1
|
Aragona F, Rizzo M, Giudice E, Fazio F, Costa A, Di Bella B, De Caro S, Arfuso F, Briglia M, Piccione G, Giannetto C. Circadian Oscillation of Leukocyte Subpopulations and Inflammatory Cytokines over a 24-H Period in Horses. Vet Sci 2025; 12:386. [PMID: 40284888 PMCID: PMC12031226 DOI: 10.3390/vetsci12040386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 04/14/2025] [Accepted: 04/17/2025] [Indexed: 04/29/2025] Open
Abstract
The objective of the present study was to investigate the influence of daily rhythms on the immune and inflammatory systems in horses, considering white blood cell count (WBCs), leukocyte subpopulations (neutrophils, basophils, eosinophils, lymphocytes, and monocytes), CD4+, and CD8+ lymphocyte populations, interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α). Ten Italian Saddle horses (7-12 years old, body weight 480 ± 30 kg) underwent blood sampling every 4 h over a 24-h period. The COSINOR method was used to identify rhythms and their parameters. A one-way analysis of variance (ANOVA) was applied to identify the differences in acrophase and robustness, and a multiple correlation analysis model (Pearson) was used to evaluate the relationships among the investigated parameters. WBCs, leukocyte subpopulations, CD4+, CD8+, IL-1β, IL-6, and TNFα exhibited daily rhythmicity. In particular, white WBCs, lymphocytes, IL-1β, and IL-6 reached their acrophases during the dark phase, while neuthrophils, CD4+, CD8+, and TNFα showed a diurnal acrophase. One-way ANOVA showed a statistical difference in the acrophase among the investigated parameters (p < 0.0001). The Pearson correlation matrix showed positive and negative relationships among the parameters. Circadian rhythms should be taken into consideration with the daily fluctuations in immune and inflammatory biomarkers to develop good management practices and improve welfare in horses.
Collapse
Affiliation(s)
- Francesca Aragona
- Department of Veterinary Science, University of Messina, Via Giovanni Palatucci, 98168 Messina, Italy; (F.A.); (E.G.); (F.F.); (A.C.); (F.A.); (G.P.); (C.G.)
| | - Maria Rizzo
- Department of Veterinary Science, University of Messina, Via Giovanni Palatucci, 98168 Messina, Italy; (F.A.); (E.G.); (F.F.); (A.C.); (F.A.); (G.P.); (C.G.)
| | - Elisabetta Giudice
- Department of Veterinary Science, University of Messina, Via Giovanni Palatucci, 98168 Messina, Italy; (F.A.); (E.G.); (F.F.); (A.C.); (F.A.); (G.P.); (C.G.)
| | - Francesco Fazio
- Department of Veterinary Science, University of Messina, Via Giovanni Palatucci, 98168 Messina, Italy; (F.A.); (E.G.); (F.F.); (A.C.); (F.A.); (G.P.); (C.G.)
| | - Antonino Costa
- Department of Veterinary Science, University of Messina, Via Giovanni Palatucci, 98168 Messina, Italy; (F.A.); (E.G.); (F.F.); (A.C.); (F.A.); (G.P.); (C.G.)
| | - Beatrice Di Bella
- Department of Engineering, University of Messina, C/da di Dio (S. Agata), 98166 Messina, Italy; (B.D.B.); (S.D.C.)
| | - Salvatore De Caro
- Department of Engineering, University of Messina, C/da di Dio (S. Agata), 98166 Messina, Italy; (B.D.B.); (S.D.C.)
| | - Francesca Arfuso
- Department of Veterinary Science, University of Messina, Via Giovanni Palatucci, 98168 Messina, Italy; (F.A.); (E.G.); (F.F.); (A.C.); (F.A.); (G.P.); (C.G.)
| | - Marilena Briglia
- Department of Medicine and Surgery “Kore”, University of Enna, 94100 Enna, Italy;
| | - Giuseppe Piccione
- Department of Veterinary Science, University of Messina, Via Giovanni Palatucci, 98168 Messina, Italy; (F.A.); (E.G.); (F.F.); (A.C.); (F.A.); (G.P.); (C.G.)
| | - Claudia Giannetto
- Department of Veterinary Science, University of Messina, Via Giovanni Palatucci, 98168 Messina, Italy; (F.A.); (E.G.); (F.F.); (A.C.); (F.A.); (G.P.); (C.G.)
| |
Collapse
|
2
|
Boira I, Chiner E. Sleep and Respiratory Infections. Semin Respir Crit Care Med 2025. [PMID: 39900109 DOI: 10.1055/a-2531-1018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2025]
Abstract
Sleep disorders that involve circadian rhythm disruption and sleep-disordered breathing (SDB) such as obstructive sleep apnea (OSA) are closely linked to respiratory infections. SDB leads to a proinflammatory state due to intermittent hypoxia, sleep fragmentation, increased oxidative stress, and elevation of inflammatory mediators such as tumor necrosis factor (TNF), interleukin-6 (IL-6), and C-reactive protein (CRP). Furthermore, inflammatory mediator levels correlate with SDB severity, especially in people with OSA. Nocturnal microaspiration, gastroesophageal reflux, and associated comorbidities (e.g., obesity) increase the risk of community-acquired pneumonia, viral infections such as SARS-CoV-2, respiratory complications, and death. OSA has been associated with post-COVID syndrome. It also increases the risk of postoperative complications in both adults and children. Circadian rhythm disorders such as insomnia predispose to immune disorders and increase the risk of infection. Chronic conditions such as bronchiectasis, with or without concomitant cystic fibrosis, can lead to structural sleep changes and increase the risk of OSA due to chronic cough, arousals, aspirations, hypoxia, upper airway edema, and overexpression of proinflammatory cytokines. The protective effect of treatment for sleep disorders against respiratory infection is currently unknown. However, in people presenting with respiratory infection, it is important to test for SDB to prevent complications.
Collapse
Affiliation(s)
- Ignacio Boira
- Sleep Unit, Pneumology Department, San Juan de Alicante University Hospital, Alicante, Spain
| | - Eusebi Chiner
- Sleep Unit, Pneumology Department, San Juan de Alicante University Hospital, Alicante, Spain
| |
Collapse
|
3
|
Blaze J, Evans VD, Feria Pliego JA, Unichenko P, Javidfar B, Heissel S, Alwaseem H, Pennington Z, Cai D, Molina H, Henneberger C, Akbarian S. Neuron-Specific Glycine Metabolism Links Transfer RNA Epitranscriptomic Regulation to Complex Behaviors. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2025; 5:100432. [PMID: 39911537 PMCID: PMC11794161 DOI: 10.1016/j.bpsgos.2024.100432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/07/2024] [Accepted: 12/01/2024] [Indexed: 02/07/2025] Open
Abstract
Background The presence of treatment resistance in neuropsychiatric disease suggests that novel mechanism-based discoveries and therapies could benefit the field, with a viable candidate being transfer RNA (tRNA) epitranscriptomics. Nsun2 tRNA methyltransferase depletion in mature neurons elicits changes in complex behaviors relevant for fear, anxiety, and other neuropsychiatric phenotypes. However, it remains unclear whether this is due to dysregulated tRNAs or metabolic shifts that impact the neuronal translatome by activation of stress messengers together with alterations in amino acid supply. Methods To link specific molecular alterations resulting from neuronal Nsun2 ablation to neuropsychiatric phenotypes, we used drug-induced phosphoactivation of stress response translation initiation factors together with disruption of NSUN2-regulated glycine tRNAs and cell type-specific ablation of the glycine cleavage system modeling the excessive upregulation of this amino acid in the Nsun2-deficient brain. Changes in extracellular glycine levels were monitored by an optical glycine Förster resonance energy transfer (FRET) sensor in the hippocampus, and behavioral phenotyping included cognition, anxiety-like behavior, and behavioral despair. Results Increased motivated escape behaviors were specifically observed in mice with neuron-specific ablation of Gldc, resulting in an excess in cortical glycine levels comparable to a similar phenotype in mice after deletion of neuronal Nsun2. None of these phenotypes were observed in mice treated with tunicamycin for chemoactivation of integrative stress response pathways or in mice genetically engineered for decreased glycine tRNA gene dosage. In the Nsun2-deficient brain, dynamic glycine profiles in the hippocampal extracellular space were fully maintained at baseline and in the context of neuronal activity. Conclusions Alterations in neuronal glycine metabolism, resulting from targeted ablation of the glycine cleavage system or disruption of the tRNA regulome, elicit changes in complex behaviors in mice relevant for neuropsychiatric phenotypes.
Collapse
Affiliation(s)
- Jennifer Blaze
- Department of Psychiatry, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
- Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Viviana Dolores Evans
- Department of Psychiatry, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | | | - Petr Unichenko
- Institute of Cellular Neurosciences, University of Bonn, Bonn, Germany
| | - Behnam Javidfar
- Department of Psychiatry, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Soeren Heissel
- Proteomics Resource Center, The Rockefeller University, New York, New York
| | - Hanan Alwaseem
- Proteomics Resource Center, The Rockefeller University, New York, New York
| | - Zachary Pennington
- Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Denise Cai
- Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Henrik Molina
- Proteomics Resource Center, The Rockefeller University, New York, New York
| | - Christian Henneberger
- Institute of Cellular Neurosciences, University of Bonn, Bonn, Germany
- German Center for Neurodegenerative Diseases, Bonn, Germany
| | - Schahram Akbarian
- Department of Psychiatry, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
- Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
4
|
Hu P, Hao Y, Tang W, Diering GH, Zou F, Kafri T. Analysis of Hepatic Lentiviral Vector Transduction: Implications for Preclinical Studies and Clinical Gene Therapy Protocols. Viruses 2025; 17:276. [PMID: 40007031 PMCID: PMC11861806 DOI: 10.3390/v17020276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/04/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
Lentiviral vector-transduced T cells were approved by the FDA as gene therapy anti-cancer medications. Little is known about the effects of host genetic variation on the safety and efficacy of the lentiviral vector gene delivery system. To narrow this knowledge gap, we characterized hepatic gene delivery by lentiviral vectors across the Collaborative Cross (CC) mouse genetic reference population. For 24 weeks, we periodically measured hepatic luciferase expression from lentiviral vectors in 41 CC mouse strains. Hepatic and splenic vector copy numbers were determined. We report that the CC mouse strains showed highly diverse outcomes following lentiviral gene delivery. For the first time, a moderate correlation between mouse-strain-specific sleeping patterns and transduction efficiency was observed. We associated two quantitative trait loci (QTLs) with intrastrain variations in transduction phenotypes, which mechanistically relates to the phenomenon of metastable epialleles. An additional QTL was associated with the kinetics of hepatic transgene expression. Genes found in the above QTLs are potential targets for personalized gene therapy protocols. Importantly, we identified two mouse strains that open new directions for characterizing continuous viral vector silencing and HIV latency. Our findings suggest that wide-range patient-specific outcomes of viral vector-based gene therapy should be expected. Thus, novel clinical protocols should be considered for non-fatal diseases.
Collapse
Affiliation(s)
- Peirong Hu
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA (W.T.)
| | - Yajing Hao
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Wei Tang
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA (W.T.)
| | - Graham H. Diering
- Department of Cell Biology and Physiology and UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Carolina Institute for Developmental Disabilities, Carrboro, NC 27510, USA
| | - Fei Zou
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Tal Kafri
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA (W.T.)
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, Chapel Hill, NC 27599, USA
| |
Collapse
|
5
|
Tseng Y. A theoretical systems chronopharmacology approach for COVID-19: Modeling circadian regulation of lung infection and potential precision therapies. CPT Pharmacometrics Syst Pharmacol 2025; 14:340-350. [PMID: 39563101 PMCID: PMC11812942 DOI: 10.1002/psp4.13277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 09/05/2024] [Accepted: 10/30/2024] [Indexed: 11/21/2024] Open
Abstract
The COVID-19 pandemic, caused by SARS-CoV-2, has underscored the urgent need for innovative therapeutic approaches. Recent studies have revealed a complex interplay between the circadian clock and SARS-CoV-2 infection in lung cells, opening new avenues for targeted interventions. This systems pharmacology study investigates this intricate relationship, focusing on the circadian protein BMAL1. BMAL1 plays a dual role in viral dynamics, driving the expression of the viral entry receptor ACE2 while suppressing interferon-stimulated antiviral genes. Its critical position at the host-pathogen interface suggests potential as a therapeutic target, albeit requiring a nuanced approach to avoid disrupting essential circadian regulation. To enable precise tuning of potential interventions, we constructed a computational model integrating the lung cellular clock with viral infection components. We validated this model against literature data to establish a platform for drug administration simulation studies using the REV-ERB agonist SR9009. Our simulations of optimized SR9009 dosing reveal circadian-based strategies that potentially suppress viral infection while minimizing clock disruption. This quantitative framework offers insights into the viral-circadian interface, aiming to guide the development of chronotherapy-based antivirals. More broadly, it underscores the importance of understanding the connections between circadian timing, respiratory viral infections, and therapeutic responses for advancing precision medicine. Such approaches are vital for responding effectively to the rapid spread of coronaviruses like SARS-CoV-2.
Collapse
Affiliation(s)
- Yu‐Yao Tseng
- Department of Food Science, Nutrition, and Nutraceutical BiotechnologyShih Chien UniversityTaipeiTaiwan
| |
Collapse
|
6
|
Major-Styles CT, Munns J, Zeng A, Vanden Oever M, O'Neill JS, Edgar RS. Chronic CRYPTOCHROME deficiency enhances cell-intrinsic antiviral defences. Philos Trans R Soc Lond B Biol Sci 2025; 380:20230344. [PMID: 39842480 PMCID: PMC11753882 DOI: 10.1098/rstb.2023.0344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 11/19/2024] [Accepted: 11/27/2024] [Indexed: 01/24/2025] Open
Abstract
The within-host environment changes over circadian time and influences the replication and severity of viruses. Genetic knockout of the circadian transcription factors CRYPTOCHROME 1 and CRYPTOCHROME 2 (CRY1-/-/CRY2-/-; CKO) leads to altered protein homeostasis and chronic activation of the integrated stress response (ISR). The adaptive ISR signalling pathways help restore cellular homeostasis by downregulating protein synthesis in response to endoplasmic reticulum overloading or viral infections. By quantitative mass spectrometry analysis, we reveal that many viral recognition proteins and type I interferon (IFN) effectors are significantly upregulated in lung fibroblast cells from CKO mice compared with wild-type (WT) mice. This basal 'antiviral state' restricts the growth of influenza A virus and is governed by the interaction between proteotoxic stress response pathways and constitutive type I IFN signalling. CKO proteome composition and type I IFN signature were partially phenocopied upon sustained depletion of CRYPTOCHROME (CRY) proteins using a small-molecule CRY degrader, with modest differential gene expression consistent with differences seen between CKO and WT cells. Our results highlight the crosstalk between circadian rhythms, cell-intrinsic antiviral defences and protein homeostasis, providing a tractable molecular model to investigate the interface of these key contributors to human health and disease.This article is part of the Theo Murphy meeting issue 'Circadian rhythms in infection and immunity'.
