1
|
Parker HR, Edgar JE, Goulder PJ. Autovaccination revisited: potential to boost antiviral immunity and facilitate HIV-1 cure/remission in children. Curr Opin HIV AIDS 2025; 20:271-278. [PMID: 40105005 PMCID: PMC11970616 DOI: 10.1097/coh.0000000000000924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
PURPOSE OF REVIEW To review the concept of autovaccination as a strategy to boost anti-HIV-1 immunity and improve immune control, especially as a means to facilitate cure/remission in paediatric HIV-1 infection, where effective interventions in clinical testing remain limited compared to adults. RECENT FINDINGS Early autovaccination studies, conducted 15-25 years ago, suggested potential immunological benefits from exposure to autologous virus in both children and adults, specifically when antiretroviral therapy (ART) was initiated during acute infection. More recent work in nonhuman primates (NHPs) has shown that early ART initiation can significantly reduce the viral setpoint following treatment interruption, primarily through CD8 + T-cell responses, and prevent early immune escape - a phenomenon commonly observed in ART-naive acute infections. Additionally, NHP studies indicate that multiple, short analytical treatment interruptions (ATIs) can delay viral rebound and further lower the viral setpoint via enhanced CD8 + T-cell responses. SUMMARY Recent studies in NHP support the potential for autovaccination via short ATIs to enhance antiviral immunity and improve immune control of HIV-1. With well tolerated, well monitored ATI protocols, autovaccination could be a valuable approach to facilitating cure/remission in children living with HIV (LWH), in whom very early-ART initiation and early-life immunity are associated with low viral reservoirs and high cure/remission potential.
Collapse
Affiliation(s)
- Harriet R. Parker
- Peter Medawar Building for Pathogen Research, Department of Paediatrics
| | - Julia E. Edgar
- Peter Medawar Building for Pathogen Research, Department of Paediatrics
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Philip J.R. Goulder
- Peter Medawar Building for Pathogen Research, Department of Paediatrics
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts, USA
- Africa Health Research Institute, Durban, South Africa
| |
Collapse
|
2
|
Baiyegunhi OO, Mthembu K, Reuschl AK, Ojwach D, Farinre O, Maimela M, Balinda S, Price M, Bunders MJ, Altfeld M, Jolly C, Mann J, Ndung’u T. HIV-1 Gag-protease-driven replicative capacity influences T-cell metabolism, cytokine induction, and viral cell-to-cell spread. mBio 2025; 16:e0356524. [PMID: 39998252 PMCID: PMC11980368 DOI: 10.1128/mbio.03565-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 12/12/2024] [Indexed: 02/26/2025] Open
Abstract
High replicative capacity (RC) HIV-1 strains are associated with elevated viral loads and faster disease progression in the absence of antiretroviral therapy. Understanding the mechanisms by which high RC strains adversely affect the host is essential for developing novel anti-HIV interventions. This study investigates cellular metabolism, cytokine induction, and cell-to-cell spread as potential mechanisms differentiating clinical outcomes between low and high RC strains of HIV-1. We constructed chimeric viruses containing patient-derived gag-proteases from HIV-1 subtypes B and C in the NL4-3 backbone. Viral RC was determined using a green fluorescent protein (GFP)-reporter T-cell line assay and cytokine production in T-cells was assessed using Luminex. Virus cell-to-cell spread efficiency was measured through flow cytometry-based detection of p24, while nutrient uptake assays and mitotracker dye detection served as surrogate markers for T-cell metabolism and mitochondrial function. Chimeric subtype C viruses exhibited significantly lower RC compared to subtype B viruses (P = 0.0008). Cytokine profiling revealed distinct cytokine signatures associated with low RC subtype C viruses. Viral RC negatively correlated with tumor necrosis factor alpha (TNF-α), IL-8, and IL-13 induction, while it positively correlated with platelet-derived growth factor (PDGF-bb), IL-7, monocyte chemoattractant protein-1 (MCP-1), fibroblast growth factor (FGF)-basic levels, viral spread efficiency (P = 0.008, r = 0.5), and cellular glucose uptake (P = 0.02, r = 0.5). Conversely, RC was negatively correlated with glutamine levels (P = 0.001, r = -0.7), indicating a link between RC and nutrient utilization. Furthermore, mitochondrial depolarization was elevated in subtype B infections when compared to subtype C infections (P = 0.0008). These findings indicate that high RC strains exert distinct cellular effects that may influence HIV-1 pathogenesis, highlighting the need to develop novel therapeutic strategies.IMPORTANCEVirus replicative capacity (RC) influences disease progression following HIV-1 transmission; however, the mechanisms underlying the differential clinical outcomes remain poorly understood. Our study reveals variations in cytokine induction and cellular metabolism in T-cells infected with HIV-1 subtype B and C viruses exhibiting high or low RC. T-cells infected with high RC strains showed increased induction of IL-7 and platelet-derived growth factor (PDGF-bb), along with heightened glucose uptake and elevated glutamine consumption compared to those infected with low RC strains. By contrast, low RC strains induced higher levels of IL-8, IL-13, and tumor necrosis factor alpha (TNF-α) and demonstrated reduced efficiency in modulating cellular metabolism and virus cell-to-cell spreadability. These findings highlight distinct biological differences between high and low RC viruses, providing valuable insights into the mechanisms that may underpin varying clinical outcomes. This knowledge may inform the development of novel interventions aimed at limiting viral virulence or transmission.
Collapse
Affiliation(s)
- Omolara O. Baiyegunhi
- Africa Health Research Institute, Durban, South Africa
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | | | - Ann-Kathrin Reuschl
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Doty Ojwach
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Omotayo Farinre
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | | | - Sheila Balinda
- Medical Research Council, UVRI & LSTHM Uganda Research Unit, Entebbe, Uganda
| | - Matt Price
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California, USA
- IAVI, New York, New York, USA
| | - Madeleine J. Bunders
- Division of Regenerative Medicine and Immunology, III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Ragon Institute of MGH, MIT, and Harvard University, Boston, USA
| | - Marcus Altfeld
- Research Department Virus Immunology, Leibniz Institute of Virology, Hamburg, Germany
| | - Clare Jolly
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Jaclyn Mann
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Thumbi Ndung’u
- Africa Health Research Institute, Durban, South Africa
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
- Division of Infection and Immunity, University College London, London, United Kingdom
- Ragon Institute of MGH, MIT, and Harvard University, Boston, USA
| |
Collapse
|
3
|
Omara D, Natwijuka F, Kapaata A, Kato F, Kato L, Ndekezi C, Nakyanzi A, Ayebale ML, Yue L, Hunter E, Sande OJ, Ochsenbauer C, Kaleebu P, Balinda SN. Subtype AD Recombinant HIV-1 Transmitted/Founder Viruses Are Less Sensitive to Type I Interferons than Subtype D. Viruses 2025; 17:486. [PMID: 40284929 PMCID: PMC12031311 DOI: 10.3390/v17040486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/14/2025] [Accepted: 03/17/2025] [Indexed: 04/29/2025] Open
Abstract
Initial interactions between HIV-1 and the immune system at mucosal exposure sites play a critical role in determining whether the virus is eliminated or progresses to establish systemic infection. The virus that successfully crosses the mucosal barrier to establish infection in the new host is referred to as the transmitted/founder (TF) virus. Following mucosal HIV-1 transmission, type 1 interferons (IFN-I) are rapidly induced at sites of initial virus replication. The resistance of TF variants to these antiviral effects of the IFN-I has been studied among HIV-1 subtypes B and C. However, their role in restricting HIV-1 replication among subtypes D and AD recombinant remains unexplored. This study assessed the sensitivity of HIV-1 subtype D and AD recombinant TF viruses to IFN-I by infecting peripheral blood mononuclear cells in vitro with infectious molecular clones of these viruses. Cells were exposed to varying concentrations of interferon-α and interferon-β, and viral replicative capacity was measured using HIV-1 p24 antigen ELISA from culture supernatants. Sensitivity to IFN-I was quantified based on viral replication levels. The results showed that interferon-α was more effective in inhibiting viral replication than interferon-β, regardless of the varying amounts of IFN-I used. However, recombinant AD viruses were found to be more resistant to the antiviral effects of IFN-I compared to subtype D viruses. These findings highlight the differential sensitivity of HIV-1 subtypes AD recombinant and D TF viruses to IFN-I and underscore the potential of IFN-I as a therapeutic strategy to target TF viruses and reduce HIV-1 transmission, particularly in populations where subtype D is prevalent.
Collapse
Affiliation(s)
- Denis Omara
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, College of Health Sciences, Makerere University, Kampala P.O. Box 7062, Uganda; (D.O.); (F.N.); (F.K.); (C.N.); (O.J.S.)
- Medical Research Council, Uganda Virus Research Institute & London School of Hygiene and Tropical Medicine (MRC/UVRI & LSHTM), Uganda Research Unit, Entebbe P.O. Box 49, Uganda; (A.K.); (L.K.); (M.L.A.); (P.K.)
| | - Fortunate Natwijuka
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, College of Health Sciences, Makerere University, Kampala P.O. Box 7062, Uganda; (D.O.); (F.N.); (F.K.); (C.N.); (O.J.S.)
- Medical Research Council, Uganda Virus Research Institute & London School of Hygiene and Tropical Medicine (MRC/UVRI & LSHTM), Uganda Research Unit, Entebbe P.O. Box 49, Uganda; (A.K.); (L.K.); (M.L.A.); (P.K.)
| | - Anne Kapaata
- Medical Research Council, Uganda Virus Research Institute & London School of Hygiene and Tropical Medicine (MRC/UVRI & LSHTM), Uganda Research Unit, Entebbe P.O. Box 49, Uganda; (A.K.); (L.K.); (M.L.A.); (P.K.)
| | - Frank Kato
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, College of Health Sciences, Makerere University, Kampala P.O. Box 7062, Uganda; (D.O.); (F.N.); (F.K.); (C.N.); (O.J.S.)
- Medical Research Council, Uganda Virus Research Institute & London School of Hygiene and Tropical Medicine (MRC/UVRI & LSHTM), Uganda Research Unit, Entebbe P.O. Box 49, Uganda; (A.K.); (L.K.); (M.L.A.); (P.K.)
| | - Laban Kato
- Medical Research Council, Uganda Virus Research Institute & London School of Hygiene and Tropical Medicine (MRC/UVRI & LSHTM), Uganda Research Unit, Entebbe P.O. Box 49, Uganda; (A.K.); (L.K.); (M.L.A.); (P.K.)
| | - Christian Ndekezi
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, College of Health Sciences, Makerere University, Kampala P.O. Box 7062, Uganda; (D.O.); (F.N.); (F.K.); (C.N.); (O.J.S.)
- Medical Research Council, Uganda Virus Research Institute & London School of Hygiene and Tropical Medicine (MRC/UVRI & LSHTM), Uganda Research Unit, Entebbe P.O. Box 49, Uganda; (A.K.); (L.K.); (M.L.A.); (P.K.)
| | - Angella Nakyanzi
- Uganda Virus Research Institute (UVRI), Entebbe P.O. Box 49, Uganda
| | - Mercy L. Ayebale
- Medical Research Council, Uganda Virus Research Institute & London School of Hygiene and Tropical Medicine (MRC/UVRI & LSHTM), Uganda Research Unit, Entebbe P.O. Box 49, Uganda; (A.K.); (L.K.); (M.L.A.); (P.K.)
| | - Ling Yue
- Emory Vaccine Center, Emory National Primate Research Center, Atlanta, GA 30329, USA; (L.Y.); (E.H.)
| | - Eric Hunter
- Emory Vaccine Center, Emory National Primate Research Center, Atlanta, GA 30329, USA; (L.Y.); (E.H.)
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30322, USA
| | - Obondo J. Sande
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, College of Health Sciences, Makerere University, Kampala P.O. Box 7062, Uganda; (D.O.); (F.N.); (F.K.); (C.N.); (O.J.S.)
| | - Christina Ochsenbauer
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Pontiano Kaleebu
- Medical Research Council, Uganda Virus Research Institute & London School of Hygiene and Tropical Medicine (MRC/UVRI & LSHTM), Uganda Research Unit, Entebbe P.O. Box 49, Uganda; (A.K.); (L.K.); (M.L.A.); (P.K.)
- Uganda Virus Research Institute (UVRI), Entebbe P.O. Box 49, Uganda
| | - Sheila N. Balinda
- Medical Research Council, Uganda Virus Research Institute & London School of Hygiene and Tropical Medicine (MRC/UVRI & LSHTM), Uganda Research Unit, Entebbe P.O. Box 49, Uganda; (A.K.); (L.K.); (M.L.A.); (P.K.)
- Uganda Virus Research Institute (UVRI), Entebbe P.O. Box 49, Uganda
| |
Collapse
|
4
|
Yue L, Xu R, Mclnally S, Qin Q, Rhodes JW, Muok E, Umviligihozo G, Brooks K, Zhang J, Qin Z, Bizimana J, Hare J, Price MA, Allen SA, Karita E, Hunter E. Phenotypic Characterization of Subtype A and Recombinant AC Transmitted/Founder Viruses from a Rwandan HIV-1 Heterosexual Transmission Cohort. Viruses 2024; 16:1706. [PMID: 39599821 PMCID: PMC11599005 DOI: 10.3390/v16111706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/18/2024] [Accepted: 10/27/2024] [Indexed: 11/29/2024] Open
Abstract
HIV-1 subtypes have distinct geographical distributions, with subtypes A, C, and D and inter-subtype recombinants circulating in sub-Saharan Africa. Historically, individuals living with subtype A viruses exhibit slower CD4 decline and progression to AIDS diagnosis. Despite this, there are few authentic infectious molecular clones (IMCs) of subtype A or AC recombinant transmitted founder (TF) viruses with which to investigate viral impacts on pathogenesis. In this study, we constructed 16 authentic subtype A1 and 4 A1C recombinant IMCs from the IAVI Rwandan Protocol C acute infection cohort and characterized these viruses phenotypically. The virus replicative capacity (RC) scores varied over 50-fold, but the natural substitution of non-consensus amino acids in the p17(MA) domain of Gag was generally linked to higher RC levels. Sensitivity to a panel of broadly neutralizing antibodies (bNAbs) showed that all but one TF was sensitive to N6, which targets the CD4 binding site, while bNAbs PG16 and PGT 128 had a similar level of potency but reduced breadth against our panel of viruses. In contrast, bNAb 10E8V4 revealed high breadth but much lower potency. This panel of well-characterized, authentic subtype A and AC recombinant IMCs provides a resource for studies on the role of the virus subtype in HIV-1 transmission, pathogenesis, and vaccine design.
Collapse
Affiliation(s)
- Ling Yue
- Emory Vaccine Center, Emory National Primate Research Center, Atlanta, GA 30329, USA; (L.Y.); (R.X.); (Q.Q.); (J.W.R.); (K.B.)
| | - Rui Xu
- Emory Vaccine Center, Emory National Primate Research Center, Atlanta, GA 30329, USA; (L.Y.); (R.X.); (Q.Q.); (J.W.R.); (K.B.)
| | - Samantha Mclnally
- Emory Vaccine Center, Emory National Primate Research Center, Atlanta, GA 30329, USA; (L.Y.); (R.X.); (Q.Q.); (J.W.R.); (K.B.)
| | - Qianhong Qin
- Emory Vaccine Center, Emory National Primate Research Center, Atlanta, GA 30329, USA; (L.Y.); (R.X.); (Q.Q.); (J.W.R.); (K.B.)
| | - Jake W. Rhodes
- Emory Vaccine Center, Emory National Primate Research Center, Atlanta, GA 30329, USA; (L.Y.); (R.X.); (Q.Q.); (J.W.R.); (K.B.)
| | - Erick Muok
- Center for Family Health Research (Formally Project San Francisco), Kigali P.O. Box 780, Rwanda (G.U.); (J.B.); (E.K.)
| | - Gisele Umviligihozo
- Center for Family Health Research (Formally Project San Francisco), Kigali P.O. Box 780, Rwanda (G.U.); (J.B.); (E.K.)
| | - Kelsie Brooks
- Emory Vaccine Center, Emory National Primate Research Center, Atlanta, GA 30329, USA; (L.Y.); (R.X.); (Q.Q.); (J.W.R.); (K.B.)
| | - Jiayi Zhang
- Department of Biostatistics, Emory University, Atlanta, GA 30322, USA; (J.Z.); (Z.Q.)
| | - Zhaohui Qin
- Department of Biostatistics, Emory University, Atlanta, GA 30322, USA; (J.Z.); (Z.Q.)
| | - Jean Bizimana
- Center for Family Health Research (Formally Project San Francisco), Kigali P.O. Box 780, Rwanda (G.U.); (J.B.); (E.K.)
| | - Jonathan Hare
- International AIDS Vaccine Initiative, New York, NY 10004, USA (M.A.P.)
| | - Matthew A. Price
- International AIDS Vaccine Initiative, New York, NY 10004, USA (M.A.P.)
- UCSF Department of Epidemiology and Biostatistics, San Francisco, CA 94158, USA
| | - Susan A. Allen
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30322, USA;
| | - Etienne Karita
- Center for Family Health Research (Formally Project San Francisco), Kigali P.O. Box 780, Rwanda (G.U.); (J.B.); (E.K.)
| | - Eric Hunter
- Emory Vaccine Center, Emory National Primate Research Center, Atlanta, GA 30329, USA; (L.Y.); (R.X.); (Q.Q.); (J.W.R.); (K.B.)
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30322, USA;
| |
Collapse
|
5
|
Bengu N, Cromhout G, Adland E, Govender K, Herbert N, Lim N, Fillis R, Sprenger K, Vieira V, Kannie S, van Lobenstein J, Chinniah K, Kapongo C, Bhoola R, Krishna M, Mchunu N, Pascucci GR, Cotugno N, Palma P, Tagarro A, Rojo P, Roider J, Garcia-Guerrero MC, Ochsenbauer C, Groll A, Reddy K, Giaquinto C, Rossi P, Hong S, Dong K, Ansari MA, Puertas MC, Ndung'u T, Capparelli E, Lichterfeld M, Martinez-Picado J, Kappes JC, Archary M, Goulder P. Sustained aviremia despite anti-retroviral therapy non-adherence in male children after in utero HIV transmission. Nat Med 2024; 30:2796-2804. [PMID: 38843818 PMCID: PMC11485204 DOI: 10.1038/s41591-024-03105-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 06/03/2024] [Indexed: 07/04/2024]
Abstract
After sporadic reports of post-treatment control of HIV in children who initiated combination anti-retroviral therapy (cART) early, we prospectively studied 284 very-early-cART-treated children from KwaZulu-Natal, South Africa, after vertical HIV transmission to assess control of viremia. Eighty-four percent of the children achieved aviremia on cART, but aviremia persisting to 36 or more months was observed in only 32%. We observed that male infants have lower baseline plasma viral loads (P = 0.01). Unexpectedly, a subset (n = 5) of males maintained aviremia despite unscheduled complete discontinuation of cART lasting 3-10 months (n = 4) or intermittent cART adherence during 17-month loss to follow-up (n = 1). We further observed, in vertically transmitted viruses, a negative correlation between type I interferon (IFN-I) resistance and viral replication capacity (VRC) (P < 0.0001) that was markedly stronger for males than for females (r = -0.51 versus r = -0.07 for IFN-α). Although viruses transmitted to male fetuses were more IFN-I sensitive and of higher VRC than those transmitted to females in the full cohort (P < 0.0001 and P = 0.0003, respectively), the viruses transmitted to the five males maintaining cART-free aviremia had significantly lower replication capacity (P < 0.0001). These data suggest that viremic control can occur in some infants with in utero-acquired HIV infection after early cART initiation and may be associated with innate immune sex differences.
