1
|
Abdullah CN, Liu M, Chen Q, Gao S, Zhang C, Liu S, Zhou J. Efficient production of astaxanthin in Yarrowia lipolytica through metabolic and enzyme engineering. Synth Syst Biotechnol 2025; 10:737-750. [PMID: 40248487 PMCID: PMC12002715 DOI: 10.1016/j.synbio.2025.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/16/2025] [Accepted: 02/21/2025] [Indexed: 04/19/2025] Open
Abstract
Astaxanthin is a natural red carotenoid, commonly used as an additive in the pharmaceutical industry and as a nutritional supplement owing to its notable antioxidant benefits. However, a complex biosynthetic pathway poses a challenge to de novo biosynthesis of astaxanthin. Here, Yarrowia lipolytica was engineered through multiple strategies for high level production of astaxanthin using a cheap mineral medium. For the production of β-carotene, a platform strain was constructed in which 411.7 mg/L of β-carotene was produced at a shake-flask level. Integration of algal β-carotene ketolase and β-carotene hydroxylase led to the production of 12.3 mg/L of astaxanthin. Furthermore, construction of HpBKT and HpCrtZ as a single enzyme complex along with the enhanced catalytic activity of the enzymes led to the accumulation of 41.0 mg/L of astaxanthin. Iterative gene integration into the genome and direction of the astaxanthin production pathway into sub-organelles substantially increased astaxanthin production (172.1 mg/L). Finally, restoration of the auxotrophic markers and medium optimization further improved astaxanthin production to 237.3 mg/L. The aforementioned approaches were employed in fed-batch fermentation to produce 2820 mg/L of astaxanthin (229-fold improvement regarding the starter strain), with an average productivity of 434 mg/L/d and a yield of 5.6 mg/g glucose, which is the highest reported productivity in Y. lipolytica.
Collapse
Affiliation(s)
- Chalak Najat Abdullah
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Department of Biology, College of Science, University of Sulaimani, 46001, Sulaimaniyah, Kurdistan region, Iraq
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Mengsu Liu
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Qihang Chen
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Song Gao
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Changtai Zhang
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Shike Liu
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Jingwen Zhou
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| |
Collapse
|
2
|
Batianis C, van Rosmalen RP, Moñino Fernández P, Labanaris K, Asin-Garcia E, Martin-Pascual M, Jeschek M, Weusthuis RA, Suarez-Diez M, Martins Dos Santos VAP. Computer-assisted multilevel optimization of malonyl-CoA availability in Pseudomonas putida. Metab Eng 2025; 90:165-177. [PMID: 40107409 DOI: 10.1016/j.ymben.2025.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 02/21/2025] [Accepted: 03/11/2025] [Indexed: 03/22/2025]
Abstract
Malonyl-CoA is the major precursor for the biosynthesis of diverse industrially valuable products such as fatty acids/alcohols, flavonoids, and polyketides. However, its intracellular availability is limited in most microbial hosts, hampering the industrial production of such chemicals. To address this limitation, we present a multilevel optimization workflow using modern metabolic engineering technologies to systematically increase the malonyl-CoA levels in Pseudomonas putida. The workflow involves the identification of gene downregulations, chassis selection, and optimization of the acetyl-CoA carboxylase complex through ribosome binding site engineering. Computational tools and high-throughput screening with a malonyl-CoA biosensor enabled the rapid evaluation of numerous genetic targets. Combining the most beneficial targets led to a 5.8-fold enhancement in the production titer of the valuable polyketide phloroglucinol. This study demonstrates the effective integration of computational and genetic technologies for engineering P. putida, opening new avenues for the development of industrially relevant strains and the investigation of fundamental biological questions.
Collapse
Affiliation(s)
- Christos Batianis
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, 6708 WE, the Netherlands; Bioprocess Engineering, Wageningen University & Research, Wageningen, 6708 PB, the Netherlands
| | - Rik P van Rosmalen
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, 6708 WE, the Netherlands
| | - Pedro Moñino Fernández
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, 6708 WE, the Netherlands; Bioprocess Engineering, Wageningen University & Research, Wageningen, 6708 PB, the Netherlands
| | - Konstantinos Labanaris
- Bioprocess Engineering, Wageningen University & Research, Wageningen, 6708 PB, the Netherlands
| | - Enrique Asin-Garcia
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, 6708 WE, the Netherlands; Bioprocess Engineering, Wageningen University & Research, Wageningen, 6708 PB, the Netherlands
| | - Maria Martin-Pascual
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, 6708 WE, the Netherlands; Bioprocess Engineering, Wageningen University & Research, Wageningen, 6708 PB, the Netherlands
| | - Markus Jeschek
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, CH-4058, Switzerland; Institute of Microbiology, Synthetic Microbiology Group, University of Regensburg, Regensburg D-93053, Germany
| | - Ruud A Weusthuis
- Bioprocess Engineering, Wageningen University & Research, Wageningen, 6708 PB, the Netherlands
| | - Maria Suarez-Diez
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, 6708 WE, the Netherlands
| | - Vitor A P Martins Dos Santos
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, 6708 WE, the Netherlands; Bioprocess Engineering, Wageningen University & Research, Wageningen, 6708 PB, the Netherlands; LifeGlimmer GmbH, Berlin, 12163, Germany.
| |
Collapse
|
3
|
Taratynova MO, Tarasov IM, Fedyaeva IM, Dementev DA, Gorchakova VA, Tarasova MA, Fedorov AS, Yuzbashev TV, Sineoky SP, Yuzbasheva EY. A Two-Step Process for Converting Methane to Canthaxanthin Using Methylococcus capsulatus (Bath) Biomass and Engineered Yarrowia lipolytica. Biotechnol J 2025; 20:e70043. [PMID: 40490979 DOI: 10.1002/biot.70043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 04/22/2025] [Accepted: 05/07/2025] [Indexed: 06/11/2025]
Abstract
Methane biotransformation is gaining attention for the bio-industry and environmental protection. This study presents an approach for converting methane to canthaxanthin using Methylococcus capsulatus biomass and Yarrowia lipolytica. Y. lipolytica was engineered to introduce the canthaxanthin biosynthesis pathway, increase the acetyl-CoA flux, and boost hexose catabolism. In methanotroph-derived medium with molasses, canthaxanthin titer reached 1.2 g/L, advancing cost-effective, sustainable bioproduction.
Collapse
Affiliation(s)
| | - Ivan M Tarasov
- NRC "Kurchatov Institute", Kurchatov Genomic Center, Moscow, Russia
| | | | | | | | | | | | | | - Sergey P Sineoky
- NRC "Kurchatov Institute", Kurchatov Genomic Center, Moscow, Russia
| | | |
Collapse
|
4
|
Sha Y, Ge M, Lu M, Xu Z, Zhai R, Jin M. Advances in metabolic engineering for enhanced acetyl-CoA availability in yeast. Crit Rev Biotechnol 2025; 45:904-922. [PMID: 39266266 DOI: 10.1080/07388551.2024.2399542] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 07/21/2024] [Accepted: 08/21/2024] [Indexed: 09/14/2024]
Abstract
Acetyl-CoA is an intermediate metabolite in cellular central metabolism. It's a precursor for various valuable commercial products, including: terpenoids, fatty acids, and polyketides. With the advancement of metabolic and synthetic biology tools, microbial cell factories have been constructed for the efficient synthesis of acetyl-CoA and derivatives, with the Saccharomyces cerevisiae and Yarrowia lipolytica as two prominent chassis. This review summarized the recent developments in the biosynthetic pathways and metabolic engineering approaches for acetyl-CoA and its derivatives synthesis in these two yeasts. First, the metabolic routes involved in the biosynthesis of acetyl-CoA and derived products were outlined. Then, the advancements in metabolic engineering strategies for channeling acetyl-CoA toward the desired products were summarized, with particular emphasis on: enhancing metabolic flux in different organelles, refining precursor CoA synthesis, optimizing substrate utilization, and modifying protein acetylation level. Finally, future developments in advancing the metabolic engineering strategies for acetyl-CoA and related derivatives synthesis, including: reducing CO2 emissions, dynamically regulating metabolic pathways, and exploring the regulatory functions between acetyl-CoA levels and protein acetylation, are highlighted. This review provided new insights into regulating acetyl-CoA synthesis to create more effective microbial cell factories for bio-manufacturing.
Collapse
Affiliation(s)
- Yuanyuan Sha
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
- Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing, China
| | - Mianshen Ge
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
- Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing, China
| | - Minrui Lu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
- Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing, China
| | - Zhaoxian Xu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
- Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing, China
| | - Rui Zhai
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
- Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing, China
| | - Mingjie Jin
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
- Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing, China
| |
Collapse
|
5
|
Lee D, Park H, Kim JE, Kim Y, Park JH, Lee H, Yoon BH, Han B, Jung JY, Cha S, Lee P, Hahn JS. Engineering Yarrowia lipolytica for enhanced lipid productivity in nutrient-rich conditions: A scalable approach to microbial lipid production. Metab Eng 2025; 91:302-312. [PMID: 40374028 DOI: 10.1016/j.ymben.2025.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 04/25/2025] [Accepted: 05/09/2025] [Indexed: 05/17/2025]
Abstract
Climate change is reducing crop yields and increasing price volatility for commodities like cocoa and palm oil, thereby driving the need for sustainable alternatives such as microbial lipid production. The oleaginous yeast Yarrowia lipolytica is a promising platform for lipid synthesis. However, its lipid accumulation has traditionally relied on nitrogen limitation, posing challenges for achieving high yields under nutrient-rich conditions. In this study, we engineered Y. lipolytica to enhance lipid accumulation and productivity in nutrient-rich environments. Key modifications included deleting MHY1 to prevent filamentous growth, overexpressing triacylglycerol (TAG) biosynthetic genes, disrupting fatty acid degradation, and redirecting phosphatidic acid flux toward TAG biosynthesis by reducing phospholipid production through OPI3 deletion and CDS1 mutation. Furthermore, deletion of CEX1 to block citrate excretion significantly enhanced lipid accumulation. The resulting strain, CJ0415, achieved a lipid production of 54.6 g/L with a lipid content of 45.8 % and a record lipid productivity of 2.06 g/L/h under nutrient-rich conditions in a 5-L fermenter, representing a 2.6-fold increase compared to nitrogen-limited conditions. These findings underscore the potential of Y. lipolytica as a robust platform for scalable, industrial lipid production under nutrient-rich conditions.
Collapse
Affiliation(s)
- Dongpil Lee
- CJ BIO Research Institute, CJ CheilJedang, Suwon, 16495, Republic of Korea
| | - Hyemin Park
- CJ BIO Research Institute, CJ CheilJedang, Suwon, 16495, Republic of Korea
| | - Jae-Eung Kim
- CJ BIO Research Institute, CJ CheilJedang, Suwon, 16495, Republic of Korea
| | - Yeonsoo Kim
- CJ BIO Research Institute, CJ CheilJedang, Suwon, 16495, Republic of Korea
| | - Joo Hyun Park
- CJ BIO Research Institute, CJ CheilJedang, Suwon, 16495, Republic of Korea
| | - Hyesoo Lee
- CJ BIO Research Institute, CJ CheilJedang, Suwon, 16495, Republic of Korea
| | - Byoung Hoon Yoon
- CJ BIO Research Institute, CJ CheilJedang, Suwon, 16495, Republic of Korea
| | - Boyoung Han
- CJ BIO Research Institute, CJ CheilJedang, Suwon, 16495, Republic of Korea
| | - Joon Young Jung
- CJ BIO Research Institute, CJ CheilJedang, Suwon, 16495, Republic of Korea
| | - Seungwoo Cha
- Department of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Peter Lee
- CJ BIO Research Institute, CJ CheilJedang, Suwon, 16495, Republic of Korea.
| | - Ji-Sook Hahn
- Department of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
| |
Collapse
|
6
|
Kobalter S, Wriessnegger T, Pichler H. Engineering yeast for tailored fatty acid profiles. Appl Microbiol Biotechnol 2025; 109:101. [PMID: 40263140 PMCID: PMC12014800 DOI: 10.1007/s00253-025-13487-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 04/07/2025] [Accepted: 04/08/2025] [Indexed: 04/24/2025]
Abstract
The demand for sustainable and eco-friendly alternatives to fossil and plant oil-derived chemicals has spurred interest in microbial production of lipids, particularly triacylglycerols, fatty acids, and their derivatives. Yeasts are promising platforms for synthesizing these compounds due to their high lipid accumulation capabilities, robust growth, and generally recognized as safe (GRAS) status. There is vast interest in fatty acid and triacylglycerol products with tailored fatty acid chain lengths and compositions, such as polyunsaturated fatty acids and substitutes for cocoa butter and palm oil. However, microbes naturally produce a limited set of mostly long-chain fatty acids, necessitating the development of microbial cell factories with customized fatty acid profiles. This review explores the capabilities of key enzymes involved in fatty acid and triacylglycerol synthesis, including fatty acid synthases, desaturases, elongases, and acyltransferases. It discusses factors influencing fatty acid composition and presents engineering strategies to enhance fatty acid synthesis. Specifically, we highlight successful engineering approaches to modify fatty acid profiles in triacylglycerols and produce tailored fatty acids, and we offer recommendations for host selection to streamline engineering efforts. KEY POINTS: • Detailed overview on all basic aspects of fatty acid metabolism in yeast • Comprehensive description of fatty acid profile tailoring in yeast • Extensive summary of applying tailored fatty acid profiles in production processes.