Collapse
Affiliation(s)
- Christine T. Major-Styles
- Department of Infectious Disease, Imperial College London, LondonSW7 2AZ, UK
- Francis Crick Institute, LondonNW1 1AT, UK
| | - Jack Munns
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, CambridgeCB2 0QH, UK
| | - Aiwei Zeng
- Department of Infectious Disease, Imperial College London, LondonSW7 2AZ, UK
- Francis Crick Institute, LondonNW1 1AT, UK
| | | | - John S. O'Neill
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, CambridgeCB2 0QH, UK
| | - Rachel S. Edgar
- Department of Infectious Disease, Imperial College London, LondonSW7 2AZ, UK
- Francis Crick Institute, LondonNW1 1AT, UK
| |
Collapse
|
7
|
Edgar RS, O'Donnell AJ, Xiaodong Zhuang A, Reece SE. Time to start taking time seriously: how to investigate unexpected biological rhythms within infectious disease research. Philos Trans R Soc Lond B Biol Sci 2025; 380:20230336. [PMID: 39842489 PMCID: PMC11753885 DOI: 10.1098/rstb.2023.0336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/14/2024] [Accepted: 11/19/2024] [Indexed: 01/24/2025] Open
Abstract
The discovery of rhythmicity in host and pathogen activities dates back to the Hippocratic era, but the causes and consequences of these biological rhythms have remained poorly understood. Rhythms in infection phenotypes or traits are observed across taxonomically diverse hosts and pathogens, suggesting general evolutionary principles. Understanding these principles may enable rhythms to be leveraged in manners that improve drug and vaccine efficacy or disrupt pathogen timekeeping to reduce virulence and transmission. Explaining and exploiting rhythms in infections require an integrative and multidisciplinary approach, which is a hallmark of research within chronobiology. Many researchers are welcomed into chronobiology from other fields after observing an unexpected rhythm or time-of-day effect in their data. Such findings can launch a rich new research topic, but engaging with the concepts, approaches and dogma in a new discipline can be daunting. Fortunately, chronobiology has well-developed frameworks for interrogating rhythms that can be readily applied in novel contexts. Here, we provide a 'how to' guide for exploring unexpected daily rhythms in infectious disease research. We outline how to establish: whether the rhythm is circadian, to what extent the host and pathogen are responsible, the relevance for host-pathogen interactions, and how to explore therapeutic potential.This article is part of the Theo Murphy meeting issue 'Circadian rhythms in infection and immunity'.
Collapse
Affiliation(s)
- Rachel S. Edgar
- Department of Infectious Disease, Imperial College London, LondonSW7 2AZ, UK
- Francis Crick Institute, 1 Midland Road, LondonNW1 1AT, UK
| | - Aidan J. O'Donnell
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, EdinburghEH9 3FL, UK
| | - Alan Xiaodong Zhuang
- 4. Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, LondonWC1E 6BT, UK
| | - Sarah E. Reece
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, EdinburghEH9 3FL, UK
| |
Collapse
|
8
|
Munns J, Beale AD, Michaelides IN, Peak-Chew SY, Mihut A, Major-Styles CT, Zeng A, Storer RI, Edgar RS, Moreau K, O'Neill JS. Development of compounds for targeted degradation of mammalian cryptochrome proteins. Philos Trans R Soc Lond B Biol Sci 2025; 380:20230342. [PMID: 39842482 PMCID: PMC11753880 DOI: 10.1098/rstb.2023.0342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/29/2024] [Accepted: 08/14/2024] [Indexed: 01/24/2025] Open
Abstract
The mammalian cryptochrome proteins (CRY1 and CRY2) are transcriptional repressors most notable for their role in circadian transcriptional feedback. Not all circadian rhythms depend on CRY proteins, however, and the CRY proteins are promiscuous interactors that also regulate many other processes. In cells with chronic CRY deficiency, protein homeostasis is highly perturbed, with a basal increase in cellular stress and activation of key inflammatory signalling pathways. Here, we developed tools to delineate the specific effects of CRY reduction, rather than chronic deficiency, to better understand the direct functions of CRY proteins. Performing a bioluminescence screen and immunoblot validation, we identified compounds that resulted in CRY reduction. Using these compounds, we found that circadian PERIOD2 (PER2) protein rhythms persisted under CRY-depleted conditions. By quantitative mass spectrometry, we found that CRY-depleted cells partially phenocopied the proteomic dysregulation of CRY-deficient cells, but showed minimal circadian phenotypes. We did, however, also observe substantial off-target effects of these compounds on luciferase activity and could not ascertain a specific mechanism of action. This work therefore highlights both the utility and the challenges of targeted protein degradation and bioluminescence reporter approaches in disentangling the contribution of CRY proteins to circadian rhythmicity, homeostasis and innate immune regulation.This article is part of the Theo Murphy meeting issue 'Circadian rhythms in infection and immunity'.
Collapse
Affiliation(s)
- Jack Munns
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, CambridgeCB2 0QH, UK
| | - Andrew D. Beale
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, CambridgeCB2 0QH, UK
| | | | - Sew Y. Peak-Chew
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, CambridgeCB2 0QH, UK
| | - Andrei Mihut
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, CambridgeCB2 0QH, UK
| | - Christine T. Major-Styles
- Department of Infectious Disease, Imperial College London, LondonW2 1NY, UK
- Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Aiwei Zeng
- Department of Infectious Disease, Imperial College London, LondonW2 1NY, UK
- Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - R. Ian Storer
- Hit Discovery, Discovery Sciences, R&D, AstraZeneca, CambridgeCB2 0AA, UK
| | - Rachel S. Edgar
- Department of Infectious Disease, Imperial College London, LondonW2 1NY, UK
- Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Kevin Moreau
- Safety Sciences, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, CambridgeCB2 0AA, UK
| | - John S. O'Neill
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, CambridgeCB2 0QH, UK
| |
Collapse
|
9
|
Costantini C, Brancorsini S, Grignani F, Romani L, Bellet MM. Circadian metabolic adaptations to infections. Philos Trans R Soc Lond B Biol Sci 2025; 380:20230473. [PMID: 39842481 PMCID: PMC11753887 DOI: 10.1098/rstb.2023.0473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/22/2024] [Accepted: 05/16/2024] [Indexed: 01/24/2025] Open
Abstract
Circadian clocks are biological oscillators that evolved to coordinate rhythms in behaviour and physiology around the 24-hour day. In mammalian tissues, circadian rhythms and metabolism are highly intertwined. The clock machinery controls rhythmic levels of circulating hormones and metabolites, as well as rate-limiting enzymes catalysing biosynthesis or degradation of macromolecules in metabolic tissues, such control being exerted both at the transcriptional and post-transcriptional level. During infections, major metabolic adaptation occurs in mammalian hosts, at the level of both the single immune cell and the whole organism. Under these circumstances, the rhythmic metabolic needs of the host intersect with those of two other players: the pathogen and the microbiota. These three components cooperate or compete to meet their own metabolic demands across the 24 hours. Here, we review findings describing the circadian regulation of the host response to infection, the circadian metabolic adaptations occurring during host-microbiota-pathogen interactions and how such regulation can influence the immune response of the host and, ultimately, its own survival.This article is part of the Theo Murphy meeting issue 'Circadian rhythms in infection and immunity'.
Collapse
Affiliation(s)
- Claudio Costantini
- Department of Medicine and Surgery, University of Perugia, P.le L. Severi 1, Perugia06132, Italy
| | - Stefano Brancorsini
- Department of Medicine and Surgery, University of Perugia, P.le L. Severi 1, Perugia06132, Italy
| | - Francesco Grignani
- Department of Medicine and Surgery, University of Perugia, P.le L. Severi 1, Perugia06132, Italy
| | - Luigina Romani
- Department of Medicine and Surgery, University of Perugia, P.le L. Severi 1, Perugia06132, Italy
| | - Marina Maria Bellet
- Department of Medicine and Surgery, University of Perugia, P.le L. Severi 1, Perugia06132, Italy
| |
Collapse
|
10
|
Mihut A, O'Neill JS, Partch CL, Crosby P. PERspectives on circadian cell biology. Philos Trans R Soc Lond B Biol Sci 2025; 380:20230483. [PMID: 39842483 PMCID: PMC11753889 DOI: 10.1098/rstb.2023.0483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/18/2024] [Accepted: 05/24/2024] [Indexed: 01/24/2025] Open
Abstract
Daily rhythms in the activities of PERIOD proteins are critical to the temporal regulation of mammalian physiology. While the molecular partners and genetic circuits that allow PERIOD to effect auto-repression and regulate transcriptional programmes are increasingly well understood, comprehension of the time-resolved mechanisms that allow PERIOD to conduct this daily dance is incomplete. Here, we consider the character and controversies of this central mammalian clock protein with a focus on its intrinsically disordered nature.This article is part of the Theo Murphy meeting issue 'Circadian rhythms in infection and immunity'.
Collapse
Affiliation(s)
- Andrei Mihut
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, CambridgeCB2 0QH, UK
| | - John S. O'Neill
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, CambridgeCB2 0QH, UK
| | - Carrie L. Partch
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, CA95064, USA
| | - Priya Crosby
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, EdinburghEH9 3BF, UK
| |
Collapse
|
11
|
Shao F, Wang Z, Ye L, Wu R, Wang J, Yu QX, Wusiman D, Tuo Z, Yoo KH, Shu Z, Wei W, Li D, Cho WC, Liu Z, Feng D. Basic helix-loop-helix ARNT like 1 regulates the function of immune cells and participates in the development of immune-related diseases. BURNS & TRAUMA 2025; 13:tkae075. [PMID: 39830193 PMCID: PMC11741524 DOI: 10.1093/burnst/tkae075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 10/26/2024] [Accepted: 11/01/2024] [Indexed: 01/22/2025]
Abstract
The circadian clock is an internal timekeeper system that regulates biological processes through a central circadian clock and peripheral clocks controlling various genes. Basic helix-loop-helix ARNT-like 1 (BMAL1), also known as aryl hydrocarbon receptor nuclear translocator-like protein 1 (ARNTL1), is a key component of the circadian clock. The deletion of BMAL1 alone can abolish the circadian rhythms of the human body. BMAL1 plays a critical role in immune cell function. Dysregulation of BMAL1 is linked to immune-related diseases such as autoimmune diseases, infectious diseases, and cancer, and vice versa. This review highlights the significant role of BMAL1 in governing immune cells, including their development, differentiation, migration, homing, metabolism, and effector functions. This study also explores how dysregulation of BMAL1 can have far-reaching implications and potentially contribute to the onset of immune-related diseases such as autoimmune diseases, infectious diseases, cancer, sepsis, and trauma. Furthermore, this review discusses treatments for immune-related diseases that target BMAL1 disorders. Understanding the impact of BMAL1 on immune function can provide insights into the pathogenesis of immune-related diseases and help in the development of more effective treatment strategies. Targeting BMAL1 has been demonstrated to achieve good efficacy in immune-related diseases, indicating its promising potential as a targetable therapeutic target in these diseases.
Collapse
Affiliation(s)
- Fanglin Shao
- Chengdu Basebio Company, Tianfu Third Street, High-Tech Zone, Chengdu 610041, China
| | - Zhipeng Wang
- Department of Urology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, First Ring Road, Qingyang District, Chengdu 610041, China
| | - Luxia Ye
- Department of Public Research Platform, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, West Gate Street, Linhai City 317000, Zhejiang Province, China
| | - Ruicheng Wu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Renmin South Road, Wuhou District, Chengdu 610041, China
| | - Jie Wang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Renmin South Road, Wuhou District, Chengdu 610041, China
| | - Qing-Xin Yu
- Department of Pathology, Ningbo Clinical Pathology Diagnosis Center, Huancheng North Road, Jiangbei District, Ningbo, Zhejiang Province, 315211, China
| | - Dilinaer Wusiman
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, 625 Harrison Street, West Lafayette, IN 47907, USA
- Purdue Institute for Cancer Research, Purdue University, 615 W. State Street, West Lafayette, IN 47907, USA
| | - Zhouting Tuo
- Chengdu Basebio Company, Tianfu Third Street, High-Tech Zone, Chengdu 610041, China
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Jinzhai South Road, Shushan District, Hefei, Anhui 230032, China
| | - Koo Han Yoo
- Department of Urology, Kyung Hee University, 26 Kyungheedae-Ro, Dongdaemun-Gu, South Korea
| | - Ziyu Shu
- Department of Earth Science and Engineering, Imperial College London, Exhibition Road, South Kensington, London SW7 2AZ, UK
- Joint International Research Laboratory of Green Buildings and Built Environments (Ministry of Education), Chongqing University, Shapingba Street, Shapingba District, Chongqing 400044, China
| | - Wuran Wei
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Renmin South Road, Wuhou District, Chengdu 610041, China
| | - Dengxiong Li
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Renmin South Road, Wuhou District, Chengdu 610041, China
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Gascoigne Road, Yau Ma Tei, Kowloon, Hong Kong SAR, China
| | - Zhihong Liu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Renmin South Road, Wuhou District, Chengdu 610041, China
| | - Dechao Feng
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Renmin South Road, Wuhou District, Chengdu 610041, China
- Division of Surgery & Interventional Science, University College London, Gower Street, London W1T 6JF, London W1W 7TS, UK
| |
Collapse
|
12
|
Das S, Khan R, Banerjee S, Ray S, Ray S. Alterations in Circadian Rhythms, Sleep, and Physical Activity in COVID-19: Mechanisms, Interventions, and Lessons for the Future. Mol Neurobiol 2024; 61:10115-10137. [PMID: 38702566 DOI: 10.1007/s12035-024-04178-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 04/04/2024] [Indexed: 05/06/2024]
Abstract
Although the world is acquitting from the throes of COVID-19 and returning to the regularity of life, its effects on physical and mental health are prominently evident in the post-pandemic era. The pandemic subjected us to inadequate sleep and physical activities, stress, irregular eating patterns, and work hours beyond the regular rest-activity cycle. Thus, perturbing the synchrony of the regular circadian clock functions led to chronic psychiatric and neurological disorders and poor immunological response in several COVID-19 survivors. Understanding the links between the host immune system and viral replication machinery from a clock-infection biology perspective promises novel avenues of intervention. Behavioral improvements in our daily lifestyle can reduce the severity and expedite the convalescent stage of COVID-19 by maintaining consistent eating, sleep, and physical activity schedules. Including dietary supplements and nutraceuticals with prophylactic value aids in combating COVID-19, as their deficiency can lead to a higher risk of infection, vulnerability, and severity of COVID-19. Thus, besides developing therapeutic measures, perpetual healthy practices could also contribute to combating the upcoming pandemics. This review highlights the impact of the COVID-19 pandemic on biological rhythms, sleep-wake cycles, physical activities, and eating patterns and how those disruptions possibly contribute to the response, severity, and outcome of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Sandip Das
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, 502284, Telangana, India
| | - Rajni Khan
- National Institute of Pharmaceutical Education and Research (NIPER) - Hajipur, Vaishali, Hajipur, 844102, Bihar, India
| | - Srishti Banerjee
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, 502284, Telangana, India
| | - Shashikant Ray
- Department of Biotechnology, Mahatma Gandhi Central University, Motihari, 845401, India.
