1
|
Halabi S, Rocos N, Kaufman J. The search to understand the development of the chicken immune system: Differences in expression of MHC class I loci and waves of thymocytes as evolutionary relics? Dev Biol 2025; 519:38-45. [PMID: 39694171 DOI: 10.1016/j.ydbio.2024.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/28/2024] [Accepted: 12/14/2024] [Indexed: 12/20/2024]
Abstract
Chickens are renowned as a model for embryogenesis but have also been responsible for crucial advances in virology, cancer research and immunology. However, chickens are best known as a major source of animal protein for human nutrition, with roughly 80 billion chickens alive each year supplying meat and eggs, the vast majority part of a global poultry industry. As a result, avian immunology been studied intensively for over 60 years, and it has become clear that a major genetic locus in chickens determining resistance to infectious disease and response to vaccines is the major histocompatibility complex (MHC). Compared to typical mammals, the chicken MHC is compact and simple, with only two classical class I genes. A dominantly-expressed class I gene, BF2, is the major ligand for cytotoxic T lymphocytes (CTLs), while the other locus, BF1, is much less well-expressed, lacking in some MHC haplotypes, and is a ligand for natural killer (NK) cells. Cell surface class I expression in neonatal chicks is far less than in adults, and one possibility is that BF2 is not well-expressed early in ontogeny. A precedent is found for amphibians: the single classical class I molecule is not expressed in tadpoles of Xenopus frogs, although non-polymorphic (and thus non-classical) class I molecules from the XNC locus are expressed, which are recognised for immune defence by non-canonical NKT lymphocytes. Indeed, three waves of different T cells are produced by the Xenopus thymus: in tadpoles, during metamorphosis and finally as adults. Three waves of thymic emigrants are also found for chickens, and reasoning by analogy, it may be that the waves of thymocytes and the expression of class I molecules during ontogeny of chickens are evolutionary relics. As well as scientific interest in the ontogeny of MHC class I expression and appearance of peripheral T cells, there are potential practical implications, given the importance of vaccination in ovo and in day-old chicks for the poultry industry.
Collapse
Affiliation(s)
- Samer Halabi
- University of Edinburgh, Institute for Immunology and Infection Research, Edinburgh, United Kingdom
| | - Nicolas Rocos
- University of Edinburgh, Institute for Immunology and Infection Research, Edinburgh, United Kingdom
| | - Jim Kaufman
- University of Edinburgh, Institute for Immunology and Infection Research, Edinburgh, United Kingdom.
| |
Collapse
|
2
|
Sabino-Pinto J, Maan ME. The Amphibian Major Histocompatibility Complex-A Review and Future Outlook. J Mol Evol 2025; 93:38-61. [PMID: 39774934 PMCID: PMC11850509 DOI: 10.1007/s00239-024-10223-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 11/28/2024] [Indexed: 01/11/2025]
Abstract
The major histocompatibility complex (MHC) is a cluster of functionally related genes encoding proteins which, among other functions, mediate immune system activation. While the MHC of many vertebrates has been extensively studied, less is known about the amphibian MHC. This represents an important knowledge gap because amphibians mark the evolutionary transition from an aquatic to a terrestrial lifestyle and often maintain a biphasic lifestyle. Hence, they tend to be exposed to both aquatic and terrestrial pathogen communities, providing opportunities to gain fundamental insights into how the immune system responds to different environmental challenges. Moreover, amphibians are globally threatened by invasive pathogens and the MHC may play a role in combating population decline. In this review, we summarize the current state of knowledge regarding the amphibian MHC and identify the major differences with other vertebrates. We also review how the number of MHC gene copies varies across amphibian groups and how MHC-based variation relates to amphibian ontogeny, behaviour, disease, and phylogeography. We conclude by identifying knowledge gaps and proposing priorities for future research.
Collapse
Affiliation(s)
- Joana Sabino-Pinto
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands.
| | - Martine E Maan
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
| |
Collapse
|
3
|
Paiola M, McGuire CC, Lopez Ruiz V, De Jesús Andino F, Robert J. Larval T Cells Are Functionally Distinct from Adult T Cells in Xenopus laevis. Immunohorizons 2023; 7:696-707. [PMID: 37870488 PMCID: PMC10615653 DOI: 10.4049/immunohorizons.2300081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 10/02/2023] [Indexed: 10/24/2023] Open
Abstract
The amphibian Xenopus laevis tadpole provides a unique comparative experimental organism for investigating the roles of innate-like T (iT) cells in tolerogenic immunity during early development. Unlike mammals and adult frogs, where conventional T cells are dominant, tadpoles rely mostly on several prominent distinct subsets of iT cells interacting with cognate nonpolymorphic MHC class I-like molecules. In the present study, to investigate whole T cell responsiveness ontogenesis in X. laevis, we determined in tadpoles and adult frogs the capacity of splenic T cells to proliferate in vivo upon infection with two different pathogens, ranavirus FV3 and Mycobacterium marinum, as well as in vitro upon PHA stimulation using the thymidine analogous 5-ethynyl-2'-deoxyuridine and flow cytometry. We also analyzed by RT-quantitative PCR T cell responsiveness upon PHA stimulation. In vivo tadpole splenic T cells showed limited capacity to proliferate, whereas the in vitro proliferation rate was higher than adult T cells. Gene markers for T cell activation and immediate-early genes induced upon TCR activation were upregulated with similar kinetics in tadpole and adult splenocytes. However, the tadpole T cell signature included a lower amplitude in the TCR signaling, which is a hallmark of mammalian memory-like T cells and iT or "preset" T cells. This study suggests that reminiscent of mammalian neonatal T cells, tadpole T cells are functionally different from their adult counterpart.
Collapse
Affiliation(s)
- Matthieu Paiola
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY
| | - Connor C. McGuire
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY
| | - Vania Lopez Ruiz
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY
| | | | - Jacques Robert
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY
| |
Collapse
|
4
|
Ruiz VL, Robert J. The amphibian immune system. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220123. [PMID: 37305914 PMCID: PMC10258673 DOI: 10.1098/rstb.2022.0123] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 04/16/2023] [Indexed: 06/13/2023] Open
Abstract
Amphibians are at the forefront of bridging the evolutionary gap between mammals and more ancient, jawed vertebrates. Currently, several diseases have targeted amphibians and understanding their immune system has importance beyond their use as a research model. The immune system of the African clawed frog, Xenopus laevis, and that of mammals is well conserved. We know that several features of the adaptive and innate immune system are very similar for both, including the existence of B cells, T cells and innate-like T cells. In particular, the study of the immune system at early stages of development is benefitted by studying X. laevis tadpoles. The tadpoles mainly rely on innate immune mechanisms including pre-set or innate-like T cells until after metamorphosis. In this review we lay out what is known about the innate and adaptive immune system of X. laevis including the lymphoid organs as well as how other amphibian immune systems are similar or different. Furthermore, we will describe how the amphibian immune system responds to some viral, bacterial and fungal insults. This article is part of the theme issue 'Amphibian immunity: stress, disease and ecoimmunology'.
Collapse
Affiliation(s)
- Vania Lopez Ruiz
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Jacques Robert
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| |
Collapse
|
5
|
Carotenuto R, Pallotta MM, Tussellino M, Fogliano C. Xenopus laevis (Daudin, 1802) as a Model Organism for Bioscience: A Historic Review and Perspective. BIOLOGY 2023; 12:890. [PMID: 37372174 DOI: 10.3390/biology12060890] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/15/2023] [Accepted: 06/20/2023] [Indexed: 06/29/2023]
Abstract
In vitro systems have been mainly promoted by authorities to sustain research by following the 3Rs principle, but continuously increasing amounts of evidence point out that in vivo experimentation is also of extreme relevance. Xenopus laevis, an anuran amphibian, is a significant model organism in the study of evolutionary developmental biology, toxicology, ethology, neurobiology, endocrinology, immunology and tumor biology; thanks to the recent development of genome editing, it has also acquired a relevant position in the field of genetics. For these reasons, X. laevis appears to be a powerful and alternative model to the zebrafish for environmental and biomedical studies. Its life cycle, as well as the possibility to obtain gametes from adults during the whole year and embryos by in vitro fertilization, allows experimental studies of several biological endpoints, such as gametogenesis, embryogenesis, larval growth, metamorphosis and, of course, the young and adult stages. Moreover, with respect to alternative invertebrate and even vertebrate animal models, the X. laevis genome displays a higher degree of similarity with that of mammals. Here, we have reviewed the main available literature on the use of X. laevis in the biosciences and, inspired by Feymann's revised view, "Plenty of room for biology at the bottom", suggest that X. laevis is a very useful model for all possible studies.
Collapse
Affiliation(s)
- Rosa Carotenuto
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | | | | | - Chiara Fogliano
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| |
Collapse
|
6
|
Iwanami N, Richter AS, Sikora K, Boehm T. Tnpo3 controls splicing of the pre-mRNA encoding the canonical TCR α chain of iNKT cells. Nat Commun 2023; 14:3645. [PMID: 37339974 DOI: 10.1038/s41467-023-39422-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 06/13/2023] [Indexed: 06/22/2023] Open
Abstract
Unconventional T cells, such as innate natural killer T cells (iNKT) cells, are an important part of vertebrate immune defences. iNKT recognise glycolipids through a T cell receptor (TCR) that is composed of a semi-invariant TCR α chain, paired with a restricted set of TCR β chains. Here, we show that splicing of the cognate Trav11-Traj18-Trac pre-mRNA encoding the characteristic Vα14Jα18 variable region of this semi-invariant TCR depends on the presence of Tnpo3. The Tnpo3 gene encodes a nuclear transporter of the β-karyopherin family whose cargo includes various splice regulators. The block of iNKT cell development in the absence of Tnpo3 can be overcome by transgenic provision of a rearranged Trav11-Traj18-Trac cDNA, indicating that Tnpo3 deficiency does not interfere with the development of iNKT cells per se. Our study thus identifies a role for Tnpo3 in regulating the splicing of the pre-mRNA encoding the cognate TCRα chain of iNKT cells.
Collapse
Affiliation(s)
- Norimasa Iwanami
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- Center for Bioscience Research and Education, Utsunomiya University, Utsunomiya, Tochigi, 321-8505, Japan
| | - Andreas S Richter
- Bioinformatics Unit, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- Genedata AG, Margarethenstrasse 38, 4053, Basel, Switzerland
| | - Katarzyna Sikora
- Bioinformatics Unit, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Thomas Boehm
- Bioinformatics Unit, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.
- Faculty of Medicine, Albert Ludwigs University, Freiburg, Germany.
| |
Collapse
|
7
|
Joyce S, Okoye GD, Driver JP. Die Kämpfe únd schláchten-the struggles and battles of innate-like effector T lymphocytes with microbes. Front Immunol 2023; 14:1117825. [PMID: 37168859 PMCID: PMC10165076 DOI: 10.3389/fimmu.2023.1117825] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 03/22/2023] [Indexed: 05/13/2023] Open
Abstract
The large majority of lymphocytes belong to the adaptive immune system, which are made up of B2 B cells and the αβ T cells; these are the effectors in an adaptive immune response. A multitudinous group of lymphoid lineage cells does not fit the conventional lymphocyte paradigm; it is the unconventional lymphocytes. Unconventional lymphocytes-here called innate/innate-like lymphocytes, include those that express rearranged antigen receptor genes and those that do not. Even though the innate/innate-like lymphocytes express rearranged, adaptive antigen-specific receptors, they behave like innate immune cells, which allows them to integrate sensory signals from the innate immune system and relay that umwelt to downstream innate and adaptive effector responses. Here, we review natural killer T cells and mucosal-associated invariant T cells-two prototypic innate-like T lymphocytes, which sense their local environment and relay that umwelt to downstream innate and adaptive effector cells to actuate an appropriate host response that confers immunity to infectious agents.
