1
|
Suh DC, Lance SL, Park AW. Abiotic and biotic factors jointly influence the contact and environmental transmission of a generalist pathogen. Ecol Evol 2024; 14:e70167. [PMID: 39157664 PMCID: PMC11329300 DOI: 10.1002/ece3.70167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/26/2024] [Accepted: 07/30/2024] [Indexed: 08/20/2024] Open
Abstract
The joint influence of abiotic and biotic factors is important for understanding the transmission of generalist pathogens. Abiotic factors such as temperature can directly influence pathogen persistence in the environment and will also affect biotic factors, such as host community composition and abundance. At intermediate spatial scales, the effects of temperature, community composition, and host abundance are expected to contribute to generalist pathogen transmission. We use a simple transmission model to explain and predict how host community composition, host abundance, and environmental pathogen persistence times can independently and jointly influence transmission. Our transmission model clarifies how abiotic and biotic factors can synergistically support the transmission of a pathogen. The empirical data show that high community competence, high abundance, and low temperatures correlate with high levels of transmission of ranavirus in larval amphibian communities. Discrete wetlands inhabited by larval amphibians in the presence of ranavirus provide a compelling case study comprising distinct host communities at a spatial scale anticipated to demonstrate abiotic and biotic influence on transmission. We use these host communities to observe phenomena demonstrated in our theoretical model. These findings emphasize the importance of considering both abiotic and biotic factors, and concomitant direct and indirect mechanisms, in the study of pathogen transmission and should extend to other generalist pathogens with the capacity for environmental transmission.
Collapse
Affiliation(s)
- Daniel C. Suh
- Odum School of EcologyUniversity of GeorgiaAthensGeorgiaUSA
- Center for the Ecology of Infectious DiseasesUniversity of GeorgiaAthensGeorgiaUSA
| | - Stacey L. Lance
- Center for the Ecology of Infectious DiseasesUniversity of GeorgiaAthensGeorgiaUSA
- Savannah River Ecology LaboratoryUniversity of GeorgiaAikenSouth CarolinaUSA
| | - Andrew W. Park
- Odum School of EcologyUniversity of GeorgiaAthensGeorgiaUSA
- Center for the Ecology of Infectious DiseasesUniversity of GeorgiaAthensGeorgiaUSA
- Department of Infectious Diseases, College of Veterinary MedicineUniversity of GeorgiaAthensGeorgiaUSA
| |
Collapse
|
2
|
Itoïz S, Mouronvalle C, Perennou M, Chailler E, Smits M, Derelle E, Metz S, Le Goïc N, Bidault A, de Montaudouin X, Arzul I, Soudant P, Chambouvet A. Co-infection of two eukaryotic pathogens within clam populations in Arcachon Bay. Front Microbiol 2024; 14:1250947. [PMID: 38260876 PMCID: PMC10800547 DOI: 10.3389/fmicb.2023.1250947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/27/2023] [Indexed: 01/24/2024] Open
Abstract
The parasitic species Perkinsus olseni (= atlanticus) (Perkinsea, Alveolata) infects a wide range of mollusc species and is responsible for mortality events and economic losses in the aquaculture industry and fisheries worldwide. Thus far, most studies conducted in this field have approached the problem from a "one parasite-one disease" perspective, notably with regards to commercially relevant clam species, while the impact of other Perkinsus species should also be considered as it could play a key role in the disease phenotype and dynamics. Co-infection of P. olseni and P. chesapeaki has already been sporadically described in Manila clam populations in Europe. Here, we describe for the first time the parasitic distribution of two Perkinsus species, P. olseni and P. chesapeaki, in individual clam organs and in five different locations across Arcachon Bay (France), using simultaneous in situ detection by quantitative PCR (qPCR) duplex methodology. We show that P. olseni single-infection largely dominated prevalence (46-84%) with high intensities of infection (7.2 to 8.5 log-nb of copies. g-1of wet tissue of Manila clam) depending on location, suggesting that infection is driven by the abiotic characteristics of stations and physiological states of the host. Conversely, single P. chesapeaki infections were observed in only two sampling stations, Ile aux Oiseaux and Gujan, with low prevalences 2 and 14%, respectively. Interestingly, the co-infection by both Perkinsus spp., ranging in prevalence from 12 to 34%, was distributed across four stations of Arcachon Bay, and was detected in one or two organs maximum. Within these co-infected organs, P. olseni largely dominated the global parasitic load. Hence, the co-infection dynamics between P. olseni and P. chesapeaki may rely on a facilitating role of P. olseni in developing a primary infection which in turn may help P. chesapeaki infect R. philippinarum as a reservoir for a preferred host. This ecological study demonstrates that the detection and quantification of both parasitic species, P. olseni and P. chesapeaki, is essential and timely in resolving cryptic infections and their consequences on individual hosts and clam populations.
Collapse
Affiliation(s)
- Sarah Itoïz
- Univ Brest, CNRS, IRD, Ifremer, LEMAR, Plouzané, France
| | - Clara Mouronvalle
- Univ Brest, CNRS, IRD, Ifremer, LEMAR, Plouzané, France
- EPHE, PSL Research University, UPVD, CNRS, USR CRIOBE, Perpignan, France
| | | | - Elisa Chailler
- CNRS, UMR7144 Adaptation et Diversité en Milieu Marin, Ecology of Marine Plankton (ECOMAP), Station Biologique de Roscoff SBR, Sorbonne University, Roscoff, France
| | - Morgan Smits
- Univ Brest, CNRS, IRD, Ifremer, LEMAR, Plouzané, France
| | | | - Sebastian Metz
- CNRS, UMR7144 Adaptation et Diversité en Milieu Marin, Ecology of Marine Plankton (ECOMAP), Station Biologique de Roscoff SBR, Sorbonne University, Roscoff, France
| | - Nelly Le Goïc
- Univ Brest, CNRS, IRD, Ifremer, LEMAR, Plouzané, France
| | | | - Xavier de Montaudouin
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR, Station Marine d’Arcachon, Arcachon, France
| | - Isabelle Arzul
- Ifremer, ASIM Adaptation et Santé des Invertébrés Marins, La Tremblade, France
| | | | - Aurélie Chambouvet
- CNRS, UMR7144 Adaptation et Diversité en Milieu Marin, Ecology of Marine Plankton (ECOMAP), Station Biologique de Roscoff SBR, Sorbonne University, Roscoff, France
| |
Collapse
|
3
|
Metz S, Itoïz S, Obiol A, Derelle E, Massana R, Berney C, de Vargas C, Soudant P, Monier A, Chambouvet A. Global perspective of environmental distribution and diversity of Perkinsea (Alveolata) explored by a meta-analysis of eDNA surveys. Sci Rep 2023; 13:20111. [PMID: 37978260 PMCID: PMC10656510 DOI: 10.1038/s41598-023-47378-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023] Open
Abstract
Perkinsea constitutes a lineage within the Alveolata eukaryotic superphylum, mainly composed of parasitic organisms. Some described species represent significant ecological and economic threats due to their invasive ability and pathogenicity, which can lead to mortality events. However, the genetic diversity of these described species is just the tip of the iceberg. Environmental surveys targeting this lineage are still scarce and mainly limited to the Northern Hemisphere. Here, we aim to conduct an in depth exploration of the Perkinsea group, uncovering the diversity across a variety of environments, including those beyond freshwater and marine ecosystems. We seek to identify and describe putative novel organisms based on their genetic signatures. In this study, we conducted an extensive analysis of a metabarcoding dataset, focusing on the V4 region of the 18S rRNA gene (the EukBank dataset), to investigate the diversity, distribution and environmental preferences of the Perkinsea. Our results reveal a remarkable diversity within the Perkinsea, with 1568 Amplicon Sequence Variants (ASVs) identified across thousands of environmental samples. Surprisingly, we showed a substantial diversity of Perkinsea within soil samples (269 ASVs), challenging the previous assumption that this group is confined to marine and freshwater environments. In addition, we revealed that a notable proportion of Perkinsea ASVs (428 ASVs) could correspond to putative new organisms, encompassing the well-established taxonomic group Perkinsidae. Finally, our study shed light on previously unveiled taxonomic groups, including the Xcellidae, and revealed their environmental distribution. These findings demonstrate that Perkinsea exhibits far greater diversity than previously detected and surprisingly extends beyond marine and freshwater environments. The meta-analysis conducted in this study has unveiled the existence of previously unknown clusters within the Perkinsea lineage, solely identified based on their genetic signatures. Considering the ecological and economic importance of described Perkinsea species, these results suggest that Perkinsea may play a significant, yet previously unrecognized, role across a wide range of environments, spanning from soil environments to the abyssal zone of the open ocean with important implications for ecosystem functioning.
Collapse
Affiliation(s)
- Sebastian Metz
- Sorbonne Université, CNRS, UMR7144 Adaptation et Diversité en Milieu Marin, Ecology of Marine Plankton (ECOMAP), Sorbonne Universités, Station Biologique de Roscoff, Place Georges Teissier, 29680, Roscoff, France.
- Department of Archaeology, University of York, York, UK.
| | - Sarah Itoïz
- CNRS, IRD, Ifremer, LEMAR, Univ Brest, Plouzané, France
- Rivages Pro Tech, 2, Allée Théodore Monod, 64210, Bidart, France
| | - Aleix Obiol
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (ICM-CSIC), Barcelona, Spain
| | | | - Ramon Massana
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (ICM-CSIC), Barcelona, Spain
| | - Cédric Berney
- Sorbonne Université, CNRS, UMR7144 Adaptation et Diversité en Milieu Marin, Ecology of Marine Plankton (ECOMAP), Sorbonne Universités, Station Biologique de Roscoff, Place Georges Teissier, 29680, Roscoff, France
| | - Colomban de Vargas
- Sorbonne Université, CNRS, UMR7144 Adaptation et Diversité en Milieu Marin, Ecology of Marine Plankton (ECOMAP), Sorbonne Universités, Station Biologique de Roscoff, Place Georges Teissier, 29680, Roscoff, France
| | | | - Adam Monier
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, UK
| | - Aurélie Chambouvet
- Sorbonne Université, CNRS, UMR7144 Adaptation et Diversité en Milieu Marin, Ecology of Marine Plankton (ECOMAP), Sorbonne Universités, Station Biologique de Roscoff, Place Georges Teissier, 29680, Roscoff, France.
| |
Collapse
|
4
|
Atkinson MS, Savage AE. Widespread amphibian Perkinsea infections associated with Ranidae hosts, cooler months and Ranavirus co-infection. J Anim Ecol 2023; 92:1856-1868. [PMID: 37409362 DOI: 10.1111/1365-2656.13977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 05/26/2023] [Indexed: 07/07/2023]
Abstract
Amphibians suffer from large-scale population declines globally, and emerging infectious diseases contribute heavily to these declines. Amphibian Perkinsea (Pr) is a worldwide anuran pathogen associated with mass mortality events, yet little is known about its epidemiological patterns, especially in comparison to the body of literature on amphibian chytridiomycosis and ranavirosis. Here, we establish Pr infection patterns in natural anuran populations and identify important covariates including climate, host attributes and co-infection with Ranavirus (Rv). We used quantitative (q)PCR to determine the presence and intensity of Pr and Rv across 1234 individuals sampled throughout central Florida in 2017-2019. We then implemented random forest ensemble learning models to predict infection with both pathogens based on physiological and environmental characteristics. Perkinsea infected 32% of all sampled anurans, and Pr prevalence was significantly elevated in Ranidae frogs, cooler months, metamorphosed individuals and frogs co-infected with Rv, while Pr intensity was significantly higher in ranid frogs and individuals collected dead. Ranavirus prevalence was 17% overall and was significantly higher in Ranidae frogs, metamorphosed individuals, locations with higher average temperatures, and individuals co-infected with Pr. Perkinsea prevalence was significantly higher than Rv prevalence across months, regions, life stages and species. Among locations, Pr prevalence was negatively associated with crayfish prevalence and positively associated with relative abundance of microhylids, but Rv prevalence did not associate with any tested co-variates. Co-infections were significantly more common than single infections for both pathogens, and we propose that Pr infections may propel Rv infections because seasonal Rv infection peaks followed Pr infection peaks and random forest models found Pr intensity was a leading factor explaining Rv infections. Our study elucidates epidemiological patterns of Pr in Florida and suggests that Pr may be under-recognized as a cause of anuran declines, especially in the context of pathogen co-infection.