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Sandipan Ray
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, 502284, Telangana, India.
| |
Collapse
|
13
|
Morales Fénero C, Sacksteder RE, Diamos AG, Kimmey JM. Heat-inactivated Streptococcus pneumoniae augments circadian clock gene expression in zebrafish cells. Sci Rep 2024; 14:27805. [PMID: 39537820 PMCID: PMC11561096 DOI: 10.1038/s41598-024-78888-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024] Open
Abstract
The circadian clock is a cell-autonomous process that regulates daily internal rhythms by interacting with environmental signals. Reports across species show that infection can alter the expression of circadian genes; however, in teleosts, these effects are influenced by light exposure. Currently, no reports analyze the direct effects of bacterial exposure on the zebrafish clock. Using zebrafish Z3 cells, we demonstrate that exposure to heat-killed Streptococcus pneumoniae (HK-Spn) augments the expression of core repressive factors in a light- and time-dependent manner. In constant darkness, HK-Spn highly upregulated cry1a, per3, and per1b expression. In the presence of light, HK-Spn exposure rapidly and strongly upregulated per2 and cry1a, and this was proportionally increased with light intensity. The combinatorial effect of light and HK-Spn on per2 and cry1a was not duplicated with H2O2, a known byproduct of light exposure. However, the ROS inhibitor N-acetyl cysteine was sufficient to block HK-Spn augmentation of per2, cry1a, and per3. These findings demonstrate that exposure to an inactive bacteria influences the expression of zebrafish clock genes under different light conditions.
Collapse
Affiliation(s)
- Camila Morales Fénero
- Department of Microbiology and Environmental Toxicology, University of California Santa Cruz, Santa Cruz, USA
| | - Raina E Sacksteder
- Department of Microbiology and Environmental Toxicology, University of California Santa Cruz, Santa Cruz, USA
| | - Andrew G Diamos
- Department of Microbiology and Environmental Toxicology, University of California Santa Cruz, Santa Cruz, USA
| | - Jacqueline M Kimmey
- Department of Microbiology and Environmental Toxicology, University of California Santa Cruz, Santa Cruz, USA.
| |
Collapse
|
14
|
Carbone A, Vitullo P, Di Gioia S, Castellani S, Conese M. A New Frontier in Cystic Fibrosis Pathophysiology: How and When Clock Genes Can Affect the Inflammatory/Immune Response in a Genetic Disease Model. Curr Issues Mol Biol 2024; 46:10396-10410. [PMID: 39329970 PMCID: PMC11430433 DOI: 10.3390/cimb46090618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/13/2024] [Accepted: 09/15/2024] [Indexed: 09/28/2024] Open
Abstract
Cystic fibrosis (CF) is a monogenic syndrome caused by variants in the CF Transmembrane Conductance Regulator (CFTR) gene, affecting various organ and systems, in particular the lung, pancreas, sweat glands, liver, gastrointestinal tract, vas deferens, and vascular system. While for some organs, e.g., the pancreas, a strict genotype-phenotype occurs, others, such as the lung, display a different pathophysiologic outcome in the presence of the same mutational asset, arguing for genetic and environmental modifiers influencing severity and clinical trajectory. CFTR variants trigger a pathophysiological cascade of events responsible for chronic inflammatory responses, many aspects of which, especially related to immunity, are not ascertained yet. Although clock genes expression and function are known modulators of the innate and adaptive immunity, their involvement in CF has been only observed in relation to sleep abnormalities. The aim of this review is to present current evidence on the clock genes role in immune-inflammatory responses at the lung level. While information on this topic is known in other chronic airway diseases (chronic obstructive pulmonary disease and asthma), CF lung disease (CFLD) is lacking in this knowledge. We will present the bidirectional effect between clock genes and inflammatory factors that could possibly be implicated in the CFLD. It must be stressed that besides sleep disturbance and its mechanisms, there are not studies directly addressing the exact nature of clock genes' involvement in inflammation and immunity in CF, pointing out the directions of new and deepened studies in this monogenic affection. Importantly, clock genes have been found to be druggable by means of genetic tools or pharmacological agents, and this could have therapeutic implications in CFLD.
Collapse
Affiliation(s)
- Annalucia Carbone
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (A.C.); (S.D.G.)
| | - Pamela Vitullo
- Cystic Fibrosis Support Center, Ospedale “G. Tatarella”, 71042 Cerignola, Italy;
| | - Sante Di Gioia
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (A.C.); (S.D.G.)
| | - Stefano Castellani
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, 70125 Bari, Italy;
| | - Massimo Conese
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (A.C.); (S.D.G.)
| |
Collapse
|
15
|
Hu P, Hao Y, Tang W, Diering GH, Zou F, Kafri T. Analysis of hepatic lentiviral vector transduction; implications for preclinical studies and clinical gene therapy protocols. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.20.608805. [PMID: 39229157 PMCID: PMC11370356 DOI: 10.1101/2024.08.20.608805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Lentiviral vector-transduced T-cells were approved by the FDA as gene therapy anti-cancer medications. Little is known about the host genetic variation effects on the safety and efficacy of the lentiviral vector gene delivery system. To narrow this knowledge-gap, we characterized hepatic gene delivery by lentiviral vectors across the Collaborative Cross (CC) mouse genetic reference population. For 24 weeks, we periodically measured hepatic luciferase expression from lentiviral vectors in 41 CC mouse strains. Hepatic and splenic vector copy numbers were determined. We report that CC mouse strains showed highly diverse outcomes following lentiviral gene delivery. For the first time, moderate correlation between mouse strain-specific sleeping patterns and transduction efficiency was observed. We associated two quantitative trait loci (QTLs) with intra-strain variations in transduction phenotypes, which mechanistically relates to the phenomenon of metastable epialleles. An additional QTL was associated with the kinetics of hepatic transgene expression. Genes comprised in the above QTLs are potential targets to personalize gene therapy protocols. Importantly, we identified two mouse strains that open new directions in characterizing continuous viral vector silencing and HIV latency. Our findings suggest that wide-range patient-specific outcomes of viral vector-based gene therapy should be expected. Thus, novel escalating dose-based clinical protocols should be considered.
Collapse
Affiliation(s)
- Peirong Hu
- Gene Therapy Center, University of North Carolina at Chapel Hill, 27599 Chapel Hill, North Carolina, USA
- These authors contributed equally
| | - Yajing Hao
- Department of Biostatistics, University of North Carolina at Chapel Hill, 27599 Chapel Hill, North Carolina, USA
- These authors contributed equally
| | - Wei Tang
- Gene Therapy Center, University of North Carolina at Chapel Hill, 27599 Chapel Hill, North Carolina, USA
| | - Graham H. Diering
- Department of Cell Biology and Physiology and UNC Neuroscience Center, University of North Carolina at Chapel Hill, 27599 Chapel Hill, North Carolina, USA
- Carolina Institute for developmental disabilities, 27510 Carrboro, North Carolina
| | - Fei Zou
- Department of Biostatistics, University of North Carolina at Chapel Hill, 27599 Chapel Hill, North Carolina, USA
- Department of Genetics, University of North Carolina at Chapel Hill, 27599 Chapel Hill, North Carolina, USA
| | - Tal Kafri
- Gene Therapy Center, University of North Carolina at Chapel Hill, 27599 Chapel Hill, North Carolina, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, 27599 Chapel Hill, North Carolina
- Lineberger Comprehensive Cancer Center, 27599 Chapel Hill, North Carolina
| |
Collapse
|
16
|
Henríquez-Beltrán M, Vaca R, Benítez ID, González J, Santisteve S, Aguilà M, Minguez O, Moncusí-Moix A, Gort-Paniello C, Torres G, Labarca G, Caballero J, Barberà C, Torres A, de Gonzalo-Calvo D, Barbé F, Targa ADS. Sleep and Circadian Health of Critical Survivors: A 12-Month Follow-Up Study. Crit Care Med 2024; 52:1206-1217. [PMID: 38597721 PMCID: PMC11239094 DOI: 10.1097/ccm.0000000000006298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
OBJECTIVES To investigate the sleep and circadian health of critical survivors 12 months after hospital discharge and to evaluate a possible effect of the severity of the disease within this context. DESIGN Observational, prospective study. SETTING Single-center study. PATIENTS Two hundred sixty patients admitted to the ICU due to severe acute respiratory syndrome coronavirus 2 infection. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS The cohort was composed of 260 patients (69.2% males), with a median (quartile 1-quartile 3) age of 61.5 years (52.0-67.0 yr). The median length of ICU stay was 11.0 days (6.00-21.8 d), where 56.2% of the patients required invasive mechanical ventilation (IMV). The Pittsburgh Sleep Quality Index (PSQI) revealed that 43.1% of the cohort presented poor sleep quality 12 months after hospital discharge. Actigraphy data indicated an influence of the disease severity on the fragmentation of the circadian rest-activity rhythm at the 3- and 6-month follow-ups, which was no longer significant in the long term. Still, the length of the ICU stay and the duration of IMV predicted a higher fragmentation of the rhythm at the 12-month follow-up with effect sizes (95% CI) of 0.248 (0.078-0.418) and 0.182 (0.005-0.359), respectively. Relevant associations between the PSQI and the Hospital Anxiety and Depression Scale (rho = 0.55, anxiety; rho = 0.5, depression) as well as between the fragmentation of the rhythm and the diffusing lung capacity for carbon monoxide (rho = -0.35) were observed at this time point. CONCLUSIONS Our findings reveal a great prevalence of critical survivors presenting poor sleep quality 12 months after hospital discharge. Actigraphy data indicated the persistence of circadian alterations and a possible impact of the disease severity on the fragmentation of the circadian rest-activity rhythm, which was attenuated at the 12-month follow-up. This altogether highlights the relevance of considering the sleep and circadian health of critical survivors in the long term.
Collapse
Affiliation(s)
- Mario Henríquez-Beltrán
- Translational Research in Respiratory Medicine, Hospital Universitari Arnau de Vilanova-Santa Maria, Biomedical Research Institute of Lleida (IRBLleida), Lleida, Spain
- Núcleo de Investigación en Ciencias de la Salud, Universidad Adventista de Chile, Chillán, Chile
| | - Rafaela Vaca
- Translational Research in Respiratory Medicine, Hospital Universitari Arnau de Vilanova-Santa Maria, Biomedical Research Institute of Lleida (IRBLleida), Lleida, Spain
- CIBER of Respiratory diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Iván D Benítez
- Translational Research in Respiratory Medicine, Hospital Universitari Arnau de Vilanova-Santa Maria, Biomedical Research Institute of Lleida (IRBLleida), Lleida, Spain
- CIBER of Respiratory diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Jessica González
- Translational Research in Respiratory Medicine, Hospital Universitari Arnau de Vilanova-Santa Maria, Biomedical Research Institute of Lleida (IRBLleida), Lleida, Spain
- CIBER of Respiratory diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Sally Santisteve
- Translational Research in Respiratory Medicine, Hospital Universitari Arnau de Vilanova-Santa Maria, Biomedical Research Institute of Lleida (IRBLleida), Lleida, Spain
| | - Maria Aguilà
- Translational Research in Respiratory Medicine, Hospital Universitari Arnau de Vilanova-Santa Maria, Biomedical Research Institute of Lleida (IRBLleida), Lleida, Spain
| | - Olga Minguez
- Translational Research in Respiratory Medicine, Hospital Universitari Arnau de Vilanova-Santa Maria, Biomedical Research Institute of Lleida (IRBLleida), Lleida, Spain
- CIBER of Respiratory diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Anna Moncusí-Moix
- Translational Research in Respiratory Medicine, Hospital Universitari Arnau de Vilanova-Santa Maria, Biomedical Research Institute of Lleida (IRBLleida), Lleida, Spain
- CIBER of Respiratory diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Clara Gort-Paniello
- Translational Research in Respiratory Medicine, Hospital Universitari Arnau de Vilanova-Santa Maria, Biomedical Research Institute of Lleida (IRBLleida), Lleida, Spain
- CIBER of Respiratory diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Gerard Torres
- Translational Research in Respiratory Medicine, Hospital Universitari Arnau de Vilanova-Santa Maria, Biomedical Research Institute of Lleida (IRBLleida), Lleida, Spain
- CIBER of Respiratory diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Gonzalo Labarca
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, University of Concepcion, Concepcion, Chile
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Jesús Caballero
- Intensive Care Department, Hospital Universitari Arnau de Vilanova, Lleida, Spain
| | - Carme Barberà
- Intensive Care Department, Hospital Universitari Santa Maria, Lleida, Spain
| | - Antoni Torres
- CIBER of Respiratory diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
- Servei de Pneumologia, Hospital Clinic, Universitat de Barcelona, IDIBAPS, Barcelona, Spain
| | - David de Gonzalo-Calvo
- Translational Research in Respiratory Medicine, Hospital Universitari Arnau de Vilanova-Santa Maria, Biomedical Research Institute of Lleida (IRBLleida), Lleida, Spain
- CIBER of Respiratory diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Ferran Barbé
- Translational Research in Respiratory Medicine, Hospital Universitari Arnau de Vilanova-Santa Maria, Biomedical Research Institute of Lleida (IRBLleida), Lleida, Spain
- CIBER of Respiratory diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Adriano D S Targa
- Translational Research in Respiratory Medicine, Hospital Universitari Arnau de Vilanova-Santa Maria, Biomedical Research Institute of Lleida (IRBLleida), Lleida, Spain
- CIBER of Respiratory diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| |
Collapse
|
17
|
Zhou J, Wang H, Ouyang Q. Mathematical modeling of viral infection and the immune response controlled by the circadian clock. J Biol Phys 2024; 50:197-214. [PMID: 38641676 PMCID: PMC11106228 DOI: 10.1007/s10867-024-09655-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 03/16/2024] [Indexed: 04/21/2024] Open
Abstract
Time of day affects how well the immune system responds to viral or bacterial infections. While it is well known that the immune system is regulated by the circadian clock, the dynamic origin of time-of-day-dependent immunity remains unclear. In this paper, we studied the circadian control of immune response upon infection of influenza A virus through mathematical modeling. Dynamic simulation analyses revealed that the time-of-day-dependent immunity was rooted in the relative phase between the circadian clock and the pulse of viral infection. The relative phase, which depends on the time the infection occurs, plays a crucial role in the immune response. It can drive the immune system to one of two distinct bistable states, a high inflammatory state with a higher mortality rate or a safe state characterized by low inflammation. The mechanism we found here also explained why the same species infected by different viruses has different time-of-day-dependent immunities. Further, the time-of-day-dependent immunity was found to be abolished when the immune system was regulated by an impaired circadian clock with decreased oscillation amplitude or without oscillations.
Collapse
Affiliation(s)
- Jiaxin Zhou
- The State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, School of Physics, Peking University, Beijing, 100871, China
| | - Hongli Wang
- The State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, School of Physics, Peking University, Beijing, 100871, China.