Collapse
Affiliation(s)
- Simon Kobalter
- Austrian Centre of Industrial Biotechnology (acib) GmbH, Petersgasse 14, 8010, Graz, Austria
| | - Tamara Wriessnegger
- Austrian Centre of Industrial Biotechnology (acib) GmbH, Petersgasse 14, 8010, Graz, Austria
| | - Harald Pichler
- Austrian Centre of Industrial Biotechnology (acib) GmbH, Petersgasse 14, 8010, Graz, Austria.
- Institute of Molecular Biotechnology, Graz University of Technology, NAWI Graz, BioTechMed Graz, Petersgasse 14, 8010, Graz, Austria.
| |
Collapse
|
7
|
Chen Y, Li M, Liu X, Duan Q, Xiao L, Wang L, Huang C, Song H, Cao Y. Establishment of CRISPR-STAR System to Realise Simultaneous Transcriptional Activation and Repression in Yarrowia lipolytica. Microb Biotechnol 2025; 18:e70151. [PMID: 40275527 PMCID: PMC12021669 DOI: 10.1111/1751-7915.70151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 04/09/2025] [Accepted: 04/14/2025] [Indexed: 04/26/2025] Open
Abstract
The ability to regulate gene expression in multiple directions is crucial to maximise the production of microbial cell factories. However, the lack of a regulatory tool that can simultaneously activate and repress multiple genes restricts the manipulation diversity of Yarrowia lipolytica, which is an industrial workhorse for bioproduction. To address this issue, we developed a CRISPR scaffold RNAs (scRNAs)-mediated transcriptional activation and repression (CRISPR-STAR) platform. Firstly, we evaluated different methods for bidirectional regulation using CRISPR on both endogenous and synthetic promoters in Y. lipolytica, and chose the utilisation of orthogonal scRNAs to recruit activation and inhibition domains. Secondly, CRISPR-STAR was optimised by the introduction of alternative dCas proteins, scRNA structures and activators. 2.6-fold and 54.9-fold activation were achieved for synthetic and endogenous promoters, respectively, when the VPR transcriptional activator was recruited via MS2 hairpin. The repression of several genes was successfully achieved, with repression levels ranging from 3% to 32%, when the MXI1 transcriptional repressor was recruited via PP7 hairpin. Finally, CRISPR-STAR was applied to enhance fatty alcohol production by activating the FAR gene (encodes fatty acyl-CoA reductase) and repression of the PEX10 gene (encodes an integral membrane protein required for peroxisome biogenesis and matrix protein import). Compared to the non-targeting control, the bidirectionally regulated strain showed a 55.7% increase in yield to 778.8 mg/L. Our findings demonstrate that the CRISPR-STAR platform enables multi-mode regulation of genes, offering engineering opportunities to improve the productive performance of Y. lipolytica.
Collapse
Affiliation(s)
- Yaru Chen
- State Key Laboratory of Synthetic BiologyTianjin UniversityTianjinChina
- College of Life and Health SciencesNortheastern UniversityShenyangChina
| | - Mengxu Li
- State Key Laboratory of Synthetic BiologyTianjin UniversityTianjinChina
| | - Xuanwei Liu
- State Key Laboratory of Synthetic BiologyTianjin UniversityTianjinChina
| | - Qiyang Duan
- State Key Laboratory of Synthetic BiologyTianjin UniversityTianjinChina
| | - Lin Xiao
- State Key Laboratory of Synthetic BiologyTianjin UniversityTianjinChina
| | - Luxin Wang
- State Key Laboratory of Synthetic BiologyTianjin UniversityTianjinChina
| | - Congcong Huang
- State Key Laboratory of Synthetic BiologyTianjin UniversityTianjinChina
| | - Hao Song
- State Key Laboratory of Synthetic BiologyTianjin UniversityTianjinChina
- College of Life and Health SciencesNortheastern UniversityShenyangChina
| | - Yingxiu Cao
- State Key Laboratory of Synthetic BiologyTianjin UniversityTianjinChina
| |
Collapse
|
8
|
Fang L, Hao X, Fan J, Liu X, Chen Y, Wang L, Huang X, Song H, Cao Y. Genome-scale CRISPRi screen identifies pcnB repression conferring improved physiology for overproduction of free fatty acids in Escherichia coli. Nat Commun 2025; 16:3060. [PMID: 40157940 PMCID: PMC11954867 DOI: 10.1038/s41467-025-58368-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 03/18/2025] [Indexed: 04/01/2025] Open
Abstract
Microbial physiology plays a pivotal role in construction of superior microbial cell factories for efficient biosynthesis of desired products. Here we identify that pcnB repression confers improved physiology for overproduction of free fatty acids (FFAs) in Escherichia coli through genome-scale CRISPRi modulation combining fluorescence-activated cell sorting (FACS) and next-generation sequencing (NGS). The repression of pcnB can enhance the stability and abundance of the transcripts of genes involved in the proton-consuming system, thereby supporting global improvements in membrane properties, redox state, and energy level. Based on pcnB repression, further repression of acrD increases FFAs biosynthesis by enhancing FFAs efflux. The engineered strain pcnBi-acrDi-fadR+ achieves 35.1 g L-1 FFAs production in fed-batch fermentation, which is the maximum titer reported to date in E. coli. This study highlights the significance of uncovering hidden genetic determinants that confer improved microbial physiology for enhancing the biosynthesis of desired products.
Collapse
Affiliation(s)
- Lixia Fang
- State Key Laboratory of Synthetic Biology, Tianjin University, Tianjin, China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin, China
| | - Xueyan Hao
- State Key Laboratory of Synthetic Biology, Tianjin University, Tianjin, China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin, China
| | - Jie Fan
- State Key Laboratory of Synthetic Biology, Tianjin University, Tianjin, China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin, China
| | - Xiaolei Liu
- State Key Laboratory of Synthetic Biology, Tianjin University, Tianjin, China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin, China
| | - Yaru Chen
- State Key Laboratory of Synthetic Biology, Tianjin University, Tianjin, China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin, China
| | - Lian Wang
- State Key Laboratory of Synthetic Biology, Tianjin University, Tianjin, China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin, China
| | - Xiaoying Huang
- State Key Laboratory of Synthetic Biology, Tianjin University, Tianjin, China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin, China
| | - Hao Song
- State Key Laboratory of Synthetic Biology, Tianjin University, Tianjin, China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin, China
| | - Yingxiu Cao
- State Key Laboratory of Synthetic Biology, Tianjin University, Tianjin, China.
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.
- Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin, China.
| |
Collapse
|
9
|
Reķēna A, Pals K, Gavrilović S, Lahtvee PJ. The role of ATP citrate lyase, phosphoketolase, and malic enzyme in oleaginous Rhodotorula toruloides. Appl Microbiol Biotechnol 2025; 109:77. [PMID: 40156749 PMCID: PMC11954720 DOI: 10.1007/s00253-025-13454-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/21/2025] [Accepted: 03/11/2025] [Indexed: 04/01/2025]
Abstract
Rhodotorula toruloides is an oleaginous yeast recognized for its robustness and the production of high content of neutral lipids. Early biochemical studies have linked ATP citrate lyase (ACL), phosphoketolase (PK), and cytosolic malic enzyme (cMAE) with de novo lipid synthesis. In this study, we discovered that upon a CRISPR/Cas9-mediated knockout of the ACL gene, lipid content in R. toruloides IFO0880 decreased from 50 to 9% of its dry cell weight (DCW) in glucose medium and caused severe growth defects (reduced specific growth rate, changes in cell morphology). In xylose medium, the lipid content decreased from 43 to 38% of DCW. However, when grown on acetate as the sole carbon source, the lipid content decreased from 45 to 20% of DCW. Significant growth defects as a result of ACL knockout were observed on all substrates. In contrast, PK knockout resulted in no change in growth or lipid synthesis. Knocking out cMAE gene resulted in lipid increase of 2.9% of DCW and 23% increase in specific growth rate on glucose. In xylose or acetate medium, no change in lipid production as a result of cMAE gene knockout was observed. These results demonstrated that ACL plays a crucial role in lipid synthesis in R. toruloides IFO0880, as opposed to PK pathway or cMAE, whose presence in some conditions even disfavors lipid production. These results provided valuable information for future metabolic engineering of R. toruloides. KEY POINTS: • ACL is crucial for the fatty acid synthesis and growth in R. toruloides IFO0880. • Lipid production and cell growth is are unchanged as a result of PK knockout. • Cytosolic malic enzyme does not play a significant role in lipogenesis.
Collapse
Affiliation(s)
- Alīna Reķēna
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Kristjan Pals
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Srðan Gavrilović
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Petri-Jaan Lahtvee
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia.
| |
Collapse
|
10
|
Mai J, Liu A, Li W, Lin L, Sun ML, Wang K, Ji XJ. Biotechnological Production of Carotenoids Using Yarrowia lipolytica. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:7034-7045. [PMID: 40079666 DOI: 10.1021/acs.jafc.4c11251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
Carotenoids are a group of tetraterpenoid natural products with a variety of physiological activities, which led to their application in food, cosmetics, agriculture, and other industries with broad market prospects. The fermentation of carotenoids using engineered microbial hosts has emerged as an efficient, sustainable, and environmentally friendly production method with significant potential for further development. Yarrowia lipolytica (Y. lipolytica), an unconventional oleaginous yeast, has intrinsic advantages as a host strain for the production of carotenoids. This review outlines the functions of some well-studied carotenoids, including lycopene, β-carotene, and astaxanthin. Furthermore, the biotechnological strategies for carotenoid production in Y. lipolytica are categorized and summarized. Finally, potentially feasible future strategies for further improvement of carotenoid production in Y. lipolytica are also prospected.
Collapse
Affiliation(s)
- Jie Mai
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Aiqi Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Wenjuan Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Lu Lin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Mei-Li Sun
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Kaifeng Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Xiao-Jun Ji
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| |
Collapse
|
11
|
Hao C, Hu K, Xie J, Tong X, Zhang X, Qi Z, Tang S. Recent Advancements in the Biomanufacturing of Crocetin and Crocins: Key Enzymes and Metabolic Engineering. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:6400-6415. [PMID: 40056449 DOI: 10.1021/acs.jafc.4c12576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2025]
Abstract
Crocetin and crocins are high-value apocarotenoids recognized for their role as food colorants as well as for their numerous industrial and therapeutic applications. Biotechnological platforms have the potential to replace traditional plant-based extraction of these compounds with a more sustainable approach. This review first introduced the catalytic characteristics of key enzymes involved in the biosynthetic pathway of crocetin and crocins, including carotenoid cleavage dioxygenases, aldehyde dehydrogenases, and uridine diphosphate glycosyltransferases. Next, we highlighted advanced metabolic engineering strategies aimed at enhancing crocetin and crocin production, such as increasing the pool of precursors and cofactors, protein mining and engineering, tuning protein expression, biosensor, genomic integration, and process optimization. Finally, the paper proposed potential strategies and tools associated with further boosting the heterologous production of crocetin and crocins to meet commercial-scale demands.
Collapse
Affiliation(s)
- Chengpeng Hao
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, China
| | - Kefa Hu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, China
| | - Jingcong Xie
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing, Jiangsu 210042, China
| | - Xinyi Tong
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Xiaomeng Zhang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhipeng Qi
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, China
| | - Shaoheng Tang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, China
| |
Collapse
|
12
|
Tran PHN, Lee TS. Harnessing organelle engineering to facilitate biofuels and biochemicals production in yeast. J Microbiol 2025; 63:e2501006. [PMID: 40195834 DOI: 10.71150/jm.2501006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 02/13/2025] [Indexed: 04/09/2025]
Abstract
Microbial biosynthesis using yeast species offers numerous advantages to produce industrially relevant biofuels and biochemicals. Conventional metabolic engineering approaches in yeast focus on biosynthetic pathways in the cytoplasm, but these approaches are disturbed by various undesired factors including metabolic crosstalk, competing pathways and insufficient precursors. Given that eukaryotic cells contain subcellular organelles with distinct physicochemical properties, an emerging strategy to overcome cytosolic pathway engineering bottlenecks is through repurposing these organelles as specialized microbial cell factories for enhanced production of valuable chemicals. Here, we review recent progress and significant outcomes of harnessing organelle engineering for biofuels and biochemicals production in both conventional and non-conventional yeasts. We highlight key engineering strategies for the compartmentalization of biosynthetic pathways within specific organelles such as mitochondria, peroxisomes, and endoplasmic reticulum; involved in engineering of signal peptide, cofactor and energy enhancement, organelle biogenesis and dual subcellular engineering. Finally, we discuss the potential and challenges of organelle engineering for future studies and propose an automated pipeline to fully exploit this approach.