Collapse
Affiliation(s)
- Nomonde Bengu
- Queen Nandi Regional Hospital, Empangeni, South Africa
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Gabriela Cromhout
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- Department of Paediatrics, University of KwaZulu-Natal, Durban, South Africa
| | - Emily Adland
- Department of Paediatrics, University of Oxford, Oxford, UK
| | | | | | - Nicholas Lim
- Department of Paediatrics, University of Oxford, Oxford, UK
| | - Rowena Fillis
- Harry Gwala Regional Hospital, Pietermaritzburg, South Africa
| | - Kenneth Sprenger
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | | | - Samantha Kannie
- General Justice Gizenga Mpanza Regional Hospital, Stanger, South Africa
| | | | | | | | - Roopesh Bhoola
- Harry Gwala Regional Hospital, Pietermaritzburg, South Africa
| | - Malini Krishna
- Harry Gwala Regional Hospital, Pietermaritzburg, South Africa
| | - Noxolo Mchunu
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Giuseppe Rubens Pascucci
- Clinical Immunology and Vaccinology Unit, IRCCS, Ospedale Pediatrico Bambino Gesù, Rome, Italy
- Probiomics S.r.l., Rome, Italy
| | - Nicola Cotugno
- Clinical Immunology and Vaccinology Unit, IRCCS, Ospedale Pediatrico Bambino Gesù, Rome, Italy
- University of Rome Tor Vergata, Rome, Italy
| | - Paolo Palma
- Clinical Immunology and Vaccinology Unit, IRCCS, Ospedale Pediatrico Bambino Gesù, Rome, Italy
- University of Rome Tor Vergata, Rome, Italy
| | - Alfredo Tagarro
- Fundación de Investigación Biomédica Hospital 12 de Octubre, Instituto de Investigación 12 de Octubre (imas12), Madrid, Spain
- Department of Pediatrics, Infanta Sofia University Hospital and Henares University Hospital Foundation for Biomedical Research and Innovation, Madrid, Spain
- Universidad Europea de Madrid, Madrid, Spain
| | - Pablo Rojo
- Fundación de Investigación Biomédica Hospital 12 de Octubre, Instituto de Investigación 12 de Octubre (imas12), Madrid, Spain
| | | | | | | | | | - Kavidha Reddy
- Africa Health Research Institute, Durban, South Africa
| | | | - Paolo Rossi
- Clinical Immunology and Vaccinology Unit, IRCCS, Ospedale Pediatrico Bambino Gesù, Rome, Italy
- University of Rome Tor Vergata, Rome, Italy
| | - Seohyun Hong
- Ragon Institute of MGH, MIT and Harvard, Boston, MA, USA
| | - Krista Dong
- Ragon Institute of MGH, MIT and Harvard, Boston, MA, USA
| | - M Azim Ansari
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Maria C Puertas
- IrsiCaixa AIDS Research Institute, Barcelona, Spain
- Consorcio Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Thumbi Ndung'u
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- Africa Health Research Institute, Durban, South Africa
- Ragon Institute of MGH, MIT and Harvard, Boston, MA, USA
- Division of Infection and Immunity, University College London, London, UK
| | | | | | - Javier Martinez-Picado
- IrsiCaixa AIDS Research Institute, Barcelona, Spain
- Consorcio Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
- Infectious Diseases and Immunity Department, University of Vic-Central University of Catalonia, Vic, Spain
| | - John C Kappes
- University of Alabama at Birmingham, Birmingham, AL, USA
- Birmingham Veterans Affairs Medical Center, Research Service, Birmingham, AL, USA
| | - Moherndran Archary
- Department of Paediatrics, University of KwaZulu-Natal, Durban, South Africa
| | - Philip Goulder
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa.
- Department of Paediatrics, University of Oxford, Oxford, UK.
- Africa Health Research Institute, Durban, South Africa.
- Ragon Institute of MGH, MIT and Harvard, Boston, MA, USA.
| |
Collapse
|
6
|
Lindquist L, Kilembe W, Karita E, Price MA, Kamali A, Kaleebu P, Tang J, Allen S, Hunter E, Gilmour J, Rowland-Jones SL, Sanders EJ, Hassan AS, Esbjörnsson J. HLA-A*23 Is Associated With Lower Odds of Acute Retroviral Syndrome in Human Immunodeficiency Virus Type 1 Infection: A Multicenter Sub-Saharan African Study. Open Forum Infect Dis 2024; 11:ofae129. [PMID: 38560608 PMCID: PMC10977907 DOI: 10.1093/ofid/ofae129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 03/11/2024] [Indexed: 04/04/2024] Open
Abstract
The role of human leukocyte antigen (HLA) class I and killer immunoglobulin-like receptor molecules in mediating acute retroviral syndrome (ARS) during human immunodeficiency virus type 1 (HIV-1) infection is unclear. Among 72 sub-Saharan African adults, HLA-A*23 was associated with lower odds of ARS (adjusted odds ratio, 0.10 [95% confidence interval, .01-.48]; P = .009), which warrants further studies to explore its role on HIV-1-specific immunopathogenesis.
Collapse
Affiliation(s)
- Lovisa Lindquist
- Lund University Centre, Lund University, Lund, Sweden
- Department of Translational Medicine, Lund University, Lund, Sweden
| | - William Kilembe
- Rwanda/Zambia HIV Research Group, Kigali, Rwanda and Lusaka, Zambia
| | - Etienne Karita
- Rwanda/Zambia HIV Research Group, Kigali, Rwanda and Lusaka, Zambia
| | - Matt A Price
- International AIDS Vaccine Initiative, New York, New York, USA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California, USA
| | | | - Pontiano Kaleebu
- Medical Research Council/Uganda Virus Centre Research Institute, Entebbe, Uganda
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Jianming Tang
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Susan Allen
- Rwanda/Zambia HIV Research Group, Kigali, Rwanda and Lusaka, Zambia
- Emory Vaccine Center, Emory University, Atlanta, Georgia, USA
| | - Eric Hunter
- Rwanda/Zambia HIV Research Group, Kigali, Rwanda and Lusaka, Zambia
- Emory Vaccine Center, Emory University, Atlanta, Georgia, USA
| | - Jill Gilmour
- International AIDS Vaccine Initiative, New York, New York, USA
- Human Immunology Laboratory, International AIDS Vaccine Initiative, London, United Kingdom
| | - Sarah L Rowland-Jones
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Eduard J Sanders
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
- Aurum Institute, Johannesburg, South Africa
| | - Amin S Hassan
- Lund University Centre, Lund University, Lund, Sweden
- Department of Translational Medicine, Lund University, Lund, Sweden
- Kenya Medical Research Institute/Wellcome Trust Research Programme, Kilifi, Kenya
| | - Joakim Esbjörnsson
- Lund University Centre, Lund University, Lund, Sweden
- Department of Translational Medicine, Lund University, Lund, Sweden
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
7
|
Lungu C, Overmars RJ, Grundeken E, Boers PHM, van der Ende ME, Mesplède T, Gruters RA. Genotypic and Phenotypic Characterization of Replication-Competent HIV-2 Isolated from Controllers and Progressors. Viruses 2023; 15:2236. [PMID: 38005913 PMCID: PMC10675771 DOI: 10.3390/v15112236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/03/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Although some individuals with HIV-2 develop severe immunodeficiency and AIDS-related complications, most may never progress to AIDS. Replication-competent HIV-2 isolated from asymptomatic long-term non-progressors (controllers) have lower replication rates than viruses from individuals who progress to AIDS (progressors). To investigate potential retroviral factors that correlate with disease progression in HIV-2, we sequenced the near full-length genomes of replication-competent viruses previously outgrown from controllers and progressors and used phylogeny to seek genotypic correlates of disease progression. We validated the integrity of all open reading frames and used cell-based assays to study the retroviral transcriptional activity of the long terminal repeats (LTRs) and Tat proteins of HIV-2 from controllers and progressors. Overall, we did not identify genotypic defects that may contribute to HIV-2 non-progression. Tat-induced, LTR-mediated transcription was comparable between viruses from controllers and progressors. Our results were obtained from a small number of participants and should be interpreted accordingly. Overall, they suggest that progression may be determined before or during integration of HIV-2.
Collapse
Affiliation(s)
- Cynthia Lungu
- Viroscience Department, Erasmus Medical Center, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands; (C.L.); (R.J.O.); (E.G.); (P.H.M.B.)
| | - Ronald J. Overmars
- Viroscience Department, Erasmus Medical Center, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands; (C.L.); (R.J.O.); (E.G.); (P.H.M.B.)
| | - Esmée Grundeken
- Viroscience Department, Erasmus Medical Center, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands; (C.L.); (R.J.O.); (E.G.); (P.H.M.B.)
| | - Patrick H. M. Boers
- Viroscience Department, Erasmus Medical Center, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands; (C.L.); (R.J.O.); (E.G.); (P.H.M.B.)
| | - Marchina E. van der Ende
- Department of Internal Medicine, Erasmus Medical Center, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands;
| | - Thibault Mesplède
- Viroscience Department, Erasmus Medical Center, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands; (C.L.); (R.J.O.); (E.G.); (P.H.M.B.)
| | - Rob A. Gruters
- Viroscience Department, Erasmus Medical Center, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands; (C.L.); (R.J.O.); (E.G.); (P.H.M.B.)
| |
Collapse
|
8
|
Herbert NG, Goulder PJR. Impact of early antiretroviral therapy, early life immunity and immune sex differences on HIV disease and posttreatment control in children. Curr Opin HIV AIDS 2023; 18:229-236. [PMID: 37421384 PMCID: PMC10399946 DOI: 10.1097/coh.0000000000000807] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2023]
Abstract
PURPOSE OF REVIEW To review recent insights into the factors affecting HIV disease progression in children living with HIV, contrasting outcomes: following early ART initiation with those in natural, antiretroviral therapy (ART)-naive infection; in children versus adults; and in female individuals versus male individuals. RECENT FINDINGS Early life immune polarization and several factors associated with mother-to-child transmission of HIV result in an ineffective HIV-specific CD8+ T-cell response and rapid disease progression in most children living with HIV. However, the same factors result in low immune activation and antiviral efficacy mediated mainly through natural killer cell responses in children and are central features of posttreatment control. By contrast, rapid activation of the immune system and generation of a broad HIV-specific CD8+ T-cell response in adults, especially in the context of 'protective' HLA class I molecules, are associated with superior disease outcomes in ART-naive infection but not with posttreatment control. The higher levels of immune activation in female individuals versus male individuals from intrauterine life onwards increase HIV infection susceptibility in females in utero and may favour ART-naive disease outcomes rather than posttreatment control. SUMMARY Early-life immunity and factors associated with mother-to-child transmission typically result in rapid HIV disease progression in ART-naive infection but favour posttreatment control in children following early ART initiation.
Collapse
Affiliation(s)
- Nicholas G Herbert
- Peter Medawar Building for Pathogen Research, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | | |
Collapse
|
9
|
Zhang Z, Nishimura A, Trovão NS, Cherry JL, Holbrook AJ, Ji X, Lemey P, Suchard MA. Accelerating Bayesian inference of dependency between mixed-type biological traits. PLoS Comput Biol 2023; 19:e1011419. [PMID: 37639445 PMCID: PMC10491301 DOI: 10.1371/journal.pcbi.1011419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/08/2023] [Accepted: 08/09/2023] [Indexed: 08/31/2023] Open
Abstract
Inferring dependencies between mixed-type biological traits while accounting for evolutionary relationships between specimens is of great scientific interest yet remains infeasible when trait and specimen counts grow large. The state-of-the-art approach uses a phylogenetic multivariate probit model to accommodate binary and continuous traits via a latent variable framework, and utilizes an efficient bouncy particle sampler (BPS) to tackle the computational bottleneck-integrating many latent variables from a high-dimensional truncated normal distribution. This approach breaks down as the number of specimens grows and fails to reliably characterize conditional dependencies between traits. Here, we propose an inference pipeline for phylogenetic probit models that greatly outperforms BPS. The novelty lies in 1) a combination of the recent Zigzag Hamiltonian Monte Carlo (Zigzag-HMC) with linear-time gradient evaluations and 2) a joint sampling scheme for highly correlated latent variables and correlation matrix elements. In an application exploring HIV-1 evolution from 535 viruses, the inference requires joint sampling from an 11,235-dimensional truncated normal and a 24-dimensional covariance matrix. Our method yields a 5-fold speedup compared to BPS and makes it possible to learn partial correlations between candidate viral mutations and virulence. Computational speedup now enables us to tackle even larger problems: we study the evolution of influenza H1N1 glycosylations on around 900 viruses. For broader applicability, we extend the phylogenetic probit model to incorporate categorical traits, and demonstrate its use to study Aquilegia flower and pollinator co-evolution.
Collapse
Affiliation(s)
- Zhenyu Zhang
- Department of Biostatistics, Fielding School of Public Health, University of California Los Angeles, Los Angeles, California, United States of America
| | - Akihiko Nishimura
- Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Nídia S. Trovão
- Division of International Epidemiology and Population Studies, Fogarty International Center, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Joshua L. Cherry
- Division of International Epidemiology and Population Studies, Fogarty International Center, National Institutes of Health, Bethesda, Maryland, United States of America
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Andrew J. Holbrook
- Department of Biostatistics, Fielding School of Public Health, University of California Los Angeles, Los Angeles, California, United States of America
| | - Xiang Ji
- Department of Mathematics, Tulane University, New Orleans, Louisiana, United States of America
| | - Philippe Lemey
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Marc A. Suchard
- Department of Biostatistics, Fielding School of Public Health, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Biomathematics, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Human Genetics, University of California Los Angeles, Los Angeles, California, United States of America
| |
Collapse
|
10
|
de Moraes L, Santos LA, Arruda LB, da Silva MDPP, Silva MDO, Silva JAG, Ramos A, dos Santos MB, Torres FG, Orge C, Teixeira AMDS, Vieira TS, Ramírez L, Soto M, Grassi MFR, de Siqueira IC, Costa DL, Costa CHN, Andrade BDB, Akrami K, de Oliveira CI, Boaventura VS, Barral-Netto M, Barral A, Vandamme AM, Van Weyenbergh J, Khouri R. High seroprevalence of Leishmania infantum is linked to immune activation in people with HIV: a two-stage cross-sectional study in Bahia, Brazil. Front Microbiol 2023; 14:1221682. [PMID: 37601355 PMCID: PMC10436095 DOI: 10.3389/fmicb.2023.1221682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 06/28/2023] [Indexed: 08/22/2023] Open
Abstract
Visceral leishmaniasis is an opportunistic disease in HIV-1 infected individuals, unrecognized as a determining factor for AIDS diagnosis. The growing geographical overlap of HIV-1 and Leishmania infections is an emerging challenge worldwide, as co-infection increases morbidity and mortality for both infections. Here, we determined the prevalence of people living with HIV (PWH) with a previous or ongoing infection by Leishmania infantum and investigated the virological and immunological factors associated with co-infection. We adopted a two-stage cross-sectional cohort (CSC) design (CSC-I, n = 5,346 and CSC-II, n = 317) of treatment-naïve HIV-1-infected individuals in Bahia, Brazil. In CSC-I, samples collected between 1998 and 2013 were used for serological screening for leishmaniasis by an in-house Enzyme-Linked Immunosorbent Assay (ELISA) with SLA (Soluble Leishmania infantum Antigen), resulting in a prevalence of previous or ongoing infection of 16.27%. Next, 317 PWH were prospectively recruited from July 2014 to December 2015 with the collection of sociodemographic and clinical data. Serological validation by two different immunoassays confirmed a prevalence of 15.46 and 8.20% by anti-SLA, and anti-HSP70 serology, respectively, whereas 4.73% were double-positive (DP). Stratification of these 317 individuals in DP and double-negative (DN) revealed a significant reduction of CD4+ counts and CD4+/CD8+ ratios and a tendency of increased viral load in the DP group, as compared to DN. No statistical differences in HIV-1 subtype distribution were observed between the two groups. However, we found a significant increase of CXCL10 (p = 0.0076) and a tendency of increased CXCL9 (p = 0.061) in individuals with DP serology, demonstrating intensified immune activation in this group. These findings were corroborated at the transcriptome level in independent Leishmania- and HIV-1-infected cohorts (Swiss HIV Cohort and Piaui Northeast Brazil Cohort), indicating that CXCL10 transcripts are shared by the IFN-dominated immune activation gene signatures of both pathogens and positively correlated to viral load in untreated PWH. This study demonstrated a high prevalence of PWH with L. infantum seropositivity in Bahia, Brazil, linked to IFN-mediated immune activation and a significant decrease in CD4+ levels. Our results highlight the urgent need to increase awareness and define public health strategies for the management and prevention of HIV-1 and L. infantum co-infection.