- Center for Quantitative Biology, Peking University, Beijing, 100871, China.
| | - Qi Ouyang
- School of Physics, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
18
|
Wyse CA, Rudderham LM, Nordon EA, Ince LM, Coogan AN, Lopez LM. Circadian Variation in the Response to Vaccination: A Systematic Review and Evidence Appraisal. J Biol Rhythms 2024; 39:219-236. [PMID: 38459699 PMCID: PMC11141079 DOI: 10.1177/07487304241232447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
Molecular timing mechanisms known as circadian clocks drive endogenous 24-h rhythmicity in most physiological functions, including innate and adaptive immunity. Consequently, the response to immune challenge such as vaccination might depend on the time of day of exposure. This study assessed whether the time of day of vaccination (TODV) is associated with the subsequent immune and clinical response by conducting a systematic review of previous studies. The Cochrane Library, PubMed, Google, Medline, and Embase were searched for studies that reported TODV and immune and clinical outcomes, yielding 3114 studies, 23 of which met the inclusion criteria. The global severe acute respiratory syndrome coronavirus 2 vaccination program facilitated investigation of TODV and almost half of the studies included reported data collected during the COVID-19 pandemic. There was considerable heterogeneity in the demography of participants and type of vaccine, and most studies were biased by failure to account for immune status prior to vaccination, self-selection of vaccination time, or confounding factors such as sleep, chronotype, and shiftwork. The optimum TODV was concluded to be afternoon (5 studies), morning (5 studies), morning and afternoon (1 study), midday (1 study), and morning or late afternoon (1 study), with the remaining 10 studies reporting no effect. Further research is required to understand the relationship between TODV and subsequent immune outcome and whether any clinical benefit outweighs the potential effect of this intervention on vaccine uptake.
Collapse
Affiliation(s)
- Cathy A. Wyse
- Kathleen Lonsdale Institute for Human Health Research and Department of Biology, Maynooth University, Maynooth, Ireland
| | - Laura M. Rudderham
- Kathleen Lonsdale Institute for Human Health Research and Department of Biology, Maynooth University, Maynooth, Ireland
| | - Enya A. Nordon
- Kathleen Lonsdale Institute for Human Health Research and Department of Biology, Maynooth University, Maynooth, Ireland
| | - Louise M. Ince
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, Texas, USA
| | - Andrew N. Coogan
- Kathleen Lonsdale Institute for Human Health Research and Department of Psychology, Maynooth University, Maynooth, Ireland
| | - Lorna M. Lopez
- Kathleen Lonsdale Institute for Human Health Research and Department of Biology, Maynooth University, Maynooth, Ireland
| |
Collapse
|
19
|
Borrmann H, Rijo-Ferreira F. Crosstalk between circadian clocks and pathogen niche. PLoS Pathog 2024; 20:e1012157. [PMID: 38723104 PMCID: PMC11081299 DOI: 10.1371/journal.ppat.1012157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2024] Open
Abstract
Circadian rhythms are intrinsic 24-hour oscillations found in nearly all life forms. They orchestrate key physiological and behavioral processes, allowing anticipation and response to daily environmental changes. These rhythms manifest across entire organisms, in various organs, and through intricate molecular feedback loops that govern cellular oscillations. Recent studies describe circadian regulation of pathogens, including parasites, bacteria, viruses, and fungi, some of which have their own circadian rhythms while others are influenced by the rhythmic environment of hosts. Pathogens target specific tissues and organs within the host to optimize their replication. Diverse cellular compositions and the interplay among various cell types create unique microenvironments in different tissues, and distinctive organs have unique circadian biology. Hence, residing pathogens are exposed to cyclic conditions, which can profoundly impact host-pathogen interactions. This review explores the influence of circadian rhythms and mammalian tissue-specific interactions on the dynamics of pathogen-host relationships. Overall, this demonstrates the intricate interplay between the body's internal timekeeping system and its susceptibility to pathogens, which has implications for the future of infectious disease research and treatment.
Collapse
Affiliation(s)
- Helene Borrmann
- Berkeley Public Health, Molecular and Cell Biology Department, University of California Berkeley, Berkeley, California, United States of America
| | - Filipa Rijo-Ferreira
- Berkeley Public Health, Molecular and Cell Biology Department, University of California Berkeley, Berkeley, California, United States of America
- Chan Zuckerberg Biohub–San Francisco, San Francisco, California, United States of America
| |
Collapse
|
20
|
March S, Nerurkar N, Jain A, Andrus L, Kim D, Whittaker CA, Tan EK, Thiberge S, Fleming HE, Mancio-Silva L, Rice CM, Bhatia SN. Autonomous circadian rhythms in the human hepatocyte regulate hepatic drug metabolism and inflammatory responses. SCIENCE ADVANCES 2024; 10:eadm9281. [PMID: 38657074 PMCID: PMC11042741 DOI: 10.1126/sciadv.adm9281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/22/2024] [Indexed: 04/26/2024]
Abstract
Critical aspects of physiology and cell function exhibit self-sustained ~24-hour variations termed circadian rhythms. In the liver, circadian rhythms play fundamental roles in maintaining organ homeostasis. Here, we established and characterized an in vitro liver experimental system in which primary human hepatocytes display self-sustained oscillations. By generating gene expression profiles of these hepatocytes over time, we demonstrated that their transcriptional state is dynamic across 24 hours and identified a set of cycling genes with functions related to inflammation, drug metabolism, and energy homeostasis. We designed and tested a treatment protocol to minimize atorvastatin- and acetaminophen-induced hepatotoxicity. Last, we documented circadian-dependent induction of pro-inflammatory cytokines when triggered by LPS, IFN-β, or Plasmodium infection in human hepatocytes. Collectively, our findings emphasize that the phase of the circadian cycle has a robust impact on the efficacy and toxicity of drugs, and we provide a test bed to study the timing and magnitude of inflammatory responses over the course of infection in human liver.
Collapse
Affiliation(s)
- Sandra March
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Niketa Nerurkar
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA
| | - Anisha Jain
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Linda Andrus
- Laboratory of Virology and Infectious Disease, The Rockefeller University, NY, New York, USA
| | - Daniel Kim
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA
| | - Charles A. Whittaker
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA
| | - Edward K.W. Tan
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA
| | - Sabine Thiberge
- Institut Pasteur, Université Paris Cité, Inserm U1201, CNRS EMR9195, Unité de Biologie des Interactions Hôte-Parasite, 75015 Paris, France
- Institut Pasteur, Université Paris Cité, Centre de Production et d’Infection des Anophèles, 75015 Paris, France
| | - Heather E. Fleming
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Liliana Mancio-Silva
- Institut Pasteur, Université Paris Cité, Inserm U1201, CNRS EMR9195, Unité de Biologie des Interactions Hôte-Parasite, 75015 Paris, France
| | - Charles M. Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, NY, New York, USA
| | - Sangeeta N. Bhatia
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Wyss Institute at Harvard University, 201 Brookline Ave, Boston, MA 02215, USA
| |
Collapse
|
21
|
Cho SH, Cho SY, Vaidya B, Kwon J, Kim D. Influence of colour background on anti-viral activity against viral haemorrhagic septicaemia virus in zebrafish regulated by circadian rhythm signalling pathway. JOURNAL OF FISH DISEASES 2024; 47:e13887. [PMID: 38018296 DOI: 10.1111/jfd.13887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/25/2023] [Accepted: 10/30/2023] [Indexed: 11/30/2023]
Abstract
The influence of colour background on the regulation of behavioural and physiological responses in zebrafish is widely recognized. However, its specific effect on virus infection in zebrafish remains unclear. This study aimed to explore the susceptibility of zebrafish to viral haemorrhagic septicaemia virus (VHSV) infection in relation to background colour, investigate the underlying mechanisms, and elucidate the involvement of key molecules, using proteomic and gene expression analyses. The results revealed that zebrafish housed in a blue tank exhibited higher survival rates and considerably reduced VHSV replication compared to those housed in a yellow tank. Further, up-regulation of apolipoprotein 1 (APOA1) was identified as a crucial shared mechanism associated with survival in zebrafish exposed to VHSV infection and reared in a blue background. The mRNA expression level of bmal1a, a core gene involved in the circadian rhythm, was consistently downregulated in fish from the blue tank compared to fish from the yellow tank, regardless of infection status. Subsequently, zebrafish in the blue tank were exposed to daylight conditions to stimulate per2 and pgc1a expression, aiming to investigate their potential impact on VHSV infection. The validity of these interconnected events, triggered by background colour, involving APOA1 up-regulation, circadian rhythm modulation, and antiviral responses, was confirmed by treatments with hesperetin and cyclosporine A, an activator and inhibitor of apoa1 respectively. Our findings revealed the influence of background colour on the apoa1 expression level, thus establishing the involvement of a novel network through circadian rhythm signalling.
Collapse
Affiliation(s)
- Se-Hyun Cho
- Department of Food Science and Technology and Foodborne Virus Research Center, Chonnam National University, Gwangju, Republic of Korea
| | - Se-Young Cho
- Department of Food Science and Technology and Foodborne Virus Research Center, Chonnam National University, Gwangju, Republic of Korea
| | - Bipin Vaidya
- Department of Food Science and Technology and Foodborne Virus Research Center, Chonnam National University, Gwangju, Republic of Korea
| | - Joseph Kwon
- Biochemical Analysis Team, Korea Basic Science Institute, Daejeon, Republic of Korea
| | - Duwoon Kim
- Department of Food Science and Technology and Foodborne Virus Research Center, Chonnam National University, Gwangju, Republic of Korea
| |
Collapse
|
22
|
Alvarez-García L, Sánchez-García FJ, Vázquez-Pichardo M, Moreno-Altamirano MM. Chikungunya Virus, Metabolism, and Circadian Rhythmicity Interplay in Phagocytic Cells. Metabolites 2023; 13:1143. [PMID: 37999239 PMCID: PMC10672914 DOI: 10.3390/metabo13111143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 10/28/2023] [Accepted: 10/31/2023] [Indexed: 11/25/2023] Open
Abstract
Chikungunya virus (CHIKV) is transmitted to humans by mosquitoes of the genus Aedes, causing the chikungunya fever disease, associated with inflammation and severe articular incapacitating pain. There has been a worldwide reemergence of chikungunya and the number of cases increased to 271,006 in 2022 in the Americas alone. The replication of CHIKV takes place in several cell types, including phagocytic cells. Monocytes and macrophages are susceptible to infection by CHIKV; at the same time, they provide protection as components of the innate immune system. However, in host-pathogen interactions, CHIKV might have the ability to alter the function of immune cells, partly by rewiring the tricarboxylic acid cycle. Some viral evasion mechanisms depend on the metabolic reprogramming of immune cells, and the cell metabolism is intertwined with circadian rhythmicity; thus, a circadian immunovirometabolism axis may influence viral pathogenicity. Therefore, analyzing the interplay between viral infection, circadian rhythmicity, and cellular metabolic reprogramming in human macrophages could shed some light on the new field of immunovirometabolism and eventually contribute to the development of novel drugs and therapeutic approaches based on circadian rhythmicity and metabolic reprogramming.
Collapse
Affiliation(s)
- Linamary Alvarez-García
- Laboratorio de Inmunorregulación, Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas del IPN, Prolongación de Carpio y Plan de Ayala s/n, Col. Casco de Santo Tomás, Mexico City 11340, Mexico; (L.A.-G.); (F.J.S.-G.); (M.V.-P.)
| | - F. Javier Sánchez-García
- Laboratorio de Inmunorregulación, Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas del IPN, Prolongación de Carpio y Plan de Ayala s/n, Col. Casco de Santo Tomás, Mexico City 11340, Mexico; (L.A.-G.); (F.J.S.-G.); (M.V.-P.)
| | - Mauricio Vázquez-Pichardo
- Laboratorio de Inmunorregulación, Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas del IPN, Prolongación de Carpio y Plan de Ayala s/n, Col. Casco de Santo Tomás, Mexico City 11340, Mexico; (L.A.-G.); (F.J.S.-G.); (M.V.-P.)
- Laboratorio de Arbovirus, Departamento de Virología, Instituto de Diagnóstico y Referencia Epidemiológicos (InDRE), Secretaría de Salud, Francisco de P. Miranda 177, Col. Lomas de Plateros, Mexico City 01480, Mexico
| | - M. Maximina Moreno-Altamirano
- Laboratorio de Inmunorregulación, Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas del IPN, Prolongación de Carpio y Plan de Ayala s/n, Col. Casco de Santo Tomás, Mexico City 11340, Mexico; (L.A.-G.); (F.J.S.-G.); (M.V.-P.)
| |
Collapse
|
23
|
Joshi A, Sundar IK. Circadian Disruption in Night Shift Work and Its Association with Chronic Pulmonary Diseases. Adv Biol (Weinh) 2023; 7:e2200292. [PMID: 36797209 DOI: 10.1002/adbi.202200292] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/08/2022] [Indexed: 02/18/2023]
Abstract
Globalization and the expansion of essential services over continuous 24 h cycles have necessitated the adaptation of the human workforce to shift-based schedules. Night shift work (NSW) causes a state of desynchrony between the internal circadian machinery and external environmental cues, which can impact inflammatory and metabolic pathways. The discovery of clock genes in the lung has shed light on potential mechanisms of circadian misalignment in chronic pulmonary disease. Here, the current knowledge of circadian clock disruption caused by NSW and its impact on lung inflammation and associated pathophysiology in chronic lung diseases, such as asthma, chronic obstructive pulmonary disease, pulmonary fibrosis, and COVID-19, is reviewed. Furthermore, the limitations of the current understanding of circadian disruption and potential future chronotherapeutic advances are discussed.