Collapse
Affiliation(s)
- Matthew S Atkinson
- Department of Biology, University of Central Florida, Orlando, Florida, USA
| | - Anna E Savage
- Department of Biology, University of Central Florida, Orlando, Florida, USA
| |
Collapse
|
5
|
Ruiz VL, Robert J. The amphibian immune system. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220123. [PMID: 37305914 PMCID: PMC10258673 DOI: 10.1098/rstb.2022.0123] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 04/16/2023] [Indexed: 06/13/2023] Open
Abstract
Amphibians are at the forefront of bridging the evolutionary gap between mammals and more ancient, jawed vertebrates. Currently, several diseases have targeted amphibians and understanding their immune system has importance beyond their use as a research model. The immune system of the African clawed frog, Xenopus laevis, and that of mammals is well conserved. We know that several features of the adaptive and innate immune system are very similar for both, including the existence of B cells, T cells and innate-like T cells. In particular, the study of the immune system at early stages of development is benefitted by studying X. laevis tadpoles. The tadpoles mainly rely on innate immune mechanisms including pre-set or innate-like T cells until after metamorphosis. In this review we lay out what is known about the innate and adaptive immune system of X. laevis including the lymphoid organs as well as how other amphibian immune systems are similar or different. Furthermore, we will describe how the amphibian immune system responds to some viral, bacterial and fungal insults. This article is part of the theme issue 'Amphibian immunity: stress, disease and ecoimmunology'.
Collapse
Affiliation(s)
- Vania Lopez Ruiz
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Jacques Robert
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| |
Collapse
|
6
|
Yaparla A, Stern DB, Hossainey MRH, Crandall KA, Grayfer L. Amphibian myelopoiesis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 146:104701. [PMID: 37196852 DOI: 10.1016/j.dci.2023.104701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 05/19/2023]
Abstract
Macrophage-lineage cells are indispensable to immunity and physiology of all vertebrates. Amongst these, amphibians represent a key stage in vertebrate evolution and are facing decimating population declines and extinctions, in large part due to emerging infectious agents. While recent studies indicate that macrophages and related innate immune cells are critically involved during these infections, much remains unknown regarding the ontogeny and functional differentiation of these cell types in amphibians. Accordingly, in this review we coalesce what has been established to date about amphibian blood cell development (hematopoiesis), the development of key amphibian innate immune cells (myelopoiesis) and the differentiation of amphibian macrophage subsets (monopoiesis). We explore the current understanding of designated sites of larval and adult hematopoiesis across distinct amphibian species and consider what mechanisms may lend to these species-specific adaptations. We discern the identified molecular mechanisms governing the functional differentiation of disparate amphibian (chiefly Xenopus laevis) macrophage subsets and describe what is known about the roles of these subsets during amphibian infections with intracellular pathogens. Macrophage lineage cells are at the heart of so many vertebrate physiological processes. Thus, garnering greater understanding of the mechanisms responsible for the ontogeny and functionality of these cells in amphibians will lend to a more comprehensive view of vertebrate evolution.
Collapse
Affiliation(s)
- Amulya Yaparla
- Department of Biological Sciences, George Washington University, Washington, DC, 20052, USA
| | - David B Stern
- Milken Institute School of Public Health, Computational Biology Institute, George Washington University, Washington, DC, 20052, USA
| | | | - Keith A Crandall
- Milken Institute School of Public Health, Computational Biology Institute, George Washington University, Washington, DC, 20052, USA
| | - Leon Grayfer
- Department of Biological Sciences, George Washington University, Washington, DC, 20052, USA.
| |
Collapse
|
7
|
Douglas AJ, Todd LA, Katzenback BA. The amphibian invitrome: Past, present, and future contributions to our understanding of amphibian immunity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 142:104644. [PMID: 36708792 DOI: 10.1016/j.dci.2023.104644] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/18/2023] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Many amphibian populations are declining worldwide, and infectious diseases are a leading cause. Given the eminent threat infectious diseases pose to amphibian populations, there is a need to understand the host-pathogen-environment interactions that govern amphibian susceptibility to disease and mortality events. However, using animals in research raises an ethical dilemma, which is magnified by the alarming rates at which many amphibian populations are declining. Thus, in vitro study systems such as cell lines represent valuable tools for furthering our understanding of amphibian immune systems. In this review, we curate a list of the amphibian cell lines established to date (the amphibian invitrome), highlight how research using amphibian cell lines has advanced our understanding of the amphibian immune system, anti-ranaviral defence mechanisms, and Batrachochytrium dendrobatidis replication in host cells, and offer our perspective on how future use of amphibian cell lines can advance the field of amphibian immunology.
Collapse
Affiliation(s)
- Alexander J Douglas
- Department of Biology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Lauren A Todd
- Department of Biology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Barbara A Katzenback
- Department of Biology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada.
| |
Collapse
|
8
|
Rizos I, Debeljak P, Finet T, Klein D, Ayata SD, Not F, Bittner L. Beyond the limits of the unassigned protist microbiome: inferring large-scale spatio-temporal patterns of Syndiniales marine parasites. ISME COMMUNICATIONS 2023; 3:16. [PMID: 36854980 PMCID: PMC9975217 DOI: 10.1038/s43705-022-00203-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 03/02/2023]
Abstract
Marine protists are major components of the oceanic microbiome that remain largely unrepresented in culture collections and genomic reference databases. The exploration of this uncharted protist diversity in oceanic communities relies essentially on studying genetic markers from the environment as taxonomic barcodes. Here we report that across 6 large scale spatio-temporal planktonic surveys, half of the genetic barcodes remain taxonomically unassigned at the genus level, preventing a fine ecological understanding for numerous protist lineages. Among them, parasitic Syndiniales (Dinoflagellata) appear as the least described protist group. We have developed a computational workflow, integrating diverse 18S rDNA gene metabarcoding datasets, in order to infer large-scale ecological patterns at 100% similarity of the genetic marker, overcoming the limitation of taxonomic assignment. From a spatial perspective, we identified 2171 unassigned clusters, i.e., Syndiniales sequences with 100% similarity, exclusively shared between the Tropical/Subtropical Ocean and the Mediterranean Sea among all Syndiniales orders and 25 ubiquitous clusters shared within all the studied marine regions. From a temporal perspective, over 3 time-series, we highlighted 39 unassigned clusters that follow rhythmic patterns of recurrence and are the best indicators of parasite community's variation. These clusters withhold potential as ecosystem change indicators, mirroring their associated host community responses. Our results underline the importance of Syndiniales in structuring planktonic communities through space and time, raising questions regarding host-parasite association specificity and the trophic mode of persistent Syndiniales, while providing an innovative framework for prioritizing unassigned protist taxa for further description.
Collapse
Affiliation(s)
- Iris Rizos
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Paris, France.
- Sorbonne Université, CNRS, AD2M-UMR7144 Station Biologique de Roscoff, 29680, Roscoff, France.
| | - Pavla Debeljak
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Paris, France
| | - Thomas Finet
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Paris, France
| | - Dylan Klein
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Paris, France
| | - Sakina-Dorothée Ayata
- Sorbonne Université, Laboratoire d'Océanographie et du Climat: Expérimentation et Analyses Numériques (LOCEAN, SU/CNRS/IRD/MNHN), 75252, Paris Cedex 05, France
| | - Fabrice Not
- Sorbonne Université, CNRS, AD2M-UMR7144 Station Biologique de Roscoff, 29680, Roscoff, France
| | - Lucie Bittner
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Paris, France
- Institut Universitaire de France, Paris, France
| |
Collapse
|
9
|
Amphibian Perkinsea. Curr Biol 2023; 33:R8-R10. [PMID: 36626865 DOI: 10.1016/j.cub.2022.11.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Vanessa Smilansky and Thomas A. Richards introduce Perkinsea - a lineage of freshwater parasitic protists that infect certain amphibians and cause of severe Perkinsea infection.
Collapse
|
10
|
Alacid E, Irwin NAT, Smilansky V, Milner DS, Kilias ES, Leonard G, Richards TA. A diversified and segregated mRNA spliced-leader system in the parasitic Perkinsozoa. Open Biol 2022; 12:220126. [PMID: 36000319 PMCID: PMC9399869 DOI: 10.1098/rsob.220126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Spliced-leader trans-splicing (SLTS) has been described in distantly related eukaryotes and acts to mark mRNAs with a short 5′ exon, giving different mRNAs identical 5′ sequence-signatures. The function of these systems is obscure. Perkinsozoa encompasses a diversity of parasitic protists that infect bivalves, toxic-tide dinoflagellates, fish and frog tadpoles. Here, we report considerable sequence variation in the SLTS-system across the Perkinsozoa and find that multiple variant SLTS-systems are encoded in parallel in the ecologically important Perkinsozoa parasite Parvilucifera sinerae. These results demonstrate that the transcriptome of P. sinerae is segregated based on the addition of different spliced-leader (SL) exons. This segregation marks different gene categories, suggesting that SL-segregation relates to functional differentiation of the transcriptome. By contrast, both sets of gene categories are present in the single SL-transcript type sampled from Maranthos, implying that the SL-segregation of the Parvilucifera transcriptome is a recent evolutionary innovation. Furthermore, we show that the SLTS-system marks a subsection of the transcriptome with increased mRNA abundance and includes genes that encode the spliceosome system necessary for SLTS-function. Collectively, these data provide a picture of how the SLTS-systems can vary within a major evolutionary group and identify how additional transcriptional-complexity can be achieved through SL-segregation.
Collapse
Affiliation(s)
- Elisabet Alacid
- Department of Zoology, University of Oxford, Oxford, Oxfordshire OX1 3SZ, UK
| | - Nicholas A T Irwin
- Department of Zoology, University of Oxford, Oxford, Oxfordshire OX1 3SZ, UK.,Merton College, University of Oxford, Oxford, Oxfordshire OX1 4JD, UK
| | - Vanessa Smilansky
- Living Systems Institute, University of Exeter, Exeter, Devon EX4 4QD, UK
| | - David S Milner
- Department of Zoology, University of Oxford, Oxford, Oxfordshire OX1 3SZ, UK
| | - Estelle S Kilias
- Department of Zoology, University of Oxford, Oxford, Oxfordshire OX1 3SZ, UK
| | - Guy Leonard
- Department of Zoology, University of Oxford, Oxford, Oxfordshire OX1 3SZ, UK
| | - Thomas A Richards
- Department of Zoology, University of Oxford, Oxford, Oxfordshire OX1 3SZ, UK
| |
Collapse
|
11
|
Itoïz S, Metz S, Derelle E, Reñé A, Garcés E, Bass D, Soudant P, Chambouvet A. Emerging Parasitic Protists: The Case of Perkinsea. Front Microbiol 2022; 12:735815. [PMID: 35095782 PMCID: PMC8792838 DOI: 10.3389/fmicb.2021.735815] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 11/25/2021] [Indexed: 11/13/2022] Open
Abstract
The last century has witnessed an increasing rate of new disease emergence across the world leading to permanent loss of biodiversity. Perkinsea is a microeukaryotic parasitic phylum composed of four main lineages of parasitic protists with broad host ranges. Some of them represent major ecological and economical threats because of their geographically invasive ability and pathogenicity (leading to mortality events). In marine environments, three lineages are currently described, the Parviluciferaceae, the Perkinsidae, and the Xcellidae, infecting, respectively, dinoflagellates, mollusks, and fish. In contrast, only one lineage is officially described in freshwater environments: the severe Perkinsea infectious agent infecting frog tadpoles. The advent of high-throughput sequencing methods, mainly based on 18S rRNA assays, showed that Perkinsea is far more diverse than the previously four described lineages especially in freshwater environments. Indeed, some lineages could be parasites of green microalgae, but a formal nature of the interaction needs to be explored. Hence, to date, most of the newly described aquatic clusters are only defined by their environmental sequences and are still not (yet) associated with any host. The unveiling of this microbial black box presents a multitude of research challenges to understand their ecological roles and ultimately to prevent their most negative impacts. This review summarizes the biological and ecological traits of Perkinsea-their diversity, life cycle, host preferences, pathogenicity, and highlights their diversity and ubiquity in association with a wide range of hosts.
