1
|
Wiggins KJ, Williams ME, Hicks SL, Padilla-Quirarte HO, Akther J, Randall TD, Boss JM, Scharer CD. EZH2 coordinates memory B-cell programming and recall responses. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025:vkaf004. [PMID: 40073167 DOI: 10.1093/jimmun/vkaf004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 12/23/2024] [Indexed: 03/14/2025]
Abstract
Antigen-experienced memory B-cells (MBC) are endowed with enhanced functional properties compared to naïve B cells and play an important role in the humoral response. However, the epigenetic enzymes and programs that govern their rapid differentiation are incompletely understood. Here, the role of the histone H3 lysine 27 methyltransferase EZH2 in the formation of MBC in response to an influenza infection was determined in Mus musculus. EZH2 was expressed in all postactivated B-cell subsets, including MBC and antibody-secreting cells (ASC), with maximal expression in germinal center (GC) B cells. Deletion of EZH2 resulted in a skewing of the MBC pool towards a non-GC, IgM+ MBC subset that failed to fully express CCR6 and CD73 at both early and late infection time points. Intriguingly, although EZH2 protein levels were reduced in knockout MBC, deletion was not fully efficient, indicating a strong selective pressure to maintain EZH2 methyltransferase activity. Single-cell RNA-seq of antigen-specific MBC identified a core set of upregulated genes that are likely EZH2 targets across MBC subsets. Finally, defects in the ability to form secondary ASC and GC cells in response to a lethal challenge were observed in EZH2-deficient mice, indicating significant functional impairment in the absence of EZH2. These data show that EZH2 is a critical epigenetic modulator of MBC differentiation and functional potential during reactivation.
Collapse
Affiliation(s)
- Keenan J Wiggins
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, United States
| | - Mark E Williams
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, United States
| | - Sakeenah L Hicks
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, United States
| | - Herbey O Padilla-Quirarte
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, United States
| | - Jobaida Akther
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Troy D Randall
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jeremy M Boss
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, United States
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, United States
| | - Christopher D Scharer
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
2
|
Priam P, Krasteva V, Rousseau P, Polsinelli A, Côté L, Desanlis I, Farah A, Lavallée VP, Kmita M, Lessard JA. Smarcd1 subunit of SWI/SNF chromatin-remodeling complexes collaborates with E2a to promote murine lymphoid specification. Dev Cell 2024; 59:3124-3140.e8. [PMID: 39232562 DOI: 10.1016/j.devcel.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 05/02/2024] [Accepted: 08/08/2024] [Indexed: 09/06/2024]
Abstract
Lymphocyte development from murine hematopoietic stem cells (HSCs) entails a loss of self-renewal capacity and a progressive restriction of developmental potential. Previous research from our laboratory suggests that specialized assemblies of ATP-dependent SWI/SNF chromatin-remodeling complexes play lineage-specific roles during murine hematopoiesis. Here, we demonstrate that the Smarcd1 subunit is essential for specification of lymphoid cell fate from multipotent progenitors. Acute deletion of Smarcd1 in murine adult hematopoiesis leads to lymphopenia, characterized by a near-complete absence of early lymphoid progenitors and mature B and T cells, while the myeloid and erythroid lineages remain unaffected. Mechanistically, we demonstrate that Smarcd1 is essential for the coordinated activation of a lymphoid gene signature in murine multipotent progenitors. This is achieved by interacting with the E2a transcription factor at proximal promoters and by regulating the activity of distal enhancers. Globally, these findings identify Smarcd1 as an essential chromatin remodeler that governs lymphoid cell fate.
Collapse
Affiliation(s)
- Pierre Priam
- Institute for Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Veneta Krasteva
- Institute for Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Philippe Rousseau
- Institute for Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Alexandre Polsinelli
- Institute for Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Laurence Côté
- Institute for Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Ines Desanlis
- Institut de Recherches Cliniques de Montreal (IRCM), Montreal, QC H2W 1R7, Canada
| | - Azer Farah
- Centre de Recherche Azrieli du CHU Sainte-Justine, Montreal, QC H3T 1C5, Canada
| | | | - Marie Kmita
- Institut de Recherches Cliniques de Montreal (IRCM), Montreal, QC H2W 1R7, Canada
| | - Julie A Lessard
- Institute for Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC H3T 1J4, Canada; Department of Pathology and Cellular Biology, Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada.
| |
Collapse
|
3
|
Kealy L, Runting J, Thiele D, Scheer S. An emerging maestro of immune regulation: how DOT1L orchestrates the harmonies of the immune system. Front Immunol 2024; 15:1385319. [PMID: 38962004 PMCID: PMC11219580 DOI: 10.3389/fimmu.2024.1385319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/04/2024] [Indexed: 07/05/2024] Open
Abstract
The immune system comprises a complex yet tightly regulated network of cells and molecules that play a critical role in protecting the body from infection and disease. The activity and development of each immune cell is regulated in a myriad of ways including through the cytokine milieu, the availability of key receptors, via tailored intracellular signalling cascades, dedicated transcription factors and even by directly modulating gene accessibility and expression; the latter is more commonly known as epigenetic regulation. In recent years, epigenetic regulators have begun to emerge as key players involved in modulating the immune system. Among these, the lysine methyltransferase DOT1L has gained significant attention for its involvement in orchestrating immune cell formation and function. In this review we provide an overview of the role of DOT1L across the immune system and the implications of this role on health and disease. We begin by elucidating the general mechanisms of DOT1L-mediated histone methylation and its impact on gene expression within immune cells. Subsequently, we provide a detailed and comprehensive overview of recent studies that identify DOT1L as a crucial regulator of immune cell development, differentiation, and activation. Next, we discuss the potential mechanisms of DOT1L-mediated regulation of immune cell function and shed light on how DOT1L might be contributing to immune cell homeostasis and dysfunction. We then provide food for thought by highlighting some of the current obstacles and technical limitations precluding a more in-depth elucidation of DOT1L's role. Finally, we explore the potential therapeutic implications of targeting DOT1L in the context of immune-related diseases and discuss ongoing research efforts to this end. Overall, this review consolidates the current paradigm regarding DOT1L's role across the immune network and emphasises its critical role in governing the healthy immune system and its potential as a novel therapeutic target for immune-related diseases. A deeper understanding of DOT1L's immunomodulatory functions could pave the way for innovative therapeutic approaches which fine-tune the immune response to enhance or restore human health.
Collapse
Affiliation(s)
- Liam Kealy
- Immunity Program, The Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Jessica Runting
- Immunity Program, The Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Daniel Thiele
- Immunity Program, The Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Sebastian Scheer
- Immunity Program, The Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| |
Collapse
|
4
|
Cooper L, Xu H, Polmear J, Kealy L, Szeto C, Pang ES, Gupta M, Kirn A, Taylor JJ, Jackson KJL, Broomfield BJ, Nguyen A, Gago da Graça C, La Gruta N, Utzschneider DT, Groom JR, Martelotto L, Parish IA, O'Keeffe M, Scharer CD, Gras S, Good-Jacobson KL. Type I interferons induce an epigenetically distinct memory B cell subset in chronic viral infection. Immunity 2024; 57:1037-1055.e6. [PMID: 38593796 PMCID: PMC11096045 DOI: 10.1016/j.immuni.2024.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 11/02/2023] [Accepted: 03/15/2024] [Indexed: 04/11/2024]
Abstract
Memory B cells (MBCs) are key providers of long-lived immunity against infectious disease, yet in chronic viral infection, they do not produce effective protection. How chronic viral infection disrupts MBC development and whether such changes are reversible remain unknown. Through single-cell (sc)ATAC-seq and scRNA-seq during acute versus chronic lymphocytic choriomeningitis viral infection, we identified a memory subset enriched for interferon (IFN)-stimulated genes (ISGs) during chronic infection that was distinct from the T-bet+ subset normally associated with chronic infection. Blockade of IFNAR-1 early in infection transformed the chromatin landscape of chronic MBCs, decreasing accessibility at ISG-inducing transcription factor binding motifs and inducing phenotypic changes in the dominating MBC subset, with a decrease in the ISG subset and an increase in CD11c+CD80+ cells. However, timing was critical, with MBCs resistant to intervention at 4 weeks post-infection. Together, our research identifies a key mechanism to instruct MBC identity during viral infection.
Collapse
Affiliation(s)
- Lucy Cooper
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia; Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Hui Xu
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia; Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Jack Polmear
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia; Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Liam Kealy
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia; Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Christopher Szeto
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia; Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Ee Shan Pang
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia; Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Mansi Gupta
- Department of Microbiology and Immunology, School of Medicine, Emory University, Atlanta, GA, USA
| | - Alana Kirn
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia; Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Justin J Taylor
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | | | - Benjamin J Broomfield
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia; Division of Immunology, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Angela Nguyen
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia; Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Catarina Gago da Graça
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Nicole La Gruta
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia; Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Daniel T Utzschneider
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Joanna R Groom
- Division of Immunology, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Luciano Martelotto
- Adelaide Centre for Epigenetics and the South Australian Immunogenomics Cancer Institute, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia; University of Melbourne Centre for Cancer Research, Victoria Comprehensive Cancer Centre, Melbourne, VIC, Australia
| | - Ian A Parish
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia; Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia; John Curtin School of Medical Research, ANU, Canberra, ACT, Australia
| | - Meredith O'Keeffe
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia; Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Christopher D Scharer
- Department of Microbiology and Immunology, School of Medicine, Emory University, Atlanta, GA, USA
| | - Stephanie Gras
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia; Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Kim L Good-Jacobson
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia; Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
5
|
Simpson A, Jones SA, Fairfax KA. Intracellular Flow Cytometry ("Phosphoflow") to Assess Signal Transduction in Rare Populations Such As Memory B Cell Subsets and Plasma Cells. Methods Mol Biol 2024; 2826:151-163. [PMID: 39017892 DOI: 10.1007/978-1-0716-3950-4_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Intracellular flow cytometry is a powerful technique that can be used to interrogate signalling in rare cellular populations. The strengths of the technique are that massively parallel readouts can be gained from thousands of single cells simultaneously, and the assay is fast and relatively straightforward. This plate-based protocol enables different doses and different timepoints of stimulation to be assessed and has been optimized for rare B cell populations. Combining this technique with high-dimensional flow cytometry enables multiple signalling proteins to be measured with high confidence.
Collapse
|
6
|
da Silva Lima F, da Silva Gonçalves CE, Fock RA. A review of the role of zinc finger proteins on hematopoiesis. J Trace Elem Med Biol 2023; 80:127290. [PMID: 37659124 DOI: 10.1016/j.jtemb.2023.127290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 08/07/2023] [Accepted: 08/21/2023] [Indexed: 09/04/2023]
Abstract
The bone marrow is responsible for producing an incredible number of cells daily in order to maintain blood homeostasis through a process called hematopoiesis. Hematopoiesis is a greatly demanding process and one entirely dependent on complex interactions between the hematopoietic stem cell (HSC) and its surrounding microenvironment. Zinc (Zn2+) is considered an important trace element, playing diverse roles in different tissues and cell types, and zinc finger proteins (ZNF) are proteins that use Zn2+ as a structural cofactor. In this way, the ZNF structure is supported by a Zn2+ that coordinates many possible combinations of cysteine and histidine, with the most common ZNF being of the Cys2His2 (C2H2) type, which forms a family of transcriptional activators that play an important role in different cellular processes such as development, differentiation, and suppression, all of these being essential processes for an adequate hematopoiesis. This review aims to shed light on the relationship between ZNF and the regulation of the hematopoietic tissue. We include works with different designs, including both in vitro and in vivo studies, detailing how ZNF might regulate hematopoiesis.