Collapse
Affiliation(s)
- Amey Joshi
- Department of Internal Medicine, Manipal Hospitals, Bangalore, Karnataka, 560066, India
| | - Isaac Kirubakaran Sundar
- Department of Internal Medicine, Division of Pulmonary Critical Care and Sleep Medicine, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS, 66160, USA
| |
Collapse
|
24
|
Kirchner SJ, Lei V, Kim PT, Patel M, Shannon JL, Corcoran D, Hughes D, Waters DK, Dzirasa K, Erdmann D, Coers J, MacLeod AS, Zhang JY. An aging-susceptible circadian rhythm controls cutaneous antiviral immunity. JCI Insight 2023; 8:e171548. [PMID: 37725438 PMCID: PMC10619492 DOI: 10.1172/jci.insight.171548] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 09/12/2023] [Indexed: 09/21/2023] Open
Abstract
Aged skin is prone to viral infections, but the mechanisms responsible for this immunosenescent immune risk are unclear. We observed that aged murine and human skin expressed reduced levels of antiviral proteins (AVPs) and circadian regulators, including Bmal1 and Clock. Bmal1 and Clock were found to control rhythmic AVP expression in skin, and such circadian control of AVPs was diminished by disruption of immune cell IL-27 signaling and deletion of Bmal1/Clock genes in mouse skin, as well as siRNA-mediated knockdown of CLOCK in human primary keratinocytes. We found that treatment with the circadian-enhancing agents nobiletin and SR8278 reduced infection of herpes simplex virus 1 in epidermal explants and human keratinocytes in a BMAL1/CLOCK-dependent manner. Circadian-enhancing treatment also reversed susceptibility of aging murine skin and human primary keratinocytes to viral infection. These findings reveal an evolutionarily conserved and age-sensitive circadian regulation of cutaneous antiviral immunity, underscoring circadian restoration as an antiviral strategy in aging populations.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Kafui Dzirasa
- Department of Neurobiology
- Department of Psychiatry and Behavioral Sciences
- Department of Biomedical Engineering, and
- Department of Neurosurgery, Duke University, Durham, North Carolina, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| | - Detlev Erdmann
- Department of Surgery, Division of Plastic, Maxillofacial, and Oral Surgery, and
| | - Jörn Coers
- Department of Molecular Genetics and Microbiology
- Department of Immunology
| | - Amanda S. MacLeod
- Department of Dermatology
- Department of Molecular Genetics and Microbiology
- Department of Immunology
| | - Jennifer Y. Zhang
- Department of Dermatology
- Department of Pathology, Duke University, Durham, North Carolina, USA
| |
Collapse
|
25
|
Chen R, Routh BN, Gaudet AD, Fonken LK. Circadian Regulation of the Neuroimmune Environment Across the Lifespan: From Brain Development to Aging. J Biol Rhythms 2023; 38:419-446. [PMID: 37357738 PMCID: PMC10475217 DOI: 10.1177/07487304231178950] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
Abstract
Circadian clocks confer 24-h periodicity to biological systems, to ultimately maximize energy efficiency and promote survival in a world with regular environmental light cycles. In mammals, circadian rhythms regulate myriad physiological functions, including the immune, endocrine, and central nervous systems. Within the central nervous system, specialized glial cells such as astrocytes and microglia survey and maintain the neuroimmune environment. The contributions of these neuroimmune cells to both homeostatic and pathogenic demands vary greatly across the day. Moreover, the function of these cells changes across the lifespan. In this review, we discuss circadian regulation of the neuroimmune environment across the lifespan, with a focus on microglia and astrocytes. Circadian rhythms emerge in early life concurrent with neuroimmune sculpting of brain circuits and wane late in life alongside increasing immunosenescence and neurodegeneration. Importantly, circadian dysregulation can alter immune function, which may contribute to susceptibility to neurodevelopmental and neurodegenerative diseases. In this review, we highlight circadian neuroimmune interactions across the lifespan and share evidence that circadian dysregulation within the neuroimmune system may be a critical component in human neurodevelopmental and neurodegenerative diseases.
Collapse
Affiliation(s)
- Ruizhuo Chen
- Division of Pharmacology & Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, Texas
| | - Brandy N. Routh
- Division of Pharmacology & Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, Texas
- Institute for Neuroscience, The University of Texas at Austin, Austin, Texas
| | - Andrew D. Gaudet
- Institute for Neuroscience, The University of Texas at Austin, Austin, Texas
- Department of Psychology, The University of Texas at Austin, Austin, Texas
- Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, Texas
| | - Laura K. Fonken
- Division of Pharmacology & Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, Texas
- Institute for Neuroscience, The University of Texas at Austin, Austin, Texas
| |
Collapse
|
26
|
Shafaati M, Sadeghniiat K, Priyanka, Najafia A, Zandi M, Akbarpour S, Choudhary OP. The relevance of the circadian timing system role in patients with HIV/AIDS: a quick glance. Int J Surg 2023; 109:2831-2834. [PMID: 36928027 PMCID: PMC10498842 DOI: 10.1097/js9.0000000000000103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 11/16/2022] [Indexed: 03/18/2023]
Affiliation(s)
- Maryam Shafaati
- Occupational Sleep Research Center, Baharloo Hospital, Tehran University of Medical Sciences, Tehran, Iran
- Department of Microbiology, Faculty Science, Jahrom Branch, Islamic Azad University, Jahrom, Iran
| | - Khosro Sadeghniiat
- Occupational Sleep Research Center, Baharloo Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Priyanka
- Department of Veterinary Microbiology, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Rampura Phul, Bathinda, Punjab, India
| | - Arezu Najafia
- Occupational Sleep Research Center, Baharloo Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Milad Zandi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Samaneh Akbarpour
- Occupational Sleep Research Center, Baharloo Hospital, Tehran University of Medical Sciences, Tehran, Iran
- Sleep Breathing Disorders Research Center (SBDRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Om Prakash Choudhary
- Department of Veterinary Anatomy and Histology, College of Veterinary Sciences and Animal Husbandry, Central Agricultural University (I), Selesih, Aizawl, Mizoram, India
| |
Collapse
|
27
|
Rankawat S, Kundal K, Chakraborty S, Kumar R, Ray S. A comprehensive rhythmicity analysis of host proteins and immune factors involved in malaria pathogenesis to decipher the importance of host circadian clock in malaria. Front Immunol 2023; 14:1210299. [PMID: 37638001 PMCID: PMC10449258 DOI: 10.3389/fimmu.2023.1210299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/17/2023] [Indexed: 08/29/2023] Open
Abstract
Background Circadian rhythms broadly impact human health by regulating our daily physiological and metabolic processes. The circadian clocks substantially regulate our immune responses and susceptibility to infections. Malaria parasites have intrinsic molecular oscillations and coordinate their infection cycle with host rhythms. Considering the cyclical nature of malaria, a clear understanding of the circadian regulations in malaria pathogenesis and host responses is of immense importance. Methods We have thoroughly investigated the transcript level rhythmic patterns in blood proteins altered in falciparum and vivax malaria and malaria-related immune factors in mice, baboons, and humans by analyzing datasets from published literature and comprehensive databases. Using the Metascape and DAVID platforms, we analyzed Gene Ontology terms and physiological pathways associated with the rhythmic malaria-associated host immune factors. Results We observed that almost 50% of the malaria-associated host immune factors are rhythmic in mice and humans. Overlapping rhythmic genes identified in mice, baboons, and humans, exhibited enrichment (Q < 0.05, fold-enrichment > 5) of multiple physiological pathways essential for host immune and defense response, including cytokine production, leukocyte activation, cellular defense, and response, regulation of kinase activity, B-cell receptor signaling pathway, and cellular response to cytokine stimulus. Conclusions Our analysis indicates a robust circadian regulation on multiple interconnected host response pathways and immunological networks in malaria, evident from numerous rhythmic genes involved in those pathways. Host immune rhythms play a vital role in the temporal regulation of host-parasite interactions and defense machinery in malaria.
Collapse
Affiliation(s)
| | | | | | | | - Sandipan Ray
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Telangana, India
| |
Collapse
|
28
|
Borrmann H, Ismed D, Kliszczak AE, Borrow P, Vasudevan S, Jagannath A, Zhuang X, McKeating JA. Inhibition of salt inducible kinases reduces rhythmic HIV-1 replication and reactivation from latency. J Gen Virol 2023; 104:001877. [PMID: 37529926 PMCID: PMC10721046 DOI: 10.1099/jgv.0.001877] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 07/25/2023] [Indexed: 08/03/2023] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) causes a major burden on global health, and eradication of latent virus infection is one of the biggest challenges in the field. The circadian clock is an endogenous timing system that oscillates with a ~24 h period regulating multiple physiological processes and cellular functions, and we recently reported that the cell intrinsic clock regulates rhythmic HIV-1 replication. Salt inducible kinases (SIK) contribute to circadian regulatory networks, however, there is limited evidence for SIKs regulating HIV-1 infection. Here, we show that pharmacological inhibition of SIKs perturbed the cellular clock and reduced rhythmic HIV-1 replication in circadian synchronised cells. Further, SIK inhibitors or genetic silencing of Sik expression inhibited viral replication in primary cells and in a latency model, respectively. Overall, this study demonstrates a role for salt inducible kinases in regulating HIV-1 replication and latency reactivation, which can provide innovative routes to better understand and target latent HIV-1 infection.
Collapse
Affiliation(s)
- Helene Borrmann
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Dini Ismed
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Anna E. Kliszczak
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Persephone Borrow
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | | | - Aarti Jagannath
- Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Xiaodong Zhuang
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Jane A. McKeating
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, UK
| |
Collapse
|
29
|
Borrmann H, Ulkar G, Kliszczak AE, Ismed D, Schilling M, Magri A, Harris JM, Balfe P, Vasudevan S, Borrow P, Zhuang X, McKeating JA. Molecular components of the circadian clock regulate HIV-1 replication. iScience 2023; 26:107007. [PMID: 37534138 PMCID: PMC10391662 DOI: 10.1016/j.isci.2023.107007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/24/2023] [Accepted: 05/26/2023] [Indexed: 08/04/2023] Open
Abstract
Human immunodeficiency virus 1 (HIV-1) causes major health burdens worldwide and still lacks curative therapies and vaccines. Circadian rhythms are endogenous daily oscillations that coordinate an organism's response to its environment and invading pathogens. Peripheral viral loads of HIV-1 infected patients show diurnal variation; however, the underlying mechanisms remain unknown. Here, we demonstrate a role for the cell-intrinsic clock to regulate rhythmic HIV-1 replication in circadian-synchronized systems. Silencing the circadian activator Bmal1 abolishes this phenotype, and we observe BMAL1 binding to the HIV-1 promoter. Importantly, we show differential binding of the nuclear receptors REV-ERB and ROR to the HIV-long terminal repeat at different circadian times, demonstrating a dynamic interplay in time-of-day regulation of HIV-1 transcription. Bioinformatic analysis shows circadian regulation of host factors that control HIV-1 replication, providing an additional mechanism for rhythmic viral replication. This study increases our understanding of the circadian regulation of HIV-1, which can ultimately inform new therapies.
Collapse
Affiliation(s)
- Helene Borrmann
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Görkem Ulkar
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Anna E. Kliszczak
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Dini Ismed
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Mirjam Schilling
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Andrea Magri
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - James M. Harris
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Peter Balfe
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | | | - Persephone Borrow
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Xiaodong Zhuang
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Jane A. McKeating
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, UK
| |
Collapse
|
30
|
Fujimura A, Ushijima K. Understanding the role of chronopharmacology for drug optimization: what do we know? Expert Rev Clin Pharmacol 2023; 16:655-668. [PMID: 37403790 DOI: 10.1080/17512433.2023.2233438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/03/2023] [Indexed: 07/06/2023]
Abstract
INTRODUCTION Circadian rhythm influences the pharmacokinetics and pharmacodynamics of a number of drugs and affects their therapeutic efficacy and toxicity depending on the time of day they are administered. Chronopharmacology is a method for incorporating knowledge about circadian rhythm into pharmacotherapy. Chronotherapy, which is the clinical application of chronopharmacology, is particularly relevant when the risk and/or severity of symptoms of a disease change in a predictable manner over time. Chronotherapy has potential benefits in the treatment of many diseases. AREAS COVERED Although a considerable amount of knowledge about chronopharmacology and chronotherapy has been accumulated, its therapeutic application in clinical practice remains limited in terms of therapy optimization. Resolution of these issues will improve our ability to deliver adequate drug treatment. EXPERT OPINION We propose four approaches for promoting chronotherapy-based drug treatment in clinical practice: targeting drug development and regulatory authorities; education about chronotherapy; drug information for both health professionals and consumers; and a chronotherapy network.
Collapse
Affiliation(s)
- Akio Fujimura
- Department of Clinical Pharmacology, Jichi Medical University, Tochigi, Japan
| | - Kentaro Ushijima
- Division of Pharmaceutics, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Yamaguchi, Japan
| |
Collapse
|
31
|
Zhao L, Lundy SR, Eko FO, Igietseme JU, Omosun YO. Genital tract microbiome dynamics are associated with time of Chlamydia infection in mice. Sci Rep 2023; 13:9006. [PMID: 37268696 PMCID: PMC10238418 DOI: 10.1038/s41598-023-36130-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/30/2023] [Indexed: 06/04/2023] Open
Abstract
We have previously shown that the time of Chlamydia infection was crucial in determining the chlamydial infectivity and pathogenesis. This study aims to determine whether the time of Chlamydia infection affects the genital tract microbiome. This study analyzed mice vaginal, uterine, and ovary/oviduct microbiome with and without Chlamydia infection. The mice were infected with Chlamydia at either 10:00 am (ZT3) or 10:00 pm (ZT15). The results showed that mice infected at ZT3 had higher Chlamydia infectivity than those infected at ZT15. There was more variation in the compositional complexity of the vaginal microbiome (alpha diversity) of mice infected at ZT3 than those mice infected at ZT15 throughout the infection within each treatment group, with both Shannon and Simpson diversity index values decreased over time. The analysis of samples collected four weeks post-infection showed that there were significant taxonomical differences (beta diversity) between different parts of the genital tract-vagina, uterus, and ovary/oviduct-and this difference was associated with the time of infection. Firmicutes and Proteobacteria were the most abundant phyla within the microbiome in all three genital tract regions for all the samples collected during this experiment. Additionally, Firmicutes was the dominant phylum in the uterine microbiome of ZT3 Chlamydia infected mice. The results show that the time of infection is associated with the microbial dynamics in the genital tract. And this association is more robust in the upper genital tract than in the vagina. This result implies that more emphasis should be placed on understanding the changes in the microbial dynamics of the upper genital tract over the course of infection.
Collapse
Affiliation(s)
- Lihong Zhao
- Department of Applied Mathematics, University of California, Merced, Merced, CA, USA.
| | - Stephanie R Lundy
- Duke Human Vaccine Institute, Durham, NC, USA
- Division of STD Prevention, NCHHSTP, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Francis O Eko
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Joeseph U Igietseme
- Molecular Pathogenesis Laboratory, NCEZID, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Yusuf O Omosun
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
32
|
Dopico XC, Mandolesi M, Hedestam GBK. Untangling immunoglobulin genotype-function associations. Immunol Lett 2023:S0165-2478(23)00073-1. [PMID: 37209913 DOI: 10.1016/j.imlet.2023.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/19/2023] [Accepted: 05/12/2023] [Indexed: 05/22/2023]
Abstract
Immunoglobulin (IG) genes, encoding B cell receptors (BCRs), are fundamental components of the mammalian immune system, which evolved to recognize the diverse antigenic universe present in nature. To handle these myriad inputs, BCRs are generated through combinatorial recombination of a set of highly polymorphic germline genes, resulting in a vast repertoire of antigen receptors that initiate responses to pathogens and regulate commensals. Following antigen recognition and B cell activation, memory B cells and plasma cells form, allowing for the development of anamnestic antibody (Ab) responses. How inherited variation in IG genes impacts host traits, disease susceptibility, and Ab recall responses is a topic of great interest. Here, we consider approaches to translate emerging knowledge about IG genetic diversity and expressed repertoires to inform our understanding of Ab function in health and disease etiology. As our understanding of IG genetics grows, so will our need for tools to decipher preferences for IG gene or allele usage in different contexts, to better understand antibody responses at the population level.