Collapse
Affiliation(s)
- Phuong Hoang Nguyen Tran
- Joint BioEnergy Institute, Emeryville 94608, CA, USA
- Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley 94720, CA, USA
| | - Taek Soon Lee
- Joint BioEnergy Institute, Emeryville 94608, CA, USA
- Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley 94720, CA, USA
| |
Collapse
|
13
|
Rafieenia R, Klemm C, Hapeta P, Fu J, García MG, Ledesma-Amaro R. Designing synthetic microbial communities with the capacity to upcycle fermentation byproducts to increase production yields. Trends Biotechnol 2025; 43:601-619. [PMID: 39603879 DOI: 10.1016/j.tibtech.2024.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/20/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024]
Abstract
Microbial cell factories, which convert feedstocks into a product of value, have the potential to help transition toward a bio-based economy with more sustainable ways to produce food, fuels, chemicals, and materials. One common challenge found in most bioconversions is the co-production, together with the product of interest, of undesirable byproducts or overflow metabolites. Here, we designed a strategy based on synthetic microbial communities to address this issue and increase overall production yields. To achieve our goal, we created a Yarrowia lipolytica co-culture comprising a wild-type (WT) strain that consumes glucose to make biomass and citric acid (CA), and an 'upcycler' strain, which consumes the CA produced by the WT strain. The co-culture produced up to two times more β-carotene compared with the WT monoculture using either minimal medium or hydrolysate. The proposed strategy has the potential to be applied to other bioprocesses and organisms.
Collapse
Affiliation(s)
- Razieh Rafieenia
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK; Imperial College Centre for Synthetic Biology, Imperial College London, London, SW7 2AZ, UK; The Microbial Food Hub, Imperial College London, London, SW7 2AZ, UK; Bezos Centre for Sustainable Protein, Imperial College, London, SW7 2AZ, UK
| | - Cinzia Klemm
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK; Imperial College Centre for Synthetic Biology, Imperial College London, London, SW7 2AZ, UK; The Microbial Food Hub, Imperial College London, London, SW7 2AZ, UK; Bezos Centre for Sustainable Protein, Imperial College, London, SW7 2AZ, UK
| | - Piotr Hapeta
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK; Imperial College Centre for Synthetic Biology, Imperial College London, London, SW7 2AZ, UK; London Biofoundry, Translation and Innovation Hub, Imperial College White City Campus, London, UK
| | - Jing Fu
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK; Imperial College Centre for Synthetic Biology, Imperial College London, London, SW7 2AZ, UK; The Microbial Food Hub, Imperial College London, London, SW7 2AZ, UK; Bezos Centre for Sustainable Protein, Imperial College, London, SW7 2AZ, UK
| | - María Gallego García
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK; Imperial College Centre for Synthetic Biology, Imperial College London, London, SW7 2AZ, UK; Advanced Biofuels and Bioproducts Unit, Department of Energy, CIEMAT, Avenue Complutense 40, 28040 Madrid, Spain; Alcalá de Henares University, Alcalá de Henares, Spain
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK; Imperial College Centre for Synthetic Biology, Imperial College London, London, SW7 2AZ, UK; The Microbial Food Hub, Imperial College London, London, SW7 2AZ, UK; Bezos Centre for Sustainable Protein, Imperial College, London, SW7 2AZ, UK.
| |
Collapse
|
14
|
Lee H, Song J, Seo SW. Engineering Yarrowia lipolytica for the production of β-carotene by carbon and redox rebalancing. J Biol Eng 2025; 19:6. [PMID: 39815368 PMCID: PMC11734496 DOI: 10.1186/s13036-025-00476-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 01/03/2025] [Indexed: 01/18/2025] Open
Abstract
BACKGROUND β-Carotene is a natural product that has garnered significant commercial interest. Considerable efforts have been made to meet such demand through the metabolic engineering of microorganisms, yet there is still potential for improvement. In this study, engineering approaches including carbon and redox rebalancing were used to maximize β-carotene production in Yarrowia lipolytica. RESULTS The initial production level was increased by iterative overexpression of pathway genes with lycopene inhibition removal. For further improvement, two approaches that redirect the central carbon pathway were evaluated to increase NADPH regeneration and reduce ATP expenditure. Pushing flux through the pentose phosphate pathway and introducing NADP+-dependent glyceraldehyde-3-phosphate dehydrogenase were found to be more effective than the phosphoketolase-phosphotransacetylase (PK-PTA) pathway. Furthermore, flux to the lipid biosynthesis pathway was moderately increased to better accommodate the increased β-carotene pool, resulting in the production level of 809.2 mg/L. CONCLUSIONS The Y. lipolytica-based β-carotene production chassis was successfully developed through iterative overexpression of multiple pathways, central carbon pathway engineering and lipid pathway flux adjustment. The approach presented here provides insights into future endeavors to improve microbial terpenoid production capability.
Collapse
Affiliation(s)
- Hojun Lee
- Interdisciplinary Program in Bioengineering, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul, 08826, South Korea
| | - Jinwoo Song
- School of Chemical and Biological Engineering, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul, 08826, Republic of Korea
| | - Sang Woo Seo
- Interdisciplinary Program in Bioengineering, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul, 08826, South Korea.
- School of Chemical and Biological Engineering, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul, 08826, Republic of Korea.
- Institute of Chemical Processes, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul, 08826, Republic of Korea.
- Bio-MAX Institute, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul, 08826, Republic of Korea.
- Institute of Bio Engineering, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul, 08826, Republic of Korea.
| |
Collapse
|
15
|
Saha TR, Kang NK, Lee EY. Advanced metabolic Engineering strategies for the sustainable production of free fatty acids and their derivatives using yeast. J Biol Eng 2024; 18:73. [PMID: 39731138 DOI: 10.1186/s13036-024-00473-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 12/18/2024] [Indexed: 12/29/2024] Open
Abstract
The biological production of lipids presents a sustainable method for generating fuels and chemicals. Recognized as safe and enhanced by advanced synthetic biology and metabolic engineering tools, yeasts are becoming versatile hosts for industrial applications. However, lipids accumulate predominantly as triacylglycerides in yeasts, which are suboptimal for industrial uses. Thus, there have been efforts to directly produce free fatty acids and their derivatives in yeast, such as fatty alcohols, fatty aldehydes, and fatty acid ethyl esters. This review offers a comprehensive overview of yeast metabolic engineering strategies to produce free fatty acids and their derivatives. This study also explores current challenges and future perspectives for sustainable industrial lipid production, particularly focusing on engineering strategies that enable yeast to utilize alternative carbon sources such as CO2, methanol, and acetate, moving beyond traditional sugars. This review will guide further advancements in employing yeasts for environmentally friendly and economically viable lipid production technologies.
Collapse
Affiliation(s)
- Tisa Rani Saha
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering), Kyung Hee University, Yongin-si, Gyeonggi-do, 17104, Republic of Korea
| | - Nam Kyu Kang
- Department of Chemical Engineering, College of Engineering, Kyung Hee University, Yongin- si, Gyeonggi-do, 17104, Republic of Korea.
| | - Eun Yeol Lee
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering), Kyung Hee University, Yongin-si, Gyeonggi-do, 17104, Republic of Korea.
| |
Collapse
|
16
|
Duan Y, Chen L, Ma L, Amin FR, Zhai Y, Chen G, Li D. From lignocellulosic biomass to single cell oil for sustainable biomanufacturing: Current advances and prospects. Biotechnol Adv 2024; 77:108460. [PMID: 39383979 DOI: 10.1016/j.biotechadv.2024.108460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/12/2024] [Accepted: 09/29/2024] [Indexed: 10/11/2024]
Abstract
As global temperatures rise and arid climates intensify, the reserves of Earth's resources and the future development of humankind are under unprecedented pressure. Traditional methods of food production are increasingly inadequate in meeting the demands of human life while remaining environmentally sustainable and resource-efficient. Consequently, the sustainable supply of lipids is expected to become a pivotal area for future food development. Lignocellulose biomass (LB), as the most abundant and cost-effective renewable resource, has garnered significant attention from researchers worldwide. Thus, bioprocessing based on LB is appearing as a sustainable model for mitigating the depletion of energy reserves and reducing carbon footprints. Currently, the transformation of LB primarily focuses on producing biofuels, such as bioethanol, biobutanol, and biodiesel, to address the energy crisis. However, there are limited reports on the production of single cell oil (SCO) from LB. This review, therefore, provides a comprehensive summary of the research progress in lignocellulosic pretreatment. Subsequently, it describes how the capability for lignocellulosic use can be conferred to cells through genetic engineering. Additionally, the current status of saccharification and fermentation of LB is outlined. The article also highlights the advances in synthetic biology aimed at driving the development of oil-producing microorganism (OPM), including genetic transformation, chassis modification, and metabolic pathway optimization. Finally, the limitations currently faced in SCO production from straw are discussed, and future directions for achieving high SCO yields from various perspectives are proposed. This review aims to provide a valuable reference for the industrial application of green SCO production.
Collapse
Affiliation(s)
- Yu Duan
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai 264209, PR China; School of Environment, Harbin Institute of Technology, Harbin 150090, PR China; Tianjin Key Laboratory for Industrial Biological System and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Limei Chen
- Tianjin Key Laboratory for Industrial Biological System and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Longxue Ma
- Tianjin Key Laboratory for Industrial Biological System and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Farrukh Raza Amin
- Tianjin Key Laboratory for Industrial Biological System and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Yida Zhai
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai 264209, PR China; School of Environment, Harbin Institute of Technology, Harbin 150090, PR China; Tianjin Key Laboratory for Industrial Biological System and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Guofu Chen
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai 264209, PR China.
| | - Demao Li
- Tianjin Key Laboratory for Industrial Biological System and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
| |
Collapse
|
17
|
Zheng W, Wang Y, Cui J, Guo G, Li Y, Hou J, Tu Q, Yin Y, Stewart AF, Zhang Y, Bian X, Wang X. ReaL-MGE is a tool for enhanced multiplex genome engineering and application to malonyl-CoA anabolism. Nat Commun 2024; 15:9790. [PMID: 39532871 PMCID: PMC11557832 DOI: 10.1038/s41467-024-54191-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
The complexities encountered in microbial metabolic engineering continue to elude prediction and design. Unravelling these complexities requires strategies that go beyond conventional genetics. Using multiplex mutagenesis with double stranded (ds) DNA, we extend the multiplex repertoire previously pioneered using single strand (ss) oligonucleotides. We present ReaL-MGE (Recombineering and Linear CRISPR/Cas9 assisted Multiplex Genome Engineering). ReaL-MGE enables precise manipulation of numerous large DNA sequences as demonstrated by the simultaneous insertion of multiple kilobase-scale sequences into E. coli, Schlegelella brevitalea and Pseudomonas putida genomes without any off-target errors. ReaL-MGE applications to enhance intracellular malonyl-CoA levels in these three genomes achieved 26-, 20-, and 13.5-fold elevations respectively, thereby promoting target polyketide yields by more than an order of magnitude. In a further round of ReaL-MGE, we adapt S. brevitalea to malonyl-CoA elevation utilizing a restricted carbon source (lignocellulose from straw) to realize production of the anti-cancer secondary metabolite, epothilone from lignocellulose. Multiplex mutagenesis with dsDNA enables the incorporation of lengthy segments that can fully encode additional functions. Additionally, the utilization of PCR to generate the dsDNAs brings flexible design advantages. ReaL-MGE presents strategic options in microbial metabolic engineering.
Collapse
Affiliation(s)
- Wentao Zheng
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, P. R. China
- Suzhou Research Institute of Shandong University, Room607, Building B of NUSP, NO.388 Ruoshui Road, SIP, Suzhou, Jiangsu, P. R. China
- Shenzhen Research Institute of Shandong University, A301 Virtual University Park in South District of Shenzhen, Guangdong, P. R. China
| | - Yuxuan Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, P. R. China
| | - Jie Cui
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, P. R. China
| | - Guangyao Guo
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P. R. China
| | - Yufeng Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, P. R. China
| | - Jin Hou
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, P. R. China
| | - Qiang Tu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, P. R. China
| | | | - A Francis Stewart
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, P. R. China.