Collapse
Affiliation(s)
- Sarah Itoïz
- Univ Brest, CNRS, IRD, Ifremer, LEMAR, Plouzané, France
| | | | | | - Albert Reñé
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, CSIC, Pg. Marítim de la Barceloneta, Barcelona, Spain
| | - Esther Garcés
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, CSIC, Pg. Marítim de la Barceloneta, Barcelona, Spain
| | - David Bass
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Weymouth, United Kingdom
- Department of Life Sciences, The Natural History Museum, London, United Kingdom
- Biosciences, University of Exeter, Exeter, United Kingdom
| | | | - Aurélie Chambouvet
- Univ Brest, CNRS, IRD, Ifremer, LEMAR, Plouzané, France
- Sorbonne Université, CNRS, UMR 7144 Adaptation et Diversité en Milieu Marin, Ecology of Marine Plankton (ECOMAP), Station Biologique de Roscoff SBR, Roscoff, France
| |
Collapse
|
12
|
Jeon BS, Park MG. A Novel Parasitoid of Marine Dinoflagellates, Pararosarium dinoexitiosum gen. et sp. nov. (Perkinsozoa, Alveolata), Showing Characteristic Beaded Sporocytes. Front Microbiol 2021; 12:748092. [PMID: 34912310 PMCID: PMC8667275 DOI: 10.3389/fmicb.2021.748092] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 11/09/2021] [Indexed: 11/13/2022] Open
Abstract
The phylum Perkinsozoa is known as an exclusively parasitic group within alveolates and is widely distributed in various aquatic environments from marine to freshwater environments. Nonetheless, their morphology, life cycle, the identity of the host, and physiological characteristics remain still poorly understood. During intensive sampling along the west coast of Korea in October and November 2017, a new parasitoid, which shares several characteristics with the extant families Perkinsidae and Parviluciferaceae, was discovered and three strains of the new parasitoid were successfully established in cultures. Cross-infection experiments showed that among the examined planktonic groups, only dinoflagellates were susceptible to the new parasitoid, with infections observed in species belonging to eight genera. Even though the new parasitoid shared many morphological and developmental characteristics with other Perkinsozoan parasites, it differed from them by its densely packed trophocyte structure without a large vacuole or hyaline material during the growth stage. These characteristics are common among Parviluciferaceae members. Furthermore, through palintomic extracellular sporogenesis, it produced characteristic interconnected sporocytes resembling a string of beads. Phylogenetic analyses based on the small subunit and large subunit ribosomal DNA sequences revealed that the new parasitoid was distantly related to the family Parviluciferaceae and was more closely related to the families Perkinsidae and Xcellidae. Morphological, ultrastructural, and molecular data on the new parasitoid raised the need to erect a new family, i.e., Pararosariidae, within the phylum Perkinsozoa with Pararosarium dinoexitiosum gen. et sp. nov. as the type species. The isolation and establishment in culture of the new parasitoid outside the family Parviluciferaceae in the present study would contribute to the better understanding of the diversity of Perkinsozoan parasites and provide useful material for comparisons to other parasite species in the further study.
Collapse
Affiliation(s)
- Boo Seong Jeon
- LOHABE, Department of Oceanography, Chonnam National University, Gwangju, South Korea
| | - Myung Gil Park
- LOHABE, Department of Oceanography, Chonnam National University, Gwangju, South Korea
| |
Collapse
|
13
|
Urgiles VL, Ramírez ER, Villalta CI, Siddons DC, Savage AE. Three Pathogens Impact Terrestrial Frogs from a High-Elevation Tropical Hotspot. ECOHEALTH 2021; 18:451-464. [PMID: 34894333 DOI: 10.1007/s10393-021-01570-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 06/14/2023]
Abstract
Three infectious pathogens Batrachochytrium dendrobatidis (Bd), Ranavirus (Rv) and Perkinsea (Pr) are associated with widespread and ongoing amphibian population declines. Although their geographic and host ranges vary widely, recent studies have suggested that the occurrence of these pathogens could be more common than previously thought, even in direct-developing terrestrial species traditionally considered less likely to harbor these largely aquatic pathogens. Here, we characterize Bd, Rv, and Pr infections in direct-developing terrestrial amphibians of the Pristimantis genus from the highland Ecuadorean Andes. We confirm the first detection of Pr in terrestrial-breeding amphibians and in the Andean region, present the first report of Rv in Ecuador, and we add to the handful of studies finding Bd infecting Pristimantis. Infection prevalence did not differ significantly among pathogens, but infection intensity was significantly higher for Bd compared to Pr. Neither prevalence nor intensity differed significantly across locality and elevation for Bd and Rv, although low prevalence in our dataset and lack of seasonal sampling could have prevented important epidemiological patterns from emerging. Our study highlights the importance of incorporating pathogen surveillance in biodiversity monitoring in the Andean region and serves as starting point to understand pathogen dynamics, transmission, and impacts in terrestrial-breeding frogs.
Collapse
Affiliation(s)
- Veronica L Urgiles
- Department of Biology, University of Central Florida, 4110 Libra Dr, Orlando, FL, 32816, USA.
- Instituto Nacional de Biodiversidad del Ecuador, Pasaje Rumipamba 341 y Avenida de los Shirys, Quito, Ecuador.
| | - Ervin R Ramírez
- Escuela de Biología, Ecología y Gestión, Universidad del Azuay, Ave 24 de Mayo 7-77, Cuenca, Ecuador
| | - Cristian I Villalta
- Escuela de Biología, Ecología y Gestión, Universidad del Azuay, Ave 24 de Mayo 7-77, Cuenca, Ecuador
| | - David C Siddons
- Escuela de Biología, Ecología y Gestión, Universidad del Azuay, Ave 24 de Mayo 7-77, Cuenca, Ecuador
| | - Anna E Savage
- Department of Biology, University of Central Florida, 4110 Libra Dr, Orlando, FL, 32816, USA
| |
Collapse
|
14
|
Abstract
Parasites are important components of biodiversity and contributors to ecosystem functioning, but are often neglected in ecological studies. Most studies examine model parasite systems or single taxa, thus our understanding of community composition is lacking. Here, the seasonal and annual dynamics of parasites was quantified using a 5-year metabarcoding time-series of freshwater plankton, collected weekly. We first identified parasites in the dataset using literature searches of the taxonomic match and using sequence metadata from the National Center for Biotechnology Information (NCBI) nucleotide database. In total, 441 amplicon sequence variants (belonging to 18 phyla/clades) were classified as parasites. The four phyla/clades with the highest relative read abundance and richness were Chytridiomycota, Dinoflagellata, Oomycota and Perkinsozoa. Relative read abundance of total parasite taxa, Dinoflagellata and Perkinsozoa significantly varied with season and was highest in summer. Parasite richness varied significantly with season and year, and was generally lowest in spring. Each season had distinct parasite communities, and the difference between summer and winter communities was most pronounced. Combining DNA metabarcoding with searches of the literature and NCBI metadata allowed us to characterize parasite diversity and community dynamics and revealed the extent to which parasites contribute to the diversity of freshwater plankton communities.
Collapse
|
15
|
Einarsson E, Lassadi I, Zielinski J, Guan Q, Wyler T, Pain A, Gornik SG, Waller RF. Development of the Myzozoan Aquatic Parasite Perkinsus marinus as A Versatile Experimental Genetic Model Organism. Protist 2021; 172:125830. [PMID: 34555729 DOI: 10.1016/j.protis.2021.125830] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 11/17/2022]
Abstract
The phylum Perkinsozoa is an aquatic parasite lineage that has devastating effects on commercial and natural mollusc populations, and also comprises parasites of algae, fish and amphibians. They are related to dinoflagellates and apicomplexans and thus offer excellent genetic models for both parasitological and evolutionary studies. Genetic transformation was previously achieved for Perkinsus spp. but with few tools for transgene expression and limited selection efficacy. We sought to expand the power of experimental genetic tools for Perkinsus using P. marinus as a model. We constructed a modular plasmid assembly system for expression of multiple genes simultaneously. We developed efficient selection systems for three drugs, puromycin, bleomycin and blasticidin, that are effective in as little as three weeks. We developed eleven new promoters of variable expression strength. Furthermore, we identified that genomic integration of transgenes is predominantly via non-homologous recombination but with transgene fragmentation including deletion of some elements. To counter these dynamic processes, we show that bi-cistronic transcripts using the viral 2A peptides can couple selection to the maintenance of the expression of a transgene of interest. Collectively, these new tools and insights provide great new capacity to genetically modify and study Perkinsus as an aquatic parasite and evolutionary model.
Collapse
Affiliation(s)
- Elin Einarsson
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Imen Lassadi
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Jana Zielinski
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Qingtian Guan
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Tobias Wyler
- Department of Biochemistry, University of Cambridge, Cambridge, UK; Eidgenössische Technische Hochschule (ETH), Zürich, Switzerland
| | - Arnab Pain
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Sebastian G Gornik
- Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Ross F Waller
- Department of Biochemistry, University of Cambridge, Cambridge, UK.
| |
Collapse
|
16
|
Reñé A, Alacid E, Gallisai R, Chambouvet A, Fernández-Valero AD, Garcés E. New Perkinsea Parasitoids of Dinoflagellates Distantly Related to Parviluciferaceae Members. Front Microbiol 2021; 12:701196. [PMID: 34421856 PMCID: PMC8375308 DOI: 10.3389/fmicb.2021.701196] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/12/2021] [Indexed: 11/16/2022] Open
Abstract
Perkinsea is a phylogenetic group of protists that includes parasites of distantly related hosts. However, its diversity is still mainly composed of environmental sequences, mostly obtained from freshwater environments. Efforts to isolate and culture parasitoids of dinoflagellates have led to the description of several phylogenetically closely related species constituting the Parviluciferaceae family. In this study, two new parasitoid species infecting dinoflagellates during recurrent coastal blooms are reported. Using the ribosomal RNA (rRNA) gene phylogenies, we show that both cluster within Perkinsea, one of them at the base of Parviluciferaceae and the other in a distinct branch unrelated to other described species. The establishment of host-parasite lab cultures of the latter allowed its morphological characterization, resulting in the formal description of Maranthos nigrum gen. nov., sp. nov. The life-cycle development of the two parasitoids is generally the same as that of other members of the Parviluciferaceae family but they differ in the features of the trophont and sporont stages, including the arrangement of zoospores during the mature sporangium stage and the lack of specialized structures that release the zoospores into the environment. Laboratory cross-infection experiments showed that the parasitoid host range is restricted to dinoflagellates, although it extends across several different genera. The maximum prevalence reached in the tested host populations was lower than in other Parviluciferaceae members. The findings from this study suggest that Perkinsea representatives infecting dinoflagellates are more widespread than previously thought.
Collapse
Affiliation(s)
- Albert Reñé
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar (CSIC), Barcelona, Spain
| | - Elisabet Alacid
- Living Systems Institute, School of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom.,Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Rachele Gallisai
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar (CSIC), Barcelona, Spain
| | | | - Alan D Fernández-Valero
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar (CSIC), Barcelona, Spain
| | - Esther Garcés
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar (CSIC), Barcelona, Spain
| |
Collapse
|
17
|
Herczeg D, Ujszegi J, Kásler A, Holly D, Hettyey A. Host-multiparasite interactions in amphibians: a review. Parasit Vectors 2021; 14:296. [PMID: 34082796 PMCID: PMC8173923 DOI: 10.1186/s13071-021-04796-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 05/20/2021] [Indexed: 01/15/2023] Open
Abstract
Parasites, including viruses, bacteria, fungi, protists, helminths, and arthropods, are ubiquitous in the animal kingdom. Consequently, hosts are frequently infected with more than one parasite species simultaneously. The assessment of such co-infections is of fundamental importance for disease ecology, but relevant studies involving non-domesticated animals have remained scarce. Many amphibians are in decline, and they generally have a highly diverse parasitic fauna. Here we review the literature reporting on field surveys, veterinary case studies, and laboratory experiments on co-infections in amphibians, and we summarize what is known about within-host interactions among parasites, which environmental and intrinsic factors influence the outcomes of these interactions, and what effects co-infections have on hosts. The available literature is piecemeal, and patterns are highly diverse, so that identifying general trends that would fit most host–multiparasite systems in amphibians is difficult. Several examples of additive, antagonistic, neutral, and synergistic effects among different parasites are known, but whether members of some higher taxa usually outcompete and override the effects of others remains unclear. The arrival order of different parasites and the time lag between exposures appear in many cases to fundamentally shape competition and disease progression. The first parasite to arrive can gain a marked reproductive advantage or induce cross-reaction immunity, but by disrupting the skin and associated defences (i.e., skin secretions, skin microbiome) and by immunosuppression, it can also pave the way for subsequent infections. Although there are exceptions, detrimental effects to the host are generally aggravated with increasing numbers of co-infecting parasite species. Finally, because amphibians are ectothermic animals, temperature appears to be the most critical environmental factor that affects co-infections, partly via its influence on amphibian immune function, partly due to its direct effect on the survival and growth of parasites. Besides their importance for our understanding of ecological patterns and processes, detailed knowledge about co-infections is also crucial for the design and implementation of effective wildlife disease management, so that studies concentrating on the identified gaps in our understanding represent rewarding research avenues. ![]()
Collapse
Affiliation(s)
- Dávid Herczeg
- Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Centre for Agricultural Research, Eötvös Loránd Research Network, Herman Ottó út 15, Budapest, 1022, Hungary.
| | - János Ujszegi
- Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Centre for Agricultural Research, Eötvös Loránd Research Network, Herman Ottó út 15, Budapest, 1022, Hungary
| | - Andrea Kásler
- Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Centre for Agricultural Research, Eötvös Loránd Research Network, Herman Ottó út 15, Budapest, 1022, Hungary.,Department of Systematic Zoology and Ecology, Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest, 1117, Hungary
| | - Dóra Holly
- Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Centre for Agricultural Research, Eötvös Loránd Research Network, Herman Ottó út 15, Budapest, 1022, Hungary.,Department of Systematic Zoology and Ecology, Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest, 1117, Hungary
| | - Attila Hettyey
- Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Centre for Agricultural Research, Eötvös Loránd Research Network, Herman Ottó út 15, Budapest, 1022, Hungary.,Department of Ecology, Institute for Biology, University of Veterinary Medicine, Rottenbiller utca 50, Budapest, 1077, Hungary
| |
Collapse
|
18
|
Smilansky V, Jirků M, Milner DS, Ibáñez R, Gratwicke B, Nicholls A, Lukeš J, Chambouvet A, Richards TA. Expanded host and geographic range of tadpole associations with the Severe Perkinsea Infection group. Biol Lett 2021; 17:20210166. [PMID: 34129800 PMCID: PMC8205526 DOI: 10.1098/rsbl.2021.0166] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/24/2021] [Indexed: 11/12/2022] Open
Abstract
Severe Perkinsea infection is an emerging disease of amphibians, specifically tadpoles. Disease presentation correlates with liver infections of a subclade of Perkinsea (Alveolata) protists, named Pathogenic Perkinsea Clade (PPC). Tadpole mortality events associated with PPC infections have been reported across North America, from Alaska to Florida. Here, we investigate the geographic and host range of PPC associations in seemingly healthy tadpoles sampled from Panama, a biogeographic provenance critically affected by amphibian decline. To complement this work, we also investigate a mortality event among Hyla arborea tadpoles in captive-bred UK specimens. PPC SSU rDNA was detected in 10 of 81 Panama tadpoles tested, and H. arborea tadpoles from the UK. Phylogenies of the Perkinsea SSU rDNA sequences demonstrate they are highly similar to PPC sequences sampled from mortality events in the USA, and phylogenetic analysis of tadpole mitochondrial SSU rDNA demonstrates, for the first time, PPC associations in diverse hylids. These data provide further understanding of the biogeography and host range of this putative pathogenic group, factors likely to be important for conservation planning.