Collapse
Affiliation(s)
- Xaquin Castro Dopico
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm 17177, Sweden.
| | - Marco Mandolesi
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm 17177, Sweden
| | | |
Collapse
|
33
|
Kirchner S, Lei V, Kim P, Patel M, Shannon J, Corcoran D, Hughes D, Waters D, Dzirasa K, Erdmann D, Coers J, MacLeod A, Zhang JY. An Aging-Susceptible Circadian Rhythm Controls Cutaneous Antiviral Immunity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.14.536934. [PMID: 37131751 PMCID: PMC10153172 DOI: 10.1101/2023.04.14.536934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Aged skin is prone to viral infections, but the mechanisms responsible for this immunosenescent immune risk are unclear. We observed that aged murine and human skin expressed reduced antiviral proteins (AVPs) and circadian regulators including Bmal1 and Clock. Bmal1 and Clock were found to control rhythmic AVP expression in skin and such circadian-control of AVPs was diminished by disruption of immune cell interleukin 27 signaling and deletion of Bmal1/Clock genes in mouse skins, as well as siRNA-mediated knockdown of CLOCK in human primary keratinocytes. We found that treatment of circadian enhancing agents, nobiletin and SR8278, reduced infection of herpes simplex virus 1 (HSV1) in epidermal explants and human keratinocytes in a Bmal1/Clock-dependent manner. Circadian enhancing treatment also reversed susceptibility of aging murine skin and human primary keratinocytes to viral infection. These findings reveal an evolutionarily conserved and age-sensitive circadian regulation of cutaneous antiviral immunity, underscoring circadian restoration as an antiviral strategy in aging populations.
Collapse
|
34
|
Adlanmerini M, Lazar MA. The REV-ERB Nuclear Receptors: Timekeepers for the Core Clock Period and Metabolism. Endocrinology 2023; 164:bqad069. [PMID: 37149727 PMCID: PMC10413432 DOI: 10.1210/endocr/bqad069] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/20/2023] [Accepted: 05/03/2023] [Indexed: 05/08/2023]
Abstract
REV-ERB nuclear receptors are potent transcriptional repressors that play an important role in the core mammalian molecular clock and metabolism. Deletion of both REV-ERBα and its largely redundant isoform REV-ERBβ in a murine tissue-specific manner have shed light on their specific functions in clock mechanisms and circadian metabolism. This review highlights recent findings that establish REV-ERBs as crucial circadian timekeepers in a variety of tissues, regulating overlapping and distinct processes that maintain normal physiology and protect from metabolic dysfunction.
Collapse
Affiliation(s)
- Marine Adlanmerini
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1297, University of Toulouse 3, Toulouse, France
| | - Mitchell A Lazar
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
35
|
Waddell H, Stevenson TJ, Mole DJ. The role of the circadian rhythms in critical illness with a focus on acute pancreatitis. Heliyon 2023; 9:e15335. [PMID: 37089281 PMCID: PMC10119767 DOI: 10.1016/j.heliyon.2023.e15335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/20/2023] [Accepted: 04/03/2023] [Indexed: 04/25/2023] Open
Abstract
Circadian rhythms are responsible for governing various physiological processes, including hormone secretion, immune responses, metabolism, and the sleep/wake cycle. In critical illnesses such as acute pancreatitis (AP), circadian rhythms can become dysregulated due to disease. Evidence suggests that time of onset of disease, coupled with peripheral inflammation brought about by AP will impact on the circadian rhythms generated in the central pacemaker and peripheral tissues. Cells of the innate and adaptive immune system are governed by circadian rhythms and the diurnal pattern of expression can be disrupted during disease. Peak circadian immune cell release and gene expression can coincide with AP onset, that may increase pancreatic injury, tissue damage and the potential for systemic inflammation and multiple organ failure to develop. Here, we provide an overview of the role of circadian rhythms in AP and the underpinning inflammatory mechanisms to contextualise ongoing research into the chronobiology and chronotherapeutics of AP.
Collapse
Affiliation(s)
- Heather Waddell
- Medical Research Council Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Tyler J. Stevenson
- Institute of Biodiversity and Animal Health and Comparative Medicine, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Damian J. Mole
- Medical Research Council Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, EH16 4TJ, UK
- Clinical Surgery, School of Clinical Sciences and Community Health, The University of Edinburgh, Edinburgh, EH16 4SB, UK
| |
Collapse
|
36
|
Stincardini C, Pariano M, D’Onofrio F, Renga G, Orecchini E, Orabona C, Nunzi E, Gargaro M, Fallarino F, Chun SK, Fortin BM, Masri S, Brancorsini S, Romani L, Costantini C, Bellet MM. The circadian control of tryptophan metabolism regulates the host response to pulmonary fungal infections. PNAS NEXUS 2023; 2:pgad036. [PMID: 36896128 PMCID: PMC9991457 DOI: 10.1093/pnasnexus/pgad036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 01/04/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
The environmental light/dark cycle has left its mark on the body's physiological functions to condition not only our inner biology, but also the interaction with external cues. In this scenario, the circadian regulation of the immune response has emerged as a critical factor in defining the host-pathogen interaction and the identification of the underlying circuitry represents a prerequisite for the development of circadian-based therapeutic strategies. The possibility to track down the circadian regulation of the immune response to a metabolic pathway would represent a unique opportunity in this direction. Herein, we show that the metabolism of the essential amino acid tryptophan, involved in the regulation of fundamental processes in mammals, is regulated in a circadian manner in both murine and human cells and in mouse tissues. By resorting to a murine model of pulmonary infection with the opportunistic fungus Aspergillus fumigatus, we showed that the circadian oscillation in the lung of the tryptophan-degrading enzyme indoleamine 2,3-dioxygenase (IDO)1, generating the immunoregulatory kynurenine, resulted in diurnal changes in the immune response and the outcome of fungal infection. In addition, the circadian regulation of IDO1 drives such diurnal changes in a pre-clinical model of cystic fibrosis (CF), an autosomal recessive disease characterized by progressive lung function decline and recurrent infections, thus acquiring considerable clinical relevance. Our results demonstrate that the circadian rhythm at the intersection between metabolism and immune response underlies the diurnal changes in host-fungal interaction, thus paving the way for a circadian-based antimicrobial therapy.
Collapse
Affiliation(s)
- Claudia Stincardini
- Department of Medicine and Surgery, University of Perugia, P.le L. Severi 1, 06132 Perugia, Italy
| | - Marilena Pariano
- Department of Medicine and Surgery, University of Perugia, P.le L. Severi 1, 06132 Perugia, Italy
| | - Fiorella D’Onofrio
- Department of Medicine and Surgery, University of Perugia, P.le L. Severi 1, 06132 Perugia, Italy
| | - Giorgia Renga
- Department of Medicine and Surgery, University of Perugia, P.le L. Severi 1, 06132 Perugia, Italy
| | - Elena Orecchini
- Department of Medicine and Surgery, University of Perugia, P.le L. Severi 1, 06132 Perugia, Italy
| | - Ciriana Orabona
- Department of Medicine and Surgery, University of Perugia, P.le L. Severi 1, 06132 Perugia, Italy
| | - Emilia Nunzi
- Department of Medicine and Surgery, University of Perugia, P.le L. Severi 1, 06132 Perugia, Italy
| | - Marco Gargaro
- Department of Medicine and Surgery, University of Perugia, P.le L. Severi 1, 06132 Perugia, Italy
| | - Francesca Fallarino
- Department of Medicine and Surgery, University of Perugia, P.le L. Severi 1, 06132 Perugia, Italy
| | - Sung Kook Chun
- Department of Biological Chemistry, University of California, Irvine (UCI), Irvine, CA 92697, USA
| | - Bridget M Fortin
- Department of Biological Chemistry, University of California, Irvine (UCI), Irvine, CA 92697, USA
| | - Selma Masri
- Department of Biological Chemistry, University of California, Irvine (UCI), Irvine, CA 92697, USA
| | - Stefano Brancorsini
- Department of Medicine and Surgery, University of Perugia, P.le L. Severi 1, 06132 Perugia, Italy
| | - Luigina Romani
- Department of Medicine and Surgery, University of Perugia, P.le L. Severi 1, 06132 Perugia, Italy
| | - Claudio Costantini
- Department of Medicine and Surgery, University of Perugia, P.le L. Severi 1, 06132 Perugia, Italy
| | - Marina Maria Bellet
- Department of Medicine and Surgery, University of Perugia, P.le L. Severi 1, 06132 Perugia, Italy
| |
Collapse
|
37
|
Taylor L, Von Lendenfeld F, Ashton A, Sanghani H, Di Pretoro S, Usselmann L, Veretennikova M, Dallmann R, McKeating JA, Vasudevan S, Jagannath A. Sleep and circadian rhythm disruption alters the lung transcriptome to predispose to viral infection. iScience 2023; 26:105877. [PMID: 36590897 PMCID: PMC9788990 DOI: 10.1016/j.isci.2022.105877] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 10/11/2022] [Accepted: 12/21/2022] [Indexed: 12/26/2022] Open
Abstract
Sleep and circadian rhythm disruption (SCRD), as encountered during shift work, increases the risk of respiratory viral infection including SARS-CoV-2. However, the mechanism(s) underpinning higher rates of respiratory viral infection following SCRD remain poorly characterized. To address this, we investigated the effects of acute sleep deprivation on the mouse lung transcriptome. Here we show that sleep deprivation profoundly alters the transcriptional landscape of the lung, causing the suppression of both innate and adaptive immune systems, disrupting the circadian clock, and activating genes implicated in SARS-CoV-2 replication, thereby generating a lung environment that could promote viral infection and associated disease pathogenesis. Our study provides a mechanistic explanation of how SCRD increases the risk of respiratory viral infections including SARS-CoV-2 and highlights possible therapeutic avenues for the prevention and treatment of respiratory viral infection.
Collapse
Affiliation(s)
- Lewis Taylor
- Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, New Biochemistry Building, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Felix Von Lendenfeld
- Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, New Biochemistry Building, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Anna Ashton
- Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, New Biochemistry Building, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Harshmeena Sanghani
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Simona Di Pretoro
- Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, New Biochemistry Building, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Laura Usselmann
- Division of Biomedical Sciences, Warwick Medical School, Interdisciplinary Biomedical Research Building, Gibbet Hill Campus, University of Warwick, Coventry CV4 7AL, UK
| | - Maria Veretennikova
- Zeeman Institute for Systems Biology & Infectious Disease Epidemiology Research, Department of Mathematics, Mathematical Sciences Building, University of Warwick, Coventry CV4 7AL, UK
| | - Robert Dallmann
- Division of Biomedical Sciences, Warwick Medical School, Interdisciplinary Biomedical Research Building, Gibbet Hill Campus, University of Warwick, Coventry CV4 7AL, UK
| | - Jane A. McKeating
- Nuffield Department of Medicine, University of Oxford, Old Road Campus, Oxford OX3 7BN, UK
- Chinese Academy of Medical Sciences (CAMS) Oxford Institute (COI), University of Oxford, Old Road Campus, Oxford OX3 7BN, UK
| | - Sridhar Vasudevan
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Aarti Jagannath
- Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, New Biochemistry Building, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| |
Collapse
|
38
|
Xia Y, Ding X, Wang S, Ren W. Circadian orchestration of host and gut microbiota in infection. Biol Rev Camb Philos Soc 2023; 98:115-131. [PMID: 36106627 DOI: 10.1111/brv.12898] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 01/12/2023]
Abstract
Circadian rhythms are present in almost every organism and regulate multiple aspects of biological and physiological processes (e.g. metabolism, immune responses, and microbial exposure). There exists a bidirectional circadian interaction between the host and its gut microbiota, and potential circadian orchestration of both host and gut microbiota in response to invading pathogens. In this review, we summarize what is known about these intestinal microbial oscillations and the relationships between host circadian clocks and various infectious agents (bacteria, fungi, parasites, and viruses), and discuss how host circadian clocks prime the immune system to fight pathogen infections as well as the direct effects of circadian clocks on viral activity (e.g. SARS-CoV-2 entry and replication). Finally, we consider strategies employed to realign normal circadian rhythmicity for host health, such as chronotherapy, dietary intervention, good sleep hygiene, and gut microbiota-targeted therapy. We propose that targeting circadian rhythmicity may provide therapeutic opportunities for the treatment of infectious diseases.
Collapse
Affiliation(s)
- Yaoyao Xia
- Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou, 730050, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Xuezhi Ding
- Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou, 730050, China
| | - Shengyi Wang
- Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou, 730050, China
| | - Wenkai Ren
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
39
|
Zandi M, Shafaati M, Shapshak P, Hashemnia SMR. Monkeypox virus replication underlying circadian rhythm networks. J Neurovirol 2023; 29:1-7. [PMID: 36719593 PMCID: PMC9888333 DOI: 10.1007/s13365-023-01118-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/11/2023] [Accepted: 01/21/2023] [Indexed: 02/01/2023]
Abstract
The mammalian brain has an endogenous central circadian clock that regulates central and peripheral cellular activities. At the molecular level, this day-night cycle induces the expression of upstream and downstream transcription factors that influence the immune system and the severity of viral infections over time. In addition, there are also circadian effects on host tolerance pathways. This stimulates adaptation to normal changes in environmental conditions and requirements (including light and food). These rhythms influence the pharmacokinetics and efficacy of therapeutic drugs and vaccines. The importance of circadian systems in regulating viral infections and the host response to viruses is currently of great importance for clinical management. With the knowledge gained from the COVID-19 pandemic, it is important to address any outbreak of viral infection that could become endemic and to quickly focus research on any knowledge gaps. For example, responses to booster vaccination COVID-19 may have different time-dependent patterns during circadian cycles. There may be a link between reactivation of latently infected viruses and regulation of circadian rhythms. In addition, mammals may show different seasonal antiviral responses in winter and summer. This article discusses the importance of the host circadian clock during monkeypox infection and immune system interactions.
Collapse
Affiliation(s)
- Milad Zandi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| | - Maryam Shafaati
- Department of Microbiology, Faculty Science, Jahrom Branch, Islamic Azad University, Jahrom, Iran
| | - Paul Shapshak
- Global Disease Institute, Tampa General Hospital, Division of Infectious Diseases and International Health, Department of Internal Medicine, Morsani College of Medicine, Tampa, FL, USA
| | | |
Collapse
|
40
|
Kapoor D, Shukla D. Neutrophil Extracellular Traps and Their Possible Implications in Ocular Herpes Infection. Pathogens 2023; 12:209. [PMID: 36839481 PMCID: PMC9958879 DOI: 10.3390/pathogens12020209] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/24/2023] [Accepted: 01/27/2023] [Indexed: 02/01/2023] Open
Abstract
Neutrophil extracellular traps (NETs) are net-like structures released from neutrophils. NETs predominantly contain cell-free deoxyribonucleic acid (DNA) decorated with histones and neutrophil granule proteins. Numerous extrinsic and intrinsic stimuli can induce the formation of NETs such as pathogens, cytokines, immune complexes, microcrystals, antibodies, and other physiological stimuli. The mechanism of NETosis induction can either be ROS-dependent or independent based on the catalase producing activity of the pathogen. NADPH is the source of ROS production, which in turn depends on the upregulation of Ca2+ production in the cytoplasm. ROS-independent induction of NETosis is regulated through toll-like receptors (TLRs). Besides capturing and eliminating pathogens, NETs also aggravate the inflammatory response and thus act as a double-edged sword. Currently, there are growing reports of NETosis induction during bacterial and fungal ocular infections leading to different pathologies, but there is no direct report suggesting its role during herpes simplex virus (HSV) infection. There are innumerable independent reports showing that the major effectors of NETosis are also directly affected by HSV infection, and thus, there is a strong possibility that HSV interacts with these facilitators that can either result in virally mediated modulation of NETosis or NETosis-mediated suppression of ocular HSV infection. This review focuses on the mechanism of NETs formation during different ocular pathologies, with its prime focus on highlighting their potential implications during HSV ocular infections and acting as prospective targets for the treatment of ocular diseases.