- Genomics, Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-51, Dresden, Germany.
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia.
| | - Youming Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, P. R. China.
| | - Xiaoying Bian
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, P. R. China.
| | - Xue Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, P. R. China.
| |
Collapse
|
18
|
Koshiba A, Nakano M, Hirata Y, Konishi R, Matsuoka Y, Miwa Y, Mori A, Kondo A, Tanaka T. Enhanced production of isobutyl and isoamyl acetate using Yarrowia lipolytica. Biotechnol Prog 2024; 40:e3499. [PMID: 39056525 DOI: 10.1002/btpr.3499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/03/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024]
Abstract
Short-chain esters, particularly isobutyl acetate and isoamyl acetate, hold significant industrial value due to their wide-ranging applications in flavors, fragrances, solvents, and biofuels. In this study, we demonstrated the biosynthesis of acetate esters using Yarrowia lipolytica as a host by feeding alcohols to the yeast culture. Initially, we screened for optimal alcohol acyltransferases for ester biosynthesis in Y. lipolytica. Strains of Y. lipolytica expressing atf1 from Saccharomyces cerevisiae, produced 251 or 613 mg/L of isobutyl acetate or of isoamyl acetate, respectively. We found that introducing additional copies of ATF1 enhanced ester production. Furthermore, by increasing the supply of acetyl-CoA and refining the culture conditions, we achieved high production of isoamyl acetate, reaching titers of 3404 mg/L. We expanded our study to include the synthesis of a range of acetate esters, facilitated by enriching the culture medium with various alcohols. This study underscores the versatility and potential of Y. lipolytica in the industrial production of acetate esters.
Collapse
Affiliation(s)
- Ayumi Koshiba
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe, Hyogo, Japan
| | - Mariko Nakano
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe, Hyogo, Japan
| | - Yuuki Hirata
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe, Hyogo, Japan
| | - Rie Konishi
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe, Hyogo, Japan
| | - Yuta Matsuoka
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe, Hyogo, Japan
| | - Yuta Miwa
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe, Hyogo, Japan
| | - Ayana Mori
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe, Hyogo, Japan
| | - Akihiko Kondo
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Hyogo, Japan
| | - Tsutomu Tanaka
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe, Hyogo, Japan
| |
Collapse
|
19
|
Yu B, Ma T, Nawaz M, Chen H, Zheng H. Advances in Metabolic Engineering for the Accumulation of Astaxanthin Biosynthesis. Mol Biotechnol 2024:10.1007/s12033-024-01289-1. [PMID: 39373956 DOI: 10.1007/s12033-024-01289-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 09/13/2024] [Indexed: 10/08/2024]
Abstract
Astaxanthin, a lipophilic carotenoid renowned for its strong antioxidant activity, holds significant commercial value across industries such as feed, food, and cosmetics. Although astaxanthin can be synthesized through chemical methods, it may contain toxic by-products in the synthesized astaxanthin, limiting its application in medicine or functional food. Natural astaxanthin can be extracted from algae, however, the cultivation cycle of algae is relatively longer compared to microorganisms. With the advancement of synthetic biology and metabolic engineering, the method of microbial fermentation has emerged as a promising strategy for the large-scale production of astaxanthin. This article provides a comprehensive overview of the research progress in astaxanthin biosynthesis, highlighting the use of the natural host Xanthophyllomyces dendrorhous, and the heterologous hosts Yarrowia lipolytica and Saccharomyces cerevisiae. Additionally, future research prospects are also discussed.
Collapse
Affiliation(s)
- Bingxin Yu
- School of Life Science and Technology, China Pharmaceutical University, No. 639 Longmian Dadao, Jiangning District, Nanjing, 210009, People's Republic of China
| | - Tianyue Ma
- School of Life Science and Technology, China Pharmaceutical University, No. 639 Longmian Dadao, Jiangning District, Nanjing, 210009, People's Republic of China
| | - Maryam Nawaz
- School of Life Science and Technology, China Pharmaceutical University, No. 639 Longmian Dadao, Jiangning District, Nanjing, 210009, People's Republic of China
| | - Hailong Chen
- School of Life Science and Technology, China Pharmaceutical University, No. 639 Longmian Dadao, Jiangning District, Nanjing, 210009, People's Republic of China
| | - Heng Zheng
- School of Life Science and Technology, China Pharmaceutical University, No. 639 Longmian Dadao, Jiangning District, Nanjing, 210009, People's Republic of China.
| |
Collapse
|
20
|
Tang YX, Huang W, Wang YH, Chen H, Lu XY, Tian Y, Ji XJ, Liu HH. Engineering Yarrowia lipolytica for sustainable Cis-13, 16-docosadienoic acid production. BIORESOURCE TECHNOLOGY 2024; 406:130978. [PMID: 38879057 DOI: 10.1016/j.biortech.2024.130978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/31/2024] [Accepted: 06/12/2024] [Indexed: 06/19/2024]
Abstract
Cis-13, 16-docosadienoic acid (DDA) is an omega-6 polyunsaturated fatty acid with great potential for application in medicine and health. Using microbial cell factories for DDA production is considered a viable alternative to extracting DDA from plant seeds. In this study, using Yarrowia lipolytica Po1f (Δku70) as a chassis, firstly, the adaptation of three elongases in Po1f (Δku70) were explored. Secondly, the DDA biosynthetic pathway was redesigned, resulting in a DDA content of 0.046 % of total fatty acids (TFAs). Thirdly, through the "push-pull" strategy, the DDA content increased to 0.078 % of TFAs. By enhancing the supply of acetyl-CoA, the DDA production in the engineered strain YL-7 reached 0.391 % of the TFAs (3.19 mg/L). Through optimizing the fermentation conditions, the DDA titer of YL-7 reached 29.34 mg/L. This research achieves the sustainable biological production of DDA in Y. lipolytica.
Collapse
Affiliation(s)
- Yi-Xiong Tang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Wei Huang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Yu-Hui Wang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Hong Chen
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Xiang-Yang Lu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Yun Tian
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, China; State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, Hunan 410004, China
| | - Xiao-Jun Ji
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China
| | - Hu-Hu Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, China.
| |
Collapse
|
21
|
Wang S, Sun X, Han Y, Li Z, Lu X, Shi H, Zhang CY, Wong A, Yu A. Sustainable biosynthesis of squalene from waste cooking oil by the yeast Yarrowia lipolytica. Metab Eng Commun 2024; 18:e00240. [PMID: 38948667 PMCID: PMC11214311 DOI: 10.1016/j.mec.2024.e00240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 05/17/2024] [Accepted: 06/03/2024] [Indexed: 07/02/2024] Open
Abstract
Squalene is a highly sought-after triterpene compound in growing demand, and its production offers a promising avenue for circular economy practices. In this study, we applied metabolic engineering principles to enhance squalene production in the nonconventional yeast Yarrowia lipolytica, using waste cooking oil as a substrate. By overexpressing key enzymes in the mevalonate pathway - specifically ERG9 encoding squalene synthase, ERG20 encoding farnesyl diphosphate synthase, and HMGR encoding hydroxy-methyl-glutaryl-CoA reductase - we achieved a yield of 779.9 mg/L of squalene. Further co-overexpression of DGA1, encoding diacylglycerol acyltransferase, and CAT2, encoding carnitine acetyltransferase, in combination with prior metabolic enhancements, boosted squalene production to 1381.4 mg/L in the engineered strain Po1g17. To enhance the supply of the precursor acetyl-CoA and inhibit downstream squalene conversion, we supplemented with 6 g/L pyruvic acid and 0.7 mg/L terbinafine, resulting in an overall squalene titer of 2594.1 mg/L. These advancements underscore the potential for sustainable, large-scale squalene production using Y. lipolytica cell factories, contributing to circular economy initiatives by valorizing waste materials.
Collapse
Affiliation(s)
- Shuhui Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No.29 the 13th Street TEDA, Tianjin, 300457, PR China
| | - Xu Sun
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No.29 the 13th Street TEDA, Tianjin, 300457, PR China
| | - Yuqing Han
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No.29 the 13th Street TEDA, Tianjin, 300457, PR China
| | - Zhuo Li
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No.29 the 13th Street TEDA, Tianjin, 300457, PR China
| | - Xiaocong Lu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No.29 the 13th Street TEDA, Tianjin, 300457, PR China
| | - Hongrui Shi
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No.29 the 13th Street TEDA, Tianjin, 300457, PR China
| | - Cui-ying Zhang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No.29 the 13th Street TEDA, Tianjin, 300457, PR China
| | - Adison Wong
- Food, Chemical and Biotechnology Cluster, Singapore Institute of Technology, Singapore, 138683, Singapore
| | - Aiqun Yu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No.29 the 13th Street TEDA, Tianjin, 300457, PR China
| |
Collapse
|
22
|
Guo Q, Peng QQ, Li YW, Yan F, Wang YT, Ye C, Shi TQ. Advances in the metabolic engineering of Saccharomyces cerevisiae and Yarrowia lipolytica for the production of β-carotene. Crit Rev Biotechnol 2024; 44:337-351. [PMID: 36779332 DOI: 10.1080/07388551.2023.2166809] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/20/2022] [Accepted: 12/08/2022] [Indexed: 02/14/2023]
Abstract
β-Carotene is one kind of the most important carotenoids. The major functions of β-carotene include the antioxidant and anti-cardiovascular properties, which make it a growing market. Recently, the use of metabolic engineering to construct microbial cell factories to synthesize β-carotene has become the latest model for its industrial production. Among these cell factories, yeasts including Saccharomyces cerevisiae and Yarrowia lipolytica have attracted the most attention because of the: security, mature genetic manipulation tools, high flux toward carotenoids using the native mevalonate pathway and robustness for large-scale fermentation. In this review, the latest strategies for β-carotene biosynthesis, including protein engineering, promoters engineering and morphological engineering are summarized in detail. Finally, perspectives for future engineering approaches are proposed to improve β-carotene production.
Collapse
Affiliation(s)
- Qi Guo
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, People's Republic of China
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, People's Republic of China
| | - Qian-Qian Peng
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, People's Republic of China
| | - Ya-Wen Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, People's Republic of China
| | - Fang Yan
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, People's Republic of China
| | - Yue-Tong Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, People's Republic of China
| | - Chao Ye
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, People's Republic of China
| | - Tian-Qiong Shi
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, People's Republic of China
| |
Collapse
|
23
|
Qin Z, Liu M, Ren X, Zeng W, Luo Z, Zhou J. De Novo Biosynthesis of Lutein in Yarrowia lipolytica. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5348-5357. [PMID: 38412053 DOI: 10.1021/acs.jafc.3c09080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Lutein is a high-value tetraterpenoid carotenoid that is widely used in feed, cosmetics, food, and drugs. Microbial synthesis of lutein is an important method for green and sustainable production, serving as an alternative to plant extraction methods. However, an inadequate precursor supply and low catalytic efficiency of key pathway enzymes are the main reasons for the low efficacy of microbial synthesis of lutein. In this study, some strategies, such as enhancing the MVA pathway and localizing α-carotene synthase OluLCY within the subcellular organelles in Yarrowia lipolytica, were adopted to enhance the synthesis of precursor α-carotene, which resulted in a 10.50-fold increase in α-carotene titer, reaching 38.50 mg/L. Subsequently, by improving hydroxylase activity with truncated N-terminal transport peptide and locating hydroxylases to subcellular organelles, the final strain L9 producing 75.25 mg/L lutein was obtained. Eventually, a lutein titer of 675.40 mg/L (6.13 mg/g DCW) was achieved in a 5 L bioreactor by adding the antioxidant 2,6-ditert-butyl-4-methylphenol. This study realizes de novo synthesis of lutein in Y. lipolytica for the first time and achieves the highest lutein titer reported so far.
Collapse
Affiliation(s)
- Zhilei Qin
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Mengsu Liu
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Xuefeng Ren
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Weizhu Zeng
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Zhengshan Luo
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jingwen Zhou
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| |
Collapse
|
24
|
Ning Y, Liu M, Ru Z, Zeng W, Liu S, Zhou J. Efficient synthesis of squalene by cytoplasmic-peroxisomal engineering and regulating lipid metabolism in Yarrowia lipolytica. BIORESOURCE TECHNOLOGY 2024; 395:130379. [PMID: 38281547 DOI: 10.1016/j.biortech.2024.130379] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/04/2024] [Accepted: 01/23/2024] [Indexed: 01/30/2024]
Abstract
Squalene, a high-value acyclic triterpenoid compound, is broadly used in the food and medical industries. Although the large acetyl-CoA pool and hydrophobic space of Yarrowia lipolytica are suitable for the accumulation of squalene, the current production level in Y. lipolytica is still not sufficient for industrial production. In this study, two rounds of multicopy integration of genes encoding key enzymes were performed to enhance squalene anabolic flux in the cytoplasm. Furthermore, the mevalonate pathway was imported into peroxisomes through the compartmentalization strategy, and the production of squalene was significantly increased. By augmenting the acetyl-CoA supply in peroxisomes and the cytoplasm, the squalene was boosted to 2549.1 mg/L. Finally, the squalene production reached 51.2 g/L by fed-batch fermentation in a 5-L bioreactor. This is the highest squalene production reported to date for microbial production, and this study lays the foundation for the synthesis of steroids and squalene derivatives.