Collapse
Affiliation(s)
- Vanessa Smilansky
- Living Systems Institute and Biosciences, University of Exeter, Exeter, Devon EX4 4QD, UK
| | - Miloslav Jirků
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 370 05 České Budějovice, Czech Republic
| | - David S. Milner
- Department of Zoology, University of Oxford, Oxford OX1 3SZ, UK
| | - Roberto Ibáñez
- Smithsonian Tropical Research Institute, Panamá, Republic of Panama
- Sistema Nacional de Investigación, SENACYT, Panamá, Republic of Panama
| | - Brian Gratwicke
- Smithsonian National Zoo and Conservation Biology Institute, Washington D.C., USA
| | - Andrew Nicholls
- Department of Zoology, University of Oxford, Oxford OX1 3SZ, UK
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 370 05 České Budějovice, Czech Republic
- Faculty of Sciences, University of South Bohemia, 370 05 České Budějovice, Czech Republic
| | | | | |
Collapse
|
19
|
Itoïz S, Perennou M, Mouronvalle C, Derelle E, Le Goïc N, Bidault A, de Montaudouin X, Arzul I, Soudant P, Chambouvet A. Development of duplex TaqMan-based real-time PCR assay for the simultaneous detection of Perkinsus olseni and P. chesapeaki in host Manila clam tissue samples. J Invertebr Pathol 2021; 184:107603. [PMID: 33971219 DOI: 10.1016/j.jip.2021.107603] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 04/13/2021] [Accepted: 04/25/2021] [Indexed: 11/28/2022]
Abstract
The aetiological agent Perkinsus olseni is globally recognised as a major threat for shellfish production considering its wide geographical distribution across Asia, Europe, Australia and South America. Another species, Perkinsus chesapeaki, which has never been known to be associated with significant mortality events, was recently detected along French coasts infecting clam populations sporadically in association with P. olseni. Identifying potential cryptic infections affecting Ruditapes philippinarum is essential to develop appropriate host resource management strategies. Here, we developed a molecular method based on duplex real-time quantitative PCR for the simultaneous detection of these two parasites, P. olseni and P. chesapeaki, in the different clam tissues: gills, digestive gland, foot, mantle, adductor muscle and the rest of the soft body. We firstly checked the presence of possible PCR inhibitors in host tissue samples. The qPCR reactions were inhibited depending on the nature of the host organ. The mantle and the rest of the soft body have a high inhibitory effect from threshold of host gDNA concentration of 2 ng.µL-1, the adductor muscle and the foot have an intermediate inhibition of 5 ng.µL-1, and the gills and digestive gland do not show any inhibition of the qPCR reaction even at the highest host gDNA concentration of 20 ng.µL-1. Then, using the gills as a template, the suitability of the molecular technique was checked in comparison with the Ray's Fluid Thioglycolate Medium methodology recommended by the World Organisation for Animal Health. The duplex qPCR method brought new insights and unveiled cryptic infections as the co-occurrence of P. olseni and P. chesapeaki from in situ tissue samples in contrast to the RFTM diagnosis. The development of this duplex qPCR method is a fundamental work to monitor in situ co-infections that will lead to optimised resource management and conservation strategies to deal with emerging diseases.
Collapse
Affiliation(s)
- Sarah Itoïz
- Univ Brest, CNRS, IRD, Ifremer, LEMAR, F-29280 Plouzané, France
| | - Morgan Perennou
- Univ Brest, CNRS, IRD, Ifremer, LEMAR, F-29280 Plouzané, France
| | - Clara Mouronvalle
- Univ Brest, CNRS, IRD, Ifremer, LEMAR, F-29280 Plouzané, France; EPHE, PSL Research University, UPVD, CNRS, USR 3278 CRIOBE, Perpignan F-66360, France
| | - Evelyne Derelle
- Univ Brest, CNRS, IRD, Ifremer, LEMAR, F-29280 Plouzané, France
| | - Nelly Le Goïc
- Univ Brest, CNRS, IRD, Ifremer, LEMAR, F-29280 Plouzané, France
| | - Adeline Bidault
- Univ Brest, CNRS, IRD, Ifremer, LEMAR, F-29280 Plouzané, France
| | - Xavier de Montaudouin
- Univ. Bordeaux, CNRS, EPOC, EPHE, UMR 5805, Station Marine, F-33120 Arcachon, France
| | - Isabelle Arzul
- IFREMER, Laboratory of Genetics and Pathology, Av de Mus de Loup-17390, La Tremblade, France
| | - Philippe Soudant
- Univ Brest, CNRS, IRD, Ifremer, LEMAR, F-29280 Plouzané, France.
| | | |
Collapse
|
20
|
Reñé A, Timoneda N, Sampedro N, Alacid E, Gallisai R, Gordi J, Fernández-Valero AD, Pernice MC, Flo E, Garcés E. Host preferences of coexisting Perkinsea parasitoids during coastal dinoflagellate blooms. Mol Ecol 2021; 30:2417-2433. [PMID: 33756046 DOI: 10.1111/mec.15895] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 01/04/2023]
Abstract
Parasites in aquatic systems are highly diverse and ubiquitous. In marine environments, parasite-host interactions contribute substantially to shaping microbial communities, but their nature and complexity remain poorly understood. In this study, we examined the relationship between Perkinsea parasitoids and bloom-forming dinoflagellate species. Our aim was to determine whether parasite-host species interactions are specific and whether the diversity and distribution of parasitoids are shaped by their dinoflagellate hosts. Several locations along the Catalan coast (NW Mediterranean Sea) were sampled during the blooms of five dinoflagellate species and the diversity of Perkinsea was determined by combining cultivation-based methods with metabarcoding of the V4 region of 18S rDNA. Most known species of Parviluciferaceae, and others not yet described, were detected, some of them coexisting in the same coastal location, and with a wide distribution. The specific parasite-host interactions determined for each of the studied blooms demonstrated the host preferences exhibited by parasitoids in nature. The dominance of a species within the parasitoid community is driven by the presence and abundances of its preferred host(s). The absence of parasitoid species, often associated with a low abundance of their preferred hosts, suggested that high infection rates are reached only under conditions that favour parasitoid propagation, especially dinoflagellate blooms.
Collapse
Affiliation(s)
- Albert Reñé
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar (CSIC), Pg. Marítim de la Barceloneta, 37-49, Barcelona, Catalonia, 08003, Spain
| | - Natàlia Timoneda
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar (CSIC), Pg. Marítim de la Barceloneta, 37-49, Barcelona, Catalonia, 08003, Spain
| | - Nagore Sampedro
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar (CSIC), Pg. Marítim de la Barceloneta, 37-49, Barcelona, Catalonia, 08003, Spain
| | - Elisabet Alacid
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK.,Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK
| | - Rachele Gallisai
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar (CSIC), Pg. Marítim de la Barceloneta, 37-49, Barcelona, Catalonia, 08003, Spain
| | - Jordina Gordi
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar (CSIC), Pg. Marítim de la Barceloneta, 37-49, Barcelona, Catalonia, 08003, Spain
| | - Alan D Fernández-Valero
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar (CSIC), Pg. Marítim de la Barceloneta, 37-49, Barcelona, Catalonia, 08003, Spain
| | - Massimo C Pernice
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar (CSIC), Pg. Marítim de la Barceloneta, 37-49, Barcelona, Catalonia, 08003, Spain
| | - Eva Flo
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar (CSIC), Pg. Marítim de la Barceloneta, 37-49, Barcelona, Catalonia, 08003, Spain
| | - Esther Garcés
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar (CSIC), Pg. Marítim de la Barceloneta, 37-49, Barcelona, Catalonia, 08003, Spain
| |
Collapse
|
21
|
Smilansky V, Chambouvet A, Reeves M, Richards TA, Milner DS. A novel duplex qPCR assay for stepwise detection of multiple Perkinsea protistan infections of amphibian tissues. ROYAL SOCIETY OPEN SCIENCE 2021; 8:202150. [PMID: 33959367 PMCID: PMC8074936 DOI: 10.1098/rsos.202150] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/19/2021] [Indexed: 06/12/2023]
Abstract
Alveolate protists within the phylum Perkinsea have been found to infect amphibians across a broad taxonomic and geographic range. Phylogenetic analysis has suggested the existence of two clades of amphibian Perkinsea: a putatively non-pathogenic clade linked to asymptomatic infections of tadpoles in Africa, Europe and South America, and a putatively pathogenic clade linked to disease and mass mortality events of tadpoles in North America. Here, we describe the development of a duplex TaqMan qPCR assay to detect and discriminate between rDNA sequences from both clades of Perkinsea in amphibian tissues. The assay uses a single primer pair to target an 18S small subunit (SSU) ribosomal RNA (rRNA) gene region shared between the two clades, and two dual-labelled probes to target a region within this fragment that is diagnostic for each clade. This assay enables rapid screening for each of the two Perkinsea groups, allowing for detection, primarily of the phylogenetic group associated with disease outbreaks, and secondarily for the phylogenetic group with no current disease relationship identified. Incorporation of our novel qPCR assay into the routine surveillance of amphibian populations will allow for the assessment of the incidence of each protist clade, thereby providing an improved understanding of Perkinsea infection pervasiveness and a method to underpin future conservation planning.
Collapse
Affiliation(s)
- Vanessa Smilansky
- Living Systems Institute and Biosciences, University of Exeter, Stocker Road, Exeter, Devon EX4 4QD, UK
| | | | - Mari Reeves
- US Fish and Wildlife Service, Pacific Islands Fish and Wildlife Office, Honolulu, Hawai'i
| | - Thomas A. Richards
- Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford OX1 3SZ, UK
| | - David S. Milner
- Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford OX1 3SZ, UK
| |
Collapse
|
22
|
Alacid E, Reñé A, Gallisai R, Paloheimo A, Garcés E, Kremp A. Description of two new coexisting parasitoids of blooming dinoflagellates in the Baltic sea: Parvilucifera catillosa sp. nov. and Parvilucifera sp. (Perkinsea, Alveolata). HARMFUL ALGAE 2020; 100:101944. [PMID: 33298365 DOI: 10.1016/j.hal.2020.101944] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 11/06/2020] [Accepted: 11/09/2020] [Indexed: 06/12/2023]
Abstract
Perkinsea are a group of intracellular protist parasites that inhabit all types of aquatic environments and cause significant population declines of a wide variety of hosts. However, the diversity of this lineage is mostly represented by environmental rDNA sequences. Complete descriptions of Perkinsea that infect marine dinoflagellates have increased in recent literature due to the identification, isolation and culturing of representatives during bloom events, contributing to expand the knowledge on the diversity and ecology of the group. Shallow coastal areas in the Baltic Sea suffer seasonal dinoflagellate blooms. In summer 2016, two parasitoids were isolated during a Kryptoperidinium foliaceum bloom in the Baltic Sea. Morphological features and sequences of the small and large subunit of the ribosomal DNA gene revealed these two parasitoids were new species that belong to the genus Parvilucifera. This is the first time that Parvilucifera infections are reported in the Inner Baltic Sea. The first species, Parvilucifera sp. has some morphological and phylogenetic features in common with P. sinerae and P. corolla, although its ultrastructure could not be studied and the formal description could not be done. The second new species, named Parvilucifera catillosa, has several distinct morphological features in its zoospores (e.g. the presence of a rostrum), and in the shape and size of the apertures in the sporangium stage, which are larger and more protuberant than in the other species of the genus. Infections observed in the field and cross-infection experiments determined that the host range of both Parvilucifera species was restricted to dinoflagellates, each one showing a different host preference. The coexistence in the same environment by the two closely related parasitoids with very similar life cycles suggests that their niche separation is the preferred host.
