2014; 21:16-37. [PMID: 24269151 PMCID: PMC4111574 DOI: 10.1016/j.chembiol.2013.09.010] [Citation(s) in RCA: 172] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Revised: 09/16/2013] [Accepted: 09/30/2013] [Indexed: 12/21/2022]
Abstract
The beginning of the 20(th) century marked the dawn of modern medicine with glycan-based therapies at the forefront. However, glycans quickly became overshadowed as DNA- and protein-focused treatments became readily accessible. The recent development of new tools and techniques to study and produce structurally defined carbohydrates has spurred renewed interest in the therapeutic applications of glycans. This review focuses on advances within the past decade that are bringing glycan-based treatments back to the forefront of medicine and the technologies that are driving these efforts. These include the use of glycans themselves as therapeutic molecules as well as engineering protein and cell surface glycans to suit clinical applications. Glycan therapeutics offer a rich and promising frontier for developments in the academic, biopharmaceutical, and medical fields.
Collapse
Affiliation(s)
- Jason E Hudak
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Carolyn R Bertozzi
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
50
|
Cardoso MVC, Sabadini E. Before and beyond the micellization of n-alkyl glycosides. A water-1H NMR relaxation study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:15778-15786. [PMID: 24308316 DOI: 10.1021/la403526w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The interactions between the headgroups of n-alkyl glycoside (AG) and water molecules were studied by nuclear magnetic transverse relaxation times (T2) of the water protons before and beyond the micellization. Despite the low concentration of the surfactants (mM), their micellization induce strong effect on the T2 values of bulk water when the AG molecules self-aggregate into micelles. This is associated with the decreasing of the fraction of OH headgroups of AG to exchange protons with water molecules due to the OH headgroups intermolecular interactions of AG at the micelle surface. These findings support the computational results described in the literature, which indicate that the water hydrogen bonding to OH headgroups is perturbed at AG micelle surfaces.
Collapse
Affiliation(s)
- Marcus V C Cardoso
- Department of Physical Chemistry, Institute of Chemistry, University of Campinas - UNICAMP . P.O. Box 6154, 13084-862, Campinas, SP, Brazil
| | | |
Collapse
|