Collapse
Affiliation(s)
- Yang Ning
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Mengsu Liu
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Ziyun Ru
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Weizhu Zeng
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Song Liu
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jingwen Zhou
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
25
|
Yue M, Liu M, Gao S, Ren X, Zhou S, Rao Y, Zhou J. High-Level De Novo Production of (2 S)-Eriodictyol in Yarrowia Lipolytica by Metabolic Pathway and NADPH Regeneration Engineering. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:4292-4300. [PMID: 38364826 DOI: 10.1021/acs.jafc.3c08861] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
(2S)-Eriodictyol, a polyphenolic flavonoid, has found widespread applications in health supplements and food additives. However, the limited availability of plant-derived (2S)-eriodictyol cannot meet the market demand. Microbial production of (2S)-eriodictyol faces challenges, including the low catalytic efficiency of flavone 3'-hydroxylase/cytochrome P450 reductase (F3'H/CPR), insufficient precursor supplementation, and inadequate NADPH regeneration. This study systematically engineered Yarrowia lipolytica for high-level (2S)-eriodictyol production. In doing this, the expression of F3'H/CPR was balanced, and the supply of precursors was enhanced by relieving feedback inhibition of the shikimate pathway, promoting fatty acid β-oxidation, and increasing the copy number of synthetic pathway genes. These strategies, combined with NADPH regeneration, achieved an (2S)-eriodictyol titer of 423.6 mg/L. Finally, in fed-batch fermentation, a remarkable 6.8 g/L (2S)-eriodictyol was obtained, representing the highest de novo microbial titer reported to date and paving the way for industrial production.
Collapse
Affiliation(s)
- Mingyu Yue
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Mengsu Liu
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Song Gao
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Xuefeng Ren
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Shenghu Zhou
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Yijian Rao
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jingwen Zhou
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| |
Collapse
|
26
|
Sofeo N, Toi MG, Ee EQG, Ng JY, Busran CT, Lukito BR, Thong A, Hermansen C, Peterson EC, Glitsos R, Arumugam P. Sustainable production of lipids from cocoa fatty acid distillate fermentation driven by adaptive evolution in Yarrowia lipolytica. BIORESOURCE TECHNOLOGY 2024; 394:130302. [PMID: 38199440 DOI: 10.1016/j.biortech.2024.130302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/20/2023] [Accepted: 01/06/2024] [Indexed: 01/12/2024]
Abstract
Single cell oil production using oleaginous yeasts is a promising alternative to animal and plant-derived lipids. But substrate costs for microbial fermentation are a major bottleneck. Using side streams as alternative to substrates like glucose, for growing yeast, is a potential cost-effective solution. By combining a previously reported process of growing yeasts on a solid cocoa fatty acid distillate side stream with adaptive evolution techniques, the growth of oleaginous yeast Yarrowia lipolytica was improved by 2-fold. The lipid titre was also boosted by more than 3-fold. Using transcriptomics, key genes were identified that are possibly involved in tailoring of lipid composition, side stream utilisation and enhancement of lipid titres. Candidate genes were also identified that might enable efficient growth and utilization of fatty acids and triacylglycerides found in cocoa fatty acid distillate. In summary, this research has improved the understanding of side stream utilisation for lipid production in oleaginous yeast.
Collapse
Affiliation(s)
- Naazneen Sofeo
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology, and Research (A*STAR), 31 Biopolis Way, Nanos, Singapore 138669, Singapore.
| | - Min Gin Toi
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology, and Research (A*STAR), 31 Biopolis Way, Nanos, Singapore 138669, Singapore
| | - En Qi Grace Ee
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology, and Research (A*STAR), 31 Biopolis Way, Nanos, Singapore 138669, Singapore
| | - Jing Yang Ng
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology, and Research (A*STAR), 31 Biopolis Way, Nanos, Singapore 138669, Singapore
| | - Coleen Toledo Busran
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology, and Research (A*STAR), 31 Biopolis Way, Nanos, Singapore 138669, Singapore
| | - Benedict Ryan Lukito
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology, and Research (A*STAR), 31 Biopolis Way, Nanos, Singapore 138669, Singapore
| | - Aaron Thong
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology, and Research (A*STAR), 31 Biopolis Way, Nanos, Singapore 138669, Singapore
| | - Christian Hermansen
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology, and Research (A*STAR), 31 Biopolis Way, Nanos, Singapore 138669, Singapore
| | - Eric Charles Peterson
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology, and Research (A*STAR), 31 Biopolis Way, Nanos, Singapore 138669, Singapore; Institut National de la Recherche Scientifique - Eau Terre Environnement (INRS-ETE), 490 Rue de la Couronne, Quebec City, QC G1K 9A9, Canada
| | - Renata Glitsos
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology, and Research (A*STAR), 31 Biopolis Way, Nanos, Singapore 138669, Singapore
| | - Prakash Arumugam
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology, and Research (A*STAR), 31 Biopolis Way, Nanos, Singapore 138669, Singapore
| |
Collapse
|
27
|
Su Y, Mangus AM, Cordell WT, Pfleger BF. Overcoming barriers to medium-chain fatty alcohol production. Curr Opin Biotechnol 2024; 85:103063. [PMID: 38219523 PMCID: PMC10922944 DOI: 10.1016/j.copbio.2023.103063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/16/2024]
Abstract
Medium-chain fatty alcohols (mcFaOHs) are aliphatic primary alcohols containing six to twelve carbons that are widely used in materials, pharmaceuticals, and cosmetics. Microbial biosynthesis has been touted as a route to less-abundant chain-length molecules and as a sustainable alternative to current petrochemical processes. Several metabolic engineering strategies for producing mcFaOHs have been demonstrated in the literature, yet processes continue to suffer from poor selectivity and mcFaOH toxicity, leading to reduced titers, rates, and yields of the desired compounds. This opinion examines the current state of microbial mcFaOH biosynthesis, summarizing engineering efforts to tailor selectivity and improve product tolerance by implementing engineering strategies that circumvent or overcome mcFaOH toxicity.
Collapse
Affiliation(s)
- Yun Su
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Anna M Mangus
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - William T Cordell
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Brian F Pfleger
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
28
|
Wang Z, Su C, Zhang Y, Shangguan S, Wang R, Su J. Key enzymes involved in the utilization of fatty acids by Saccharomyces cerevisiae: a review. Front Microbiol 2024; 14:1294182. [PMID: 38274755 PMCID: PMC10808364 DOI: 10.3389/fmicb.2023.1294182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 12/26/2023] [Indexed: 01/27/2024] Open
Abstract
Saccharomyces cerevisiae is a eukaryotic organism with a clear genetic background and mature gene operating system; in addition, it exhibits environmental tolerance. Therefore, S. cerevisiae is one of the most commonly used organisms for the synthesis of biological chemicals. The investigation of fatty acid catabolism in S. cerevisiae is crucial for the synthesis and accumulation of fatty acids and their derivatives, with β-oxidation being the predominant pathway responsible for fatty acid metabolism in this organism, occurring primarily within peroxisomes. The latest research has revealed distinct variations in β-oxidation among different fatty acids, primarily attributed to substrate preferences and disparities in the metabolic regulation of key enzymes involved in the S. cerevisiae fatty acid metabolic pathway. The synthesis of lipids, on the other hand, represents another crucial metabolic pathway for fatty acids. The present paper provides a comprehensive review of recent research on the key factors influencing the efficiency of fatty acid utilization, encompassing β-oxidation and lipid synthesis pathways. Additionally, we discuss various approaches for modifying β-oxidation to enhance the synthesis of fatty acids and their derivatives in S. cerevisiae, aiming to offer theoretical support and serve as a valuable reference for future studies.
Collapse
Affiliation(s)
- Zhaoyun Wang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan, Shandong, China
- Key Laboratory of Shandong Microbial Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| | - Chunli Su
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan, Shandong, China
- Key Laboratory of Shandong Microbial Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| | - Yisang Zhang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan, Shandong, China
- Key Laboratory of Shandong Microbial Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| | - Sifan Shangguan
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan, Shandong, China
- Key Laboratory of Shandong Microbial Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| | - Ruiming Wang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan, Shandong, China
- Key Laboratory of Shandong Microbial Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| | - Jing Su
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan, Shandong, China
- Key Laboratory of Shandong Microbial Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| |
Collapse
|
29
|
Sun ML, Gao X, Lin L, Yang J, Ledesma-Amaro R, Ji XJ. Building Yarrowia lipolytica Cell Factories for Advanced Biomanufacturing: Challenges and Solutions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:94-107. [PMID: 38126236 DOI: 10.1021/acs.jafc.3c07889] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Microbial cell factories have shown great potential for industrial production with the benefit of being environmentally friendly and sustainable. Yarrowia lipolytica is a promising and superior non-model host for biomanufacturing due to its cumulated advantages compared to model microorganisms, such as high fluxes of metabolic precursors (acetyl-CoA and malonyl-CoA) and its naturally hydrophobic microenvironment. However, although diverse compounds have been synthesized in Y. lipolytica cell factories, most of the relevant studies have not reached the level of industrialization and commercialization due to a number of remaining challenges, including unbalanced metabolic flux, conflict between cell growth and product synthesis, and cytotoxic effects. Here, various metabolic engineering strategies for solving the challenges are summarized, which is developing fast and extremely conducive to rational design and reconstruction of robust Y. lipolytica cell factories for advanced biomanufacturing. Finally, future engineering efforts for enhancing the production efficiency of this platform strain are highlighted.
Collapse
Affiliation(s)
- Mei-Li Sun
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Xiaoxia Gao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Lu Lin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Jing Yang
- 2011 College, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, United Kingdom
| | - Xiao-Jun Ji
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| |
Collapse
|
30
|
Renegar N, Rhoades S, Nair A, Sinskey AJ, Ward JP, Appleton DR. Valorizing waste streams to enhance sustainability and economics in microbial oil production. J Ind Microbiol Biotechnol 2024; 51:kuae041. [PMID: 39501492 PMCID: PMC11630272 DOI: 10.1093/jimb/kuae041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 11/01/2024] [Indexed: 12/12/2024]
Abstract
Driven by the demand for more sustainable products, research and capital investment has been committed to developing microbially produced oils. While researchers have shown oleaginous yeasts and other microbes can produce low-carbon footprint oils by leveraging waste streams as energy sources, previous analyses have not fully explored the quantity of available waste streams and in turn economy-of-scale enabled on capital and operating expenses. This paper makes parallels to 2G ethanol facilities, enabling a data-driven understanding of large-scale production economics. Production costs are broken down for a variety of scenarios. The analysis finds that reaching price parity with large-scale commodity oils (e.g., palm oil, high-oleic cooking oils, biofuels feedstock oils, lauric acid) is not possible today and unlikely even under aggressive future assumptions about strain productivity. Instead, commercial production must be targeted at end markets where sustainability-conscious consumers are willing to pay the price premiums identified in this paper. ONE SENTENCE SUMMARY This paper makes parallels to 2G ethanol facilities, enabling a data-driven understanding of large-scale production economics for microbial lipids.