Collapse
Affiliation(s)
- Laise de Moraes
- Programa de Pós-graduação em Ciências da Saúde, Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador, Brazil
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
| | - Luciane Amorim Santos
- Programa de Pós-graduação em Ciências da Saúde, Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador, Brazil
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
- Escola Bahiana de Medicina e Saúde Pública, Salvador, Brazil
| | - Liã Bárbara Arruda
- Centre for Clinical Microbiology, Division of Infection & Immunity, University College London, London, United Kingdom
| | | | - Márcio de Oliveira Silva
- Centro Estadual Especializado em Diagnóstico, Assistência e Pesquisa, Secretaria de Saúde do Estado da Bahia, Salvador, Brazil
| | - José Adriano Góes Silva
- Programa de Pós-graduação em Ciências da Saúde, Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador, Brazil
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
- Centro Estadual Especializado em Diagnóstico, Assistência e Pesquisa, Secretaria de Saúde do Estado da Bahia, Salvador, Brazil
| | - André Ramos
- Centro Estadual Especializado em Diagnóstico, Assistência e Pesquisa, Secretaria de Saúde do Estado da Bahia, Salvador, Brazil
| | | | | | - Cibele Orge
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
| | | | | | - Laura Ramírez
- Departamento de Biología Molecular, Facultad de Ciencias, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| | - Manuel Soto
- Departamento de Biología Molecular, Facultad de Ciencias, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| | - Maria Fernanda Rios Grassi
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
- Escola Bahiana de Medicina e Saúde Pública, Salvador, Brazil
| | | | - Dorcas Lamounier Costa
- Laboratório de Leishmanioses, Instituto de Doenças Tropicais Natan Portella, Universidade Federal do Piauí, Teresina, Brazil
| | - Carlos Henrique Nery Costa
- Laboratório de Leishmanioses, Instituto de Doenças Tropicais Natan Portella, Universidade Federal do Piauí, Teresina, Brazil
| | - Bruno de Bezerril Andrade
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
- Escola Bahiana de Medicina e Saúde Pública, Salvador, Brazil
| | - Kevan Akrami
- Programa de Pós-graduação em Ciências da Saúde, Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador, Brazil
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
| | - Camila Indiani de Oliveira
- Programa de Pós-graduação em Ciências da Saúde, Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador, Brazil
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
- Escola Bahiana de Medicina e Saúde Pública, Salvador, Brazil
| | - Viviane Sampaio Boaventura
- Programa de Pós-graduação em Ciências da Saúde, Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador, Brazil
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
- Hospital Santa Izabel, Salvador, Brazil
| | - Manoel Barral-Netto
- Programa de Pós-graduação em Ciências da Saúde, Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador, Brazil
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
| | - Aldina Barral
- Programa de Pós-graduação em Ciências da Saúde, Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador, Brazil
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
| | - Anne-Mieke Vandamme
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Clinical and Epidemiological Virology, Leuven, Belgium
- Center for Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Johan Van Weyenbergh
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Clinical and Epidemiological Virology, Leuven, Belgium
| | - Ricardo Khouri
- Programa de Pós-graduação em Ciências da Saúde, Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador, Brazil
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Clinical and Epidemiological Virology, Leuven, Belgium
| |
Collapse
|
11
|
Madlala P, Mkhize Z, Naicker S, Khathi SP, Maikoo S, Gopee K, Dong KL, Ndung’u T. Genetic variation of the HIV-1 subtype C transmitted/founder viruses long terminal repeat elements and the impact on transcription activation potential and clinical disease outcomes. PLoS Pathog 2023; 19:e1011194. [PMID: 37307292 PMCID: PMC10289673 DOI: 10.1371/journal.ppat.1011194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 06/23/2023] [Accepted: 05/04/2023] [Indexed: 06/14/2023] Open
Abstract
A genetic bottleneck is a hallmark of HIV-1 transmission such that only very few viral strains, termed transmitted/founder (T/F) variants establish infection in a newly infected host. Phenotypic characteristics of these variants may determine the subsequent course of disease. The HIV-1 5' long terminal repeat (LTR) promoter drives viral gene transcription and is genetically identical to the 3' LTR. We hypothesized that HIV-1 subtype C (HIV-1C) T/F virus LTR genetic variation is a determinant of transcriptional activation potential and clinical disease outcome. The 3'LTR was amplified from plasma samples of 41 study participants acutely infected with HIV-1C (Fiebig stages I and V/VI). Paired longitudinal samples were also available at one year post-infection for 31 of the 41 participants. 3' LTR amplicons were cloned into a pGL3-basic luciferase expression vector, and transfected alone or together with Transactivator of transcription (tat) into Jurkat cells in the absence or presence of cell activators (TNF-α, PMA, Prostratin and SAHA). Inter-patient T/F LTR sequence diversity was 5.7% (Renge: 2-12) with subsequent intrahost viral evolution observed in 48.4% of the participants analyzed at 12 months post-infection. T/F LTR variants exhibited differential basal transcriptional activity, with significantly higher Tat-mediated transcriptional activity compared to basal (p<0.001). Basal and Tat-mediated T/F LTR transcriptional activity showed significant positive correlation with contemporaneous viral loads and negative correlation with CD4 T cell counts (p<0.05) during acute infection respectively. Furthermore, Tat-mediated T/F LTR transcriptional activity significanly correlated positively with viral load set point and viral load; and negatively with CD4 T cell counts at one year post infection (all p<0.05). Lastly, PMA, Prostratin, TNF-α and SAHA cell stimulation resulted in enhanced yet heterologous transcriptional activation of different T/F LTR variants. Our data suggest that T/F LTR variants may influence viral transcriptional activity, disease outcomes and sensitivity to cell activation, with potential implications for therapeutic interventions.
Collapse
Affiliation(s)
- Paradise Madlala
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Zakithi Mkhize
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Shamara Naicker
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Samukelisiwe P. Khathi
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Shreyal Maikoo
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Kasmira Gopee
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Krista L. Dong
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, Massachusetts, United States of America
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Thumbi Ndung’u
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, Massachusetts, United States of America
- Africa Health Research Institute (AHRI), Durban, South Africa
- Division of Infection and Immunity, University College London, London, United Kingdom
| |
Collapse
|
12
|
Vieira V, Lim N, Singh A, Leitman E, Dsouza R, Adland E, Muenchhoff M, Roider J, Marin Lopez M, Carabelli J, Giandhari J, Groll A, Jooste P, Prado JG, Thobakgale C, Dong K, Kiepiela P, Prendergast AJ, Tudor-Williams G, Frater J, Walker BD, Ndung’u T, Ramsuran V, Leslie A, Kløverpris HN, Goulder P. Slow progression of pediatric HIV associates with early CD8+ T cell PD-1 expression and a stem-like phenotype. JCI Insight 2023; 8:e156049. [PMID: 36602861 PMCID: PMC9977437 DOI: 10.1172/jci.insight.156049] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/29/2022] [Indexed: 01/06/2023] Open
Abstract
HIV nonprogression despite persistent viremia is rare among adults who are naive to antiretroviral therapy (ART) but relatively common among ART-naive children. Previous studies indicate that ART-naive pediatric slow progressors (PSPs) adopt immune evasion strategies similar to those described in natural hosts of SIV. However, the mechanisms underlying this immunophenotype are not well understood. In a cohort of early-treated infants who underwent analytical treatment interruption (ATI) after 12 months of ART, expression of PD-1 on CD8+ T cells immediately before ATI was the main predictor of slow progression during ATI. PD-1+CD8+ T cell frequency was also negatively correlated with CCR5 and HLA-DR expression on CD4+ T cells and predicted stronger HIV-specific T lymphocyte responses. In the CD8+ T cell compartment of PSPs, we identified an enrichment of stem-like TCF-1+PD-1+ memory cells, whereas pediatric progressors and viremic adults had a terminally exhausted PD-1+CD39+ population. TCF-1+PD-1+ expression on CD8+ T cells was associated with higher proliferative activity and stronger Gag-specific effector functionality. These data prompted the hypothesis that the proliferative burst potential of stem-like HIV-specific cytotoxic cells could be exploited in therapeutic strategies to boost the antiviral response and facilitate remission in infants who received early ART with a preserved and nonexhausted T cell compartment.
Collapse
Affiliation(s)
- Vinicius Vieira
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Nicholas Lim
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Alveera Singh
- Africa Health Research Institute, Durban, South Africa
| | - Ellen Leitman
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Reena Dsouza
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Emily Adland
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Maximilian Muenchhoff
- Max von Pettenkofer-Institute, Department of Virology, Ludwig-Maximilians-University, Munich, Germany
- German Center for Infection Research, Munich, Germany
| | - Julia Roider
- German Center for Infection Research, Munich, Germany
- Department of Infectious Diseases, Ludwig-Maximilians-University, Munich, Germany
| | | | | | - Jennifer Giandhari
- KwaZulu-Natal Research Innovation and Sequencing Platform, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Andreas Groll
- Department of Statistics, TU Dortmund University, Dortmund, Germany
| | - Pieter Jooste
- Department of Paediatrics, Kimberley Hospital, Kimberley, South Africa
| | - Julia G. Prado
- IrsiCaixa AIDS Research Institute, Badalona, Spain
- Germans Trias i Pujol Research Institute, Badalona, Spain; Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Christina Thobakgale
- Faculty of Health Sciences, Centre for HIV and STIs, National Institute for Communicable Diseases, University of the Witwatersrand, Johannesburg, South Africa
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Krista Dong
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA
| | - Photini Kiepiela
- South African Medical Research Council, Durban, South Africa
- Wits Health Consortium, Johannesburg, South Africa
| | - Andrew J. Prendergast
- Blizard Institute, Queen Mary University of London, London, United Kingdom
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
| | - Gareth Tudor-Williams
- Centre for Paediatrics and Child Health, Imperial College London, London, United Kingdom
| | - John Frater
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Oxford NIHR Biomedical Research Centre, Oxford, United Kingdom
| | - Bruce D. Walker
- Africa Health Research Institute, Durban, South Africa
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA
| | - Thumbi Ndung’u
- Africa Health Research Institute, Durban, South Africa
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Veron Ramsuran
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
- Centre for the AIDS Programme of Research in South Africa, Durban, South Africa
| | - Alasdair Leslie
- Africa Health Research Institute, Durban, South Africa
- Division of Infection and Immunity, University College London, London, United Kingdom
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Henrik N. Kløverpris
- Africa Health Research Institute, Durban, South Africa
- Division of Infection and Immunity, University College London, London, United Kingdom
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Philip Goulder
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
13
|
Sugrue E, Wickenhagen A, Mollentze N, Aziz MA, Sreenu VB, Truxa S, Tong L, da Silva Filipe A, Robertson DL, Hughes J, Rihn SJ, Wilson SJ. The apparent interferon resistance of transmitted HIV-1 is possibly a consequence of enhanced replicative fitness. PLoS Pathog 2022; 18:e1010973. [PMID: 36399512 PMCID: PMC9718408 DOI: 10.1371/journal.ppat.1010973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 12/02/2022] [Accepted: 11/03/2022] [Indexed: 11/19/2022] Open
Abstract
HIV-1 transmission via sexual exposure is an inefficient process. When transmission does occur, newly infected individuals are colonized by the descendants of either a single virion or a very small number of establishing virions. These transmitted founder (TF) viruses are more interferon (IFN)-resistant than chronic control (CC) viruses present 6 months after transmission. To identify the specific molecular defences that make CC viruses more susceptible to the IFN-induced 'antiviral state', we established a single pair of fluorescent TF and CC viruses and used arrayed interferon-stimulated gene (ISG) expression screening to identify candidate antiviral effectors. However, we observed a relatively uniform ISG resistance of transmitted HIV-1, and this directed us to investigate possible underlying mechanisms. Simple simulations, where we varied a single parameter, illustrated that reduced growth rate could possibly underly apparent interferon sensitivity. To examine this possibility, we closely monitored in vitro propagation of a model TF/CC pair (closely matched in replicative fitness) over a targeted range of IFN concentrations. Fitting standard four-parameter logistic growth models, in which experimental variables were regressed against growth rate and carrying capacity, to our in vitro growth curves, further highlighted that small differences in replicative growth rates could recapitulate our in vitro observations. We reasoned that if growth rate underlies apparent interferon resistance, transmitted HIV-1 would be similarly resistant to any growth rate inhibitor. Accordingly, we show that two transmitted founder HIV-1 viruses are relatively resistant to antiretroviral drugs, while their matched chronic control viruses were more sensitive. We propose that, when present, the apparent IFN resistance of transmitted HIV-1 could possibly be explained by enhanced replicative fitness, as opposed to specific resistance to individual IFN-induced defences. However, further work is required to establish how generalisable this mechanism of relative IFN resistance might be.
Collapse
Affiliation(s)
- Elena Sugrue
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, United Kingdom
| | - Arthur Wickenhagen
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, United Kingdom
| | - Nardus Mollentze
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, United Kingdom
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Muhamad Afiq Aziz
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, United Kingdom
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Vattipally B. Sreenu
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, United Kingdom
| | - Sven Truxa
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, United Kingdom
- Division of Systems Immunology and Single Cell Biology, German Cancer Research Center, Heidelberg, Germany
| | - Lily Tong
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, United Kingdom
| | - Ana da Silva Filipe
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, United Kingdom
| | - David L. Robertson
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, United Kingdom
| | - Joseph Hughes
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, United Kingdom
| | - Suzannah J. Rihn
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, United Kingdom
| | - Sam J. Wilson
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
14
|
Boswell MT, Nazziwa J, Kuroki K, Palm A, Karlson S, Månsson F, Biague A, da Silva ZJ, Onyango CO, de Silva TI, Jaye A, Norrgren H, Medstrand P, Jansson M, Maenaka K, Rowland-Jones SL, Esbjörnsson J. Intrahost evolution of the HIV-2 capsid correlates with progression to AIDS. Virus Evol 2022; 8:veac075. [PMID: 36533148 PMCID: PMC9753047 DOI: 10.1093/ve/veac075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 05/24/2022] [Accepted: 08/23/2022] [Indexed: 11/26/2023] Open
Abstract
HIV-2 infection will progress to AIDS in most patients without treatment, albeit at approximately half the rate of HIV-1 infection. HIV-2 capsid (p26) amino acid polymorphisms are associated with lower viral loads and enhanced processing of T cell epitopes, which may lead to protective Gag-specific T cell responses common in slower progressors. Lower virus evolutionary rates, and positive selection on conserved residues in HIV-2 env have been associated with slower progression to AIDS. In this study we analysed 369 heterochronous HIV-2 p26 sequences from 12 participants with a median age of 30 years at enrolment. CD4% change over time was used to stratify participants into relative faster and slower progressor groups. We analysed p26 sequence diversity evolution, measured site-specific selection pressures and evolutionary rates, and determined if these evolutionary parameters were associated with progression status. Faster progressors had lower CD4% and faster CD4% decline rates. Median pairwise sequence diversity was higher in faster progressors (5.7x10-3 versus 1.4x10-3 base substitutions per site, P<0.001). p26 evolved under negative selection in both groups (dN/dS=0.12). Median virus evolutionary rates were higher in faster than slower progressors - synonymous rates: 4.6x10-3 vs. 2.3x10-3; and nonsynonymous rates: 6.9x10-4 vs. 2.7x10-4 substitutions/site/year, respectively. Virus evolutionary rates correlated negatively with CD4% change rates (ρ = -0.8, P=0.02), but not CD4% level. The signature amino acid at p26 positions 6, 12 and 119 differed between faster (6A, 12I, 119A) and slower (6G, 12V, 119P) progressors. These amino acid positions clustered near to the TRIM5α/p26 hexamer interface surface. p26 evolutionary rates were associated with progression to AIDS and were mostly driven by synonymous substitutions. Nonsynonymous evolutionary rates were an order of magnitude lower than synonymous rates, with limited amino acid sequence evolution over time within hosts. These results indicate HIV-2 p26 may be an attractive therapeutic target.
Collapse
Affiliation(s)
- M T Boswell
- Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, OX3 7FZ, Oxford, UK
| | - J Nazziwa
- Department of Translational Medicine, Lund University, Sölvegatan 17, 223 62, Lund, Sweden
| | - K Kuroki
- Faculty of Pharmaceutical Sciences and Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - A Palm
- Department of Translational Medicine, Lund University, Sölvegatan 17, 223 62, Lund, Sweden
| | - S Karlson
- Department of Translational Medicine, Lund University, Sölvegatan 17, 223 62, Lund, Sweden
| | - F Månsson
- Department of Translational Medicine, Lund University, Sölvegatan 17, 223 62, Lund, Sweden
| | - A Biague
- National Public Health Laboratory, V94M+HM4, Bissau, Guinea-Bissau
| | - Z J da Silva
- National Public Health Laboratory, V94M+HM4, Bissau, Guinea-Bissau
| | - C O Onyango
- US Centres for Disease Control, KEMRI Complex, Mbagathi Road off Mbagathi Way PO Box 606-00621, Kenya
| | - T I de Silva
- Department of Infection, Immunity and Cardiovascular Disease, The Medical School, University of Sheffield, Beech Hill Rd, S10 2RX, Sheffield, UK
- Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Atlantic Boulevard, Fajara P. O. Box 273, Banjul, The Gambia
| | - A Jaye
- Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Atlantic Boulevard, Fajara P. O. Box 273, Banjul, The Gambia
| | - H Norrgren
- Department of Clinical Sciences Lund, Lund University, Sölvegatan 19, 221 84 Lund, Sweden
| | - P Medstrand
- Department of Translational Medicine, Lund University, Sölvegatan 17, 223 62, Lund, Sweden
| | - M Jansson
- Department of Laboratory Medicine, Lund University, Sölvegatan 19, Sweden
| | - K Maenaka
- Faculty of Pharmaceutical Sciences and Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - S L Rowland-Jones
- Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, OX3 7FZ, Oxford, UK
- Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Atlantic Boulevard, Fajara P. O. Box 273, Banjul, The Gambia
| | - J Esbjörnsson
- Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, OX3 7FZ, Oxford, UK
- Department of Translational Medicine, Lund University, Sölvegatan 17, 223 62, Lund, Sweden
| |
Collapse
|
15
|
Vieira VA, Herbert N, Cromhout G, Adland E, Goulder P. Role of Early Life Cytotoxic T Lymphocyte and Natural Killer Cell Immunity in Paediatric HIV Cure/Remission in the Anti-Retroviral Therapy Era. Front Immunol 2022; 13:886562. [PMID: 35634290 PMCID: PMC9130627 DOI: 10.3389/fimmu.2022.886562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/13/2022] [Indexed: 11/13/2022] Open
Abstract
Only three well-characterised cases of functional cure have been described in paediatric HIV infection over the past decade. This underlines the fact that early initiation of combination antiretroviral therapy (cART), whilst minimising the size of the viral reservoir, is insufficient to achieve cure, unless other factors contribute. In this review, we consider these additional factors that may facilitate functional cure in paediatric infection. Among the early life immune activity, these include HIV-specific cytotoxic T-lymphocyte (CTL) and natural killer (NK) cell responses. The former have less potent antiviral efficacy in paediatric compared with adult infection, and indeed, in early life, NK responses have greater impact in suppressing viral replication than CTL. This fact may contribute to a greater potential for functional cure to be achieved in paediatric versus adult infection, since post-treatment control in adults is associated less with highly potent CTL activity, and more with effective antiviral NK cell responses. Nonetheless, antiviral CTL responses can play an increasingly effective role through childhood, especially in individuals expressing then 'protective' HLA-I molecules HLA-B*27/57/58:01/8101. The role of the innate system on preventing infection, in shaping the particular viruses transmitted, and influencing outcome is discussed. The susceptibility of female fetuses to in utero mother-to-child transmission, especially in the setting of recent maternal infection, is a curiosity that also provides clues to mechanisms by which cure may be achieved, since initial findings are that viral rebound is less frequent among males who interrupt cART. The potential of broadly neutralising antibody therapy to facilitate cure in children who have received early cART is discussed. Finally, we draw attention to the impact of the changing face of the paediatric HIV epidemic on cure potential. The effect of cART is not limited to preventing AIDS and reducing the risk of transmission. cART also affects which mothers transmit. No longer are mothers who transmit those who carry genes associated with poor immune control of HIV. In the cART era, a high proportion (>70% in our South African study) of transmitting mothers are those who seroconvert in pregnancy or who for social reasons are diagnosed late in pregnancy. As a result, now, genes associated with poor immune control of HIV are not enriched in mothers who transmit HIV to their child. These changes will likely influence the effectiveness of HLA-associated immune responses and therefore cure potential among children.