Collapse
Affiliation(s)
- Divya Kapoor
- Department of Ophthalmology and Visual Sciences, College of Medicine, University of Illinois at Chicago, 1905 W. Taylor St., Chicago, IL 60612, USA
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, 835 S. Wolcott, Chicago, IL 60612, USA
| | - Deepak Shukla
- Department of Ophthalmology and Visual Sciences, College of Medicine, University of Illinois at Chicago, 1905 W. Taylor St., Chicago, IL 60612, USA
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, 835 S. Wolcott, Chicago, IL 60612, USA
| |
Collapse
|
41
|
Elsebai MF, Habib ESE. Blood pH and COVID-19. Arch Pharm (Weinheim) 2023; 356:e2200558. [PMID: 36690587 DOI: 10.1002/ardp.202200558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/31/2022] [Accepted: 01/02/2023] [Indexed: 01/25/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic is a worldwide war. Raising the blood pH might be a crucial strategy to chase COVID-19. The human blood is slightly alkaline, which is essential for cell metabolism, normal physiology, and balanced immunity since all of these biological processes are pH-dependent. Varieties of physiologic derangements occur when the blood pH is disrupted. Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) proliferates in acidic blood that magnifies the severity of COVID-19. On the other side, blood acidemia is linked to increased morbidity and mortality because of its complications on immunity, especially in the elderly and in critical diseases such as cancer, musculoskeletal degradation, renal, cardiac, and pulmonary disorders, which result in many pathological disorders such as osteomalacia, and disturbing the hematopoiesis. Additionally, acidemia of the blood facilitates viral infection and progression. Thus, correcting the acid-base balance might be a crucial strategy for the treatment of COVID-19, which might be attributed to the distraction of the viral spike protein to its cognate receptor angiotensin-converting enzyme 2 and supporting the over-taxed immunity.
Collapse
Affiliation(s)
- Mahmoud Fahmi Elsebai
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - El-Sayed E Habib
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
42
|
Huang H, Mehta A, Kalmanovich J, Anand A, Bejarano MC, Garg T, Khan N, Tonpouwo GK, Shkodina AD, Bardhan M. Immunological and inflammatory effects of infectious diseases in circadian rhythm disruption and future therapeutic directions. Mol Biol Rep 2023; 50:3739-3753. [PMID: 36656437 PMCID: PMC9851103 DOI: 10.1007/s11033-023-08276-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 01/11/2023] [Indexed: 01/20/2023]
Abstract
BACKGROUND Circadian rhythm is characterised by daily variations in biological activity to align with the light and dark cycle. These diurnal variations, in turn, influence physiological functions such as blood pressure, temperature, and sleep-wake cycle. Though it is well established that the circadian pathway is linked to pro-inflammatory responses and circulating immune cells, its association with infectious diseases is widely unknown. OBJECTIVE This comprehensive review aims to describe the association between circadian rhythm and host immune response to various kinds of infection. METHODS We conducted a literature search in databases Pubmed/Medline and Science direct. Our paper includes a comprehensive analysis of findings from articles in English which was related to our hypothesis. FINDINGS Molecular clocks determine circadian rhythm disruption in response to infection, influencing the host's response toward infection. Moreover, there is a complex interplay with intrinsic oscillators of pathogens and the influence of specific infectious processes on the CLOCK: BMAL1 pathway. Such mechanisms vary for bacterial and viral infections, both well studied in the literature. However, less is known about the association of parasitic infections and fungal pathogens with circadian rhythm modulation. CONCLUSION It is shown that bidirectional relationships exist between circadian rhythm disruption and infectious process, which contains interplay between the host's and pathogens' circadian oscillator, immune response, and the influence of specific infectious. Further studies exploring the modulations of circadian rhythm and immunity can offer novel explanations of different susceptibilities to infection and can lead to therapeutic avenues in circadian immune modulation of infectious diseases.
Collapse
Affiliation(s)
- Helen Huang
- Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
| | - Aashna Mehta
- Faculty of Medicine, University of Debrecen, Debrecen, 4032 Hungary
| | | | - Ayush Anand
- B. P. Koirala Institute of Health Sciences, Dharan, Nepal
| | - Maria Chilo Bejarano
- Facultad de Ciencias de la Salud Humana, Universidad Autónoma Gabriel René Moreno, Santa Cruz de la Sierra, Bolivia
| | - Tulika Garg
- Government Medical College and Hospital, Chandigarh, India
| | - Nida Khan
- Jinnah Sindh Medical University, Karachi, Pakistan
| | - Gauvain Kankeu Tonpouwo
- Faculté de Médecine, Université de Lubumbashi, Plaine Tshombé, Lubumbashi, Democratic Republic of the Congo
| | | | - Mainak Bardhan
- ICMR-National Institute of Cholera and Enteric Diseases (NICED), Kolkata, India
| |
Collapse
|
43
|
Kalita E, Panda M, Prajapati VK. The interplay between circadian clock and viral infections: A molecular perspective. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 137:293-330. [PMID: 37709380 DOI: 10.1016/bs.apcsb.2023.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
The circadian clock influences almost every aspect of mammalian behavioral, physiological and metabolic processes. Being a hierarchical network, the circadian clock is driven by the central clock in the brain and is composed of several peripheral tissue-specific clocks. It orchestrates and synchronizes the daily oscillations of biological processes to the environment. Several pathological events are influenced by time and seasonal variations and as such implicate the clock in pathogenesis mechanisms. In context with viral infections, circadian rhythmicity is closely associated with host susceptibility, disease severity, and pharmacokinetics and efficacies of antivirals and vaccines. Leveraging the circadian molecular mechanism insights has increased our understanding of clock infection biology and proposes new avenues for viral diagnostics and therapeutics. In this chapter, we address the molecular interplay between the circadian clock and viral infections and discuss the importance of chronotherapy as a complementary approach to conventional medicines, emphasizing the significance of virus-clock studies.
Collapse
Affiliation(s)
- Elora Kalita
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Mamta Panda
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Vijay Kumar Prajapati
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, India..
| |
Collapse
|
44
|
Rosselot AE, Park M, Kim M, Matsu‐Ura T, Wu G, Flores DE, Subramanian KR, Lee S, Sundaram N, Broda TR, McCauley HA, Hawkins JA, Chetal K, Salomonis N, Shroyer NF, Helmrath MA, Wells JM, Hogenesch JB, Moore SR, Hong CI. Ontogeny and function of the circadian clock in intestinal organoids. EMBO J 2022; 41:e106973. [PMID: 34704277 PMCID: PMC8762567 DOI: 10.15252/embj.2020106973] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 09/30/2021] [Accepted: 10/11/2021] [Indexed: 12/19/2022] Open
Abstract
Circadian rhythms regulate diverse aspects of gastrointestinal physiology ranging from the composition of microbiota to motility. However, development of the intestinal circadian clock and detailed mechanisms regulating circadian physiology of the intestine remain largely unknown. In this report, we show that both pluripotent stem cell-derived human intestinal organoids engrafted into mice and patient-derived human intestinal enteroids possess circadian rhythms and demonstrate circadian phase-dependent necrotic cell death responses to Clostridium difficile toxin B (TcdB). Intriguingly, mouse and human enteroids demonstrate anti-phasic necrotic cell death responses to TcdB. RNA-Seq analysis shows that ~3-10% of the detectable transcripts are rhythmically expressed in mouse and human enteroids. Remarkably, we observe anti-phasic gene expression of Rac1, a small GTPase directly inactivated by TcdB, between mouse and human enteroids, and disruption of Rac1 abolishes clock-dependent necrotic cell death responses. Our findings uncover robust functions of circadian rhythms regulating clock-controlled genes in both mouse and human enteroids governing organism-specific, circadian phase-dependent necrotic cell death responses, and lay a foundation for human organ- and disease-specific investigation of clock functions using human organoids for translational applications.
Collapse
Affiliation(s)
- Andrew E Rosselot
- Department of Pharmacology & Systems PhysiologyUniversity of CincinnatiCincinnatiOHUSA
| | - Miri Park
- Department of Pharmacology & Systems PhysiologyUniversity of CincinnatiCincinnatiOHUSA
| | - Mari Kim
- Department of Pharmacology & Systems PhysiologyUniversity of CincinnatiCincinnatiOHUSA
| | - Toru Matsu‐Ura
- Department of Pharmacology & Systems PhysiologyUniversity of CincinnatiCincinnatiOHUSA
| | - Gang Wu
- Division of Human Genetics and ImmunobiologyCenter for ChronobiologyDepartment of PediatricsCincinnati Children’s Hospital Medical CenterCincinnatiOHUSA
| | - Danilo E Flores
- Division of Human Genetics and ImmunobiologyCenter for ChronobiologyDepartment of PediatricsCincinnati Children’s Hospital Medical CenterCincinnatiOHUSA
| | | | - Suengwon Lee
- Department of Pharmacology & Systems PhysiologyUniversity of CincinnatiCincinnatiOHUSA
| | - Nambirajan Sundaram
- Department of Pediatric SurgeryCincinnati Children’s Hospital Medical CenterCincinnatiOHUSA
| | - Taylor R Broda
- Center for Stem Cell and Organoid MedicineDivision of Developmental BiologyCincinnati Children’s Hospital Medical CenterCincinnatiOHUSA
| | - Heather A McCauley
- Center for Stem Cell and Organoid MedicineDivision of Developmental BiologyCincinnati Children’s Hospital Medical CenterCincinnatiOHUSA
| | - Jennifer A Hawkins
- Department of Pediatric SurgeryCincinnati Children’s Hospital Medical CenterCincinnatiOHUSA
| | - Kashish Chetal
- Division of Biomedical InformaticsCincinnati Children’s Hospital Medical CenterCincinnatiOHUSA
| | - Nathan Salomonis
- Division of Biomedical InformaticsCincinnati Children’s Hospital Medical CenterCincinnatiOHUSA
| | - Noah F Shroyer
- Gastroenterology and HepatologyBaylor College of MedicineHoustonTXUSA
| | - Michael A Helmrath
- Department of Pediatric SurgeryCincinnati Children’s Hospital Medical CenterCincinnatiOHUSA
- Center for Stem Cell and Organoid MedicineDivision of Developmental BiologyCincinnati Children’s Hospital Medical CenterCincinnatiOHUSA
| | - James M Wells
- Center for Stem Cell and Organoid MedicineDivision of Developmental BiologyCincinnati Children’s Hospital Medical CenterCincinnatiOHUSA
- Division of EndocrinologyCincinnati Children’s Hospital Medical CenterCincinnatiOHUSA
| | - John B Hogenesch
- Division of Human Genetics and ImmunobiologyCenter for ChronobiologyDepartment of PediatricsCincinnati Children’s Hospital Medical CenterCincinnatiOHUSA
- Center for ChronobiologyCincinnati Children’s Hospital Medical CenterCincinnatiOHUSA
| | - Sean R Moore
- Division of Pediatric Gastroenterology, Hepatology, and NutritionDepartment of PediatricsUniversity of Virginia School of MedicineCharlottesvilleVAUSA
| | - Christian I Hong
- Department of Pharmacology & Systems PhysiologyUniversity of CincinnatiCincinnatiOHUSA
- Center for Stem Cell and Organoid MedicineDivision of Developmental BiologyCincinnati Children’s Hospital Medical CenterCincinnatiOHUSA
- Center for ChronobiologyCincinnati Children’s Hospital Medical CenterCincinnatiOHUSA
- Division of Developmental BiologyCincinnati Children’s Hospital Medical CenterCincinnatiOHUSA
| |
Collapse
|
45
|
Papagerakis S, Said R, Ketabat F, Mahmood R, Pundir M, Lobanova L, Guenther G, Pannone G, Lavender K, McAlpin BR, Moreau A, Chen X, Papagerakis P. When the clock ticks wrong with COVID-19. Clin Transl Med 2022; 12:e949. [PMID: 36394205 PMCID: PMC9670202 DOI: 10.1002/ctm2.949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/06/2022] [Accepted: 06/11/2022] [Indexed: 11/18/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a member of the coronavirus family that causes the novel coronavirus disease first diagnosed in 2019 (COVID-19). Although many studies have been carried out in recent months to determine why the disease clinical presentations and outcomes can vary significantly from asymptomatic to severe or lethal, the underlying mechanisms are not fully understood. It is likely that unique individual characteristics can strongly influence the broad disease variability; thus, tailored diagnostic and therapeutic approaches are needed to improve clinical outcomes. The circadian clock is a critical regulatory mechanism orchestrating major physiological and pathological processes. It is generally accepted that more than half of the cell-specific genes in any given organ are under circadian control. Although it is known that a specific role of the circadian clock is to coordinate the immune system's steady-state function and response to infectious threats, the links between the circadian clock and SARS-CoV-2 infection are only now emerging. How inter-individual variability of the circadian profile and its dysregulation may play a role in the differences noted in the COVID-19-related disease presentations, and outcome remains largely underinvestigated. This review summarizes the current evidence on the potential links between circadian clock dysregulation and SARS-CoV-2 infection susceptibility, disease presentation and progression, and clinical outcomes. Further research in this area may contribute towards novel circadian-centred prognostic, diagnostic and therapeutic approaches for COVID-19 in the era of precision health.