Collapse
Affiliation(s)
- Fabiana da Silva Lima
- Department of Food and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Ricardo Ambrósio Fock
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
7
|
Polmear J, Hailes L, Olshansky M, Rischmueller M, L'Estrange‐Stranieri E, Fletcher AL, Hibbs ML, Bryant VL, Good‐Jacobson KL. Targeting BMI-1 to deplete antibody-secreting cells in autoimmunity. Clin Transl Immunology 2023; 12:e1470. [PMID: 37799772 PMCID: PMC10550498 DOI: 10.1002/cti2.1470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/13/2023] [Accepted: 09/22/2023] [Indexed: 10/07/2023] Open
Abstract
Objectives B cells drive the production of autoreactive antibody-secreting cells (ASCs) in autoimmune diseases such as Systemic Lupus Erythematosus (SLE) and Sjögren's syndrome, causing long-term organ damage. Current treatments for antibody-mediated autoimmune diseases target B cells or broadly suppress the immune system. However, pre-existing long-lived ASCs are often refractory to treatment, leaving a reservoir of autoreactive cells that continue to produce antibodies. Therefore, the development of novel treatment methods targeting ASCs is vital to improve patient outcomes. Our objective was to test whether targeting the epigenetic regulator BMI-1 could deplete ASCs in autoimmune conditions in vivo and in vitro. Methods Use of a BMI-1 inhibitor in both mouse and human autoimmune settings was investigated. Lyn -/- mice, a model of SLE, were treated with the BMI-1 small molecule inhibitor PTC-028, before assessment of ASCs, serum antibody and immune complexes. To examine human ASC survival, a novel human fibroblast-based assay was established, and the impact of PTC-028 on ASCs derived from Sjögren's syndrome patients was evaluated. Results BMI-1 inhibition significantly decreased splenic and bone marrow ASCs in Lyn -/- mice. The decline in ASCs was linked to aberrant cell cycle gene expression and led to a significant decrease in serum IgG3, immune complexes and anti-DNA IgG. PTC-028 was also efficacious in reducing ex vivo plasma cell survival from both Sjögren's syndrome patients and age-matched healthy donors. Conclusion These data provide evidence that inhibiting BMI-1 can deplete ASC in a variety of contexts and thus BMI-1 is a viable therapeutic target for antibody-mediated autoimmune diseases.
Collapse
Affiliation(s)
- Jack Polmear
- Department of Biochemistry and Molecular BiologyMonash UniversityClaytonVICAustralia
- Immunity Program, Biomedicine Discovery InstituteMonash UniversityClaytonVICAustralia
| | - Lauren Hailes
- Department of Biochemistry and Molecular BiologyMonash UniversityClaytonVICAustralia
- Immunity Program, Biomedicine Discovery InstituteMonash UniversityClaytonVICAustralia
| | - Moshe Olshansky
- Department of Biochemistry and Molecular BiologyMonash UniversityClaytonVICAustralia
- Immunity Program, Biomedicine Discovery InstituteMonash UniversityClaytonVICAustralia
| | - Maureen Rischmueller
- The Queen Elizabeth Hospital and Basil Hetzel InstituteWoodville SouthSAAustralia
- Adelaide Medical SchoolUniversity of AdelaideAdelaideSAAustralia
| | | | - Anne L Fletcher
- Department of Biochemistry and Molecular BiologyMonash UniversityClaytonVICAustralia
- Immunity Program, Biomedicine Discovery InstituteMonash UniversityClaytonVICAustralia
| | - Margaret L Hibbs
- Department of Immunology, Alfred Research AllianceMonash UniversityMelbourneVICAustralia
| | - Vanessa L Bryant
- Immunology DivisionWalter & Eliza Hall InstituteParkvilleVICAustralia
- Department of Medical BiologyUniversity of MelbourneParkvilleVICAustralia
- Department of Clinical Immunology & AllergyThe Royal Melbourne HospitalParkvilleVICAustralia
| | - Kim L Good‐Jacobson
- Department of Biochemistry and Molecular BiologyMonash UniversityClaytonVICAustralia
- Immunity Program, Biomedicine Discovery InstituteMonash UniversityClaytonVICAustralia
| |
Collapse
|
8
|
Matz HC, McIntire KM, Ellebedy AH. 'Persistent germinal center responses: slow-growing trees bear the best fruits'. Curr Opin Immunol 2023; 83:102332. [PMID: 37150126 PMCID: PMC10829534 DOI: 10.1016/j.coi.2023.102332] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/06/2023] [Accepted: 04/09/2023] [Indexed: 05/09/2023]
Abstract
Germinal centers (GCs) are key microanatomical sites in lymphoid organs where responding B cells mature and undergo affinity-based selection. The duration of the GC reaction has long been assumed to be relatively brief, but recent studies in humans, nonhuman primates, and mice indicate that GCs can last for weeks to months after initial antigen exposure. This review examines recent studies investigating the factors that influence GC duration, including antigen persistence, T-follicular helper cells, and mode of immunization. Potential mechanisms for how persistent GCs influence the B-cell repertoire are considered. Overall, these studies provide a blueprint for how to design better vaccines that elicit persistent GC responses.
Collapse
Affiliation(s)
- Hanover C Matz
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Katherine M McIntire
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Ali H Ellebedy
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA; Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, St. Louis, MO, USA; The Andrew M. and Jane M. Bursky Center for Human Immunology & Immunotherapy Programs, USA.
| |
Collapse
|
9
|
Mah SY, Vanyai HK, Yang Y, Voss AK, Thomas T. The chromatin reader protein ING5 is required for normal hematopoietic cell numbers in the fetal liver. Front Immunol 2023; 14:1119750. [PMID: 37275850 PMCID: PMC10232820 DOI: 10.3389/fimmu.2023.1119750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 04/18/2023] [Indexed: 06/07/2023] Open
Abstract
ING5 is a component of KAT6A and KAT7 histone lysine acetylation protein complexes. ING5 contains a PHD domain that binds to histone H3 lysine 4 when it is trimethylated, and so functions as a 'reader' and adaptor protein. KAT6A and KAT7 function are critical for normal hematopoiesis. To examine the function of ING5 in hematopoiesis, we generated a null allele of Ing5. Mice lacking ING5 during development had decreased foetal liver cellularity, decreased numbers of hematopoietic stem cells and perturbed erythropoiesis compared to wild-type control mice. Ing5-/- pups had hypoplastic spleens. Competitive transplantation experiments using foetal liver hematopoietic cells showed that there was no defect in long-term repopulating capacity of stem cells lacking ING5, suggesting that the defects during the foetal stage were not cell intrinsic. Together, these results suggest that ING5 function is dispensable for normal hematopoiesis but may be required for timely foetal hematopoiesis in a cell-extrinsic manner.
Collapse
Affiliation(s)
- Sophia Y.Y. Mah
- Epigenetics and Development Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Hannah K. Vanyai
- Epigenetics and Development Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Yuqing Yang
- Epigenetics and Development Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Anne K. Voss
- Epigenetics and Development Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Tim Thomas
- Epigenetics and Development Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
10
|
Viita T, Côté J. The MOZ-BRPF1 acetyltransferase complex in epigenetic crosstalk linked to gene regulation, development, and human diseases. Front Cell Dev Biol 2023; 10:1115903. [PMID: 36712963 PMCID: PMC9873972 DOI: 10.3389/fcell.2022.1115903] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 12/29/2022] [Indexed: 01/12/2023] Open
Abstract
Acetylation of lysine residues on histone tails is an important post-translational modification (PTM) that regulates chromatin dynamics to allow gene transcription as well as DNA replication and repair. Histone acetyltransferases (HATs) are often found in large multi-subunit complexes and can also modify specific lysine residues in non-histone substrates. Interestingly, the presence of various histone PTM recognizing domains (reader domains) in these complexes ensures their specific localization, enabling the epigenetic crosstalk and context-specific activity. In this review, we will cover the biochemical and functional properties of the MOZ-BRPF1 acetyltransferase complex, underlining its role in normal biological processes as well as in disease progression. We will discuss how epigenetic reader domains within the MOZ-BRPF1 complex affect its chromatin localization and the histone acetyltransferase specificity of the complex. We will also summarize how MOZ-BRPF1 is linked to development via controlling cell stemness and how mutations or changes in expression levels of MOZ/BRPF1 can lead to developmental disorders or cancer. As a last touch, we will review the latest drug candidates for these two proteins and discuss the therapeutic possibilities.
Collapse
Affiliation(s)
| | - Jacques Côté
- St-Patrick Research Group in Basic Oncology, Oncology Division of Centre Hospitalier Universitaire de Québec-Université Laval Research Center, Laval University Cancer Research Center, Quebec City, QC, Canada
| |
Collapse
|
11
|
Pantothenate and L-Carnitine Supplementation Improves Pathological Alterations in Cellular Models of KAT6A Syndrome. Genes (Basel) 2022; 13:genes13122300. [PMID: 36553567 PMCID: PMC9778406 DOI: 10.3390/genes13122300] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/28/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
Mutations in several genes involved in the epigenetic regulation of gene expression have been considered risk alterations to different intellectual disability (ID) syndromes associated with features of autism spectrum disorder (ASD). Among them are the pathogenic variants of the lysine-acetyltransferase 6A (KAT6A) gene, which causes KAT6A syndrome. The KAT6A enzyme participates in a wide range of critical cellular functions, such as chromatin remodeling, gene expression, protein synthesis, cell metabolism, and replication. In this manuscript, we examined the pathophysiological alterations in fibroblasts derived from three patients harboring KAT6A mutations. We addressed survival in a stress medium, histone acetylation, protein expression patterns, and transcriptome analysis, as well as cell bioenergetics. In addition, we evaluated the therapeutic effectiveness of epigenetic modulators and mitochondrial boosting agents, such as pantothenate and L-carnitine, in correcting the mutant phenotype. Pantothenate and L-carnitine treatment increased histone acetylation and partially corrected protein and transcriptomic expression patterns in mutant KAT6A cells. Furthermore, the cell bioenergetics of mutant cells was significantly improved. Our results suggest that pantothenate and L-carnitine can significantly improve the mutant phenotype in cellular models of KAT6A syndrome.
Collapse
|
12
|
Mudd PA, Minervina AA, Pogorelyy MV, Turner JS, Kim W, Kalaidina E, Petersen J, Schmitz AJ, Lei T, Haile A, Kirk AM, Mettelman RC, Crawford JC, Nguyen THO, Rowntree LC, Rosati E, Richards KA, Sant AJ, Klebert MK, Suessen T, Middleton WD, Wolf J, Teefey SA, O'Halloran JA, Presti RM, Kedzierska K, Rossjohn J, Thomas PG, Ellebedy AH. SARS-CoV-2 mRNA vaccination elicits a robust and persistent T follicular helper cell response in humans. Cell 2022; 185:603-613.e15. [PMID: 35026152 PMCID: PMC8695127 DOI: 10.1016/j.cell.2021.12.026] [Citation(s) in RCA: 198] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/12/2021] [Accepted: 12/17/2021] [Indexed: 01/06/2023]
Abstract
SARS-CoV-2 mRNA vaccines induce robust anti-spike (S) antibody and CD4+ T cell responses. It is not yet clear whether vaccine-induced follicular helper CD4+ T (TFH) cell responses contribute to this outstanding immunogenicity. Using fine-needle aspiration of draining axillary lymph nodes from individuals who received the BNT162b2 mRNA vaccine, we evaluated the T cell receptor sequences and phenotype of lymph node TFH. Mining of the responding TFH T cell receptor repertoire revealed a strikingly immunodominant HLA-DPB1∗04-restricted response to S167-180 in individuals with this allele, which is among the most common HLA alleles in humans. Paired blood and lymph node specimens show that while circulating S-specific TFH cells peak one week after the second immunization, S-specific TFH persist at nearly constant frequencies for at least six months. Collectively, our results underscore the key role that robust TFH cell responses play in establishing long-term immunity by this efficacious human vaccine.