Collapse
Affiliation(s)
- Vinicius A. Vieira
- Peter Medawar Building for Pathogen Research, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Nicholas Herbert
- Africa Health Research Institute (AHRI), Nelson R Mandela School of Medicine, Durban, South Africa
| | - Gabriela Cromhout
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Emily Adland
- Peter Medawar Building for Pathogen Research, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Philip Goulder
- Peter Medawar Building for Pathogen Research, Department of Paediatrics, University of Oxford, Oxford, United Kingdom,Africa Health Research Institute (AHRI), Nelson R Mandela School of Medicine, Durban, South Africa,HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa,*Correspondence: Philip Goulder,
| |
Collapse
|
16
|
Transmitted HIV-1 is more virulent in heterosexual individuals than men-who-have-sex-with-men. PLoS Pathog 2022; 18:e1010319. [PMID: 35271687 PMCID: PMC8912199 DOI: 10.1371/journal.ppat.1010319] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 01/27/2022] [Indexed: 12/29/2022] Open
Abstract
Transmission bottlenecks introduce selection pressures on HIV-1 that vary with the mode of transmission. Recent studies on small cohorts have suggested that stronger selection pressures lead to fitter transmitted/founder (T/F) strains. Manifestations of this selection bias at the population level have remained elusive. Here, we analysed early CD4 cell count measurements reported from ∼340,000 infected heterosexual individuals (HET) and men-who-have-sex-with-men (MSM), across geographies, ethnicities and calendar years. The reduction in CD4 counts early in infection is reflective of the virulence of T/F strains. MSM and HET use predominant modes of transmission, namely, anal and penile-vaginal, with among the largest differences in the selection pressures at transmission across modes. Further, in most geographies, the groups show little inter-mixing, allowing for the differential selection bias to be sustained and amplified. We found that the early reduction in CD4 counts was consistently greater in HET than MSM (P<0.05). To account for inherent variations in baseline CD4 counts, we constructed a metric to quantify the extent of progression to AIDS as the ratio of the reduction in measured CD4 counts from baseline and the reduction associated with AIDS. We found that this progression corresponding to the early CD4 measurements was ∼68% for MSM and ∼87% for HET on average (P<10−4; Cohen’s d, ds = 0.36), reflecting the more severe disease caused by T/F strains in HET than MSM at the population level. Interestingly, the set-point viral load was not different between the groups (ds<0.12), suggesting that MSM were more tolerant and not more resistant to their T/F strains than HET. This difference remained when we controlled for confounding factors using multivariable regression. We concluded that the different selection pressures at transmission have resulted in more virulent T/F strains in HET than MSM. These findings have implications for our understanding of HIV-1 pathogenesis, evolution, and epidemiology. HIV-1 encounters a key bottleneck at the time of its transmission from one individual to another. This transmission bottleneck can differ between modes of transmission. The stronger this bottleneck is, the more fit the virus has to be to be successfully transmitted. Accordingly, the transmitted/founder (T/F) strains of HIV-1 may have different fitness in risk groups that use different modes of transmission. While studies on small cohorts do support this notion, observations of the manifestations of this differential selection bias at the population level have been lacking. Here, we examined reported early CD4 count measurements from ∼340,000 HET and MSM, across geographies, ethnicities, and calendar years. Early CD4 counts are a measure of the severity of the infection due to T/F strains. HET and MSM transmit predominantly via penile-vaginal and anal modes, respectively, and do not inter-mix significantly. Remarkably, we found that HET consistently had lower early CD4 counts than MSM. This difference could not be attributed to potential confounding factors, such as set-point viral load. The difference thus provided evidence that T/F strains had evolved to be more virulent in HET than MSM at the population level. Intervention strategies may benefit from accounting for this difference between risk groups.
Collapse
|
17
|
Balinda SN, Kapaata A, Xu R, Salazar MG, Mezzell AT, Qin Q, Herard K, Dilernia D, Kamali A, Ruzagira E, Kibengo FM, Song H, Ochsenbauer C, Salazar-Gonzalez JF, Gilmour J, Hunter E, Yue L, Kaleebu P. Characterization of Near Full-Length Transmitted/Founder HIV-1 Subtype D and A/D Recombinant Genomes in a Heterosexual Ugandan Population (2006–2011). Viruses 2022; 14:v14020334. [PMID: 35215928 PMCID: PMC8874453 DOI: 10.3390/v14020334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/01/2022] [Accepted: 01/10/2022] [Indexed: 12/04/2022] Open
Abstract
Detailed characterization of transmitted HIV-1 variants in Uganda is fundamentally important to inform vaccine design, yet studies on the transmitted full-length strains of subtype D viruses are limited. Here, we amplified single genomes and characterized viruses, some of which were previously classified as subtype D by sub-genomic pol sequencing that were transmitted in Uganda between December 2006 to June 2011. Analysis of 5′ and 3′ half genome sequences showed 73% (19/26) of infections involved single virus transmissions, whereas 27% (7/26) of infections involved multiple variant transmissions based on predictions of a model of random virus evolution. Subtype analysis of inferred transmitted/founder viruses showed a high transmission rate of inter-subtype recombinants (69%, 20/29) involving mainly A1/D, while pure subtype D variants accounted for one-third of infections (31%, 9/29). Recombination patterns included a predominance of subtype D in the gag/pol region and a highly recombinogenic envelope gene. The signal peptide-C1 region and gp41 transmembrane domain (Tat2/Rev2 flanking region) were hotspots for A1/D recombination events. Analysis of a panel of 14 transmitted/founder molecular clones showed no difference in replication capacity between subtype D viruses (n = 3) and inter-subtype mosaic recombinants (n = 11). However, individuals infected with high replication capacity viruses had a faster CD4 T cell loss. The high transmission rate of unique inter-subtype recombinants is striking and emphasizes the extraordinary challenge for vaccine design and, in particular, for the highly variable and recombinogenic envelope gene, which is targeted by rational designs aimed to elicit broadly neutralizing antibodies.
Collapse
Affiliation(s)
- Sheila N. Balinda
- Medical Research Council, UVRI & LSTHM Uganda Research Unit, Plot 51–59, Entebbe, Uganda; (A.K.); (M.G.S.); (E.R.); (F.M.K.); (J.F.S.-G.); (P.K.)
- Correspondence: ; Tel.: +25-675-466-0098
| | - Anne Kapaata
- Medical Research Council, UVRI & LSTHM Uganda Research Unit, Plot 51–59, Entebbe, Uganda; (A.K.); (M.G.S.); (E.R.); (F.M.K.); (J.F.S.-G.); (P.K.)
| | - Rui Xu
- Emory Vaccine Center, Yerkes National Primate Research Center, Atlanta, GA 30329, USA; (R.X.); (Q.Q.); (K.H.); (D.D.); (H.S.); (E.H.); (L.Y.)
| | - Maria G. Salazar
- Medical Research Council, UVRI & LSTHM Uganda Research Unit, Plot 51–59, Entebbe, Uganda; (A.K.); (M.G.S.); (E.R.); (F.M.K.); (J.F.S.-G.); (P.K.)
| | - Allison T. Mezzell
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati College of Medicine, 3230, Eden Ave, Cincinnati, OH 45267, USA;
| | - Qianhong Qin
- Emory Vaccine Center, Yerkes National Primate Research Center, Atlanta, GA 30329, USA; (R.X.); (Q.Q.); (K.H.); (D.D.); (H.S.); (E.H.); (L.Y.)
| | - Kimberly Herard
- Emory Vaccine Center, Yerkes National Primate Research Center, Atlanta, GA 30329, USA; (R.X.); (Q.Q.); (K.H.); (D.D.); (H.S.); (E.H.); (L.Y.)
| | - Dario Dilernia
- Emory Vaccine Center, Yerkes National Primate Research Center, Atlanta, GA 30329, USA; (R.X.); (Q.Q.); (K.H.); (D.D.); (H.S.); (E.H.); (L.Y.)
| | - Anatoli Kamali
- International AIDS Vaccine Initiative (IAVI), Nairobi 00202, Kenya;
| | - Eugene Ruzagira
- Medical Research Council, UVRI & LSTHM Uganda Research Unit, Plot 51–59, Entebbe, Uganda; (A.K.); (M.G.S.); (E.R.); (F.M.K.); (J.F.S.-G.); (P.K.)
| | - Freddie M. Kibengo
- Medical Research Council, UVRI & LSTHM Uganda Research Unit, Plot 51–59, Entebbe, Uganda; (A.K.); (M.G.S.); (E.R.); (F.M.K.); (J.F.S.-G.); (P.K.)
| | - Heeyah Song
- Emory Vaccine Center, Yerkes National Primate Research Center, Atlanta, GA 30329, USA; (R.X.); (Q.Q.); (K.H.); (D.D.); (H.S.); (E.H.); (L.Y.)
| | - Christina Ochsenbauer
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Jesus F. Salazar-Gonzalez
- Medical Research Council, UVRI & LSTHM Uganda Research Unit, Plot 51–59, Entebbe, Uganda; (A.K.); (M.G.S.); (E.R.); (F.M.K.); (J.F.S.-G.); (P.K.)
| | - Jill Gilmour
- International AIDS Vaccine Initiative (IAVI), Imperial College London, London SW10 9NH, UK;
| | - Eric Hunter
- Emory Vaccine Center, Yerkes National Primate Research Center, Atlanta, GA 30329, USA; (R.X.); (Q.Q.); (K.H.); (D.D.); (H.S.); (E.H.); (L.Y.)
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30329, USA
| | - Ling Yue
- Emory Vaccine Center, Yerkes National Primate Research Center, Atlanta, GA 30329, USA; (R.X.); (Q.Q.); (K.H.); (D.D.); (H.S.); (E.H.); (L.Y.)
| | - Pontiano Kaleebu
- Medical Research Council, UVRI & LSTHM Uganda Research Unit, Plot 51–59, Entebbe, Uganda; (A.K.); (M.G.S.); (E.R.); (F.M.K.); (J.F.S.-G.); (P.K.)
| |
Collapse
|
18
|
Zhang H, Quadeer AA, McKay MR. Evolutionary modeling reveals enhanced mutational flexibility of HCV subtype 1b compared with 1a. iScience 2022; 25:103569. [PMID: 34988406 PMCID: PMC8704487 DOI: 10.1016/j.isci.2021.103569] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 11/19/2021] [Accepted: 12/02/2021] [Indexed: 11/24/2022] Open
Abstract
Hepatitis C virus (HCV) is a leading cause of liver-associated disease and liver cancer. Of the major HCV subtypes, patients infected with subtype 1b have been associated with having a higher risk of developing chronic infection and hepatocellular carcinoma. However, underlying reasons for this increased disease severity remain unknown. Here, we provide an evolutionary rationale, based on a comparative study of fitness landscape and in-host evolutionary models of the E2 glycoprotein of HCV subtypes 1a and 1b. Our analysis demonstrates that a higher chronicity rate of 1b may be attributed to lower fitness constraints, enabling 1b viruses to more easily escape antibody responses. More generally, our results suggest that differences in evolutionary constraints between HCV subtypes may be an important factor in mediating distinct disease outcomes. Our analysis also identifies antibodies that appear escape-resistant against both subtypes 1a and 1b, providing directions for designing HCV vaccines having cross-subtype protection.
Collapse
Affiliation(s)
- Hang Zhang
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, SAR, China
| | - Ahmed A. Quadeer
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, SAR, China
| | - Matthew R. McKay
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, SAR, China
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, SAR, China
- Department of Electrical and Electronic Engineering, University of Melbourne, Melbourne, VIC, Australia
- Department of Microbiology and Immunology, University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| |
Collapse
|
19
|
Vieira VA, Adland E, Malone DFG, Martin MP, Groll A, Ansari MA, Garcia-Guerrero MC, Puertas MC, Muenchhoff M, Guash CF, Brander C, Martinez-Picado J, Bamford A, Tudor-Williams G, Ndung’u T, Walker BD, Ramsuran V, Frater J, Jooste P, Peppa D, Carrington M, Goulder PJR. An HLA-I signature favouring KIR-educated Natural Killer cells mediates immune control of HIV in children and contrasts with the HLA-B-restricted CD8+ T-cell-mediated immune control in adults. PLoS Pathog 2021; 17:e1010090. [PMID: 34793581 PMCID: PMC8639058 DOI: 10.1371/journal.ppat.1010090] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/02/2021] [Accepted: 11/04/2021] [Indexed: 12/30/2022] Open
Abstract
Natural Killer (NK) cells contribute to HIV control in adults, but HLA-B-mediated T-cell activity has a more substantial impact on disease outcome. However, the HLA-B molecules influencing immune control in adults have less impact on paediatric infection. To investigate the contribution NK cells make to immune control, we studied >300 children living with HIV followed over two decades in South Africa. In children, HLA-B alleles associated with adult protection or disease-susceptibility did not have significant effects, whereas Bw4 (p = 0.003) and low HLA-A expression (p = 0.002) alleles were strongly associated with immunological and viral control. In a comparator adult cohort, Bw4 and HLA-A expression contributions to HIV disease outcome were dwarfed by those of protective and disease-susceptible HLA-B molecules. We next investigated the immunophenotype and effector functions of NK cells in a subset of these children using flow cytometry. Slow progression and better plasma viraemic control were also associated with high frequencies of less terminally differentiated NKG2A+NKp46+CD56dim NK cells strongly responsive to cytokine stimulation and linked with the immunogenetic signature identified. Future studies are indicated to determine whether this signature associated with immune control in early life directly facilitates functional cure in children.
Collapse
Affiliation(s)
- Vinicius A. Vieira
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Emily Adland
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | | | - Maureen P. Martin
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD and Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Andreas Groll
- Department of Statistics, TU Dortmund University, Dortmund, Germany
| | - M. Azim Ansari
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | | | - Mari C. Puertas
- IrsiCaixa AIDS Research Institute, Badalona, Spain
- CIBER en Enfermedades Infecciosas, Madrid, Spain
| | - Maximilian Muenchhoff
- Max von Pettenkofer Institute & Gene Center, Virology, National Reference Center for Retroviruses, LMU München, Munich, Germany
- German Center for Infection Research (DZIF), partner site Munich, Munich, Germany
| | - Claudia Fortuny Guash
- Infectious Diseases and Systemic Inflammatory Response in Pediatrics, Infectious Diseases Unit, Department of Pediatrics, Sant Joan de Déu Hospital Research Foundation, Barcelona, Spain
- Center for Biomedical Network Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Department of Pediatrics, University of Barcelona, Barcelona, Spain
- Translational Research Network in Pediatric Infectious Diseases (RITIP), Madrid, Spain
| | - Christian Brander
- IrsiCaixa AIDS Research Institute, Badalona, Spain
- CIBER en Enfermedades Infecciosas, Madrid, Spain
- University of Vic-Central University of Catalonia (UVic-UCC), Vic, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Javier Martinez-Picado
- IrsiCaixa AIDS Research Institute, Badalona, Spain
- CIBER en Enfermedades Infecciosas, Madrid, Spain
- University of Vic-Central University of Catalonia (UVic-UCC), Vic, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
- Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
| | - Alasdair Bamford
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
- UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | | | - Thumbi Ndung’u
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- Africa Health Research Institute (AHRI), Durban, South Africa
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, United States of America
- Max Planck Institute for Infection Biology, Chariteplatz, Berlin, Germany
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Bruce D. Walker
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- Africa Health Research Institute (AHRI), Durban, South Africa
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Veron Ramsuran
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
| | - John Frater
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Oxford NIHR Biomedical Research Centre, Oxford, United Kingdom
| | - Pieter Jooste
- Department of Paediatrics, Kimberley Hospital, Kimberley, South Africa
| | - Dimitra Peppa
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Mary Carrington
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD and Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Philip J. R. Goulder
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
20
|
Ismail SD, Pankrac J, Ndashimye E, Prodger JL, Abrahams MR, Mann JFS, Redd AD, Arts EJ. Addressing an HIV cure in LMIC. Retrovirology 2021; 18:21. [PMID: 34344423 PMCID: PMC8330180 DOI: 10.1186/s12977-021-00565-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/19/2021] [Indexed: 12/15/2022] Open
Abstract
HIV-1 persists in infected individuals despite years of antiretroviral therapy (ART), due to the formation of a stable and long-lived latent viral reservoir. Early ART can reduce the latent reservoir and is associated with post-treatment control in people living with HIV (PLWH). However, even in post-treatment controllers, ART cessation after a period of time inevitably results in rebound of plasma viraemia, thus lifelong treatment for viral suppression is indicated. Due to the difficulties of sustained life-long treatment in the millions of PLWH worldwide, a cure is undeniably necessary. This requires an in-depth understanding of reservoir formation and dynamics. Differences exist in treatment guidelines and accessibility to treatment as well as social stigma between low- and-middle income countries (LMICs) and high-income countries. In addition, demographic differences exist in PLWH from different geographical regions such as infecting viral subtype and host genetics, which can contribute to differences in the viral reservoir between different populations. Here, we review topics relevant to HIV-1 cure research in LMICs, with a focus on sub-Saharan Africa, the region of the world bearing the greatest burden of HIV-1. We present a summary of ART in LMICs, highlighting challenges that may be experienced in implementing a HIV-1 cure therapeutic. Furthermore, we discuss current research on the HIV-1 latent reservoir in different populations, highlighting research in LMIC and gaps in the research that may facilitate a global cure. Finally, we discuss current experimental cure strategies in the context of their potential application in LMICs.
Collapse
Affiliation(s)
- Sherazaan D Ismail
- Division of Medical Virology, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, 7925, South Africa
| | - Joshua Pankrac
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A5C1, Canada
| | - Emmanuel Ndashimye
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A5C1, Canada
- Center for AIDS Research Uganda Laboratories, Joint Clinical Research Centre, Kampala, Uganda
| | - Jessica L Prodger
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A5C1, Canada
- Department of Epidemiology and Biostatistics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A 5C1, Canada
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Melissa-Rose Abrahams
- Division of Medical Virology, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, 7925, South Africa
| | - Jamie F S Mann
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A5C1, Canada
- Bristol Veterinary School, University of Bristol, Langford House, Langford, Bristol, BS40 5DU, UK
| | - Andrew D Redd
- Division of Medical Virology, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, 7925, South Africa
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Laboratory of Immunoregulation, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Eric J Arts
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A5C1, Canada.