Collapse
Affiliation(s)
- Nicholas Renegar
- Massachusetts Institute of Technology, Sinskey Lab, Department of Biology, Cambridge, MA 02139, USA
| | | | - Anusha Nair
- Sime Darby Plantation Berhad, 47301 Petaling Jaya, Selangor, Malaysia
| | - Anthony J Sinskey
- Massachusetts Institute of Technology, Sinskey Lab, Department of Biology, Cambridge, MA 02139, USA
| | - John P Ward
- Berry’s Brook Consulting, Rye, NH 03870, USA
| | | |
Collapse
|
31
|
Ramesh A, Lee S, Wheeldon I. Genome Editing, Transcriptional Regulation, and Forward Genetic Screening Using CRISPR-Cas12a Systems in Yarrowia lipolytica. Methods Mol Biol 2024; 2760:169-198. [PMID: 38468089 DOI: 10.1007/978-1-0716-3658-9_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Class II Type V endonucleases have increasingly been adapted to develop sophisticated and easily accessible synthetic biology tools for genome editing, transcriptional regulation, and functional genomic screening in a wide range of organisms. One such endonuclease, Cas12a, presents itself as an attractive alternative to Cas9-based systems. The ability to mature its own guide RNAs (gRNAs) from a single transcript has been leveraged for easy multiplexing, and its lack of requirement of a tracrRNA element, also allows for short gRNA expression cassettes. To extend these functionalities into the industrially relevant oleaginous yeast Yarrowia lipolytica, we developed a set of CRISPR-Cas12a vectors for easy multiplexed gene knockout, repression, and activation. We further extended the utility of this CRISPR-Cas12a system to functional genomic screening by constructing a genome-wide guide library targeting every gene with an eightfold coverage. Pooled CRISPR screens conducted with this library were used to profile Cas12a guide activities and develop a machine learning algorithm that could accurately predict highly efficient Cas12a gRNA. In this protocols chapter, we first present a method by which protein coding genes may be functionally disrupted via indel formation with CRISPR-Cas12a systems. Further, we describe how Cas12a fused to a transcriptional regulator can be used in conjunction with shortened gRNA to achieve transcriptional repression or activation. Finally, we describe the design, cloning, and validation of a genome-wide library as well as a protocol for the execution of a pooled CRISPR screen, to determine guide activity profiles in a genome-wide context in Y. lipolytica. The tools and strategies discussed here expand the list of available synthetic biology tools for facile genome engineering in this industrially important host.
Collapse
Affiliation(s)
- Adithya Ramesh
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA, USA
| | - Sangcheon Lee
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA, USA
| | - Ian Wheeldon
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA, USA.
| |
Collapse
|
32
|
Liu H, Huang X, Liu Y, Jing X, Ning Y, Xu P, Deng L, Wang F. Efficient Production of Triacetic Acid Lactone from Lignocellulose Hydrolysate by Metabolically Engineered Yarrowia lipolytica. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:18909-18918. [PMID: 37999448 DOI: 10.1021/acs.jafc.3c06528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Lignocellulose is a promising renewable feedstock for the bioproduction of high-value biochemicals. The poorly expressed xylose catabolic pathway was the bottleneck in the efficient utilization of the lignocellulose feedstock in yeast. Herein, multiple genetic and process engineering strategies were explored to debottleneck the conversion of xylose to the platform chemical triacetic acid lactone (TAL) in Yarrowia lipolytica. We identified that xylose assimilation generating more cofactor NADPH was favorable for the TAL synthesis. pH control improved the expression of acetyl-CoA carboxylase and generated more precursor malonyl-CoA. Combined with the suppression of the lipid synthesis pathway, 5.03 and 4.18 g/L TAL were produced from pure xylose and xylose-rich wheat straw hydrolysate, respectively. Our work removed the bottleneck of the xylose assimilation pathway and effectively upgraded wheat straw hydrolysate to TAL, which enabled us to build a sustainable oleaginous yeast cell factory to cost-efficiently produce green chemicals from low-cost lignocellulose by Y. lipolytica.
Collapse
Affiliation(s)
- Huan Liu
- Beijing Bioprocess Key Laboratory, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaolan Huang
- Beijing Bioprocess Key Laboratory, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yangming Liu
- Beijing Bioprocess Key Laboratory, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xinyun Jing
- Beijing Bioprocess Key Laboratory, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yuchen Ning
- Beijing Bioprocess Key Laboratory, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Peng Xu
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology, Shantou, Guangdong 515063, China
- Guangdong Provincial Key Laboratory of Materials and Technologies for Energy Conversion, Guangdong Technion-Israel Institute of Technology, Shantou, Guangdong 515063, China
| | - Li Deng
- Beijing Bioprocess Key Laboratory, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Fang Wang
- Beijing Bioprocess Key Laboratory, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
33
|
Asemoloye MD, Bello TS, Oladoye PO, Remilekun Gbadamosi M, Babarinde SO, Ebenezer Adebami G, Olowe OM, Temporiti MEE, Wanek W, Marchisio MA. Engineered yeasts and lignocellulosic biomaterials: shaping a new dimension for biorefinery and global bioeconomy. Bioengineered 2023; 14:2269328. [PMID: 37850721 PMCID: PMC10586088 DOI: 10.1080/21655979.2023.2269328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 10/03/2023] [Indexed: 10/19/2023] Open
Abstract
The next milestone of synthetic biology research relies on the development of customized microbes for specific industrial purposes. Metabolic pathways of an organism, for example, depict its chemical repertoire and its genetic makeup. If genes controlling such pathways can be identified, scientists can decide to enhance or rewrite them for different purposes depending on the organism and the desired metabolites. The lignocellulosic biorefinery has achieved good progress over the past few years with potential impact on global bioeconomy. This principle aims to produce different bio-based products like biochemical(s) or biofuel(s) from plant biomass under microbial actions. Meanwhile, yeasts have proven very useful for different biotechnological applications. Hence, their potentials in genetic/metabolic engineering can be fully explored for lignocellulosic biorefineries. For instance, the secretion of enzymes above the natural limit (aided by genetic engineering) would speed-up the down-line processes in lignocellulosic biorefineries and the cost. Thus, the next milestone would greatly require the development of synthetic yeasts with much more efficient metabolic capacities to achieve basic requirements for particular biorefinery. This review gave comprehensive overview of lignocellulosic biomaterials and their importance in bioeconomy. Many researchers have demonstrated the engineering of several ligninolytic enzymes in heterologous yeast hosts. However, there are still many factors needing to be well understood like the secretion time, titter value, thermal stability, pH tolerance, and reactivity of the recombinant enzymes. Here, we give a detailed account of the potentials of engineered yeasts being discussed, as well as the constraints associated with their development and applications.
Collapse
Affiliation(s)
- Michael Dare Asemoloye
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, Nankai District, China
- Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
| | - Tunde Sheriffdeen Bello
- Department of Plant Biology, School of Life Sciences, Federal University of Technology Minna, Minna Niger State, Nigeria
| | | | | | - Segun Oladiran Babarinde
- Department of Plant, Food and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, Nova Scotia, Canada
| | | | - Olumayowa Mary Olowe
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Mail Bag, Mmabatho, South Africa
| | | | - Wolfgang Wanek
- Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
| | - Mario Andrea Marchisio
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, Nankai District, China
| |
Collapse
|
34
|
Xiao C, Pan Y, Huang M. Advances in the dynamic control of metabolic pathways in Saccharomyces cerevisiae. ENGINEERING MICROBIOLOGY 2023; 3:100103. [PMID: 39628908 PMCID: PMC11610979 DOI: 10.1016/j.engmic.2023.100103] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/19/2023] [Accepted: 06/16/2023] [Indexed: 12/06/2024]
Abstract
The metabolic engineering of Saccharomyces cerevisiae has great potential for enhancing the production of high-value chemicals and recombinant proteins. Recent studies have demonstrated the effectiveness of dynamic regulation as a strategy for optimizing metabolic flux and improving production efficiency. In this review, we provide an overview of recent advancements in the dynamic regulation of S. cerevisiae metabolism. Here, we focused on the successful utilization of transcription factor (TF)-based biosensors within the dynamic regulatory network of S. cerevisiae. These biosensors are responsive to a wide range of endogenous and exogenous signals, including chemical inducers, light, temperature, cell density, intracellular metabolites, and stress. Additionally, we explored the potential of omics tools for the discovery of novel responsive promoters and their roles in fine-tuning metabolic networks. We also provide an outlook on the development trends in this field.
Collapse
Affiliation(s)
- Chufan Xiao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Yuyang Pan
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Mingtao Huang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
35
|
Zhang Y, Li M, Zhu R, Xin Y, Guo Z, Gu Z, Guo Z, Zhang L. Installing xylose assimilation and cellodextrin phosphorolysis pathways in obese Yarrowia lipolytica facilitates cost-effective lipid production from lignocellulosic hydrolysates. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:186. [PMID: 38031183 PMCID: PMC10688077 DOI: 10.1186/s13068-023-02434-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/14/2023] [Indexed: 12/01/2023]
Abstract
BACKGROUND Yarrowia lipolytica, one of the most charming chassis cells in synthetic biology, is unable to use xylose and cellodextrins. RESULTS Herein, we present work to tackle for the first time the engineering of Y. lipolytica to produce lipids from cellodextrins and xylose by employing rational and combinatorial strategies. This includes constructing a cellodextrin-phosphorolytic Y. lipolytica by overexpressing Neurospora crassa cellodextrin transporter, Clostridium thermocellum cellobiose/cellodextrin phosphorylase and Saccharomyces cerevisiae phosphoglucomutase. The effect of glucose repression on xylose consumption was relieved by installing a xylose uptake facilitator combined with enhanced PPP pathway and increased cytoplasmic NADPH supply. Further enhancing lipid production and interrupting its consumption conferred the obese phenotype to the engineered yeast. The strain is able to co-ferment glucose, xylose and cellodextrins efficiently, achieving a similar μmax of 0.19 h-1, a qs of 0.34 g-s/g-DCW/h and a YX/S of 0.54 DCW-g/g-s on these substrates, and an accumulation of up to 40% of lipids on the sugar mixture and on wheat straw hydrolysate. CONCLUSIONS Therefore, engineering Y. lipolytica capable of assimilating xylose and cellodextrins is a vital step towards a simultaneous saccharification and fermentation (SSF) process of LC biomass, allowing improved substrate conversion rate and reduced production cost due to low demand of external glucosidase.
Collapse
Affiliation(s)
- Yiran Zhang
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, People's Republic of China
- Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, 214200, People's Republic of China
| | - Moying Li
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Rui Zhu
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Yu Xin
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Zitao Guo
- School of Food and Biological Engineering, Jiangsu University, Xuefu Road 301, Jingkou District, Zhenjiang, Jiangsu, 212013, People's Republic of China
| | - Zhenghua Gu
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Zhongpeng Guo
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China.
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, People's Republic of China.
- Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, 214200, People's Republic of China.
| | - Liang Zhang
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, People's Republic of China
- Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, 214200, People's Republic of China
| |
Collapse
|
36
|
Zhu X, Li M, Zhu R, Xin Y, Guo Z, Gu Z, Zhang L, Guo Z. Up Front Unfolded Protein Response Combined with Early Protein Secretion Pathway Engineering in Yarrowia lipolytica to Attenuate ER Stress Caused by Enzyme Overproduction. Int J Mol Sci 2023; 24:16426. [PMID: 38003616 PMCID: PMC10670989 DOI: 10.3390/ijms242216426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/28/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
Engineering the yeast Yarrowia lipolytica as an efficient host to produce recombinant proteins remains a longstanding goal for applied biocatalysis. During the protein overproduction, the accumulation of unfolded and misfolded proteins causes ER stress and cell dysfunction in Y. lipolytica. In this study, we evaluated the effects of several potential ER chaperones and translocation components on relieving ER stress by debottlenecking the protein synthetic machinery during the production of the endogenous lipase 2 and the E. coli β-galactosidase. Our results showed that improving the activities of the non-dominant translocation pathway (SRP-independent) boosted the production of the two proteins. While the impact of ER chaperones is protein dependent, the nucleotide exchange factor Sls1p for protein folding catalyst Kar2p is recognized as a common contributor enhancing the secretion of the two enzymes. With the identified protein translocation components and ER chaperones, we then exemplified how these components can act synergistically with Hac1p to enhance recombinant protein production and relieve the ER stress on cell growth. Specifically, the yeast overexpressing Sls1p and cytosolic heat shock protein Ssa8p and Ssb1p yielded a two-fold increase in Lip2p secretion compared with the control, while co-overexpressing Ssa6p, Ssb1p, Sls1p and Hac1p resulted in a 90% increase in extracellular β-galp activity. More importantly, the cells sustained a maximum specific growth rate (μmax) of 0.38 h-1 and a biomass yield of 0.95 g-DCW/g-glucose, only slightly lower than that was obtained by the wild type strain. This work demonstrated engineering ER chaperones and translocation as useful strategies to facilitate the development of Y. lipolytica as an efficient protein-manufacturing platform.
Collapse
Affiliation(s)
- Xingyu Zhu
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; (X.Z.); (M.L.); (R.Z.); (Y.X.); (Z.G.); (L.Z.)
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Moying Li
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; (X.Z.); (M.L.); (R.Z.); (Y.X.); (Z.G.); (L.Z.)
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Rui Zhu
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; (X.Z.); (M.L.); (R.Z.); (Y.X.); (Z.G.); (L.Z.)
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Yu Xin
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; (X.Z.); (M.L.); (R.Z.); (Y.X.); (Z.G.); (L.Z.)
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Zitao Guo
- School of Food and Biological Engineering, Jiangsu University, Xuefu Road 301, Jingkou District, Zhenjiang 212013, China;
| | - Zhenghua Gu
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; (X.Z.); (M.L.); (R.Z.); (Y.X.); (Z.G.); (L.Z.)