Collapse
Affiliation(s)
- Philip A Mudd
- Department of Emergency Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA; Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, Saint Louis, MO 63110, USA.
| | - Anastasia A Minervina
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Mikhail V Pogorelyy
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jackson S Turner
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Wooseob Kim
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Elizaveta Kalaidina
- Division of Allergy and Immunology, Department of Internal Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Jan Petersen
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Aaron J Schmitz
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Tingting Lei
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Alem Haile
- Clinical Trials Unit, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Allison M Kirk
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Robert C Mettelman
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jeremy Chase Crawford
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Thi H O Nguyen
- Department of Microbiology and Immunology, University of Melbourne, at Peter Doherty Institute for Infection and Immunity, Parkville, Victoria 3052, Australia
| | - Louise C Rowntree
- Department of Microbiology and Immunology, University of Melbourne, at Peter Doherty Institute for Infection and Immunity, Parkville, Victoria 3052, Australia
| | - Elisa Rosati
- Institute of Clinical Molecular Biology, Christian-Albrecht University of Kiel, Kiel 24105, Germany
| | - Katherine A Richards
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Andrea J Sant
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Michael K Klebert
- Clinical Trials Unit, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Teresa Suessen
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - William D Middleton
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Joshua Wolf
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Sharlene A Teefey
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Jane A O'Halloran
- Division of Infectious Diseases, Department of Internal Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Rachel M Presti
- Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, Saint Louis, MO 63110, USA; Clinical Trials Unit, Washington University School of Medicine, Saint Louis, MO 63110, USA; Division of Infectious Diseases, Department of Internal Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA; Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, University of Melbourne, at Peter Doherty Institute for Infection and Immunity, Parkville, Victoria 3052, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia; Institute of Infection and Immunity, Cardiff University, School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Paul G Thomas
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | - Ali H Ellebedy
- Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA; Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, Saint Louis, MO 63110, USA.
| |
Collapse
|
13
|
Kealy L, Good-Jacobson KL. Advances in understanding the formation and fate of B-cell memory in response to immunization or infection. OXFORD OPEN IMMUNOLOGY 2021; 2:iqab018. [PMID: 36845573 PMCID: PMC8499879 DOI: 10.1093/oxfimm/iqab018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 08/06/2021] [Accepted: 09/01/2021] [Indexed: 02/07/2023] Open
Abstract
Immunological memory has the potential to provide lifelong protection against recurrent infections. As such, it has been crucial to the success of vaccines. Yet, the recent pandemic has illuminated key gaps in our knowledge related to the factors influencing effective memory formation and the inability to predict the longevity of immune protection. In recent decades, researchers have acquired a number of novel and powerful tools with which to study the factors underpinning humoral memory. These tools have been used to study the B-cell fate decisions that occur within the germinal centre (GC), a site where responding B cells undergo affinity maturation and are one of the major routes for memory B cell and high-affinity long-lived plasma cell formation. The advent of single-cell sequencing technology has provided an enhanced resolution for studying fate decisions within the GC and cutting-edge techniques have enabled researchers to model this reaction with more accuracy both in vitro and in silico. Moreover, modern approaches to studying memory B cells have allowed us to gain a better appreciation for the heterogeneity and adaptability of this vital class of B cells. Together, these studies have facilitated important breakthroughs in our understanding of how these systems operate to ensure a successful immune response. In this review, we describe recent advances in the field of GC and memory B-cell biology in order to provide insight into how humoral memory is formed, as well as the potential for generating lasting immunity to novel pathogens such as severe acute respiratory syndrome coronavirus 2.
Collapse
Affiliation(s)
- Liam Kealy
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia,Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Kim L Good-Jacobson
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia,Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia,Correspondence address. Department of Biochemistry and Molecular Biology, Monash University, Ground floor reception, 23 Innovation Walk (Bldg 77), Clayton, Victoria 3800 Australia. Tel: (+613) 990-29510; E-mail: ; Twitter: @KimLJacobson
| |
Collapse
|
14
|
Yang M, Yi P, Jiang J, Zhao M, Wu H, Lu Q. Dysregulated translational factors and epigenetic regulations orchestrate in B cells contributing to autoimmune diseases. Int Rev Immunol 2021; 42:1-25. [PMID: 34445929 DOI: 10.1080/08830185.2021.1964498] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
B cells play a crucial role in antigen presentation, antibody production and pro-/anti-inflammatory cytokine secretion in adaptive immunity. Several translational factors including transcription factors and cytokines participate in the regulation of B cell development, with the cooperation of epigenetic regulations. Autoimmune diseases are generally characterized with autoreactive B cells and high-level pathogenic autoantibodies. The success of B cell depletion therapy in mouse model and clinical trials has proven the role of B cells in pathogenesis of autoimmune diseases. The failure of B cell tolerance in immune checkpoints results in accumulated autoreactive naïve B (BN) cells with aberrant B cell receptor signaling and dysregulated B cell response, contributing to self-antibody-mediated autoimmune reaction. Dysregulation of translational factors and epigenetic alterations in B cells has been demonstrated to correlate with aberrant B cell compartment in autoimmune diseases, such as systemic lupus erythematosus, rheumatoid arthritis, primary Sjögren's syndrome, multiple sclerosis, diabetes mellitus and pemphigus. This review is intended to summarize the interaction of translational factors and epigenetic regulations that are involved with development and differentiation of B cells, and the mechanism of dysregulation in the pathogenesis of autoimmune diseases.
Collapse
Affiliation(s)
- Ming Yang
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Ping Yi
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Jiao Jiang
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Ming Zhao
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Haijing Wu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Qianjin Lu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China.,Department of Dermatology, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China
| |
Collapse
|
15
|
Turner JS, O'Halloran JA, Kalaidina E, Kim W, Schmitz AJ, Zhou JQ, Lei T, Thapa M, Chen RE, Case JB, Amanat F, Rauseo AM, Haile A, Xie X, Klebert MK, Suessen T, Middleton WD, Shi PY, Krammer F, Teefey SA, Diamond MS, Presti RM, Ellebedy AH. SARS-CoV-2 mRNA vaccines induce persistent human germinal centre responses. Nature 2021; 596:109-113. [PMID: 34182569 PMCID: PMC8935394 DOI: 10.1038/s41586-021-03738-2] [Citation(s) in RCA: 567] [Impact Index Per Article: 141.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/18/2021] [Indexed: 02/06/2023]
Abstract
SARS-CoV-2 mRNA-based vaccines are about 95% effective in preventing COVID-191-5. The dynamics of antibody-secreting plasmablasts and germinal centre B cells induced by these vaccines in humans remain unclear. Here we examined antigen-specific B cell responses in peripheral blood (n = 41) and draining lymph nodes in 14 individuals who had received 2 doses of BNT162b2, an mRNA-based vaccine that encodes the full-length SARS-CoV-2 spike (S) gene1. Circulating IgG- and IgA-secreting plasmablasts that target the S protein peaked one week after the second immunization and then declined, becoming undetectable three weeks later. These plasmablast responses preceded maximal levels of serum anti-S binding and neutralizing antibodies to an early circulating SARS-CoV-2 strain as well as emerging variants, especially in individuals who had previously been infected with SARS-CoV-2 (who produced the most robust serological responses). By examining fine needle aspirates of draining axillary lymph nodes, we identified germinal centre B cells that bound S protein in all participants who were sampled after primary immunization. High frequencies of S-binding germinal centre B cells and plasmablasts were sustained in these draining lymph nodes for at least 12 weeks after the booster immunization. S-binding monoclonal antibodies derived from germinal centre B cells predominantly targeted the receptor-binding domain of the S protein, and fewer clones bound to the N-terminal domain or to epitopes shared with the S proteins of the human betacoronaviruses OC43 and HKU1. These latter cross-reactive B cell clones had higher levels of somatic hypermutation as compared to those that recognized only the SARS-CoV-2 S protein, which suggests a memory B cell origin. Our studies demonstrate that SARS-CoV-2 mRNA-based vaccination of humans induces a persistent germinal centre B cell response, which enables the generation of robust humoral immunity.
Collapse
Affiliation(s)
- Jackson S Turner
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Jane A O'Halloran
- Division of Infectious Diseases, Department of Internal Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Elizaveta Kalaidina
- Division of Allergy and Immunology, Department of Internal Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Wooseob Kim
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Aaron J Schmitz
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Julian Q Zhou
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Tingting Lei
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Mahima Thapa
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Rita E Chen
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
- Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - James Brett Case
- Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Fatima Amanat
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Adriana M Rauseo
- Division of Infectious Diseases, Department of Internal Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Alem Haile
- Clinical Trials Unit, Washington University School of Medicine, St Louis, MO, USA
| | - Xuping Xie
- University of Texas Medical Branch, Galveston, TX, USA
| | - Michael K Klebert
- Clinical Trials Unit, Washington University School of Medicine, St Louis, MO, USA
| | - Teresa Suessen
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO, USA
| | - William D Middleton
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO, USA
| | - Pei-Yong Shi
- University of Texas Medical Branch, Galveston, TX, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sharlene A Teefey
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO, USA
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
- Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, St Louis, MO, USA
- The Andrew M. and Jane M. Bursky Center for Human Immunology & Immunotherapy Programs, Washington University School of Medicine, St Louis, MO, USA
| | - Rachel M Presti
- Division of Infectious Diseases, Department of Internal Medicine, Washington University School of Medicine, St Louis, MO, USA.
- Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, St Louis, MO, USA.
| | - Ali H Ellebedy
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA.
- Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, St Louis, MO, USA.
- The Andrew M. and Jane M. Bursky Center for Human Immunology & Immunotherapy Programs, Washington University School of Medicine, St Louis, MO, USA.
| |
Collapse
|
16
|
Jiang M, Yang L, Wu J, Xiong F, Li J. A de novo heterozygous variant in KAT6A is associated with a newly named neurodevelopmental disorder Arboleda-Tham syndrome-a case report. Transl Pediatr 2021; 10:1748-1754. [PMID: 34295791 PMCID: PMC8261581 DOI: 10.21037/tp-21-206] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/26/2021] [Indexed: 01/21/2023] Open
Abstract
Arboleda-Tham syndrome (OMIM#616268) is a newly named neurodevelopmental disorder, which is an autosomal dominant hereditary disease characterized by genetic variants. The clinical manifestations include global developmental delay, primary microcephaly, and craniofacial dysmorphism, as well as more varied features such as feeding difficulties, cardiac defects, and ocular anomalies. Currently, due to restricted knowledge of Arboleda-Tham syndrome and less specific pathological manifestations, it is difficult to diagnose at the early stages of the disease. Here, we present a case with obvious growth retardation and intellectual disability, accompanied by other manifestations including dysmorphic features of the ears, facial dysmorphism, right cryptorchidism, and inguinal hernia. Routine laboratory tests including blood-urine tandem mass spectrometry, urine gas chromatographic mass spectrometry, karyotype, echocardiography, automatic auditory brainstem responses, serum levels of calcium, phosphorus, vitamin D, creatine kinase (CK), and CK isoenzyme (CK-MB), and brain magnetic resonance imaging showed negative results. A de novo heterozygous variant in KAT6A, c.57delA (p.Val20*), was detected by trio-based whole exome sequencing and subsequent validation by Sanger sequencing in the patient, which was absent in both the parents. The patient received rehabilitation and nutritional intervention. The testis reduction and orchiopexy was scheduled when he was 1 year old. Our report extends the phenotype-genotype map of Arboleda-Tham syndrome, and also expands the mutant spectrum of the KAT6A gene. Moreover, this case emphasizes the timely conduction of whole exome sequencing for the early diagnosis of Arboleda-Tham syndrome, and spares patients from meaningless examinations and ineffective treatments.
Collapse
Affiliation(s)
- Mingyan Jiang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.,Ministry of Education Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Chengdu, China
| | - Lianlian Yang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.,Ministry of Education Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Chengdu, China
| | - Jinhui Wu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.,Ministry of Education Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Chengdu, China
| | - Fei Xiong
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.,Ministry of Education Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Chengdu, China
| | - Jinrong Li
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.,Ministry of Education Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Chengdu, China
| |
Collapse
|
17
|
Chan WF, Coughlan HD, Zhou JHS, Keenan CR, Bediaga NG, Hodgkin PD, Smyth GK, Johanson TM, Allan RS. Pre-mitotic genome re-organisation bookends the B cell differentiation process. Nat Commun 2021; 12:1344. [PMID: 33637722 PMCID: PMC7910489 DOI: 10.1038/s41467-021-21536-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 02/02/2021] [Indexed: 01/08/2023] Open
Abstract
During cellular differentiation chromosome conformation is intricately remodelled to support the lineage-specific transcriptional programs required for initiating and maintaining lineage identity. When these changes occur in relation to cell cycle, division and time in response to cellular activation and differentiation signals has yet to be explored, although it has been proposed to occur during DNA synthesis or after mitosis. Here, we elucidate the chromosome conformational changes in B lymphocytes as they differentiate and expand from a naive, quiescent state into antibody secreting plasma cells. We find gene-regulatory chromosome reorganization in late G1 phase before the first division, and that this configuration is remarkably stable as the cells massively and rapidly clonally expand. A second wave of conformational change occurs as cells terminally differentiate into plasma cells, coincident with increased time in G1 phase. These results provide further explanation for how lymphocyte fate is imprinted prior to the first division. They also suggest that chromosome reconfiguration occurs prior to DNA replication and mitosis, and is linked to a gene expression program that controls the differentiation process required for the generation of immunity.