Collapse
Affiliation(s)
- Sebastian Joyce
- Department of Veterans Affairs, Tennessee Valley Healthcare Service, Nashville, TN, United States
- Department of Pathology, Microbiology and Immunology, The Vanderbilt Institute for Infection, Immunology and Inflammation and Vanderbilt Center for Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Gosife Donald Okoye
- Department of Pathology, Microbiology and Immunology, The Vanderbilt Institute for Infection, Immunology and Inflammation and Vanderbilt Center for Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - John P. Driver
- Division of Animal Sciences, University of Missouri, Columbia, MO, United States
| |
Collapse
|
8
|
Paiola M, Dimitrakopoulou D, Pavelka MS, Robert J. Amphibians as a model to study the role of immune cell heterogeneity in host and mycobacterial interactions. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 139:104594. [PMID: 36403788 DOI: 10.1016/j.dci.2022.104594] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Mycobacterial infections represent major concerns for aquatic and terrestrial vertebrates including humans. Although our current knowledge is mostly restricted to Mycobacterium tuberculosis and mammalian host interactions, increasing evidence suggests common features in endo- and ectothermic animals infected with non-tuberculous mycobacteria (NTMs) like those described for M. tuberculosis. Importantly, most of the pathogenic and non-pathogenic NTMs detected in amphibians from wild, farmed, and research facilities represent, in addition to the potential economic loss, a rising concern for human health. Upon mycobacterial infection in mammals, the protective immune responses involving the innate and adaptive immune systems are highly complex and therefore not fully understood. This complexity results from the versatility and resilience of mycobacteria to hostile conditions as well as from the immune cell heterogeneity arising from the distinct developmental origins according with the concept of layered immunity. Similar to the differing responses of neonates versus adults during tuberculosis development, the pathogenesis and inflammatory responses are stage-specific in Xenopus laevis during infection by the NTM M. marinum. That is, both in human fetal and neonatal development and in tadpole development, responses are characterized by hypo-responsiveness and a lower capacity to contain mycobacterial infections. Similar to a mammalian fetus and neonates, T cells and myeloid cells in Xenopus tadpoles and axolotls are different from the adult immune cells. Fetal and amphibian larval T cells, which are characterized by a lower T cell receptor (TCR) repertoire diversity, are biased toward regulatory function, and they have distinct progenitor origins from those of the adult immune cells. Some early developing T cells and likely macrophage subpopulations are conserved in adult anurans and mammals, and therefore, they likely play an important role in the host-pathogen interactions from early stages of development to adulthood. Thus, we propose the use of developing amphibians, which have the advantage of being free-living early in their development, as an alternative and complementary model to study the role of immune cell heterogeneity in host-mycobacteria interactions.
Collapse
Affiliation(s)
- Matthieu Paiola
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Dionysia Dimitrakopoulou
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Martin S Pavelka
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Jacques Robert
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, 14642, USA.
| |
Collapse
|
9
|
Womack MC, Steigerwald E, Blackburn DC, Cannatella DC, Catenazzi A, Che J, Koo MS, McGuire JA, Ron SR, Spencer CL, Vredenburg VT, Tarvin RD. State of the Amphibia 2020: A Review of Five Years of Amphibian Research and Existing Resources. ICHTHYOLOGY & HERPETOLOGY 2022. [DOI: 10.1643/h2022005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Molly C. Womack
- Department of Biology, Utah State University, Logan, Utah 84322; . ORCID: 0000-0002-3346-021X
| | - Emma Steigerwald
- Museum of Vertebrate Zoology, University of California, Berkeley, Berkeley, California 94720; (ES) ; (MSK) ; (JAM) ; (CS) ; (VTV) ; and (RDT)
| | - David C. Blackburn
- Department of Natural History, Florida Museum of Natural History, University of Florida, Gainesville, Florida 32611; . ORCID: 0000-0002-1810-9886
| | - David C. Cannatella
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas 78712; . ORCID: 0000-0001-8675-0520
| | | | - Jing Che
- State Key Laboratory of Genetic Resources and Evolution & Yunnan Key Laboratory of Biodiversity and Ecological Security of Gaoligong Mountain, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China; . ORCID: 0000-0003-4246-6
| | - Michelle S. Koo
- Museum of Vertebrate Zoology, University of California, Berkeley, Berkeley, California 94720; (ES) ; (MSK) ; (JAM) ; (CS) ; (VTV) ; and (RDT)
| | - Jimmy A. McGuire
- Museum of Vertebrate Zoology, University of California, Berkeley, Berkeley, California 94720; (ES) ; (MSK) ; (JAM) ; (CS) ; (VTV) ; and (RDT)
| | - Santiago R. Ron
- Museo de Zoología, Escuela de Biología, Pontificia Universidad Católica del Ecuador, Quito, Ecuador; . ORCID: 0000-0001-6300-9350
| | - Carol L. Spencer
- Museum of Vertebrate Zoology, University of California, Berkeley, Berkeley, California 94720; (ES) ; (MSK) ; (JAM) ; (CS) ; (VTV) ; and (RDT)
| | - Vance T. Vredenburg
- Museum of Vertebrate Zoology, University of California, Berkeley, Berkeley, California 94720; (ES) ; (MSK) ; (JAM) ; (CS) ; (VTV) ; and (RDT)
| | - Rebecca D. Tarvin
- Museum of Vertebrate Zoology, University of California, Berkeley, Berkeley, California 94720; (ES) ; (MSK) ; (JAM) ; (CS) ; (VTV) ; and (RDT)
| |
Collapse
|
10
|
Humphries JE, Lanctôt CM, Robert J, McCallum HI, Newell DA, Grogan LF. Do immune system changes at metamorphosis predict vulnerability to chytridiomycosis? An update. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 136:104510. [PMID: 35985564 DOI: 10.1016/j.dci.2022.104510] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/20/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
Amphibians are among the vertebrate groups suffering great losses of biodiversity due to a variety of causes including diseases, such as chytridiomycosis (caused by the fungal pathogens Batrachochytrium dendrobatidis and B. salamandrivorans). The amphibian metamorphic period has been identified as being particularly vulnerable to chytridiomycosis, with dramatic physiological and immunological reorganisation likely contributing to this vulnerability. Here, we overview the processes behind these changes at metamorphosis and then perform a systematic literature review to capture the breadth of empirical research performed over the last two decades on the metamorphic immune response. We found that few studies focused specifically on the immune response during the peri-metamorphic stages of amphibian development and fewer still on the implications of their findings with respect to chytridiomycosis. We recommend future studies consider components of the immune system that are currently under-represented in the literature on amphibian metamorphosis, particularly pathogen recognition pathways. Although logistically challenging, we suggest varying the timing of exposure to Bd across metamorphosis to examine the relative importance of pathogen evasion, suppression or dysregulation of the immune system. We also suggest elucidating the underlying mechanisms of the increased susceptibility to chytridiomycosis at metamorphosis and the associated implications for population persistence. For species that overlap a distribution where Bd/Bsal are now endemic, we recommend a greater focus on management strategies that consider the important peri-metamorphic period.
Collapse
Affiliation(s)
- Josephine E Humphries
- School of Environment and Science, Griffith University, Southport, Queensland, 4222, Australia; Centre for Planetary Health and Food Security, Griffith University, Southport, Queensland, 4222, Australia; Faculty of Science and Engineering, Southern Cross University, Lismore, New South Wales, 2480, Australia.
| | - Chantal M Lanctôt
- School of Environment and Science, Griffith University, Southport, Queensland, 4222, Australia; Australian Rivers Institute, Griffith University, Southport, Queensland, 4222, Australia
| | - Jacques Robert
- Department of Microbiology and Immunology, University of Rochester Medical Center, 14642, Rochester, NY, United States
| | - Hamish I McCallum
- School of Environment and Science, Griffith University, Southport, Queensland, 4222, Australia; Centre for Planetary Health and Food Security, Griffith University, Southport, Queensland, 4222, Australia
| | - David A Newell
- Faculty of Science and Engineering, Southern Cross University, Lismore, New South Wales, 2480, Australia
| | - Laura F Grogan
- School of Environment and Science, Griffith University, Southport, Queensland, 4222, Australia; Centre for Planetary Health and Food Security, Griffith University, Southport, Queensland, 4222, Australia
| |
Collapse
|
11
|
Harly C, Robert J, Legoux F, Lantz O. γδ T, NKT, and MAIT Cells During Evolution: Redundancy or Specialized Functions? JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:217-225. [PMID: 35821101 PMCID: PMC7613099 DOI: 10.4049/jimmunol.2200105] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 04/06/2022] [Indexed: 01/17/2023]
Abstract
Innate-like T cells display characteristics of both innate lymphoid cells (ILCs) and mainstream αβ T cells, leading to overlapping functions of innate-like T cells with both subsets. In this review, we show that although innate-like T cells are probably present in all vertebrates, their main characteristics are much better known in amphibians and mammals. Innate-like T cells encompass both γδ and αβ T cells. In mammals, γδ TCRs likely coevolved with molecules of the butyrophilin family they interact with, whereas the semi-invariant TCRs of iNKT and mucosal-associated invariant T cells are evolutionarily locked with their restricting MH1b molecules, CD1d and MR1, respectively. The strong conservation of the Ag recognition systems of innate-like T cell subsets despite similar effector potentialities supports that each one fulfills nonredundant roles related to their Ag specificity.
Collapse
Affiliation(s)
- Christelle Harly
- Nantes Université, Institut National de la Santé et de la Recherche Médicale UMR1307, Centre National de la Recherche Scientifique UMR6075, Université d'Angers, Centre de Recherche en Cancérologie et Immunologie Intégrée Nantes Angers CRCI2NA, Nantes, France;
- LabEx Immunotherapy, Graft, Oncology, Nantes, France
| | - Jacques Robert
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY
| | - Francois Legoux
- INSERM U932, Paris Sciences et Lettres Université, Institut Curie, Paris, France
| | - Olivier Lantz
- INSERM U932, Paris Sciences et Lettres Université, Institut Curie, Paris, France;
- Laboratoire d'Immunologie Clinique, Institut Curie, Paris, France; and
- Centre d'Investigation Clinique en Biothérapie Gustave-Roussy Institut Curie (CIC-BT1428), Paris, France
| |
Collapse
|
12
|
Jiang N, Fan Y, Zhou Y, Meng Y, Liu W, Li Y, Xue M, Robert J, Zeng L. The Immune System and the Antiviral Responses in Chinese Giant Salamander, Andrias davidianus. Front Immunol 2021; 12:718627. [PMID: 34675918 PMCID: PMC8524050 DOI: 10.3389/fimmu.2021.718627] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 09/16/2021] [Indexed: 12/25/2022] Open
Abstract
The Chinese giant salamander, belonging to an ancient amphibian lineage, is the largest amphibian existing in the world, and is also an important animal for artificial cultivation in China. However, some aspects of the innate and adaptive immune system of the Chinese giant salamander are still unknown. The Chinese giant salamander iridovirus (GSIV), a member of the Ranavirus genus (family Iridoviridae), is a prominent pathogen causing high mortality and severe economic losses in Chinese giant salamander aquaculture. As a serious threat to amphibians worldwide, the etiology of ranaviruses has been mainly studied in model organisms, such as the Ambystoma tigrinum and Xenopus. Nevertheless, the immunity to ranavirus in Chinese giant salamander is distinct from other amphibians and less known. We review the unique immune system and antiviral responses of the Chinese giant salamander, in order to establish effective management of virus disease in Chinese giant salamander artificial cultivation.