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Liang Zhang
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; (X.Z.); (M.L.); (R.Z.); (Y.X.); (Z.G.); (L.Z.)
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Zhongpeng Guo
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; (X.Z.); (M.L.); (R.Z.); (Y.X.); (Z.G.); (L.Z.)
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| |
Collapse
|
37
|
Su H, Shi P, Shen Z, Meng H, Meng Z, Han X, Chen Y, Fan W, Fa Y, Yang C, Li F, Wang S. High-level production of nervonic acid in the oleaginous yeast Yarrowia lipolytica by systematic metabolic engineering. Commun Biol 2023; 6:1125. [PMID: 37935958 PMCID: PMC10630375 DOI: 10.1038/s42003-023-05502-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 10/20/2023] [Indexed: 11/09/2023] Open
Abstract
Nervonic acid benefits the treatment of neurological diseases and the health of brain. In this study, we employed the oleaginous yeast Yarrowia lipolytica to overproduce nervonic acid oil by systematic metabolic engineering. First, the production of nervonic acid was dramatically improved by iterative expression of the genes ecoding β-ketoacyl-CoA synthase CgKCS, fatty acid elongase gELOVL6 and desaturase MaOLE2. Second, the biosynthesis of both nervonic acid and lipids were further enhanced by expression of glycerol-3-phosphate acyltransferases and diacylglycerol acyltransferases from Malania oleifera in endoplasmic reticulum (ER). Third, overexpression of a newly identified ER structure regulator gene YlINO2 led to a 39.3% increase in lipid production. Fourth, disruption of the AMP-activated S/T protein kinase gene SNF1 increased the ratio of nervonic acid to lignoceric acid by 61.6%. Next, pilot-scale fermentation using the strain YLNA9 exhibited a lipid titer of 96.7 g/L and a nervonic acid titer of 17.3 g/L (17.9% of total fatty acids), the highest reported titer to date. Finally, a proof-of-concept purification and separation of nervonic acid were performed and the purity of it reached 98.7%. This study suggested that oleaginous yeasts are attractive hosts for the cost-efficient production of nervonic acid and possibly other very long-chain fatty acids (VLCFAs).
Collapse
Affiliation(s)
- Hang Su
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Penghui Shi
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
| | - Zhaoshuang Shen
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
| | - Huimin Meng
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Qingdao Institute for Food and Drug Control, Qingdao, 266073, China
| | - Ziyue Meng
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Xingfeng Han
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Yanna Chen
- Zhejiang Zhenyuan Biotech Co., LTD, Shaoxing, 312365, China
| | - Weiming Fan
- Zhejiang Zhenyuan Biotech Co., LTD, Shaoxing, 312365, China
| | - Yun Fa
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
| | - Chunyu Yang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Fuli Li
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China.
- Shandong Energy Institute, Qingdao, 266101, China.
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China.
| | - Shi'an Wang
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China.
- Shandong Energy Institute, Qingdao, 266101, China.
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China.
| |
Collapse
|
38
|
Davis MA, Yu VY, Fu B, Wen M, Koleski EJ, Silverman J, Berdan CA, Nomura DK, Chang MCY. A cellular platform for production of C 4 monomers. Chem Sci 2023; 14:11718-11726. [PMID: 37920356 PMCID: PMC10619544 DOI: 10.1039/d3sc02773b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/21/2023] [Indexed: 11/04/2023] Open
Abstract
Living organisms carry out a wide range of remarkable functions, including the synthesis of thousands of simple and complex chemical structures for cellular growth and maintenance. The manipulation of this reaction network has allowed for the genetic engineering of cells for targeted chemical synthesis, but it remains challenging to alter the program underlying their fundamental chemical behavior. By taking advantage of the unique ability of living systems to use evolution to find solutions to complex problems, we have achieved yields of up to ∼95% for three C4 commodity chemicals, n-butanol, 1,3-butanediol, and 4-hydroxy-2-butanone. Genomic sequencing of the evolved strains identified pcnB and rpoBC as two gene loci that are able to alter carbon flow by remodeling the transcriptional landscape of the cell, highlighting the potential of synthetic pathways as a tool to identify metabolic control points.
Collapse
Affiliation(s)
- Matthew A Davis
- Department of Molecular & Cellular Biology, University of California Berkeley CA 94720-3200 USA
| | - Vivian Yaci Yu
- Department of Molecular & Cellular Biology, University of California Berkeley CA 94720-3200 USA
| | - Beverly Fu
- Department of Chemistry, University of California Berkeley CA 94720-1460 USA
| | - Miao Wen
- Department of Chemistry, University of California Berkeley CA 94720-1460 USA
| | - Edward J Koleski
- Department of Chemistry, University of California Berkeley CA 94720-1460 USA
| | - Joshua Silverman
- Calysta 1900 Alameda de las Pulgas Suite 200 San Mateo CA 94404 USA
| | - Charles A Berdan
- Department of Chemistry, University of California Berkeley CA 94720-1460 USA
| | - Daniel K Nomura
- Department of Molecular & Cellular Biology, University of California Berkeley CA 94720-3200 USA
- Department of Chemistry, University of California Berkeley CA 94720-1460 USA
- Department of Nutritional Sciences & Toxicology, University of California Berkeley CA 94720-3104 USA
| | - Michelle C Y Chang
- Department of Molecular & Cellular Biology, University of California Berkeley CA 94720-3200 USA
- Department of Chemistry, University of California Berkeley CA 94720-1460 USA
- Department of Chemical & Biomolecular Engineering, University of California Berkeley CA 94720-1462 USA
| |
Collapse
|
39
|
Zhang J, Zhang M, Chen K, Deng D. Improvement strategies for fats and oils used in future food processing based on health orientation and sustainability: research progress, challenges and solutions. Crit Rev Food Sci Nutr 2023; 65:47-63. [PMID: 39722463 DOI: 10.1080/10408398.2023.2266835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
As the third largest source of energy in addition to carbohydrates and proteins, lipids provide the body with more than twice as much energy as carbohydrates and proteins and are the accumulated "fuel bank" of the body. They are widely stored in animals, plants and microorganisms and are effectively extracted for dietary use by improved and novel technologies. Under the pressure of the current environment, we should immediately look for new strategies to improve or develop dietary lipids that are compatible with the development of the future food industry, in order to mitigate the environmental and climatic degradation caused by the lipid-producing activities of the animal husbandry industry, to avoid the contradiction between the demand for high quality of human beings and the strain on the resources, and to reduce the health risks caused by saturated fats and trans-fats in meat products. At present, workers concerned are opening up new avenues for the future edible lipids, for example, researches into fat and oil substitutes, the use of biotechnology in lipids and the value-added reuse of waste products is in full swing. The article therefore began with a detailed overview of the known lipids available, understanding their origins and the ways in which they were classified by region. Secondly, possible trends and potential strategies for dietary lipids for use in future foods were presented. Finally, constructive comments are made on the problems and challenges that may be encountered in the research and subsequent industrialization process.
Collapse
Affiliation(s)
- Jiong Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- China General Chamber of Commerce Key Laboratory on Fresh Food Processing & Preservation, Jiangnan University, Wuxi, Jiangsu, China
| | - Min Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, Wuxi, Jiangsu, China
| | - Kai Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
| | - Dewei Deng
- Zhengzhou Xuemailong Food Flavor Co. R&D Center, Zhengzhou, Henan, China
| |
Collapse
|
40
|
Huang C, Chen Y, Cheng S, Li M, Wang L, Cheng M, Li F, Cao Y, Song H. Enhanced acetate utilization for value-added chemicals production in Yarrowia lipolytica by integration of metabolic engineering and microbial electrosynthesis. Biotechnol Bioeng 2023; 120:3013-3024. [PMID: 37306471 DOI: 10.1002/bit.28465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 05/19/2023] [Accepted: 05/31/2023] [Indexed: 06/13/2023]
Abstract
The limited supply of reducing power restricts the efficient utilization of acetate in Yarrowia lipolytica. Here, microbial electrosynthesis (MES) system, enabling direct conversion of inward electrons to NAD(P)H, was used to improve the production of fatty alcohols from acetate based on pathway engineering. First, the conversion efficiency of acetate to acetyl-CoA was reinforced by heterogenous expression of ackA-pta genes. Second, a small amount of glucose was used as cosubstrate to activate the pentose phosphate pathway and promote intracellular reducing cofactors synthesis. Third, through the employment of MES system, the final fatty alcohols production of the engineered strain YLFL-11 reached 83.8 mg/g dry cell weight (DCW), which was 6.17-fold higher than the initial production of YLFL-2 in shake flask. Furthermore, these strategies were also applied for the elevation of lupeol and betulinic acid synthesis from acetate in Y. lipolytica, demonstrating that our work provides a practical solution for cofactor supply and the assimilation of inferior carbon sources.
Collapse
Affiliation(s)
- Congcong Huang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
| | - Yaru Chen
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
| | - Shuai Cheng
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
| | - Mengxu Li
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
| | - Luxin Wang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
| | - Meijie Cheng
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
| | - Feng Li
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
| | - Yingxiu Cao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
| | - Hao Song
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
| |
Collapse
|
41
|
Guo Z, Li M, Guo Z, Zhu R, Xin Y, Gu Z, Zhang L. Trehalose metabolism targeting as a novel strategy to modulate acid tolerance of yeasts and its application in food industry. Food Microbiol 2023; 114:104300. [PMID: 37290876 DOI: 10.1016/j.fm.2023.104300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 06/10/2023]
Abstract
Some spoilage yeasts are able to develop resistance to commonly used weak-acid preservatives. We studied the trehalose metabolism and its regulation in Saccharomyces cerevisiae in response to propionic acid stress. We show interruption of trehalose synthetic pathway caused the mutant hypersensitive to the acid stress, while its overexpression conferred acid-tolerance to yeast. Interestingly, this acid-tolerance phenotype was largely independent of trehalose but relied on the trehalose synthetic pathway. We demonstrate trehalose metabolism played a vital role in regulation of glycolysis flux and Pi/ATP homeostasis in yeast during acid-adaptation, and the PKA and TOR signaling pathways were involved in regulating trehalose synthesis at transcriptional level. This work confirmed the regulatory function of trehalose metabolism and improved our understanding of molecular mechanism of acid-adaptation of yeast. By exemplifying trehalose metabolism interruption limited the growth of S. cerevisiae exposed to weak acids, and trehalose pathway overexpression conferring acid-resistance to Yarrowia lipolytica enhanced citric acid production, this work provides new insights into the development of efficient preservation strategies and robust organic acid producers.
Collapse
Affiliation(s)
- Zhongpeng Guo
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, 214200, China.
| | - Moying Li
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Zitao Guo
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Rui Zhu
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Yu Xin
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Zhenghua Gu
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Liang Zhang
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, 214200, China.
| |
Collapse
|
42
|
Alves Júnior SL, Fongaro G, Treichel H. Second-generation biorefinery: a Brazilian perspective. Bioprocess Biosyst Eng 2023; 46:1075-1076. [PMID: 37419994 DOI: 10.1007/s00449-023-02901-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2023]
Affiliation(s)
- Sérgio Luiz Alves Júnior
- Laboratory of Yeast Biochemistry, Federal University of Fronteira Sul, Chapecó, SC, 89815-110, Brazil
| | - Gislaine Fongaro
- Laboratory of Applied Virology, Department of Microbiology, Immunology, and Parasitology, Federal University of Santa Catarina, Florianópolis, SC, 88040-970, Brazil
| | - Helen Treichel
- Laboratory of Microbiology and Bioprocess (LAMIBI), Federal University of Fronteira Sul, Erechim, RS, 99700-790, Brazil.
| |
Collapse
|
43
|
Bi H, Xu C, Bao Y, Zhang C, Wang K, Zhang Y, Wang M, Chen B, Fang Y, Tan T. Enhancing precursor supply and modulating metabolism to achieve high-level production of β-farnesene in Yarrowia lipolytica. BIORESOURCE TECHNOLOGY 2023; 382:129171. [PMID: 37196740 DOI: 10.1016/j.biortech.2023.129171] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 05/19/2023]
Abstract
β-Farnesene is a sesquiterpene commonly found in essential oils of plants, with applications spanning from agricultural pest control and biofuels to industrial chemicals. The use of renewable substrates in microbial cell factories offers a sustainable approach to β-farnesene biosynthesis. In this study, malic enzyme from Mucor circinelloides was examined for NADPH regeneration, concomitant with the augmentation of cytosolic acetyl-CoA supply by expressing ATP-citrate lyase from Mus musculus and manipulating the citrate pathway via AMP deaminase and isocitrate dehydrogenase. Carbon flux was modulated through the elimination of native 6-phosphofructokinase, while the incorporation of an exogenous non-oxidative glycolysis pathway served to bridge the pentose phosphate pathway with the mevalonate pathway. The resulting orthogonal precursor supply pathway facilitated β-farnesene production, reaching 810 mg/L in shake-flask fermentation. Employing optimal fermentation conditions and feeding strategy, a titer of 28.9 g/L of β-farnesene was attained in a 2 L bioreactor.