Collapse
Affiliation(s)
- Wing Fuk Chan
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Hannah D Coughlan
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Jie H S Zhou
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Christine R Keenan
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Naiara G Bediaga
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Philip D Hodgkin
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Gordon K Smyth
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,School of Mathematics and Statistics, The University of Melbourne, Parkville, VIC, Australia
| | - Timothy M Johanson
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Rhys S Allan
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia. .,Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
18
|
Price MJ, Scharer CD, Kania AK, Randall TD, Boss JM. Conserved Epigenetic Programming and Enhanced Heme Metabolism Drive Memory B Cell Reactivation. THE JOURNAL OF IMMUNOLOGY 2021; 206:1493-1504. [PMID: 33627377 DOI: 10.4049/jimmunol.2000551] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 01/25/2021] [Indexed: 02/01/2023]
Abstract
Memory B cells (MBCs) have enhanced capabilities to differentiate to plasma cells and generate a rapid burst of Abs upon secondary stimulation. To determine if MBCs harbor an epigenetic landscape that contributes to increased differentiation potential, we derived the chromatin accessibility and transcriptomes of influenza-specific IgM and IgG MBCs compared with naive cells. MBCs possessed an accessible chromatin architecture surrounding plasma cell-specific genes, as well as altered expression of transcription factors and genes encoding cell cycle, chemotaxis, and signal transduction processes. Intriguingly, this MBC signature was conserved between humans and mice. MBCs of both species possessed a heightened heme signature compared with naive cells. Differentiation in the presence of hemin enhanced oxidative phosphorylation metabolism and MBC differentiation into Ab-secreting plasma cells. Thus, these data define conserved MBC transcriptional and epigenetic signatures that include a central role for heme and multiple other pathways in augmenting MBC reactivation potential.
Collapse
Affiliation(s)
- Madeline J Price
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322
| | - Christopher D Scharer
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322
| | - Anna K Kania
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322
| | - Troy D Randall
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294; and
| | - Jeremy M Boss
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322; .,Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322
| |
Collapse
|
19
|
Kealy L, Di Pietro A, Hailes L, Scheer S, Dalit L, Groom JR, Zaph C, Good-Jacobson KL. The Histone Methyltransferase DOT1L Is Essential for Humoral Immune Responses. Cell Rep 2020; 33:108504. [PMID: 33326791 DOI: 10.1016/j.celrep.2020.108504] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 10/02/2020] [Accepted: 11/17/2020] [Indexed: 12/11/2022] Open
Abstract
Histone modifiers are essential for the ability of immune cells to reprogram their gene expression during differentiation. The recruitment of the histone methyltransferase DOT1L (disruptor of telomeric silencing 1-like) induces oncogenic gene expression in a subset of B cell leukemias. Despite its importance, its role in the humoral immune system is unclear. Here, we demonstrate that DOT1L is a critical regulator of B cell biology. B cell development is defective in Dot1lf/fMb1Cre/+ mice, culminating in a reduction of peripheral mature B cells. Upon immunization or influenza infection of Dot1lf/fCd23Cre/+ mice, class-switched antibody-secreting cells are significantly attenuated and germinal centers fail to form. Consequently, DOT1L is essential for B cell memory formation. Transcriptome, pathway, and histological analyses identified a role for DOT1L in reprogramming gene expression for appropriate localization of B cells during the initial stage of the response. Together, these results demonstrate an essential role for DOT1L in generating an effective humoral immune response.
Collapse
Affiliation(s)
- Liam Kealy
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia; Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Andrea Di Pietro
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia; Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Lauren Hailes
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia; Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Sebastian Scheer
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia; Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Lennard Dalit
- Division of Immunology, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Joanna R Groom
- Division of Immunology, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Colby Zaph
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia; Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Kim L Good-Jacobson
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia; Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia.
| |
Collapse
|
20
|
Moroney JB, Chupp DP, Xu Z, Zan H, Casali P. Epigenetics of the antibody and autoantibody response. Curr Opin Immunol 2020; 67:75-86. [PMID: 33176228 PMCID: PMC7744442 DOI: 10.1016/j.coi.2020.09.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 11/20/2022]
Abstract
B cell differentiation driven by microbial antigens leads to production of anti-microbial antibodies, such as those neutralizing viruses, bacteria or bacterial toxin, that are class-switched (IgG and IgA) and somatically hypermutated (maturation of the antibody response) as well as secreted in large volume by plasma cells. Similar features characterize pathogenic antibodies to self-antigens in autoimmunity, reflecting the critical role of class switch DNA recombination (CSR), somatic hypermutation (SHM) and plasma cell differentiation in the generation of antibodies to not only foreign antigens but also self-antigens (autoantibodies). Central to CSR/SHM and plasma cell differentiation are AID, a potent DNA cytidine deaminase encoded by Aicda, and Blimp-1, a transcription factor encoded by Prdm1. B cell-intrinsic expression of Aicda and Prdm1 is regulated by epigenetic elements and processes, including DNA methylation, histone post-translational modifications and non-coding RNAs, particularly miRNAs. Here, we will discuss: B cell-intrinsic epigenetic processes that regulate antibody and autoantibody responses; how epigenetic dysregulation alters CSR/SHM and plasma cell differentiation, thereby leading to autoantibody responses, as in systemic lupus; and, how these can be modulated by nutrients, metabolites, and hormones through changes in B cell-intrinsic epigenetic mechanisms, which can provide therapeutic targets in autoimmunity.
Collapse
Affiliation(s)
- Justin B Moroney
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Long School of Medicine, UT Health Science Center, San Antonio, TX 78229, USA
| | - Daniel P Chupp
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Long School of Medicine, UT Health Science Center, San Antonio, TX 78229, USA
| | - Zhenming Xu
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Long School of Medicine, UT Health Science Center, San Antonio, TX 78229, USA
| | - Hong Zan
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Long School of Medicine, UT Health Science Center, San Antonio, TX 78229, USA
| | - Paolo Casali
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Long School of Medicine, UT Health Science Center, San Antonio, TX 78229, USA.
| |
Collapse
|
21
|
Wiesel-Motiuk N, Assaraf YG. The key roles of the lysine acetyltransferases KAT6A and KAT6B in physiology and pathology. Drug Resist Updat 2020; 53:100729. [PMID: 33130515 DOI: 10.1016/j.drup.2020.100729] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/21/2020] [Accepted: 08/28/2020] [Indexed: 12/14/2022]
Abstract
Histone modifications and more specifically ε-lysine acylations are key epigenetic regulators that control chromatin structure and gene transcription, thereby impacting on various important cellular processes and phenotypes. Furthermore, lysine acetylation of many non-histone proteins is involved in key cellular processes including transcription, DNA damage repair, metabolism, cellular proliferation, mitosis, signal transduction, protein folding, and autophagy. Acetylation affects protein functions through multiple mechanisms including regulation of protein stability, enzymatic activity, subcellular localization, crosstalk with other post-translational modifications as well as regulation of protein-protein and protein-DNA interactions. The paralogous lysine acetyltransferases KAT6A and KAT6B which belong to the MYST family of acetyltransferases, were first discovered approximately 25 years ago. KAT6 acetyltransferases acylate both histone H3 and non-histone proteins. In this respect, KAT6 acetyltransferases play key roles in regulation of transcription, various developmental processes, maintenance of hematopoietic and neural stem cells, regulation of hematopoietic cell differentiation, cell cycle progression as well as mitosis. In the current review, we discuss the physiological functions of the acetyltransferases KAT6A and KAT6B as well as their functions under pathological conditions of aberrant expression, leading to several developmental syndromes and cancer. Importantly, both upregulation and downregulation of KAT6 proteins was shown to play a role in cancer formation, progression, and therapy resistance, suggesting that they can act as oncogenes or tumor suppressors. We also describe reciprocal regulation of expression between KAT6 proteins and several microRNAs as well as their involvement in cancer formation, progression and resistance to therapy.
Collapse
Affiliation(s)
- Naama Wiesel-Motiuk
- The Fred Wyszkowski Cancer Research Laboratory, Dept. of Biology, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Dept. of Biology, Technion-Israel Institute of Technology, Haifa, 3200003, Israel.
| |
Collapse
|
22
|
Lasaviciute G, Bricaud AL, Hellgren F, Ingelman-Sundberg HM, Eksborg S, Jonker M, Haanstra KG, Hed Myrberg I, Sverremark-Ekström E, Loré K, Saghafian-Hedengren S, Nilsson A. Deficits in the IgG + memory B-cell recovery after anthracycline treatment is confined to the spleen of rhesus macaques. Clin Transl Immunology 2020; 9:e1150. [PMID: 32642064 PMCID: PMC7331234 DOI: 10.1002/cti2.1150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 06/08/2020] [Accepted: 06/08/2020] [Indexed: 12/28/2022] Open
Abstract
Objectives Loss of vaccine‐induced antibodies (Abs) after chemotherapy against paediatric acute lymphoblastic leukaemia (ALL) is common and often necessitates re‐immunisation after cessation of treatment. Even so, some ALL survivors fail to mount or to maintain protective Abs. Germinal centres (GCs) are clusters of proliferating B cells in follicles of secondary lymphoid tissues (SLTs) formed during adaptive immune responses and the origins of long‐lived memory B and plasma cells that are the source of Abs. Furthermore, productive GC reactions depend on T follicular helper (TFH) cells. To understand why chemotherapy induces deficits in Ab responses, we examined how SLTs were affected by chemotherapy. Methods Rhesus macaques were infused with either three cycles of the anthracycline doxorubicin or saline, followed by immunisation with a de novo and booster antigen. Spleen and lymph nodes were removed, and memory B, bulk T and TFH cells were examined. Results Despite adequate GC morphology, a diminished memory and IgG+ B‐cell population along with diminished total and booster vaccine‐specific IgG‐producing memory B cells were noted in the spleens of macaques with past doxorubicin exposure compared to the saline‐treated controls (P < 0.05). Intact bulk T and TFH cells were found in the SLTs of treated macaques, which displayed higher CD40L upregulation capacity by their splenic CXCR5+ helper T cells (P < 0.01). In contrast to the spleen, the immune cell populations studied were comparable between the lymph nodes of both saline‐ and doxorubicin‐treated macaques. Conclusion Our findings suggest that the splenic memory B‐cell subset, compared to its lymph node counterpart, is more severely altered by anthracycline treatment.
Collapse
Affiliation(s)
- Gintare Lasaviciute
- Departmet of Molecular Biosciences The Wenner-Gren Institute Stockholm University Stockholm Sweden
| | - Andréas L Bricaud
- Childhood Cancer Research Unit Department of Women's and Children's Health Karolinska Institutet Stockholm Sweden
| | - Fredrika Hellgren
- Department of Medicine Solna Division of Immunology and Allergy Karolinska Institutet and Karolinska University Hospital Stockholm Sweden.,Center for Molecular Medicine Karolinska Institutet Stockholm Sweden
| | - Hanna M Ingelman-Sundberg
- Childhood Cancer Research Unit Department of Women's and Children's Health Karolinska Institutet Stockholm Sweden
| | - Staffan Eksborg
- Childhood Cancer Research Unit Department of Women's and Children's Health Karolinska Institutet Stockholm Sweden
| | - Margreet Jonker
- Biomedical Primate Research Centre (BPRC) Rijswijk The Netherlands
| | | | - Ida Hed Myrberg
- Childhood Cancer Research Unit Department of Women's and Children's Health Karolinska Institutet Stockholm Sweden
| | - Eva Sverremark-Ekström
- Departmet of Molecular Biosciences The Wenner-Gren Institute Stockholm University Stockholm Sweden
| | - Karin Loré
- Department of Medicine Solna Division of Immunology and Allergy Karolinska Institutet and Karolinska University Hospital Stockholm Sweden.,Center for Molecular Medicine Karolinska Institutet Stockholm Sweden
| | - Shanie Saghafian-Hedengren
- Departmet of Molecular Biosciences The Wenner-Gren Institute Stockholm University Stockholm Sweden.,Childhood Cancer Research Unit Department of Women's and Children's Health Karolinska Institutet Stockholm Sweden
| | - Anna Nilsson
- Childhood Cancer Research Unit Department of Women's and Children's Health Karolinska Institutet Stockholm Sweden
| |
Collapse
|
23
|
Urreizti R, Lopez-Martin E, Martinez-Monseny A, Pujadas M, Castilla-Vallmanya L, Pérez-Jurado LA, Serrano M, Natera-de Benito D, Martínez-Delgado B, Posada-de-la-Paz M, Alonso J, Marin-Reina P, O'Callaghan M, Grinberg D, Bermejo-Sánchez E, Balcells S. Five new cases of syndromic intellectual disability due to KAT6A mutations: widening the molecular and clinical spectrum. Orphanet J Rare Dis 2020; 15:44. [PMID: 32041641 PMCID: PMC7011274 DOI: 10.1186/s13023-020-1317-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 01/28/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Pathogenic variants of the lysine acetyltransferase 6A or KAT6A gene are associated with a newly identified neurodevelopmental disorder characterized mainly by intellectual disability of variable severity and speech delay, hypotonia, and heart and eye malformations. Although loss of function (LoF) mutations were initially reported as causing this disorder, missense mutations, to date always involving serine residues, have recently been associated with a form of the disorder without cardiac involvement. RESULTS In this study we present five new patients, four with truncating mutations and one with a missense change and the only one not presenting with cardiac anomalies. The missense change [p.(Gly359Ser)], also predicted to affect splicing by in silico tools, was functionally tested in the patient's lymphocyte RNA revealing a splicing effect for this allele that would lead to a frameshift and premature truncation. CONCLUSIONS An extensive revision of the clinical features of these five patients revealed high concordance with the 80 cases previously reported, including developmental delay with speech delay, feeding difficulties, hypotonia, a high bulbous nose, and recurrent infections. Other features present in some of these five patients, such as cryptorchidism in males, syndactyly, and trigonocephaly, expand the clinical spectrum of this syndrome.