Collapse
Affiliation(s)
- Elisabet Alacid
- Departament de Biologia Marina i Oceanografia. Institut de Ciències del Mar (CSIC). Pg. Marítim de la Barceloneta, 37-49 08003 Barcelona, Catalonia, Spain; Department of Zoology, University of Oxford, 11a Mansfield Rd, Oxford, OX1 3SZ, United Kingdom.
| | - Albert Reñé
- Departament de Biologia Marina i Oceanografia. Institut de Ciències del Mar (CSIC). Pg. Marítim de la Barceloneta, 37-49 08003 Barcelona, Catalonia, Spain
| | - Rachele Gallisai
- Departament de Biologia Marina i Oceanografia. Institut de Ciències del Mar (CSIC). Pg. Marítim de la Barceloneta, 37-49 08003 Barcelona, Catalonia, Spain
| | - Aurora Paloheimo
- Finnish Environment Institute (SYKE), Marine Research Laboratory, Agnes Sjöbergin katu 2, 00790 Helsinki, Finland
| | - Esther Garcés
- Departament de Biologia Marina i Oceanografia. Institut de Ciències del Mar (CSIC). Pg. Marítim de la Barceloneta, 37-49 08003 Barcelona, Catalonia, Spain
| | - Anke Kremp
- Finnish Environment Institute (SYKE), Marine Research Laboratory, Agnes Sjöbergin katu 2, 00790 Helsinki, Finland; Leibniz Institute for Baltic Sea Research Warnemünde, Department of Biological Oceanography, Seestraße 15, 18119 Rostock, Germany
| |
Collapse
|
23
|
Zhu C, Bass D, Wang Y, Shen Z, Song W, Yi Z. Environmental Parameters and Substrate Type Drive Microeukaryotic Community Structure During Short-Term Experimental Colonization in Subtropical Eutrophic Freshwaters. Front Microbiol 2020; 11:555795. [PMID: 33072015 PMCID: PMC7541896 DOI: 10.3389/fmicb.2020.555795] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 08/24/2020] [Indexed: 12/12/2022] Open
Abstract
Microeukaryotes are key components of aquatic ecosystems and play crucial roles in aquatic food webs. However, influencing factors and potential assembly mechanisms for microeukaryotic community on biofilms are rarely studied. Here, those of microeukaryotic biofilms in subtropical eutrophic freshwaters were investigated for the first time based on 2,585 operational taxonomic units (OTUs) from 41 samples, across different environmental conditions and substrate types. Following conclusions were drawn: (1) Environmental parameters were more important than substrate types in structuring microeukaryotic community of biofilms in subtropical eutrophic freshwaters. (2) In the fluctuating river, there was a higher diversity of OTUs and less predictability of community composition than in the stable lake. Sessile species were more likely to be enriched on smooth surfaces of glass slides, while both free-swimming and attached organisms occurred within holes inside PFUs (polyurethane foam units). (3) Both species sorting and neutral process were mechanisms for assembly of microeukaryotic biofilms, but their importance varied depending on different habitats and substrates. (4) The effect of species sorting was slightly higher than the neutral process in river biofilms due to stronger environmental filtering. Species sorting was a stronger force structuring communities on glass slides than PFUs with more niche availability. Our study sheds light on assembly mechanisms for microeukaryotic community on different habitat and substrate types, showing that the resulting communities are determined by both sets of variables, in this case primarily habitat type. The balance of neutral process and species sorting differed between habitats, but the high alpha diversity of microeukaryotes in both led to similar sets of lifecycle traits being selected for in each case.
Collapse
Affiliation(s)
- Changyu Zhu
- Institute of Evolution and Marine Biodiversity, College of Fisheries, Ocean University of China, Qingdao, China.,Pilot National Laboratory for Marine Science and Technology, Qingdao, China.,Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou, China
| | - David Bass
- Department of Life Sciences, Natural History Museum, London, United Kingdom
| | - Yutao Wang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou, China.,Dongli Planting and Farming Industrial Co., Ltd., Lianzhou, China
| | - Zhuo Shen
- Institute of Microbial Ecology and Matter Cycle, School of Marine Sciences, Sun Yat-sen University, Zhuhai, China.,Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Weibo Song
- Institute of Evolution and Marine Biodiversity, College of Fisheries, Ocean University of China, Qingdao, China.,Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Zhenzhen Yi
- Pilot National Laboratory for Marine Science and Technology, Qingdao, China.,Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou, China
| |
Collapse
|
24
|
Jeon BS, Park MG. Parvilucifera multicavata sp. nov. (Alveolata, Perkinsozoa), a New Parasitoid Infecting Marine Dinoflagellates Having Abundant Apertures on the Sporangium. Protist 2020; 171:125743. [DOI: 10.1016/j.protis.2020.125743] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 06/20/2020] [Accepted: 06/20/2020] [Indexed: 10/24/2022]
|
25
|
Huerlimann R, Cooper MK, Edmunds RC, Villacorta‐Rath C, Le Port A, Robson HLA, Strugnell JM, Burrows D, Jerry DR. Enhancing tropical conservation and ecology research with aquatic environmental DNA methods: an introduction for non‐environmental DNA specialists. Anim Conserv 2020. [DOI: 10.1111/acv.12583] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- R. Huerlimann
- Centre for Sustainable Tropical Fisheries and Aquaculture College of Science and Engineering James Cook University Townsville QLD Australia
- Centre for Tropical Bioinformatics and Molecular Biology James Cook University Townsville QLD Australia
| | - M. K. Cooper
- Centre for Sustainable Tropical Fisheries and Aquaculture College of Science and Engineering James Cook University Townsville QLD Australia
- Centre for Tropical Bioinformatics and Molecular Biology James Cook University Townsville QLD Australia
| | - R. C. Edmunds
- Centre for Tropical Water and Aquatic Ecosystem Research (TropWATER) James Cook University Townsville QLD Australia
| | - C. Villacorta‐Rath
- Centre for Tropical Bioinformatics and Molecular Biology James Cook University Townsville QLD Australia
- Centre for Tropical Water and Aquatic Ecosystem Research (TropWATER) James Cook University Townsville QLD Australia
| | - A. Le Port
- Centre for Sustainable Tropical Fisheries and Aquaculture College of Science and Engineering James Cook University Townsville QLD Australia
| | - H. L. A. Robson
- Centre for Sustainable Tropical Fisheries and Aquaculture College of Science and Engineering James Cook University Townsville QLD Australia
| | - J. M. Strugnell
- Centre for Sustainable Tropical Fisheries and Aquaculture College of Science and Engineering James Cook University Townsville QLD Australia
- Centre for Tropical Bioinformatics and Molecular Biology James Cook University Townsville QLD Australia
| | - D. Burrows
- Centre for Tropical Water and Aquatic Ecosystem Research (TropWATER) James Cook University Townsville QLD Australia
| | - D. R. Jerry
- Centre for Sustainable Tropical Fisheries and Aquaculture College of Science and Engineering James Cook University Townsville QLD Australia
- Tropical Futures Institute James Cook University Singapore Singapore
| |
Collapse
|
26
|
Chambouvet A, Smilansky V, Jirků M, Isidoro-Ayza M, Itoïz S, Derelle E, Monier A, Gower DJ, Wilkinson M, Yabsley MJ, Lukeš J, Richards TA. Diverse alveolate infections of tadpoles, a new threat to frogs? PLoS Pathog 2020; 16:e1008107. [PMID: 32053700 PMCID: PMC7017987 DOI: 10.1371/journal.ppat.1008107] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
| | - Vanessa Smilansky
- Biosciences, Living Systems Institute, University of Exeter, Exeter, United Kingdom
| | - Miloslav Jirků
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
| | - Marcos Isidoro-Ayza
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Sarah Itoïz
- CNRS, Univ Brest, IRD, Ifremer, LEMAR, Plouzané, France
| | | | - Adam Monier
- Biosciences, Living Systems Institute, University of Exeter, Exeter, United Kingdom
| | - David J. Gower
- Department of Life Sciences, Natural History Museum, London, United Kingdom
| | - Mark Wilkinson
- Department of Life Sciences, Natural History Museum, London, United Kingdom
| | - Michael J. Yabsley
- Warnell School of Forestry and Natural Resources and the Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
- Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Thomas A. Richards
- Biosciences, Living Systems Institute, University of Exeter, Exeter, United Kingdom
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
27
|
Martinez-Hernandez F, Prado-Calleros HM, Ramirez-Hinojosa JP, Figueroa-Angel V, Lopez-Reynoso MT, Jimenez-Andrade MDC, Estrada-Moscoso I, Rivas N, Escobedo-Ortegon J, Flisser A, Romero-Valdovinos MG, Maravilla P. An Unexpected Case of Lagochilascariasis: Interdisciplinary Management and Use of 12S and 18S rDNA Analysis. Am J Med Sci 2020; 359:235-241. [PMID: 31959368 DOI: 10.1016/j.amjms.2020.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/30/2019] [Accepted: 01/02/2020] [Indexed: 11/29/2022]
Abstract
A Mexican 24-year-old male patient was referred to our hospital due to increased left retroauricular volume with skin fistulisation, resembling an infection by the uncommon worm Lagochilascaris minor. The patient was submitted to lateral skull base surgery. No adult worms or eggs were observed during light and scanning electron microscopy analysis, as well as by histopathologic examination of the small piece of removed tissue, only L3 stage larvae of Lagochilascaris spp. were identified. Polymerase chain reaction-sequencing assays were performed using primers for the mitochondrial 12S and the nuclear 18S rDNA gene. DNA of some L minor adults, previously identified, were used as control. The molecular analysis identified the worm as L minor. According to previous reports, lagochilascariasis is a complicated infection that requires an interdisciplinary management by different clinical specialists. This is the first time that 12S and 18S rDNA genes are reported as molecular markers for diagnosis of L minor.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Nancy Rivas
- Laboratorio de Entomologia, Escuela Nacional de Ciencias Biologicas, Instituto Politecnico Nacional, Mexico City, Mexico
| | - Javier Escobedo-Ortegon
- Centro de Investigaciones Regionales "Dr. Hideyo Noguchi" Universidad Autonoma de Yucatan, Merida, Yucatan, Mexico
| | - Ana Flisser
- Facultad de Medicina, Universidad Nacional Autonoma de Mexico (UNAM), Mexico City, Mexico
| | | | - Pablo Maravilla
- Hospital General "Dr. Manuel Gea Gonzalez", Mexico City, Mexico.
| |
Collapse
|
28
|
Expression Changes of MHC and Other Immune Genes in Frog Skin during Ontogeny. Animals (Basel) 2020; 10:ani10010091. [PMID: 31935873 PMCID: PMC7022564 DOI: 10.3390/ani10010091] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 12/30/2019] [Accepted: 12/31/2019] [Indexed: 01/03/2023] Open
Abstract
Simple Summary Tadpoles undergo many changes in physiology and immunology until metamorphosis into adult frogs. Major histocompatibility complex (MHC) molecules are an important part of vertebrate adaptive immunity, and our study measured the expression of two MHC genes (MHC class I and II) in skin during six tadpole stages of the Montane Brown frog (Rana ornativentris). First, using a qPCR method, we found that both MHC class I and II expression significantly increased between stage 24/25 (‘early’) and stage 28 (‘mid’) tadpole skin. Then, we conducted next-generation sequencing for ‘early’, ‘mid’ and ‘late’ stage tadpole skin mRNA of both R. ornativentris and a model species, Xenopus tropicalis, and confirmed that MHC expression increased from the ‘mid’ stage. We also performed further analyses of transcriptome data and found that several immune-related gene ontology terms were upregulated from the ‘mid’ tadpole stage. Our findings probably support that both MHC class I and II have a functional role during tadpole development. Abstract Anuran amphibians undergo major physiological and immunological changes following metamorphosis. Genes of the major histocompatibility complex (MHC) code for receptors important for vertebrate adaptive immunity. We used qPCR to measure skin MHC expression in six different ontological stages of Rana ornativentris (n = 10 per stage); normalized MHC class I and II expression at the mRNA level was significantly higher in stage 28 (mid-larval) compared to stages 24/25 (early-larval) tadpoles. Subsequent transcriptomic analyses of three tadpole (early-, mid-, and late-larval) stages of R. ornativentris and model species Xenopus tropicalis focused on mRNA expression of immune-related genes in the skin. Normalized expression of most MHC class I and II transcripts in both species were significantly higher in mid- and late-larval stages compared to early-larval stage. In addition, gene ontology (GO) analyses of differentially expressed transcripts revealed several immune-related GO terms that were significantly upregulated from the mid-larval stage. Our study provides evidence that both MHC class I and II is expressed during development in both R. ornativentris and X. tropicalis.