Collapse
Affiliation(s)
- Nan Jiang
- Division of Fish Disease, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
- Department of Microbiology and Immunology, University of Rochester Medical Center, New York, NY, United States
| | - Yuding Fan
- Division of Fish Disease, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Yong Zhou
- Division of Fish Disease, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Yan Meng
- Division of Fish Disease, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Wenzhi Liu
- Division of Fish Disease, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Yiqun Li
- Division of Fish Disease, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Mingyang Xue
- Division of Fish Disease, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Jacques Robert
- Department of Microbiology and Immunology, University of Rochester Medical Center, New York, NY, United States
| | - Lingbing Zeng
- Division of Fish Disease, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| |
Collapse
|
13
|
Palomar G, Dudek K, Migalska M, Arntzen JW, Ficetola GF, Jelić D, Jockusch E, Martínez-Solano I, Matsunami M, Shaffer HB, Vörös J, Waldman B, Wielstra B, Babik W. Coevolution between MHC class I and Antigen Processing Genes in salamanders. Mol Biol Evol 2021; 38:5092-5106. [PMID: 34375431 PMCID: PMC8557411 DOI: 10.1093/molbev/msab237] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Proteins encoded by antigen-processing genes (APGs) provide major histocompatibility complex (MHC) class I (MHC-I) with antigenic peptides. In mammals, polymorphic multigenic MHC-I family is served by monomorphic APGs, whereas in certain nonmammalian species both MHC-I and APGs are polymorphic and coevolve within stable haplotypes. Coevolution was suggested as an ancestral gnathostome feature, presumably enabling only a single highly expressed classical MHC-I gene. In this view coevolution, while optimizing some aspects of adaptive immunity, would also limit its flexibility by preventing the expansion of classical MHC-I into a multigene family. However, some nonmammalian taxa, such as salamanders, have multiple highly expressed MHC-I genes, suggesting either that coevolution is relaxed or that it does not prevent the establishment of multigene MHC-I. To distinguish between these two alternatives, we use salamanders (30 species from 16 genera representing six families) to test, within a comparative framework, a major prediction of the coevolution hypothesis: the positive correlation between MHC-I and APG diversity. We found that MHC-I diversity explained both within-individual and species-wide diversity of two APGs, TAP1 and TAP2, supporting their coevolution with MHC-I, whereas no consistent effect was detected for the other three APGs (PSMB8, PSMB9, and TAPBP). Our results imply that although coevolution occurs in salamanders, it does not preclude the expansion of the MHC-I gene family. Contrary to the previous suggestions, nonmammalian vertebrates thus may be able to accommodate diverse selection pressures with flexibility granted by rapid expansion or contraction of the MHC-I family, while retaining the benefits of coevolution between MHC-I and TAPs.
Collapse
Affiliation(s)
- G Palomar
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland
| | - K Dudek
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland
| | - M Migalska
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland
| | - J W Arntzen
- Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA leiden, Leiden, The Netherlands.,Institute of Biology Leiden, Leiden University, 2300 RA Leiden, The Netherlands
| | - G F Ficetola
- Department of Environmental Sciences and Policy, University of Milano, Italy.,Laboratoire d'Ecologie Alpine (LECA), CNRS, Université Grenoble Alpes and Université Savoie Mont Blanc, Grenoble, France
| | - D Jelić
- Croatian Institute for Biodiversity, Zagreb, Croatia
| | - E Jockusch
- Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT USA
| | - I Martínez-Solano
- Museo Nacional de Ciencias Naturales (MNCN), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - M Matsunami
- Department of Advanced Genomic and Laboratory Medicine, Graduate School of Medicine, University of the Ryukyus, Nishihara-cho, Japan
| | - H B Shaffer
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095, USA.,La Kretz Center for California Conservation Science, Institute of the Environment and Sustainability, University of California, Los Angeles, CA 90095, USA
| | - J Vörös
- Department of Zoology, Hungarian Natural History Museum, Budapest, Hungary
| | - B Waldman
- Department of Integrative Biology, Oklahoma State University, Stillwater, Oklahoma 74078, USA.,School of Biological Sciences, Seoul National University, Seoul 08826, South Korea
| | - B Wielstra
- Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA leiden, Leiden, The Netherlands.,Institute of Biology Leiden, Leiden University, 2300 RA Leiden, The Netherlands
| | - W Babik
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
14
|
Castro R, Navelsaker S, Collet B, Jouneau L, Bochet P, Quillet E, Evensen Ø, Sunyer JO, Fillatreau S, Bruhns P, Rose T, Huetz F, Boudinot P. Cutting Edge: Neutralizing Public Antibody Responses Are an Ancient Form of Defense Conserved in Fish and Mammals. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 207:371-375. [PMID: 34233911 PMCID: PMC11152318 DOI: 10.4049/jimmunol.2100149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/16/2021] [Indexed: 11/19/2022]
Abstract
The repertoire of Abs is generated by genomic rearrangements during B cell differentiation. Although V(D)J rearrangements lead to repertoires mostly different between individuals, recent studies have shown that they contain a substantial fraction of overrepresented and shared "public" clones. We previously reported a strong public IgHμ clonotypic response against the rhabdovirus viral hemorrhagic septicemia virus in a teleost fish. In this study, we identified an IgL chain associated with this public response that allowed us to characterize its functionality. We show that this public Ab response has a potent neutralizing capacity that is typically associated with host protection during rhabdovirus infections. We also demonstrate that the public response is not restricted to a particular trout isogenic line but expressed in multiple genetic backgrounds and may be used as a marker of successful vaccination. Our work reveals that public B cell responses producing generic Abs constitute a mechanism of protection against infection conserved across vertebrates.
Collapse
Affiliation(s)
- Rosario Castro
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| | - Sofie Navelsaker
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Oslo, Norway
| | - Bertrand Collet
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| | - Luc Jouneau
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| | - Pascal Bochet
- Bioimage Analysis Unit, Department of Cell Biology and Infection, Institut Pasteur, CNRS-UMR3691, Paris, France
| | - Edwige Quillet
- Université Paris-Saclay, INRAE, GABI, Jouy-en-Josas, France
| | - Øystein Evensen
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Oslo, Norway
| | - J Oriol Sunyer
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA
| | - Simon Fillatreau
- Department of Immunology, Infectiology and Haematology (I2H), Institut Necker-Enfants Malades, INSERM U1151-CNRS UMR 8253, Paris, France
- Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
- AP-HP, Hôpital Necker-Enfants Malades, Paris, France
| | - Pierre Bruhns
- Unit of Antibodies in Therapy and Pathology, Institut Pasteur, UMR 1222 INSERM, Paris, France; and
| | - Thierry Rose
- Lymphocyte Cell Biology Unit, INSERM 1221, Institut Pasteur, Paris, France
| | - François Huetz
- Unit of Antibodies in Therapy and Pathology, Institut Pasteur, UMR 1222 INSERM, Paris, France; and
| | - Pierre Boudinot
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France;
| |
Collapse
|
15
|
Varadé J, Magadán S, González-Fernández Á. Human immunology and immunotherapy: main achievements and challenges. Cell Mol Immunol 2021; 18:805-828. [PMID: 32879472 PMCID: PMC7463107 DOI: 10.1038/s41423-020-00530-6] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/27/2020] [Accepted: 07/31/2020] [Indexed: 02/07/2023] Open
Abstract
The immune system is a fascinating world of cells, soluble factors, interacting cells, and tissues, all of which are interconnected. The highly complex nature of the immune system makes it difficult to view it as a whole, but researchers are now trying to put all the pieces of the puzzle together to obtain a more complete picture. The development of new specialized equipment and immunological techniques, genetic approaches, animal models, and a long list of monoclonal antibodies, among many other factors, are improving our knowledge of this sophisticated system. The different types of cell subsets, soluble factors, membrane molecules, and cell functionalities are some aspects that we are starting to understand, together with their roles in health, aging, and illness. This knowledge is filling many of the gaps, and in some cases, it has led to changes in our previous assumptions; e.g., adaptive immune cells were previously thought to be unique memory cells until trained innate immunity was observed, and several innate immune cells with features similar to those of cytokine-secreting T cells have been discovered. Moreover, we have improved our knowledge not only regarding immune-mediated illnesses and how the immune system works and interacts with other systems and components (such as the microbiome) but also in terms of ways to manipulate this system through immunotherapy. The development of different types of immunotherapies, including vaccines (prophylactic and therapeutic), and the use of pathogens, monoclonal antibodies, recombinant proteins, cytokines, and cellular immunotherapies, are changing the way in which we approach many diseases, especially cancer.
Collapse
Affiliation(s)
- Jezabel Varadé
- CINBIO, Centro de Investigaciones Biomédicas, Universidade de Vigo, Immunology Group, Campus Universitario Lagoas, Marcosende, 36310, Vigo, Spain
- Instituto de Investigación Sanitaria Galicia Sur (IIS-Galicia Sur), SERGAS-UVIGO, Vigo, Spain
| | - Susana Magadán
- CINBIO, Centro de Investigaciones Biomédicas, Universidade de Vigo, Immunology Group, Campus Universitario Lagoas, Marcosende, 36310, Vigo, Spain
- Instituto de Investigación Sanitaria Galicia Sur (IIS-Galicia Sur), SERGAS-UVIGO, Vigo, Spain
| | - África González-Fernández
- CINBIO, Centro de Investigaciones Biomédicas, Universidade de Vigo, Immunology Group, Campus Universitario Lagoas, Marcosende, 36310, Vigo, Spain.
- Instituto de Investigación Sanitaria Galicia Sur (IIS-Galicia Sur), SERGAS-UVIGO, Vigo, Spain.
| |
Collapse
|
16
|
Rollins-Smith LA. Global Amphibian Declines, Disease, and the Ongoing Battle between Batrachochytrium Fungi and the Immune System. HERPETOLOGICA 2020. [DOI: 10.1655/0018-0831-76.2.178] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Louise A. Rollins-Smith
- Departments of Pathology, Microbiology and Immunology and Pediatrics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| |
Collapse
|
17
|
Adaptive immune receptor repertoires, an overview of this exciting field. Immunol Lett 2020; 221:49-55. [PMID: 32113899 DOI: 10.1016/j.imlet.2020.02.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/19/2020] [Accepted: 02/26/2020] [Indexed: 12/30/2022]
Abstract
The adaptive immune response in jawed vertebrates relies on the huge diversity and specificity of the B cell and T cell antigen receptors, the immunoglobulins (IG) or antibodies and the T cell receptors (TR), respectively. The high level of diversity has represented a barrier to a comprehensive analysis of the adaptive immune response before the emergence of high-throughput sequencing (HTS) technologies. The size and complexity of HTS data requires the generation of novel computational and analytical approaches, which are transforming how the adaptive immune responses are deciphered to understand the clonal dynamics and properties of antigen-specific B and T cells in response to different kind of antigens. This exciting and rapidly evolving field is not only impacting human and clinical immunology but also comparative immunology. We are now closer to understanding the evolution of adaptive immune response in jawed vertebrates. This review provides an overview about classical and current strategies developed to assess the IG/TR diversity and their applications in basic and clinical immunology.