Collapse
Affiliation(s)
- Roser Urreizti
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, IBUB, IRSJD, Barcelona, Spain. .,Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain. .,Present address: Neurometabolic Unit, Hospital Sant Joan de Déu, Barcelona, Spain.
| | - Estrella Lopez-Martin
- Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.,Institute of Rare Diseases Research (IIER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Antonio Martinez-Monseny
- Department of Genetic and Molecular Medicine and Pediatric Rare Diseases Institute (IPER), Institut de Recerca Sant Joan de Déu (IRSJD), Hospital Sant Joan de Déu, Barcelona, Spain
| | - Montse Pujadas
- Genetics Unit, University Pompeu Fabra, Hospital del Mar Research Institute IMIM, Barcelona, Spain
| | - Laura Castilla-Vallmanya
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, IBUB, IRSJD, Barcelona, Spain.,Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Luis Alberto Pérez-Jurado
- Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.,Genetics Unit, University Pompeu Fabra, Hospital del Mar Research Institute IMIM, Barcelona, Spain.,Women's and Children's Hospital, South Australian Health and Medical Research Institute and The University of Adelaide, Adelaide, Australia
| | - Mercedes Serrano
- Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.,Department of Neurology, Hospital Sant Joan de Déu, Barcelona, Spain
| | | | - Beatriz Martínez-Delgado
- Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.,Institute of Rare Diseases Research (IIER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Manuel Posada-de-la-Paz
- Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.,Institute of Rare Diseases Research (IIER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Javier Alonso
- Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.,Institute of Rare Diseases Research (IIER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Purificación Marin-Reina
- Dysmorpholgy and Clinical Genetics, Division of Neonatology, Neonatal Research Unit, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Mar O'Callaghan
- Department of Neurology, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Daniel Grinberg
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, IBUB, IRSJD, Barcelona, Spain.,Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Eva Bermejo-Sánchez
- Institute of Rare Diseases Research (IIER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Susanna Balcells
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, IBUB, IRSJD, Barcelona, Spain.,Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| |
Collapse
|
24
|
Zhang Y, Good-Jacobson KL. Epigenetic regulation of B cell fate and function during an immune response. Immunol Rev 2019; 288:75-84. [PMID: 30874352 DOI: 10.1111/imr.12733] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 12/17/2018] [Indexed: 12/18/2022]
Abstract
The humoral immune response requires coordination of molecular programs to mediate differentiation into unique B cell subsets that help clear the infection and form immune memory. Epigenetic modifications are crucial for ensuring that the appropriate genes are transcribed or repressed during B cell differentiation. Recent studies have illuminated the changes in DNA methylation and histone post-translational modifications that accompany the formation of germinal center and antibody-secreting cells during an immune response. In particular, the B cell subset-specific expression and function of DNA methyltransferases and histone-modifying complexes that mediate epigenome changes have begun to be unravelled. This review will discuss the recent advances in this field, as well as highlight critical questions about the relationship between epigenetic regulation and B cell fate and function that are yet to be answered.
Collapse
Affiliation(s)
- Yan Zhang
- Infection and Immunity Program and The Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Kim L Good-Jacobson
- Infection and Immunity Program and The Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
25
|
Azagra A, Marina-Zárate E, Ramiro AR, Javierre BM, Parra M. From Loops to Looks: Transcription Factors and Chromatin Organization Shaping Terminal B Cell Differentiation. Trends Immunol 2019; 41:46-60. [PMID: 31822368 DOI: 10.1016/j.it.2019.11.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 11/10/2019] [Accepted: 11/11/2019] [Indexed: 12/18/2022]
Abstract
B lymphopoiesis is tightly regulated at the level of gene transcription. In recent years, investigators have shed light on the transcription factor networks and the epigenetic machinery involved at all differentiation steps of mammalian B cell development. During terminal differentiation, B cells undergo dramatic changes in gene transcriptional programs to generate germinal center B cells, plasma cells and memory B cells. Recent evidence indicates that mature B cell formation involves an essential contribution from 3D chromatin conformations through its interplay with transcription factors and epigenetic machinery. Here, we provide an up-to-date overview of the coordination between transcription factors, epigenetic changes, and chromatin architecture during terminal B cell differentiation, focusing on recent discoveries and technical advances for studying 3D chromatin structures.
Collapse
Affiliation(s)
- Alba Azagra
- Lymphocyte Development and Disease Group, Josep Carreras Leukaemia Research Institute (IJC), Campus ICO-Germans Trias i Pujol, Badalona, Spain
| | - Ester Marina-Zárate
- B Cell Biology Laboratory, Centro Nacional de Investigaciones Cardiovasculares, 28029 Madrid, Spain
| | - Almudena R Ramiro
- B Cell Biology Laboratory, Centro Nacional de Investigaciones Cardiovasculares, 28029 Madrid, Spain
| | - Biola M Javierre
- 3D Chromatin Organization Group, Josep Carreras Leukaemia Research Institute (IJC), Campus ICO-Germans Trias i Pujol, Badalona, Spain.
| | - Maribel Parra
- Lymphocyte Development and Disease Group, Josep Carreras Leukaemia Research Institute (IJC), Campus ICO-Germans Trias i Pujol, Badalona, Spain.
| |
Collapse
|
26
|
Vanyai HK, Garnham A, May RE, McRae HM, Collin C, Wilcox S, Smyth GK, Thomas T, Voss AK. MOZ directs the distal-less homeobox gene expression program during craniofacial development. Development 2019; 146:146/14/dev175042. [DOI: 10.1242/dev.175042] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 06/17/2019] [Indexed: 12/20/2022]
Abstract
ABSTRACT
Oral clefts are common birth defects. Individuals with oral clefts who have identical genetic mutations regularly present with variable penetrance and severity. Epigenetic or chromatin-mediated mechanisms are commonly invoked to explain variable penetrance. However, specific examples of these are rare. Two functional copies of the MOZ (KAT6A, MYST3) gene, encoding a MYST family lysine acetyltransferase chromatin regulator, are essential for human craniofacial development, but the molecular role of MOZ in this context is unclear. Using genetic interaction and genomic studies, we have investigated the effects of loss of MOZ on the gene expression program during mouse development. Among the more than 500 genes differentially expressed after loss of MOZ, 19 genes had previously been associated with cleft palates. These included four distal-less homeobox (DLX) transcription factor-encoding genes, Dlx1, Dlx2, Dlx3 and Dlx5 and DLX target genes (including Barx1, Gbx2, Osr2 and Sim2). MOZ occupied the Dlx5 locus and was required for normal levels of histone H3 lysine 9 acetylation. MOZ affected Dlx gene expression cell-autonomously within neural crest cells. Our study identifies a specific program by which the chromatin modifier MOZ regulates craniofacial development.
Collapse
Affiliation(s)
- Hannah K. Vanyai
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Parkville, VIC 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Alexandra Garnham
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Parkville, VIC 3052, Australia
| | - Rose E. May
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Parkville, VIC 3052, Australia
| | - Helen M. McRae
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Parkville, VIC 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Caitlin Collin
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Parkville, VIC 3052, Australia
| | - Stephen Wilcox
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Parkville, VIC 3052, Australia
| | - Gordon K. Smyth
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Parkville, VIC 3052, Australia
- Department School of Mathematics and Statistics, University of Melbourne, Parkville, VIC 3052, Australia
| | - Tim Thomas
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Parkville, VIC 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Anne K. Voss
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Parkville, VIC 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| |
Collapse
|
27
|
Di Pietro A, Good-Jacobson KL. Disrupting the Code: Epigenetic Dysregulation of Lymphocyte Function during Infectious Disease and Lymphoma Development. THE JOURNAL OF IMMUNOLOGY 2019; 201:1109-1118. [PMID: 30082273 DOI: 10.4049/jimmunol.1800137] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 05/13/2018] [Indexed: 12/21/2022]
Abstract
Lymphocyte differentiation and identity are controlled by signals in the microenvironment that ultimately mediate gene expression in the nucleus. Although much focus has centered on the strategic and often unique roles transcription factors play within lymphocyte subsets, it is increasingly clear that another level of molecular regulation is crucial for regulating gene expression programs. In particular, epigenetic regulation is critical for appropriately regulated temporal and cell-type-specific gene expression during immune responses. As such, mutations in epigenetic modifiers are linked with lymphomagenesis. Furthermore, certain infections can remodel the epigenome in host cells, either through the microenvironment or by directly co-opting host epigenetic mechanisms, leading to inappropriate gene expression and/or ineffective cellular behavior. This review will focus on how histone modifications and DNA methylation, and the enzymes that regulate the epigenome, underpin lymphocyte differentiation and function in health and disease.
Collapse
Affiliation(s)
- Andrea Di Pietro
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia; and Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Kim L Good-Jacobson
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia; and Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
28
|
The AKT kinase signaling network is rewired by PTEN to control proximal BCR signaling in germinal center B cells. Nat Immunol 2019; 20:736-746. [PMID: 31011187 PMCID: PMC6724213 DOI: 10.1038/s41590-019-0376-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 03/12/2019] [Indexed: 01/04/2023]
Abstract
Compared to naïve B cells (NBCs), both B cell antigen receptor (BCR) and CD40 signaling are rewired in germinal center (GC) B cells (GCBCs) to optimize selection for high-affinity B cells. The mechanism for BCR reprogramming in GCBCs remains unknown. We describe a GC-specific, AKT kinase-driven negative feedback loop that attenuates BCR signaling. A mass spectrometry proteomic approach revealed that AKT activity was retargeted in GCBCs compared to NBCs. Retargeting was linked to differential AKT T308 and S473 phosphorylation, in turn due to GC-specific upregulation of phosphoinositide-dependent protein kinase PDK1 and the phosphatase PTEN, which retuned phosphatidylinositol-3-OH kinase (PI3K) signals. In GCBCs, AKT preferentially targeted CSK, SHP-1 and HPK1, which are negative regulators of BCR signaling. Phosphorylation results in markedly increased enzymatic activity of these proteins, creating a negative-feedback loop that dampens upstream BCR signaling. Inhibiting AKT substantially enhanced activation of BCR proximal kinase LYN as well as downstream BCR signaling molecules in GCBCs, establishing the relevance of this pathway.