- Division of Infectious Diseases, Department of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA.
| |
Collapse
|
21
|
Dalel J, Ung SK, Hayes P, Black SL, Joseph S, King DF, Makinde J, Gilmour J. HIV-1 infection and the lack of viral control are associated with greater expression of interleukin-21 receptor on CD8+ T cells. AIDS 2021; 35:1167-1177. [PMID: 33710028 PMCID: PMC8183476 DOI: 10.1097/qad.0000000000002864] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/29/2020] [Accepted: 02/06/2021] [Indexed: 01/05/2023]
Abstract
OBJECTIVES Interleukin-21 (IL-21) has been linked with the generation of virus-specific memory CD8+ T cells following acute infection with HIV-1 and reduced exhaustion of CD8+ T cells. IL-21 has also been implicated in the promotion of CD8+ T-cell effector functions during viral infection. Little is known about the expression of interleukin-21 receptor (IL-21R) during HIV-1 infection or its role in HIV-1-specific CD8+ T-cell maintenance and subsequent viral control. METHODS We compared levels of IL-21R expression on total and memory subsets of CD8+ T cells from HIV-1-negative and HIV-1-positive donors. We also measured IL-21R on antigen-specific CD8+ T cells in volunteers who were positive for HIV-1 and had cytomegalovirus-responding T cells. Finally, we quantified plasma IL-21 in treatment-naive HIV-1-positive individuals and compared this with IL-21R expression. RESULTS IL-21R expression was significantly higher on CD8+ T cells (P = 0.0256), and on central memory (P = 0.0055) and effector memory (P = 0.0487) CD8+ T-cell subsets from HIV-1-positive individuals relative to HIV-1-negative individuals. For those infected with HIV-1, the levels of IL-21R expression on HIV-1-specific CD8+ T cells correlated significantly with visit viral load (r = 0.6667, P = 0.0152, n = 13) and inversely correlated with plasma IL-21 (r = -0.6273, P = 0.0440, n = 11). Lastly, CD8+ T cells from individuals with lower set point viral load who demonstrated better viral control had the lowest levels of IL-21R expression and highest levels of plasma IL-21. CONCLUSION Our data demonstrates significant associations between IL-21R expression on peripheral CD8+ T cells and viral load, as well as disease trajectory. This suggests that the IL-21 receptor could be a novel marker of CD8+ T-cell dysfunction during HIV-1 infection.
Collapse
Affiliation(s)
- Jama Dalel
- IAVI Human Immunology Laboratory, Imperial College London, London, UK
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Tang J. Immunogenetic determinants of heterosexual HIV-1 transmission: key findings and lessons from two distinct African cohorts. Genes Immun 2021; 22:65-74. [PMID: 33934119 PMCID: PMC8225584 DOI: 10.1038/s41435-021-00130-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 04/05/2021] [Accepted: 04/15/2021] [Indexed: 02/03/2023]
Abstract
Immunogenetic studies in the past three decades have uncovered a broad range of human genetic factors that seem to influence heterosexual HIV-1 transmission in one way or another. In our own work that jointly evaluated both genetic and nongenetic factors in two African cohorts of cohabiting, HIV-1-discordant couples (donor and recipient pairs) at risk of transmission during quarterly follow-up intervals, relatively consistent findings have been seen with three loci (IL19, HLA-A, and HLA-B), although the effect size (i.e., odds ratio or hazards ratio) of each specific variant was quite modest. These studies offered two critical lessons that should benefit future research on sexually transmitted infections. First, in donor partners, immunogenetic factors (e.g., HLA-B*57 and HLA-A*36:01) that operate directly through HIV-1 viral load or indirectly through genital coinfections are equally important. Second, thousands of single-nucleotide polymorphisms previously recognized as "causal" factors for human autoimmune disorders did not appear to make much difference, which is somewhat puzzling as these variants are predicted or known to influence the expression of many immune response genes. Replicating these observations in additional cohorts is no longer feasible as the field has shifted its focus to early diagnosis, universal treatment, and active management of comorbidities.
Collapse
Affiliation(s)
- Jianming Tang
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
23
|
Farinre O, Gounder K, Reddy T, Tongo M, Hare J, Chaplin B, Gilmour J, Kanki P, Mann JK, Ndung'u T. Subtype-specific differences in Gag-protease replication capacity of HIV-1 isolates from East and West Africa. Retrovirology 2021; 18:11. [PMID: 33952315 PMCID: PMC8097975 DOI: 10.1186/s12977-021-00554-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 04/12/2021] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND The HIV-1 epidemic in sub-Saharan Africa is heterogeneous with diverse unevenly distributed subtypes and regional differences in prevalence. Subtype-specific differences in disease progression rate and transmission efficiency have been reported, but the underlying biological mechanisms have not been fully characterized. Here, we tested the hypothesis that the subtypes prevalent in the East Africa, where adult prevalence rate is higher, have lower viral replication capacity (VRC) than their West African counterparts where adult prevalence rates are lower. RESULTS Gag-protease sequencing was performed on 213 and 160 antiretroviral-naïve chronically infected participants from West and East Africa respectively and bioinformatic tools were used to infer subtypes and recombination patterns. VRC of patient-derived gag-protease chimeric viruses from West (n = 178) and East (n = 114) Africa were determined using a green fluorescent protein reporter-based cell assay. Subtype and regional differences in VRC and amino acid variants impacting VRC were identified by statistical methods. CRF02_AG (65%, n = 139), other recombinants (14%, n = 30) and pure subtypes (21%, n = 44) were identified in West Africa. Subtypes A1 (64%, n = 103), D (22%, n = 35), or recombinants (14%, n = 22) were identified in East Africa. Viruses from West Africa had significantly higher VRC compared to those from East Africa (p < 0.0001), with subtype-specific differences found among strains within West and East Africa (p < 0.0001). Recombination patterns showed a preference for subtypes D, G or J rather than subtype A in the p6 region of gag, with evidence that subtype-specific differences in this region impact VRC. Furthermore, the Gag A83V polymorphism was associated with reduced VRC in CRF02_AG. HLA-A*23:01 (p = 0.0014) and HLA-C*07:01 (p = 0.002) were associated with lower VRC in subtype A infected individuals from East Africa. CONCLUSIONS Although prevalent viruses from West Africa displayed higher VRC than those from East Africa consistent with the hypothesis that lower VRC is associated with higher population prevalence, the predominant CRF02_AG strain in West Africa displayed higher VRC than other prevalent strains suggesting that VRC alone does not explain population prevalence. The study identified viral and host genetic determinants of virus replication capacity for HIV-1 CRF02_AG and subtype A respectively, which may have relevance for vaccine strategies.
Collapse
Affiliation(s)
- Omotayo Farinre
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Kamini Gounder
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
- Africa Health Research Institute, Durban, 4001, South Africa
| | - Tarylee Reddy
- Biostatistics Research Unit, South African Medical Research Council, Durban, South Africa
| | - Marcel Tongo
- Centre of Research for Emerging and Re-Emerging Diseases (CREMER), Yaoundé, Cameroon
| | - Jonathan Hare
- International AIDS Vaccine Initiative (IAVI) Human Immunology Laboratory (HIL), Imperial College, London, UK
- IAVI Global Headquarters, 125 Broad Street, 9th Floor,, New York, NY, USA
| | - Beth Chaplin
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Jill Gilmour
- International AIDS Vaccine Initiative (IAVI) Human Immunology Laboratory (HIL), Imperial College, London, UK
- IAVI Global Headquarters, 125 Broad Street, 9th Floor,, New York, NY, USA
| | - Phyllis Kanki
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Jaclyn K Mann
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Thumbi Ndung'u
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa.
- Africa Health Research Institute, Durban, 4001, South Africa.
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA.
- Max Planck Institute for Infection Biology, Berlin, Germany.
- Division of Infection and Immunity, University College London, London, UK.
| |
Collapse
|
24
|
Iwamoto N, Patel B, Song K, Mason R, Bolivar-Wagers S, Bergamaschi C, Pavlakis GN, Berger E, Roederer M. Evaluation of chimeric antigen receptor T cell therapy in non-human primates infected with SHIV or SIV. PLoS One 2021; 16:e0248973. [PMID: 33752225 PMCID: PMC7984852 DOI: 10.1371/journal.pone.0248973] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 03/08/2021] [Indexed: 01/06/2023] Open
Abstract
Achieving a functional cure is an important goal in the development of HIV therapy. Eliciting HIV-specific cellular immune responses has not been sufficient to achieve durable removal of HIV-infected cells due to the restriction on effective immune responses by mutation and establishment of latent reservoirs. Chimeric antigen receptor (CAR) T cells are an avenue to potentially develop more potent redirected cellular responses against infected T cells. We developed and tested a range of HIV- and SIV-specific chimeric antigen receptor (CAR) T cell reagents based on Env-binding proteins. In general, SHIV/SIV CAR T cells showed potent viral suppression in vitro, and adding additional CAR molecules in the same transduction resulted in more potent viral suppression than single CAR transduction. Importantly, the primary determinant of virus suppression potency by CAR was the accessibility to the Env epitope, and not the neutralization potency of the binding moiety. However, upon transduction of autologous T cells followed by infusion in vivo, none of these CAR T cells impacted either acquisition as a test of prevention, or viremia as a test of treatment. Our study illustrates limitations of the CAR T cells as possible antiviral therapeutics.
Collapse
Affiliation(s)
- Nami Iwamoto
- ImmunoTechnology Section, Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Bhavik Patel
- ImmunoTechnology Section, Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland, United States of America
| | - Kaimei Song
- ImmunoTechnology Section, Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Rosemarie Mason
- ImmunoTechnology Section, Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Sara Bolivar-Wagers
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland, United States of America
| | - Cristina Bergamaschi
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland, United States of America
| | - George N. Pavlakis
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland, United States of America
| | - Edward Berger
- Laboratory of Viral Diseases, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Mario Roederer
- ImmunoTechnology Section, Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
25
|
Price MA, Kilembe W, Ruzagira E, Karita E, Inambao M, Sanders EJ, Anzala O, Allen S, Edward VA, Kaleebu P, Fast PE, Rida W, Kamali A, Hunter E, Tang J, Lakhi S, Mutua G, Bekker LG, Abu-Baker G, Tichacek A, Chetty P, Latka MH, Maenetje P, Makkan H, Hare J, Kibengo F, Priddy F, Landais E, Chinyenze K, Gilmour J. Cohort Profile: IAVI's HIV epidemiology and early infection cohort studies in Africa to support vaccine discovery. Int J Epidemiol 2021; 50:29-30. [PMID: 32879950 PMCID: PMC7938500 DOI: 10.1093/ije/dyaa100] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2020] [Indexed: 12/20/2022] Open
Affiliation(s)
- Matt A Price
- IAVI, New York, USA & Nairobi, Kenya
- Department of Epidemiology and Biostatistics, University of California at San Francisco, San Francisco, CA, USA
| | - William Kilembe
- Rwanda Zambia Emory HIV Research Group, Lusaka & Ndola, Zambia; Kigali, Rwanda
- Emory University, Atlanta, GA, USA
| | - Eugene Ruzagira
- Medical Research Council, Uganda Virus Research Institute, and London School of Hygiene and Tropical Medicine Uganda Research Unit (MULS), Entebbe & Masaka, Uganda
| | - Etienne Karita
- Rwanda Zambia Emory HIV Research Group, Lusaka & Ndola, Zambia; Kigali, Rwanda
- Emory University, Atlanta, GA, USA
| | - Mubiana Inambao
- Rwanda Zambia Emory HIV Research Group, Lusaka & Ndola, Zambia; Kigali, Rwanda
- Emory University, Atlanta, GA, USA
| | - Eduard J Sanders
- Kenyan Medical Research Institute-Wellcome Trust, Kilifi, Kenya
- Nuffield Department of Clinical Medicine, Centre for Clinical Vaccinology and Tropical Medicine, University of Oxford, Headington, UK
| | - Omu Anzala
- KAVI-Institute of Clinical Research, Nairobi, Kenya
| | - Susan Allen
- Rwanda Zambia Emory HIV Research Group, Lusaka & Ndola, Zambia; Kigali, Rwanda
- Emory University, Atlanta, GA, USA
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, USA
| | - Vinodh A Edward
- The Aurum Institute, Johannesburg and Rustenburg, South Africa
- School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Advancing Care and Treatment for TB/HIV, A Collaborating Centre of the South African Medical Research Council, Cape Town, South Africa
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Pontiano Kaleebu
- Medical Research Council, Uganda Virus Research Institute, and London School of Hygiene and Tropical Medicine Uganda Research Unit (MULS), Entebbe & Masaka, Uganda
| | - Patricia E Fast
- IAVI, New York, USA & Nairobi, Kenya
- Pediatric Infectious Diseases, School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Wasima Rida
- Biostatistics Consultant, Arlington, VA, USA
| | | | - Eric Hunter
- Rwanda Zambia Emory HIV Research Group, Lusaka & Ndola, Zambia; Kigali, Rwanda
- Emory University, Atlanta, GA, USA
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, USA
| | - Jianming Tang
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Shabir Lakhi
- Rwanda Zambia Emory HIV Research Group, Lusaka & Ndola, Zambia; Kigali, Rwanda
- Emory University, Atlanta, GA, USA
| | | | - Linda Gail Bekker
- Desmond Tutu HIV Centre, University of Cape Town, Cape Town, South Africa
| | - Ggayi Abu-Baker
- Medical Research Council, Uganda Virus Research Institute, and London School of Hygiene and Tropical Medicine Uganda Research Unit (MULS), Entebbe & Masaka, Uganda
| | - Amanda Tichacek
- Rwanda Zambia Emory HIV Research Group, Lusaka & Ndola, Zambia; Kigali, Rwanda
- Emory University, Atlanta, GA, USA
- Department of Epidemiology, Emory University, Atlanta, GA, USA
| | | | - Mary H Latka
- The Aurum Institute, Johannesburg and Rustenburg, South Africa
| | - Pholo Maenetje
- The Aurum Institute, Johannesburg and Rustenburg, South Africa
| | - Heeran Makkan
- The Aurum Institute, Johannesburg and Rustenburg, South Africa
| | - Jonathan Hare
- IAVI Human Immunology Laboratory, Imperial College, London, UK
| | - Freddie Kibengo
- Medical Research Council, Uganda Virus Research Institute, and London School of Hygiene and Tropical Medicine Uganda Research Unit (MULS), Entebbe & Masaka, Uganda
| | | | - Elise Landais
- IAVI, New York, USA & Nairobi, Kenya
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | | | - Jill Gilmour
- IAVI Human Immunology Laboratory, Imperial College, London, UK
| |
Collapse
|
26
|
McGowan E, Rosenthal R, Fiore-Gartland A, Macharia G, Balinda S, Kapaata A, Umviligihozo G, Muok E, Dalel J, Streatfield CL, Coutinho H, Dilernia D, Monaco DC, Morrison D, Yue L, Hunter E, Nielsen M, Gilmour J, Hare J. Utilizing Computational Machine Learning Tools to Understand Immunogenic Breadth in the Context of a CD8 T-Cell Mediated HIV Response. Front Immunol 2021; 12:609884. [PMID: 33679745 PMCID: PMC7930081 DOI: 10.3389/fimmu.2021.609884] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 01/28/2021] [Indexed: 11/13/2022] Open
Abstract
Predictive models are becoming more and more commonplace as tools for candidate antigen discovery to meet the challenges of enabling epitope mapping of cohorts with diverse HLA properties. Here we build on the concept of using two key parameters, diversity metric of the HLA profile of individuals within a population and consideration of sequence diversity in the context of an individual's CD8 T-cell immune repertoire to assess the HIV proteome for defined regions of immunogenicity. Using this approach, analysis of HLA adaptation and functional immunogenicity data enabled the identification of regions within the proteome that offer significant conservation, HLA recognition within a population, low prevalence of HLA adaptation and demonstrated immunogenicity. We believe this unique and novel approach to vaccine design as a supplement to vitro functional assays, offers a bespoke pipeline for expedited and rational CD8 T-cell vaccine design for HIV and potentially other pathogens with the potential for both global and local coverage.
Collapse
Affiliation(s)
- Ed McGowan
- IAVI Human Immunology Laboratory, Imperial College, London, United Kingdom
| | - Rachel Rosenthal
- Cancer Evolution and Genome Instability Laboratory, Francis Crick Institute, London, United Kingdom
| | - Andrew Fiore-Gartland
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Gladys Macharia
- IAVI Human Immunology Laboratory, Imperial College, London, United Kingdom
| | - Sheila Balinda
- Medical Research Council/Uganda Virus Research Institute (MRC/UVRI) and London School of Health and Tropical Medicine (LSHTM), Uganda Research Unit, Entebbe, Uganda
| | - Anne Kapaata
- Medical Research Council/Uganda Virus Research Institute (MRC/UVRI) and London School of Health and Tropical Medicine (LSHTM), Uganda Research Unit, Entebbe, Uganda
| | - Gisele Umviligihozo
- Project San Francisco (PSF) Center for Family Health Research (CFHR), Kigali, Rwanda
| | - Erick Muok
- Project San Francisco (PSF) Center for Family Health Research (CFHR), Kigali, Rwanda
| | - Jama Dalel
- IAVI Human Immunology Laboratory, Imperial College, London, United Kingdom
| | | | - Helen Coutinho
- IAVI Human Immunology Laboratory, Imperial College, London, United Kingdom
| | - Dario Dilernia
- Emory Vaccine Center, Emory University, Atlanta, GA, United States
| | | | | | - Ling Yue
- Emory Vaccine Center, Emory University, Atlanta, GA, United States
| | - Eric Hunter
- Emory Vaccine Center, Emory University, Atlanta, GA, United States
| | - Morten Nielsen
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Jill Gilmour
- IAVI Human Immunology Laboratory, Imperial College, London, United Kingdom
| | | |
Collapse
|
27
|
Kapaata A, Balinda SN, Xu R, Salazar MG, Herard K, Brooks K, Laban K, Hare J, Dilernia D, Kamali A, Ruzagira E, Mukasa F, Gilmour J, Salazar-Gonzalez JF, Yue L, Cotten M, Hunter E, Kaleebu P. HIV-1 Gag-Pol Sequences from Ugandan Early Infections Reveal Sequence Variants Associated with Elevated Replication Capacity. Viruses 2021; 13:v13020171. [PMID: 33498793 PMCID: PMC7912664 DOI: 10.3390/v13020171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 01/04/2021] [Accepted: 01/06/2021] [Indexed: 01/05/2023] Open
Abstract
The ability to efficiently establish a new infection is a critical property for human immunodeficiency virus type 1 (HIV-1). Although the envelope protein of the virus plays an essential role in receptor binding and internalization of the infecting virus, the structural proteins, the polymerase and the assembly of new virions may also play a role in establishing and spreading viral infection in a new host. We examined Ugandan viruses from newly infected patients and focused on the contribution of the Gag-Pol genes to replication capacity. A panel of Gag-Pol sequences generated using single genome amplification from incident HIV-1 infections were cloned into a common HIV-1 NL4.3 pol/env backbone and the influence of Gag-Pol changes on replication capacity was monitored. Using a novel protein domain approach, we then documented diversity in the functional protein domains across the Gag-Pol region and identified differences in the Gag-p6 domain that were frequently associated with higher in vitro replication.