Collapse
|
18
|
Rhoo KH, Edholm ES, Forzán MJ, Khan A, Waddle AW, Pavelka MS, Robert J. Distinct Host-Mycobacterial Pathogen Interactions between Resistant Adult and Tolerant Tadpole Life Stages of Xenopus laevis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2019; 203:2679-2688. [PMID: 31591148 PMCID: PMC6832864 DOI: 10.4049/jimmunol.1900459] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 09/16/2019] [Indexed: 01/09/2023]
Abstract
Mycobacterium marinum is a promiscuous pathogen infecting many vertebrates, including humans, whose persistent infections are problematic for aquaculture and public health. Among unsettled aspects of host-pathogen interactions, the respective roles of conventional and innate-like T (iT) cells in host defenses against M. marinum remain unclear. In this study, we developed an infection model system in the amphibian Xenopus laevis to study host responses to M. marinum at two distinct life stages, tadpole and adult. Adult frogs possess efficient conventional T cell-mediated immunity, whereas tadpoles predominantly rely on iT cells. We hypothesized that tadpoles are more susceptible and elicit weaker immune responses to M. marinum than adults. However, our results show that, although anti-M. marinum immune responses between tadpoles and adults are different, tadpoles are as resistant to M. marinum inoculation as adult frogs. M. marinum inoculation triggered a robust proinflammatory CD8+ T cell response in adults, whereas tadpoles elicited only a noninflammatory CD8 negative- and iT cell-mediated response. Furthermore, adult anti-M. marinum responses induced active granuloma formation with abundant T cell infiltration and were associated with significantly reduced M. marinum loads. This is reminiscent of local CD8+ T cell response in lung granulomas of human tuberculosis patients. In contrast, tadpoles rarely exhibited granulomas and tolerated persistent M. marinum accumulation. Gene expression profiling confirmed poor tadpole CD8+ T cell response, contrasting with the marked increase in transcript levels of the anti-M. marinum invariant TCR rearrangement (iVα45-Jα1.14) and of CD4. These data provide novel insights into the critical roles of iT cells in vertebrate antimycobacterial immune response and tolerance to pathogens.
Collapse
Affiliation(s)
- Kun Hyoe Rhoo
- Department of Immunology and Microbiology, University of Rochester, Medical Center, Rochester, NY 14642
| | - Eva-Stina Edholm
- Norwegian College of Fishery Science, University of Tromsø, N-9037 Tromsø, Norway
| | - María J Forzán
- Cornell Wildlife Health Lab, Animal Health Diagnostic Center, College of Veterinary Medicine, Cornell University, Ithaca, NY 14850; and
| | - Adil Khan
- Department of Immunology and Microbiology, University of Rochester, Medical Center, Rochester, NY 14642
| | - Anthony W Waddle
- Department of Immunology and Microbiology, University of Rochester, Medical Center, Rochester, NY 14642
- One Health Research Group, Melbourne Veterinary School, The University of Melbourne, Werribee, Victoria 3030, Australia
| | - Martin S Pavelka
- Department of Immunology and Microbiology, University of Rochester, Medical Center, Rochester, NY 14642
| | - Jacques Robert
- Department of Immunology and Microbiology, University of Rochester, Medical Center, Rochester, NY 14642;
| |
Collapse
|
19
|
Svenning S, Gondek-Wyrozemska AT, van der Wal YA, Robertsen B, Jensen I, Jørgensen JB, Edholm ES. Microbial Danger Signals Control Transcriptional Induction of Distinct MHC Class I L Lineage Genes in Atlantic Salmon. Front Immunol 2019; 10:2425. [PMID: 31681311 PMCID: PMC6797598 DOI: 10.3389/fimmu.2019.02425] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 09/27/2019] [Indexed: 11/13/2022] Open
Abstract
Antigen processing and presentation by major histocompatibility complex (MHC) molecules is a cornerstone in vertebrate immunity. Like mammals, teleosts possess both classical MHC class I and multiple families of divergent MHC class I genes. However, while certain mammalian MHC class I-like molecules have proven to be integral in immune regulation against a broad array of pathogens, the biological relevance of the different MHC class I lineages in fish remains elusive. This work focuses on MHC class I L lineage genes and reveals unique regulatory patterns of six genes (Sasa-lia, Sasa-lda, Sasa-lca, Sasa-lga, Sasa-lha, and Sasa-lfa) in antimicrobial immunity of Atlantic salmon (Salmo salar L.). Using two separate in vivo challenge models with different kinetics and immune pathologies combined with in vitro stimulation using viral and bacterial TLR ligands, we show that de novo synthesis of different L lineage genes is distinctly regulated in response to various microbial stimuli. Prior to the onset of classical MHC class I gene expression, lia was rapidly and systemically induced in vivo by the single-stranded (ss) RNA virus salmonid alpha virus 3 (SAV3) but not in response to the intracellular bacterium Piscirickettsia salmonis. In contrast, lga expression was upregulated in response to both viral and bacterial stimuli. A role for distinct MHC class I L-lineage genes in anti-microbial immunity in salmon was further substantiated by a marked upregulation of lia and lga gene expression in response to type I IFNa stimulation in vitro. Comparably, lha showed no transcriptional induction in response to IFNa stimulation but was strongly induced in response to a variety of viral and bacterial TLR ligands. In sharp contrast, lda showed no response to viral or bacterial challenge. Similarly, induction of lca, which is predominantly expressed in primary and secondary lymphoid tissues, was marginal with the exception of a strong and transient upregulation in pancreas following SAV3 challenge Together, these findings suggest that certain Atlantic salmon MHC class I L lineage genes play important and divergent roles in early anti-microbial response and that their regulation, in response to different activation signals, represents a system for selectively promoting the expression of distinct non-classical MHC class I genes in response to different types of immune challenges.
Collapse
Affiliation(s)
- Steingrim Svenning
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries & Economics, University of Tromsø-The Arctic University of Norway, Tromsø, Norway
| | - Agata T Gondek-Wyrozemska
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries & Economics, University of Tromsø-The Arctic University of Norway, Tromsø, Norway
| | - Yorick Andreas van der Wal
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries & Economics, University of Tromsø-The Arctic University of Norway, Tromsø, Norway.,Vaxxinova Research & Development, Vaxxinova GmbH, Münster, Germany
| | - Børre Robertsen
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries & Economics, University of Tromsø-The Arctic University of Norway, Tromsø, Norway
| | - Ingvill Jensen
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries & Economics, University of Tromsø-The Arctic University of Norway, Tromsø, Norway
| | - Jorunn B Jørgensen
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries & Economics, University of Tromsø-The Arctic University of Norway, Tromsø, Norway
| | - Eva-Stina Edholm
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries & Economics, University of Tromsø-The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
20
|
Ohta Y, Kasahara M, O'Connor TD, Flajnik MF. Inferring the "Primordial Immune Complex": Origins of MHC Class I and Antigen Receptors Revealed by Comparative Genomics. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2019; 203:1882-1896. [PMID: 31492741 PMCID: PMC6761025 DOI: 10.4049/jimmunol.1900597] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 08/02/2019] [Indexed: 02/07/2023]
Abstract
Comparative analyses suggest that the MHC was derived from a prevertebrate "primordial immune complex" (PIC). PIC duplicated twice in the well-studied two rounds of genome-wide duplications (2R) early in vertebrate evolution, generating four MHC paralogous regions (predominantly on human chromosomes [chr] 1, 6, 9, 19). Examining chiefly the amphibian Xenopus laevis, but also other vertebrates, we identified their MHC paralogues and mapped MHC class I, AgR, and "framework" genes. Most class I genes mapped to MHC paralogues, but a cluster of Xenopus MHC class Ib genes (xnc), which previously was mapped outside of the MHC paralogues, was surrounded by genes syntenic to mammalian CD1 genes, a region previously proposed as an MHC paralogue on human chr 1. Thus, this gene block is instead the result of a translocation that we call the translocated part of the MHC paralogous region (MHCtrans) Analyses of Xenopus class I genes, as well as MHCtrans, suggest that class I arose at 1R on the chr 6/19 ancestor. Of great interest are nonrearranging AgR-like genes mapping to three MHC paralogues; thus, PIC clearly contained several AgR precursor loci, predating MHC class I/II. However, all rearranging AgR genes were found on paralogues derived from the chr 19 precursor, suggesting that invasion of a variable (V) exon by the RAG transposon occurred after 2R. We propose models for the evolutionary history of MHC/TCR/Ig and speculate on the dichotomy between the jawless (lamprey and hagfish) and jawed vertebrate adaptive immune systems, as we found genes related to variable lymphocyte receptors also map to MHC paralogues.
Collapse
Affiliation(s)
- Yuko Ohta
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Masanori Kasahara
- Department of Pathology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | - Timothy D O'Connor
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, 21201
- Program in Personalized and Genomic Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, 21201; and
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Martin F Flajnik
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201;
| |
Collapse
|
21
|
Banach M, Edholm ES, Gonzalez X, Benraiss A, Robert J. Impacts of the MHC class I-like XNC10 and innate-like T cells on tumor tolerance and rejection in the amphibian Xenopus. Carcinogenesis 2019; 40:924-935. [PMID: 31155639 DOI: 10.1093/carcin/bgz100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 05/27/2019] [Accepted: 05/31/2019] [Indexed: 01/23/2023] Open
Abstract
The conditions that lead to antitumor or protumor functions of natural killer T (NKT) cells against mammalian tumors are only partially understood. Therefore, insights into the evolutionary conservation of NKT and their analogs-innate-like T (iT) cells-may reveal factors that contribute to tumor eradication. As such, we investigated the amphibian Xenopus laevis iT cells and interacting MHC class I-like (XNC or mhc1b.L) genes against ff-2 thymic lymphoid tumors. Upon ff-2 intraperitoneal transplantation into syngeneic tadpoles, two iT cell subsets iVα6 and iVα22, characterized by an invariant T-cell receptor α chain rearrangement (Vα6-Jα1.43 and Vα22-Jα1.32 respectively), were recruited to the peritoneum, concomitant with a decreased level of these transcripts in the spleen and thymus. To address the hypothesize that different iT cell subsets have distinct, possibly opposing, roles upon ff-2 tumor challenge, we determined whether ff-2 tumor growth could be manipulated by impairing Vα6 iT cells or by deleting their restricting element, the XNC gene, XNC10 (mhc1b10.1.L), on ff-2 tumors. Accordingly, the in vivo depletion of Vα6 iT cells using XNC10-tetramers enhanced tumor growth, indicating Vα6 iT cell-mediated antitumor activities. However, XNC10-deficient transgenic tadpoles that also lack Vα6 iT cells were resistant to ff-2 tumors, uncovering a potential new function of XNC10 besides Vα6 iT cell development. Furthermore, the CRISPR/Cas9-mediated knockout of XNC10 in ff-2 tumors broke the immune tolerance. Together, our findings demonstrate the relevance of XNC10/iT cell axis in controlling Xenopus tumor tolerance or rejection.
Collapse
Affiliation(s)
- Maureen Banach
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Eva-Stina Edholm
- The Norwegian College of Fishery Science, UiT The Arctic University of Norway, Tromsø, Norway
| | - Xavier Gonzalez
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Abdellatif Benraiss
- Department of Neurology, University of Rochester Medical Center, Rochester, NY, USA
| | - Jacques Robert
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
22
|
Foulkrod AM, Appasamy PM. Expression of TCR genes in adult and larval Xenopus laevis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 96:78-82. [PMID: 30738793 DOI: 10.1016/j.dci.2019.02.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 02/06/2019] [Accepted: 02/06/2019] [Indexed: 06/09/2023]
Abstract
In order to better understand the development and function of γδ T cells in Xenopus frogs, it is necessary to determine where and when γδ T cells are found in Xenopus tissues. This study examined the expression of TCR genes, focused primarily on TCR γ, in tissues of adult and larval Xenopus laevis and provide new data about the expression pattern of these different TCR genes in this anuran amphibian. TCR gene expression was detected by RT-PCR in adult frog tissues including the thymus, spleen, skin, intestine, lung, and liver, but not the testes. TCR γ and β genes were detected in the larval (tadpole) tail and intestine. The absence of RAG-1 expression in these larval tissues is consistent with differentiation of the T cells in the thymus. Together, these data provide evidence that migration of these cells from the thymus likely occurs relatively early in larval development. These studies provide a necessary foundation for future studies of the functions of γδ T cells in amphibians, which are placed at an intermediate position flanked by fishes on one end and mammals and chickens on the other.