Collapse
|
29
|
Genetic tool development in marine protists: emerging model organisms for experimental cell biology. Nat Methods 2020; 17:481-494. [PMID: 32251396 PMCID: PMC7200600 DOI: 10.1038/s41592-020-0796-x] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 03/02/2020] [Indexed: 12/13/2022]
Abstract
Diverse microbial ecosystems underpin life in the sea. Among these microbes are many unicellular eukaryotes that span the diversity of the eukaryotic tree of life. However, genetic tractability has been limited to a few species, which do not represent eukaryotic diversity or environmentally relevant taxa. Here, we report on the development of genetic tools in a range of protists primarily from marine environments. We present evidence for foreign DNA delivery and expression in 13 species never before transformed and for advancement of tools for eight other species, as well as potential reasons for why transformation of yet another 17 species tested was not achieved. Our resource in genetic manipulation will provide insights into the ancestral eukaryotic lifeforms, general eukaryote cell biology, protein diversification and the evolution of cellular pathways.
Collapse
|
30
|
Campo J, Bass D, Keeling PJ. The eukaryome: Diversity and role of microeukaryotic organisms associated with animal hosts. Funct Ecol 2019. [DOI: 10.1111/1365-2435.13490] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Javier Campo
- Marine Biology and Ecology Department Rosenstiel School of Marine and Atmospheric Science University of Miami Miami FL USA
| | - David Bass
- Department of Life Sciences The Natural History Museum London UK
- CEFAS Weymouth UK
| | | |
Collapse
|
31
|
Okamura B, Hartigan A, Naldoni J. Extensive Uncharted Biodiversity: The Parasite Dimension. Integr Comp Biol 2019; 58:1132-1145. [PMID: 29860443 DOI: 10.1093/icb/icy039] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Parasites are often hidden in their hosts and exhibit patchy spatial distributions. This makes them relatively difficult to detect and sample. Consequently we have poor knowledge of parasite diversities, distributions, and extinction. We evaluate our general understanding of parasite diversity and highlight the enormous bias in research on parasites such as helminths and arthropods that infect vertebrate hosts. We then focus on Myxozoa as an exemplary case for demonstrating uncharted parasite diversity. Myxozoans are a poorly recognized but speciose clade of endoparasitic cnidarians with complex life cycles that have radiated to exploit freshwater, marine, and terrestrial hosts by adopting strategies convergent to those of parasitic protists. Myxozoans are estimated to represent some 20% of described cnidarian species-greatly outnumbering the combined species richness of scyphozoans, cubozoans, and staurozoans. We summarize limited understanding of myxozoan diversification and geographical distributions, and highlight gaps in knowledge and approaches for measuring myxozoan diversity. We close by reviewing methods and problems in estimating parasite extinction and concerns about extinction risks in view of the fundamental roles parasites play in ecosystem dynamics and in driving host evolutionary trajectories.
Collapse
Affiliation(s)
- Beth Okamura
- Department of Life Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - Ashlie Hartigan
- Department of Life Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - Juliana Naldoni
- Departamento de Ciências Biológicas, Universidade Federal de São Paulo (UNIFESP), Diadema, SP 09972-270, Brazil
| |
Collapse
|
32
|
Kohli AK, Lindauer AL, Brannelly LA, Ohmer MEB, Richards-Zawacki C, Rollins-Smith L, Voyles J. Disease and the Drying Pond: Examining Possible Links among Drought, Immune Function, and Disease Development in Amphibians. Physiol Biochem Zool 2019; 92:339-348. [PMID: 30990770 DOI: 10.1086/703137] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Drought can heavily impact aquatic ecosystems. For amphibian species that rely on water availability for larval development, drought can have direct and indirect effects on larval survival and postmetamorphic fitness. Some amphibian species can accelerate the timing of metamorphosis to escape drying habitats through developmental plasticity. However, trade-offs associated with premature metamorphosis, such as reduced body size and altered immune function in the recently metamorphosed individual, may have downstream effects on susceptibility to disease. Here, we review the physiological mechanisms driving patterns in larval amphibian development under low water conditions. Specifically, we discuss drought-induced accelerated metamorphosis and how it may alter immune function, predisposing juvenile amphibians to infectious disease. In addition, we consider how these physiological and immunological adjustments could play out in a lethal disease system, amphibian chytridiomycosis. Last, we propose avenues for future research that adopt an ecoimmunological approach to evaluate the combined threats of drought and disease for amphibian populations.
Collapse
|
33
|
Functional variation at an expressed MHC class IIβ locus associates with Ranavirus infection intensity in larval anuran populations. Immunogenetics 2019; 71:335-346. [PMID: 30761419 DOI: 10.1007/s00251-019-01104-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 01/07/2019] [Indexed: 12/31/2022]
Abstract
Infectious diseases are causing catastrophic losses to global biodiversity. Iridoviruses in the genus Ranavirus are among the leading causes of amphibian disease-related mortality. Polymorphisms in major histocompatibility complex (MHC) genes are significantly associated with variation in amphibian pathogen susceptibility. MHC genes encode two classes of polymorphic cell-surface molecules that can recognize and bind to diverse pathogen peptides. While MHC class I genes are the classic mediators of viral-acquired immunity, larval amphibians do not express them. Consequently, MHC class II gene diversity may be an important predictor of Ranavirus susceptibility in larval amphibians, the life stage most susceptible to Ranavirus. We surveyed natural populations of larval wood frogs (Rana sylvatica), which are highly susceptible to Ranavirus, across 17 ponds and 2 years in Maryland, USA. We sequenced the peptide-binding region of an expressed MHC class IIβ locus and assessed allelic and genetic diversity. We converted alleles to functional supertypes and determined if supertypes or alleles influenced host responses to Ranavirus. Among 381 sampled individuals, 26% were infected with Ranavirus. We recovered 20 unique MHC class IIβ alleles that fell into two deeply diverged clades and seven supertypes. MHC genotypes were associated with Ranavirus infection intensity, but not prevalence. Specifically, MHC heterozygotes and supertype ST1/ST7 had significantly lower Ranavirus infection intensity compared to homozygotes and other supertypes. We conclude that MHC class IIβ functional genetic variation is an important component of Ranavirus susceptibility. Identifying immunogenetic signatures linked to variation in disease susceptibility can inform mitigation strategies for combatting global amphibian declines.
Collapse
|
34
|
Jeon BS, Park MG. Tuberlatum coatsi gen. n., sp. n. (Alveolata, Perkinsozoa), a New Parasitoid with Short Germ Tubes Infecting Marine Dinoflagellates. Protist 2019; 170:82-103. [DOI: 10.1016/j.protis.2018.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 12/15/2018] [Indexed: 11/28/2022]
|
35
|
Belasen AM, Bletz MC, Leite DDS, Toledo LF, James TY. Long-Term Habitat Fragmentation Is Associated With Reduced MHC IIB Diversity and Increased Infections in Amphibian Hosts. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2018.00236] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
36
|
Bower DS, Brannelly LA, McDonald CA, Webb RJ, Greenspan SE, Vickers M, Gardner MG, Greenlees MJ. A review of the role of parasites in the ecology of reptiles and amphibians. AUSTRAL ECOL 2018. [DOI: 10.1111/aec.12695] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Deborah S. Bower
- College of Science and Engineering; James Cook University; Townsville Queensland 4811 Australia
- School of Environmental and Rural Science; University of New England; Armidale New South Wales Australia
| | - Laura A. Brannelly
- Department of Biological Sciences; University of Pittsburgh; Pittsburgh Pennsylvania USA
| | - Cait A. McDonald
- Department of Ecology and Evolutionary Biology; Cornell University; Ithaca New York USA
| | - Rebecca J. Webb
- College of Public Health, Medical and Veterinary Sciences; James Cook University; Townsville Queensland Australia
| | - Sasha E. Greenspan
- Department of Biological Sciences; University of Alabama; Tuscaloosa Alabama USA
| | - Mathew Vickers
- College of Science and Engineering; James Cook University; Townsville Queensland 4811 Australia
| | - Michael G. Gardner
- College of Science and Engineering; Flinders University; Adelaide South Australia Australia
- Evolutionary Biology Unit; South Australian Museum; Adelaide South Australia Australia
| | - Matthew J. Greenlees
- School of Life and Environmental Sciences; University of Sydney; Sydney New South Wales Australia
| |
Collapse
|
37
|
Wu W, Liu H. Disentangling protist communities identified from DNA and RNA surveys in the Pearl River-South China Sea Continuum during the wet and dry seasons. Mol Ecol 2018; 27:4627-4640. [DOI: 10.1111/mec.14867] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 08/12/2018] [Accepted: 09/07/2018] [Indexed: 01/08/2023]
Affiliation(s)
- Wenxue Wu
- School of Marine Sciences; Sun Yat-sen University; Zhuhai Guangdong China
- Division of Life Science; The Hong Kong University of Science and Technology; Kowloon, Hong Kong SAR China
| | - Hongbin Liu
- Division of Life Science; The Hong Kong University of Science and Technology; Kowloon, Hong Kong SAR China
- Department of Ocean Science; The Hong Kong University of Science and Technology; Kowloon, Hong Kong SAR China
| |
Collapse
|
38
|
Alarcon-Valdes P, Villalobos G, Martinez-Flores WA, Lopez-Escamilla E, Gonzalez-Arenas NR, Romero-Valdovinos M, Martinez-Hernandez F, Santillan-Benitez JG, Maravilla P. Can the pyruvate: ferredoxin oxidoreductase (PFOR) gene be used as an additional marker to discriminate among Blastocystis strains or subtypes? Parasit Vectors 2018; 11:564. [PMID: 30373630 PMCID: PMC6205798 DOI: 10.1186/s13071-018-3141-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 10/10/2018] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Blastocystis spp. are the most prevalent intestinal eukaryotes identified in humans, with at least 17 genetic subtypes (ST) based on genes coding for the small-subunit ribosomal RNA (18S). It has been argued that the 18S gene should not be the marker of choice to discriminate between STs of these strains because this marker exhibits high intra-genomic polymorphism. By contrast, pyruvate:ferredoxin oxidoreductase (PFOR) is a relevant enzyme involved in the core energy metabolism of many anaerobic microorganisms such as Blastocystis, which, in other protozoa, shows more polymorphisms than the 18S gene and thus may offer finer discrimination when trying to identify Blastocystis ST. Therefore, the objective of the present study was to assess the suitability of the PFOR gene as an additional marker to discriminate among Blastocystis strains or subtypes from symptomatic carrier children. METHODS Faecal samples from 192 children with gastrointestinal symptoms from the State of Mexico were submitted for coprological study. Twenty-one of these samples were positive only for Blastocystis spp.; these samples were analysed by PCR sequencing of regions of the 18S and PFOR genes. The amplicons were purified and sequenced; afterwards, both markers were assessed for genetic diversity. RESULTS The 18S analysis showed the following frequencies of Blastocystis subtypes: ST3 = 43%; ST1 = 38%; ST2 = 14%; and ST7 = 5%. Additionally, using subtype-specific primer sets, two samples showed mixed Blastocystis ST1 and ST2 infection. For PFOR, Bayesian inference revealed the presence of three clades (I-III); two of them grouped different ST samples, and one grouped six samples of ST3 (III). Nucleotide diversity (π) and haplotype polymorphism (θ) for the 18S analysis were similar for ST1 and ST2 (π = ~0.025 and θ = ~0.036); remarkably, ST3 showed almost 10-fold lower values. For PFOR, a similar trend was found: clade I and II had π = ~0.05 and θ = ~0.05, whereas for clade III, the values were almost 6-fold lower. CONCLUSIONS Although the fragment of the PFOR gene analysed in the present study did not allow discrimination between Blastocystis STs, this marker grouped the samples in three clades with strengthened support, suggesting that PFOR may be under different selective pressures and evolutionary histories than the 18S gene. Interestingly, the ST3 sequences showed lower variability with probable purifying selection in both markers, meaning that evolutionary forces drive differential processes among Blastocystis STs.