Collapse
Affiliation(s)
- Anne Kapaata
- Medical Research Council, UVRI & LSTHM Uganda Research Unit, Plot 51–59, Entebbe, Uganda; (A.K.); (S.N.B.); (M.G.S.); (K.L.); (E.R.); (F.M.); (J.F.S.-G.); (P.K.)
| | - Sheila N. Balinda
- Medical Research Council, UVRI & LSTHM Uganda Research Unit, Plot 51–59, Entebbe, Uganda; (A.K.); (S.N.B.); (M.G.S.); (K.L.); (E.R.); (F.M.); (J.F.S.-G.); (P.K.)
| | - Rui Xu
- Emory University, Atlanta, GA 30322, USA; (R.X.); (K.H.); (K.B.); (D.D.); (L.Y.); (E.H.)
| | - Maria G. Salazar
- Medical Research Council, UVRI & LSTHM Uganda Research Unit, Plot 51–59, Entebbe, Uganda; (A.K.); (S.N.B.); (M.G.S.); (K.L.); (E.R.); (F.M.); (J.F.S.-G.); (P.K.)
| | - Kimberly Herard
- Emory University, Atlanta, GA 30322, USA; (R.X.); (K.H.); (K.B.); (D.D.); (L.Y.); (E.H.)
| | - Kelsie Brooks
- Emory University, Atlanta, GA 30322, USA; (R.X.); (K.H.); (K.B.); (D.D.); (L.Y.); (E.H.)
| | - Kato Laban
- Medical Research Council, UVRI & LSTHM Uganda Research Unit, Plot 51–59, Entebbe, Uganda; (A.K.); (S.N.B.); (M.G.S.); (K.L.); (E.R.); (F.M.); (J.F.S.-G.); (P.K.)
| | - Jonathan Hare
- Imperial College London, London SW7 2AZ, UK; (J.H.); (J.G.)
- International AIDS Vaccine Initiative (IAVI), New York, NY 10004, USA
| | - Dario Dilernia
- Emory University, Atlanta, GA 30322, USA; (R.X.); (K.H.); (K.B.); (D.D.); (L.Y.); (E.H.)
| | | | - Eugene Ruzagira
- Medical Research Council, UVRI & LSTHM Uganda Research Unit, Plot 51–59, Entebbe, Uganda; (A.K.); (S.N.B.); (M.G.S.); (K.L.); (E.R.); (F.M.); (J.F.S.-G.); (P.K.)
| | - Freddie Mukasa
- Medical Research Council, UVRI & LSTHM Uganda Research Unit, Plot 51–59, Entebbe, Uganda; (A.K.); (S.N.B.); (M.G.S.); (K.L.); (E.R.); (F.M.); (J.F.S.-G.); (P.K.)
| | - Jill Gilmour
- Imperial College London, London SW7 2AZ, UK; (J.H.); (J.G.)
- International AIDS Vaccine Initiative (IAVI), New York, NY 10004, USA
| | - Jesus F. Salazar-Gonzalez
- Medical Research Council, UVRI & LSTHM Uganda Research Unit, Plot 51–59, Entebbe, Uganda; (A.K.); (S.N.B.); (M.G.S.); (K.L.); (E.R.); (F.M.); (J.F.S.-G.); (P.K.)
| | - Ling Yue
- Emory University, Atlanta, GA 30322, USA; (R.X.); (K.H.); (K.B.); (D.D.); (L.Y.); (E.H.)
| | - Matthew Cotten
- Medical Research Council, UVRI & LSTHM Uganda Research Unit, Plot 51–59, Entebbe, Uganda; (A.K.); (S.N.B.); (M.G.S.); (K.L.); (E.R.); (F.M.); (J.F.S.-G.); (P.K.)
- Centre for Virus Research, MRC-University of Glasgow, Glasgow G61 1QH, UK
- Correspondence: ; Tel.: +25-6701-509-685
| | - Eric Hunter
- Emory University, Atlanta, GA 30322, USA; (R.X.); (K.H.); (K.B.); (D.D.); (L.Y.); (E.H.)
| | - Pontiano Kaleebu
- Medical Research Council, UVRI & LSTHM Uganda Research Unit, Plot 51–59, Entebbe, Uganda; (A.K.); (S.N.B.); (M.G.S.); (K.L.); (E.R.); (F.M.); (J.F.S.-G.); (P.K.)
| |
Collapse
|
28
|
Ex vivo rectal explant model reveals potential opposing roles of Natural Killer cells and Marginal Zone-like B cells in HIV-1 infection. Sci Rep 2020; 10:20154. [PMID: 33214610 PMCID: PMC7677325 DOI: 10.1038/s41598-020-76976-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 10/28/2020] [Indexed: 12/15/2022] Open
Abstract
Our understanding of innate immune responses in human rectal mucosal tissues (RM) and their contributions to promoting or restricting HIV transmission is limited. We defined the RM composition of innate and innate-like cell subsets, including plasmacytoid dendritic cells; CD1c + myeloid DCs; neutrophils; macrophages; natural killer cells (NK); Marginal Zone-like B cells (MZB); γδ T cells; and mucosal-associated invariant T cells in RM from 69 HIV-negative men by flow cytometry. Associations between these cell subsets and HIV-1 replication in ex vivo RM explant challenge experiments revealed an inverse correlation between RM-NK and p24 production, in contrast to a positive association between RM-MZB and HIV replication. Comparison of RM and blood-derived MZB and NK illustrated qualitative and quantitative differences between tissue compartments. Additionally, 22 soluble molecules were measured in a subset of explant cultures (n = 26). Higher production of IL-17A, IFN-γ, IL-10, IP-10, GM-CSF, sFasL, Granzyme A, Granzyme B, Granulysin, and Perforin following infection positively correlated with HIV replication. These data show novel associations between MZB and NK cells and p24 production in RM and underscore the importance of inflammatory cytokines in mucosal HIV infection, demonstrating the likely critical role these innate immune responses play in early mucosal HIV replication in humans.
Collapse
|
29
|
Macharia GN, Yue L, Staller E, Dilernia D, Wilkins D, Song H, McGowan E, King D, Fast P, Imami N, Price MA, Sanders EJ, Hunter E, Gilmour J. Infection with multiple HIV-1 founder variants is associated with lower viral replicative capacity, faster CD4+ T cell decline and increased immune activation during acute infection. PLoS Pathog 2020; 16:e1008853. [PMID: 32886726 PMCID: PMC7498102 DOI: 10.1371/journal.ppat.1008853] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 09/17/2020] [Accepted: 08/03/2020] [Indexed: 02/07/2023] Open
Abstract
HIV-1 transmission is associated with a severe bottleneck in which a limited number of variants from a pool of genetically diverse quasispecies establishes infection. The IAVI protocol C cohort of discordant couples, female sex workers, other heterosexuals and men who have sex with men (MSM) present varying risks of HIV infection, diverse HIV-1 subtypes and represent a unique opportunity to characterize transmitted/founder viruses (TF) where disease outcome is known. To identify the TF, the HIV-1 repertoire of 38 MSM participants' samples was sequenced close to transmission (median 21 days post infection, IQR 18-41) and assessment of multivariant infection done. Patient derived gag genes were cloned into an NL4.3 provirus to generate chimeric viruses which were characterized for replicative capacity (RC). Finally, an evaluation of how the TF virus predicted disease progression and modified the immune response at both acute and chronic HIV-1 infection was done. There was higher prevalence of multivariant infection compared with previously described heterosexual cohorts. A link was identified between multivariant infection and replicative capacity conferred by gag, whereby TF gag tended to be of lower replicative capacity in multivariant infection (p = 0.02) suggesting an overall lowering of fitness requirements during infection with multiple variants. Notwithstanding, multivariant infection was associated with rapid CD4+ T cell decline and perturbances in the CD4+ T cell and B cell compartments compared to single variant infection, which were reversible upon control of viremia. Strategies aimed at identifying and mitigating multivariant infection could contribute toward improving HIV-1 prognosis and this may involve strategies that tighten the stringency of the transmission bottleneck such as treatment of STI. Furthermore, the sequences and chimeric viruses help with TF based experimental vaccine immunogen design and can be used in functional assays to probe effective immune responses against TF.
Collapse
Affiliation(s)
- Gladys N. Macharia
- Department of Medicine, Imperial College London, London, United Kingdom
- IAVI Human Immunology Laboratory, London, United Kingdom
| | - Ling Yue
- Emory Vaccine Centre, Yerkes National Primate Research Centre, Emory University, Atlanta, GA, United States of America
| | - Ecco Staller
- Department of Medicine, Imperial College London, London, United Kingdom
- IAVI Human Immunology Laboratory, London, United Kingdom
| | - Dario Dilernia
- Emory Vaccine Centre, Yerkes National Primate Research Centre, Emory University, Atlanta, GA, United States of America
| | - Daniel Wilkins
- Emory Vaccine Centre, Yerkes National Primate Research Centre, Emory University, Atlanta, GA, United States of America
| | - Heeyah Song
- Emory Vaccine Centre, Yerkes National Primate Research Centre, Emory University, Atlanta, GA, United States of America
| | - Edward McGowan
- Department of Medicine, Imperial College London, London, United Kingdom
- IAVI Human Immunology Laboratory, London, United Kingdom
| | - Deborah King
- Department of Medicine, Imperial College London, London, United Kingdom
- IAVI Human Immunology Laboratory, London, United Kingdom
| | - Pat Fast
- IAVI, New York, NY, United States of America
| | - Nesrina Imami
- Department of Medicine, Imperial College London, London, United Kingdom
| | - Matthew A. Price
- IAVI, New York, NY, United States of America
- Department of Epidemiology and Biostatistics, University of California at San Francisco, San Francisco, CA, United States of America
| | - Eduard J. Sanders
- Kenya Medical Research Institute-Wellcome Trust, Kilifi, Kenya
- Nuffield Department of Clinical Medicine, Centre for Clinical Vaccinology and Tropical Medicine, University of Oxford, Headington, United Kingdom
| | - Eric Hunter
- Emory Vaccine Centre, Yerkes National Primate Research Centre, Emory University, Atlanta, GA, United States of America
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, United States of America
| | - Jill Gilmour
- Department of Medicine, Imperial College London, London, United Kingdom
- IAVI Human Immunology Laboratory, London, United Kingdom
| |
Collapse
|
30
|
Dual CD4-based CAR T cells with distinct costimulatory domains mitigate HIV pathogenesis in vivo. Nat Med 2020; 26:1776-1787. [PMID: 32868878 PMCID: PMC9422086 DOI: 10.1038/s41591-020-1039-5] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 07/28/2020] [Indexed: 02/06/2023]
Abstract
An effective strategy to cure HIV will likely require a potent and sustained antiviral T cell response. Here we explored the utility of chimeric antigen receptor (CAR) T cells, expressing the CD4 ectodomain to confer specificity for the HIV envelope, to mitigate HIV-induced pathogenesis in bone marrow, liver, thymus (BLT) humanized mice. CAR T cells expressing the 4-1BB/CD3-ζ endodomain were insufficient to prevent viral rebound and CD4+ T cell loss after the discontinuation of antiretroviral therapy. Through iterative improvements to the CAR T cell product, we developed Dual-CAR T cells that simultaneously expressed both 4-1BB/CD3-ζ and CD28/CD3-ζ endodomains. Dual-CAR T cells exhibited expansion kinetics that exceeded 4-1BB-, CD28- and third-generation costimulated CAR T cells, elicited effector functions equivalent to CD28-costimulated CAR T cells and prevented HIV-induced CD4+ T cell loss despite persistent viremia. Moreover, when Dual-CAR T cells were protected from HIV infection through expression of the C34-CXCR4 fusion inhibitor, these cells significantly reduced acute-phase viremia, as well as accelerated HIV suppression in the presence of antiretroviral therapy and reduced tissue viral burden. Collectively, these studies demonstrate the enhanced therapeutic potency of a novel Dual-CAR T cell product with the potential to effectively treat HIV infection.
Collapse
|
31
|
Key Positions of HIV-1 Env and Signatures of Vaccine Efficacy Show Gradual Reduction of Population Founder Effects at the Clade and Regional Levels. mBio 2020; 11:mBio.00126-20. [PMID: 32518179 PMCID: PMC7373194 DOI: 10.1128/mbio.00126-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
HIV-1 group M was transmitted to humans nearly one century ago. The virus has since evolved to form distinct clades, which spread to different regions of the world. The envelope glycoproteins (Envs) of HIV-1 have rapidly diversified in all infected populations. We examined whether key antigenic sites of Env and signatures of vaccine efficacy are evolving toward similar or distinct structural forms in different populations worldwide. Patterns of amino acid variants that emerged at each position of Env were compared between diverse HIV-1 clades and isolates from different geographic regions. Interestingly, at each Env position, the amino acid in the clade ancestral or regional-founder virus was replaced by a unique frequency distribution (FD) of amino acids. FDs are highly conserved in populations from different regions worldwide and in paraphyletic and monophyletic subclade groups. Remarkably, founder effects of Env mutations at the clade and regional levels have gradually decreased during the pandemic by evolution of each site toward the unique combination of variants. Therefore, HIV-1 Env is evolving at a population level toward well-defined "target" states; these states are not specific amino acids but rather specific distributions of amino acid frequencies. Our findings reveal the powerful nature of the forces that guide evolution of Env and their conservation across different populations. Such forces have caused a gradual decrease in the interpopulation diversity of Env despite an increasing intrapopulation diversity.IMPORTANCE The Env protein of HIV-1 is the primary target in AIDS vaccine design. Frequent mutations in the virus increase the number of Env forms in each population, limiting the efficacy of AIDS vaccines. Comparison of newly emerging forms in different populations showed that each position of Env is evolving toward a specific combination of amino acids. Similar changes are occurring in different HIV-1 subtypes and geographic regions toward the same position-specific combinations of amino acids, often from distinct ancestral sequences. The predictable nature of HIV-1 Env evolution, as shown here, provides a new framework for designing vaccines that are tailored to the unique combination of variants expected to emerge in each virus subtype and geographic region.
Collapse
|
32
|
Olusola BA, Kabelitz D, Olaleye DO, Odaibo GN. Early HIV infection is associated with reduced proportions of gamma delta T subsets as well as high creatinine and urea levels. Scand J Immunol 2020; 91:e12868. [PMID: 32052490 PMCID: PMC7335456 DOI: 10.1111/sji.12868] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 12/19/2019] [Accepted: 02/01/2020] [Indexed: 01/02/2023]
Abstract
Renal dysfunctions are major predictors of co-morbidities and mortality in HIV-infected individuals. Unconventional T cells have been shown to regulate kidney functions. However, there is dearth of information on the effect of HIV-associated nephropathies on γδ and DN T cells. It is also not clear whether γδ T cell perturbations observed during the early stages of HIV infection occur before immune activation. In this study, we investigated the relationship between creatinine and urea on the number of unconventional T cells in HIV-infected individuals at the early and chronic stages of infection. Persons in the chronic stage of infection were divided into treatment naïve and exposed groups. Treatment exposed individuals were further subdivided into groups with undetectable and detectable HIV-1RNA in their blood. Creatinine and urea levels were significantly higher among persons in the early HIV infection compared with the other groups. Proportions of γδ T, γδ + CD8, γδ + CD16 cells were also significantly reduced in the early stage of HIV infection (P < .01). Markers of immune activation, CD4 + HLA-DR and CD8 + HLA-DR, were also significantly reduced during early HIV infection (P < .01). Taken together, our findings suggest that high levels of renal markers as well as reduced proportions of gamma delta T cells are associated with the early stages of HIV infection. This event likely occurs before systemic immune activation reaches peak levels. This study provides evidence for the need for early HIV infection diagnosis and treatment.
Collapse
Affiliation(s)
- Babatunde A. Olusola
- Department of Virology, College of Medicine, University of
Ibadan, Ibadan, Oyo State, Nigeria
| | - Dieter Kabelitz
- Institute of Immunology, UKSH Campus Kiel,
Christian-Albrechts-University, Kiel, Germany
| | - David O. Olaleye
- Department of Virology, College of Medicine, University of
Ibadan, Ibadan, Oyo State, Nigeria
| | - Georgina N. Odaibo
- Department of Virology, College of Medicine, University of
Ibadan, Ibadan, Oyo State, Nigeria
| |
Collapse
|
33
|
Sex-specific innate immune selection of HIV-1 in utero is associated with increased female susceptibility to infection. Nat Commun 2020; 11:1767. [PMID: 32286302 PMCID: PMC7156749 DOI: 10.1038/s41467-020-15632-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 03/16/2020] [Indexed: 12/31/2022] Open
Abstract
Female children and adults typically generate more efficacious immune responses to vaccines and infections than age-matched males, but also suffer greater immunopathology and autoimmune disease. We here describe, in a cohort of > 170 in utero HIV-infected infants from KwaZulu-Natal, South Africa, fetal immune sex differences resulting in a 1.5–2-fold increased female susceptibility to intrauterine HIV infection. Viruses transmitted to females have lower replicative capacity (p = 0.0005) and are more type I interferon-resistant (p = 0.007) than those transmitted to males. Cord blood cells from females of HIV-uninfected sex-discordant twins are more activated (p = 0.01) and more susceptible to HIV infection in vitro (p = 0.03). Sex differences in outcome include superior maintenance of aviraemia among males (p = 0.007) that is not explained by differential antiretroviral therapy adherence. These data demonstrate sex-specific innate immune selection of HIV associated with increased female susceptibility to in utero infection and enhanced functional cure potential among infected males. Sex differences in the immune response to vaccines and infections have been well described in children and adults. Here the authors describe, in a cohort of 177 HIV-infected infants, innate immune sex differences in fetal life that increase female susceptibility to intrauterine HIV infection and increase the chances of subsequent HIV remission in infected males.