Collapse
|
29
|
Kennedy J, Goudie D, Blair E, Chandler K, Joss S, McKay V, Green A, Armstrong R, Lees M, Kamien B, Hopper B, Tan TY, Yap P, Stark Z, Okamoto N, Miyake N, Matsumoto N, Macnamara E, Murphy JL, McCormick E, Hakonarson H, Falk MJ, Li D, Blackburn P, Klee E, Babovic-Vuksanovic D, Schelley S, Hudgins L, Kant S, Isidor B, Cogne B, Bradbury K, Williams M, Patel C, Heussler H, Duff-Farrier C, Lakeman P, Scurr I, Kini U, Elting M, Reijnders M, Schuurs-Hoeijmakers J, Wafik M, Blomhoff A, Ruivenkamp CAL, Nibbeling E, Dingemans AJM, Douine ED, Nelson SF, Hempel M, Bierhals T, Lessel D, Johannsen J, Arboleda VA, Newbury-Ecob R. KAT6A Syndrome: genotype-phenotype correlation in 76 patients with pathogenic KAT6A variants. Genet Med 2019; 21:850-860. [PMID: 30245513 PMCID: PMC6634310 DOI: 10.1038/s41436-018-0259-2] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 07/26/2018] [Indexed: 01/27/2023] Open
Abstract
PURPOSE Pathogenic variants in KAT6A have recently been identified as a cause of syndromic developmental delay. Within 2 years, the number of patients identified with pathogenic KAT6A variants has rapidly expanded and the full extent and variability of the clinical phenotype has not been reported. METHODS We obtained data for patients with KAT6A pathogenic variants through three sources: treating clinicians, an online family survey distributed through social media, and a literature review. RESULTS We identified 52 unreported cases, bringing the total number of published cases to 76. Our results expand the genotypic spectrum of pathogenic variants to include missense and splicing mutations. We functionally validated a pathogenic splice-site variant and identified a likely hotspot location for de novo missense variants. The majority of clinical features in KAT6A syndrome have highly variable penetrance. For core features such as intellectual disability, speech delay, microcephaly, cardiac anomalies, and gastrointestinal complications, genotype- phenotype correlations show that late-truncating pathogenic variants (exons 16-17) are significantly more prevalent. We highlight novel associations, including an increased risk of gastrointestinal obstruction. CONCLUSION Our data expand the genotypic and phenotypic spectrum for individuals with genetic pathogenic variants in KAT6A and we outline appropriate clinical management.
Collapse
Affiliation(s)
- Joanna Kennedy
- Clinical Genetics, University Hospitals Bristol, Southwell St, Bristol, UK
- University of Bristol, Bristol, UK
| | - David Goudie
- Clinical Genetics, Ninewells Hospital & Medical School, Dundee, UK
| | - Edward Blair
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Department of Clinical Genetics, Churchill Hospital, Headington, Oxford, UK
| | - Kate Chandler
- Manchester Centre for Genomic Medicine, St. Mary's Hospital, Central Manchester Foundation NHS Trust, Manchester Academic Health Science Centre (MAHSC), Manchester, UK
| | - Shelagh Joss
- West of Scotland Genetics Service, Queen Elizabeth University Hospital, Glasgow, UK
| | - Victoria McKay
- Cheshire & Merseyside Regional Genetics Service, Liverpool Women's NHS Foundation Trust, Crown Street, Liverpool, UK
| | - Andrew Green
- Department of Clinical Genetics, Our Lady's Children's Hospital, Crumlin, Dublin, Ireland
- School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| | - Ruth Armstrong
- East Anglian Medical Genetics Service, Addenbrooke's Hospital, Cambridge, UK
| | - Melissa Lees
- Clinical Genetics, Great Ormond Street Hospital NHS Trust, London, UK
| | | | | | - Tiong Yang Tan
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Patrick Yap
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Australia
- Genetic Health Service New Zealand, Auckland, New Zealand
| | - Zornitza Stark
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Australia
| | - Nobuhiko Okamoto
- Department of Medical Genetics, Osaka Medical Center, Osaka, Japan
- Research Institute for Maternal and Child Health, Osaka Medical Center, Osaka, Japan
| | - Noriko Miyake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Ellen Macnamara
- National Human Genome Research Institute, NIH, Bethesda, MD, USA
| | | | - Elizabeth McCormick
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Hakon Hakonarson
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Marni J Falk
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Dong Li
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | | - Eric Klee
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA
| | - Dusica Babovic-Vuksanovic
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA
| | - Susan Schelley
- Division of Medical Genetics, Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Louanne Hudgins
- Division of Medical Genetics, Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Sarina Kant
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Benjamin Cogne
- Service de Génétique Médicale, CHU Nantes, Nantes, France
| | - Kimberley Bradbury
- Clinical Genetics Guys and St Thomas' NHS Foundation Trust, Guys Hospital, London, UK
| | - Mark Williams
- Molecular Diagnostics, Mater Group, South Brisbane, Queensland, Australia
| | - Chirag Patel
- Genetic Health Queensland, Herston, Brisbane, Queensland, Australia
| | - Helen Heussler
- Child Development Service, Lady Cilento Children's Hospital, Brisbane, Queensland, Australia
| | | | - Phillis Lakeman
- Academic Medical Center, Department of Clinical Genetics, Amsterdam, The Netherlands
| | - Ingrid Scurr
- Clinical Genetics, University Hospitals Bristol, Southwell St, Bristol, UK
| | - Usha Kini
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Department of Clinical Genetics, Churchill Hospital, Headington, Oxford, UK
| | - Mariet Elting
- Klinisch Geneticus, VU Medisch centrum, Amsterdam, The Netherlands
| | - Margot Reijnders
- Radboud University Medical Center, Department of Human Genetics, Nijmegen, The Netherlands
| | | | - Mohamed Wafik
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Department of Clinical Genetics, Churchill Hospital, Headington, Oxford, UK
| | - Anne Blomhoff
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | | | - Esther Nibbeling
- Department of Genetics, University of Groningen, Groningen, The Netherlands
| | | | - Emilie D Douine
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Stanley F Nelson
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Maja Hempel
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Tatjana Bierhals
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Davor Lessel
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Jessika Johannsen
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Valerie A Arboleda
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA.
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA.
| | - Ruth Newbury-Ecob
- Clinical Genetics, University Hospitals Bristol, Southwell St, Bristol, UK.
- University of Bristol, Bristol, UK.
| |
Collapse
|
30
|
Innate and Adaptive Immune Memory: an Evolutionary Continuum in the Host's Response to Pathogens. Cell Host Microbe 2019; 25:13-26. [PMID: 30629914 DOI: 10.1016/j.chom.2018.12.006] [Citation(s) in RCA: 324] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Immunological memory is an important evolutionary trait that improves host survival upon reinfection. Memory is a characteristic recognized within both the innate and adaptive arms of the immune system. Although the mechanisms and properties through which innate and adaptive immune memory are induced are distinct, they collude to improve host defense to pathogens. Here, we propose that innate immune memory, or "trained immunity," is a primitive form of adaptation in host defense, resulting from chromatin structure rearrangement, which provides an increased but non-specific response to reinfection. In contrast, adaptive immune memory is more advanced, with increased magnitude of response mediated through epigenetic changes, as well as specificity mediated by gene recombination. An integrative model of immune memory is important for broad understanding of host defense, and for identifying the most effective approaches to modulate it for the benefit of patients with infections and immune-mediated diseases.
Collapse
|
31
|
Good-Jacobson KL. Strength in diversity: Phenotypic, functional, and molecular heterogeneity within the memory B cell repertoire. Immunol Rev 2018; 284:67-78. [DOI: 10.1111/imr.12663] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Kim L. Good-Jacobson
- Infection and Immunity Program and The Department of Biochemistry and Molecular Biology; Biomedicine Discovery Institute, Monash University; Clayton Vic. Australia
| |
Collapse
|
32
|
Efthymiou S, Salpietro V, Bettencourt C, Houlden H. Paroxysmal Movement Disorder and Epilepsy Caused by a De Novo Truncating Mutation in KAT6A. J Pediatr Genet 2018; 7:114-116. [PMID: 30105118 DOI: 10.1055/s-0038-1651526] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 04/05/2018] [Indexed: 10/14/2022]
Abstract
Mutations in KAT6A encoding a histone acetyltransferase involved in chromatin remodeling and in other genes involved in histone acetylation and/or deacetylation have been implicated in broad phenotypes of congenital and developmental abnormalities. However, limited genotype-phenotype correlations are available for some of the most rare or recently reported genetic disorders related to chromatin dysregulation. We hereby report a de novo truncating mutation in KAT6A (c.3338C > G; p.S1113X) in a young male patient with intellectual disability associated with impaired speech and autistic features, who also presented with infantile seizures and a complex movement disorder phenotype with paroxysmal episodes of abnormal startle responses.
Collapse
Affiliation(s)
- Stephanie Efthymiou
- Department of Molecular Neuroscience, Institute of Neurology, University College London, London, United Kingdom.,Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, London, United Kingdom
| | - Vincenzo Salpietro
- Department of Molecular Neuroscience, Institute of Neurology, University College London, London, United Kingdom
| | - Conceicao Bettencourt
- Department of Molecular Neuroscience, Institute of Neurology, University College London, London, United Kingdom.,Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, London, United Kingdom
| | - Henry Houlden
- Department of Molecular Neuroscience, Institute of Neurology, University College London, London, United Kingdom
| |
Collapse
|
33
|
Acetylation of the Cd8 Locus by KAT6A Determines Memory T Cell Diversity. Cell Rep 2018; 16:3311-3321. [PMID: 27653692 DOI: 10.1016/j.celrep.2016.08.056] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 07/21/2016] [Accepted: 08/17/2016] [Indexed: 11/20/2022] Open
Abstract
How functionally diverse populations of pathogen-specific killer T cells are generated during an immune response remains unclear. Here, we propose that fine-tuning of CD8αβ co-receptor levels via histone acetylation plays a role in lineage fate. We show that lysine acetyltransferase 6A (KAT6A) is responsible for maintaining permissive Cd8 gene transcription and enabling robust effector responses during infection. KAT6A-deficient CD8(+) T cells downregulated surface CD8 co-receptor expression during clonal expansion, a finding linked to reduced Cd8α transcripts and histone-H3 lysine 9 acetylation of the Cd8 locus. Loss of CD8 expression in KAT6A-deficient T cells correlated with reduced TCR signaling intensity and accelerated contraction of the effector-like memory compartment, whereas the long-lived memory compartment appeared unaffected, a result phenocopied by the removal of the Cd8 E8I enhancer element. These findings suggest a direct role of CD8αβ co-receptor expression and histone acetylation in shaping functional diversity within the cytotoxic T cell pool.
Collapse
|
34
|
Wang X, Xu H. Potential Epigenetic Regulation in the Germinal Center Reaction of Lymphoid Tissues in HIV/SIV Infection. Front Immunol 2018; 9:159. [PMID: 29449847 PMCID: PMC5799247 DOI: 10.3389/fimmu.2018.00159] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 01/18/2018] [Indexed: 01/08/2023] Open
Abstract
The production of high-affinity and broadly neutralizing antibodies plays a key role in the defense against pathogens. These antibody responses require effective germinal center (GC) reaction within anatomical niches of GCs, where follicular helper T (Tfh) cells provide cognate help to B cells for T cell-dependent antibody responses. Emerging evidences indicate that GC reaction in normal state and perhaps establishment of latent Tfh cell reservoir in HIV/SIV infection are tightly regulated by epigenetic histone modifications, which are responsible for activating or silencing chromatin. A better understanding of the mechanisms behind GC responses at cellular and molecular levels thus provides necessary knowledge for vaccination and immunotherapy. In this review, we discussed the epigenetic regulation of GC responses, especially for GC B and Tfh cell under normal state or HIV/SIV infection.
Collapse
Affiliation(s)
- Xiaolei Wang
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA, United States
| | - Huanbin Xu
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA, United States
| |
Collapse
|
35
|
Guo M, Price MJ, Patterson DG, Barwick BG, Haines RR, Kania AK, Bradley JE, Randall TD, Boss JM, Scharer CD. EZH2 Represses the B Cell Transcriptional Program and Regulates Antibody-Secreting Cell Metabolism and Antibody Production. THE JOURNAL OF IMMUNOLOGY 2017; 200:1039-1052. [PMID: 29288200 DOI: 10.4049/jimmunol.1701470] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 11/29/2017] [Indexed: 12/15/2022]
Abstract
Epigenetic remodeling is required during B cell differentiation. However, little is known about the direct functions of epigenetic enzymes in Ab-secreting cells (ASC) in vivo. In this study, we examined ASC differentiation independent of T cell help and germinal center reactions using mice with inducible or B cell-specific deletions of Ezh2 Following stimulation with influenza virus or LPS, Ezh2-deficient ASC poorly proliferated and inappropriately maintained expression of inflammatory pathways, B cell-lineage transcription factors, and Blimp-1-repressed genes, leading to fewer and less functional ASC. In the absence of EZH2, genes that normally gained histone H3 lysine 27 trimethylation were dysregulated and exhibited increased chromatin accessibility. Furthermore, EZH2 was also required for maximal Ab secretion by ASC, in part due to reduced mitochondrial respiration, impaired glucose metabolism, and poor expression of the unfolded-protein response pathway. Together, these data demonstrate that EZH2 is essential in facilitating epigenetic changes that regulate ASC fate, function, and metabolism.