Collapse
Affiliation(s)
- Patricia Alarcon-Valdes
- Facultad de Quimica, Universidad Autonoma del Estado de Mexico (UAEMex), Paseo Colon esq. Paseo Tollocan, Toluca, Estado de Mexico, Mexico
| | - Guiehdani Villalobos
- Instituto de Ecologia, Universidad Nacional Autonoma de Mexico (UNAM), 04510, Ciudad de Mexico, Ciudad de Mexico, Mexico
| | | | - Eduardo Lopez-Escamilla
- Hospital General "Dr. Manuel Gea Gonzalez", Calzada de Tlalpan 4800, Ciudad de Mexico, 14080, Ciudad de Mexico, Mexico
| | - Nelly Raquel Gonzalez-Arenas
- Hospital General "Dr. Manuel Gea Gonzalez", Calzada de Tlalpan 4800, Ciudad de Mexico, 14080, Ciudad de Mexico, Mexico
| | - Mirza Romero-Valdovinos
- Hospital General "Dr. Manuel Gea Gonzalez", Calzada de Tlalpan 4800, Ciudad de Mexico, 14080, Ciudad de Mexico, Mexico
| | - Fernando Martinez-Hernandez
- Hospital General "Dr. Manuel Gea Gonzalez", Calzada de Tlalpan 4800, Ciudad de Mexico, 14080, Ciudad de Mexico, Mexico.
| | | | - Pablo Maravilla
- Hospital General "Dr. Manuel Gea Gonzalez", Calzada de Tlalpan 4800, Ciudad de Mexico, 14080, Ciudad de Mexico, Mexico.
| |
Collapse
|
39
|
Isidoro-Ayza M, Grear DA, Chambouvet A. Pathology and Case Definition of Severe Perkinsea Infection of Frogs. Vet Pathol 2018; 56:133-142. [PMID: 30236039 DOI: 10.1177/0300985818798132] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Severe Perkinsea infection (SPI) is an emerging disease of frogs responsible for mass mortalities of tadpoles across the United States. It is caused by protozoa belonging to the phylum Perkinsozoa that form a distinct group referred to as the Pathogenic Perkinsea Clade of frogs. In this work, we provide detailed description of gross and histologic lesions from 178 naturally infected tadpoles, including 10 species from 22 mortality events and 6 amphibian health monitoring studies from diverse geographic areas. On external examination, we observed abdominal distension (10, 5.6%), cutaneous erythema and petechia (3, 1.7%), subcutaneous edema (3, 1.7%), and areas of white skin discoloration (3, 1.7%). On macroscopic examination of internal organs, we found hepatomegaly (68, 38.2%), splenomegaly (51, 28.7%), nephromegaly (47, 26.4%), ascites (15, 8.4%), segmental irregular thickening and white discoloration of the intestine (8, 4.5%), pancreatomegaly (4, 2.2%), and pancreatic petechia (1, 0.6%). Histologically, over 60% of the liver (148/165, 89.7%), kidney (113/147, 76.9%), spleen (96/97, 99%), and pancreas (46/68, 67.6%) were invaded by myriad intracellular and extracellular Perkinsea hypnospore-like and trophozoite-like organisms. Numerous other tissues were affected to a lesser extent. Mild histiocytic inflammation with fewer lymphocytes or eosinophils was commonly observed in areas of infection that were not obscured by lympho-granulocytic hematopoietic tissue. In light of these observations, we suggest a logical pathogenesis sequence. Finally, we propose a "case definition" for SPI to promote standardized communication of results and prevent misdiagnosis with epidemiological and pathologically overlapping diseases such as ranavirosis.
Collapse
Affiliation(s)
- Marcos Isidoro-Ayza
- 1 Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA.,2 National Wildlife Health Center-US Geological Survey, Madison, WI, USA
| | - Daniel A Grear
- 3 National Wildlife Health Center-US Geological Survey, Madison, WI, USA
| | - Aurélie Chambouvet
- 4 Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR6539 UBO/CNRS/IRD/IFREMER, Institut Universitaire Européen de la Mer (IUEM), Technopole Brest Iroise, Plouzané, France
| |
Collapse
|
40
|
Mass Mortality of Green Frog ( Rana clamitans) Tadpoles in Wisconsin, USA, Associated with Severe Infection with the Pathogenic Perkinsea Clade. J Wildl Dis 2018; 55:262-265. [PMID: 30024771 DOI: 10.7589/2018-02-046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We documented mortality of green frog ( Rana clamitans) tadpoles in Wisconsin, US, attributed to severe Perkinsea infection. Final diagnosis was determined by histopathology. followed by molecular detection of pathogenic Perkinsea clade (PPC) of frogs in the liver. To our knowledge, this represents the first detection of PPC in the midwestern US.
Collapse
|
41
|
Karwacki EE, Atkinson MS, Ossiboff RJ, Savage AE. Novel quantitative PCR assay specific for the emerging Perkinsea amphibian pathogen reveals seasonal infection dynamics. DISEASES OF AQUATIC ORGANISMS 2018; 129:85-98. [PMID: 29972369 DOI: 10.3354/dao03239] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Amphibians are suffering from large-scale population declines worldwide, and infectious diseases are a central driving force. Most pathogen-mediated declines are attributed to 2 pathogens, the fungus Batrachochytrium dendrobatidis and iridoviruses in the genus Ranavirus. However, another emerging pathogen within Perkinsea is associated with mass mortality events in anurans throughout the southeastern USA. Molecular resources for detecting amphibian Perkinsea have been limited to general protistan primers that amplify a range of organisms, not all of which are disease agents. Moreover, the only quantitative method available involves histopathology, which is labor intensive, requires destructive sampling, and lacks sensitivity. Here, we developed a novel quantitative (q)PCR assay that is sensitive and specific for amphibian Perkinsea, providing a resource for rapid and reliable pathogen diagnosis. We used histopathology to confirm that qPCR burdens track the severity of Perkinsea infections across multiple anuran tissues. We also sampled 3 natural amphibian communities in Florida, USA, to assess the prevalence and intensity of amphibian Perkinsea infections across species, seasons, tissues, and life stages. Anurans from 2 of 3 sampling locations were infected, totaling 25.1% of all individuals. Infection prevalence varied significantly among locations, seasons, species, and life stages. Infection intensity was significantly higher in larval tissues than adult tissues, and was significantly different across locations, seasons, and species. Understanding relationships between amphibian Perkinsea infection, other pathogens, and biotic and abiotic cofactors will allow us to assess what drives population declines, improving our ability to develop conservation strategies for susceptible species to reduce global amphibian biodiversity loss.
Collapse
Affiliation(s)
- Emily E Karwacki
- University of Central Florida, Department of Biology, 4110 Libra Dr., Orlando, Florida 32816, USA
| | | | | | | |
Collapse
|
42
|
Ward GM, Neuhauser S, Groben R, Ciaghi S, Berney C, Romac S, Bass D. Environmental Sequencing Fills the Gap Between Parasitic Haplosporidians and Free-living Giant Amoebae. J Eukaryot Microbiol 2018; 65:574-586. [PMID: 29336517 PMCID: PMC6173291 DOI: 10.1111/jeu.12501] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 11/17/2017] [Accepted: 12/28/2017] [Indexed: 12/18/2022]
Abstract
Class Ascetosporea (Rhizaria; Endomyxa) comprises many parasites of invertebrates. Within this group, recent group-specific environmental DNA (eDNA) studies have contributed to the establishment of the new order Mikrocytida, a new phylogeny and characterization of Paramyxida, and illuminated the diversity and distribution of haplosporidians. Here, we use general and lineage-specific PCR primers to investigate the phylogenetic "gap" between haplosporidians and their closest known free-living relatives, the testate amoeba Gromia and reticulate amoeba Filoreta. Within this gap are Paradinium spp. parasites of copepods, which we show to be highly diverse and widely distributed in planktonic and benthic samples. We reveal a robustly supported radiation of parasites, ENDO-3, comprised of Paradinium and three further clades (ENDO-3a, ENDO-3b and SPP). A further environmental group, ENDO-2, perhaps comprising several clades, branches between this radiation and the free-living amoebae. Early diverging haplosporidians were also amplified, often associated with bivalves or deep-sea samples. The general primer approach amplified an overlapping set of novel lineages within ENDO-3 and Haplosporida, whereas the group-specific primer strategy, targeted to amplify from the earliest known divergent haplosporidians to Gromia, generated greater sequence diversity across part of this phylogenetic range.
Collapse
Affiliation(s)
- Georgia M. Ward
- Department of Life SciencesThe Natural History MuseumCromwell RoadLondonSW7 5BDUnited Kingdom
- CefasBarrack Road, The NotheWeymouthDorsetDT4 8UBUnited Kingdom
- College of Life and Environmental SciencesUniversity of ExeterStocker RoadExeterEX4 4QDUnited Kingdom
| | - Sigrid Neuhauser
- Institute of MicrobiologyUniversity of InnsbruckTechnikerstraßeInnsbruck25 6020Austria
| | - René Groben
- VÖR ‐ Marine Research Center at BreiðafjörðurNorðurtangiÓlafsvík355Iceland
- Present address:
Matís ohf.Vínlandsleið 12113ReykjavíkIceland
| | - Stefan Ciaghi
- Institute of MicrobiologyUniversity of InnsbruckTechnikerstraßeInnsbruck25 6020Austria
| | - Cédric Berney
- Sorbonne Universités UPMC Université Paris 06 & CNRSUMR7144Station Biologique de RoscoffPlace Georges TeissierRoscoff29680France
| | - Sarah Romac
- Sorbonne Universités UPMC Université Paris 06 & CNRSUMR7144Station Biologique de RoscoffPlace Georges TeissierRoscoff29680France
| | - David Bass
- Department of Life SciencesThe Natural History MuseumCromwell RoadLondonSW7 5BDUnited Kingdom
- CefasBarrack Road, The NotheWeymouthDorsetDT4 8UBUnited Kingdom
| |
Collapse
|
43
|
Affiliation(s)
- Allan P Pessier
- 1 Department of Veterinary Microbiology and Pathology, Washington Animal Disease Diagnostic Laboratory, College of Veterinary Medicine, Washington State University, Pullman, WA, USA.,2 Amphibian Disease Laboratory, Institute for Conservation Research, San Diego Zoo Global, San Diego, CA, USA
| |
Collapse
|
44
|
Lau Q, Igawa T, Minei R, Kosch TA, Satta Y. Transcriptome analyses of immune tissues from three Japanese frogs (genus Rana ) reveals their utility in characterizing major histocompatibility complex class II. BMC Genomics 2017; 18:994. [PMID: 29281968 PMCID: PMC5745589 DOI: 10.1186/s12864-017-4404-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 12/19/2017] [Indexed: 01/05/2023] Open
Abstract
Background In Japan and East Asia, endemic frogs appear to be tolerant or not susceptible to chytridiomycosis, a deadly amphibian disease caused by the chytrid fungus Batrachochytridium dendrobatidis (Bd). Japanese frogs may have evolved mechanisms of immune resistance to pathogens such as Bd. This study characterizes immune genes expressed in various tissues of healthy Japanese Rana frogs. Results We generated transcriptome data sets of skin, spleen and blood from three adult Japanese Ranidae frogs (Japanese brown frog Rana japonica, the montane brown frog Rana ornativentris, and Tago’s brown frog Rana tagoi tagoi) as well as whole body of R. japonica and R. ornativentris tadpoles. From this, we identified tissue- and stage-specific differentially expressed genes; in particular, the spleen was most enriched for immune-related genes. A specific immune gene, major histocompatibility complex class IIB (MHC-IIB), was further characterized due to its role in pathogen recognition. We identified a total of 33 MHC-IIB variants from the three focal species (n = 7 individuals each), which displayed evolutionary signatures related to increased MHC variation, including balancing selection. Our supertyping analyses of MHC-IIB variants from Japanese frogs and previously studied frog species identified potential physiochemical properties of MHC-II that may be important for recognizing and binding chytrid-related antigens. Conclusions This is one of the first studies to generate transcriptomic resources for Japanese frogs, and contributes to further understanding the immunogenetic factors associated with resistance to infectious diseases in amphibians such as chytridiomycosis. Notably, MHC-IIB supertyping analyses identified unique functional properties of specific MHC-IIB alleles that may partially contribute to Bd resistance, and such properties provide a springboard for future experimental validation. Electronic supplementary material The online version of this article (10.1186/s12864-017-4404-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Quintin Lau
- Department of Evolutionary Studies of Biosystems, Sokendai, The Graduate University for Advanced Studies, Kamiyamaguchi 1560-35, Hayama, Kanagawa, 240-0193, Japan.