Collapse
|
34
|
Muema DM, Akilimali NA, Ndumnego OC, Rasehlo SS, Durgiah R, Ojwach DBA, Ismail N, Dong M, Moodley A, Dong KL, Ndhlovu ZM, Mabuka JM, Walker BD, Mann JK, Ndung'u T. Association between the cytokine storm, immune cell dynamics, and viral replicative capacity in hyperacute HIV infection. BMC Med 2020; 18:81. [PMID: 32209092 PMCID: PMC7093991 DOI: 10.1186/s12916-020-01529-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 02/12/2020] [Indexed: 02/07/2023] Open
Abstract
INTRODUCTION Immunological damage in acute HIV infection (AHI) may predispose to detrimental clinical sequela. However, studies on the earliest HIV-induced immunological changes are limited, particularly in sub-Saharan Africa. We assessed the plasma cytokines kinetics, and their associations with virological and immunological parameters, in a well-characterized AHI cohort where participants were diagnosed before peak viremia. METHODS Blood cytokine levels were measured using Luminex and ELISA assays pre-infection, during the hyperacute infection phase (before or at peak viremia, 1-11 days after the first detection of viremia), after peak viremia (24-32 days), and during the early chronic phase (77-263 days). Gag-protease-driven replicative capacities of the transmitted/founder viruses were determined using a green fluorescent reporter T cell assay. Complete blood counts were determined before and immediately following AHI detection before ART initiation. RESULTS Untreated AHI was associated with a cytokine storm of 12 out of the 33 cytokines analyzed. Initiation of ART during Fiebig stages I-II abrogated the cytokine storm. In untreated AHI, virus replicative capacity correlated positively with IP-10 (rho = 0.84, P < 0.001) and IFN-alpha (rho = 0.59, P = 0.045) and inversely with nadir CD4+ T cell counts (rho = - 0.58, P = 0.048). Hyperacute HIV infection before the initiation of ART was associated with a transient increase in monocytes (P < 0.001), decreased lymphocytes (P = 0.011) and eosinophils (P = 0.003) at Fiebig stages I-II, and decreased eosinophils (P < 0.001) and basophils (P = 0.007) at Fiebig stages III-V. Levels of CXCL13 during the untreated hyperacute phase correlated inversely with blood eosinophils (rho = - 0.89, P < 0.001), basophils (rho = - 0.87, P = 0.001) and lymphocytes (rho = - 0.81, P = 0.005), suggesting their trafficking into tissues. In early treated individuals, time to viral load suppression correlated positively with plasma CXCL13 at the early chronic phase (rho = 0.83, P = 0.042). CONCLUSION While commencement of ART during Fiebig stages I-II of AHI abrogated the HIV-induced cytokine storm, significant depletions of eosinophils, basophils, and lymphocytes, as well as transient expansions of monocytes, were still observed in these individuals in the hyperacute phase before the initiation of ART, suggesting that even ART initiated during the onset of viremia does not abrogate all HIV-induced immune changes.
Collapse
Affiliation(s)
- Daniel M Muema
- Africa Health Research Institute, Durban, South Africa.,HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa.,KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | | | | | | | | | - Doty B A Ojwach
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Nasreen Ismail
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Mary Dong
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Amber Moodley
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Krista L Dong
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa.,Ragon Institute of MGH, MIT and Harvard University, Cambridge, MA, USA
| | - Zaza M Ndhlovu
- Africa Health Research Institute, Durban, South Africa.,HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa.,Ragon Institute of MGH, MIT and Harvard University, Cambridge, MA, USA
| | | | - Bruce D Walker
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa.,Ragon Institute of MGH, MIT and Harvard University, Cambridge, MA, USA
| | - Jaclyn K Mann
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Thumbi Ndung'u
- Africa Health Research Institute, Durban, South Africa. .,HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa. .,Ragon Institute of MGH, MIT and Harvard University, Cambridge, MA, USA. .,Max Planck Institute for Infection Biology, Berlin, Germany. .,Division of Infection and Immunity, University College London, London, UK.
| |
Collapse
|
35
|
Wang C, Liu D, Zuo T, Hora B, Cai F, Ding H, Kappes J, Ochsenbauer C, Kong W, Yu X, Bhattacharya T, Perelson AS, Gao F. Accumulated mutations by 6 months of infection collectively render transmitted/founder HIV-1 significantly less fit. J Infect 2019; 80:210-218. [PMID: 31812703 DOI: 10.1016/j.jinf.2019.12.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 11/22/2019] [Accepted: 12/01/2019] [Indexed: 01/16/2023]
Abstract
OBJECTIVE Viral fitness plays an important role in HIV-1 evolution, transmission and pathogenesis. However, how mutations accumulated during early infection affect viral fitness has not been well studied. METHODS Paired infectious molecular clones (IMCs) for transmitted/founder (T/F) and 6-month (6-mo) viruses post infection were generated from 10 infected individuals to investigate the impact of accumulated mutations on viral fitness by comparing 6-mo viruses to their cognate T/F viruses. RESULTS All ten 6-mo viruses were less fit than their cognate T/F viruses. Moreover, the fitness losses of the 6-mo viruses correlated with the decrease in viral loads from the peak of viremia. CONCLUSION These results show that the mutations accumulated during half a year post infection collectively reduce viral fitness and thereby contribute to lowering viral loads.
Collapse
Affiliation(s)
- Chu Wang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, Jilin, China; Department of Medicine and Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Donglai Liu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, Jilin, China; Department of Medicine and Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA; Division of the Second in Vitro Diagnostic, National Institute for Food and Drug Control, Beijing 100050, China
| | - Tao Zuo
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, Jilin, China; Department of Medicine and Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Bhavna Hora
- Department of Medicine and Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Fangping Cai
- Department of Medicine and Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Haitao Ding
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - John Kappes
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Christina Ochsenbauer
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Wei Kong
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, Jilin, China
| | - Xianghui Yu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, Jilin, China
| | - Tanmoy Bhattacharya
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Alan S Perelson
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Feng Gao
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, Jilin, China; Department of Medicine and Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
36
|
Claiborne DT, Scully EP, Palmer CD, Prince JL, Macharia GN, Kopycinski J, Michelo CM, Wiener HW, Parker R, Nganou-Makamdop K, Douek D, Altfeld M, Gilmour J, Price MA, Tang J, Kilembe W, Allen SA, Hunter E. Protective HLA alleles are associated with reduced LPS levels in acute HIV infection with implications for immune activation and pathogenesis. PLoS Pathog 2019; 15:e1007981. [PMID: 31449552 PMCID: PMC6730937 DOI: 10.1371/journal.ppat.1007981] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 09/06/2019] [Accepted: 07/14/2019] [Indexed: 12/12/2022] Open
Abstract
Despite extensive research on the mechanisms of HLA-mediated immune control of HIV-1 pathogenesis, it is clear that much remains to be discovered, as exemplified by protective HLA alleles like HLA-B*81 which are associated with profound protection from CD4+ T cell decline without robust control of early plasma viremia. Here, we report on additional HLA class I (B*1401, B*57, B*5801, as well as B*81), and HLA class II (DQB1*02 and DRB1*15) alleles that display discordant virological and immunological phenotypes in a Zambian early infection cohort. HLA class I alleles of this nature were also associated with enhanced immune responses to conserved epitopes in Gag. Furthermore, these HLA class I alleles were associated with reduced levels of lipopolysaccharide (LPS) in the plasma during acute infection. Elevated LPS levels measured early in infection predicted accelerated CD4+ T cell decline, as well as immune activation and exhaustion. Taken together, these data suggest novel mechanisms for HLA-mediated immune control of HIV-1 pathogenesis that do not necessarily involve significant control of early viremia and point to microbial translocation as a direct driver of HIV-1 pathogenesis rather than simply a consequence. During acute HIV infection, there exists a complex interplay between the host immune response and the virus, and the balance of these interactions dramatically affects disease trajectory in infected individuals. Variations in Human Leukocyte Antigen (HLA) alleles dictate the potency of the cellular immune response to HIV, and certain well-studied alleles (HLA-B*57, B*27) are associated with control of HIV viremia. However, though plasma viral load is indicative of disease progression, the number of CD4+ T cells in the blood is a better measurement of disease severity. Through analysis of a large Zambian acute infection cohort, we identified HLA alleles that were associated with protection for CD4+ T cell loss, without dramatic affect on early plasma viremia. We further link these favorable HLA alleles to reduction in a well-known contributor to HIV pathogenesis, the presence of microbial products in the blood, which is indicative of damage to the gastrointestinal tract, a process which accelerates disease progression in HIV infected individuals. Ultimately, these results suggest a new mechanism by which the cellular immune response can combat HIV-associated pathogenesis, and further highlight the contribution of gut damage and microbial translocation to accelerating disease progression, even at early stages in HIV infection.
Collapse
Affiliation(s)
- Daniel T. Claiborne
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Eileen P. Scully
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Christine D. Palmer
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Jessica L. Prince
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Gladys N. Macharia
- Human Immunology Laboratory, International AIDS Vaccine Initiative, London, United Kingdom
| | - Jakub Kopycinski
- Human Immunology Laboratory, International AIDS Vaccine Initiative, London, United Kingdom
| | | | - Howard W. Wiener
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Rachel Parker
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Krystelle Nganou-Makamdop
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Daniel Douek
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Marcus Altfeld
- Virus Immunology Unit, Heinrich-Pette-Institut, Hamburg, Germany
| | - Jill Gilmour
- Human Immunology Laboratory, International AIDS Vaccine Initiative, London, United Kingdom
| | - Matt A. Price
- International AIDS Vaccine Initiative, New York, New York, United States of America
- Department of Epidemiology and Biostatistics, University of California at San Francisco, San Francisco, California, United States of America
| | - Jianming Tang
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | | | - Susan A. Allen
- Zambia-Emory HIV Research Project, Lusaka, Zambia
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Eric Hunter
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
37
|
Epigenetics, N-myrystoyltransferase-1 and casein kinase-2-alpha modulates the increased replication of HIV-1 CRF02_AG, compared to subtype-B viruses. Sci Rep 2019; 9:10689. [PMID: 31337802 PMCID: PMC6650493 DOI: 10.1038/s41598-019-47069-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 07/05/2019] [Indexed: 02/04/2023] Open
Abstract
HIV subtypes distribution varies by geographic regions; this is likely associated with differences in viral fitness but the predictors and underlying mechanisms are unknown. Using in-vitro, in-vivo, and ex-vivo approaches, we found significantly higher transactivation and replication of HIV-1-CRF02_AG (prevalent throughout West-Central Africa), compared to subtype-B. While CRF02_AG-infected animals showed higher viremia, subtype-B-infected animals showed significantly more weight loss, lower CD4+ T-cells and lower CD4/CD8 ratios, suggesting that factors other than viremia contribute to immunosuppression and wasting syndrome in HIV/AIDS. Compared to HIV-1-subtype-B and its Tat proteins(Tat.B), HIV-1-CRF02_AG and Tat.AG significantly increased histone acetyl-transferase activity and promoter histones H3 and H4 acetylation. Silencing N-myrystoyltransferase(NMT)-1 and casein-kinase-(CK)-II-alpha prevented Tat.AG- and HIV-1-CRF02_AG-mediated viral transactivation and replication, but not Tat.B- or HIV-1-subtype-B-mediated effects. Tat.AG and HIV-1-CRF02_AG induced the expression of NMT-1 and CKII-alpha in human monocytes and macrophages, but Tat.B and HIV-1-subtype-B had no effect. These data demonstrate that NMT1, CKII-alpha, histone acetylation and histone acetyl-transferase modulate the increased replication of HIV-1-CRF02_AG. These novel findings demonstrate that HIV genotype influence viral replication and provide insights into the molecular mechanisms of differential HIV-1 replication. These studies underline the importance of considering the influence of viral genotypes in HIV/AIDS epidemiology, replication, and eradication strategies.
Collapse
|
38
|
López-Galíndez C. HIV long-term non-progressors elite controllers: an interplay between host, immune and viral factors. Future Virol 2019. [DOI: 10.2217/fvl-2018-0207] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
There is a rare group of HIV-1-infected individuals who show permanent control of clinical progression for over 10 years, maintain CD4+ cells >500 μl and have undetectable viral loads; they are designated long-term non-progressors elite controllers (LTNPs ECs). Multiple studies have demonstrated the necessary contribution of at least two of host, immune and viral factors to the LTNP phenotype. This group of individuals is not homogenous because of the different involvement of these factors. We will review the role of each of these and their combinations to the LTNP EC phenotype. LTNP EC individuals offer an opportunity for the investigation into the mechanisms for the spontaneous control of HIV infection.
Collapse
Affiliation(s)
- Cecilio López-Galíndez
- Unidad de Virología Molecular, Laboratorio de Referencia e Investigación en Retrovirus, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid 28220, Spain
| |
Collapse
|
39
|
Boswell MT, Rowland-Jones SL. Delayed disease progression in HIV-2: the importance of TRIM5α and the retroviral capsid. Clin Exp Immunol 2019; 196:305-317. [PMID: 30773620 DOI: 10.1111/cei.13280] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2019] [Indexed: 12/21/2022] Open
Abstract
HIV-2 is thought to have entered the human population in the 1930s through cross-species transmission of SIV from sooty mangabeys in West Africa. Unlike HIV-1, HIV-2 has not led to a global pandemic, and recent data suggest that HIV-2 prevalence is declining in some West African states where it was formerly endemic. Although many early isolates of HIV-2 were derived from patients presenting with AIDS-defining illnesses, it was noted that a much larger proportion of HIV-2-infected subjects behaved as long-term non-progressors (LTNP) than their HIV-1-infected counterparts. Many HIV-2-infected adults are asymptomatic, maintaining an undetectable viral load for over a decade. However, despite lower viral loads, HIV-2 progresses to clinical AIDS without therapeutic intervention in most patients. In addition, successful treatment with anti-retroviral therapy (ART) is more challenging than for HIV-1. HIV-2 is significantly more sensitive to restriction by host restriction factor tripartite motif TRIM5α than HIV-1, and this difference in sensitivity is linked to differences in capsid structure. In this review we discuss the determinants of HIV-2 disease progression and focus on the important interactions between TRIM5α and HIV-2 capsid in long-term viral control.
Collapse
Affiliation(s)
- M T Boswell
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | |
Collapse
|
40
|
Rochat MA, Schlaepfer E, Kuster SP, Li D, Audige A, Ivic S, Fahrny A, Speck RF. Monitoring HIV DNA and cellular activation markers in HIV-infected humanized mice under cART. Virol J 2018; 15:191. [PMID: 30558630 PMCID: PMC6296118 DOI: 10.1186/s12985-018-1101-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 11/27/2018] [Indexed: 12/22/2022] Open
Abstract
Background The major obstacle to cure of HIV type-1 infection is the presence of the HIV reservoir, hidden from the immune system and insensitive to combined antiretroviral therapy (cART). Eradication approaches have been hindered by the difficulty for accurately monitoring its size in vivo, especially in the lymphoid organs. Humanized mouse models are a valuable tool for systematically assess the efficacy of therapeutic interventions in reducing the HIV reservoir. Nonetheless, persistence of the HIV reservoir over time, in the presence of cART, has yet to be analyzed in this in vivo model. Findings We found that the proviral DNA as well as the total DNA were very stable in the spleen and mesenteric lymph node irrespective of the length of cART. Notably, the amount of proviral DNA was very similar in the spleen and lymph node. Furthermore, we observed a correlation between the percentage of splenic human CD4+ T-cells with total HIV DNA, between the number of human CD38 + CD8+ T-cells in the spleen with the amount of integrated HIV DNA, and eventually between the hCD4/hCD8 ratio in the spleen with integrated as well as total HIV DNA implying that the CD8+ T cells influence the size of the HIV reservoir. Conclusions Here, we demonstrated the stability of this reservoir in humanized mice irrespective of the length of cART, confirming the relevancy of this model for HIV latency eradication investigations. Notably, we also found correlates between the frequency of CD4+ T-cells, their activation status and viral parameters, which were analogous to the ones in HIV-infected patients. Thus, hu-mice represent a very valuable HIV latency model.
Collapse
Affiliation(s)
- Mary-Aude Rochat
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital of Zurich, University of Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
| | - Erika Schlaepfer
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital of Zurich, University of Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
| | - Stefan P Kuster
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital of Zurich, University of Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
| | - Duo Li
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital of Zurich, University of Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
| | - Annette Audige
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital of Zurich, University of Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
| | - Sandra Ivic
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital of Zurich, University of Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
| | - Audrey Fahrny
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital of Zurich, University of Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
| | - Roberto F Speck
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital of Zurich, University of Zurich, Raemistrasse 100, 8091, Zurich, Switzerland.
| |
Collapse
|
41
|
Abstract
How virulence evolves after a virus jumps to a new host species is central to disease emergence. Our current understanding of virulence evolution is based on insights drawn from two perspectives that have developed largely independently: long-standing evolutionary theory based on limited real data examples that often lack a genomic basis, and experimental studies of virulence-determining mutations using cell culture or animal models. A more comprehensive understanding of virulence mutations and their evolution can be achieved by bridging the gap between these two research pathways through the phylogenomic analysis of virus genome sequence data as a guide to experimental study.
Collapse
Affiliation(s)
- Jemma L Geoghegan
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Edward C Holmes
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia.
| |
Collapse
|
42
|
In-depth validation of total HIV-1 DNA assays for quantification of various HIV-1 subtypes. Sci Rep 2018; 8:17274. [PMID: 30467426 PMCID: PMC6250682 DOI: 10.1038/s41598-018-35403-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 10/18/2018] [Indexed: 01/22/2023] Open
Abstract
HIV-1 DNA quantification serves as an important reservoir biomarker in HIV cure trials. However, the high genetic diversity of HIV-1 represented by different subtypes may bring inaccuracy in quantifying HIV-1 DNA and a sensitive and validated assay covering diverse HIV-1 subtypes is lacking. Therefore, we cross-validated total HIV-1 DNA assays described in literature using a three-step comparative analysis. First, a bioinformatics tool was developed in-house to perform an in silico evaluation of 67 HIV-1 DNA assays. Secondly, these selected assays were in vitro validated using a panel of different HIV-1 subtypes and, finally, ex vivo assessed on selected patient samples with different HIV-1 subtypes. Our results show that quantification of HIV-1 DNA substantially differs between assays and we advise five best performing HIV-1 DNA assays for ddPCR and qPCR (Schvachsa_2007, Viard_2004, Heeregrave_2009, Van_der_Sluis_2013, Yu_2008 and Yun_2002). This in-depth analysis of published HIV-1 DNA assays indicates that not all assays guarantee an optimal measurement of HIV-1 DNA, especially when looking across subtypes. Using an in-depth cross-validation, we were able to validate HIV-1 DNA assays that are suitable for quantification of HIV-1 DNA in a wide variety of HIV-1 infected patients.