Collapse
MESH Headings
- Animals
- Cell Differentiation/immunology
- Genes, T-Cell Receptor delta
- Genes, T-Cell Receptor gamma
- Homeodomain Proteins/immunology
- Homeodomain Proteins/metabolism
- Larva/genetics
- Larva/immunology
- Larva/metabolism
- Metamorphosis, Biological
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- Xenopus laevis/genetics
- Xenopus laevis/immunology
- Xenopus laevis/metabolism
Collapse
|
23
|
Robert J, McGuire CC, Nagel S, Lawrence BP, Andino FDJ. Developmental exposure to chemicals associated with unconventional oil and gas extraction alters immune homeostasis and viral immunity of the amphibian Xenopus. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 671:644-654. [PMID: 30939317 PMCID: PMC6533627 DOI: 10.1016/j.scitotenv.2019.03.395] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/24/2019] [Accepted: 03/25/2019] [Indexed: 06/09/2023]
Abstract
Although aquatic vertebrates and humans are increasingly exposed to water pollutants associated with unconventional oil and gas extraction (UOG), the long-term effects of these pollutants on immunity remains unclear. We have established the amphibian Xenopus laevis and the ranavirus Frog Virus 3 (FV3) as a reliable and sensitive model for evaluating the effects of waterborne pollutants. X. laevis tadpoles were exposed to a mixture of equimass amount of UOG chemicals with endocrine disrupting activity (0.1 and 1.0 μg/L) for 3 weeks, and then long-term effects on immune function at steady state and following viral (FV3) infection was assessed after metamorphosis. Notably, developmental exposure to the mixture of UOG chemicals at the tadpole stage affected metamorphic development and fitness by significantly decreasing body mass after metamorphosis completion. Furthermore, developmental exposure to UOGs resulted in perturbation of immune homeostasis in adult frogs, as indicated by significantly decreased number of splenic innate leukocytes, B and T lymphocytes; and a weakened antiviral immune response leading to increased viral load during infection by the ranavirus FV3. These findings suggest that mixture of UOG-associated waterborne endocrine disruptors at low but environmentally-relevant levels have the potential to induce long-lasting alterations of immune function and antiviral immunity in aquatic vertebrates and ultimately human populations.
Collapse
Affiliation(s)
- Jacques Robert
- Department of Microbiology and Immunology, University of Rochester, United States of America; Department of Environmental Medicine, University of Rochester, United States of America.
| | - Connor C McGuire
- Department of Microbiology and Immunology, University of Rochester, United States of America; Department of Environmental Medicine, University of Rochester, United States of America
| | - Susan Nagel
- Department of Obstetrics & Gynecology, University of Missouri, United States of America
| | - B Paige Lawrence
- Department of Microbiology and Immunology, University of Rochester, United States of America; Department of Environmental Medicine, University of Rochester, United States of America
| | | |
Collapse
|
24
|
Banach M, Robert J. Evolutionary Underpinnings of Innate-Like T Cell Interactions with Cancer. Immunol Invest 2019; 48:737-758. [PMID: 31223047 DOI: 10.1080/08820139.2019.1631341] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cancers impose a significant health and economic burden. By harnessing the immune system, current immunotherapies have revolutionized the treatment against human cancers and potentially offer a long-term cure. Among others, innate-like T (iT) cells, including natural killer T cells, are promising candidates for immunotherapies. Unlike conventional T cells, iT cells regulate multiple immune processes and express an invariant T cell receptor that is shared among different individuals. However, the conditions that activate the pro- and antitumor functions of iT cells are partially understood. These gaps in knowledge hamper the use of iT cell in clinics. It might be beneficial to examine the roles of iT cells in an alternative animal model - the amphibian Xenopus whose immune system shares many similarities to that of mammals. Here, we review the iT cell biology in the context of mammalian cancers and discuss the challenges currently found in the field. Next, we introduce the advantages of Xenopus as a model to investigate the role of iT cells and interacting major histocompatibility complex (MHC) class I-like molecules in tumor immunity. In Xenopus, 2 specific iT cell subsets, Vα6 and Vα22 iT cells, recognize and fight tumor cells. Furthermore, our recent data reveal the complex functions of the Xenopus MHC class I-like (XNC) gene XNC10 in tumor immune responses. By utilizing reverse genetics, transgenesis, and MHC tetramers, we have a unique opportunity to uncover the relevance of XNC genes and iT cell in Xenopus tumor immunity.
Collapse
Affiliation(s)
- Maureen Banach
- Department of Immunology & Microbiology, University of Colorado School of Medicine , Aurora , CO , USA.,Department of Microbiology & Immunology, University of Rochester Medical Center , Rochester , NY , USA
| | - Jacques Robert
- Department of Microbiology & Immunology, University of Rochester Medical Center , Rochester , NY , USA
| |
Collapse
|
25
|
Edholm ESI, De Jesús Andino F, Yim J, Woo K, Robert J. Critical Role of an MHC Class I-Like/Innate-Like T Cell Immune Surveillance System in Host Defense against Ranavirus (Frog Virus 3) Infection. Viruses 2019; 11:v11040330. [PMID: 30959883 PMCID: PMC6521289 DOI: 10.3390/v11040330] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 03/31/2019] [Accepted: 04/03/2019] [Indexed: 11/16/2022] Open
Abstract
Besides the central role of classical Major Histocompatibility Complex (MHC) class Ia-restricted conventional Cluster of Differentiation 8 (CD8) T cells in antiviral host immune response, the amphibian Xenopus laevis critically rely on MHC class I-like (mhc1b10.1.L or XNC10)-restricted innate-like (i)T cells (iVα6 T cells) to control infection by the ranavirus Frog virus 3 (FV3). To complement and extend our previous reverse genetic studies showing that iVα6 T cells are required for tadpole survival, as well as for timely and effective adult viral clearance, we examined the conditions and kinetics of iVα6 T cell response against FV3. Using a FV3 knock-out (KO) growth-defective mutant, we found that upregulation of the XNC10 restricting class I-like gene and the rapid recruitment of iVα6 T cells depend on detectable viral replication and productive FV3 infection. In addition, by in vivo depletion with XNC10 tetramers, we demonstrated the direct antiviral effector function of iVα6 T cells. Notably, the transitory iV6 T cell defect delayed innate interferon and cytokine gene response, resulting in long-lasting negative inability to control FV3 infection. These findings suggest that in Xenopus and likely other amphibians, an immune surveillance system based on the early activation of iT cells by non-polymorphic MHC class-I like molecules is important for efficient antiviral immune response.
Collapse
Affiliation(s)
- Eva-Stina Isabella Edholm
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA.
- The Norwegian College of Fishery Science, University of Tromsø, the Arctic university of Norway, 9037, Tromsø, Norway.
| | - Francisco De Jesús Andino
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA.
| | - Jinyeong Yim
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA.
| | - Katherine Woo
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA.
| | - Jacques Robert
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA.
| |
Collapse
|
26
|
Hyoe RK, Robert J. A Xenopus tadpole alternative model to study innate-like T cell-mediated anti-mycobacterial immunity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 92:253-259. [PMID: 30521838 PMCID: PMC6330235 DOI: 10.1016/j.dci.2018.12.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 11/30/2018] [Accepted: 12/02/2018] [Indexed: 06/09/2023]
Abstract
Owing to the high incidence of multi-drug resistance and challenges posed by the complex and long duration of treatments, Mycobacterium tuberculosis (Mtb) infections remain a significant clinical burden, which would benefit from development of novel immuno-therapeutic-based treatment strategies. Among early immune effectors, invariant or innate-like (i)T cells are attracting attention because of their potential regulatory activity, which can shape anti-mycobacterial immune responses. Unlike conventional T cells, iT cells express a semi-invariant T cell receptor, and respond rapidly and robustly to molecular patterns presented by MHC class I-like molecules. To date, functional studies of iT cells in vivo has been problematic and the role of iT cells in anti-Mtb responses remains unclear. Here, after reviewing the recent literature on anti-mycobacterial iT cell immunity, we describe a novel alternative model system in the amphibian Xenopus laevis tadpoles during infection with Mycobacterium marinum (Mm). X. laevis tadpoles rely mostly on a few distinct prominent innate-like (i)T cell subsets, whose development and function are governed by distinct MHC class I-like molecules. Thus, X. laevis tadpoles provide a convenient and cost-effective in vivo model uniquely suited to investigate the roles of iT cells during mycobacterial infections. We have developed reverse genetics and MHC tetramer technology to characterize this MHC-like/iT system in tadpoles. Our study in X. laevis provides evidence of a conserved convergent function of iT cells in host defenses against mycobacteria between mammals and amphibians.
Collapse
Affiliation(s)
- Rhoo Kun Hyoe
- Department of Microbiology and Immunology, University of Rochester Medical Center, United States
| | - Jacques Robert
- Department of Microbiology and Immunology, University of Rochester Medical Center, United States.
| |
Collapse
|
27
|
Functional variation at an expressed MHC class IIβ locus associates with Ranavirus infection intensity in larval anuran populations. Immunogenetics 2019; 71:335-346. [PMID: 30761419 DOI: 10.1007/s00251-019-01104-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 01/07/2019] [Indexed: 12/31/2022]
Abstract
Infectious diseases are causing catastrophic losses to global biodiversity. Iridoviruses in the genus Ranavirus are among the leading causes of amphibian disease-related mortality. Polymorphisms in major histocompatibility complex (MHC) genes are significantly associated with variation in amphibian pathogen susceptibility. MHC genes encode two classes of polymorphic cell-surface molecules that can recognize and bind to diverse pathogen peptides. While MHC class I genes are the classic mediators of viral-acquired immunity, larval amphibians do not express them. Consequently, MHC class II gene diversity may be an important predictor of Ranavirus susceptibility in larval amphibians, the life stage most susceptible to Ranavirus. We surveyed natural populations of larval wood frogs (Rana sylvatica), which are highly susceptible to Ranavirus, across 17 ponds and 2 years in Maryland, USA. We sequenced the peptide-binding region of an expressed MHC class IIβ locus and assessed allelic and genetic diversity. We converted alleles to functional supertypes and determined if supertypes or alleles influenced host responses to Ranavirus. Among 381 sampled individuals, 26% were infected with Ranavirus. We recovered 20 unique MHC class IIβ alleles that fell into two deeply diverged clades and seven supertypes. MHC genotypes were associated with Ranavirus infection intensity, but not prevalence. Specifically, MHC heterozygotes and supertype ST1/ST7 had significantly lower Ranavirus infection intensity compared to homozygotes and other supertypes. We conclude that MHC class IIβ functional genetic variation is an important component of Ranavirus susceptibility. Identifying immunogenetic signatures linked to variation in disease susceptibility can inform mitigation strategies for combatting global amphibian declines.