Collapse
Affiliation(s)
- Muyao Guo
- Department of Microbiology and Immunology, Emory University, Atlanta, GA 30322.,Xiangya School of Medicine, Central South University, Changsha, 410008, China
| | - Madeline J Price
- Department of Microbiology and Immunology, Emory University, Atlanta, GA 30322
| | - Dillon G Patterson
- Department of Microbiology and Immunology, Emory University, Atlanta, GA 30322
| | - Benjamin G Barwick
- Department of Radiation Oncology, Emory University, Atlanta, GA 30322; and
| | - Robert R Haines
- Department of Microbiology and Immunology, Emory University, Atlanta, GA 30322
| | - Anna K Kania
- Department of Microbiology and Immunology, Emory University, Atlanta, GA 30322
| | - John E Bradley
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Troy D Randall
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Jeremy M Boss
- Department of Microbiology and Immunology, Emory University, Atlanta, GA 30322;
| | | |
Collapse
|
36
|
Charting the dynamic epigenome during B-cell development. Semin Cancer Biol 2017; 51:139-148. [PMID: 28851627 DOI: 10.1016/j.semcancer.2017.08.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 08/21/2017] [Accepted: 08/22/2017] [Indexed: 02/06/2023]
Abstract
The epigenetic landscape undergoes a widespread modulation during embryonic development and cell differentiation. Within the hematopoietic system, B cells are perhaps the cell lineage with a more dynamic DNA methylome during their maturation process, which involves approximately one third of all the CpG sites of the genome. Although each B-cell maturation step displays its own DNA methylation fingerprint, the DNA methylome is more extensively modified in particular maturation transitions. These changes are gradually accumulated in specific chromatin environments as cell differentiation progresses and reflect different features and functional states of B cells. Promoters and enhancers of B-cell transcription factors acquire activation-related epigenetic marks and are sequentially expressed in particular maturation windows. These transcription factors further reconfigure the epigenetic marks and activity state of their target sites to regulate the expression of genes related to B-cell functions. Together with this observation, extensive DNA methylation changes in areas outside gene regulatory elements such as hypomethylation of heterochromatic regions and hypermethylation of CpG-rich regions, also take place in mature B cells, which intriguingly have been described as hallmarks of cancer. This process starts in germinal center B cells, a highly proliferative cell type, and becomes particularly apparent in long-lived cells such as memory and plasma cells. Overall, the characterization of the DNA methylome during B-cell differentiation not only provides insights into the complex epigenetic network of regulatory elements that mediate the maturation process but also suggests that late B cells also passively accumulate epigenetic changes related to cell proliferation and longevity.
Collapse
|
37
|
Newman DM, Voss AK, Thomas T, Allan RS. Essential role for the histone acetyltransferase KAT7 in T cell development, fitness, and survival. J Leukoc Biol 2016; 101:887-892. [PMID: 27733580 DOI: 10.1189/jlb.1ma0816-338r] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 09/14/2016] [Accepted: 09/16/2016] [Indexed: 12/18/2022] Open
Abstract
Histone acetylation has an important role in gene regulation, DNA replication, and repair. Because these processes are central to the development of the immune system, we investigated the role of a previously unstudied histone acetyltransferase named KAT7 (also known as Myst2 or HBO1) in the regulation of thymopoiesis and observed a critical role in the regulation of conventional and innate-like T cell development. We found that KAT7-deficient thymocytes displayed normal, positive selection and development into mature single-positive αβ thymocytes; however, we observed few peripheral CD4+ or CD8+ T cells. The observed effects did not appear to arise from alterations to DNA replication, the TCR repertoire, or a block in thymocyte maturation and, more likely, was linked to survival defects related to gene deregulation because KAT7 deficiency led to an almost complete and specific loss of global histone-H3 lysine 14 acetylation (H3K14ac). Overall, we demonstrated a nonredundant role for KAT7 in the maintenance of H3K14ac, which is intimately linked with the ability to develop a normal immune system.
Collapse
Affiliation(s)
- Dane M Newman
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; and.,Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Anne K Voss
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; and.,Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Tim Thomas
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; and.,Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Rhys S Allan
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; and .,Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
38
|
Mesin L, Ersching J, Victora GD. Germinal Center B Cell Dynamics. Immunity 2016; 45:471-482. [PMID: 27653600 PMCID: PMC5123673 DOI: 10.1016/j.immuni.2016.09.001] [Citation(s) in RCA: 693] [Impact Index Per Article: 77.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 06/07/2016] [Accepted: 06/08/2016] [Indexed: 01/01/2023]
Abstract
Germinal centers (GCs) are the site of antibody diversification and affinity maturation and as such are vitally important for humoral immunity. The study of GC biology has undergone a renaissance in the past 10 years, with a succession of findings that have transformed our understanding of the cellular dynamics of affinity maturation. In this review, we discuss recent developments in the field, with special emphasis on how GC cellular and clonal dynamics shape antibody affinity and diversity during the immune response.
Collapse
Affiliation(s)
- Luka Mesin
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Jonatan Ersching
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Gabriel D Victora
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA.
| |
Collapse
|
39
|
Gauthier-Vasserot A, Thauvin-Robinet C, Bruel AL, Duffourd Y, St-Onge J, Jouan T, Rivière JB, Heron D, Donadieu J, Bellanné-Chantelot C, Briandet C, Huet F, Kuentz P, Lehalle D, Duplomb-Jego L, Gautier E, Maystadt I, Pinson L, Amram D, El Chehadeh S, Melki J, Julia S, Faivre L, Thevenon J. Application of whole-exome sequencing to unravel the molecular basis of undiagnosed syndromic congenital neutropenia with intellectual disability. Am J Med Genet A 2016; 173:62-71. [DOI: 10.1002/ajmg.a.37969] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 08/02/2016] [Indexed: 12/19/2022]
Affiliation(s)
| | - Christel Thauvin-Robinet
- Centre de Génétique et Centre de Référence Maladies Rares « Anomalies du Développement et Syndromes Malformatifs de l'Interrégion Est »; Hôpital d'Enfants; CHU Dijon France
- Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement (TRANSLAD); Centre Hospitalier Universitaire Dijon; Dijon France
| | - Ange-Line Bruel
- GAD EA4271; Université de Bourgogne Franche-Comté; Dijon France
| | - Yannis Duffourd
- GAD EA4271; Université de Bourgogne Franche-Comté; Dijon France
| | - Judith St-Onge
- GAD EA4271; Université de Bourgogne Franche-Comté; Dijon France
| | - Thibaud Jouan
- GAD EA4271; Université de Bourgogne Franche-Comté; Dijon France
| | | | - Delphine Heron
- Département de Génétique et Centre de Référence « Déficiences intellectuelles de causes rares »; AP-HP; Groupe Hospitalier Pitié-Salpêtrière; Paris France
| | - Jean Donadieu
- Service d'Hémato-Oncologie Pédiatrique; Registre des neutropénies congénitales; AP-HP Hôpital Trousseau; Paris France
| | | | | | - Frédéric Huet
- Service de Pédiatrie 1; Hôpital d'Enfants; CHU Dijon France
| | - Paul Kuentz
- Centre de Génétique et Centre de Référence Maladies Rares « Anomalies du Développement et Syndromes Malformatifs de l'Interrégion Est »; Hôpital d'Enfants; CHU Dijon France
| | - Daphné Lehalle
- Centre de Génétique et Centre de Référence Maladies Rares « Anomalies du Développement et Syndromes Malformatifs de l'Interrégion Est »; Hôpital d'Enfants; CHU Dijon France
| | - Laurence Duplomb-Jego
- Centre de Génétique et Centre de Référence Maladies Rares « Anomalies du Développement et Syndromes Malformatifs de l'Interrégion Est »; Hôpital d'Enfants; CHU Dijon France
| | - Elodie Gautier
- Centre de Génétique et Centre de Référence Maladies Rares « Anomalies du Développement et Syndromes Malformatifs de l'Interrégion Est »; Hôpital d'Enfants; CHU Dijon France
| | - Isabelle Maystadt
- Centre de Génétique Humaine; Institut de Pathologie et Génétique (I.P.G); Gosselies (Charleroi) Belgium
| | - Lucile Pinson
- Département de Génétique Médicale; CHRU Montpellier; Faculté de Médecine de Montpellier-Nimes; Université Montpellier 1; Inserm; Montpellier France
| | - Daniel Amram
- Unité de Génétique Clinique; CH Intercommunal de Créteil; Créteil France
| | - Salima El Chehadeh
- Centre de Génétique et Centre de Référence Maladies Rares « Anomalies du Développement et Syndromes Malformatifs de l'Interrégion Est »; Hôpital d'Enfants; CHU Dijon France
| | - Judith Melki
- Unité Mixte de Recherche-1169; INSERM; France; University Paris-Sud, le Kremlin-Bicêtre; France
| | - Sophia Julia
- Service de Génétique Médicale; CHU Toulouse; Toulouse France
| | - Laurence Faivre
- Centre de Génétique et Centre de Référence Maladies Rares « Anomalies du Développement et Syndromes Malformatifs de l'Interrégion Est »; Hôpital d'Enfants; CHU Dijon France
- Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement (TRANSLAD); Centre Hospitalier Universitaire Dijon; Dijon France
| | - Julien Thevenon
- Centre de Génétique et Centre de Référence Maladies Rares « Anomalies du Développement et Syndromes Malformatifs de l'Interrégion Est »; Hôpital d'Enfants; CHU Dijon France
- Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement (TRANSLAD); Centre Hospitalier Universitaire Dijon; Dijon France
| |
Collapse
|
40
|
Phipson B, Lee S, Majewski IJ, Alexander WS, Smyth GK. ROBUST HYPERPARAMETER ESTIMATION PROTECTS AGAINST HYPERVARIABLE GENES AND IMPROVES POWER TO DETECT DIFFERENTIAL EXPRESSION. Ann Appl Stat 2016; 10:946-963. [PMID: 28367255 DOI: 10.1214/16-aoas920] [Citation(s) in RCA: 667] [Impact Index Per Article: 74.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
One of the most common analysis tasks in genomic research is to identify genes that are differentially expressed (DE) between experimental conditions. Empirical Bayes (EB) statistical tests using moderated genewise variances have been very effective for this purpose, especially when the number of biological replicate samples is small. The EB procedures can however be heavily influenced by a small number of genes with very large or very small variances. This article improves the differential expression tests by robustifying the hyperparameter estimation procedure. The robust procedure has the effect of decreasing the informativeness of the prior distribution for outlier genes while increasing its informativeness for other genes. This effect has the double benefit of reducing the chance that hypervariable genes will be spuriously identified as DE while increasing statistical power for the main body of genes. The robust EB algorithm is fast and numerically stable. The procedure allows exact small-sample null distributions for the test statistics and reduces exactly to the original EB procedure when no outlier genes are present. Simulations show that the robustified tests have similar performance to the original tests in the absence of outlier genes but have greater power and robustness when outliers are present. The article includes case studies for which the robust method correctly identifies and downweights genes associated with hidden covariates and detects more genes likely to be scientifically relevant to the experimental conditions. The new procedure is implemented in the limma software package freely available from the Bioconductor repository.
Collapse
Affiliation(s)
| | - Stanley Lee
- The Walter and Eliza Hall Institute of Medical Research; The University of Melbourne
| | - Ian J Majewski
- The Walter and Eliza Hall Institute of Medical Research; The University of Melbourne
| | - Warren S Alexander
- The Walter and Eliza Hall Institute of Medical Research; The University of Melbourne
| | - Gordon K Smyth
- The Walter and Eliza Hall Institute of Medical Research; The University of Melbourne
| |
Collapse
|
41
|
Abstract
The generation of antigen-specific neutralizing antibodies and memory B cells is one of the most important immune protections of the host and is the basis for successful vaccination strategies. The protective antibodies, secreted by preexisting long-lived plasma cells and reactivated antigen-experienced memory B cells, constitute the main humoral immune defense. Distinct from the primary antibody response, the humoral memory response is generated much faster and with greater magnitude, and it produces antibodies with higher affinity and variable isotypes. Humoral immunity is critically dependent on the germinal center where high-affinity memory B cells and plasma cells are generated. In this chapter, we focus on recent advances in our understanding of the molecular mechanisms that govern fate decision for memory B cells and plasma cells and the mechanisms that maintain the long-lived plasma-cell pool, with emphasis on how the transcription factor Blimp-1 (B lymphocyte-induced maturation protein-1) helps regulate the above-mentioned immunoregulatory steps to ensure the production and maintenance of antibody-secreting plasma cells as well as how it directs memory cell vs plasma-cell fate. We also discuss the molecular basis of Blimp-1 action and how its expression is regulated.