| | - Takeshi Igawa
- Amphibian Research Center, Hiroshima University, 1-3-1, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| | - Ryuhei Minei
- Department of Bioscience, Nagahama Institute of Bio-Science and Technology, Tamura-cho 1266, Nagahama, Shiga, 526-0829, Japan
| | - Tiffany A Kosch
- One Health Research Group, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, 4811, Australia
| | - Yoko Satta
- Department of Evolutionary Studies of Biosystems, Sokendai, The Graduate University for Advanced Studies, Kamiyamaguchi 1560-35, Hayama, Kanagawa, 240-0193, Japan
| |
Collapse
|
45
|
Buddenborg SK, Bu L, Zhang SM, Schilkey FD, Mkoji GM, Loker ES. Transcriptomic responses of Biomphalaria pfeifferi to Schistosoma mansoni: Investigation of a neglected African snail that supports more S. mansoni transmission than any other snail species. PLoS Negl Trop Dis 2017; 11:e0005984. [PMID: 29045404 PMCID: PMC5685644 DOI: 10.1371/journal.pntd.0005984] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 11/14/2017] [Accepted: 09/20/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Biomphalaria pfeifferi is highly compatible with the widespread human-infecting blood fluke Schistosoma mansoni and transmits more cases of this parasite to people than any other snail species. For these reasons, B. pfeifferi is the world's most important vector snail for S. mansoni, yet we know relatively little at the molecular level regarding the interactions between B. pfeifferi and S. mansoni from early-stage sporocyst transformation to the development of cercariae. METHODOLOGY/PRINCIPAL FINDINGS We sought to capture a portrait of the response of B. pfeifferi to S. mansoni as it occurs in nature by undertaking Illumina dual RNA-Seq on uninfected control B. pfeifferi and three intramolluscan developmental stages (1- and 3-days post infection and patent, cercariae-producing infections) using field-derived west Kenyan specimens. A high-quality, well-annotated de novo B. pfeifferi transcriptome was assembled from over a half billion non-S. mansoni paired-end reads. Reads associated with potential symbionts were noted. Some infected snails yielded fewer normalized S. mansoni reads and showed different patterns of transcriptional response than others, an indication that the ability of field-derived snails to support and respond to infection is variable. Alterations in transcripts associated with reproduction were noted, including for the oviposition-related hormone ovipostatin and enzymes involved in metabolism of bioactive amines like dopamine or serotonin. Shedding snails exhibited responses consistent with the need for tissue repair. Both generalized stress and immune factors immune factors (VIgLs, PGRPs, BGBPs, complement C1q-like, chitinases) exhibited complex transcriptional responses in this compatible host-parasite system. SIGNIFICANCE This study provides for the first time a large sequence data set to help in interpreting the important vector role of the neglected snail B. pfeifferi in transmission of S. mansoni, including with an emphasis on more natural, field-derived specimens. We have identified B. pfeifferi targets particularly responsive during infection that enable further dissection of the functional role of these candidate molecules.
Collapse
Affiliation(s)
- Sarah K. Buddenborg
- Department of Biology, Center for Evolutionary and Theoretical Immunology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Lijing Bu
- Department of Biology, Center for Evolutionary and Theoretical Immunology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Si-Ming Zhang
- Department of Biology, Center for Evolutionary and Theoretical Immunology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Faye D. Schilkey
- National Center for Genome Resources, Santa Fe, New Mexico, United States of America
| | - Gerald M. Mkoji
- Center for Biotechnology Research and Development, Kenya Medical Research Institute, Nairobi, KEN
| | - Eric S. Loker
- Department of Biology, Center for Evolutionary and Theoretical Immunology, University of New Mexico, Albuquerque, New Mexico, United States of America
| |
Collapse
|
46
|
Pathogenic lineage of Perkinsea associated with mass mortality of frogs across the United States. Sci Rep 2017; 7:10288. [PMID: 28860470 PMCID: PMC5579288 DOI: 10.1038/s41598-017-10456-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 08/08/2017] [Indexed: 01/31/2023] Open
Abstract
Emerging infectious diseases such as chytridiomycosis and ranavirus infections are important contributors to the worldwide decline of amphibian populations. We reviewed data on 247 anuran mortality events in 43 States of the United States from 1999–2015. Our findings suggest that a severe infectious disease of tadpoles caused by a protist belonging to the phylum Perkinsea might represent the third most common infectious disease of anurans after ranavirus infections and chytridiomycosis. Severe Perkinsea infections (SPI) were systemic and led to multiorganic failure and death. The SPI mortality events affected numerous anuran species and occurred over a broad geographic area, from boreal to subtropical habitats. Livers from all PCR-tested SPI-tadpoles (n = 19) were positive for the Novel Alveolate Group 01 (NAG01) of Perkinsea, while only 2.5% histologically normal tadpole livers tested positive (2/81), suggesting that subclinical infections are uncommon. Phylogenetic analysis demonstrated that SPI is associated with a phylogenetically distinct clade of NAG01 Perkinsea. These data suggest that this virulent Perkinsea clade is an important pathogen of frogs in the United States. Given its association with mortality events and tendency to be overlooked, the potential role of this emerging pathogen in amphibian declines on a broad geographic scale warrants further investigation.
Collapse
|
47
|
Flechas SV, Blasco-Zúñiga A, Merino-Viteri A, Ramírez-Castañeda V, Rivera M, Amézquita A. The effect of captivity on the skin microbial symbionts in three Atelopus species from the lowlands of Colombia and Ecuador. PeerJ 2017; 5:e3594. [PMID: 28785515 PMCID: PMC5541920 DOI: 10.7717/peerj.3594] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 06/29/2017] [Indexed: 12/19/2022] Open
Abstract
Many amphibian species are at risk of extinction in their natural habitats due to the presence of the fungal pathogen Batrachochytrium dendrobatidis (Bd). For the most highly endangered species, captive assurance colonies have been established as an emergency measure to avoid extinction. Experimental research has suggested that symbiotic microorganisms in the skin of amphibians play a key role against Bd. While previous studies have addressed the effects of captivity on the cutaneous bacterial community, it remains poorly studied whether and how captive conditions affect the proportion of beneficial bacteria or their anti-Bd performance on amphibian hosts. In this study we sampled three amphibian species of the highly threatened genus, Atelopus, that remain in the wild but are also part of ex situ breeding programs in Colombia and Ecuador. Our goals were to (1) estimate the diversity of culturable bacterial assemblages in these three species of Atelopus, (2) describe the effect of captivity on the composition of skin microbiota, and (3) examine how captivity affects the bacterial ability to inhibit Bd growth. Using challenge assays we tested each bacterial isolate against Bd, and through sequencing of the 16S rRNA gene, we identified species from thirteen genera of bacteria that inhibited Bd growth. Surprisingly, we did not detect a reduction in skin bacteria diversity in captive frogs. Moreover, we found that frogs in captivity still harbor bacteria with anti-Bd activity. Although the scope of our study is limited to a few species and to the culturable portion of the bacterial community, our results indicate that captive programs do not necessarily change bacterial communities of the toad skins in a way that impedes the control of Bd in case of an eventual reintroduction.
Collapse
Affiliation(s)
- Sandra V Flechas
- Department of Biological Sciences, Universidad de los Andes, Bogotá, Colombia
| | - Ailin Blasco-Zúñiga
- Laboratorio de Investigación en Citogenética y Biomoléculas de Anfibios (LICBA), Centro de Investigación para la Salud en América Latina (CISeAL), Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - Andrés Merino-Viteri
- Museo de Zoología (QCAZ), Escuela de Ciencias Biológicas, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | | | - Miryan Rivera
- Laboratorio de Investigación en Citogenética y Biomoléculas de Anfibios (LICBA), Centro de Investigación para la Salud en América Latina (CISeAL), Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - Adolfo Amézquita
- Department of Biological Sciences, Universidad de los Andes, Bogotá, Colombia
| |
Collapse
|
48
|
Freeman MA, Fuss J, Kristmundsson Á, Bjorbækmo MF, Mangot JF, del Campo J, Keeling PJ, Shalchian-Tabrizi K, Bass D. X-Cells Are Globally Distributed, Genetically Divergent Fish Parasites Related to Perkinsids and Dinoflagellates. Curr Biol 2017; 27:1645-1651.e3. [DOI: 10.1016/j.cub.2017.04.045] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 03/07/2017] [Accepted: 04/21/2017] [Indexed: 11/17/2022]
|
49
|
Life-cycle, ultrastructure, and phylogeny of Parvilucifera corolla sp. nov. (Alveolata, Perkinsozoa), a parasitoid of dinoflagellates. Eur J Protistol 2017; 58:9-25. [DOI: 10.1016/j.ejop.2016.11.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 11/25/2016] [Accepted: 11/25/2016] [Indexed: 11/17/2022]
|
50
|
Villanueva-Garcia C, Gordillo-Chavez EJ, Lopez-Escamilla E, Rendon-Franco E, Muñoz-Garcia CI, Gama L, Martinez-Flores WA, Gonzalez-Rodriguez N, Romero-Valdovinos M, Diaz-Lopez H, Galian J, Villalobos G, Maravilla P, Martinez-Hernandez F. Clarifying the Cryptic Host Specificity of Blastocystis spp. Isolates from Alouatta palliata and A. pigra Howler Monkeys. PLoS One 2017; 12:e0169637. [PMID: 28056072 PMCID: PMC5215913 DOI: 10.1371/journal.pone.0169637] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 12/20/2016] [Indexed: 01/23/2023] Open
Abstract
Although the presence of cryptic host specificity has been documented in Blastocystis, differences in infection rates and high genetic polymorphism within and between populations of some subtypes (ST) have impeded the clarification of the generalist or specialist specificity of this parasite. We assessed the genetic variability and host specificity of Blastocystis spp. in wild howler monkeys from two rainforest areas in the southeastern region of Mexico. Fecal samples of 225 Alouatta palliata (59) and A. pigra (166) monkeys, belonging to 16 sylvatic sites, were analyzed for infection with Blastocystis ST using a region of the small subunit rDNA (SSUrDNA) gene as a marker. Phylogenetic and genetic diversity analyses were performed according to the geographic areas where the monkeys were found. Blastocystis ST2 was the most abundant (91.9%), followed by ST1 and ST8 with 4.6% and 3.5%, respectively; no association between Blastocystis ST and Alouatta species was observed. SSUrDNA sequences in GenBank from human and non-human primates (NHP) were used as ST references and included in population analyses. The haplotype network trees exhibited different distributions: ST1 showed a generalist profile since several haplotypes from different animals were homogeneously distributed with few mutational changes. For ST2, a major dispersion center grouped the Mexican samples, and high mutational differences were observed between NHP. Furthermore, nucleotide and haplotype diversity values, as well as migration and genetic differentiation indexes, showed contrasting values for ST1 and ST2. These data suggest that ST1 populations are only minimally differentiated, while ST2 populations in humans are highly differentiated from those of NHP. The host generalist and specialist specificities exhibited by ST1 and ST2 Blastocystis populations indicate distinct adaptation processes. Because ST1 exhibits a generalist profile, this haplotype can be considered a metapopulation; in contrast, ST2 exists as a set of local populations with preferences for either humans or NHP.
Collapse
Affiliation(s)
- Claudia Villanueva-Garcia
- Departamento de Zoologia y Antropologia Fisica, Facultad de Veterinaria, Universidad de Murcia, Murcia, España
- Departamento de Ecologia del Paisaje y Cambio Global, Centro de Investigacion para la Conservacion y Aprovechamiento de Recursos Tropicales, Universidad Juarez Autonoma de Tabasco, Villahermosa, Tabasco, Mexico
| | - Elias Jose Gordillo-Chavez
- Departamento de Ecologia del Paisaje y Cambio Global, Centro de Investigacion para la Conservacion y Aprovechamiento de Recursos Tropicales, Universidad Juarez Autonoma de Tabasco, Villahermosa, Tabasco, Mexico
| | | | - Emilio Rendon-Franco
- Departamento de Produccion Agricola y Animal, Universidad Autonoma Metropolitana, Unidad Xochimilco, Ciudad de Mexico, Mexico
| | - Claudia Irais Muñoz-Garcia
- Departamento de Produccion Agricola y Animal, Universidad Autonoma Metropolitana, Unidad Xochimilco, Ciudad de Mexico, Mexico
| | - Lilia Gama
- Departamento de Ecologia del Paisaje y Cambio Global, Centro de Investigacion para la Conservacion y Aprovechamiento de Recursos Tropicales, Universidad Juarez Autonoma de Tabasco, Villahermosa, Tabasco, Mexico
| | | | | | | | - Hilda Diaz-Lopez
- Departamento de Ecologia del Paisaje y Cambio Global, Centro de Investigacion para la Conservacion y Aprovechamiento de Recursos Tropicales, Universidad Juarez Autonoma de Tabasco, Villahermosa, Tabasco, Mexico
| | - Jose Galian
- Departamento de Zoologia y Antropologia Fisica, Facultad de Veterinaria, Universidad de Murcia, Murcia, España
| | - Guiehdani Villalobos
- Departamento de Ecologia Evolutiva, Instituto de Ecologia, Universidad Nacional Autonoma de Mexico, Ciudad de Mexico, Mexico
| | - Pablo Maravilla
- Hospital General “Dr. Manuel Gea Gonzalez”, Secretaria de Salud, Ciudad de Mexico, Mexico
- * E-mail: (PM); (FMH)
| | - Fernando Martinez-Hernandez
- Hospital General “Dr. Manuel Gea Gonzalez”, Secretaria de Salud, Ciudad de Mexico, Mexico
- * E-mail: (PM); (FMH)
| |
Collapse
|