Collapse
|
28
|
Edholm ES, Robert J. RNAi-Mediated Loss of Function of Xenopus Immune Genes by Transgenesis. Cold Spring Harb Protoc 2018; 2018:pdb.prot101519. [PMID: 29382811 DOI: 10.1101/pdb.prot101519] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Generation of transgenic frogs through the stable integration of foreign DNA into the genome is well established in Xenopus This protocol describes the combination of transgenesis with stable RNA interference as an efficient reverse genetic approach to study gene function in Xenopus Initially developed in the fish medaka and later adapted to Xenopus, this transgenic method uses the I-SceI meganuclease, a "rare-cutter" endonuclease with an 18 bp recognition sequence. In this protocol, transgenic X. laevis with knocked down expression of a specific gene are generated using a double promoter expression cassette. This cassette, which is flanked by I-SceI recognition sites, contains the shRNA of choice under the control of the human U6 promoter and a green fluorescent protein (GFP) reporter gene under the control of the human EF-1α promoter. Prior to microinjection the plasmid is linearized by digestion with I-SceI and the entire reaction is then microinjected into one-cell stage eggs. The highly stringent recognition sequence of I-SceI is thought to maintain the linearized plasmid in a nonconcatamerized state, which promotes random integration of the plasmid transgene in the genome. The injected embryos are reared until larval stage 56 and then screened for GFP expression by fluorescence microscopy and assessed for effective knockdown by quantitative RT-PCR using a tail biopsy. Typically, the I-SceI meganuclease transgenesis technique results in 35%-50% transgenesis efficiency, a high survival rate (>35%) and bright nonmosaic GFP expression. A key advantage of this technique is that the high efficiency and nonmosaic transgene expression permit the direct use of F0 animals.
Collapse
Affiliation(s)
- Eva-Stina Edholm
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York 14620
| | - Jacques Robert
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York 14620
| |
Collapse
|
29
|
Abstract
The adaptive immune system arose 500 million years ago in ectothermic (cold-blooded) vertebrates. Classically, the adaptive immune system has been defined by the presence of lymphocytes expressing recombination-activating gene (RAG)-dependent antigen receptors and the MHC. These features are found in all jawed vertebrates, including cartilaginous and bony fish, amphibians and reptiles and are most likely also found in the oldest class of jawed vertebrates, the extinct placoderms. However, with the discovery of an adaptive immune system in jawless fish based on an entirely different set of antigen receptors - the variable lymphocyte receptors - the divergence of T and B cells, and perhaps innate-like lymphocytes, goes back to the origin of all vertebrates. This Review explores how recent developments in comparative immunology have furthered our understanding of the origins and function of the adaptive immune system.
Collapse
Affiliation(s)
- Martin F Flajnik
- Department of Microbiology and Immunology, University of Maryland Baltimore, Baltimore, MD, USA.
| |
Collapse
|
30
|
Distinct MHC class I-like interacting invariant T cell lineage at the forefront of mycobacterial immunity uncovered in Xenopus. Proc Natl Acad Sci U S A 2018; 115:E4023-E4031. [PMID: 29610296 DOI: 10.1073/pnas.1722129115] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The amphibian Xenopus laevis is to date the only species outside of mammals where a MHC class I-like (MHC-like) restricted innate-like (i) T cell subset (iVα6 T cells) reminiscent of CD1d-restricted iNKT cells has been identified and functionally characterized. This provides an attractive in vivo model to study the biological analogies and differences between mammalian iT cells and the evolutionarily antecedent Xenopus iT cell defense system. Here, we report the identification of a unique iT cell subset (Vα45-Jα1.14) requiring a distinct MHC-like molecule (mhc1b4.L or XNC4) for its development and function. We used two complementary reverse genetic approaches: RNA interference by transgenesis to impair expression of either XNC4 or the Vα45-Jα1.14 rearrangement, and CRISPR/Cas9-mediated disruption of the Jα1.14 gene segment. Both XNC4 deficiency that ablates iVα45T cell development and the direct disruption of the iVα45-Jα1.14 T cell receptor dramatically impairs tadpole resistance to Mycobacterium marinum (Mm) infection. The higher mortality of Mm-infected tadpoles deficient for iVα45T cells correlates with dysregulated expression responses of several immune genes. In contrast, iVα45-Jα1.14-deficient tadpoles remain fully competent against infection by the ranavirus FV3, which indicates a specialization of this unique iT cell subset toward mycobacterial rather than viral pathogens that involve iVα6 T cells. These data suggest that amphibians, which are evolutionarily separated from mammals by more than 350 My, have independently diversified a prominent and convergent immune surveillance system based on MHC-like interacting innate-like T cells.
Collapse
|
31
|
Castro R, Navelsaker S, Krasnov A, Du Pasquier L, Boudinot P. Describing the diversity of Ag specific receptors in vertebrates: Contribution of repertoire deep sequencing. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 75:28-37. [PMID: 28259700 DOI: 10.1016/j.dci.2017.02.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 02/16/2017] [Accepted: 02/22/2017] [Indexed: 06/06/2023]
Abstract
During the last decades, gene and cDNA cloning identified TCR and Ig genes across vertebrates; genome sequencing of TCR and Ig loci in many species revealed the different organizations selected during evolution under the pressure of generating diverse repertoires of Ag receptors. By detecting clonotypes over a wide range of frequency, deep sequencing of Ig and TCR transcripts provides a new way to compare the structure of expressed repertoires in species of various sizes, at different stages of development, with different physiologies, and displaying multiple adaptations to the environment. In this review, we provide a short overview of the technologies currently used to produce global description of immune repertoires, describe how they have already been used in comparative immunology, and we discuss the future potential of such approaches. The development of these methodologies in new species holds promise for new discoveries concerning particular adaptations. As an example, understanding the development of adaptive immunity across metamorphosis in frogs has been made possible by such approaches. Repertoire sequencing is now widely used, not only in basic research but also in the context of immunotherapy and vaccination. Analysis of fish responses to pathogens and vaccines has already benefited from these methods. Finally, we also discuss potential advances based on repertoire sequencing of multigene families of immune sensors and effectors in invertebrates.
Collapse
Affiliation(s)
- Rosario Castro
- Department of Animal Health, Faculty of Veterinary Sciences, Complutense University, Madrid, Spain
| | - Sofie Navelsaker
- Norwegian University of Life Sciences, Faculty of Veterinary Medicine, Department of Basic Sciences and Aquatic Medicine, Adamstuen Campus, Oslo 0454, Norway; Virologie et Immunologie Moléculaires, INRA, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | | | | | - Pierre Boudinot
- Virologie et Immunologie Moléculaires, INRA, Université Paris-Saclay, 78350 Jouy-en-Josas, France.
| |
Collapse
|
32
|
Abstract
Falling between the classical characteristics of innate immune cells and adaptive T and B cells are a group of lymphocytes termed "unconventional." These cells express antigen-specific T or B cell receptors, but behave with innate characteristics. Well-known members of this group include the gamma-delta T cell and the Natural Killer T cell. Recent literature has greatly expanded scientific knowledge of unconventional lymphocytes, but key questions remain unresolved in the field, including why these cells have been maintained concurrently with conventional innate and adaptive immune cells. Here, we summarize current literature that suggests what their unique purposes may be, including specialized functions with the microbiota and in early development. From the consensus literature, we discuss where we see unconventional lymphocytes fit into the logical organization of the complete immune system.
Collapse
Affiliation(s)
- Lesley Pasman
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
| | - Dennis L Kasper
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
33
|
Sandberg JK, Norrby-Teglund A, Leeansyah E. Bacterial deception of MAIT cells in a cloud of superantigen and cytokines. PLoS Biol 2017; 15:e2003167. [PMID: 28742082 PMCID: PMC5542701 DOI: 10.1371/journal.pbio.2003167] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 08/03/2017] [Indexed: 01/06/2023] Open
Abstract
The bacterium Staphylococcus aureus is an important cause of the life-threatening condition toxic shock syndrome in humans. Bacterial toxins known as superantigens (SAgs) generate this illness by acting as broad activators of a substantial fraction of all T lymphocytes, bypassing the normally highly stringent T-cell receptor antigen specificity to cause a systemic inflammatory cytokine storm in the host. In a new study, Shaler et al. found that immune cells called mucosa-associated invariant T (MAIT) cells make an unexpectedly large contribution to the SAg response in a largely T-cell receptor–independent, cytokine-driven manner. Subsequent to such activation, the MAIT cells remain unresponsive to stimulation with bacterial antigen. Thus, S. aureus hijacks MAIT cells in the cytokine storm and leaves them functionally impaired. This work provides new insight into the role of MAIT cells in antibacterial immunity and opens new avenues of investigation to understand and possibly treat bacterial toxic shock and sepsis.
Collapse
Affiliation(s)
- Johan K. Sandberg
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
- * E-mail:
| | - Anna Norrby-Teglund
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Edwin Leeansyah
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore
| |
Collapse
|
34
|
Abstract
We first review fundamental insights into anti-ranavirus immunity learned with the Xenopus laevis/ranavirus FV3 model that are generally applicable to ectothermic vertebrates. We then further investigate FV3 genes involved in immune evasion. Focusing on FV3 knockout (KO) mutants defective for a putative viral caspase activation and recruitment domain-containing (CARD)-like protein (Δ64R-FV3), a β-hydroxysteroid dehydrogenase homolog (Δ52L-FV3), and an immediate-early18kDa protein (FV3-Δ18K), we assessed the involvement of these viral genes in replication, dissemination and interaction with peritoneal macrophages in tadpole and adult frogs. Our results substantiate the role of 64R and 52L as critical immune evasion genes, promoting persistence and dissemination in the host by counteracting type III IFN in tadpoles and type I IFN in adult frogs. Comparably, the substantial accumulation of genome copy numbers and exacerbation of type I and III IFN gene expression responses but deficient release of infectious virus suggests that 18K is a viral regulatory gene.
Collapse
Affiliation(s)
- Robert Jacques
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, United States.
| | - Eva-Stina Edholm
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, United States
| | - Sanchez Jazz
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, United States
| | - Torres-Luquis Odalys
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, United States
| | - De Jesús Andino Francisco
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, United States
| |
Collapse
|
35
|
Banach M, Edholm ES, Robert J. Exploring the functions of nonclassical MHC class Ib genes in Xenopus laevis by the CRISPR/Cas9 system. Dev Biol 2017; 426:261-269. [PMID: 27318386 PMCID: PMC5501940 DOI: 10.1016/j.ydbio.2016.05.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 05/12/2016] [Accepted: 05/20/2016] [Indexed: 12/31/2022]
Abstract
A large family of highly related and clustered Xenopus nonclassical MHC class Ib (XNC) genes influences Xenopus laevis immunity and potentially other physiological functions. Using RNA interference (RNAi) technology, we previously demonstrated that one of XNC genes, XNC10.1, is critical for the development and function of a specialized innate T (iT) cell population. However, RNAi limitation such as a variable and unstable degree of gene silencing in F0 and F1 generations is hampering a thorough functional analysis of XNC10.1 and other XNC genes. To overcome this obstacle, we adapted the CRISPR/Cas9-mediated gene editing technique for XNC genes. We efficiently and specifically generated single gene knockouts of XNC10.1, XNC11, and XNC1 as well as double gene knockouts of XNC10.1 and XNC11 in X. laevis. In single XNC10.1 knockout X. laevis tadpoles, the absence of XNC10.1 and Vα6-Jα1.43 invariant T cell receptor rearrangement transcripts indicated XNC10.1 loss-of-function and deficiency in Vα6-Jα1.43 iT cells. Notably, targeting XNC10.1 did not affect neighboring XNC genes exhibiting high sequence similarity. Furthermore, XNC1 gene disruption induced mortality during developmental stage 47, suggesting some non-immune but essential function of this gene. These data demonstrate that the CRISPR/Cas9 system can be successfully adapted for genetic analysis in F0 generation of X. laevis.