Collapse
|
42
|
Corcoran LM, Tarlinton DM. Regulation of germinal center responses, memory B cells and plasma cell formation-an update. Curr Opin Immunol 2016; 39:59-67. [PMID: 26799208 DOI: 10.1016/j.coi.2015.12.008] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 12/21/2015] [Accepted: 12/31/2015] [Indexed: 12/31/2022]
Abstract
Progress in understanding humoral immunity has been accelerated by the powerful experimental approaches of genetics, genomics and imaging. Excellent reviews of these advances appeared in 2015 in celebration of the 50th anniversary of the discovery of B cell and T cell lineages in the chicken. Here we provide a contemporary model of B cell differentiation, highlighting recent publications illuminating germinal center (GC), memory B cell and antibody-secreting plasma cell biology. The important contributions of CD4T cells to antibody responses have been thoroughly reviewed elsewhere.
Collapse
Affiliation(s)
- Lynn M Corcoran
- Molecular Immunology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3052, Australia.
| | - David M Tarlinton
- Immunology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3052, Australia
| |
Collapse
|
43
|
Vaidyanathan B, Chaudhuri J. Epigenetic Codes Programing Class Switch Recombination. Front Immunol 2015; 6:405. [PMID: 26441954 PMCID: PMC4566074 DOI: 10.3389/fimmu.2015.00405] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 07/23/2015] [Indexed: 11/22/2022] Open
Abstract
Class switch recombination imparts B cells with a fitness-associated adaptive advantage during a humoral immune response by using a precision-tailored DNA excision and ligation process to swap the default constant region gene of the antibody with a new one that has unique effector functions. This secondary diversification of the antibody repertoire is a hallmark of the adaptability of B cells when confronted with environmental and pathogenic challenges. Given that the nucleotide sequence of genes during class switching remains unchanged (genetic constraints), it is logical and necessary therefore, to integrate the adaptability of B cells to an epigenetic state, which is dynamic and can be heritably modulated before, after, or even during an antibody-dependent immune response. Epigenetic regulation encompasses heritable changes that affect function (phenotype) without altering the sequence information embedded in a gene, and include histone, DNA and RNA modifications. Here, we review current literature on how B cells use an epigenetic code language as a means to ensure antibody plasticity in light of pathogenic insults.
Collapse
Affiliation(s)
- Bharat Vaidyanathan
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School , New York, NY , USA ; Immunology Program, Sloan Kettering Institute , New York, NY , USA
| | - Jayanta Chaudhuri
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School , New York, NY , USA ; Immunology Program, Sloan Kettering Institute , New York, NY , USA
| |
Collapse
|
44
|
Ying Z, Mei M, Zhang P, Liu C, He H, Gao F, Bao S. Histone Arginine Methylation by PRMT7 Controls Germinal Center Formation via Regulating Bcl6 Transcription. THE JOURNAL OF IMMUNOLOGY 2015; 195:1538-47. [DOI: 10.4049/jimmunol.1500224] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 06/06/2015] [Indexed: 12/24/2022]
|
45
|
Fu X, Wang X, Duan Z, Zhang C, Fu X, Yang J, Liu X, He J. Histone H3k9 and H3k27 Acetylation Regulates IL-4/STAT6-Mediated Igε Transcription in B Lymphocytes. Anat Rec (Hoboken) 2015; 298:1431-9. [PMID: 25952120 DOI: 10.1002/ar.23172] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 03/04/2015] [Accepted: 03/17/2015] [Indexed: 12/25/2022]
Abstract
IL-4 activates STAT6 and causes the subsequent up-regulation of Ig heavy chain germline Igε via chromatin remodeling involved in B lymphocytes development. STAT6 acts as a molecular switch to regulate the higher-order chromatin remodeling via dynamically orchestrating co-activators (CBP/Tudor-SN) and co-repressors (HDAC1/PSF). Here, we demonstrated that STAT6/Tudor-SN/PSF form a complex, balancing the acetylation and deacetylation states to co-regulate IL-4/STAT6 gene transcription. In addition, we confirmed that IL-4 treatment increased the HATs activity in Ramos cells. As "active" markers, the expression of H3K9ac and H3K27ac increased after treatment with IL-4. However, transcriptional repressors such as H3K9me3 and H3K27me3 decreased in response to IL-4 stimulation. Moreover, IL-4 treatment enhanced H3 acetylation at the Igε promoter regions. Our results revealed that the Igε gene transcription is regulated by histone modifications in the IL-4/STAT6 pathway. The study will provide novel insights into the pathogenesis of allergic diseases.
Collapse
Affiliation(s)
- Xiao Fu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Cellular and Molecular Immunology, Tianjin Medical University, Tianjin, China.,Key Laboratory of Educational Ministry of China, Tianjin Medical University, Tianjin, China
| | - Xinting Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Cellular and Molecular Immunology, Tianjin Medical University, Tianjin, China.,Key Laboratory of Educational Ministry of China, Tianjin Medical University, Tianjin, China
| | - Zhongchao Duan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Cellular and Molecular Immunology, Tianjin Medical University, Tianjin, China.,Key Laboratory of Educational Ministry of China, Tianjin Medical University, Tianjin, China
| | - Chunyan Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Cellular and Molecular Immunology, Tianjin Medical University, Tianjin, China.,Key Laboratory of Educational Ministry of China, Tianjin Medical University, Tianjin, China
| | - Xue Fu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Cellular and Molecular Immunology, Tianjin Medical University, Tianjin, China.,Key Laboratory of Educational Ministry of China, Tianjin Medical University, Tianjin, China
| | - Jie Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Cellular and Molecular Immunology, Tianjin Medical University, Tianjin, China.,Key Laboratory of Educational Ministry of China, Tianjin Medical University, Tianjin, China.,Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.,Laboratory of Molecular Immunology, Research Center of Basic Medical Science, Tianjin Medical University, Tianjin, China.,Department of Immunology, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada
| | - Xin Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Cellular and Molecular Immunology, Tianjin Medical University, Tianjin, China.,Key Laboratory of Educational Ministry of China, Tianjin Medical University, Tianjin, China
| | - Jinyan He
- Tianjin Key Laboratory of Cellular and Molecular Immunology, Tianjin Medical University, Tianjin, China.,Key Laboratory of Educational Ministry of China, Tianjin Medical University, Tianjin, China.,Department of Physiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| |
Collapse
|
46
|
Yang XJ. MOZ and MORF acetyltransferases: Molecular interaction, animal development and human disease. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:1818-26. [PMID: 25920810 DOI: 10.1016/j.bbamcr.2015.04.014] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 04/17/2015] [Accepted: 04/22/2015] [Indexed: 01/16/2023]
Abstract
Lysine residues are subject to many forms of covalent modification and one such modification is acetylation of the ε-amino group. Initially identified on histone proteins in the 1960s, lysine acetylation is now considered as an important form of post-translational modification that rivals phosphorylation. However, only about a dozen of human lysine acetyltransferases have been identified. Among them are MOZ (monocytic leukemia zinc finger protein; a.k.a. MYST3 and KAT6A) and its paralog MORF (a.k.a. MYST4 and KAT6B). Although there is a distantly related protein in Drosophila and sea urchin, these two enzymes are vertebrate-specific. They form tetrameric complexes with BRPF1 (bromodomain- and PHD finger-containing protein 1) and two small non-catalytic subunits. These two acetyltransferases and BRPF1 play key roles in various developmental processes; for example, they are important for development of hematopoietic and neural stem cells. The human KAT6A and KAT6B genes are recurrently mutated in leukemia, non-hematologic malignancies, and multiple developmental disorders displaying intellectual disability and various other abnormalities. In addition, the BRPF1 gene is mutated in childhood leukemia and adult medulloblastoma. Therefore, these two acetyltransferases and their partner BRPF1 are important in animal development and human disease.
Collapse
Affiliation(s)
- Xiang-Jiao Yang
- The Rosalind & Morris Goodman Cancer Research Center, McGill University, Montreal, Quebec H3A 1A3, Canada; Department of Medicine, McGill University, Montreal, Quebec H3A 1A3, Canada; Department of Biochemistry, McGill University, Montreal, Quebec H3A 1A3, Canada; McGill University Health Center, Montreal, Quebec H3A 1A3, Canada.
| |
Collapse
|
47
|
Arboleda VA, Lee H, Dorrani N, Zadeh N, Willis M, Macmurdo CF, Manning MA, Kwan A, Hudgins L, Barthelemy F, Miceli MC, Quintero-Rivera F, Kantarci S, Strom SP, Deignan JL, Grody WW, Vilain E, Nelson SF. De novo nonsense mutations in KAT6A, a lysine acetyl-transferase gene, cause a syndrome including microcephaly and global developmental delay. Am J Hum Genet 2015; 96:498-506. [PMID: 25728775 DOI: 10.1016/j.ajhg.2015.01.017] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 01/20/2015] [Indexed: 12/19/2022] Open
Abstract
Chromatin remodeling through histone acetyltransferase (HAT) and histone deactylase (HDAC) enzymes affects fundamental cellular processes including the cell-cycle, cell differentiation, metabolism, and apoptosis. Nonsense mutations in genes that are involved in histone acetylation and deacetylation result in multiple congenital anomalies with most individuals displaying significant developmental delay, microcephaly and dysmorphism. Here, we report a syndrome caused by de novo heterozygous nonsense mutations in KAT6A (a.k.a., MOZ, MYST3) identified by clinical exome sequencing (CES) in four independent families. The same de novo nonsense mutation (c.3385C>T [p.Arg1129∗]) was observed in three individuals, and the fourth individual had a nearby de novo nonsense mutation (c.3070C>T [p.Arg1024∗]). Neither of these variants was present in 1,815 in-house exomes or in public databases. Common features among all four probands include primary microcephaly, global developmental delay including profound speech delay, and craniofacial dysmorphism, as well as more varied features such as feeding difficulties, cardiac defects, and ocular anomalies. We further demonstrate that KAT6A mutations result in dysregulation of H3K9 and H3K18 acetylation and altered P53 signaling. Through histone and non-histone acetylation, KAT6A affects multiple cellular processes and illustrates the complex role of acetylation in regulating development and disease.
Collapse
Affiliation(s)
- Valerie A Arboleda
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Hane Lee
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Naghmeh Dorrani
- Department of Pediatrics, Division of Medical Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA, USA
| | - Neda Zadeh
- Division of Medical Genetics, CHOC Children's Hospital of Orange County, CA 92868, USA; Genetics Center, Orange, CA 92868, USA
| | - Mary Willis
- Department of Pediatrics, Naval Medical Center, San Diego, 92134, USA
| | - Colleen Forsyth Macmurdo
- Department of Pediatrics, Division of Medical Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Melanie A Manning
- Department of Pediatrics, Division of Medical Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Andrea Kwan
- Department of Pediatrics, Division of Medical Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Louanne Hudgins
- Department of Pediatrics, Division of Medical Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Florian Barthelemy
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - M Carrie Miceli
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Fabiola Quintero-Rivera
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Sibel Kantarci
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Samuel P Strom
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Joshua L Deignan
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Wayne W Grody
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Pediatrics, Division of Medical Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA, USA; Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Eric Vilain
- Department of Pediatrics, Division of Medical Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA, USA; Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Stanley F Nelson
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
48
|
Good-Jacobson KL. Regulation of germinal center, B-cell memory, and plasma cell formation by histone modifiers. Front Immunol 2014; 5:596. [PMID: 25477884 PMCID: PMC4237133 DOI: 10.3389/fimmu.2014.00596] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 11/06/2014] [Indexed: 01/05/2023] Open
Abstract
Understanding the regulation of antibody production and B-cell memory formation and function is core to finding new treatments for B-cell-derived cancers, antibody-mediated autoimmune disorders, and immunodeficiencies. Progression from a small number of antigen-specific B-cells to the production of a large number of antibody-secreting cells is tightly regulated. Although much progress has been made in revealing the transcriptional regulation of B-cell differentiation that occurs during humoral immune responses, there are still many questions that remain unanswered. Recent work on the expression and roles of histone modifiers in lymphocytes has begun to shed light on this additional level of regulation. This review will discuss the recent advancements in understanding how humoral immune responses, in particular germinal centers and memory cells, are modulated by histone modifiers.
Collapse
Affiliation(s)
- Kim L Good-Jacobson
- Immunology Division, Walter and Eliza Hall Institute of Medical Research , Parkville, VIC , Australia ; Department of Medical Biology, University of Melbourne , Parkville, VIC , Australia
| |
Collapse
|