Collapse
|
43
|
Variable infectivity and conserved engagement in cell-to-cell viral transfer by HIV-1 Env from Clade B transmitted founder clones. Virology 2018; 526:189-202. [PMID: 30415130 DOI: 10.1016/j.virol.2018.10.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 10/16/2018] [Accepted: 10/16/2018] [Indexed: 12/12/2022]
Abstract
HIV-1 transmission is usually initiated by a single viral strain called transmitted/ founder (T/F) virus. In in vitro models, HIV-1 can efficiently spread via cell-free and virological synapse (VS)-mediated cell-to-cell infection. Both modes of infection require the viral glycoprotein Envelope (Env). The efficiency with which T/F Envs initiate VS and mediate cell-to-cell infection has not been well characterized. Here we tested a panel of isogenic HIV-1 molecular clones that carry different Clade B T/F Envs. We found that despite variable infectivity among different Env clones in the two modes of infection, T/F Envs generally mediated efficient VS formation and subsequent cell-to-cell transfer. In contrast, in vitro infectivity of the T/F Env clones was more variable and strongly correlated with intrinsic fusogenicity of various Envs. We speculate that the conservation of cell-to-cell transfer by T/F Env is indicative of a biologically important function of Env.
Collapse
|
44
|
Casado C, Marrero-Hernández S, Márquez-Arce D, Pernas M, Marfil S, Borràs-Grañana F, Olivares I, Cabrera-Rodríguez R, Valera MS, de Armas-Rillo L, Lemey P, Blanco J, Valenzuela-Fernández A, Lopez-Galíndez C. Viral Characteristics Associated with the Clinical Nonprogressor Phenotype Are Inherited by Viruses from a Cluster of HIV-1 Elite Controllers. mBio 2018; 9:e02338-17. [PMID: 29636433 PMCID: PMC5893881 DOI: 10.1128/mbio.02338-17] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 03/09/2018] [Indexed: 11/20/2022] Open
Abstract
A small group of HIV-1-infected individuals, called long-term nonprogressors (LTNPs), and in particular a subgroup of LTNPs, elite controllers (LTNP-ECs), display permanent control of viral replication and lack of clinical progression. This control is the result of a complex interaction of host, immune, and viral factors. We identified, by phylogenetic analysis, a cluster of LTNP-ECs infected with very similar low-replication HIV-1 viruses, suggesting the contribution of common viral features to the clinical LTNP-EC phenotype. HIV-1 envelope (Env) glycoprotein mediates signaling and promotes HIV-1 fusion, entry, and infection, being a key factor of viral fitness in vitro, cytopathicity, and infection progression in vivo Therefore, we isolated full-length env genes from viruses of these patients and from chronically infected control individuals. Functional characterization of the initial events of the viral infection showed that Envs from the LTNP-ECs were ineffective in the binding to CD4 and in the key triggering of actin/tubulin-cytoskeleton modifications compared to Envs from chronic patients. The viral properties of the cluster viruses result in a defective viral fusion, entry, and infection, and these properties were inherited by every virus of the cluster. Therefore, inefficient HIV-1 Env functions and signaling defects may contribute to the low viral replication capacity and transmissibility of the cluster viruses, suggesting a direct role in the LTNP-EC phenotype of these individuals. These results highlight the important role of viral characteristics in the LTNP-EC clinical phenotype. These Env viral properties were common to all the cluster viruses and thus support the heritability of the viral characteristics.IMPORTANCE HIV-1 long-term nonprogressor elite controller patients, due to their permanent control of viral replication, have been the object of numerous studies to identify the factors responsible for this clinical phenotype. In this work, we analyzed the viral characteristics of the envelopes of viruses from a phylogenetic cluster of LTNP-EC patients. These envelopes showed ineffective binding to CD4 and the subsequent signaling activity to modify actin/tubulin cytoskeletons, which result in low fusion and deficient entry and infection capacities. These Env viral characteristics could explain the nonprogressor clinical phenotype of these patients. In addition, these inefficient env viral properties were present in all viruses of the cluster, supporting the heritability of the viral phenotype.
Collapse
Affiliation(s)
- Concepción Casado
- Unidad de Virologia Molecular, Laboratorio de Referencia e Investigación en Retrovirus, Centro Nacional de Microbiología (CNM), Instituto de Salud Carlos IIII, Majadahonda, Madrid, Spain
| | - Sara Marrero-Hernández
- Laboratorio de Inmunología Celular y Viral, Unidad de Virología IUETSPC, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), Tenerife, Spain
| | - Daniel Márquez-Arce
- Laboratorio de Inmunología Celular y Viral, Unidad de Virología IUETSPC, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), Tenerife, Spain
| | - María Pernas
- Unidad de Virologia Molecular, Laboratorio de Referencia e Investigación en Retrovirus, Centro Nacional de Microbiología (CNM), Instituto de Salud Carlos IIII, Majadahonda, Madrid, Spain
| | - Sílvia Marfil
- Institut de Recerca de la Sida IrsiCaixa, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Badalona, Spain
| | - Ferran Borràs-Grañana
- Institut de Recerca de la Sida IrsiCaixa, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Badalona, Spain
| | - Isabel Olivares
- Unidad de Virologia Molecular, Laboratorio de Referencia e Investigación en Retrovirus, Centro Nacional de Microbiología (CNM), Instituto de Salud Carlos IIII, Majadahonda, Madrid, Spain
| | - Romina Cabrera-Rodríguez
- Laboratorio de Inmunología Celular y Viral, Unidad de Virología IUETSPC, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), Tenerife, Spain
| | - María-Soledad Valera
- Laboratorio de Inmunología Celular y Viral, Unidad de Virología IUETSPC, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), Tenerife, Spain
| | - Laura de Armas-Rillo
- Laboratorio de Inmunología Celular y Viral, Unidad de Virología IUETSPC, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), Tenerife, Spain
| | - Philippe Lemey
- Department of Microbiology and Immunology, Rega Institute, KU Leuven, University of Leuven, Leuven, Belgium
| | - Julià Blanco
- Institut de Recerca de la Sida IrsiCaixa, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Badalona, Spain
- Universitat de Vic, Universitat Central de Catalunya, UVIC, Vic, Spain
| | - Agustín Valenzuela-Fernández
- Laboratorio de Inmunología Celular y Viral, Unidad de Virología IUETSPC, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), Tenerife, Spain
| | - Cecilio Lopez-Galíndez
- Unidad de Virologia Molecular, Laboratorio de Referencia e Investigación en Retrovirus, Centro Nacional de Microbiología (CNM), Instituto de Salud Carlos IIII, Majadahonda, Madrid, Spain
| |
Collapse
|
45
|
HLA Class I Downregulation by HIV-1 Variants from Subtype C Transmission Pairs. J Virol 2018; 92:JVI.01633-17. [PMID: 29321314 DOI: 10.1128/jvi.01633-17] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 12/23/2017] [Indexed: 02/08/2023] Open
Abstract
HIV-1 downregulates human leukocyte antigen A (HLA-A) and HLA-B from the surface of infected cells primarily to evade CD8 T cell recognition. HLA-C was thought to remain on the cell surface and bind inhibitory killer immunoglobulin-like receptors, preventing natural killer (NK) cell-mediated suppression. However, a recent study found HIV-1 primary viruses have the capacity to downregulate HLA-C. The goal of this study was to assess the heterogeneity of HLA-A, HLA-B, and HLA-C downregulation among full-length primary viruses from six chronically infected and six newly infected individuals from transmission pairs and to determine whether transmitted/founder variants exhibit common HLA class I downregulation characteristics. We measured HLA-A, HLA-B, HLA-C, and total HLA class I downregulation by flow cytometry of primary CD4 T cells infected with 40 infectious molecular clones. Primary viruses mediated a range of HLA class I downregulation capacities (1.3- to 6.1-fold) which could differ significantly between transmission pairs. Downregulation of HLA-C surface expression on infected cells correlated with susceptibility to in vitro NK cell suppression of virus release. Despite this, transmitted/founder variants did not share a downregulation signature and instead were more similar to the quasispecies of matched donor partners. These data indicate that a range of viral abilities to downregulate HLA-A, HLA-B, and HLA-C exist within and between individuals that can have functional consequences on immune recognition.IMPORTANCE Subtype C HIV-1 is the predominant subtype involved in heterosexual transmission in sub-Saharan Africa. Authentic subtype C viruses that contain natural sequence variations throughout the genome often are not used in experimental systems due to technical constraints and sample availability. In this study, authentic full-length subtype C viruses, including transmitted/founder viruses, were examined for the ability to disrupt surface expression of HLA class I molecules, which are central to both adaptive and innate immune responses to viral infections. We found that the HLA class I downregulation capacity of primary viruses varied, and HLA-C downregulation capacity impacted viral suppression by natural killer cells. Transmitted viruses were not distinct in the capacity for HLA class I downregulation or natural killer cell evasion. These results enrich our understanding of the phenotypic variation existing among natural HIV-1 viruses and how that might impact the ability of the immune system to recognize infected cells in acute and chronic infection.
Collapse
|
46
|
Brener J, Gall A, Hurst J, Batorsky R, Lavandier N, Chen F, Edwards A, Bolton C, Dsouza R, Allen T, Pybus OG, Kellam P, Matthews PC, Goulder PJR. Rapid HIV disease progression following superinfection in an HLA-B*27:05/B*57:01-positive transmission recipient. Retrovirology 2018; 15:7. [PMID: 29338738 PMCID: PMC5771019 DOI: 10.1186/s12977-018-0390-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 12/05/2017] [Indexed: 12/03/2022] Open
Abstract
Background The factors determining differential HIV disease outcome among individuals expressing protective HLA alleles such as HLA-B*27:05 and HLA-B*57:01 remain unknown. We here analyse two HIV-infected subjects expressing both HLA-B*27:05 and HLA-B*57:01. One subject maintained low-to-undetectable viral loads for more than a decade of follow up. The other progressed to AIDS in < 3 years. Results The rapid progressor was the recipient within a known transmission pair, enabling virus sequences to be tracked from transmission. Progression was associated with a 12% Gag sequence change and 26% Nef sequence change at the amino acid level within 2 years. Although next generation sequencing from early timepoints indicated that multiple CD8+ cytotoxic T lymphocyte (CTL) escape mutants were being selected prior to superinfection, < 4% of the amino acid changes arising from superinfection could be ascribed to CTL escape. Analysis of an HLA-B*27:05/B*57:01 non-progressor, in contrast, demonstrated minimal virus sequence diversification (1.1% Gag amino acid sequence change over 10 years), and dominant HIV-specific CTL responses previously shown to be effective in control of viraemia were maintained. Clonal sequencing demonstrated that escape variants were generated within the non-progressor, but in many cases were not selected. In the rapid progressor, progression occurred despite substantial reductions in viral replicative capacity (VRC), and non-progression in the elite controller despite relatively high VRC. Conclusions These data are consistent with previous studies demonstrating rapid progression in association with superinfection and that rapid disease progression can occur despite the relatively the low VRC that is typically observed in the setting of multiple CTL escape mutants. Electronic supplementary material The online version of this article (10.1186/s12977-018-0390-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jacqui Brener
- Department of Paediatrics, University of Oxford, Oxford, UK.
| | - Astrid Gall
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Jacob Hurst
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | - Nora Lavandier
- Department of Paediatrics, University of Oxford, Oxford, UK
| | - Fabian Chen
- Department of Sexual Health, Royal Berkshire Hospital, Reading, UK
| | - Anne Edwards
- Department of GU Medicine, The Churchill Hospital, Oxford University NHS Foundation Trust, Oxford, UK
| | - Chrissy Bolton
- Department of Paediatrics, University of Oxford, Oxford, UK
| | - Reena Dsouza
- Department of Paediatrics, University of Oxford, Oxford, UK
| | - Todd Allen
- Ragon Institute of MGH, MIT and Harvard, Boston, MA, USA
| | | | - Paul Kellam
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK.,Division of Infection and Immunity, University College London, Gower Street, London, UK
| | | | | |
Collapse
|
47
|
Theys K, Libin P, Pineda-Peña AC, Nowé A, Vandamme AM, Abecasis AB. The impact of HIV-1 within-host evolution on transmission dynamics. Curr Opin Virol 2017; 28:92-101. [PMID: 29275182 DOI: 10.1016/j.coviro.2017.12.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 11/23/2017] [Accepted: 12/03/2017] [Indexed: 11/17/2022]
Abstract
The adaptive potential of HIV-1 is a vital mechanism to evade host immune responses and antiviral treatment. However, high evolutionary rates during persistent infection can impair transmission efficiency and alter disease progression in the new host, resulting in a delicate trade-off between within-host virulence and between-host infectiousness. This trade-off is visible in the disparity in evolutionary rates at within-host and between-host levels, and preferential transmission of ancestral donor viruses. Understanding the impact of within-host evolution for epidemiological studies is essential for the design of preventive and therapeutic measures. Herein, we review recent theoretical and experimental work that generated new insights into the complex link between within-host evolution and between-host fitness, revealing temporal and selective processes underlying the structure and dynamics of HIV-1 transmission.
Collapse
Affiliation(s)
- Kristof Theys
- KU Leuven, University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Clinical and Epidemiological Virology, Leuven, Belgium.
| | - Pieter Libin
- KU Leuven, University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Clinical and Epidemiological Virology, Leuven, Belgium; Articial Intelligence Lab, Department of Computer Science, Vrije Universiteit Brussel, Brussels, Belgium
| | - Andrea-Clemencia Pineda-Peña
- Molecular Biology and Immunology Department, Fundacion Instituto de Immunologia de Colombia (FIDIC), Basic Sciences Department, Universidad del Rosario, Bogota, Colombia; Global Health and Tropical Medicine, GHTM, Institute for Hygiene and Tropical Medicine, IHMT, University Nova de Lisboa, UNL, Lisbon, Portugal
| | - Ann Nowé
- Articial Intelligence Lab, Department of Computer Science, Vrije Universiteit Brussel, Brussels, Belgium
| | - Anne-Mieke Vandamme
- KU Leuven, University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Clinical and Epidemiological Virology, Leuven, Belgium
| | - Ana B Abecasis
- KU Leuven, University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Clinical and Epidemiological Virology, Leuven, Belgium; Global Health and Tropical Medicine, GHTM, Institute for Hygiene and Tropical Medicine, IHMT, University Nova de Lisboa, UNL, Lisbon, Portugal
| |
Collapse
|
48
|
Early HIV infection among persons referred for malaria parasite testing in Nigeria. Arch Virol 2017; 163:439-445. [PMID: 29119359 DOI: 10.1007/s00705-017-3599-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 09/01/2017] [Indexed: 10/18/2022]
Abstract
Persons in the early stages of HIV infection are the major drivers of new infections. These individuals may also develop renal dysfunctions at this time. Nigeria, as other African countries, has one of the highest prevalence of newly diagnosed HIV infections. Despite this, limited information exists on early HIV detection in the continent. This may be related to difficulties in providing early HIV diagnosis and treatment. Patients referred for malaria testing may provide a unique opportunity for early HIV detection. In this study, a method for identifying early HIV-infected individuals was assessed. HIV-1 subtype and renal function biomarkers were also analyzed in these persons. To identify early HIV infection, over a period of 18 months blood samples were collected from persons referred by clinicians for malaria parasite tests in Nigeria. A total of 671 samples were collected and analyzed for HIV antigen/antibody and subtypes. 101 of these samples were categorized into one of four groups: early HIV, chronic HIV, malaria infection and control groups for renal function analysis. 29% of HIV infected individuals were at the early stages of infection. The predominant subtype detected was CRF02_AG (57.14%). The early HIV group had the highest mean serum creatinine (95 µmol/L) and urea (5.7 mmol/L) values across all groups with the difference significant at P < 0.05. There was no significant difference between the circulating subtype and the stage of HIV infection. Our results show the feasibility of screening persons referred for malaria tests for early HIV. This can be used to control new HIV infections in sub-Saharan Africa.
Collapse
|
49
|
Joshi A, Cox EK, Sedano MJ, Punke EB, Lee RT, Maurer-Stroh S, Kaur P, Ng OT, Garg H. HIV-1 subtype CRF01_AE and B differ in utilization of low levels of CCR5, Maraviroc susceptibility and potential N-glycosylation sites. Virology 2017; 512:222-233. [PMID: 29020646 DOI: 10.1016/j.virol.2017.09.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 09/18/2017] [Accepted: 09/30/2017] [Indexed: 10/18/2022]
Abstract
HIV subtypes not only predominate in different geographical regions but also differ in key phenotypic characteristics. To determine if genotypic and/or phenotypic differences in the Envelope (Env) glycoprotein can explain subtype related differences, we cloned 37 full length Envs from Subtype B and AE HIV infected individuals from Singapore. Our data demonstrates that CRF01_AE Envs have lower Potential N Glycosylation Sites and higher risk of ×4 development. Phenotypically, CRF01_AE were less infectious than subtype B Envs in cells expressing low levels of CCR5. Moreover, the Maraviroc IC50 was higher for subtype B Envs and correlated with infectivity in low CCR5 expressing cells as well as PNGS. Specifically, the glycosylation site N301 in the V3 loop was seen less frequently in AE subtype and CXCR4 topic viruses. CRF01_AE differs from B subtype in terms of CCR5 usage and Maraviroc susceptibility which may have implications for HIV pathogenesis and virus evolution.
Collapse
Affiliation(s)
- Anjali Joshi
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, TX, USA.
| | - Emily K Cox
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Melina J Sedano
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Erin B Punke
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Raphael Tc Lee
- Bioinformatics Institute, Agency for Science, Technology and Research, Singapore
| | - Sebastian Maurer-Stroh
- Bioinformatics Institute, Agency for Science, Technology and Research, Singapore; Department of Biological Sciences, National University of Singapore, Singapore
| | - Palvinder Kaur
- Department of Infectious Disease, Tan Tock Seng Hospital, Singapore
| | - Oon Tek Ng
- Department of Infectious Disease, Tan Tock Seng Hospital, Singapore
| | - Himanshu Garg
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, TX, USA.
| |
Collapse
|
50
|
Abstract
PURPOSE OF REVIEW Understanding the characteristics of transmission during acute HIV infection (AHI) may inform targets for vaccine-induced immune interdiction. Individuals treated in AHI with a small HIV reservoir size may be ideal candidates for therapeutic HIV vaccines aiming for HIV remission (i.e. viremic control after treatment interruption). RECENT FINDINGS The AHI period is brief and peak viremia predicts a viral set point that occurs 4-5 weeks following infection. Robust HIV-specific CD8 T-cell responses lower viral set points. Phylogenetic analyses of founder viruses demonstrated unique bottleneck selections and specific genetic signatures to optimize for high-fitness variants and successful transmission events. HIV clades, route of transmission and the presence of minor variants may affect vaccine protection. Antiretroviral treatment in AHI results in smaller HIV reservoir size, better CD4 T-cell recovery and fewer virus escapes. SUMMARY The knowledge of untreated and treated AHI informs the development of vaccines, in that preventive vaccines will require broad coverage for multiple clades and antigenic variants associated with unique bottleneck selections. Vaccines that help the host to control viremia could minimize onward transmission. Therapeutic HIV vaccines aimed at HIV remission should be studied in early-treated individuals who have few or no viral escape mutants and a more preserved immune system.
Collapse
|