Collapse
Affiliation(s)
- Maureen Banach
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Eva-Stina Edholm
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Jacques Robert
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
36
|
Banach M, Robert J. Tumor immunology viewed from alternative animal models-the Xenopus story. CURRENT PATHOBIOLOGY REPORTS 2017; 5:49-56. [PMID: 28944105 DOI: 10.1007/s40139-017-0125-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
A PURPOSE OF REVIEW Nonmammalian comparative animal models are important not only to gain fundamental evolutionary understanding of the complex interactions of tumors with the immune system, but also to better predict the applicability of novel immunotherapeutic approaches to humans. After reviewing recent advances in developing alternative models, we focus on the amphibian Xenopus laevis and its usefulness in deciphering the perplexing roles of MHC class I-like molecules and innate (i)T cells in tumor immunity. B RECENT FINDINGS Experiments using MHC-defined inbred and cloned animals, tumor cell lines, effective reagents, sequenced genomes, and adapted gene editing techniques in Xenopus, have revealed that the critical involvement of class I-like molecules and iT cells in tumor immunity has been conserved during evolution. C SUMMARY Comparative studies with the X. laevis tumor immunity model can contribute to the development of better and more efficient cancer immunotherapies.
Collapse
Affiliation(s)
- Maureen Banach
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, USA
| | - Jacques Robert
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, USA
| |
Collapse
|
37
|
Abstract
Macrophages constitute a heterogeneous population of myeloid cells that are essential for maintaining homeostasis and as a first line of innate responders controlling and organizing host defenses against pathogens. Monocyte-macrophage lineage cells are among the most functionally diverse and plastic cells of the immune system. They undergo specific activation into functionally distinct phenotypes in response to immune signals and microbial products. In mammals, macrophage functional heterogeneity is defined by two activation states, M1 and M2, which represent two polar ends of a continuum exhibiting pro-inflammatory and tissue repair activities, respectively. While the ancient evolutionary origin of macrophages as phagocytic defenders is well established, the evolutionary roots of the specialized division of macrophages into subsets with polarized activation phenotypes is less well defined. Accordingly, this chapter focuses on recent advances in the understanding of the evolution of macrophage polarization and functional heterogeneity with a focus on ectothermic vertebrates.
Collapse
Affiliation(s)
- Eva-Stina Edholm
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Kun Hyoe Rhoo
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Jacques Robert
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, 14642, USA.
| |
Collapse
|
38
|
Mondot S, Boudinot P, Lantz O. MAIT, MR1, microbes and riboflavin: a paradigm for the co-evolution of invariant TCRs and restricting MHCI-like molecules? Immunogenetics 2016; 68:537-48. [DOI: 10.1007/s00251-016-0927-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 06/22/2016] [Indexed: 12/21/2022]
|
39
|
Edholm ES, Banach M, Robert J. Evolution of innate-like T cells and their selection by MHC class I-like molecules. Immunogenetics 2016; 68:525-36. [PMID: 27368412 DOI: 10.1007/s00251-016-0929-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 06/22/2016] [Indexed: 11/28/2022]
Abstract
Until recently, major histocompatibility complex (MHC) class I-like-restricted innate-like αβT (iT) cells expressing an invariant or semi-invariant T cell receptor (TCR) repertoire were thought to be a recent evolutionary acquisition restricted to mammals. However, molecular and functional studies in Xenopus laevis have demonstrated that iT cells, defined as MHC class I-like-restricted innate-like αβT cells with a semi-invariant TCR, are evolutionarily conserved and prominent from early development in amphibians. As these iT cells lack the specificity conferred by conventional αβ TCRs, it is generally considered that they are specialized to recognize conserved antigens equivalent to pathogen-associated molecular patterns. Thus, one advantage offered by the MHC class I-like iT cell-based recognition system is that it can be adapted to a common pathogen and function on the basis of a relatively small number of T cells. Although iT cells have only been functionally described in mammals and amphibians, the identification of non-classical MHC/MHC class I-like genes in other groups of endothermic and ectothermic vertebrates suggests that iT cells have a broader phylogenetic distribution than previously envisioned. In this review, we discuss the possible role of iT cells during the emergence of the jawed vertebrate adaptive immune system.
Collapse
Affiliation(s)
- Eva-Stina Edholm
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Maureen Banach
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Jacques Robert
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, 14642, USA.
| |
Collapse
|
40
|
Anderson CK, Brossay L. The role of MHC class Ib-restricted T cells during infection. Immunogenetics 2016; 68:677-91. [PMID: 27368413 DOI: 10.1007/s00251-016-0932-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 05/22/2016] [Indexed: 01/02/2023]
Abstract
Even though major histocompatibility complex (MHC) class Ia and many Ib molecules have similarities in structure, MHC class Ib molecules tend to have more specialized functions, which include the presentation of non-peptidic antigens to non-classical T cells. Likewise, non-classical T cells also have unique characteristics, including an innate-like phenotype in naïve animals and rapid effector functions. In this review, we discuss the role of MAIT and NKT cells during infection but also the contribution of less studied MHC class Ib-restricted T cells such as Qa-1-, Qa-2-, and M3-restricted T cells. We focus on describing the types of antigens presented to non-classical T cells, their response and cytokine profile following infection, as well as the overall impact of these T cells to the immune system.
Collapse
Affiliation(s)
- Courtney K Anderson
- Department of Molecular Microbiology and Immunology, Division of Biology and Medicine, Brown University, Box G-B618, Providence, RI, 02912, USA
| | - Laurent Brossay
- Department of Molecular Microbiology and Immunology, Division of Biology and Medicine, Brown University, Box G-B618, Providence, RI, 02912, USA.
| |
Collapse
|
41
|
Ohta Y, Flajnik MF. Coevolution of MHC genes (LMP/TAP/class Ia, NKT-class Ib, NKp30-B7H6): lessons from cold-blooded vertebrates. Immunol Rev 2016; 267:6-15. [PMID: 26284468 DOI: 10.1111/imr.12324] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Comparative immunology provides the long view of what is conserved across all vertebrate taxa versus what is specific to particular organisms or group of organisms. Regarding the major histocompatibility complex (MHC) and coevolution, three striking cases have been revealed in cold-blooded vertebrates: lineages of class Ia antigen-processing and -presenting genes, evolutionary conservation of NKT-class Ib recognition, and the ancient emergence of the natural cytotoxicity receptor NKp30 and its ligand B7H6. While coevolution of transporter associated with antigen processing (TAP) and class Ia has been documented in endothermic birds and two mammals, lineages of LMP7 are restricted to ectotherms. The unambiguous discovery of natural killer T (NKT) cells in Xenopus demonstrated that NKT cells are not restricted to mammals and are likely to have emerged at the same time in evolution as classical α/β and γ/δ T cells. NK cell receptors evolve at a rapid rate, and orthologues are nearly impossible to identify in different vertebrate classes. By contrast, we have detected NKp30 in all gnathostomes, except in species where it was lost. The recently discovered ligand of NKp30, B7H6, shows strong signs of coevolution with NKp30 throughout evolution, i.e. coincident loss or expansion of both genes in some species. NKp30 also offers an attractive IgSF candidate for the invasion of the RAG transposon, which is believed to have initiated T-cell receptor/immunoglobulin adaptive immunity. Besides reviewing these intriguing features of MHC evolution and coevolution, we offer suggestions for future studies and propose a model for the primordial or proto MHC.
Collapse
Affiliation(s)
- Yuko Ohta
- Department of Microbiology and Immunology, University of Maryland Baltimore School of Medicine, Baltimore, MD, USA
| | - Martin F Flajnik
- Department of Microbiology and Immunology, University of Maryland Baltimore School of Medicine, Baltimore, MD, USA
| |
Collapse
|
42
|
Britanova OV, Shugay M, Merzlyak EM, Staroverov DB, Putintseva EV, Turchaninova MA, Mamedov IZ, Pogorelyy MV, Bolotin DA, Izraelson M, Davydov AN, Egorov ES, Kasatskaya SA, Rebrikov DV, Lukyanov S, Chudakov DM. Dynamics of Individual T Cell Repertoires: From Cord Blood to Centenarians. THE JOURNAL OF IMMUNOLOGY 2016; 196:5005-13. [PMID: 27183615 DOI: 10.4049/jimmunol.1600005] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 04/16/2016] [Indexed: 01/29/2023]
Abstract
The diversity, architecture, and dynamics of the TCR repertoire largely determine our ability to effectively withstand infections and malignancies with minimal mistargeting of immune responses. In this study, we have employed deep TCRβ repertoire sequencing with normalization based on unique molecular identifiers to explore the long-term dynamics of T cell immunity. We demonstrate remarkable stability of repertoire, where approximately half of all T cells in peripheral blood are represented by clones that persist and generally preserve their frequencies for 3 y. We further characterize the extremes of lifelong TCR repertoire evolution, analyzing samples ranging from umbilical cord blood to centenarian peripheral blood. We show that the fetal TCR repertoire, albeit structurally maintained within regulated borders due to the lower numbers of randomly added nucleotides, is not limited with respect to observed functional diversity. We reveal decreased efficiency of nonsense-mediated mRNA decay in umbilical cord blood, which may reflect specific regulatory mechanisms in development. Furthermore, we demonstrate that human TCR repertoires are functionally more similar at birth but diverge during life, and we track the lifelong behavior of CMV- and EBV-specific T cell clonotypes. Finally, we reveal gender differences in dynamics of TCR diversity constriction, which come to naught in the oldest age. Based on our data, we propose a more general explanation for the previous observations on the relationships between longevity and immunity.
Collapse
Affiliation(s)
- Olga V Britanova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia; Pirogov Russian National Research Medical University, Moscow 117997, Russia; Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic; and
| | - Mikhail Shugay
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia; Pirogov Russian National Research Medical University, Moscow 117997, Russia; Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic; and
| | - Ekaterina M Merzlyak
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia
| | - Dmitriy B Staroverov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia
| | - Ekaterina V Putintseva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia
| | - Maria A Turchaninova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia; Pirogov Russian National Research Medical University, Moscow 117997, Russia; Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic; and
| | - Ilgar Z Mamedov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia; Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic; and
| | - Mikhail V Pogorelyy
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia
| | - Dmitriy A Bolotin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia; Pirogov Russian National Research Medical University, Moscow 117997, Russia; Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic; and
| | - Mark Izraelson
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia; Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic; and
| | - Alexey N Davydov
- Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic; and
| | - Evgeny S Egorov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia; Pirogov Russian National Research Medical University, Moscow 117997, Russia; Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic; and
| | - Sofya A Kasatskaya
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia
| | - Denis V Rebrikov
- Pirogov Russian National Research Medical University, Moscow 117997, Russia; Vavilov Institute of General Genetics of the Russian Academy of Sciences, Moscow 119991, Russia
| | - Sergey Lukyanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia; Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Dmitriy M Chudakov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia; Pirogov Russian National Research Medical University, Moscow 117997, Russia; Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic; and
| |
Collapse
|
43
|
Nakai Y, Nakajima K, Robert J, Yaoita Y. Ouro proteins are not essential to tail regression during Xenopus tropicalis metamorphosis. Genes Cells 2016; 21:275-86. [PMID: 26847415 DOI: 10.1111/gtc.12337] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 12/14/2015] [Indexed: 11/28/2022]
Abstract
Tail regression is one of the most prominent transformations observed during anuran metamorphosis. A tadpole tail that is twice as long as the tadpole trunk nearly disappears within 3 days in Xenopus tropicalis. Several years ago, it was proposed that this phenomenon is driven by an immunological rejection of larval-skin-specific antigens, Ouro proteins. We generated ouro-knockout tadpoles using the TALEN method to reexamine this immunological rejection model. Both the ouro1- and ouro2-knockout tadpoles expressed a very low level of mRNA transcribed from a targeted ouro gene, an undetectable level of Ouro protein encoded by a target gene and a scarcely detectable level of the other Ouro protein from the untargeted ouro gene in tail skin. Furthermore, congenital athymic frogs were produced by Foxn1 gene modification. Flow cytometry analysis showed that mutant frogs lacked splenic CD8(+) T cells, which play a major role in cytotoxic reaction. Furthermore, T-cell-dependent skin allograft rejection was dramatically impaired in mutant frogs. None of the knockout tadpoles showed any significant delay in the process of tail shortening during the climax of metamorphosis, which shows that Ouro proteins are not essential to tail regression at least in Xenopus tropicalis and argues against the immunological rejection model.