Collapse
Affiliation(s)
- Silvana Papagerakis
- Laboratory of Oral, Head and Neck Cancer – Personalized Diagnostics and Therapeutics, College of MedicineUniversity of SaskatchewanSaskatoonSaskatchewanCanada,Department of Surgery, College of MedicineUniversity of SaskatchewanSaskatoonSaskatchewanCanada,Division of Biomedical EngineeringUniversity of SaskatchewanSaskatoonSaskatchewanCanada,Department of Biochemistry, Microbiology and Immunology, College of MedicineUniversity of SaskatchewanSaskatoonSaskatchewanCanada,Department of Otolaryngology – Head and Neck Surgery, Medical SchoolThe University of MichiganAnn ArborMichiganUSA
| | - Raed Said
- Laboratory of Oral, Head and Neck Cancer – Personalized Diagnostics and Therapeutics, College of MedicineUniversity of SaskatchewanSaskatoonSaskatchewanCanada,Department of Surgery, College of MedicineUniversity of SaskatchewanSaskatoonSaskatchewanCanada,Laboratory of Precision Oral Health and Chronobiology, College of DentistryUniversity of SaskatchewanSaskatoonSaskatchewanCanada,Department of Anatomy, Physiology and Pharmacology, College of MedicineUniversity of SaskatchewanSaskatoonSaskatchewanCanada
| | - Farinaz Ketabat
- Laboratory of Oral, Head and Neck Cancer – Personalized Diagnostics and Therapeutics, College of MedicineUniversity of SaskatchewanSaskatoonSaskatchewanCanada,Division of Biomedical EngineeringUniversity of SaskatchewanSaskatoonSaskatchewanCanada
| | - Razi Mahmood
- Laboratory of Oral, Head and Neck Cancer – Personalized Diagnostics and Therapeutics, College of MedicineUniversity of SaskatchewanSaskatoonSaskatchewanCanada,Department of Surgery, College of MedicineUniversity of SaskatchewanSaskatoonSaskatchewanCanada,Laboratory of Precision Oral Health and Chronobiology, College of DentistryUniversity of SaskatchewanSaskatoonSaskatchewanCanada
| | - Meenakshi Pundir
- Laboratory of Oral, Head and Neck Cancer – Personalized Diagnostics and Therapeutics, College of MedicineUniversity of SaskatchewanSaskatoonSaskatchewanCanada,Division of Biomedical EngineeringUniversity of SaskatchewanSaskatoonSaskatchewanCanada,Laboratory of Precision Oral Health and Chronobiology, College of DentistryUniversity of SaskatchewanSaskatoonSaskatchewanCanada
| | - Liubov Lobanova
- Laboratory of Precision Oral Health and Chronobiology, College of DentistryUniversity of SaskatchewanSaskatoonSaskatchewanCanada
| | - Greg Guenther
- Laboratory of Oral, Head and Neck Cancer – Personalized Diagnostics and Therapeutics, College of MedicineUniversity of SaskatchewanSaskatoonSaskatchewanCanada
| | - Giuseppe Pannone
- Anatomic Pathology Unit, Department of Clinic and Experimental MedicineUniversity of FoggiaFoggiaItaly
| | - Kerry Lavender
- Department of Biochemistry, Microbiology and Immunology, College of MedicineUniversity of SaskatchewanSaskatoonSaskatchewanCanada
| | - Blake R. McAlpin
- Laboratories of Neuroimmunology, Department of Symptom Research, Division of Internal MedicineThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Alain Moreau
- Viscogliosi Laboratory in Molecular Genetics of Musculoskeletal DiseasesCentre Hospitalier Universitaire (CHU) Sainte‐Justine Research CenterMontrealQuebecCanada,Department of Stomatology, Faculty of Dentistry and Department of Biochemistry and Molecular Medicine, Faculty of MedicineUniversité de MontréalMontrealQuebecCanada
| | - Xiongbiao Chen
- Division of Biomedical EngineeringUniversity of SaskatchewanSaskatoonSaskatchewanCanada,Department of Mechanical Engineering, School of EngineeringUniversity of SaskatchewanSaskatoonSaskatchewanCanada
| | - Petros Papagerakis
- Division of Biomedical EngineeringUniversity of SaskatchewanSaskatoonSaskatchewanCanada,Laboratory of Precision Oral Health and Chronobiology, College of DentistryUniversity of SaskatchewanSaskatoonSaskatchewanCanada
| |
Collapse
|
46
|
Ella K, Sűdy ÁR, Búr Z, Koós B, Kisiczki ÁS, Mócsai A, Káldi K. Time restricted feeding modifies leukocyte responsiveness and improves inflammation outcome. Front Immunol 2022; 13:924541. [PMID: 36405720 PMCID: PMC9666763 DOI: 10.3389/fimmu.2022.924541] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 09/30/2022] [Indexed: 11/05/2022] Open
Abstract
Time restricted eating, the dietary approach limiting food intake to a maximal 10-hour period of daytime is considered beneficial in metabolic dysfunctions, such as obesity and diabetes. Rhythm of food intake and parallel changes in serum nutrient levels are also important entrainment signals for the circadian clock, particularly in tissues involved in metabolic regulation. As both the metabolic state and the circadian clock have large impact on immune functions, we investigated in mice whether time restricted feeding (TRF) affects systemic inflammatory potential. TRF slackened the symptoms in K/BxN serum-transfer arthritis, an experimental model of human autoimmune joint inflammation. Compared to ad libitum conditions TRF reduced the expression of inflammatory mediators in visceral adipose tissue, an integrator and coordinator of metabolic and inflammatory processes. Furthermore, TRF strengthened the oscillation of peripheral leukocyte counts and alongside decreased the pool of both marginated and tissue leukocytes. Our data suggest that the altered leukocyte distribution in TRF mice is related to the attenuated expression of adhesion molecules on the surface of neutrophils and monocytes. We propose that TRF modifies both rhythm and inflammatory potential of leukocytes which contribute to the milder reactivity of the immune system and therefore time-restricted eating could serve as an effective complementary tool in the therapy of autoinflammatory processes.
Collapse
|
47
|
Otasowie CO, Tanner R, Ray DW, Austyn JM, Coventry BJ. Chronovaccination: Harnessing circadian rhythms to optimize immunisation strategies. Front Immunol 2022; 13:977525. [PMID: 36275731 PMCID: PMC9585312 DOI: 10.3389/fimmu.2022.977525] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
Vaccination, as a public health measure, offers effective protection of populations against infectious diseases. Optimising vaccination efficacy, particularly for higher-risk individuals, like the elderly whose immunocompromised state can prevent the development of robust vaccine responses, is vital. It is now clear that 24-hour circadian rhythms, which govern virtually all aspects of physiology, can generate oscillations in immunological responses. Consequently, vaccine efficacy may depend critically on the time of day of administration(s), including for Covid-19, current vaccines, and any future diseases or pandemics. Published clinical vaccine trials exploring diurnal immune variations suggest this approach could represent a powerful adjunct strategy for optimising immunisation, but important questions remain to be addressed. This review explores the latest insights into diurnal immune variation and the outcomes of circadian timing of vaccination or 'chronovaccination'.
Collapse
Affiliation(s)
| | - Rachel Tanner
- Wolfson College, University of Oxford, Oxford, United Kingdom
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Institute of Human Sciences, University of Oxford, Oxford, United Kingdom
| | - David W. Ray
- Wolfson College, University of Oxford, Oxford, United Kingdom
- National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, United Kingdom
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, United Kingdom
| | - Jonathan M. Austyn
- Wolfson College, University of Oxford, Oxford, United Kingdom
- Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Brendon J. Coventry
- Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
- Department of Surgery, University of Adelaide, Royal Adelaide Hospital, Adelaide, SA, Australia
| |
Collapse
|
48
|
Strickland BA, Rajagopala SV, Kamali A, Shilts MH, Pakala SB, Boukhvalova MS, Yooseph S, Blanco JCG, Das SR. Species-specific transcriptomic changes upon respiratory syncytial virus infection in cotton rats. Sci Rep 2022; 12:16579. [PMID: 36195733 PMCID: PMC9531660 DOI: 10.1038/s41598-022-19810-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 09/05/2022] [Indexed: 11/29/2022] Open
Abstract
The cotton rat (Sigmodon) is the gold standard pre-clinical small animal model for respiratory viral pathogens, especially for respiratory syncytial virus (RSV). However, without a reference genome or a published transcriptome, studies requiring gene expression analysis in cotton rats are severely limited. The aims of this study were to generate a comprehensive transcriptome from multiple tissues of two species of cotton rats that are commonly used as animal models (Sigmodon fulviventer and Sigmodon hispidus), and to compare and contrast gene expression changes and immune responses to RSV infection between the two species. Transcriptomes were assembled from lung, spleen, kidney, heart, and intestines for each species with a contig N50 > 1600. Annotation of contigs generated nearly 120,000 gene annotations for each species. The transcriptomes of S. fulviventer and S. hispidus were then used to assess immune response to RSV infection. We identified 238 unique genes that are significantly differentially expressed, including several genes implicated in RSV infection (e.g., Mx2, I27L2, LY6E, Viperin, Keratin 6A, ISG15, CXCL10, CXCL11, IRF9) as well as novel genes that have not previously described in RSV research (LG3BP, SYWC, ABEC1, IIGP1, CREB1). This study presents two comprehensive transcriptome references as resources for future gene expression analysis studies in the cotton rat model, as well as provides gene sequences for mechanistic characterization of molecular pathways. Overall, our results provide generalizable insights into the effect of host genetics on host-virus interactions, as well as identify new host therapeutic targets for RSV treatment and prevention.
Collapse
Affiliation(s)
- Britton A Strickland
- Department of Pathology Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Seesandra V Rajagopala
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, 1211 21st Avenue South, S2108 Medical Center North, Nashville, TN, 37232, USA
| | - Arash Kamali
- Sigmovir Biosystems Inc., 9610 Medical Center Drive, Suite 100, Rockville, MD, 20850, USA
| | - Meghan H Shilts
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, 1211 21st Avenue South, S2108 Medical Center North, Nashville, TN, 37232, USA
| | - Suman B Pakala
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, 1211 21st Avenue South, S2108 Medical Center North, Nashville, TN, 37232, USA
| | - Marina S Boukhvalova
- Sigmovir Biosystems Inc., 9610 Medical Center Drive, Suite 100, Rockville, MD, 20850, USA
| | - Shibu Yooseph
- Department of Computer Science, Genomics and Bioinformatics Cluster, University of Central Florida, Orlando, FL, USA
| | - Jorge C G Blanco
- Sigmovir Biosystems Inc., 9610 Medical Center Drive, Suite 100, Rockville, MD, 20850, USA.
| | - Suman R Das
- Department of Pathology Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA.
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, 1211 21st Avenue South, S2108 Medical Center North, Nashville, TN, 37232, USA.
| |
Collapse
|
49
|
Faraut B, Cordina-Duverger E, Aristizabal G, Drogou C, Gauriau C, Sauvet F, Lévi F, Léger D, Guénel P. Immune disruptions and night shift work in hospital healthcare professionals: The intricate effects of social jet-lag and sleep debt. Front Immunol 2022; 13:939829. [PMID: 36164341 PMCID: PMC9509137 DOI: 10.3389/fimmu.2022.939829] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/29/2022] [Indexed: 12/03/2022] Open
Abstract
Objectives We aimed to examine the effects of circadian and sleep rhythm disruptions on immune biomarkers among hospital healthcare professionals working night shifts and rotating day shifts. Methods Hospital nurses working either as permanent night shifters (n=95) or as day shifters rotating between morning and afternoon shifts (n=96) kept a daily diary on their sleep and work schedules over a full working week. Blood samples were collected at the beginning and end of the last shift during the week, and participants were categorized into three groups based on work shift: morning shift (39 day shifters sampled at 7:00 and 14:00), afternoon shift (57 day shifters sampled at 14:00 and 21:00), and night shift (95 night shifters sampled at 21:00 and 7:00). Circulating blood counts in immune cells, interleukin-6 and C-reactive protein concentrations as well as total sleep time per 24 hours during work days (TST24w) and free days (TST24f), sleep debt (TST24f - TST24w) and social jet-lag (a behavioral proxy of circadian misalignment) were assessed. Results Compared with day shifters, night shifters had shorter sleep duration (TST24w=5.4 ± 1.4h), greater sleep debt (3.2 ± 1.4 h) and social jet-lag (6.7 ± 2.4 h). Variations of immune biomarkers concentrations were consistent with the expected diurnal variations among day shifters (i.e., low level in the morning, increase during the day, peak value in the evening). By contrast, in night shifters, blood concentrations of total lymphocytes, T-helper cells, cytotoxic T-cells, memory B-cells and interleukin-6 were lower at 21:00, increased during the night, and reached higher values at 7:00. Multivariate analyses ruled out significant impact of TST24w, sleep debt, and social jet-lag on immune biomarkers concentrations among day shifters. In contrast, among night shifters, multivariate analyses indicated a combined effect of total sleep time (TST24w), sleep debt and social jet-lag for total lymphocytes and T-helper cells but only a social jet-lag effect for interleukin-6 and a single total sleep time effect for neutrophil and B-Cells. Conclusions Altogether, our results point to intricate response patterns of immune rhythms to circadian misalignment and sleep debt in night shifters. Specifically, these altered pattern expressions of immune cells may increase vulnerability to infections and reduce vaccination efficiency in night workers.
Collapse
Affiliation(s)
- Brice Faraut
- Université Paris Cité, VIFASOM (UPR 7330 Vigilance Fatigue, Sommeil et Santé Publique), Paris, France
- APHP, APHP-Centre Université de Paris, Hôtel Dieu, Centre du Sommeil et de La Vigilance, Paris, France
| | - Emilie Cordina-Duverger
- Inserm, CESP (Center for research in Epidemiology and Population Health), Team Exposome and Heredity, University Paris-Saclay, Gustave-Roussy, Villejuif, France
| | - Guillen Aristizabal
- Inserm, CESP (Center for research in Epidemiology and Population Health), Team Exposome and Heredity, University Paris-Saclay, Gustave-Roussy, Villejuif, France
| | - Catherine Drogou
- Université Paris Cité, VIFASOM (UPR 7330 Vigilance Fatigue, Sommeil et Santé Publique), Paris, France
- Institut de Recherche Biomédicale des Armées (IRBA), Unité Fatigue et Vigilance, Brétigny sur Orge, France
| | - Caroline Gauriau
- Université Paris Cité, VIFASOM (UPR 7330 Vigilance Fatigue, Sommeil et Santé Publique), Paris, France
- APHP, APHP-Centre Université de Paris, Hôtel Dieu, Centre du Sommeil et de La Vigilance, Paris, France
| | - Fabien Sauvet
- Université Paris Cité, VIFASOM (UPR 7330 Vigilance Fatigue, Sommeil et Santé Publique), Paris, France
- Institut de Recherche Biomédicale des Armées (IRBA), Unité Fatigue et Vigilance, Brétigny sur Orge, France
| | - Francis Lévi
- UPR “Chronothérapie, Cancers, et Transplantation”, Faculté de Médecine, Université Paris-Saclay, Villejuif, France
- Hepato-Biliary Center, Hôpital Paul Brousse, Villejuif, France
- Cancer Chronotherapy Team, Cancer Research Centre, Division of Biomedical Sciences, Warwick Medical School, Coventry, United Kingdom
| | - Damien Léger
- Université Paris Cité, VIFASOM (UPR 7330 Vigilance Fatigue, Sommeil et Santé Publique), Paris, France
- APHP, APHP-Centre Université de Paris, Hôtel Dieu, Centre du Sommeil et de La Vigilance, Paris, France
| | - Pascal Guénel
- Inserm, CESP (Center for research in Epidemiology and Population Health), Team Exposome and Heredity, University Paris-Saclay, Gustave-Roussy, Villejuif, France
| |
Collapse
|
50
|
Time-of-Day Variation in SARS-CoV-2 RNA Levels during the Second Wave of COVID-19. Viruses 2022; 14:v14081728. [PMID: 36016350 PMCID: PMC9413669 DOI: 10.3390/v14081728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/25/2022] [Accepted: 08/02/2022] [Indexed: 11/17/2022] Open
Abstract
Circadian rhythms influence and coordinate an organism's response to its environment and to invading pathogens. We studied the diurnal variation in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA in nasal/throat swabs collected in late 2020 to spring 2021 in a population immunologically naïve to SARS-CoV-2 and prior to widespread vaccination. SARS-CoV-2 diagnostic PCR data from 1698 participants showed a significantly higher viral load in samples obtained in the afternoon, in males, and in hospitalised patients when linear mixed modelling was applied. This study illustrates the importance of recording sample collection times when measuring viral replication parameters in clinical and research studies.
Collapse
|