Collapse
Affiliation(s)
- Haoran Bi
- National Energy R&D Center of Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Chenchen Xu
- National Energy R&D Center of Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Yufei Bao
- National Energy R&D Center of Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Changwei Zhang
- National Energy R&D Center of Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Kai Wang
- National Energy R&D Center of Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Yang Zhang
- National Energy R&D Center of Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Meng Wang
- National Energy R&D Center of Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P.R. China.
| | - Biqiang Chen
- National Energy R&D Center of Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Yunming Fang
- National Energy R&D Center of Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Tianwei Tan
- National Energy R&D Center of Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P.R. China.
| |
Collapse
|
44
|
Liu S, Sun Y, Wei T, Gong D, Wang Q, Zhan Z, Song J. Engineering 3-Hydroxypropionic Acid Production from Glucose in Yarrowia lipolytica through Malonyl-CoA Pathway. J Fungi (Basel) 2023; 9:jof9050573. [PMID: 37233284 DOI: 10.3390/jof9050573] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/27/2023] Open
Abstract
3-Hydroxypropionic acid (3-HP) is an important intermediate compound in the chemical industry. Green and environmentally friendly microbial synthesis methods are becoming increasingly popular in a range of industries. Compared to other chassis cells, Yarrowia lipolytica possesses advantages, such as high tolerance to organic acid and a sufficient precursor required to synthesize 3-HP. In this study, gene manipulations, including the overexpression of genes MCR-NCa, MCR-CCa, GAPNSm, ACC1 and ACSSeL641P and knocking out bypass genes MLS1 and CIT2, leading to the glyoxylate cycle, were performed to construct a recombinant strain. Based on this, the degradation pathway of 3-HP in Y. lipolytica was discovered, and relevant genes MMSDH and HPDH were knocked out. To our knowledge, this study is the first to produce 3-HP in Y. lipolytica. The yield of 3-HP in recombinant strain Po1f-NC-14 in shake flask fermentation reached 1.128 g·L-1, and the yield in fed-batch fermentation reached 16.23 g·L-1. These results are highly competitive compared to other yeast chassis cells. This study creates the foundation for the production of 3-HP in Y. lipolytica and also provides a reference for further research in the future.
Collapse
Affiliation(s)
- Shiyu Liu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150006, China
| | - Yao Sun
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150006, China
| | - Tianhui Wei
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150006, China
| | - Dianliang Gong
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150006, China
| | - Qi Wang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150006, China
| | - Zhe Zhan
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150006, China
| | - Jinzhu Song
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150006, China
| |
Collapse
|
45
|
Shang Y, Zhang P, Wei W, Li J, Ye BC. Metabolic engineering for the high-yield production of polydatin in Yarrowia lipolytica. BIORESOURCE TECHNOLOGY 2023; 381:129129. [PMID: 37146696 DOI: 10.1016/j.biortech.2023.129129] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/27/2023] [Accepted: 05/01/2023] [Indexed: 05/07/2023]
Abstract
Polydatin, a glycosylated derivative of resveratrol, has better structural stability and biological activity than resveratrol. Polydatin is the extract of Polygonum cuspidatum, which has various pharmacological effects. Owing to its Crabtree-negative characteristics and high supply of malonyl-CoA, Yarrowia lipolytica was selected to produce polydatin. Initially, the resveratrol synthetic pathway was established in Y. lipolytica. By enhancing the shikimate pathway flow, redirecting carbon metabolism, and increasing the copies of key genes, a resveratrol yield of 487.77 mg/L was obtained. In addition, by blocking the degradation of polydatin, its accumulation was successfully achieved. Finally, by optimizing the glucose concentration and supplementing with two nutritional marker genes, a high polydatin yield of 6.88 g/L was obtained in Y. lipolytica, which is the highest titer of polydatin produced in a microbial host to date. Overall, this study demonstrates that Y. lipolytica has great potential for glycoside synthesis.
Collapse
Affiliation(s)
- Yanzhe Shang
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Ping Zhang
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wenping Wei
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Jin Li
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Bang-Ce Ye
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| |
Collapse
|
46
|
Wang R, Liu X, Lv B, Sun W, Li C. Designing Intracellular Compartments for Efficient Engineered Microbial Cell Factories. ACS Synth Biol 2023; 12:1378-1395. [PMID: 37083286 DOI: 10.1021/acssynbio.2c00671] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
With the rapid development of synthetic biology, various kinds of microbial cell factories (MCFs) have been successfully constructed to produce high-value-added compounds. However, the complexity of metabolic regulation and pathway crosstalk always cause issues such as intermediate metabolite accumulation, byproduct generation, and metabolic burden in MCFs, resulting in low efficiencies and low yields of industrial biomanufacturing. Such issues could be solved by spatially rearranging the pathways using intracellular compartments. In this review, design strategies are summarized and discussed based on the types and characteristics of natural and artificial subcellular compartments. This review systematically presents information for the construction of efficient MCFs with intracellular compartments in terms of four aspects of design strategy goals: (1) improving local reactant concentration; (2) intercepting and isolating competing pathways; (3) providing specific reaction substances and environments; and (4) storing and accumulating products.
Collapse
Affiliation(s)
- Ruwen Wang
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, PR China
| | - Xin Liu
- Key Lab for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, PR China
| | - Bo Lv
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, PR China
| | - Wentao Sun
- Key Lab for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, PR China
| | - Chun Li
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, PR China
- Key Lab for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, PR China
- Center for Synthetic and System Biology, Tsinghua University, Beijing, 100084, PR China
| |
Collapse
|
47
|
Basri RS, Rahman RNZRA, Kamarudin NHA, Ali MSM. Carboxylic acid reductases: Structure, catalytic requirements, and applications in biotechnology. Int J Biol Macromol 2023; 240:124526. [PMID: 37080403 DOI: 10.1016/j.ijbiomac.2023.124526] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/07/2023] [Accepted: 04/16/2023] [Indexed: 04/22/2023]
Abstract
Biocatalysts have been gaining extra attention in recent decades due to their industrial-relevance properties, which may hasten the transition to a cleaner environment. Carboxylic acid reductases (CARs) are large, multi-domain proteins that can catalyze the reduction of carboxylic acids to corresponding aldehydes, with the presence of adenosine triphosphate (ATP) and nicotinamide adenine dinucleotide phosphate (NADPH). This biocatalytic reaction is of great interest due to the abundance of carboxylic acids in nature and the ability of CAR to convert carboxylic acids to a wide range of aldehydes essentially needed as end products such as vanillin or reaction intermediates for several compounds production such as alcohols, alkanes, and amines. This modular enzyme, found in bacteria and fungi, demands an activation via post-translational modification by the phosphopantetheinyl transferase (PPTase). Recent advances in the characterization and structural studies of CARs revealed valuable information about the enzymes' dynamics, mechanisms, and unique features. In this comprehensive review, we summarize the previous findings on the phylogeny, structural and mechanistic insight of the domains, post-translational modification requirement, strategies for the cofactors regeneration, the extensively broad aldehyde-related industrial application properties of CARs, as well as their recent immobilization approaches.
Collapse
Affiliation(s)
- Rose Syuhada Basri
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Raja Noor Zaliha Raja Abd Rahman
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Nor Hafizah Ahmad Kamarudin
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Centre of Foundation Studies for Agricultural Science, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Mohd Shukuri Mohamad Ali
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| |
Collapse
|
48
|
Valle-Rodríguez JO, Siewers V, Nielsen J, Shi S. Directed evolution of a wax ester synthase for production of fatty acid ethyl esters in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 2023; 107:2921-2932. [PMID: 36976306 DOI: 10.1007/s00253-023-12466-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 02/21/2023] [Accepted: 02/24/2023] [Indexed: 03/29/2023]
Abstract
Wax ester synthases (WSs) utilize a fatty alcohol and a fatty acyl-coenzyme A (activated fatty acid) to synthesize the corresponding wax ester. There is much interest in developing novel cell factories that can produce shorter esters, e.g., fatty acid ethyl esters (FAEEs), with properties similar to biodiesel in order to use these as transportation fuels. However, ethanol is a poor substrate for WSs, and this may limit the biosynthesis of FAEEs. Here, we implemented a random mutagenesis approach to enhance the catalytic efficiency of a WS from Marinobacter hydrocarbonoclasticus (MhWS2, encoded by the ws2 gene). Our selection system was based on FAEE formation serving as a detoxification mechanism for excessive oleate, where high WS activity was essential for a storage-lipid free yeast to survive. A random mutagenesis library of ws2 was used to transform the storage-lipid free yeast, and mutants could be selected by plating the transformants on oleate containing plates. The variants encoding WS with improved activity were sequenced, and an identified point mutation translated into the residue substitution at position A344 was discovered to substantially increase the selectivity of MhWS2 toward ethanol and other shorter alcohols. Structural modeling indicated that an A344T substitution might affect the alcohol selectivity due to change of both steric effects and polarity changes near the active site. This work not only provides a new WS variant with altered selectivity to shorter alcohols but also presents a new high-throughput selection system to isolate WSs with a desired selectivity. KEY POINTS: • The work provides WS variants with altered substrate preference for shorter alcohols • A novel method was developed for directed evolution of WS of desired selectivity.
Collapse
Affiliation(s)
| | - Verena Siewers
- Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96, Gothenburg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, 412 96, Gothenburg, Sweden
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96, Gothenburg, Sweden.
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, 412 96, Gothenburg, Sweden.
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2970, Hørsholm, Denmark.
| | - Shuobo Shi
- Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96, Gothenburg, Sweden.
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
49
|
Theodosiou E. Engineering Strategies for Efficient Bioconversion of Glycerol to Value-Added Products by Yarrowia lipolytica. Catalysts 2023. [DOI: 10.3390/catal13040657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023] Open
Abstract
Yarrowia lipolytica has been a valuable biotechnological workhorse for the production of commercially important biochemicals for over 70 years. The knowledge gained so far on the native biosynthetic pathways, as well as the availability of numerous systems and synthetic biology tools, enabled not only the regulation and the redesign of the existing metabolic pathways, but also the introduction of novel synthetic ones; further consolidating the position of the yeast in industrial biotechnology. However, for the development of competitive and sustainable biotechnological production processes, bioengineering should be reinforced by bioprocess optimization strategies. Although there are many published reviews on the bioconversion of various carbon sources to value-added products by Yarrowia lipolytica, fewer works have focused on reviewing up-to-date strain, medium, and process engineering strategies with an aim to emphasize the significance of integrated engineering approaches. The ultimate goal of this work is to summarize the necessary knowledge and inspire novel routes to manipulate at a systems level the yeast biosynthetic machineries by combining strain and bioprocess engineering. Due to the increasing surplus of biodiesel-derived waste glycerol and the favored glycerol-utilization metabolic pathways of Y. lipolytica over other carbon sources, the present review focuses on pure and crude glycerol-based biomanufacturing.
Collapse
|
50
|
Sha Y, Zhou L, Wang Z, Ding Y, Lu M, Xu Z, Zhai R, Jin M. Adaptive laboratory evolution boost Yarrowia lipolytica tolerance to vanillic acid. J Biotechnol 2023; 367:42-52. [PMID: 36965629 DOI: 10.1016/j.jbiotec.2023.03.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/18/2023] [Accepted: 03/17/2023] [Indexed: 03/27/2023]
Abstract
Microbial tolerance to lignocellulose-derived inhibitors, such as aromatic acids, is critical for the economical production of biofuels and biochemicals. Here, adaptive laboratory evolution was applied to improve the tolerance of Yarrowia lipolytica to a representative aromatic acid inhibitor vanillic acid. The transcriptome profiling of evolved strain suggested that the tolerance could be related to the up-regulation of RNA processing and multidrug transporting pathways. Further analysis by reverse engineering confirmed that the amplification of YALI0_F13475g coding for transcriptional coactivator and YALI0_E25201g coding for multidrug transporter conferred tolerance not only to vanillic acid but also towards ferulic acid, p-coumaric acid, p-hydroxybenzoic acid and syringic acid. These findings suggested that regulation of RNA processing and multidrug transporting pathways may be important for enhanced aromatic acid tolerance in Y. lipolytica. This study provides valuable genetic information for robust strain construction for lignocellulosic biorefinery.
Collapse
Affiliation(s)
- Yuanyuan Sha
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Linlin Zhou
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Zedi Wang
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Ying Ding
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Minrui Lu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Zhaoxian Xu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Rui Zhai
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Mingjie Jin
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|