Collapse
Affiliation(s)
- Yuya Nakai
- Division of Embryology and Genetics, Institute for Amphibian Biology, Graduate School of Science, Hiroshima University, Higashihiroshima, 739-8526, Japan
| | - Keisuke Nakajima
- Division of Embryology and Genetics, Institute for Amphibian Biology, Graduate School of Science, Hiroshima University, Higashihiroshima, 739-8526, Japan
| | - Jacques Robert
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, 14642, NY, USA
| | - Yoshio Yaoita
- Division of Embryology and Genetics, Institute for Amphibian Biology, Graduate School of Science, Hiroshima University, Higashihiroshima, 739-8526, Japan
| |
Collapse
|
44
|
Abstract
The structure and amino acid diversity of the T-cell receptor (TCR), similar in nature to that of Fab portions of antibodies, would suggest that these proteins have a nearly infinite capacity to recognize antigen. Yet all currently defined native T cells expressing an α and β chain in their TCR can only sense antigen when presented in the context of a major histocompatibility complex (MHC) molecule. This MHC molecule can be one of many that exist in vertebrates, presenting small peptide fragments, lipid molecules, or small molecule metabolites. Here we review the pattern of TCR recognition of MHC molecules throughout a broad sampling of species and T-cell lineages and also touch upon T cells that do not appear to require MHC presentation for their surveillance function. We review the diversity of MHC molecules and information on the corresponding T-cell lineages identified in divergent species. We also discuss TCRs with structural domains unlike that of conventional TCRs of mouse and human. By presenting this broad view of TCR sequence, structure, domain organization, and function, we seek to explore how this receptor has evolved across time and been selected for alternative antigen-recognition capabilities in divergent lineages.
Collapse
Affiliation(s)
- Caitlin C. Castro
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
- Committee on Immunology, University of Chicago, Chicago, IL, USA
| | - Adrienne M. Luoma
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
- Committee on Immunology, University of Chicago, Chicago, IL, USA
| | - Erin J. Adams
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
- Committee on Immunology, University of Chicago, Chicago, IL, USA
- Committee on Cancer Biology, University of Chicago, Chicago, IL, USA
| |
Collapse
|
45
|
Edholm ES, Grayfer L, De Jesús Andino F, Robert J. Nonclassical MHC-Restricted Invariant Vα6 T Cells Are Critical for Efficient Early Innate Antiviral Immunity in the Amphibian Xenopus laevis. THE JOURNAL OF IMMUNOLOGY 2015; 195:576-86. [PMID: 26062996 DOI: 10.4049/jimmunol.1500458] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 05/13/2015] [Indexed: 12/15/2022]
Abstract
Nonclassical MHC class Ib-restricted invariant T (iT) cell subsets are attracting interest because of their potential to regulate immune responses against various pathogens. The biological relevance and evolutionary conservation of iT cells have recently been strengthened by the identification of iT cells (invariant Vα6 [iVα6]) restricted by the nonclassical MHC class Ib molecule XNC10 in the amphibian Xenopus laevis. These iVα6 T cells are functionally similar to mammalian CD1d-restricted invariant NKT cells. Using the amphibian pathogen frog virus 3 (FV3) in combination with XNC10 tetramers and RNA interference loss of function by transgenesis, we show that XNC10-restricted iVα6 T cells are critical for early antiviral immunity in adult X. laevis. Within hours following i.p. FV3 infection, iVα6 T cells were specifically recruited from the spleen into the peritoneum. XNC10 deficiency and concomitant lack of iVα6 T cells resulted in less effective antiviral and macrophage antimicrobial responses, which led to impaired viral clearance, increased viral dissemination, and more pronounced FV3-induced kidney damage. Together, these findings imply that X. laevis XNC10-restricted iVα6 T cells play important roles in the early anti-FV3 response and that, as has been suggested for mammalian invariant NKT cells, they may serve as immune regulators polarizing macrophage effector functions toward more effective antiviral states.
Collapse
Affiliation(s)
- Eva-Stina Edholm
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642
| | - Leon Grayfer
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642
| | - Francisco De Jesús Andino
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642
| | - Jacques Robert
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642
| |
Collapse
|
46
|
Egorov ES, Merzlyak EM, Shelenkov AA, Britanova OV, Sharonov GV, Staroverov DB, Bolotin DA, Davydov AN, Barsova E, Lebedev YB, Shugay M, Chudakov DM. Quantitative Profiling of Immune Repertoires for Minor Lymphocyte Counts Using Unique Molecular Identifiers. THE JOURNAL OF IMMUNOLOGY 2015; 194:6155-63. [DOI: 10.4049/jimmunol.1500215] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 04/08/2015] [Indexed: 12/11/2022]
|
47
|
Colombo BM, Scalvenzi T, Benlamara S, Pollet N. Microbiota and mucosal immunity in amphibians. Front Immunol 2015; 6:111. [PMID: 25821449 PMCID: PMC4358222 DOI: 10.3389/fimmu.2015.00111] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 02/26/2015] [Indexed: 12/11/2022] Open
Abstract
We know that animals live in a world dominated by bacteria. In the last 20 years, we have learned that microbes are essential regulators of mucosal immunity. Bacteria, archeas, and viruses influence different aspects of mucosal development and function. Yet, the literature mainly covers findings obtained in mammals. In this review, we focus on two major themes that emerge from the comparative analysis of mammals and amphibians. These themes concern: (i) the structure and functions of lymphoid organs and immune cells in amphibians, with a focus on the gut mucosal immune system; and (ii) the characteristics of the amphibian microbiota and its influence on mucosal immunity. Lastly, we propose to use Xenopus tadpoles as an alternative small-animal model to improve the fundamental knowledge on immunological functions of gut microbiota.
Collapse
Affiliation(s)
- Bruno M Colombo
- Institute of Systems and Synthetic Biology, Université d'Evry Val d'Essonne , Evry , France
| | - Thibault Scalvenzi
- Institute of Systems and Synthetic Biology, Université d'Evry Val d'Essonne , Evry , France
| | - Sarah Benlamara
- Institute of Systems and Synthetic Biology, Université d'Evry Val d'Essonne , Evry , France
| | - Nicolas Pollet
- Institute of Systems and Synthetic Biology, CNRS , Evry , France ; Evolution, Genome, Comportement et Ecologie, CNRS, Université Paris-Sud, IRD , Gif-sur-Yvette , France
| |
Collapse
|
48
|
Edholm ES, Grayfer L, Robert J. Evolution of nonclassical MHC-dependent invariant T cells. Cell Mol Life Sci 2014; 71:4763-80. [PMID: 25117267 DOI: 10.1007/s00018-014-1701-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 08/02/2014] [Accepted: 08/04/2014] [Indexed: 12/23/2022]
Abstract
TCR-mediated specific recognition of antigenic peptides in the context of classical MHC molecules is a cornerstone of adaptive immunity of jawed vertebrate. Ancillary to these interactions, the T cell repertoire also includes unconventional T cells that recognize endogenous and/or exogenous antigens in a classical MHC-unrestricted manner. Among these, the mammalian nonclassical MHC class I-restricted invariant T cell (iT) subsets, such as iNKT and MAIT cells, are now believed to be integral to immune response initiation as well as in orchestrating subsequent adaptive immunity. Until recently the evolutionary origins of these cells were unknown. Here we review our current understanding of a nonclassical MHC class I-restricted iT cell population in the amphibian Xenopus laevis. Parallels with the mammalian iNKT and MAIT cells underline the crucial biological roles of these evolutionarily ancient immune subsets.
Collapse
Affiliation(s)
- Eva-Stina Edholm
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | | | | |
Collapse
|
49
|
Robert J, Edholm ES. A prominent role for invariant T cells in the amphibian Xenopus laevis tadpoles. Immunogenetics 2014; 66:513-23. [PMID: 24898512 DOI: 10.1007/s00251-014-0781-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2014] [Accepted: 05/12/2014] [Indexed: 12/20/2022]
Abstract
Invariant T (iT) cells expressing an invariant or semi-invariant T cell receptor (TCR) repertoire have gained attention in recent years because of their potential as specialized regulators of immune function. These iT cells are typically restricted by nonclassical MHC class I molecules (e.g., CD1d and MR1) and undergo differentiation pathways distinct from conventional T cells. While the benefit of a limited TCR repertoire may appear counterintuitive in regard to the advantage of the diversified repertoire of conventional T cells allowing for exquisite specificity to antigens, the full biological importance and evolutionary conservation of iT cells are just starting to emerge. It is generally considered that iT cells are specialized to recognize conserved antigens equivalent to pathogen-associated molecular pattern. Until recently, little was known about the evolution of iT cells. The identification of class Ib and class I-like genes in nonmammalian vertebrates, despite the heterogeneity and variable numbers of these genes among species, suggests that iT cells are also present in ectothermic vertebrates. Indeed, recent studies in the amphibian Xenopus have revealed a drastic overrepresentation of several invariant TCRs in tadpoles and identified a prominent nonclassical MHC class I-restricted iT cell subset critical for tadpole antiviral immunity. This suggests an important and perhaps even dominant role of multiple nonclassical MHC class I-restricted iT cell populations in tadpoles and, by extension, other aquatic vertebrates with rapid external development that are under pressure to produce a functional lymphocyte repertoire with small numbers of cells.
Collapse
Affiliation(s)
- Jacques Robert
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, 14642, USA,
| | | |
Collapse
|
50
|
Haynes-Gilmore N, Banach M, Edholm ES, Lord E, Robert J. A critical role of non-classical MHC in tumor immune evasion in the amphibian Xenopus model. Carcinogenesis 2014; 35:1807-13. [PMID: 24776220 DOI: 10.1093/carcin/bgu100] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Non-classical class Ib (class Ib) genes are found in all jawed vertebrates, including the amphibian Xenopus, which possesses at least 20 distinct Xenopus non-classical class Ib genes (XNCs). As an immune evasion strategy, tumors often downregulate surface expression of classical major histocompatibility complex class Ia molecules. In contrast, cancers commonly express class Ib molecules, presenting an alternative for tumor immune recognition. We characterized a novel XNC, XNC10, functionally similar to CD1d from a class Ia-deficient thymic lymphoid tumor (15/0), which grows aggressively in Xenopus LG-15 cloned animals. To investigate the roles of XNC10 in antitumor immunity, we generated stable 15/0-transfectants with silenced XNC10 mRNA and protein expression. Notably, XNC10 silencing resulted in acute tumor rejection by naturally class Ia-deficient syngeneic tadpoles, with greater potency of rejection in tumors with more efficient XNC10 knockdown. In vivo killing assays shows that the rejection of XNC10-deficient tumors is due to a cell-mediated cytotoxic immune response elicited by the tadpole host. Importantly, priming enhances XNC10-deficient tumor rejection. Flow cytometry reveals that XNC10-deficient tumor rejection is associated with an accumulation of XNC10-restricted invariant T cells and conventional CD8 T cells as well as other leukocytes. Similarly, semisolid tumor grafts in tadpoles also exhibit leukocytes infiltration. These findings suggest that XNC10 allows the 15/0-tumor to escape immune recognition and class Ia-independent cytotoxicity, thus emphasizing the critical roles of class Ibs in tumor immunity.
Collapse
Affiliation(s)
- Nikesha Haynes-Gilmore
- Department of Microbiology and Immunology and Department of Pathology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | | | | | - Edith Lord
- Department of Microbiology and Immunology and
| | | |
Collapse
|